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This study aimed to estimate the annual average daily traffic in inter-urban networks determining the best

correlation (affinity) between the short period traffic counts and permanent traffic counters. A bi-level optimisation

problem is proposed in which an agent in an upper level prefixes the affinities between short period traffic counts

and permanent traffic counters stations and looks to minimise the annual average daily traffic calculation error

while, in a lower level, an origin–destination (O–D) trip matrix estimation problem from traffic counts is solved. The

proposed model is tested over the well-known Sioux-Falls network and applied to a real case of Cantabria (Spain)

regional road network. The importance of determining appropriate affinity and the effect of localisation of

permanent traffic counters stations are discussed.

Notation
A set of all links with traffic count

a link with traffic count

l network link or road section

Pa
ij fraction of trips from i to j using link a

sa average daily traffic for Saturdays

su average daily traffic for Sundays

Tannual mean average daily traffic for the working days of

the different months

Tk mean average daily traffic for working days in one

determined month k

T16 h 16 h traffic

T24 h 24 h traffic

T ¼ [Tij] the origin–destination matrix to be estimatedbTT ¼ [bTTij] the vector containing the a priori trip matrixbVV l measured volume (AADT) on link l

V 0
l estimated volume (AADT) on link l

wo AADT for working days.

�n,m element of the SPTC–PTC incidence matrix, taking

a value of 1 if SPTC m is related to PTC n and 0 in

other cases

ª1, ª2 weighting scalars

1. Introduction
Annual average daily traffic (AADT) is a key parameter of road

design. However, its estimation is a difficult problem because the

only way to obtain its real value is by measuring 365 days per

year and 24 h per day.

Obviously, this methodology would be unviable for any govern-

ment. For this reason only a few stations measure all the year and

short period measurements are used to complete this information.

Thus, the network of traffic counting stations is classified into

two different types.

j Permanent traffic count (PTC). Observation is made all year

round by electronic counters using magnetic induction loops

fitted with time registers and able to distinguish between

heavy and light vehicles.

j Short period traffic counts (SPTC). Complementary traffic

counting at certain points of the road network where

measurements are taken for 16 h (from 0600 to 2200 h) for

one working day only.

Given that the objective is to obtain AADT values from the SPTC

values, an expansion of their measurements must be made (F). In

Spain, this is done by extracting three types of expansion factors

associated with each PTC. Each of these three factors is

calculated in the following manner.

j Nocturnality factor N: The relationship between 24 h traffic

(T24 h) and 16 h traffic (T16 h).

N ¼ T24 h=T16 h1:

j Seasonal factor L: Transforms the average daily traffic for

any one working day into the AADT for working days. It is

obtained by dividing the average daily traffic for working
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days by the average daily traffic for working days in one

determined month k.

Lk ¼ T annual=Tk2:

j Weekend factor S: This transforms the average daily traffic

for working days into the AADT, introducing the effect of

Saturdays and Sundays. It is calculated using the following

expression:

S ¼ (5þ (sa=wo)þ (su=wo))=73:

j Final factor F: This transforms the traffic count done at a

SPTC over 16 h into the AADT.

F ¼ N � L � S4:

Each SPTC is associated to a unique PTC (this is called

‘affinity’) and multiplying the traffic count at the SPTC by the

factor (F) at point PTC produces the AADT for the SPTC.

Thus the problem is how to find the best affinity between

SPTC and PTC and, furthermore, how many SPTC are really

needed for a correct estimate of the AADT across the entire

network. For example, the authorities in Spain who are

responsible for deciding this affinity, normally base the decision

purely on empirical experience and on data they have inherited

from historical configurations that are very often obsolete.

The international literature was consulted to try and sort this out.

The work done by Lingras and Adamo (1996) showed the results

of a statistical comparison between the traditional method and a

genetic algorithm to classify sections of motorway by analysing a

temporal traffic pattern. This improvement allows for a better

analysis of traffic by providing a more accurate calculation of the

AADT.

Sharma et al. (1996) studied the statistical precision of obtaining

AADT from SPTC stations. A high number of PTC locations

were studied on the Minnesota motorway network to look at the

effects of different factors on the error in the calculation,

narrowly related with the affinity which establishes the para-

meters for grouping the PTCs. It was concluded that the results

are highly sensitive to the chosen definition of affinity.

Lam and Xu (2000) adopted the neural network method for the

estimation of AADT from SPTC stations and they compared their

estimation with the one obtained by regression. Later Sharma et

al. (2001) used neural networks to calculate AADT on low-

volume roads from SPTCs. They also describe some advantages

associated with calculating from neuronal networks rather than

the more traditional method using factors.

Yang and Davis (2002) used Bayesian techniques for calculating

classified mean daily traffic and also analysed the effect of how long

a short duration traffic count took. McCord et al. (2003) proposed

an alternative methodology in which AADT was estimated from a

single image of a road segment and, based on this model, Jiang et al.

(2006) proposed a different approach that exploited existing

imagery of highway segments and earlier year coverage counts.

The model proposed herein presents a different approach because

it is based on an origin–destination (O–D) matrix estimation

from PTC and SPTC data which reproduces the AADT on the

network. Thus the model determines the optimal affinity between

SPTC and PTC and, therefore, the number and allocation of these

SPTC for each PTC, minimising the error over validation meas-

urements. Until now, only the work of Wang (2012), who used

parcel-level travel demand modelling, had used travel demand

modelling for this estimation.

The next section presents the proposed model. A test application

is presented for the well-known Sioux-Falls network along with

an analysis of results and discussion and this is followed by a real

study case for the road network of Cantabria (Spain). Finally, the

most important conclusions from this work are presented.

2. Proposed model
A mathematical bi-level optimisation model is proposed for

solving the problem of determining the optimal affinity between

SPTC and PTC. At the model’s upper level, an agent varies these

affinities and the lower level solves an O–D matrix estimation

problem from traffic counts.

Suppose a road network has N PTC stations and M SPTC stations.

The adjustment factor (affinity) between PTC and SPTC stations

is unique; in other words, each SPTC station has only one

comparable PTC station. Hence an incidence matrix or affinity

matrix [N 3 M] can be created, the elements of which, �n,m, are

equal to 1 if the SPTC m is related to the PTC n, and 0 otherwise.

Each of the annual counts from every PTC station is assigned an

AADT and F value. Similarly, at each SPTC station, where traffic

was counted for 16 h, by applying the F factor of the related PTC

station the final AADT value of all the SPTC stations was derived.

Then an O–D trip matrix is estimated from the AADT values. In

traffic models one well-known problem is the trip matrix estimation,

where some observations (link flows) are taken and the O–D flows

are estimated (Ashok and Ben-Akiva, 2000; Cascetta, 1984;

Cascetta and Nguyen, 1988; Doblas and Benitez, 2005; Hazelton,

2000; Lo et al., 1996; Maher and Zhang, 1999 or Yang et al., 1992).

The estimated matrix provides network flows, which can then be

compared with real observable counts. Therefore, the problem is

to find the best affinity matrix (with the constraint that an SPTC

station can only be referred to one PTC station) to calculate the

O–D trip matrix with minimum error. The mean absolute error

(MAE) between the estimated and observed flows was used.
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Thus the model can be formulated as:

Upper level

min MAE% ¼
P

a2A
bVV a�V 0

a

��� ���P
a2A
bVV a

� 100
5:

such thatX
n2N

�n,m ¼ 1 , 8 m 2 M
6:

�n,m 2 0, 1f g7:

Lower level

min Z(t, v) ¼ ª1

X
ij

T ij ln
TijbTTij

� 1þ ln bTT !

þ ª2

X
a2A

V a ln
V abVV a

� 1

� �
8:

s.t.

bVV a ¼
X

ij

T ij � Pa
ij, a 2 A

9:

Constraint 6 ensures that each SPTC is only associated with one

PTC. Equations 8 and 9 correspond to the well-known method of

O–D matrix estimation from traffic counts based on maximising

entropy.

The methodology is shown in Figure 1 and can be summarised in

the following steps.

1. The starting point is a series of data: Initial O–D trip matrix,

group of PTC and SPTC stations and an initial matrix of

adjustment factors (affinities).

2. The initial matrix of adjustment factors is used to calculate

the AADT for the PTC and SPTC stations.

3. O–D matrix estimation from traffic counts.

4. The modelled flows are then compared with the validation

flows and the MAE is calculated. If the MAE value drops

with respect to the previous iteration value then another

matrix of adjustment factors is looked for and the calculation

returns to step 2. If the error does not drop then the latest

O–D trip matrix and its associated matrix of adjustment

factors are optimal. A generic genetic algorithm that realises

Initial matrix
PTC and SPTC stations

vector of affinities

Calculate AADT

PROCEDURE P1

MAE min�

Optimal vector of
affinities

END

New vector of
affinities

NO

YES

PROCEDURE P1

Initial matrix
vector of AADT

Matrix estimation

MAE

Estimated trip matrix
MAE

AADT error

END

Figure 1. Methodology
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a heuristic search, which departs from an initial solution of

the matrix of adjustment factors and generates a new solution

exchanging the initial solution (Mathe and Grefenstette,

2004), has been used in this point.

3. Sioux-Falls network test application
The methodology was applied to the well-known Sioux Falls

network, composed of 24 zones, 24 nodes and 76 links. The

necessary data are: the initial trip matrix and the group of PTC

stations with their F values as well as the group of SPTC stations.

Furthermore, it was assumed the target (‘real’) trip matrix is

known. These data are shown in Table 1 along with the first

configuration of affinities (an initial affinity based on the criteria

of closeness).

After applying the model, the affinity matrix which minimises the

error in the flow on links is shown in the same Table 1, and its

network representation is shown in Figure 2. In addition to

managing to minimise the error it is interesting to also study the

error committed in the estimations of AADT for the SPTC

stations. Figure 3 shows how the estimation errors evolve for the

O–D matrix and AADT from the affinity with greatest error to

the optimal one. Both errors are seen to descend but the descent

is more profound for AADT (from 18.17 to 7.16%) than for the

O–D matrix (from 18.09 to 14.3%).

Once the optimal affinities between SPTC and PTC have been

obtained, it may be interesting to analyse how the different

affinities criteria affect the results in comparison with the optimal

solution. The AADT errors were compared for (a) the initial

affinity case (closeness), (b) the case of all the SPTC having

affinity to PTC1, (c) the case of all the SPTC having affinity to

PTC2 and (d) the optimal case which minimises MAE. Figure 4

shows the AADT relative error of each SPTC, and it can be seen

that the optimal case is clearly better than the others. Moreover,

significant differences in the AADT error obtained are seen if the

affinities are not set correctly, which certainly contributes to a

biased estimate with serious consequences during the planning

phase.

From these results a second-best optimal traffic counts algorithm

with budgetary constraint (Ehlert et al., 2006) or a heuristic

iterative method such as the stepwise selection method can be

applied to reduce the number of SPTC. According to the previous

example, the same subset of possible SPTC links was used and

the maximum number of SPTC to be included was fixed to only

six stations (equal installing costs are assumed). The final

location of SPTC and their affinities are also shown in Figure 2

and can be compared with the results of the previous cases. The

MAE obtained increased slightly up to 9.11% for AADT (from

7.16%) and 15.18% for the O–D matrix (from 14.3%); however,

these values are still accurate considering the number of SPTC

was 40% lower.

4. Discussion
Looking at the results of the model for AADT estimation and trip

matrix estimation in inter-urban networks (determining the best

adjustment factor between PTC and SPTC), the MAE and the

error for AADT estimation can change, due to the following

factors.

j The well-known problem of irrelevant and inconsistent

information: the inclusion of a new SPTC into the optimal set

may mean that a previously chosen SPTC is providing

irrelevant and/or inconsistent information. The flow

represented by SPTC_{i} is represented in an equal or better

Permanent traffic counter

EP1_1 EP1_2 Traffic count 16 h AADT PTC1 PTC2

Short SPTC1 1 0 18 850 28 087 SPTC1 0 1

traffic SPTC2 1 0 18 842 28 075 SPTC2 1 0

period SPTC3 1 0 16 232 19 077 SPTC3 0 1

counts SPTC4 1 0 16 518 24 612 SPTC4 1 0

SPTC5 1 0 30 672 45 701 SPTC5 1 0

SPTC6 0 1 26 224 30 813 SPTC6 0 1

SPTC7 0 1 11 788 13 851 SPTC7 1 0

SPTC8 0 1 24 420 36 386 SPTC8 1 0

SPTC9 0 1 11 626 17 323 SPTC9 0 1

SPTC10 0 1 6486 7621 SPTC10 0 1

AADT 22 500 20 400

F 1.49 1.17

Table 1. Initial and optimal matrix of affinity between PTC and

SPTS, and AADT values for Sioux Falls network
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way by one or more of the SPTCs in the group (including the

recently selected one), but they provide additional

information which SPTC_i does not provide.

j Specifically in the case of inter-urban networks, the error

associated with the AADT values for the SPTC stations is

related to estimations obtained from the definition of

adjustment factor, unlike for the urban networks where

typically all the groups of traffic counts are from observed

data (there could only be errors associated with

observation or seasonal inconsistency, but never about

estimation). This demonstrates the importance of correctly

defining the adjustment factor between the PTC and SPTC

stations.

Another question worth mentioning is the effect of the pre-

determined location of the PTC stations and how this can affect

1 2

3 4 5 6

12 11

9 8 7

181610

13 24

23

14 15

17

19

22

21 20

(a)

1 2

3 4 5 6

12 11

9 8 7

181610

13 24

23

14 15

17

19

22

21 20

(b)

1 2

3 4 5 6

12 11

9 8 7

181610

13 24

23

14 15

17

19

22

21 20

(c)

PTC SPTC

Figure 2. PTC stations with SPTC stations related: (a) initial case;

(b) optimal situation; (c) minimum SPTC required
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Figure 3. Estimation errors for the O–D matrix and AADT
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the optimal location of SPTC and the affinity matrix. In the cases

mentioned above they were situated at two locations of high-

volume traffic without using any quantitative criteria.

Several approaches to solve the optimal location of traffic counts

problem follow the selection rules defined by Yang and Zhou

(1998).

j OD covering rule: a certain proportion of trips between each

OD pair should be observable.

j Maximal flow fraction rule: for a particular OD pair, links

with the highest fraction of that OD flow should be selected.

j Maximal flow interception rule: the set of links which

intercept the maximum number of OD movements should be

selected.

j Link independence rule: links with linearly independent flows

should be selected.

At this point it is worth asking if it would be more beneficial to

locate the PTC at places with the highest volumes of traffic or

which have the highest sum of Pa
ij or what happens if the PTC is

located by applying an optimal location of traffic counts algo-

rithm (OLTC), and which of these shows the lowest MAE, with a

maximum of 10 SPTC to be located (equal installing costs are

assumed again). The three cases were analysed and the final

location and affinities are represented in Figure 5. Both the lowest

error in the AADT values and the MAE of the target O–D matrix

appear in the case of locating the PTC station following the

OLTC results (Table 2).

As can be seen, there are three key problems during the planning

process of traffic data collection, each of them depends on the

others.

j P1. Optimal location of PTC: this problem is beyond the

scope of this research. Its practical application is not easy and

is subject to many conditions because many authorities have

already located their traffic counters. However, this problem

can be modelled as an optimal location of traffic counts

problem subject to budgetary constraint (Chung, 2001).

j P2. Optimal location and number of SPTC: as stated in the

previous section, this problem can be considered as a second-

best count location problem, taking into account the existing

PTC and subject to budgetary constraint (Ehlert et al., 2006).

j P3. To find the best affinity between SPTC and PTC.

This study has focused on P3, which depends on P2 and P1.

Furthermore, the output of P3 can be used for solving P2. An

example of this application has been shown in Section 3. In turn,

P2 depends on P1, therefore, P1 affects to the others because the

PTC are taken into account during all planning phases.

This section has proved that deterministic criteria for locating

PTC, even with the optimal affinities of the SPTC, affect the

results, both in AADT and the O–D matrix estimation. Thus, it

was found that PTC location based on optimisation and location

models was more efficient and achieved better results in succes-

sive models to solve P3 and P2, respectively.

5. Application to a real case: regional road
network of Cantabria (Spain)

Finally, the methodology was applied to a real case: the regional

road network of Cantabria (Spain), composed of 273 zones, 1367

nodes and 3210 links. The current counts stations are identified

in Figure 6: 16 PTC and 592 SPTC (both directions: 1184 links),

distributed as they appear in the figure and with adjustment

factors defined empirically, without any optimisation process. At

the same time 41 ATC were deployed for measuring AADT and

to validate the model.

As soon as the model was applied, the MAE descent could be

seen across the iterations of the algorithm. The algorithm
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began with the initial adjustment factors (current) and finally

a new redistribution of adjustment factors was reached. The

MAE diminished by 4.3% (from 20.9 to 16.5%). Figure 7

shows the evolution of the algorithm up to reaching the

optimal solution.

By considering the AADT estimation and comparing both situa-

tions (initial situation with current matrix of adjustment factors

and final situation with proposed new adjustment factors), all the

SPTC (592) were checked and this analysis detected that the

biggest difference between the AADT values estimated was 48%

(absolute value).

Therefore, the model optimised the related SPTC to the PTC in

both number and situation. In this analysis, the model found other

relations between PTC and SPTC in which there were related

types of roads with the same characteristics or there were roads

of the same category, in contrast to the initial situation in which

this relation was based on closeness criteria.

Finally, as stated in previous sections, from the results given by

this model in terms of affinities, it is feasible to apply a model

for determination of the optimal location and number of traffic

counts (SPTC). Its practical application using the stepwise

selection method over the same network and its benefits can be

found in Alonso et al. (2013).

6. Conclusion
The proposed model determines the best adjustment factor

(affinity) between PTC and SPTC based on an O–D matrix

estimation from PTC and SPTC data which reproduces the

AADT on the network.

The application test over the Sioux-Falls network has shown the

difference in values of AADT estimation based on different

affinities between SPTC and PTC, reaching double the mean

absolute error.

Furthermore, it has proved that the location of PTC influences the

final results and the minimum error achieved. The best results

were obtained from the application of an optimisation model for

locating traffic counts, maximising O–D coverage. This is an
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PTC SPTC

Figure 5. PTC stations with SPTC stations related: (a) in the case

for locating PTCs in links with highest traffic volume; (b) in the

case for locating PTCs in links with highest sum Pa
ij ; (c) in the case

to be located solving an OLTC problem

MAE Average error AADT

Initial case 14.27 7.16

Highest traffic volume 14.00 5.47

Highest sum of Pij 13.86 5.11

OLTC 12.27 4.41

Table 2. MAE and average error AADT in all cases
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important issue because, as has been seen, this location strongly

affects the final affinities of the SPTC and their locations.

Once the methodology had been tested in a sample network, it

was applied to a real case: the regional road network of Cantabria

(Spain). The mean absolute error (MAE) diminished by 4.3%

(from 17.7 to 13.4%), certifying that the new adjustment factors

proposal better reproduces the OD trips.

Finally, the initial situation with current matrix of adjustment

factors and the final situation with new adjustment factors were

plotted, analysing the produced changes. In this analysis, the

model found other relations between PTC and SPTC in which

there are related types of roads with the same characteristics or

there are roads of the same category, in contrast to the initial

situation in which this relation was based on closeness criteria.
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