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Abstract The skill of seasonal precipitation forecasts is assessed worldwide—grid point by grid
point—for the 40 year period 1961–2000, considering the ENSEMBLES multimodel hindcast and applying
a tercile-based probabilistic approach in terms of the relative operating characteristic skill score (ROCSS).
Although predictability varies with region, season, and lead time, results indicate that (1) significant skill
is mainly located in the tropics—20 to 40% of the total land areas; (2) overall, September–October
(March–May) is the most (least) skillful season; and (3) the skill weakens (with respect to the 1 month lead
case) at 4 months lead—especially in June–August—although the ROCSS spatial patterns are broadly
preserved—particularly in Northern South America and the Malay Archipelago. The contribution of El
Niño–Southern Oscillation (ENSO) events to this 40 year skill is also analyzed, based on the idea that the
seasonal predictability may be mainly driven by El Niño and La Niña precipitation teleconnections and,
consequently, limited by the ability of the different seasonal forecasting models to accurately reproduce
them. Results show that the ROCSS spatial patterns for (1) the full period 1961–2000 and (2) El Niño and La
Niña events are highly correlated—over 0.85. Moreover, the observed teleconnection patterns are properly
simulated (predicted)—with spatial correlations around 0.8—by most of the models at both 1 and 4 months
lead time.

1. Introduction

Seasonal forecasting is a promising research field with enormous impact on different socioeconomic sec-
tors such as water resources, agriculture, energy, and health [see Doblas-Reyes et al., 2013, and references
therein]. Nowadays, seasonal forecasts are routinely produced by several institutions around the world using
different global ocean-atmosphere coupled models. Moreover, these products are collected by a number of
regional focal points worldwide to produce operational consensus seasonal forecasts with socioeconomic
potential; see, e.g., the Regional Climate Outlook Forum sponsored by the World Meteorological Organiza-
tion. However, there are still several limiting factors which hinder the practical use of seasonal forecasts [see,
e.g., Goddard et al., 2010]. For instance, it is known that seasonal predictability strongly varies with the tar-
get variable, region, and season [Halpert and Ropelewski, 1992; van Oldenborgh, 2004; Barnston et al., 2010;
Doblas-Reyes et al., 2010].

Therefore, in order to properly communicate the uncertainties related to seasonal predictions, it is needed
to develop a comprehensive assessment of the performance of the different forecasting models worldwide,
especially for those variables most widely used by the stakeholders and end users. In particular, precipitation
is the most challenging case for being less skillfully predicted than surface temperatures [see, e.g., Barnston
et al., 2010; Doblas-Reyes et al., 2010; Bundel et al., 2011]. However, the majority of verification studies for
seasonal forecasts of this variable have been conducted over limited areas of the world and for concrete sea-
sons [see, e.g., Batté and Déqué, 2011; Lim et al., 2011; Kim et al., 2012a; Landman and Beraki, 2012]. A few
studies have also been conducted worldwide [van Oldenborgh et al., 2005;Wang et al., 2009; Barnston et al.,
2010; Doblas-Reyes et al., 2010], using a number of validation scores—correlation, ranked probability skill
score (RPSS), and Brier skill score (BSS). However, the limited hindcast period available in the latter works
does not ensure a robust statistical validation. For instance, Doblas-Reyes et al. [2010] analyzed the ENSEM-
BLES multimodel seasonal data set, computing averaged scores over six large-scale regions of the world for
the period 1991–2005.
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Figure 1. (left) Mean and (right) interannual standard deviation of seasonal accumulated precipitation from VASClimO
v1.1 for the four seasons considered (in rows) in the period 1961–2000.

In this paper we present a global—grid point by grid point—40 year (1961–2000) validation of
the ENSEMBLES multimodel seasonal hindcast—the longest-to-date available data set of retro-
spective forecasts—by applying a simple tercile-based probabilistic validation scheme, obtaining a
simple and easy to interpret (adequate for communication with decision makers) measure of skill,
the relative operating characteristic skill score (ROCSS), which is recommended by the Lead Cen-
tre for the Standardized Verification System of Long Range Forecasts (http://www.bom.gov.au/
wmo/lrfvs/index.html) for the verification of probabilistic seasonal forecasts. One and four month
lead predictions are considered for each of the four standard boreal seasons. Additionally, since El
Niño–Southern Oscillation (ENSO) is known to be the major driving factor for seasonal predictability
[Goddard and Dilley, 2005], we also analyze its direct (through the Sea Surface Temperature (SST) anomalies
in El Niño 3.4 region) and indirect (through the associated El Niño and La Niña teleconnections with precip-
itation) effects in the different regions of the world, assessing to which extent each of them contributes to
the skill. Thus, the two main goals of this study are (1) to fill the lack of an up-to-date user-oriented global
validation of seasonal precipitation forecasts considering a long (40 year) period—identifying those regions
of the world with significant skill—and (2) to analyze the role that ENSO plays on this skill.

The paper is organized as follows: The data used are described in section 2. The methodology applied is
explained in section 3. Results are presented and discussed through sections 4 and 5. Finally, the main
conclusions are given in section 6.

2. Data

VASClimO v1.1 [Beck et al., 2005] was considered as the reference data set for validation. This gauge-based
product provides monthly precipitation totals on a 2.5◦ resolution grid for the global land areas (except
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Table 1. Main Components of the Five State-of-the-Art Atmosphere-Ocean Coupled
Models Contributing to the ENSEMBLES Multimodel Seasonal Hindcast

Center Atmospheric Model and Resolution Ocean Model and Resolution

ECMWF IFS CY31R1 (T159/L62) HOPE (0.3◦–1.4◦/L29)
IFM-GEOMAR ECHAM5 (T63/L31) MPI-OM1 (1.5◦/L40)
CMCC-INGV ECHAM5 (T63/L19) OPA8.2 (2.0◦/L31)
MF ARPEGE4.6 (T63) OPA8.2 (2.0◦/L31)
UKMO HadGEM2-A (N96/L38) HadGEM2-O (0.33◦–1.0◦/L20)

the Antarctica) for the period 1951–2000. Figure 1 shows the mean seasonal totals and the corresponding
interannual standard deviation (STD) for this data set for the period of study 1961–2000.

In order to test the sensitivity to the reference data in the validation process, all calculations were also done
for an alternative precipitation data set, the Global Precipitation Climatology Centre (GPCC) full data reanal-
ysis version 6 [Becker et al., 2013]. The results obtained in both cases were very similar; thus, only VASClimO
v1.1 is considered hereafter.

Predictions were obtained from the longest-to-date multimodel seasonal hindcast, provided by
the European project ENSEMBLES [Weisheimer et al., 2009], which comprises five state-of-the-art
atmosphere-ocean coupled models from the following centers: The UK Met Office (UKMO), Météo France
(MF), the European Centre for Medium-Range Weather Forecasts (ECMWF), the Leibniz Institute of Marine
Sciences (IFM-GEOMAR), and the Euro-Mediterranean Centre for Climate Change (CMCC-INGV). Table 1
summarizes the main components of these models.

The atmosphere and the ocean were initialized using realistic estimates of their observed states, and each
model was run from an ensemble of nine initial conditions (nine equiprobable members). For each model,
7 months long runs were issued 4 times a year within the period 1960–2005, starting the first of February,
May, August, and November (seeWeisheimer et al. [2009] for more details about the experiment). Thus,
the seasons considered for validation were the standard boreal winter December–February (DJF), spring
March–May (MAM), summer June–August (JJA) and autumn September–November (SON), since this allows
to analyze 1 and 4 months lead predictions; e.g., the initializations of August and May can be used to fore-
cast SON. Note that although alternative 3 months’ seasons could be more informative in particular regions
of the world, there would be a single lead time available for them, thus limiting the study. The validation
period considered was 1961–2000, common to VASClimO v1.1 observations and the ENSEMBLES models. All
the models were bilinearly interpolated to the grid of the observations—similar results were obtained using
the nearest grid point interpolation technique (not shown).

3. Methodology

The validation methodology used in this work is a tercile-based probabilistic approach previously applied
in other studies [see, e.g., Frías et al., 2010; Vellinga et al., 2013]. Thus, for each particular grid point and each
particular model, member, and season, the 40 year interannual series of predicted seasonal precipitation
were categorized into three categories (dry, normal, and wet), according to their respective climatological
terciles within the period 1961–2000. Then, a probabilistic forecast was computed year by year by consid-
ering the number of members falling within each category, out of a total of n = 9 members. The terciles
were defined independently for each model, considering the interannual series of its nine members (a total
of 40 × 9 = 360 values). Terciles were not computed at a member level since no significant overlap among
the dry and wet terciles of the nine members was found applying a Student’s t test. In the case of the multi-
model (denoted hereafter as MM), n = 45 members were used to compute the probabilistic forecasts, thus
assuming equal weights for all the models. The terciles for the MM were computed independently for each
model. Note that working with precipitation categories instead of with raw values implicitly entails a bias
correction grid point by grid point, which is required for a fair validation since the different models exhibit
diverse season and region-dependent biases (not shown).

Rather than using deterministic scores [e.g., van Oldenborgh et al., 2005; Batté and Déqué, 2011; Lim et al.,
2011; Li et al., 2012; Singh et al., 2012], the forecast performance is assessed in terms of the probabilistic
ROCSS [see, e.g., Kharin and Zwiers, 2003], which is a reasonable first choice to communicate the value of a
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Figure 2. One month lead probabilistic predictions from the five models and the MM (in bold) for SON in an illustra-
tive grid point in (top) the Malay Archipelago—11.25◦S, 151.25◦E—and (bottom) Europe—48.75◦N, 16.25◦E. For each
tercile—d, n, and w stand for dry, normal, and wet, respectively. Probabilities are displayed in a white (0)-to-black (1)
scale. Red/blue/green points mark the observed tercile in El Niño/La Niña/neutral years. Numbers on the right show the
ROCSS for each model and each tercile. Asterisks indicate significant values (at a 0.05 level).

forecast to the end users [see, e.g., Thiaw et al., 1999]. For each tercile category (e.g., dry events), the ROCSS
is computed as 2A − 1, where A is the area under the ROC curve (commonly used to evaluate the perfor-
mance of probabilistic systems). The ROCSS ranges from 1 (perfect forecast system) to −1 (perfectly wrong
forecast system). A value zero indicates no skill with respect to a climatological prediction. In this work, the
statistical significance of the ROCSS was obtained by bootstrapping [Mason and Graham, 2002] with 1000
samples; i.e., by generating 1000 time series of probabilistic forecasts by randomly resampling the original
1961–2000 sequence.

As an illustrative example of the validation scheme followed, Figure 2 shows the 1961–2000 interannual
time series of probabilistic predictions from the five models and the MM and the binary occurrence/non
occurrence for the three terciles in two particular grid points—one in the Malay Archipelago (Figure 2, top)
and the other in Europe (Figure 2, bottom)—at 1 month lead time for SON. Although varying from year to
year and from model to model, predictions exhibit a higher resolution (probabilities far from 1∕3) in the
former point. Furthermore, resolution in this case increases, in general, in El Niño and La Niña conditions
(marked with red and blue arrows, respectively) suggesting the existence of a predictability signal linked
to ENSO in this region of the world for this season. Numbers on the right correspond to the ROCSS for the
different models and terciles. High skill—over 0.7 in most of the cases—is found for the dry and wet terciles
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(c) Extratropics: 1 month lead (d) Extratropics: 4 months lead

(a) Tropics: 1 month lead (b) Tropics: 4 months lead

Figure 3. Percentage of land areas with significant—at a 0.05 level—ROCSS for (a, and c) 1 and (b, and d) 4 months
lead predictions from the five models and the MM (see colors in legend) in (a, and b) the tropics and (c, and d) the
extratropics. The mean value of the significant ROCSS in the tropics at 1 and 4 months lead time is shown in (e) and
(f ), respectively.

for the point in the Malay Archipelago. On the contrary, almost no skill—non significant ROCSS—is found
for the point in Europe.

4. Overall Skill
The above-described methodology was applied globally—grid point by grid point—in order to compute
the ROCSS (and its corresponding significance) for the five models and the MM in the period 1961–2000,
thus obtaining a measure of overall skill. As a summary of the results obtained, Figures 3a–3d show the per-
centage of grid points with significant (at a 0.05 level) skill in the tropical (region between 23.5◦N and 23.5◦S
latitudes) and the extratropical land areas, for both 1 and 4 months lead predictions. Although predictabil-
ity varies with region, season, model, and lead time, several general conclusions can be obtained. First, the
skill concentrates in the extreme (wet and dry) terciles, whereas almost no skill is obtained for normal con-
ditions (note that the percentage of significant grid points is around 5% in this case, which can be explained
by chance according to the significance level considered). This lack of skill for the near normal category is
in agreement with previous studies [see, e.g., van den Dool and Toth, 1991]. Second, predictability is mainly
located in the tropics (with 20 to 40% of total land areas showing significant skill) rather than in the extra-
tropics (only 10%), which is also in agreement with previous studies [see, e.g., van Oldenborgh et al., 2005].
Furthermore, SON (MAM) is overall the most (least) skillful season. Third, all models yield similar results for
a concrete region, season, and lead time, with the MM outperforming any of the single models in all cases,
which is also in agreement with previous studies [see, e.g., Doblas-Reyes et al., 2009; Bundel et al., 2011;Ma
et al., 2012]. Finally, the spatial coverage of the skillful areas decays at 4 months lead time—particularly
in JJA—although not sharply. This general low decrease in skill with lead time was also found by
Barnston [1994], who attributed it to a persistent ENSO signal. For a full interpretation of the previous results,
Figures 3a and 3b should be analyzed jointly with Figures 3e and 3f, which display the mean value of the sig-
nificant ROCSS in the tropics at 1 and 4months lead time. Note that there is a clear correspondence between
Figures 3e and 3f and Figures 3a and 3b, so all the previous comments apply.

In order to further analyze the above results in the different regions of the world, global spatial maps of
ROCSS were obtained for all the models and the MM. For conciseness, only results for the MM are reported
in the following (note its better performance). Figures 4 and 5 show the significant skill for the dry (left)
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Figure 4. MM skill for the (left) dry and (right) wet terciles at 1 month lead time for the period 1961–2000, by seasons (in
rows). Only significant—at a 5% level—ROCSS are shown. Dashed lines indicate the tropics/extratropics division.

and wet (right) terciles at 1 and 4 months lead time, respectively, by seasons (in rows). From these figures it
can be seen that significant skill—there is clear symmetry for dry and wet terciles—is mainly located over
the tropics. Furthermore, although both the signal and spatial coverage of the skillful areas slightly reduce
at 4 months lead time—with respect to the 1 month lead case—the skill patterns are broadly preserved
(particularly in DJF and SON).
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Figure 5. As Figure 4 but for the 4 months lead predictions.
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Figure 6. Mean observed SST anomaly in El Niño 3.4 region for the El
Niño (red) and La Niña (blue) events considered. Observations come
from the last version of the Extended Reconstructed Sea Surface
Temperature data set (ERSST v3b) [Smith et al., 2008].

By seasons, the main skillful regions
at 1 month lead time in DJF are the
Gulf of California, Northern South
America, Central and Southern Africa,
Western Australia, and the Pacific
islands of Oceania in Melanesia,
Micronesia, and Polynesia. Except in
Africa, where the predictability signal
weakens, most of this skill remains at
4 months lead time. In MAM, skill at 1
month lead time is located over parts of
Western U.S., Northeastern Brazil, South-
ern Africa, parts of the Arabian Peninsula,
Indochina, and the Malay Archipelago.
Most of this predictability vanishes at
4 months lead time over Africa and the

Arabian Peninsula. In JJA, Central America, Northern Brazil, the Gulf of Guinea, the Malay Archipelago,
Eastern Australia, and the Pacific islands of Oceania are the main skillful regions at 1 month lead time. How-
ever, most of this skill is only maintained in the Malay Archipelago and the Pacific islands of Oceania at 4
months lead time. Finally, 1 month lead skill in SON is located over Northern South America, a belt in Cen-
tral Africa (especially in the Somali Peninsula), parts of Middle East, the Malay Archipelago, Australia, and
the Pacific islands of Oceania. Moreover, this skill remains almost unaltered at 4 months lead time for all the
aforementioned regions except the Somali Peninsula, thus indicating a persisting predictability signal.

In the light of the previous results, Northern South America and the Malay Archipelago seem to be the
most skillful regions of the world for seasonal forecasting of precipitation. Note that seasonal predictabil-
ity in these regions has been analyzed in previous studies [Aldrian et al., 2007; Haylock and McBride, 2001],
considering also its derived socioeconomic impacts [Kirono and Tapper, 1999].

5. ENSO-Driven Skill

Despite the important achievements reached in seasonal forecasting in the last 10 years, significant lev-
els of skill for precipitation are only generally found over regions connected with ENSO [see, e.g., Coelho
et al., 2006; Barnston et al., 2010; Arribas et al., 2011; Lim et al., 2011; Kim et al., 2012a, 2012b; Landman and
Beraki, 2012], which is known to be the dominant mode of seasonal variability [Doblas-Reyes et al., 2010].
Therefore, in this section we analyze both the direct (through the SST anomalies in El Niño 3.4 region) and
indirect (through its associated atmospheric teleconnections) influences of ENSO on the skill obtained for
precipitation for 1961–2000 (section 4).

5.1. SST in El Niño 3.4 Region
Although alternative indices for the definition of warm (El Niño) and cool (La Niña) ENSO events have
been proposed, the Oceanic Niño Index—based on the SST anomalies in El Niño 3.4 region (5◦N-5◦S,
120◦W-170◦W)—has become the de facto standard used by the National Oceanic and Atmospheric
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(a) El Niño 3.4 region: 1 month lead (b) El Niño 3.4 region: 4 months lead
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Figure 7. Correlation between the observed (ERSST v3b) and simulated SST in El Niño 3.4 region during El Niño and La
Niña episodes for the five models and the MM (see colors in legend), at (a) 1 and (b) 4 months lead time.
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Figure 8. Percentage of areas showing significant (red) El Niño and
(blue) La Niña teleconnections with precipitation in (a) the tropics and
(b) the extratropics, by seasons.

Administration. According to this index,
an El Niño (La Niña) event is defined
when the SST anomaly in five consec-
utive overlapping 3 month seasons
remains equal or above (equal or below)
the 0.5◦C (−0.5◦C) threshold. In this
work, we adopted this definition and
analyzed the 18 month period spanning
from the spring of the onset year to the
summer of the decay year (as indicated
by the shading in Figure 6). Note that
this period is centered in SON and DJF,
when the SST anomalies reach their max-
imum (minimum) value. The following
(decay) years were considered for El Niño
(La Niña) events: 1964, 1966, 1969, 1970,
1973, 1977, 1978, 1983, 1987, 1988, 1992,
1995, and 1998 (1965, 1971, 1972, 1974,
1975, 1976, 1984, 1985, 1989, 1996, 1999,
2000, and 2001). In the following, we use
the notation MAM-1 and JJA-1 (MAM
and JJA) to refer to the seasons of onset
(decay) year of the event.

In order to assess the performance of the
different seasonal forecasting models
to predict ENSO, we computed the cor-
relation between the observed (ERSST
v3b) and the simulated SST in El Niño 3.4
region during the above El Niño and La
Niña episodes. Figure 7 shows the results

for 1 (left) and 4 (right) months lead predictions. The poorest skill is obtained for summer (both JJA-1 and
JJA), when correlations decrease substantially from 1 to 4 months lead time. Note that this is in agreement
wit the ENSO spring predictability barrier documented in previous studies [see, e.g., Zheng and Zhu, 2010;
Tippett et al., 2011; Yan and Yu, 2012; Duan and Wei, 2013].

However, in order to properly disentangle the role of ENSO in the overall skill found for precipitation
(section 4), it is needed to analyze not only the models’ ability to forecast the phenomenon itself (as
characterized by the SST in El Niño 3.4 region) but also the remote effect of its associated atmospheric
teleconnections, carrying (time lagged in some cases) the predictability signal to the different regions of
the world.

5.2. ENSO Teleconnections
ENSO teleconnections with precipitation were calculated, following a tercile-based approach, in terms of
the frequency of occurrence of each category (dry, normal, and wet) in the El Niño and La Niña events
considered—as compared to the expected climatological frequency 1∕3. A chi-square test for equality
of proportions was applied to detect those frequencies significantly higher (lower) than 1∕3, which were
considered as significant positive (negative) ENSO teleconnections.

Figure 8 shows the percentage of areas exhibiting significant—at a 0.05 level—El Niño (red) and La Niña
(blue) teleconnections in the tropics (Figure 8a) and the extratropics (Figure 8b) by seasons. Tropical tele-
connections are stronger than extratropical ones, with different influence of El Niño and La Niña for different
seasons—particularly in MAM, when La Niña has a greater effect than El Niño. Thus, in the following, we
restrict the analysis to the tropics.

Figure 9 shows the maps of ENSO teleconnections in this region for the different seasons (in rows). Red/blue
colors indicate high/low frequency of occurrence of the corresponding dry (left) and wet (right) terciles
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1∕3—the expected climatological frequency. Only significant (at a 5% level) teleconnections, according to a chi-square
test, are displayed. Black crosses indicate grid points where precipitation categories cannot be properly defined (series
with less than three different values).

during El Niño (Figure 9, top) and La Niña (Figure 9, bottom) events. Notice that El Niño and La Niña—as
opposite phases of the same underlying phenomenon—tend to yield similar patterns but with oppo-
site signals, although there are some exceptions; e.g., the Malay Archipelago and Northern Australia are
teleconnected in MAM with La Niña but not with El Niño. Overall, the results are in agreement with previous
studies [see, e.g., Ropelewski and Halpert, 1987; van Oldenborgh et al., 2000; Kayano et al., 2009; Shaman and
Tziperman, 2011; Zhang et al., 2012; Yadav et al., 2013; Zhang et al., 2013].

Comparison of Figure 9 with Figures 4 and 5 reveals that, in general, the skillful zones are significantly tele-
connected with ENSO; e.g., Northern South America in DJF and SON and the Malay Archipelago in JJA and
SON. This suggests that the seasonality and the spatial distribution of the overall skill could be explained by
this phenomenon through its associated teleconnections. Therefore, it is important to assess the ability of
the models to properly reproduce El Niño and La Niña precipitation teleconnections. Figure 10 shows the
spatial correlation between the observed and simulated El Niño and La Niña teleconnections patterns (as
given by the maps of terciles frequencies) considering 1 (left) and 4 months (right) lead predictions from
the five single models and the MM (see colors in legend), over their corresponding skillful regions within
the tropics. Note that although a similar analysis has been done in Yang and Delsole [2012], who compared
observed and simulated ENSO teleconnections using a field regression analysis, they did not assess the pre-
dictive skill of the teleconnections found, which is the aim here. As can be seen, the agreement is good for
both lead times, with correlations over 0.8 in some seasons. On the one hand, the observed patterns (for
both El Niño and La Niña) are best reproduced in SON-1 and DJF, the central seasons of the phenomenon.
On the other hand, they are worst reproduced in MAM-1 in all cases.

Interestingly, note that in spite of the aforementioned spring barrier for ENSO (Figure 7), the models exhibit
a relative good performance in reproducing the existing—both El Niño and La Niña—teleconnections
in summer (particularly in JJA-1), which could explain the overall skill found for precipitation in this
season (Figure 3).
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Figure 10. Spatial correlation between the observed and predicted (a and b) El Niño and (c and d) La Niña teleconnec-
tion patterns for the tropical regions showing significant skill at (left) 1 and (right) 4 months lead time, for the five models
and the MM (see colors in legend).

5.3. Contribution of ENSO to the Overall Skill
All the previous results suggest the idea that the seasonality and the spatial distribution of the overall
(1961–2000) skill found in section 4 may be mainly driven by the indirect effect of ENSO through its associ-
ated atmospheric teleconnections and therefore limited by the ability of the different models to reproduce
the observed El Niño and La Niña teleconnections with precipitation. Thus, to further assess the role of ENSO
on the global skill for each particular model (and the MM) we computed the spatial correlation between the
corresponding ROCSS maps for (1) the full period 1961–2000—shown in Figures 4 and 5 for the MM—and
(2) the 26 El Niño and La Niña events considered. Figure 11 shows the results obtained for 1 (left) and 4
(right) months lead predictions in the tropics for JJA-1, SON-1, DJF, and MAM, the seasons with the strongest
teleconnections (Figure 8).

Correlations are very high (over 0.85) in most of the seasons at both 1 and 4 months lead, what confirms that
the overall (1961–2000) skill attained in this region may be mainly explained by the contribution of El Niño
and La Niña years.

6. Conclusions

The skill of seasonal precipitation forecasts has been assessed worldwide—grid point by grid point—for the
40 year period 1961–2000, considering the ENSEMBLES multimodel hindcast and applying a tercile-based
probabilistic approach in terms of the ROC skill score (ROCSS). Although predictability varies with region,
season, and lead time, results indicate that (1) significant skill is mainly located in the tropics—20 to 40%
of the total land areas; (2) overall, SON (MAM) is the most (least) skillful season; and 3) the skill weakens

(a) Tropics: 1 month lead (b) Tropics: 4 months lead
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Figure 11. Spatial correlation between the ROCSS maps for the 40 year period (1961–2000) and for the 26 El Niño and
La Niña events at (a) 1 and (b) 4 months lead for JJA-1, SON-1, DJF, and MAM (see Figure 6 for further details on the
definition of seasons). Results are shown for each model and the MM (see colors in legend).
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(with respect to the 1 month lead case) at 4 months lead—especially in JJA, —although the ROCSS spatial
patterns are broadly preserved—particularly in Northern South America and the Malay Archipelago.

Results from a conditioned—restricted to El Niño and La Niña events—validation (also in terms of the
ROCSS) and a study of El Niño and La Niña teleconnections with precipitation suggest that the seasonality
and the spatial distribution of the overall (1961–2000) skill found for this variable may be not only deter-
mined by the direct effect of ENSO and therefore by the skill of the different forecasting systems to predict
the SST in El Niño 3.4 region but rather by its indirect effect through its associated El Niño and La Niña tele-
connections and consequently limited by the models’ ability to accurately simulate (predict) the observed
teleconnection patterns. In addition, it is found that whereas the overall skill in DJF and SON—the peak
seasons of the phenomenon—might be uniquely related to El Niño and La Niña teleconnections in the
corresponding current season, both the onset and decay seasons contribute to the overall skill in MAM
and JJA.

For instance, high overall skill is found for JJA, which seems to be in contradiction with the well-known ENSO
spring predictability barrier; in particular, predictability at 1 month lead is higher in JJA than in DJF despite
the SST in El Niño 3.4 region is better predicted in the latter season. However, this could be explained by the
models’ ability found to reproduce the observed precipitation teleconnection patterns in both the onset
and the decay (especially in the former) summers, which are found to exhibit significant teleconnections.
Finally, and as another illustrative example of the results found, even though the SST in El Niño 3.4 region
is better predicted in DJF than in SON (especially at 4 months lead) and the different models are shown
to reproduce similarly the observed teleconnection patterns in both seasons, the overall skill is higher in
SON than in DJF. One explanation for this could be that the observed teleconnections—especially La Niña
ones—are stronger in the former season.
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