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Chapter 1

Resumen General

Este primer capitulo de la tesis pretende dar respuesta a uno de los requeri-
mientos basicos del formato de tesis doctoral de la Universidad de Cantabria
para aquellas tesis escritas en lenguas distintas de la espanola. Dicho requer-
imiento establece que:

En el caso de Tesis escritas en una lengua distinta a la espanola,
ademds de lo indicado en el pdrrafo anterior, deberdn contener
un resumen global, en espanol, de los resultados y una discusion
de los mismos, y en el que queden plasmadas las conclusiones
que podrian extraerse de la linea de investigacion, asi como los
posibles desarrollos futuros de dichas investigaciones. También
contendrd, en su caso, los procedimientos y materiales empleados
en las investigaciones objeto que hayan servido de base para la
elaboracion de la Tesis. El resumen quedard encuadernado como
parte constitutiva de la Tesis.

La estructura de este resumen general es como sigue: en primer lugar, se
describe la motivacion de este trabajo en la Seccién 1.1. A continuacion, se
determina el objetivo principal de la tesis en la Seccién 1.2. Seguidamente, se
describe la metodologia seguida en este trabajo en la Seccion 1.3. La Seccion
1.4 explica la estructura de esta tesis, consistente en 6 partes y 11 capitulos.
La seccién 1.5 indica los principales resultados alcanzados, las principales
conclusiones de esta linea de investigacién y las publicaciones a las que ha
dado lugar. Finalmente, la Seccién 1.6 indica algunas ideas sobre trabajos
futuros en el campo. El capitulo se cierra con la bibliografia mas relevante
utilizada en este trabajo. Dicha bibliografia sera luego ampliada en el grueso
de la tesis, escrita en inglés.
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1.1 Introduccion del Problema

Esta tesis se centra en el problema de la reconstruccion de curvas y superficies
a partir de una coleccion dada de puntos dato. Basicamente, en este problema
asumimos que el usuario dispone de una coleccion de puntos 2D o 3D que
se presupone describen la forma de una curva o una superficie. Idealmente,
el objetivo final es obtener dicha curva o superficie. Sin embargo, muy a
menudo obtener dicha curva o superficie no es viable, porque los puntos
dato estan muy frecuentemente afectados por ruido introducido durante el
proceso de obtencién de los mismos (este fenémeno es especialmente notable
en los casos de aplicaciones del mundo real) o por otros problemas, como un
muestreado irregular u otros. Por ello, se suele considerar la alternativa de
obtener un meta-modelo en la forma de una curva o superficie de ajuste.

Dicho ajuste suele realizarse siguiendo un modelo de interpolaciéon o de
aproximacion, en funcién de si se impone o no que la curva o superficie deba
pasar necesariamente por todos los puntos dato (caso de la interpolacion)
o solamente cerca de ellos (esquema de aproximacién). En esta tesis nos
decantamos por el esquema de aproximacién, dado que funciona mejor para
los problemas reales de la industria, usualmente afectados por ruido en los
datos y otros problemas que provocan que los datos no sean totalmente fiables
y sea mas recomendable capturar la tendencia general de los datos que ajustar
todos los datos con precision extrema.

Los esquemas de aproximacion se basan en escojer una funcion o familia
de funciones mas o menos adecuada que seran utilizadas como funciones
aproximantes o de ajuste. En general, la funcion es tunica, pero suele estar
expresada como una combinacién lineal de un conjunto de funciones basicas,
cuya condicién de partida es que sean linealmente independientes. Esto im-
plica que seran una base del espacio vectorial de todas las combinaciones
lineales de dichas funciones, de ahi la denominacién de funciones basicas.
El caso més tipico y mas sencillo de entender de funciones bésicas seria un
polinomio de grado n en una tnica variable, p,(x), expresado como:

pu(T) = ap + a1 + agz® + -+ + a, 2"

En este caso, la funcién aproximante p,(z) estd descrita como una com-
binacién lineal de los monomios {1, z, 22, ... ,2"}. Como es sabido, dado que
dichos monomios son linealmente independientes, forman una base del espa-
cio vectorial de las funciones polinémicas de grado menor o igual que n con
coeficientes reales, llamada la base canodnica. Los elementos de dicha base
(es decir, los distintos monomios) reciben el nombre de funciones bésicas de
dicha base.

Evidentemente, existen otras muchas bases y funciones basicas que pueden
utilizarse para este propédsito. Atendiendo al tipo de soporte de las funciones,
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existen dos tipos: funciones de soporte global y funciones de soporte local.
Recordamos que el soporte de una funcién es el subconjunto de puntos del
dominio sobre los que la funciéon no se anula. Por ejemplo, el soporte de la
base canénica resulta ser: R — {0}. Por ello, si realizamos la aproximacién
de una nube de puntos en el intervalo [1,2] usando la base canénica, esta-
mos ante un caso de base de funciones cuyo soporte coincide en todos los
casos con el del dominio del problema (a su vez, subconjunto del dominio de
la funcién). Diremos entonces que esta base tiene soporte global (evidente-
mente, las funciones de soporte global son aquellas en las que dicha condicién
no se cumple). En esta tesis, nos centraremos en todo momento en funciones
de soporte global.

El problema de la obtencién de formas libres mediante funciones de so-
porte global tiene una larga tradicién en el mundo de los graficos por com-
putador, con numerosas aplicaciones en muy diversos campos. Dos ejem-
plos clasicos de dominios de aplicacion de este problema se dan en el diseno
geométrico asistido por computador (CAGD) (Farin, 2002; Hoschek and
Lasser, 1993) y en disefio y manufactura asistidos por computador (CAD/
CAM), (Alhanaty and Bercovier, 2001) en los cuales ese tipo de funciones
han sido ampliamente utilizadas para representar y modelar un gran ntimero
de elementos geométricos de disenio, tanto en el entorno industrial (piezas de
carrocerfas de automdviles, fuselajes de aviones, casos de buques, etc.) (ver,
por ejemplo, (Patrikalakis and Maekawa, 2002; Barnhill, 1992; Farin, 2002))
como en otros campos como la arquitectura (modelos de paneles, modelos de
aproximacién triangular, etc.), arqueologia (reconstruccion, archivado digital
y restauracion de restos arqueoldgicos (Levoy et al., 2000)), medicina (recon-
struccién y visualizacién por computador de estructuras como los huesos
y organos internos de nuestro organismo mediante técnicas como la tomo-
grafia axial computerizada - TC - o las imégenes por resonancia magnética -
MRI -, las cuales tienen como base bien secciones transversales de la super-
ficie de dichos érganos (Meyers et al., 1992), bien nubes de puntos tridi-
mensionales, bien una combinacién de ambos tipos de datos), ingenieria
biomédica (generacién de prétesis e implantes personalizados y otros ele-
mentos biomecdnicos), en ingenieria inversa en campos como la industria
de la manufactura, en procesos como el mecanizado por control numérico
(CNCQ) asistido por computador (Varadi and Martin, 2002; Pottmann et al.,
2005), en problemas de aproximacién de funciones (Rice, 1969), en el ajuste
con curvas y superficies spline (Dierckx, 1993), en la creacién de tipografias
para el mercado editorial (como las tipografias vectoriales de fuentes del tipo
True Type por ejemplo), y muchos otros.

El campo de interés de este proyecto ha recibido un fuerte impulso re-
cientemente con la popularizacién de los escaneres 3D, tanto de tipo dptico
(escéneres laser) como de tipo téctil, y la posibilidad de generar fisicamente
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el modelo final obtenido mediante diversas técnicas de impresién 3D (tales
como la estereolitografia, el sintetizado selectivo por laser, o el modelado
por deposicién fusionada), con aplicaciones en procesos como la generacién
de objetos personalizados (como prétesis médicas, diversos objetos de con-
sumo, etc.) hasta la obtencién de modelos iniciales del proceso de disefio,
como ocurre generalmente en diversos problemas que requieren o involucran
procesos de prototipado rapido.

Otros desarrollos recientes se han dado en el campo de la animaciéon por
computador y los videojuegos, donde estas técnicas han sido aplicadas a
la mejora de las técnicas de interpolacién para procesos de animaciéon del
movimiento mediante cinemdtica inversa (Mukai, 2012) y su aplicacién a
videojuegos de ultima generacién, como Final Fantasy X VI, de Square Eniz,
actualmente en desarrollo y con lanzamiento previsto para 2017-18.

1.2 Objetivo de la Tesis

Este proyecto de tesis pretende analizar en detalle el problema de la ob-
tencién de formas, partiendo de los desarrollos iniciales descritos en (Pratt,
1987; Schmitt et al., 1986; Sclaroff and Pentland, 1991; Gu and Yan, 1995;
Hoffmann, 2005; Barhak and Fischer, 2001). Para ello nos enfocaremos,
como se ha mencionado anteriormente, en el caso de las funciones de soporte
global, las cuales presentan propiedades tales como el control global de la
forma, en claro contraste con las funciones de soporte local. Estas funciones
seran utilizadas para realizar la aproximacién de un conjunto (posiblemente
masivo) de puntos 2D o 3D, que asumimos como datos de entrada del pro-
blema. Asumimos también que dichos datos estan afectados por ruido y
han sido muestreados irregularmente, generando por tanto topologias irregu-
lares, de forma que reproduzcan las condiciones que se dan usualmente en
las aplicaciones practicas del mundo real.

Para dicho objetivo, planteamos la aplicacién de una técnica metaheuristi-
ca (Engelbretch, 1993) a fin de resolver el problema de minimizacién del error
de aproximacion de la funcién objetivo. El sistema de ecuaciones resultante
de este proceso de minimizacion estara sobre-determinado, pues esperamos
obtener un modelo con muchos menos parametros que el problema de par-
tida. Por ello, la funcién objetivo vendra dada por un problema de minimos
cuadrados, por lo cual resultara, en general, continua en sus parametros,
nonlineal, multimodal (es decir, con varios posibles éptimos, tanto locales
como globales) y de alta dimensién.
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1.3 Metodologia de la Tesis

Nuestra propuesta estard basada en el algoritmo bat (Yang, 2010; Yang and
Gandomi, 2012), un potente método metaheuristico inspirado en la natu-
raleza desarrollado recientemente por el Prof. Xin-She Yang (Universidad
de Cambridge, Reino Unido) para resolver problemas nolineales continuos
en espacios de alta dimension, incluso con variantes para problemas multi-
objetivo (Yang, 2011). Analizaremos tanto el caso de curvas como el de
superficies. Pretendemos también abordar el caso de entidades con pesos,
al menos en el caso de curvas, a fin de evaluar las posibles diferencias entre
los casos polinomial y el racional. Por tltimo, planteamos un estudio tanto
tedrico como computacional de la eficiencia de los algoritmos resultantes con
respecto a otras metodologias recientes en el campo y que han mostrado un
buen comportamiento para el problema abordado en este proyecto.

1.4 Estructura de la Tesis

Esta tesis estd organizada en seis grandes partes, cada una de ella conteniendo
uno o varios capitulos (ver la Figura 2.1 para una idea general de la estructura
de la tesis). Describimos a continuacién someramente cada una de las partes
de la tesis.

e Parte I - Resumen General: integrada por un tnico capitulo (Capitulo
1). Es la parte correspondiente a este capitulo. Contiene el resumen
general de la tesis en espanol, de acuerdo con la normativa.

e Parte II - Introduccidn: integrada por 3 capitulos (Capitulos 2 al 4).
Ofrece una visién general de la tesis y de los principales conceptos e
ideas integradas en la misma. El Capitulo 2 describe el entorno general
de la tesis, su motivacion y objetivos, asi como una breve descripcion
de la estructura de la misma. El Capitulo 3 proporciona al lector una
introduccion suave al tema de la reconstruccién de curvas y superficies,
sus principales aplicaciones, y las principales ventajas y limitaciones
de estas tecnologias. El Capitulo 4 describe los conceptos generales
sobre las metaheuristicas. También describe algunos ejemplos de las
principales técnicas en el campo. La parte final del capitulo describe
el algoritmo bat, que serd la técnica utilizada en esta tesis para la
resolucion de los problemas de optimizacién ligados a la rconstruccion
de curvas y superficies a partir de nubes de puntos dato ruidosos.

e Parte III - Contribuciones: integrada por cinco capitulos (Capitulos 5
al 9). Esta es la parte central de esta tesis. Contiene las aportaciones
mas importantes del trabajo de investigacion vinculado a esta tesis. Los
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Capitulos del 5 al 8 abordan el problema de la reconstrucciéon de cur-
vas tanto polinomiales (Capitulo 5) como racionales (Capitulo 6), y su-
perficies, nuevamente tanto polinomiales (Capitulo 7) como racionales
(Capitulo 8). Finalmente, el Capitulo 9 aborda la hibridacién del algo-
ritmo de optimizacion global bat con técnicas de busqueda local para
mejorar la eficiencia del algoritmo de optimizacion.

e Parte IV - Conclusiones y Trabajo Futuro: integrada por dos capitulos
(Capitulos 10y 11). El Capitulo 10 describe las principales conclusiones
del trabajo realizado, destacando brevemente las aportaciones de la
tesis, asi como las publicaciones a las que dicho trabajo ha dado lugar.
El Capitulo 11, por su parte, senala algunas ideas para trabajo futuro
en el tema.

e Parte V - Apéndices: corresponde a los apéndices de la tesis dedicados
a la notacion empleada, acrénimos utilizados, y algunas definiciones
basicas.

e Parte VI - Bibliografia: contiene toda la bibliografia general utilizada
en la tesis.

1.5 Principales Resultados, Conclusiones y Pu-
blicaciones de la Tesis

En esta seccion resumimos brevemente los principales resultados de esta tesis,
asi como sus conclusiones mas importantes. Finalmente, indicamos también
las publicaciones a las que esta tesis ha dado lugar.

1.5.1 Principales resultados de la tesis

Los resultados principales de esta tesis son:

e La principal contribucion de la tesis es la aplicacion de una potente
metaheuristica llamada algoritmo bat para resolver el problema de la re-
construccion de curvas y superficies de forma libre con funciones de so-
porte global a partir de nubes de puntos dato ruidosos. La metodologia
ha sido aplicada a resolver este problema en cuatro casos relevantes,
correspondientes a las curvas de Bézier y a las superficies de Bézier,
tanto polinomiales como racionales, dando lugar a cuatro métodos dis-
tintos, analizados en los capitulos 5 a 8 de esta tesis. Esta metodologia
ha sido ademas testeada sobre diferentes bancos de prueba asociados a
los diferentes casos de curvas y superficies analizados.
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e Em este sentido, una contribucién relevante ha sido la extensién de la
metodologia del caso polinomial al racional. La mayoria de los métodos
descritos en la literatura consideran sélo el caso polinomial, por ser el
mas habitual en la industria. Sin embargo, ello deja fuera muchas for-
mas, como las cénicas y las cuadricas, que no pueden ser representadas
fielmente mediante funciones polinomiales. Nuestros métodos no estan
afectados por esta limitacion.

e Nuestros métodos pueden ser aplicados a nubes de puntos dato afecta-
dos por ruido, muestreado irregular y otros problemas tipicos de apli-
caciones del mundo real. Por ello, pueden ser aplicados directamente a
problemas que surgen habitualmente en los entornos industriales y de
produccion.

e Esta tesis constituye el primer caso de aplicacién del algoritmo bat a
problemas del mundo de los gréaficos por computador y el modelado
geométrico.

e Nuestros métodos no son sélo aplicables a resolver el problema de la
reconstruccion de curvas y superficies. Por el contrario, al ser métodos
basados en el concepto de optimizacion, pueden ser aplicados también
a otros problemas, como el problema de la parametrizacién resuelto en
esta tesis.

e Otra contribucién relevante es la hibridacion del algoritmo bat con otras
técnicas de busqueda local para mejorar la eficiencia de la optimizacion.
En el capitulo 9 de este tesis proponemos 4 métodos meméticos distin-
tos, basados en dicha hibridacién con los métodos de Luus-Jaakola y
ASSRS en sus variantes adaptativa y auto-adaptativa.

1.5.2 Conclusiones mas importantes de la tesis

Las conclusiones més importantes de esta tesis son:

e La principal conclusion de la tesis es que resulta posible aplicar la
metodologia propuesta en la tesis, basada en el algoritmo bat para opti-
mizacion, a fin de resolver el problema de la reconstruccion de curvas
y superficies de forma libre con funciones de soporte global a partir de
nubes de puntos dato ruidosos. En general, los métodos desarrollados
han funcionado muy bien para todos los ejemplos considerados en los
bancos de pruebas analizados, y para todos los casos abordados, tanto
para curvas como para superficies, y tanto en el caso polinomial como
en el racional.
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e La segunda conclusién relevante es que es posible la extension de los
métodos para el caso polinomial al caso racional. No obstante, éste
segundo caso es mucho mas dificil, por la fuerte dependencia entre los
distintos conjuntos de variables a calcular (parametros de los datos,
puntos de control, pesos) en una forma altamente compleja y no lineal.

e Por otro lado, como se ha mencionado anteriormente, los métodos
pueden ser aplicados en contextos de fuerte ruido y muestreado irregu-
lar. Por ello, pueden ser aplicados directamente en el entorno industrial
y a otros problemas que surgen en aplicaciones del mundo real.

e Finalmente, resaltamos que nuestra metodologia es muy general; no
exige ni presupone ninguna condicién sobre la funcién de ajuste (tal
como continuidad, diferenciabilidad, o similar). De hecho, el método
no asume ningun conocimiento ni informacién a priori sobre el problema
a resolver mas alla de los puntos dato.

1.5.3 Publicaciones de la tesis

El trabajo de investigacion realizado en este tesis ha dado lugar a un conjunto
de publicaciones internacionales. Ello nos ha permitido, por un lado, deter-
minar el grado de originalidad de nuestras propuestas asi como la calidad de
las mismas, y por otro lado, obtener un valioso feedback de los expertos en el
campo que nos ha posibilitado mejorar nuestros métodos en varios aspectos
a partir de sus aportaciones.

La tesis ha dado lugar a 5 articulos, de los cuales 3 ya han sido publicados
y los otros 2 estan ain en proceso de revision. Aunque éstos tltimos no se
pueden considerar atin publicaciones confirmadas de la tesis, han sido inclu-
idos aqui porque corresponden a dos articulos invitados a dos especial issues
de revistas asociadas a congresos, y cuya seleccién ha venido determinada
por la calidad de la contribuciones originales a los congresos. Pensamos que
ello supone, ya de por si, un claro indicio de la calidad de las propuestas. Por
otro lado, en ambos casos, los articulos enviados a las revistas han pasado ya
una primera ronda de revisién con resultado satisfactorio, y se encuentran
ahora en la tltima fase de revisién de las modificaciones introducidas después
de esta primera ronda.

Dado que las publicaciones corresponden una a una a los métodos pro-
puestos en los distintos capitulos de la tesis, las presentamos en el entorno
de cada capitulo al que estdn asociadas.
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Capitulo 5:

Iglesias, A., Galvez, A., Collantes, M.: “Bat Algorithm for Curve
Parameterization in Data Fitting with Polynomial Bézier Curves”.
Proc. of Int. Conference on Cyberworlds, CW 2015, Visby (Sweden).
IEEE Computer Society Press, Los Alamitos CA (2015) 107-114.

Este articulo fue presentado en el congreso Cyberworlds 2015, celebrado
en Visby (Suecia), en Octubre de 2015. El congreso esta patrocinado por
ACM Siggraph, Eurographics, e IFIP - Technical Group on Computer Graph-
1cs. Los proceedings del congreso han sido publicados por IEEE Computer
Society Press. Cyberworlds’2015 es un congreso de categoria ERA-B con-
ference.

Capitulo 6:

Iglesias, A., Galvez, A., Collantes, M.: “Global-Support Rational
Curve Method for Data Approximation with Bat Algorithm”. Proc.
of Int. Conference Artificial Intelligence and Applications, AIAI’2015,
Bayonne (France). IFIP Advances in Information and Communica-
tion Technology, 458 (2015) 191-205.

La conferencia AIAI es una de las mas prestigiosas en el mundo de la
inteligencia artificial y estd patrocinada por IFIP - Technical Group on Ar-
tificial Intelligence La edicién del 2015 tuvo lugar en Bayona (Francia), en
Setiembre de 2015. Los proceedings del congreso han sido publicados por
Springer-Verlag, en su coleccion IFIP Advances in Information and Commu-
nication Technology.

Capitulo 7:

Iglesias, A., Galvez, A., Collantes, M.: “A Bat Algorithm for Poly-
nomial Bézier Surface Parameterization from Clouds of Irregularly
Sampled Data Points”. Proc. of Int. Conference Natural Computa-
tion 2015, ICNC’2015, Bayonne (France). Zhangjiajie (China). IEEE
Computer Society Press, Los Alamitos CA (2015) 1034-1039.

Esta conferencia, patrocinada por las sociedades IEEE Computer Society
y IEEE Computational Intelligence, es un clasico en el campo de la inteligen-
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cia artificial. La edicién de 2015 tuvo lugar en Zhangjiajie (China), en Agosto
de 2015. Los proceedings del congreso han sido publicados por IEEE Com-
puter Society Press.

Capitulo 8:

Iglesias, A., Galvez, A., Collantes, M.: “Iterative Sequential Bat Al-
gorithm for Free-Form Rational Polynomial Bézier Surface Recon-
struction”. Int. Journal of Parallel Programming, (special issue of
ICNC’2015 conference). (Submitted on Nov. 30th 2015, currently un-
der review).

Este articulo corresponde a la invitacion del congreso ICNC’2015 para el
envio de un articulo a un special issue de una revista JCR, previa seleccién
post-conferencia de sus mejores trabajos. En nuestro caso, en lugar de enviar
una version ligeramente modificada del articulo del congreso, hemos optado
por extender el método sustancialmente al caso racional para ampliar mas
su calidad y originalidad. El articulo ha sido ya enviado a fines del 2015. La
notificacién final se espera para Junio de 2016.

Capitulo 9:

Iglesias, A., Galvez, A., Collantes, M.: “Four Adaptive Memetic Bat
Algorithm Schemes for Bézier Curve Parameterization”. Transac-
tions on Computational Science, (special issue of CW’2015 confer-
ence). (Submitted on Dec. 31st. 2015, currently under review).

Este articulo corresponde a la invitacion del congreso CW’2015 para el
envio de un articulo a un special issue de una revista, previa seleccién post-
conferencia de sus mejores trabajos. En nuestro caso, en lugar de enviar
una version ligeramente modificada del articulo del congreso, hemos optado
nuevamente por extender el método sustancialmente considerando la hibri-
dacién del algoritmo bat con métodos de buisqueda local, para ampliar mas
su calidad y originalidad. El articulo ha sido ya enviado a fines del 2015. La
notificacién final se espera para Julio de 2016.

1.6 Trabajos Futuros en el Campo

En esta seccion resumimos brevemente algunas ideas para trabajo futuro en
este campo de investigacion. Para una descripcion mas detallada, remitimos
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al lector al Capitulo 10 de esta tesis.

El trabajo de investigacion de esta tesis doctoral puede ser ampliado
y extendido de varias formas distintas. Algunos aspectos importantes que
permitirian su continuacién son:

e un tema abierto todavia es la creaciéon de una bateria de ejemplos que
constituyan un “banco de pruebas” estandarizado sobre el cual pro-
bar futuros desarrollos de otros métodos de resolucién del problema de
reconstruccién de curvas y superficies. A dia de hoy no existe nada
ni remotamente parecido. Este banco de pruebas facilitaria enorme-
mente la tarea de la comparacion de la eficiencia de distintos métodos
y permitiria establecer mas facilmente las ventajas y limitaciones de
los distintos métodos desarrollados.

e la extension de la presente metodologia a otras familias de funciones
de ajuste con interés en la industria, como los B-splines y los NURBS.

e la aplicacién de la metodologia desarrollada en esta tesis a problemas
reales de la industria en diversos entornos productivos

e ¢l desarrollo de estudios tedéricos que permitan establecer las condi-
ciones de convergencia del método. Hasta la fecha no existe ningtin
estudio tedrico sobre el algoritmo bat. Todos los resultados referentes
a la convergencia del método son puramente empiricos. Resultaria muy
util obtener desarrollos tedricos que fundamenten el método y lo doten
de un mayor formalismo matematico.

e la determinacién de los mejores valores de los parametros del método
de forma automatica o semi-automatica, en lugar de la forma manual
y empirica utilizada hasta la fecha, que supone mucho tiempo y un
enorme esfuerzo.
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Chapter 2

Introduction

This chapter introduces the general ideas about the work carried out dur-
ing this doctoral thesis. The discussion begins with the presentation of the
general framework of the thesis. Then, the motivation to carry out this re-
search work is discussed in Section 2.2. The section also outlines the main
goals to be achieved in the research work of this thesis. Finally, Section 2.3
describes the general structure of this thesis, with a brief explanation about
the contents of each chapter of this document.

2.1 General Framework of the Thesis

This book corresponds to the PhD thesis of Marta Collantes, carried out at
the Department of Applied Mathematics and Computational Sciences of the
University of Cantabria, Santander, Spain and co-supervised by Dr. Andrés
Iglesias Prieto and Dr. Akemi Galvez Tomida.

The thesis is based on the application of a powerful nature-inspired meta-
heuristic approach for global optimization called the bat algorithm. This
algorithm has been recently introduced by Prof. Xin-She Yang to solve dif-
ficult continuous optimization problems that cannot properly addressed by
traditional mathematical optimization techniques (see Chapter 4 for further
details).

In this thesis, this method is applied to solve the problems of curve recon-
struction and surface reconstruction from given sets of data points by using
global-support basis functions. The reader is kindly referred to Chapter 3 for
a detailed explanation about the subject of curve and surface reconstruction
as well as the issue of global-support basis functions.

19



20 Chapter 2. Introduction

The research work in this thesis has been carried out in the framework of
two research projects from the Spanish National Research and Development
Plan, Computer Science National Program. The first of these projects was:

Artificial Intelligence for Geometric Modeling and Computer
Graphics. (Ref. TIN2006-13615). Spanish Ministry of
Education and Science, Computer Science National Pro-
gram (September 2006-September 2009). Principal Investiga-
tor: Andrés Iglesias.

This project was focused on the applications of different artificial intel-
ligence techniques to several problems in computer graphics and geometric
modeling, including the issue of curve and surface reconstruction. The pro-
posal in that project was based on recent works suggesting the use of arti-
ficial intelligence (AI) techniques such as neural networks (often combined
with numerical methods based on either ordinary or partial differential equa-
tions) provide better solutions to problems such as surface reconstruction
(the determination of a surface from a set of unorganized points such that
it satisfies a prescribed set of functional constraints). This problem arises in
reverse engineering for computer-aided manufacturing via three-dimensional
laser-scanning but also in many other fields, such as medicine (generation
of cross-section surfaces in computer tomography, magnetic resonance imag-
ing), virtual and augmented reality, architecture, archaeology, and many
others (see Chapter 3 for a detailed presentation of different applications in
several fields). Until that project, we obtained very promising results by
using functional networks, a generalization of neural networks in which the
weights are replaced by multivalued functions, thus allowing more flexibility.
In that project, further research was proposed in order to clearly determine
the advantages and drawbacks of this approach. We also pursue to obtain
more powerful and more efficient methods to solve these problems.

The research work in this initial project was later continued in a second
project:

Metaheuristics for Automatic Free-Form Curve and Surface
Reconstruction in Reverse Engineering. (Ref. TIN2012-
30768). Spanish Ministry of Economy and Compet-
itiveness, Computer Science National Program (January
2013-December 2016). Principal Investigator: Andrés Iglesias.
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This second project was particularly focused on the application of meta-
heuristic techniques to the problem of curve and surface reconstruction by
using free-form geometric entities. The motivation of that project is that it
has been shown that the application of neural networks (and even their ex-
tension, functional networks) is not able by itself (i.e., working alone, without
the hybridization with other approaches) to solve the problem in its genera-
lity. On the other hand, recent results reported in the literature have shown
that some recent optimization techniques such as the metaheuristics can solve
very difficult continuous optimization problems, such those addressed in this
thesis. In addition, we pursue to solve these problems in an autonomous and
fully automatic way.

This thesis contains part of the research results carried out during the
completion of these two national research projects. All the results achieved
during this PhD thesis and reported in this document have been obtained
from the research conducted in such projects.

2.2 Motivation and Main Goals of the Thesis

The automatic reconstruction of free-form curves and surfaces (the most com-
mon ones in industrial settings and design) from clouds of data points is one
of the most important problems in geometric modeling and processing and
in computer-aided geometric design (CAGD). It also has a very high rele-
vance in a number of industrial processes such as CNC (computer-numerically
controlled) milling and machining for manufacturing, and in CAD/CAM
for fields such as automotive, aerospace, and shipbuilding industries. Also
in shoe industry, medical imagery, archaeological assets reconstruction, and
many others. The wide range of applications of this technology (described
in detail in Section 3.2 of this dissertation) is the main motivation for the
research work carried out in this thesis.
The problem to be solved can be explained as follows:

Given a set of noisy data points assumed to lie on an unknown
curve/surface, the goal is to construct, to the best possible extent,
a compact representation of such a curve/surface that fits those
data points better.

This problem appears ubiquitously in reverse engineering, a field that aims
at transforming real parts (acquired through optical or tactile 3D scanning
or other digitizing or measurement devices) into engineering models and con-
cepts for further use and manipulation by computer. This is a key technol-
ogy in manufacture, since the digital models can be stored, modified and
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transmitted more efficiently than their real counterparts. Moverover, digi-
tal models can be used even although the real objects are lost or become
unavailable or unusable. Furthermore, digital models are also often easier
and cheaper to modify and analyze than the physical objects themselves. By
using a mathematical curve/surface model, the same complex shape can be
economically represented by as few as tens of parameters.

In this context, the primary goal of this thesis is to investigate the ap-
plication of a powerful metaheuristic technique to free-form curve/surface
reconstruction from clouds of (possibly unorganized and noisy) data points.
In addition to this major goal, we seek to develop methods to obtain a math-
ematical representation of such a curve/surface from minimal information,
namely, a set of data points lying on it, decreasing substantially the approx-
imation errors of current methods. The third goal is to achieve the previous
goals in a fully automatic way (i.e., without human intervention) while simul-
taneously being able to reconstruct with high accuracy very complex shapes
unfeasible with current methods. Such methods should also be robust, numer-
ically stable, and computationally fast and efficient. The methods developed
for this thesis will be described in detail in Chapters 5 to 9 of this written
dissertation.

2.3 Structure of the Thesis

Figure 2.1 shows the general structure of this thesis. This thesis is structured
into six parts, each one comprised at its turn of one or several chapters. In
the figure, the different parts are enclosed in the rectangles with colored
background, and identified with capital letters indicating the corresponding
part, from I to VI, along with the title of each part. At their turn, the different
chapters are indicated by white rectangles with their chapter number and title
within. The arrows in the figure indicate the flow of the chapters for easier
identification.

The first part, labelled as Part I: Resumen General and fully written in
Spanish to comply with the regulations of the University of Cantabria regard-
ing the written PhD dissertation, contains only one chapter. As required by
such regulations, it provides a general summary of the thesis as well as its
main contributions, research results and conclusions. For total completeness
of this part, the bibliography of this particular chapter is included at the end
of hte chapter. This differs from the rest of the thesis, where the bibliography
for the rest of chapters is collected altogether in final chapter for the sake of
clarity.

The second part, labelled as Part II: Introduction, is devoted the gen-
eral concepts and offers a gentle yet comprehensive introduction to the main
fields involved in this research work. As such, this part must be understood
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as the preliminaries part providing the required background to be able to
follow the other parts of the thesis properly. This part is comprised of three
chapters. Chapter 2 (this one) describes the general framework of this thesis
along with its motivation and main goals. It also explains briefly the general
structure of this thesis (this section). Chapter 3 provides a comprehensive
introduction to the problem of curve and surface reconstruction, its main
applications, advantages and limitations. It also provides a general review
about the state of the art in the field. Finally, Chapter 4 describes the gen-
eral concepts about metaheuristics and swarm intelligence. It also describes
some of the most popular and most relevant metaheuristic approaches. We
start with simulated annealing as a classical example of a single-particle ap-
proach. Then, our description follows with some classical and well-known
approaches in swarm intelligence, such as particle swarm optimization and
genetic algorithms. Some recently introduced swarm intelligence approaches,
such as firefly algorithm and cuckoo search are also reported. Finally, we also
describe the bat algorithm, the bio-inspired metaheuristic technique used in
this thesis.

The third part of this thesis, labelled as Part I1I: Contributions, provides
the real core of this research work, as it is devoted to explain the main contri-
butions of this thesis. The part is comprised of five chapters, corresponding
one-by-one to the five bat algorithm-based methods developed in this thesis.
They are arranged, for clarity, from the most simple to the most complicated
case, addressing firstly the case of curves and then the case of surfaces. Thus,
Chapter 5 describes our method for the case of polynomial Bézier curves,
while Chapter 6 extends our technique to the case of rational Bézier curves.
Chapters 7 and 8 are devoted to the cases of polynomial Bézier surfaces and
its extension to the case of rational Bézier surfaces, respectively. Finally,
Chapter 9 considers the hybridization of the technique described in Chapter
6 with four local search methods, the Luus-Jaakola and the adaptive step
size random search for the cases of both adaptive and self-adaptive versions.
All chapters from 5 to 9 follow a similar structure: firstly, the problem to
be solved is introduced, then the technique applied to solve it is explained;
finally, the main results obtained from our computational experiments are
fully reported.

The fourth part of this thesis, labelled as Part I'V: Conclusions and Future
Work, is comprised of two chapters. The former one, Chapter 10, reports
the main conclusions derived from the research work of this thesis, while the
latter outlines some interesting research lines for future work in the field.

The fourth part of this thesis, labelled as Part V: Appendiz, contains
four addenda to this thesis, labelled as Addendum A to D, and devoted to
the conventions and names used in this thesis, the general mathematical
notation, and some concepts and properties about the dot product and the
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cross product, respectively.

Finally, the last part, labelled as Part VI: Bibliography, contains a collec-
tion of more than 100 bibliographic entries corresponding to the references
to previous works used during the completion of this thesis.
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Chapter 3

Curve and Surface
Reconstruction

3.1 Motivation

One of the most visible effects of globalization is the growing global competi-
tion among manufacturers and industrial corporations to deliver more com-
petitive products with better quality and lower prices. Due to this globaliza-
tion process, manufacturers are constantly challenged to optimize processes
in order to provide the best and most efficient cost/quality ratio. Under these
new rules of competition in global market, design is taking a central role in
the product development lifecycle. The prior emphasis on designing whole
product lines for customers has experienced a radical shift as companies in-
creasingly enable customers to mass customize their own products. Under
this new paradigm, products are manufactured in lesser amounts but with
greater product diversity. As a result, the geometric model of the product
has to be changed frequently during the design process, making CAD/CAM
systems inevitable tools for the design and manufacturing processes.

As part of the initial conceptual design process, it is common in many
industries (automotive, aerospace, ship building) to build prototypes in a
real workshop with materials such as foam, clay, wood, metal or plastics,
in order to explore ideas for shape, size, proportions and the human sense
of interacting with the model. The model thus obtained is digitally stored
through data sampling by means of technologies such as 3D laser scanning.
Data points are then fitted to mathematical curves and surfaces, a process
called data fitting.

Reverse engineering is a crucial technology in the current manufacturing
pipeline. In its most comprehensive meaning, reverse engineering consists of
obtaining a digital replica of an already existing physical object or compo-
nent. While conventional engineering transforms engineering concepts and
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Figure 3.1: Example of a handheld laser scanner.

models into real parts, in reverse engineering real parts are transformed back-
ward into engineering models and concepts. This is a typical procedure in
medical and health areas, where non-invasive techniques such as magnetic
resonance imaging (MRI) or computer tomography (CT) are commonly used
to visualize inner organs or different parts of the human body for medical
check, diagnosis, and therapy. Reverse engineering is also a common prac-
tice in consumer products, microchips, and other electronic components for
different purposes. For instance, to analyze how a new device or machine
in the market is built or how a particular component works. Also to deter-
mine whether or not a new product infringes a patent or intellectual property
rights.

Another relevant application arises in automotive and aerospace indus-
tries, where prototypes are built to help designers and engineers explore new
ideas and get a visual insight of a new part to be designed. This is a chal-
lenging task, since nowadays designs are becoming more and more organic
in shape, making them more difficult to be replicated by computer from
scratch. A typical approach in this regard is to obtain a set of measurements
of the object or workpiece and then reconstruct it as a 3D model. Typical
ways to measure include scanning technologies such as 3D laser scanners,
touch scanners, coordinate measuring machines, light digitizers, and indus-
trial computer tomography. Typically, the process yields a cloud of data
points, which have to be fitted in order to recover the topological informa-
tion of the original model.
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Figure 3.2: Example of a point cloud corresponding to a car model by Porsche.

Advantages of this process are obvious: digital models are easier and
cheaper to modify and analyze than the physical counterparts. In addition,
digital data are very well suited for efficient storage and transmission among
providers and manufacturers and can still be used even when the real objects
are lost or become unavailable. In addition, digital data are very well suited
for efficient storage and transmission among providers and manufacturers and
can still be used even when the real objects are lost or become unavailable.

Currently, laser scanner is the most common method used in reverse en-
gineering applications because it is fast and robust relative to other methods.
Laser scanner systems yield a (possibly massive) cloud of 3D data points from
which a 3D model is to be reconstructed. This large collection of measured
points is usually represented as a point cloud typically comprised of hundreds
of thousands, and even millions of data points. Figure 3.2 shows an example
of a light point cloud comprised of 75,422 points, obtained from a model of
a car by German carmaker Porsche.

Similarly, Figure 3.3 shows a cloud point obtained from a blade of a work-
piece (a propeller in this case). This point cloud is comprised by 1,831,155
3D points.

Typically, the point clouds lack topological and geometrical information
beyond the data points, and must therefore be further processed. The clas-
sical approach is to create a model from data by using either a polygonal
(usually triangular) mesh, a constructive solid model, or a set of mathemati-
cal curves and surfaces. For instance, Figure 3.4 shows the reconstruction of
the point cloud in previous Figure 3.3 by using a polygonal mesh, comprised
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Figure 3.3: Example of a point cloud corresponding to a blade. The model
consists of more than 1 million data points.

of more than 1 million of vertices (as many as the number of data points
in the cloud) and more than 10 million of faces. Note that in this case,
the complexity of the model is not reduced but drastically increased instead.
This is a general behavior for polygonal meshes. Because of this reason, in
this thesis we will focus on the latter case, usually referred to as curve and
surface reconstruction.

Curve/surface reconstruction has many remarkable advantages. By using
a mathematical surface model, the same complex shape can be economically
represented by as few as 50-500 parameters. This issue becomes increasingly
important with the rapid development of powerful communication technolo-
gies, making it possible to send those models all over the world in just a
matter of seconds. Furthermore, parametric mathematical models are the
preferred representations in engineering design applications because they can
be readily modified by changing only a small set of parameters, such as the
control points.
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Figure 3.4: Reconstruction of the point cloud in Figure 3.3 by using a polyg-
onal mesh. In this case, the complexity of the model (i.e., the number of
data) does not decrease, but it drastically increases instead.

3.2 Approaches for Curve/Surface Reconstruc-
tion

The problem of recovering the shape of a curve or a surface, also known
as curve (respectively surface) reconstruction, is one of the most difficult
and challenging “unsolved” problems in geometric modeling during the last
two decades. In this thesis, when we talk about the issue of curve (surface)
reconstruction we refer to the following problem:

Given a (usually very large) collection of (possibly noisy) data
points in 2D or 3D, how to compute a parametric curve (surface)
that “follows” the shape of these data points so that it faithfully
recovers the underlying shape of the point cloud.
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Depending on the nature of these data points, two different approaches
can be employed for this problem: interpolation and approximation. In the
former, a parametric curve or surface is constrained to pass through all input
data points. This approach is typically employed for sets of data points
that come from smooth shapes and that are sufficiently accurate. On the
contrary, approximation does not require the fitting curve or surface to pass
through all input data points, but just close to them, according to some
prescribed distance criteria. The approximation scheme is particularly well
suited for the cases of highly irregular sampling and when data points are
not exact, but subjected to measurement errors. In real-world problems the
data points are usually acquired through laser scanning and other digitizing
devices and are, therefore, subjected to some measurement noise, irregular
sampling, and other artifacts [152, 156]. Consequently, a good fitting of
data should be generally based on approximation schemes rather than on
interpolation [122, 134, 151, 188].

This curve/surface reconstruction problem has received much attention
during the last few decades. One of the main reasons to explain such interest
is the wide range of applicability of this problem in many theoretical and
applied domains (see our discussion in Section 3.3 below). In fact, this issue
has been considered a very hot topic in research for almost 50 years. It is
also a very elusive and challenging problem. In spite of the intensive research
effort carried out since the first theoretical developments in the 50s and 60s,
the problem is still far from being solved in all its generality. There are two
main reasons to explain this situation:

e on one hand, the problem can be formulated in many different ways,
according to the specific criteria used for classification. For instance,
the problem has been addressed in completely different ways depend-
ing on the input of the problem (cross-sections, clouds of points, iso-
parametric curves, mixed information, etc), the geometric structures
used for representation (polygonal meshes, solid primitives, parametric
curves and surfaces), the mathematical approach employed (interpola-
tion, approximation), the mathematical constraints (if any), and many
other factors. In other words, there is no universal solution for this
issue, as different conditions require different approaches to this prob-
lem. So instead of a “for all” single method, we are facing a myriad of
specialized methods to deal with.

e on the other hand, most of the techniques developed so far to solve this
problem have been usually based on the application of traditional math-
ematical optimization techniques. Although they are still very powerful
and able to cope many different situations, the particular conditions of
this problem (noisy data, little or no information about the problem, no
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continuity or differentiability of objective function ensured) limit the
applicability of such techniques in this particular field. Furthermore, it
has been shown during the last two decades that such methods cannot
be successfully applied to solve very difficult nonlinear continuous op-
timization problems. In particular, they fail to solve the curve/surface
reconstruction problem with free-form parametric fitting functions such
as Bézier, B-splines and NURBS, by far the most common geometric
entities in industrial and applied domains.

Owing to these critical limitations, the scientific community in the field
have turned their attention to artificial intelligence and other modern opti-
mization techniques, such as metaheuristics. This is also the approach taken
in this thesis. These kind of techniques will be explained in detail in Chapter
4 of this thesis.

3.3 Applications

As stated in previous section, the curve/surface reconstruction problem is
a classical problem in many different fields. In this section, we summarize
some of the most relevant applications of this subject in both theoretical and
applied domains. The list is by no means exhaustive, but it still provides our
readers with a gentle overview about a number of interesting applications.

3.3.1 Theoretical fields

Numerical and functional analysis: Curve and surface reconstruction
is a key technique in approximation theory, a major topic in numerical and
functional analysis [13, 47, 49, 50, 73, 86, 133, 134]. Spline interpolation is an
issue of particular importance because it yields similar results to polynomial
interpolation but does not require high degree polynomials thus avoiding the
instability associated with Runge’s phenomenon [168, 169]. Spline functions
are also very flexible and simple enough, so they are usually preferred over
canonical polynomial functions for data interpolation. Spline functions are
also widely used in data approximation, as their flexibility make them an
excellent tool to capture the underlying shape and structure of noisy data
6, 12, 29, 94, 96, 196].

Statistics and machine learning: Curve and surface reconstruction with
splines is a major procedure in data fitting and regression [28, 30, 31, 122, 126,
129, 144], as they are more stable than other fitting functions. Besides, some
splines can perform very well for these tasks even for low-degree polynomial
fitting functions, particularly when piecewise functions are involved. This
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ability to tune the degree of the fitting functions is essential to prevent over-
fitting in statistical and machine learning predictive models and to minimize
the number of free parameters of the model [33, 79]. Finally, it is a key
ingredient for other problems such as smoothing, filtering, nonparametric
regression, and many others [34, 94, 95, 98].

3.3.2 Applied fields

Most applications of curve/surface reconstruction in industrial and applied
settings are associated with a process commonly known as reverse engineer-
ing. While conventional engineering transforms engineering concepts and
models into real parts, reverse engineering represents the other side of the
process. In reverse engineering real parts are transformed backward into engi-
neering models and concepts, typically stored in digital form. Some relevant
examples include:

Medical imaging: two typical problems in medical imaging are to construct
a curve (or collection of curves) from data points and to obtain the external
surface of a 3D object from a set of cross-sections of that object. For in-
stance, authors in [4, 5, 109, 128, 141, 149] address the problem of obtaining
a surface model from a set of given cross-sections. The starting point is a
dense cloud of data points of the surface of a volumetric object (an inter-
nal organ, for instance) acquired by means of noninvasive techniques such as
computer tomography, magnetic resonance imaging, or ultrasound imaging.
The primary goal in these cases is to obtain a sequence of cross-sections of
the object in order to construct the surface passing through them, a process
called surface skinning. In other cases, the input is directly a sequence of
2D cross-sections or thin layers (see, for instance, Figures 3.5 and 3.6 for two
examples corresponding to computer tomography and magnetic resonance,
respectively). Then, the reconstruction method aims to generate an accu-
rate volumetric representation of the surface of the object to be displayed
for diagnosis and other medical purposes. Other classical input data include
iso-parametric curves on the surface [76] and even mixed information, such
as scattered points and contours [3, 9, 135, 175] or iso-parametric curves and
data points [95, 97].

Biomedical engineering: The use of reverse engineering techniques is very
common in biomedical engineering for the design and manufacturing of pros-
thesis of different types. Other typical problem is the generation of cus-
tomized medical implants, where the basis geometric is acquired from the
real model by using some digitizing devices and/or medical imaging. These
orthopedic implants are designed to replace a missing joint or bone or as a
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Figure 3.5: Example of a computer tomography (CT) scanned volume: 3D
volumetric reconstruction of the brain and eyes comprised of several slices of
bmm stored in DICOM format (source: Wikipedia).

supporting element of a damaged rigid body structure. In some instances,
the reconstruction techniques in this field make use not only of parametric
functions but also of implicit functions [128, 141, 149, 175, 178|.

Automotive, aerospace and ship hull building industries: In auto-
motive, aerospace, and ship hull building industries it is common to build
prototypes in a real workshop as part of the initial design process [187, 188].
Those prototypes, usually made with materials such as foam, clay, wood,
metal or plastics, help the designers to explore conceptual ideas for shape,
size, proportions, and the human sense of interacting with the model. The
resulting model is digitally stored through data sampling by means of tech-
nologies such as 3D laser scanning. Data points can readily be manipulated
by computer and then converted into digital models, generally described in
terms of mathematical curves and surfaces [79, 80, 152, 156]. Advantages
of this process are obvious: digital models are easier and cheaper to modify
and analyze than the physical counterparts. In addition, digital data are
very well suited for efficient storage and transmission among providers and
manufacturers and can still be used even when the real objects are lost or be-
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Figure 3.6: Example of magnetic resonance imaging of the human brain
(source: National Geographic).

come unavailable. Classical examples include turbine blades, airplane wings,
car body parts, boat parts, and many others (such as those shown in Figures

3.3 and 3.7).

Computer design and manufacturing (CAD/CAM): Surface recon-
struction is also used to improve some CAD/CAM processes [29, 38, 58, 62,
81, 152, 187, 192] such as the determination of trajectories for tool-path gen-
eration in computer-numerically-controlled (CNC) operations such as milling
and machining and other manufacturing-related processes (filing, turning,
grinding, etc). Curve and surface reconstruction is also involved in varia-
tional analysis for fairing and smoothing |78, 82, 92, 111].

Rapid prototyping and rapid manufacturing: the application of curve
and surface reconstruction techniques for rapid prototyping (the generation
of scale models of physical parts from CAD data) is becoming increasingly
popular during the last few years [7, 152, 156, 187]. A major reason of this
popularity is the quick availability of very efficient methods for generating
physical prototypes, particularly 3D printing and additive layer manufactur-
ing technology. In such technologies, successive layers of material are laid



Section 3.83. Applications 37

down until the entire object is created. Each of these layers can be seen as
a very thin horizontal cross-section of the eventual object. Printing of such
layers is performed through different methods such as selective laser sintering
(SLS), fused deposition modeling (FDM), and stereolithography (SLA). 3D
printing is also used for rapid manufacturing, where 3D printers are used to
produce the actual end user products rather than merely prototypes. This is
an emerging field nowadays, particularly regarding the mass customization
of personal goods.

Metrology and product assessment: reverse engineering is widely used
for metrology purposes (measurement of physical properties of a manufac-
tured product). Classical technologies in this field are coordinate-measuring
machines, laser scanners, structured light digitizers, or industrial computer
tomography scanners [156, 187, 188]. Figure 3.7 shows an example of an
engine component (a throttle) scanned for product assessment and quality
control purposes. The model consists of more than 30 million 3D data points.

Other uses involve the creation of digital models of manufactured goods,
the assessment of competitors’ products and identification of possible patent
or copyright infringement. The range of applications can even go to micro-
scopic sizes. For instance, the paper in in [118] reports an interesting appli-
cation of a genetic algorithm for the reconstruction of 3D surface topography
in scanning electron microscopy.

Computer animation and computer-generated movies: Curve/surface
reconstruction methods are an essential ingredient of modern computer ani-
mation techniques for computer-generated movies and videogames. A typical
example of application are the motion capture (mo-cap) systems where move-
ments of real actors are recorded through sensors and the resulting informa-
tion is used to animate digital characters by computer by using sophisticated
computer animation techniques. Some remarkable examples of this kind of
technology can be found in blockbusters movies such as James Cameron’s
Awatar (see Figure 3.8) where a new technology for real-time facial anima-
tion called FACS (Facial Action Coding System) for performance capture
and mapping onto an arbitrary character face was developed, Pirates of the
Caribbean (see Figure 3.9) or for the famous critically-acclaimed character of
Gollum in the Lord of the Rings film trilogy (see Figure 3.10).

In this regard, curve reconstruction is used to generate the trajectories of
individual parts of the character through inverse kinematics, a process that
interpolates the positions of joints at specifically selected frames (keyframes)
to generate the frames in between, a process usually called keyframing, inbe-
tweening, or tweeing. On the other hand, surface reconstruction is applied to
generate the 3D model of the digital character. Curve reconstruction tech-
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Figure 3.7: Example of an engine component (a throttle) scanned for product
assessment and quality control purposes.

niques are also used to generate paths for the digital characters moving in
a virtual environment for computer movies and videogames, and to deter-
mine trajectories for camera walkthrough rendering in computer animation
and scientific visualization, a technique in which a predefined walkthrough
animation of a scene is obtained by placing the camera on a path according
to a prescribed trajectory or procedural sequence. Also, curve reconstruction
techniques appear in animation approximation, a field that aims to compactly
represent an animation sequence (such as mesh animations or skeletal ani-
mations) through non-uniform B-splines, taking advantage of the temporal
coherence of the animation data [146].
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Figure 3.8: Example of the use of FACS technology for the blockbuster movie
Awatar. Facial markers are placed at features points of the actor’s face and
surface reconstruction is applied to recover the face of the digital character
for real-time rendering (source: Lightstorm Entertainment / Dune Enter-
tainment / Ingenious Film Partners / 20th Century Fozx).

Geometric modeling and processing: curve/surface reconstruction meth-
ods are at the core of many processes in geometric modeling and process-
ing [2, 24, 25, 38, 93, 111]. Approaches in these fields have typically relied
on polygonal meshes, for which very powerful, advanced techniques have
been developed [35, 90, 91]. More recently, schemes based on solid geometry
[123, 195] and mathematical curves and surfaces have also been developed
[54, 59, 69, 74, 99, 150, 151, 171, 199, 210, 211, 214].

Archeology and digital heritage: A major step in this area was given
by the ambitious “Digital Michelangelo” project [124]. Carried out in 1998-
99 by a team of 30 faculty, staff, and students from Stanford University
and the University of Washington who spent one year in Italy scanning the
sculptures and architecture of Michelangelo, it represented the starting point
for a number of similar projects aimed at applying shape reconstruction for
the digital representation, storage, and analysis of historical and cultural
artifacts. The project received a lot of attention not only from the scientific
community but also from mass media, and contributed significantly to the
popularization of the application of these techniques to archeology and digital
heritage.

The field has also benefited from the popularization and miniaturization
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Figure 3.9: Example of motion capture technology in the fantasy swashbuck-
ler film series Pirates of the Caribbean. Reference points are used to track
the motion of the different joints of the characters and their replacement
by computer-generated characters following the animations of real actors

(source: Walt Disney Pictures / Jerry Bruckheimer Films / Walt Disney
Studios / Motion Pictures).
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Figure 3.10: Two example of facial and motion capture technology for the
Gollum character in the Lord of the Rings film trilogy. This technology
can capture even the subtle changes in facial expressions as well as body
movements with high accuracy (source: WingNut Films / The Saul Zaentz
Company / New Line Cinema).

of affordable handheld laser scanners and portable coordinate-measuring ma-
chines, which have assisted the archeologists in capturing the shape and de-
tails of engravings of historical objects and artifacts. Figure 3.12 shows the
point cloud associated with an ancient vase captured with a handheld laser
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Figure 3.11: The laser scanner used in the Digital Michelangelo project to
create a digital reconstruction of the famous statue of David (source: Marc
Levoy/Digital Michelangelo Project.

scanner. The point cloud is pretty massive, as it contains more than 8 million
data points in order to capture even the subtle details of any engraving on
the surface of the vase.

In addition, the use of photogrammetry techniques have revealed to be
very useful in capturing the geometry of historical buildings. Also, LIDAR
technology (see Figure 3.13) is widely used to create high-resolution digital
elevation models (DEMs) of archaeological sites that help archeologists to
discover micro-topography hidden by vegetation and/or additional natural
or artificial actions. The combination of this technology with Geographical
Information Systems (GIS) have proved to be capital for the analysis, inter-
pretation and documentation of historical heritage and its preservation for
future generations [21, 22, 23].

Architecture and land surveying: Laser 3D scanning technology provides
a wealth of realistic 3D modeling buildings with valuable applications to
architectural and land surveying studies. For instance, in Figure 3.14 laser
scanning was used to determine if the facade of this building (destroyed by
fire) can still be saved in rebuilding the structure, as it actually happened
at the end. This example shows how beneficial this kind of technology can
actually be in real-world architectural projects.
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Figure 3.12: Point cloud extracted from an ancient vase captured with a
handheld laser scanner.

3.4 Parametric Shapes

Several families of functions can be used for curve and surface reconstruction.
Classical mathematical functions used for this task are the so-called paramet-
ric free-form shapes such as Bézier, B-splines and NURBS curves and surfaces
[38]. Actually, owing to their powerful mathematical properties, their great
flexibility and the fact that they can represent smooth shapes with only a
few parameters, they are the most common ones in CAD/CAM (Computer-
Aided Design/ Manufacturing), computer graphics and animation, virtual
reality, and many other fields. Mathematically speaking, they consist of a
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Figure 3.13: Example of a total station for LIDAR applications.

linear combination of a set of basis functions (usually called blending func-
tions) where the coefficients (usually called the poles or control points) can
readily be used to control the shape of the fitting function, an extremely
valuable feature for interactive design.

In general, these blending functions can be classified into two groups:
global-support functions and local-support functions. In the former case,
the support (the subset of the function domain where the function does not
vanish) of the blending functions is the whole domain of the problem, while
in the latter case different blending functions can have different supports,
which are usually a strict subset of the whole domain. As a consequence,
global-support fitting functions exhibit global control: any modification of
the shape of the curve/surface by moving any pole is automatically propa-
gated throughout the whole curve/surface, something that does not happen
in general for local-support fitting functions. In this thesis we will only dis-
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Figure 3.14: Laser scanning used to determine if the facade of this building
(destroyed by fire) can still be saved in rebuilding the structure (source:
Diamond Land Surveying)

cuss the case of global-support fitting functions.

In particular, in this thesis we will focus on the Bézier curves and sur-
faces, which have been intensively used in automotive industry for decades.
Mathematically, they are given by a linear combination of basis functions
called the Bernstein polynomials with vector coefficients called poles or con-
trol points. The curve/surface follows approximately the shape of its control
polygon (the collection of segments joining the poles), and hence, it reacts to
the movement of its poles by following a push-pull effect. This nice feature
was fundamental for the popularization of free-form curves and surfaces for
interactive design.

Although nowadays Bézier curves and surfaces have been mostly depre-
cated in that field, being overtaken by the more powerful B-splines, they are
still in use in many other areas. For instance, True Type fonts use composite
curves comprised of quadratic Bézier curves. Similarly, all Postscript font
outlines are defined in terms of cubic and linear Bézier curves. Other recent
applications include, for instance, robot path planning [181] and the determi-
nation of the airfoil geometry from a given Cj-distribution [115]. Similarly,
Bézier surfaces are still used to represent some particular objects, such as the
famous Utah teapot. Because of their simplicity, they are also used today
for tasks such as surface blending (the construction of a surface connecting
to different surfaces at two ends, usually imposing some kind of geometrical
continuity condition at the boundaries). A mathematical definition of the
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Bézier curves and surfaces for both the polynomial and the rational cases
will be given in Chapters 5 to 8 for the corresponding cases. We refer the
reader to these chapters for a detailed mathematical discussion about these
curves and surfaces.



Chapter 4

Metaheuristics and Swarm

Intelligence for Optimization.
The Bat Algorithm

The research work in this thesis is based on the application of a powerful
metaheuristics to the curve and surface reconstruction problems. Therefore,
it is necessary to understand the fundamentals of the metaheuristics and some
of their inherent properties that make this methodology so interesting for this
research work. This chapter will provide the reader with a general overview
about the metaheuristics, their origin, taxonomy, and main advantages. The
discussion will be enriched by the description of some of the most popular
metaheuristics described in the literature. Finally, the metaheuristics used
in the research work of this thesis, the bat algorithm, will be explained in
detail in Section 4.9.

4.1 Metaheuristics

In this section, we discuss the origin of the metaheuristics, their definition and
taxonomy, and the main reasons to apply them to our shape reconstruction
problem.

4.1.1 Origin of the metaheuristics

Very often, we can find problems that cannot be solved by traditional mathe-
matical optimization techniques, particularly in many (either discrete or con-
tinuous) problems from the real world. By “traditional mathematical opti-
mization techniques” we understand techniques ranging from the early works
in the XVII, XVIIT and XIX centuries, such as the Newton’s method (al-
ready described in 1669, later published in 1711) to Newton-Raphson (1690),

47
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Langrange multipliers (1778) or least-squares method by Gauss (1795), to
more recent techniques such as hill climbing/steepest descent (1847), sim-
plex method (1947), Karush-Kuhn-Tucker multipliers (1939,1951), conjugate
gradient (1952), the Nelder-Mead downhill simplex method (1965) or the
interior-point method (1984).

Although all those techniques are very powerful and able to solve many
different problems, several papers in the literature published during the XX
century have reported problems both in combinatorial optimization and in
continuous optimization that cannot be properly addressed by these standard
mathematical techniques, either because no analytical solution was available,
or because the numerical approximation considered instead was unattainable
due to extreme computational requirements in terms of time, storage capac-
ity, complexity of the problem, number of parameters involved, or other
factors (and very often, even a combination of several factors occurring si-
multaneously).

This fact can be explained by the limitations of these approaches. A
common factor of these methods is that they usually gradient-based, meaning
that they require the use of derivatives of the function in order to obtain
global/local optima. Consequently, these “classical” methods tend to fail
when:

e The objective function is not differentiable

e The objective function is computed through a black-box procedure

Little or no information about the problem is given

Derivatives are too difficult or expensive to obtain

It is expected that many optima exist

e Data are affected by noise, missing data or other artifacts

These drawbacks can sometimes be overcome by using heuristics, a kind of
rules of procedures aiming at finding solutions to problems by greedy search
or “brute-force” strategies. According to [166]:

A heuristic is a technique which seeks good (i.e., near optimal)
solutions at a reasonable computational cost without being able to
guarantee either feasibility or optimality, or even in many cases
to state how close to optimality a particular feasible solution is.

However, heuristics are still too limited for many problems, and fail to
provide suitable solutions or they require infinite or too much time to be
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obtained. Metaheuristics have been introduced a few decades ago as a way
to solve this problem by enhancing the heuristics with more powerful features.

The problems of curve and surface reconstruction posed in these thesis
are two of such challenging problems for which neither classical mathematica
optimization techniques nor alternative heuristics have provided good enough
solutions. Therefore, this thesis proposes the application of a recent meta-
heuristics to address this problem, as it will be explained in next sections
and chapters.

4.1.2 What is a metaheuristics?

By metaheuristics we refer to a high-level procedure or strategy designed
to help a low-level search strategy or heuristic so that it can find a good
solution to an optimization problem. The metaheuristics are usually applied
under challenging conditions such as little or incomplete information about
the problem to be solved or strong constraints regarding the computational
resources [36, 71, 114, 143, 203, 204].

Although the field of metaheuristics is very diverse and we can find many
different strategies under its umbrella, a common factor is that they do make
few (or none) assumptions about the problem to be solved. This means
they are very general and can be applied to many different problems with
only minor modifications (if any). The counterpart for this exuberance of
applications is the fact that they do not guarantee to reach a global optimum
solution.

Most metaheuristic methods aim to obtain the optimum by successive it-
erations of a given population of candidate solutions that evolve according to
some kind of quality metric (the fitness function). Classical examples of this
strategy are ant colony optimization (ACO), genetic algorithms (GA), parti-
cle swarm optimization (PSO), artificial bee colony (ABC), firefly algorithm
(FFA), and many others [87, 113, 116, 200, 202]. In other cases, the method
considers only one individual, which is modified along the iterations seeking
to improve the solution. Typical examples of this single-population approach
are simulated annealing, iterated local search, variable neighborhood search,
and guided local search. Finally, metaheuristics can be combined with other
local/global search methods or procedures to yield hybrid metaheuristics, in-
cluding memetic approaches, where individual learning or local improvement
search is combined with a global metaheuristics for further improvement.

4.1.3 Taxonomy of metaheuristics

To provide a taxonomy of the metaheuristics is not an easy task, because they
are too varied and there are too many different criteria that can be used to
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Figure 4.1: Taxonomy of metaheuristics (Part I).

classify them. Furthermore, the list is very dynamic, as new methods are
appearing every year on a regular basis. However, we include here a possible
classification as a first attempt to organize the field. They are shown in the
tables in Figures 4.1 and 4.2, respectively. The tables shown the different
methods arranges in rows and listed in the second column. First column
shows the family of methods they belong to, whereas last column shows
the name of main developer and the year they were firstly published in the
literature. The list is by no means exhaustive, but just a preliminary attempt
aimed at showing the high diversity of methods and techniques in the field.

The metaheuristics in Figure 4.1 include the early works, appearing in
the 80s (these early approaches include tabu search, random search, or path
relinking) and some other techniques with a chemical or physical inspiration.
Examples of the latter are stochastic diffusion search or the electromagnetism
approach, while that simulated annealing is a classical method with chemical
inspiration (from metallurgy, in this case).

The metaheuristics in Figure 4.2 include those based on the principles of
swarm intelligence, which will be later explained in Section 4.4, and other bio-
inspired techniques. The former group include techniques as popular as ant
colony optimization, particle swarm optimization, artificial immune systems,
the firefly algorithm, or cuckoo search. The later group consider evolutionary
bio-inspired techniques such as genetic programming, evolutionary comput-
ing, bacterial foraging, differential evolution, or grammatical evolution, to
mention just a few. For the sake of completeness and aiming to help the
reader to grasp about their main features, some of these techniques will be
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Figure 4.2: Taxonomy of metaheuristics (Part II).
briefly described throughout this chapter.

4.1.4 Why to use a metaheuristics?

There are four main reasons that explain why it is advisable to apply meta-
heuristic techniques to solve the curve/surface reconstruction problem:

1. they can be used even when we have very little information about the
problem. Many alternative methods can only be applied to academic
examples whose data have some kind of topological or geometric struc-
ture. This does not happen, however, in real-world reverse engineering
applications, where typically little or no information about the problem
is known beyond the data points.

2. their objective function does not need to be continuous or differentiable.
In fact, metaheuristics have shown to be able to deal with optimization



52Chapter 4. Metaheuristics and Swarm Intelligence for Optimization. The Bat Algorithm

problems whose underlying function is non-differentiable (even non-
continuous).

3. they can be successfully applied to multimodal and multivariate nonlin-
ear optimization problems. Metaheuristic techniques are able to find op-
timal solutions to nonlinear optimization problems in high-dimensional
search spaces. Curve and surface reconstruction are two of such prob-
lems. Moreover, due to the (potential) existence of many local optima
of the least-squares objective function, it is also a multimodal problem.
Metaheuristic techniques are also well suited for multimodal problems.

4. they can deal with noisy data. This is a very important issue in many
real-world applications. For instance, laser scanner systems yield an
enormous amount of irregular data points. They are also known to be
less accurate than their contact-based counterparts [106]. As a conse-
quence, reconstruction methods must be robust against this measure-
ment noise.

Other situations where it is advisable to apply metaheuristics are, for
instance:

e An easy problem with very large instances
e An easy problem with hard real-time constraints
e Difficult problems with medium size and/or difficult input structures

e Optimization problems with time-consuming objective functions and/or
constraints

e Non-analytical models of optimization problems: black box scenario
(objective function)

e Non-deterministic complex models: uncertainty, robust optimization,
dynamic, multi-objective, etc.

e Non-differentiable (even non-continuous) underlying functions of data

e Input data subjected to noise, imperfect sampling and other artifacts

4.2 Single-Particle Methods: Simulated An-
nealing

As indicated above, a possible criterion to classify the metaheuristics is based
on the population model. Roughly speaking, we can talk about single-particle
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methods and multiple-particle methods. The former group was predominant
at the early stages of this field, while the latter appeared at more recent
stages, when the advantages of having multiple particles cooperating to-
gether were highly outlined. In this section, we illustrate the single-particle
approach by describing one of the most classical (and probably the most
popular) of these approaches: the simulated annealing.

4.2.1 Background

The simulated annealing (SA) algorithm is a physics-inspired metaheuristic
algorithm originally introduced in 1983 by Kirkpatrick et al. [116] in the area
of combinatorial optimization. The SA algorithm is rooted in the thermody-
namics field, where one studies the thermal energy of a system. In particular,
the algorithm was originally motivated by the process of annealing in metal-
lurgy and in ceramic work. The annealing technique consists of changing the
internal structure (the crystals) of the material by heating and then slowly
cooling it. When we heat the material its crystals evolve towards a more
perfect, but also unstable, structure. Then, as the temperature decreases,
the system energy also decreases to finally reach a more stable structure
hopefully with better crystals than before. During the process, atoms tend
to move to configurations that minimize the system energy even if during
such migration certain configurations rise the system overall energy (when
it stabilizes for a fixed temperature, we call it thermal equilibrium). Such
moves are more prominent at the beginning of the process that at the end,
when the particles loose thermal mobility in order to polish the system inner
structure to finally produce a better metal. As a result, the metals become
stronger and with better properties, specially if the process is conducted sev-
eral consecutive times (a process called re-annealing). To better understand
the connection between the SA algorithm and mechanics science we refer the
reader to the seminal paper in [116].

The original SA algorithm is an advanced interpretation of the Metropolis-
Hastings algorithm [140] to generate sample states of a thermodynamic sys-
tem, showing the deep connections between statistical mechanics and combi-
natorial optimization. Given an initial (usually random) state in the solution
domain, the algorithm iteratively perturbs it. Whenever a better solution is
found, the change is always accepted; otherwise, it is accepted only with a
certain probability. This probability is higher at the beginning (mimicking
what happens in the thermodynamic process at high temperatures) that at
the end. In other words, this idea of slow cooling is translated as a slow
decrease of the probability of accepting such worse solutions. So essentially
the system evolves from a free exploration of the search space at initial stages
to a stochastic hill-climbing at latter stages.
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This idea of slow cooling after heating is implemented in the SA algorithm
as a slow decrease of the probability to accept worse solutions (i.e., accept
movements in the search space towards less promising states hoping to escape
from local optima). In its most simple version SA can be interpreted as an
stochastic hill-climbing: start from a random state in the solution domain
and perturb the solution; if the new state has a better fitness, the change is
always accepted; otherwise, it is only accepted according to a certain prob-
ability. As simple as it can be, simulated annealing has been used with
satisfactory results in very diverse fields. Since its publication the algorithm
has received a lot of attention from the scientific community, with many real-
world applications in the most diverse fields, ranging from the classical NP-
hard combinatorial travelling salesman problem [136] to the minimization of
highly multimodal real-valued functions [186]. See, for instance, [121, 179]
for an in-depth review of several simulated annealing applications.

The SA algorithm has two pivotal strengths: on one hand, its easiness
of adaptation [179], which allowed researchers and practitioners to apply it
to many different real-world problems; on the other hand, some theoretical
studies have obtained important results about proofs of convergence [130].
All these results provide the ground for a good choice of suitable values for the
parameters of the method, one of the most critical issues for all metaheuristic
techniques.

4.2.2 The algorithm

The SA algorithm was designed to compute a good approximation to the
global optimum of a given function in a (usually large) search space 2. Each
point s of the search space (2 is a state of some physical system. The goal
is to bring the system, from an arbitrary initial state, to a state with the
minimum possible energy (i.e., a minimization problem). The function £(s)
to be minimized is the internal energy of the system in that state. This is our
fitness function (also called cost function). At each step, the SA algorithm
considers some neighboring state s, of the current state s, and probabilis-
tically decides between moving the system to state s, or staying in state
s. These probabilities ultimately lead the system to move to states of lower
energy. Typically this step is repeated until the system reaches a state good
enough for the specific application, or until the method reaches a prescribed
number of iterations.

The corresponding pseudo-code of the simulated annealing algorithm used
in this paper is shown in Algorithm 1 Simulated Annealing. Basically, it can
be summarized as follows: we randomly choose an initial state sy and the
initial system temperature Ty. Then, at each iteration, the SA algorithm
replaces the current solution s by a random "nearby” solution s, by using
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Algorithm 1 Simulated Annealing

Require: (Initial Parameters)
Initial Temperature Ty
Schedule Criteria S,
Stop Criteria SC'
Neighbourhood function N : [0, 1]™ — [0, 1]™
System Energy € : [0,1]" € R™ — R
Cooling Schedule § : R — R (strictly decreasing)
1: T « T()
2: Randomly select start state sq € [0, 1]™
3: 8% — g,

4: repeat

5 repeat

6: sV — N (s°1)

7: A\ Enew . gold

8 if A <0 then

9: Sold « ghew

10: else

11: Randomly compute u € Rand(0, 1)
12: if u < == then
13: Sold « ghew

14: end if

15: end if

16: until S, == true
17 T« S(T)

18: until SC == true

19: return s™°%

a neighborhood function N'. The new state is chosen with a probability P
that depends on two factors:

e the difference between the corresponding function values at the old and
the new states, £(s) — £(s,), and

e a global parameter T' (the temperature), gradually decreased during
the process.

One requirement for this probability function is that P > 0 if £(s) < E(s.).
This means that the system may move to the new state even when it is worse
(has a higher energy) than the current one. This feature prevents the method
from becoming stuck in a local minimum. Other typical conditions are that
when 7' — 0, P — 0 if £(s) < &(s«), and P — « > 0 otherwise. The
interpretation of these conditions is that for sufficiently small values of T,
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the system will increasingly favor moves that go “downhill” (to lower energy
values), and avoid those that go “uphill”. In particular, when 7' becomes 0,
the procedure will only make the move if it goes downhill, so this method
reduces to a greedy search algorithm. Finally, the probability functions is
usually chosen so that the probability of accepting a move decreases as the
difference €(s) — £(s,) increases. In other words, small uphill moves are pre-
ferred over large ones. Under these conditions, the temperature T' becomes
a critical parameter in describing the evolution of the system, because the
system evolution is sensitive to finer (resp. coarser) energy variations for
small (resp. large) values of this parameter.

Although it is not strictly necessary, most SA implementations consider
an acceptance probability that follows the Metropolis criterion, first intro-
duced by Metropolis et al in [140] as a Monte-Carlo method to simulate
the creation of new states in a thermodynamic system. It is given by the
following formula:

1 if E(sy) < E(s)

P(ACCGpt S*) = (E(S*) o E(S)) (4.1)

e T otherwise

where T represents the system temperature at the iteration where s, has been
generated. It is easy to see that this choice of the probability function holds
all premises stated above. Note also that this function provides an adequate
trade-off between exploration and exploitation: at higher temperatures the
algorithm explores the search space while near the end it resembles a hill-
climbing algorithm, except that now there is always the possibility to accept
a worse state.

4.3 Multiple-particle Methods: Genetic Al-
gorithms

Genetic Algorithms (GA) are search procedures based on principles of evolu-
tion and natural selection. They can be used in optimization problems where
the search of optimal solutions is carried out in a space of solutions coded as
finite-length strings called chromosomes. To do so, GA handle populations
consisting of sets of potential solutions, i.e. the algorithm maintains a popu-
lation of p individuals Pop(g) = {z1(g),...,z,(g)} for each iteration g (also
called generation), where each individual represents a potential solution of
the problem.

Normally the initial population is randomly selected, but some knowledge
about the specific problem can be used to include in the initial population
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begin
Let g=0 be the generation counter
Create and initialize a population, Pop(0)
repeat
Evaluate the fitness, f(z;(g)), of each individual z; of Pop(g)
Select individuals from Pop(g)
Apply crossover with probability p. to produce offspring
Apply mutation with probability p,, on offspring
Set population of new generation Pop(g + 1)
Advance to the new generation g = g + 1
until stopping condition is true
end

Table 4.1: General structure of the genetic algorithm

special potential solutions in order to improve the convergence speed. The
size of this initial population is one of the most important aspects to be
considered and may be critical in many applications. If the size is too small,
the algorithm may converge too quickly, and if it is too large the algorithm
may waste computational resources. The population size is usually chosen
to be constant although GA with varying population size are also possible.
A study about the optimal population size can be found in [72].

Each individual in the population, i.e. each potential solution, must be
represented using a genetic representation. Commonly, a binary representa-
tion is used, however other approaches are possible. Each one of the potential
solutions must be evaluated by means of a fitness function; the result of this
evaluation is a measure of individual adaptation.

4.3.1 The algorithm

The algorithm, shown in Table 4.1, is an iterative process in which new
populations are obtained using a selection process (reproduction) based on
individual adaptation and some “genetic” operators (crossover and muta-
tion). The individuals with the best adaptation measure have more chance
of reproducing and generating new individuals by crossing and muting. The
reproduction operator can be implemented in several ways, such as tourna-
ment, roulette wheel, rank-based, hall of fame and others (see [71, 143]).
The selection process is repeated d times and the selected individuals form a
tentative new population for further genetic operator actions.

After reproduction some of the members of the new tentative population
undergo transformations. A crossover operator creates two new individuals
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(offsprings) by combining parts from two randomly selected individuals of
the population. In GA the crossover operator is randomly applied with a
specific probability, p.. A good GA performance requires the choice of a high
crossover probability. Mutation is a unitary transformation which creates,
with certain probability, p,,, a new individual by a small change in a single
individual. In this case, a good algorithm performance requires the choice of
a low mutation probability (inversely proportional to the population size).
The mutation operator guarantees that all the search space has a nonzero
probability of being explored. Using these genetic operators, the general
structure of the algorithm is described in Table 4.1.

This procedure is repeated several times (thus yielding successive genera-
tions) until a termination condition has been reached. Common terminating
criteria are that a solution is found that satisfies a lower threshold value, or
that a fixed number of generations has been reached, or that successive iter-
ations no longer produce better results. The general workflow of a classical
genetic algorithm is depicted in Figure 4.3.

4.4 Swarm Intelligence

Swarm Intelligence (SI) has been defined as the property of a system whereby
the collective behaviors of (unsophisticated) agents or boids interacting locally
with one another and with their environment cause coherent functional global
patterns to emerge [36]. A trademark of SI is the development of a collective
behavior arising from decentralized systems comprised of (generally mobile)
agents which communicate with each other (either directly or indirectly).
Instead of a central behavior determining the evolution of the population,
these local interactions between agents lead to the emergence of a global be-
havior for the swarm. Agents in a SI system obey very simple rules, have
limited perception or intelligence and cannot individually carry out the task
it intends to. A typical example of SI is the behavior of a flock of birds
when moving all together following a common tendency in their displace-
ments. Other examples from nature include ant colonies, animal herding,
fish schooling and many others.

Nowadays, swarm intelligence is attracting increasing attention from re-
searchers and practitioners because of its potential applications in several
fields [153, 180, 185]. For instance, self-organizing swarm robots can poten-
tially accomplish complex tasks and thus replace sophisticated and expen-
sive robots by simple inexpensive drones [173], a research subfield usually
referred to as swarm robotics. Military and civil applications of SI have also
been reported in the literature with regards to the control of unmanned ve-
hicles [174]. Applications of swarm intelligence range from crowd simulation
in computer movies and video games to ant-based routing in telecommuni-
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Figure 4.3: General workflow of a genetic algorithm

cation networks, and new exciting areas of research are constantly arising

[18, 81, 127, 170].

The objective of ST schemes is to model the simple behaviors of individual
agents as well as their interactions with both the environment and their
own neighbors in order to obtain more sophisticated behaviors that can be
applied to solving complex problems, for instance optimization problems [139,
193]. Classical examples of swarm intelligence approaches are particle swarm
optimization (PSO), firefly algorithm (FFA), cuckoo search (CS), and the
bat algorithm (the approach used in this thesis).
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4.4.1 Exploration and exploitation

It has been shown that the success of bio-inspired techniques relies largely
on an adequate trade-off between two opposite terms: exploration and ex-
ploitation. The former accounts for diversification, i.e., to generate diverse
solutions so as to explore the search space on a global scale of the solution
domain, while the latter accounts for intensification, i.e., to concentrate the
effort in a local region around a current good solution searching for better
solutions in its neighborhood.

Different solutions have been proposed in the literature to provide a par-
ticular method with the exploration and exploitation features. One of the
solutions is to use a specific parameter for this goal. By proper tuning of this
parameter, the method can shift from exploration, which is recommended at
earlier stages of the method in order to fly all over the search space looking
for possible optima, and exploitation at latter stages when an approximate
solution has already been found and we seek to improve such a solution lo-
cally. A classical example of this strategy is the inertia coefficient for particle
swarm optimization (see Section 4.6 below for details).

Other possible solution to this problem is to apply a local search proce-
dure after the convergence of the metaheuristics is attained. In this case we
talk about memetic methods. Some examples of this strategy will be dis-
cussed in detail in Chapter 9. Finally, another solution consists of applying a
coupling of either two different metaheuristics (such as particle swarm opti-
mization and genetic algorithms, for instance) or a metaheuristics and some
other methods (i.e., a simplex method, a classical hill climbing, or simply a
heuristics).

In general, the most sophisticated methods include some mechanism to
shift from exploration to exploitation back and forth, usually in the form of
modulating some parameters from end values at both sides of the spectrum.
In that case, the parameter tuning plays a very important role in order to
promote the most adequate behavior at each stage of the running of the
algorithm.

In previous section 4.3 we talked about the genetic algorithms, one of the
most classical methodologies in swarm intelligence. In next sections we will
also describe some of the other most popular swarm intelligence methods.
Our description includes: artificial immune systems (Section 4.5), particle
swarm optimization (Section 4.6), firefly algorithm (Section 4.7), and cuckoo
search (Section 4.8). Then, we will focus our attention in the bat algorithm,
the swarm intelligence metaheuristics used in this thesis. It will be explained
in detail in (Section 4.9).
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4.5 Artificial Immune Systems

Artificial Immune Systems (AIS) are receiving increasing attention from the
scientific community because of their ability to solve complex optimization
problems in several fields. Roughly speaking, AIS are a group of compu-
tationally intelligent systems inspired by the principles and processes that
typically happen at the level of the immune system of humans and other
vertebrate.

The immune system is a complex network composed of specialized cells,
tissues and organs and is responsible for protecting the organism against
diseases caused by pathogenic agents. It is comprised of two distinct parts:
the innate immune system and the adaptive immune system. The former
is responsible for powerful immediate but non-specific defenses that prevent
or limit infections by most pathogenic microorganisms. The first line of de-
fense consists of physical barriers (such as the skin and mucous membranes),
and the second line consists of cells, such as neutrophils, that recognize spe-
cific parts of pathogenic microorganisms, called antigens (represented by Ag
onwards).

If pathogens successfully evade the innate response, there is a second layer
of protection, the adaptive immune system, which is activated by the innate
response. The adaptive immune system uses somatically generated antigen
receptors which are clonally distributed on the two types of lymphocytes: B
cells and T cells. These antigen receptors are generated by random processes
and, as a consequence, the general design of the adaptive immune response
is based upon the clonal selection of lymphocytes expressing receptors with
particular specificities. Through this second line of defense, the immune sys-
tem adapts its response during an infection to improve its recognition of the
pathogen. This improved response is preserved even after the pathogen has
been eliminated so that any future attack of this pathogen finds a much faster
and stronger answer over the time. In other words, the adaptive immune sys-
tem has some kind of immunological memory, a valuable feature that can be
extended to AIS.

There are also some other properties of the immune system of potential
interest for computer scientists and engineers [15]:

e uniqueness: each individual possesses its own immune system, with its
particular features and vulnerabilities;

e recognition of foreigners: the molecules that are not native to the body
are recognized and eliminated by the immune system:;

e anomaly detection: the immune system can detect and react to pathogens
that the body has never encountered before;
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o distributed detection: the cells of the immune system are distributed all
over the body and, most importantly, are not subject to any centralized
control;

e imperfect detection: an absolute recognition of the pathogens is not
required, hence the system is flexible;

e reinforcement learning and memory: the system can “learn” the struc-
tures of pathogens, so that future responses to the same pathogens are
faster and stronger.

To date, no individual AIS tried to implement all features of a real im-
mune system. Instead, there are several models in AIS, each focused on the
implementation of one or, at most, a few of those features. Relevant exam-
ples of AIS models include negative selection [48], artificial immune network
[107], dendritic cells [77] and clonal selection [16]. Because of its appealing
features regarding the optimization of multimodal functions [17], in this sec-
tion we will focus on the clonal selection theory. It is briefly described in
next paragraphs.

4.5.1 The clonal selection theory

The clonal selection principle is a widely accepted theory introduced by Dr.
Burnet in 1957 and used to explain the basic features of an adaptive immune
response to an antigenic stimulus. When a human or animal is exposed to
an Ag, its immune system responds by producing antibodies (represented by
Ab onwards). Ab’s are molecules attached primarily to the surface of B cells
whose aim is to recognize and bind to Ag’s. Each B cell secretes a single
type of Ab, which is relatively specific for the Ag. This level of specificity is
evaluated through the affinity, which refers to the degree of binding of the
cell receptor with the antigen. Under the clonal selection theory, only those
cells that recognize the antigens are selected to proliferate. The selected cells
are subjected to an affinity maturation process, which improves their affinity
to the selective Ag’s.

In the immune system, the learning process involves raising the relative
population size and affinity of those lymphocytes that have been valuable
in recognizing a given Ag. For practical reasons, it is convenient to keep a
small set of best individuals rather than using a large number of candidate
solutions. A clone (set of cells generated by mitosis that are the progeny
of a single cell) will be created temporarily and further mutated, and those
progenies of B cells with low affinity will be discarded through apoptosis (or
programmed cell death).

Typically, an organism would be expected to encounter a given Ag (or
a very similar one) repeatedly during its lifetime. The initial exposure to
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an Ag that stimulates an adaptive immune response is handled by a small
number of low-affinity B cells, each producing an Ab type of different affin-
ity. The effectiveness of the immune response to secondary encounters is
enhanced considerably by the presence of memory cells associated with the
first infection, capable of producing high-affinity Ab’s just after subsequent
encounters.

Ab’s in a memory response have, on average, a higher affinity than those of
the early primary response. This phenomenon is referred to as the maturation
of the immune response. This maturation requires the Ag-binding sites of the
Ab molecules to be structurally different from those present in the primary
response. Then, random changes (mutation) are introduced into the genes
responsible for the Ag-Ab interactions, leading occasionally to an increase
in the affinity of the Ab. A rapid accumulation of mutations is necessary
for a fast maturation of the immune response, even although most of the
changes lead to poorer Ab’s. Indeed, when a B cell recognizes an antigen, it is
stimulated to divide (or proliferate). During proliferation, the B cell receptor
locus undergoes an extremely high rate of somatic mutation that is at least
five or six orders of magnitude greater than the normal rate of mutation across
the genome. This process, referred to as somatic hypermutation (SHM), is
regulated by the fact that cells with low-affinity receptors may be further
mutated and die if they do not improve their antigenic affinity, while in
cells with high-affinity Ab receptors, hypermutation may become gradually
inactive.

4.5.2 Clonal selection algorithm (CSA)

The clonal selection algorithm (CSA) is an AIS scheme based on the clonal
selection theory discussed in previous section. The algorithm, initially intro-
duced by De Castro and Von Zuben in [16] and formally described in [17], is
based on two basic principles: (1) only the cells recognizing the antigen are
selected for growing (mutation and cloning); (2) the affinity of the selected
cell to the antigen is increased by affinity maturation process. This algorithm
has shown to be very well suited for optimization problems, having been suc-
cessfully applied to problems such as character recognition and multimodal
optimization of functions with very good performance. The main immune
features taken into account in the algorithm are [17]:

1. maintenance of a specific memory set;
2. selection and cloning of the most stimulated Ab’s;
3. death of nonstimulated Ab’s;

4. affinity maturation;
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Figure 4.4: Flowchart of the clonal selection algorithm for pattern recogni-
tion purposes. Some modifications might be required for its application to
unsupervised learning.

5. re-selection of the clones proportionally to their antigenic affinity; and
6. generation and maintenance of diversity.

Typically, the given problem to be solved is represented through a Ag-Ab
codification (binary or real-valued) and a distance measure (called the affinity
measure), used to calculate the degree of interaction between these molecules.
Affinity between an antibody and an antigen, represented by Af(Ab, Ag), can
be estimated by distance measure between two arrays (or vectors) by using
different methods. If the vectors representing antigens and antibodies are
real-valued vectors, then Manhattan or Euclidian distance measures can be
used; if they are represented by binary symbols, then the Hamming distance
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is usually applied (see [14] for more details).

Figure 4.4 shows the flowchart of the clonal selection algorithm as origi-
nally proposed for pattern recognition purposes [17]. The algorithm considers
two repertoires (populations): a set of antigens Agy,;, and a set of antibod-
ies Abyyy. Similar to [17], cardinality is indicated by the subindexes within
brackets for clarity. The set of antibodies Abyyy is further divided into two
subsets: memory Ab repertoire, Aby,,;, and remaining Ab repertoire, Aby,,
such that m +r = N. The algorithm also keeps track of two other sets: the
set Aby,; of the n Ab’s with the highest affinities to a given Ag, and the set
Abyy of the d new Ab’s that will replace the low-affinity Ab’s from Aby,;.

The algorithm can be summarized as follows:

1. Random choice of an antigen Ag,. It is presented to all antibodies of

Ab{N}.
2. Compute the vector affinity f = (fi,f,, ..., fy) where f; = Af(Ab;, Ag;).
3. Select the n highest affinity components of f to generate Aby,;.

4. Elements of Aby,, will be cloned adaptively. The number of clones

is proportional to the affinity: the higher the affinity, the higher the
= AN

number of clones. Such amount is given by: N, = Z round (T)
h=1

where N, represents the number of clones, A is a positive number that

plays the role of a multiplying factor, N is the total number of Ab’s and

round(.) is the operator that rounds its argument toward the closest

integer.

5. The clones in the set resulting from the previous step are subjected
to somatic hypermutation. The affinity maturation rate is inversely
proportional to the antigenic affinity: the higher the affinity, the smaller
the maturation rate.

6. Compute the vector affinity of Ag; with respect to the new matured
clones.

7. From this set of matured clones, select the one with the highest affin-
ity to be candidate to enter into the set Aby,;. If Af(Ab, Ag;) >
Af(Ab, Ag;) for a given Ab, € Aby,, then Ab, will replace Ab;.

8. Replace the d Ab’s with lowest affinity in Aby,; by new, randomly
generated individuals in Aby,,, inserted into Aby,; in order to preserve
the diversity of population.
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Each execution of the previous steps for Ag;, j = 1,..., M, is called a
generation. The algorithm is repeated for a certain number of generations,
Nyen, a parameter that depends on the specific problem under analysis.
The algorithm described above is only suitable for supervised problems,
for which an explicit Agy,, population is available for recognition. To over-
come this limitation, authors in [17] proposed a modified version of CSA for
multimodal optimization problems. Main changes in their modified version

are:

e There is no need to maintain a separate subset of memory Aby,,;, since
no specific Ag; has to be recognized. Instead, the whole population of
antibodies will compose the memory set.

e The affinity measure function corresponds to the evaluation of the least-
squares function, so that each Ab represents a potential solution of the
problem.

e Several Ab’s with high affinity are selected in step 7 of the algorithm,
rather than just the best one.

e All Ab’s in the population can be selected for cloning in step 3, so no
need to maintain set Aby,;.

e In that case, the affinity proportionate cloning is no longer necessary.
All antibodies can be cloned at the same rate (i.e. the number of clones
generated for each antibody will be the same).

4.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic algorithm based on the
evolution of populations for problem solving. In this methodology the particle
swarm simulates the social optimization commonly found in animal commu-
nities with a high degree of organization (flocks of birds, herds, schools of
fishes). For a given problem, some fitness function is needed to evaluate the
proposed solution. In order to get a good one, PSO methods incorporate
both a global tendency for the movement of the set of individuals and local
influences from neighbors [113].

The original PSO algorithm was first reported in 1995 by Kennedy and
Eberhart in [113] (see also [32] for further details). The reader is referred to
the excellent book in [114]. See also [36] for a gentle analysis of PSO from a
computational point of view.
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Algorithm 1 Particle Swarm Optimization

{Initialization}
s« 0 /* s: time variable */
for i =1tomdo /* m: size of the swarm */
Initialize vectors V; and P; to random values
Pl P,
end for

b b. i _
P} —best{P};i=1,...,m}

{Main Loop}
while (not termination condition) do
{Evaluation Loop}
for i =1 to m do

if f(P,) is better than f(P}) then /* £: fitness function */
Pl P
end if
if f(P}) is better than f(P}) then
Pé’ — PP
end if
end for

{Update Loop}
for i =1 to m do
Vi —w.V; +v.R(0, 1).(Pgb — P) 4+ 72.R2(0,1).(P? — P)
P~ P +V
end for
s—s+1
end while

All particle swarm optimization procedures start by choosing a popula-
tion (swarm) of random candidate solutions in a multidimensional space (the
search space), called particles. Then they are displaced throughout their do-
main looking for an optimum taking into account global and local influences,
the latest coming form the neighborhood of each particle. To this purpose,
all particles have a position and a velocity and evolve “flying” all through
the hyperspace according to two essential reasoning capabilities: a memory of
their own best position and knowledge of the global or their neighborhood’s
best.

The meaning of the ”best” must be understood in the context of the prob-
lem to be solved. In a minimization problem (like the problems addressed
in this thesis) that means the position with the smallest value for the target
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function.

The dynamics of the particle swarm is considered along successive iter-
ations, like time instances. Each particle modifies its position P; along the
iterations, keeping track of its best position in the variables domain implied
in the problem. This is made by storing for each particle the coordinates P}
associated with the best solution (fitness) it has achieved so far along with
the corresponding fitness value, f°. These values account for the memory of
the best particle position.

In addition, members of a swarm can communicate good positions to each
other, so they can adjust their own position and velocity according to this
information. To this purpose, we also collect the best fitness value among
all the particles in the population, fé’, and its position P; from the initial
iteration. This is a global information for modifying the position of each
particle.

Finally, the evolution for each particle i is given by:

Vi(k + 1) = wVi(k) + n B[Py (k) — P(k)] + 92 Ro[ P (k) — Pi(K)] - (4.2)
Bi(k+1) = Pi(k) + Vi(k)  (4.3)

where P;(k) and V;(k) are the position and the velocity of particle ¢ at time
k respectively, w is called inertia weight and decide how much the old ve-
locity will affect the new one and coefficients v; and 7, are constant values
called learning factors, which decide the degree of affection of Pgb and PP
In particular, v, is a weight that accounts for the “social” component, while
o represents the “cognitive” component, accounting for the memory of an
individual particle along the time. The graphical meaning of all these terms
is shown in Figure 4.5. Two random numbers, R; and Ry, with uniform
distribution on [0, 1] are included to enrich the searching space. Finally, a
fitness function must be given to evaluate the quality of a position.

This procedure is repeated several times (thus yielding successive genera-
tions) until a termination condition is reached. Common terminating criteria
are that a solution is found that satisfies a lower threshold value, or that a
fixed number of generations has been reached, or that successive iterations
no longer produce better results. Global PSO procedure is briefly sketched
in Algorithm 1 Particle Swarm Optimization.

The driving force of PSO is social interaction: particles learn from each
other and evolve in order to become more similar to their “better” neigh-
bors. This evolution is strongly related to the social structure of the swarm,
usually referred to as the communication topology. Highly connected social
networks in which most individuals communicate with each other have the
advantage that good information quickly disseminates throughout the swarm.
This means faster convergence to a solution than in less connected networks.
At their turn, sparsely connected organizations are less susceptible to be
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Figure 4.5: Graphical interpretation of the different terms of the evolution
equations of the particle swarm optimization method (see Eqs. (4.2-4.3)).

trapped in local minima. Consequently, a trade-off between fast convergence
and susceptibility to local minima must be achieved. As a result, several
communication topologies have been developed.

The first implementation of PSO was based on the star social structure,
where all particles are connected with each other. In such a case, each par-
ticle is attracted towards the best solution found by the entire swarm. The
resulting algorithm is described by Eqgs. (4.2)-(4.3) and is usually called gbest
(global best). Other social structures such as ring, wheel, pyramid, four clus-
ters, von Neumann and so on are also possible. They lead to lbest (local best)
models where the best fitness value and position of the swarm must be re-
placed by those of the neighborhood (and therefore Eqs. (4.2)-(4.3) must
be modified accordingly). This variation (called local PSO) allows parallel
exploration of the search space while reducing the probability of the PSO to
fall into local minima, at the price of slow convergence speed. In general,
smaller neighborhoods lead to slower convergence while larger neighborhoods
yield faster convergence. Because of this reason, most PSO methods consider
the global approach (i.e. the entire swarm) instead of a local approach (the
neighborhood of each particle). However, the best option is always problem-
dependent and no universal rule can be stated in this regard.
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4.7 The Firefly Algorithm

The firefly algorithm is a nature-inspired metaheuristic algorithm introduced
in 2008 by Xin-She Yang to solve optimization problems [200, 202] (see also
[182] for a recent modified version of this algorithm). The algorithm is based
on the social flashing behavior of fireflies in nature.

The key ingredients of the method are the variation of light intensity and
formulation of attractiveness. In general, the attractiveness of an individual
is assumed to be proportional to their brightness, which in turn is associ-
ated with the encoded objective function. The reader is kindly referred to
[203] for a comprehensive review of the firefly algorithm and other nature-
inspired metaheuristic approaches. See also [204] for a gentle introduction to
metaheuristic applications in engineering optimization.

In the firefly algorithm, there are three particular idealized rules, which
are based on some of the major flashing characteristics of real fireflies [200].
They are:

1. All fireflies are unisex, so that one firefly will be attracted to other
fireflies regardless of their sex;

2. The degree of attractiveness of a firefly is proportional to its brightness,
which decreases as the distance from the other firefly increases due to
the fact that the air absorbs light. For any two flashing fireflies, the
less brighter one will move towards the brighter one. If there is not
a brighter or more attractive firefly than a particular one, it will then
move randomly;

3. The brightness or light intensity of a firefly is determined by the value
of the objective function of a given problem. For instance, for max-
imization problems, the light intensity can simply be proportional to
the value of the objective function.

The distance between any two fireflies ¢ and j, at positions X; and X,
respectively, can be defined as a Cartesian or Euclidean distance as follows:

D
rij = X = X511 = 4| D (@i — w1)° (4.4)

k=1

where z; is the k-th component of the spatial coordinate X; of the i-th
firefly and D is the number of dimensions.

In the firefly algorithm, as attractiveness function of a firefly j one should
select any monotonically decreasing function of the distance to the chosen
firefly, e.g., the exponential function:

B = foe M (n=1) (4.5)
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where 7; is the distance defined as in Eq. (4.4), §, is the initial attractiveness
at r = 0, and v is an absorption coefficient at the source which controls the
decrease of the light intensity.

The movement of a firefly ¢ which is attracted by a more attractive (i.e.,
brighter) firefly j is governed by the following evolution equation:

" 1
Xi = Xz + 606_771” (X] — Xz) + « (O’ — §> (46)

where the first term on the right-hand side is the current position of the
firefly, the second term is used for considering the attractiveness of the firefly
to light intensity seen by adjacent fireflies, and the third term is used for
the random movement of a firefly in case there are not any brighter ones.
The coefficient « is a randomization parameter determined by the problem
of interest, while ¢ is a random number generator uniformly distributed in
the space [0, 1].

The firefly algorithm considers an initial population of Np individuals.
This population size is maintained along the iterations. In each generation,
the individuals (fireflies) undergo transformation (movement) according to
Eq. (4.6). The process is repeted iteratively until the maximum number of
iterations is reached.

The method described in previous paragraphs corresponds to the original
version of the firefly algorithm (FFA), as originally developed by its inven-
tor. Since then, many different modifications and improvements on the origi-
nal version have been developed, including the discrete FFA, multi-objective
FFA, chaotic FFA, parallel FFA, elitist FFA, Lagrangian FFA, and many oth-
ers, including its hybridization with other techniques. The interested reader
is referred to the nice paper in [39] for a comprehensive, updated review
and taxonomic classification of the firefly algorithms and all its variants and
applications.

4.8 The Cuckoo Search Algorithm

Cuckoo search (CS) is a nature-inspired population-based metaheuristic al-
gorithm originally proposed by Yang and Deb in 2009 to solve optimization
problems [207]. The algorithm is inspired by the obligate interspecific brood-
parasitism of some cuckoo species that lay their eggs in the nests of host birds
of other species with the aim of escaping from the parental investment in rais-
ing their offspring. This strategy is also useful to minimize the risk of egg
loss to other species, as the cuckoos can distributed their eggs amongst a
number of different nests.

Of course, sometimes it happens that the host birds discover the alien
eggs in their nests. In such cases, the host bird can take different responsive
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Algorithm: Firefly Algorithm

begin
Objective function f(x), x = (x1,...,2p)"
Generate initial population of n fireflies x; (1 = 1,2,...,n)

Formulate light intensity I associated with f(x)
Define absorption coefficient ~
while (¢t < MaxGeneration) or (stop criterion)
fori=1ton
for j=1ton
if 1(7) > 1()))
then move firefly ¢ towards j
end if
Vary attractiveness with distance r via e™"
Evaluate new solutions and update light intensity
end for
end for
Rank fireflies and find the current best
end while
Post-processing the results and visualization
end

Table 4.2: Firefly Algorithm pseudocode

actions varying from throwing such eggs away to simply leaving the nest and
build a new one elsewhere. However, the brood parasites have at their turn
developed sophisticated strategies (such as shorter egg incubation periods,
rapid nestling growth, egg coloration or pattern mimicking their hosts, and
many others) to ensure that the host birds will care for the nestlings of their
parasites.

This interesting and surprising breeding behavioral pattern is the metaphor
of the cuckoo search metaheuristic approach for solving optimization prob-
lems. In the cuckoo search algorithm, the eggs in the nest are interpreted as
a pool of candidate solutions of an optimization problem while the cuckoo
egg represents a new coming solution. The ultimate goal of the method is to
use these new (and potentially better) solutions associated with the parasitic
cuckoo eggs to replace the current solution associated with the eggs in the
nest. This replacement, carried out iteratively, will eventually lead to a very
good solution of the problem.
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In addition to this representation scheme, the cuckoo search algorithm is
also based on three idealized rules [207, 208]:

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen
nest;

2. The best nests with high quality of eggs (solutions) will be carried over
to the next generations;

3. The number of available host nests is fixed, and a host can discover
an alien egg with a probability p, € [0,1]. In this case, the host bird
can either throw the egg away or abandon the nest so as to build a
completely new nest in a new location.

For simplicity, the third assumption can be approximated by a fraction
po of the n nests being replaced by new nests (with new random solutions
at new locations). For a maximization problem, the quality or fitness of
a solution can simply be proportional to the objective function. However,
other (even more sophisticated) expressions for the fitness function can also
be defined.

Based on these three rules, the basic steps of the cuckoo search algorithm
can be summarized as shown in the pseudo-code reported in Table 4.3. Ba-
sically, the cuckoo search algorithm starts with an initial population of n
host nests and it is performed iteratively. In the original proposal, the initial
values of the jth component of the ith nest are determined by the expression:

27(0) = rand.(up] — low!) + low!

where upg and lowg represent the upper and lower bounds of that jth compo-
nent, respectively, and rand represents a standard uniform random number
on the open interval (0,1). Note that this choice ensures that the initial
values of the variables are within the search space domain. These boundary
conditions are also controlled in each iteration step.

For each iteration g, a cuckoo egg 7 is selected randomly and new solutions
x;(g + 1) are generated by using the Lévy flight, a kind of random walk in
which the steps are defined in terms of the step-lengths, which have a certain
probability distribution, with the directions of the steps being isotropic and
random. According to the original creators of the method, the strategy of
using Lévy flights is preferred over other simple random walks because it
leads to better overall performance of the CS. The general equation for the
Lévy flight is given by:

x;(g +1) = xi(g9) + a @ levy(N) (4.7)

where g indicates the number of the current generation, and o > 0 indicates
the step size, which should be related to the scale of the particular problem
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Algorithm: Cuckoo Search via Lévy Flights

begin
Objective function f(x), x = (z1,...,2p)"
Generate initial population of n host nests x; (1 =1,2,...,n)

while (¢t < MaxGeneration) or (stop criterion)
Get a cuckoo (say, i) randomly by Lévy flights
Evaluate its fitness F;
Choose a nest among n (say, j) randomly
if (F; > )
Replace j by the new solution
end
A fraction (p,) of worse nests are abandoned and new ones
are built via Lévy flights
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best
end while
Postprocess results and visualization
end

Table 4.3: Cuckoo search algorithm via Lévy flights as originally proposed by
Yang and Deb in [207, 208].

under study. The symbol @ is used in Eq. (4.7) to indicate the entry-wise
multiplication. Note that Eq. (4.7) is essentially a Markov chain, since
next location at generation g + 1 only depends on the current location at
generation g and a transition probability, given by the first and second terms
of Eq. (4.7), respectively. This transition probability is modulated by the
Lévy distribution as:

levy(A\) ~ g, (1<A<3) (4.8)

which has an infinite variance with an infinite mean. Here the steps essen-
tially form a random walk process with a power-law step-length distribution
with a heavy tail.

From the computational standpoint, the generation of random numbers
with Lévy flights is comprised of two steps: firstly, a random direction ac-
cording to a uniform distribution is chosen; then, the generation of steps
following the chosen Lévy distribution is carried out. The authors suggested
to use the so-called Mantegna’s algorithm for symmetric distributions, where
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“symmetric” means that both positive and negative steps are considered (see
[203] for details). Their approach computes the factor:

i T(1 + 3).sin (%) 5 »

e () 52)

~ 3
where I' denotes the Gamma function and § = 3 in the original implemen-

tation by Yang and Deb [208]. This factor is used in Mantegna’s algorithm
to compute the step length s as:
u

¢=—% (4.10)
|v]?
where u and v follow the normal distribution of zero mean and deviation 03
and o2, respectively, where o, obeys the Lévy distribution given by Eq. (4.9)

and o, = 1. Then, the stepsize 7 is computed as:
n = 0.01¢ (X — Xpest) (4.11)

where ¢ is computed according to Eq. (4.10). Finally, x is modified as:
X «— x + 1.7 where T is a random vector of the dimension of the solution x
and that follows the normal distribution N(0,1).

The cuckoo search method then evaluates the fitness of the new solution
and compares it with the current one. In case the new solution brings better
fitness, it replaces the current one. On the other hand, a fraction of the
worse nests (according to the fitness) are abandoned and replaced by new
solutions so as to increase the exploration of the search space looking for
more promising solutions. The rate of replacement is given by the probability
Pa, a parameter of the model that has to be tuned for better performance.
Moreover, for each iteration step, all current solutions are ranked according
to their fitness and the best solution reached so far is stored as the vector
Xpest (used, for instance, in Eq. (4.11)).

This algorithm is applied in an iterative fashion until a stopping criterion
is met. Common terminating criteria are that a solution is found that satisfies
a lower threshold value, or that a fixed number of generations has been
reached, or that successive iterations no longer produce better results. Other
stopping criteria might be however be used instead.

4.9 The Bat Algorithm

As we previously pointed out, in this thesis we propose to apply a recently
introduced bio-inspired metaheuristics to the curve and surface reconstruc-
tion problems. In this section, we describe this bat algorithm in detail. We
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start with the description of the main idealized rules this method is based
on. Then, a detailed description of the algorithm is given.

4.9.1 Basic rules

The bat algorithm is a bio-inspired population-based metaheuristic algorithm
originally proposed by Xin-She Yang in 2010 to solve optimization problems
[201, 209]. The algorithm is based on the echolocation behavior of bats. The
author focused particularly on microbats, as they use a type of sonar called
echolocation, with varying pulse rates of emission and loudness, to detect
prey, avoid obstacles, and locate their roosting crevices in the dark.

Despite the short time since its appearance, the bat algorithm has already
been applied to several engineering and industrial problems. Simultaneously,
some modifications and improvements on the original version have been de-
veloped, such as the multi-objective bat algorithm [205], directed artificial
bat algorithm [167], binary bat algorithm [142], and others. The interested
reader is referred to the general paper in [206] for a comprehensive, updated
review and taxonomic classification of the bat algorithm and all its variants
and applications.

In this thesis we consider the standard bat algorithm, as described in
the original paper in [201]. According to that source, the idealization of
the echolocation of microbats can be summarized as follows: (see [201] for
details):

1. Bats use echolocation to sense distance and distinguish between food,
prey and background barriers.

2. Each virtual bat flies randomly with a velocity v; at position (solution)
x; with a fixed frequency f.in, varying wavelength A and loudness
Ap to search for prey. As it searches and finds its prey, it changes
wavelength (or frequency) of their emitted pulses and adjust the rate
of pulse emission r, depending on the proximity of the target.

3. It is assumed that the loudness will vary from an (initially large and
positive) value Ay to a minimum constant value A,,;,.

In order to apply the bat algorithm for optimization problems more effi-
ciently, some additional assumptions are strongly advisable. In general, we
assume that the frequency f evolves on a bounded interval [ fiin, frmaz]. This
means that the wavelength ) is also bounded, because f and\ are related
to each other by the fact that the product A.f is constant. For practical
reasons, it is also convenient that the largest wavelength is chosen such that
it is comparable to the size of the domain of interest (the search space, for
optimization problems). For simplicity, we can assume that f;, = 0, so
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Algorithm 2 Bat Algorithm
Require: (Initial Parameters)
Population size: P
Maximum number of generations: G,,q.
Loudness: A
Pulse rate: r
Maximum frequency: faz
Dimension of the problem: d

Objective function: ¢(x), with x = (21,...,24)7
Random vectors: © = (61,...,0p), U = (¢1,...,9¥p) with Ok, ¢y €
U(0,1)
1: g « 0 //g: generation index
2: fori=1to P do
3:  Initialize the location and velocity x; and v; //Initialization phase
4:  Define pulse frequency f; at x;
5. Initialize pulse rates r; and loudness A;
6: end for
7: while ¢ < §G,,,. do
8 fori=1to P do
9: Generate new solutions by adjusting frequency,
10: and updating locations and velocities //eqns. (4.12)-(4.14)
11: if 02 >T; then
12: sbest «— g9 //select the current best global solution
13: leeSt — Is? //generate a local solution around sbst
14: end if
15: Generate a new solution by local random walk //eqn. (4.15)
16: if v; < A; and ¢(x;) < ¢(x*) then
17: Accept new solutions
18: Increase r; and decrease A; //eqns. (4.16)-(4.17)
19: end if

20: end for

2l: ge—g+1

22: end while

23: Rank the bats and find current best x*
24: return x*

f €10, fimaz]- The rate of pulse can simply be in the range r € [0, 1], where
0 means no pulses at all, and 1 means the maximum rate of pulse emission.
With these idealized rules indicated above, the basic pseudo-code of the bat
algorithm is shown in Algorithm 2 Bat Algorithm. It is described in next
section.
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4.9.2 The algorithm

Basically, the algorithm considers an initial population of P individuals
(bats). Each bat, representing a potential solution of the optimization prob-
lem, has a location x; and velocity v;. The algorithm initializes these vari-
ables with random values within the search space. Then, the pulse frequency,
pulse rate, and loudness are computed for each individual bat (lines 2-6).
Then, the swarm evolves in a discrete way over generations (line 7), like
time instances (line 21) until the maximum number of generations, Gz,
is reached (line 22). For each generation g and each bat (line 8), new fre-
quency, location and velocity are computed (lines 9-10) according to the
following evolution equations:

fzg = gun + ﬁ( gLax - fgzm) (412)
Vo ] (4.13)
x! = xI7 v (4.14)

where 3 € [0, 1] follows the random uniform distribution, and x* represents
the current global best location (solution), which is obtained through evalu-
ation of the objective function at all bats and ranking of their fitness values.
The superscript (.)¢ is used to denote the current generation g.

It is worthwhile to remark a certain similarity of the evolutions equations
(4.13)-(4.14) to those of the velocity and position in standard particle swarm
optimization (PSO), as f; controls the pace and range of the movement of the
particles of the swarm. From this viewpoint, the bat algorithm is a balanced
combination of the standard PSO and the local search modulated by the
loudness and pulse rate.

The best current solution and a local solution around it are probabilis-
tically selected according to some given criteria (lines 11-14). Then, search
is intensified by a local random walk (line 15). For this local search, once a
solution is selected among the current best solutions, it is perturbed locally
through a random walk of the form:

Xpew = Xold T 6»/49 (415)

where € is a random number with uniform distribution on the interval [—1, 1]
and A9 =< AY > is the average loudness of all the bats at generation g.

If the new solution achieved is better than the previous best one, it is
probabilistically accepted depending on the value of the loudness. In that
case, the algorithm increases the pulse rate and decreases the loudness (lines
16-19). This process is repeated for the given number of generations. In
general, the loudness decreases once a bat finds its prey (in our analogy, once
a new best solution is found), while the rate of pulse emission decreases. For
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simplicity, the following values are commonly used: Ag = 1 and A,,;,, = 0,
assuming that this latter value means that a bat has found the prey and
temporarily stop emitting any sound. However, any other value within its
range can also be feasible (see our discussion about parameter tuning in
Chapters 5 to 9 for details).

The evolution rules for loudness and pulse rate are as follows:

AITL =AY (4.16)
rf = [l = eap(—vg)] (4.17)

where o and v are constants. Note that for any 0 < o < 1 an any v > 0 we
have:
Af — 0, r9 — 40

K3 7

as g — o (4.18)

In general, each bat should have different values for loudness and pulse emis-
sion rate, which can be computationally achieved by randomization. To this
aim, we can take an initial loudness A? € (0, 2) while the initial emission rate
r) can be any value in the interval [0,1]. Loudness and emission rates will
be updated only if the new solutions are improved, an indication that the
bats are moving towards the optimal solution. As a result, the bat algorithm
applies a parameter tuning technique to control the dynamic behavior of a
swarm of bats. Similarly, the balance between exploration and exploitation
can be controlled by tuning algorithm-dependent parameters. This means
that we do not need to apply hybridization to shift from exploration and
exploitation and conversely. However, some types of local search could still
enhance the convergence rate and the accuracy of the optimal solutions, as
it will be discussed in Chapter 9.
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Chapter 5

Curve Reconstruction with
Polynomial Bézier Curves

In this chapter we address the problem of curve reconstruction by using a
linear combination of global-support basis functions as the fitting function.
In particular, in this chapter we consider the case of polynomial Bézier curves,
fitted to data points by means of the least-squares approximation technique.
In order to solve the resulting nonlinear continuous optimization problem,
we apply the bat algorithm described in Section 4.9.

We would like to remark that, in spite of its valuable features for con-
tinuous optimization, to the best of our knowledge the bat algorithm was
never been applied in the context of data fitting for geometric modeling or
computer graphics until the research work in this thesis. In this chapter
the bat algorithm is applied to obtain a very accurate fitting curve to a
given set of data points. To check the performance of our approach, it has
been applied to some simple yet illustrative examples of two-dimensional and
three-dimensional shapes.

The structure of this chapter is as follows: some previous work in the
subject of data fitting and Bézier curve parameterization is briefly reported
in Section 5.2. The problem of data fitting with polynomial Bézier curves is
described in Section 5.3. Then, our proposed approach to solve it is described
in Section 5.4. The section also discusses the important issue of parameter
tuning. Then, three illustrative examples of its application are reported in
Section 5.5. The chapter closes in Section 5.6 with the main conclusions of
this work.

5.1 Introduction

Obtaining an approximating curve from a given set of data points is a very im-
portant and recurrent problem in many applied and industrial domains, such

83
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as computer-aided design and manufacturing (CAD/CAM), virtual reality,
medical imaging, computer animation, and many others [6, 7, 12, 29, 38, 86,
134, 187, 199]. In some cases, data can be generated synthetically by direct
application of a myriad of CAD/CAM and computer modeling and anima-
tion software programs. Very often, however, data points are acquired from
real measurements of an existing geometric entity [33, 53, 56, 57]. It appears,
for instance, in computer-aided design and manufacturing (CAD/CAM), a
field where data points are usually obtained from real measurements of an
existing geometric entity, as it typically happens in the construction of car
bodies, ship hulls, airplane fuselage, and other free-form objects. This is also
a common problem in the shoes industry, in archeology (reconstruction of
archeological assets), in medicine (computer tomography (CT), magnetic res-
onance imaging), computer graphics and animation, virtual and augmented
reality, and in many other fields.

Data points in these settings are acquired through many different tech-
nologies, such as 3D laser scanning, touch scanners, coordinate measuring
machines, CT scanners, or convergent photogrammetry, to mention just a
few. A common factor of all these techniques is that a huge number of data
(often in the range of hundreds of thousands, and even millions) is usually
obtained (see Section 3.1 for further details). Besides, in most cases no geo-
metric or topological information is available beyond the data points. Since
dealing with this amount of data becomes impractical, a primary goal in the
field is to convert the real data from a physical object into a fully usable
digital model, a process commonly called reverse engineering (also described
in detail in Section 3.1 of this thesis). This is a typical approach in many
industrial fields, such as the construction of car bodies, ship hulls, airplane
fuselage and other free-form objects [33, 53, 56, 95, 94, 156, 187]. As dis-
cussed above, this conversion process will allow significant savings in terms of
storage capacity and processing and manufacturing time. Furthermore, the
digital models are easier and cheaper to modify than their real counterparts
and are usually available anytime and anywhere.

In all those cases, it is desirable to obtain the fitting curve that approxi-
mates the set of data points optimally in the sense of least-squares. Indeed, in
real-world problems, data points are usually affected by measurement noise,
irregular sampling, and other artifacts [7, 152, 156]. Consequently, a good
fitting of data should be generally based on approximation schemes rather
than on interpolation. In this case, the approximating curve is not required
to pass through all input data points, but just near to them, according to
some prescribed distance criteria. Best fitting methods make commonly use
of least-squares techniques [54, 134, 187].

Several approximating families of functions have been applied to this
problem. Among them, the free-form parametric curves such as Bézier, B-
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spline and NURBS, are widely applied in many industrial settings due to
their great flexibility and the fact that they can represent smooth shapes
with only a few parameters [7, 108, 125, 150, 151]. In general, the approx-
imating curves can be classified as global-support and local-support. By
global-support curves we mean curves mathematically expressed as a combi-
nation of basis functions whose support is the whole domain of the problem.
As a consequence, these curves exhibit a global control, in the sense that any
modification of the shape of the curve in a particular location is propagated
throughout the whole curve. This is in clear contrast to the local-support
approaches, which provide local control of the shape of the curve [23, 28] and
have become prevalent in CAD/CAM and computer graphics. In this thesis
we focus on the global-support approach.

Owing to their remarkable mathematical properties, polynomial curves
are a classical choice for data fitting. In particular, free-form parametric
curves such as Bézier, B-spline and NURBS, are widely applied in many
industrial settings due to their great flexibility and the fact that they can
represent well any smooth shape with only a few parameters.

In this thesis we focus particularly on the case of Bézier curves. In spite
of the simplicity of these curves, the fitting problem is still far from being
trivial; since the curve is parametric, we are confronted with the problem of
obtaining a suitable parameterization of the data points [38, 57]. In fact, it is
well known that the selection of an appropriate parameterization is essential
for a good fitting.

Unfortunately,this is also a very hard problem. It leads to a difficult con-
tinuous, multivariate, multimodal, over-determined nonlinear optimization
problem (see Section 5.3 for details). In fact, traditional mathematical tech-
niques are not able to solve it in its generality and more powerful approaches
have to be used instead. In this chapter we apply a recently proposed nature-
inspired meta-heuristic technique called bat algorithm (described in detail in
Section 4.9 of this thesis) to the curve reconstruction problem with polyno-
mial Bézier curves.

5.2 Previous Work

The problem of data fitting with free-form parametric curves has been the
subject of research for many years [7, 29, 110, 154, 157|. First approaches in
the field were mostly based on numerical procedures [29, 38, 157, 168]. Some
of early approaches relied on given parameterizations, such as uniform or
arc-length. This is a reasonable assumption, since these parameterizations
have found several important applications in industry (e.g., in computer-
numerically-controlled (CNC) operations for computer manufacturing [152]).
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However, a prescribed parameterization does not necessarily lead to op-
timal solutions in data fitting. In fact, it has been shown that better results
can be obtained when the data parameters are considered free variables of
the problem. Unfortunately, this leads to a difficult nonlinear optimization
problem that cannot be fully solved by using standard mathematical tech-
niques. Consequently, there has been a great interest to explore other possible
approaches to this problem. Some recent approaches in this line use error
bounds [150], curvature-based squared distance minimization [192], or dom-
inant points [151]. In general, they perform well but require some particular
constraints (such as high differentiability, closed curves, noiseless data) which
are not so commonly met in real-world applications.

On the other hand, some papers published during the last two decades
have shown that the application of artificial intelligence techniques can achieve
remarkable results regarding this parameterization problem [33, 79, 95, 94,
117]. Most of these methods rely on some kind of neural networks, either
standard neural networks [79], Kohonen’s SOM (Self-Organizing Maps) nets
[6, 86], or the Bernstein Basis Function (BBF) network [117]. In some other
cases, the neural network approach is combined with partial differential equa-
tions [6] or other approaches [98, 99]. The generalization of these methods
to functional networks is also analyzed in [33, 95, 94, 96]. The application
of support vector machines to solve the least-squares B-spline curve fitting
problem is reported in [108].

Other approaches are based on the application of nature-inspired meta-
heuristic techniques, which have been intensively applied to solve difficult
optimization problems that cannot be tackled through traditional optimiza-
tion algorithms. For instance, a paper in [52] describes the application of
genetic algorithms and functional networks yielding pretty good results for
both curves and surfaces. Genetic algorithms have also been applied to this
problem in both the discrete version [171, 210] and the continuous version
[56, 211]. Other metaheuristic approaches applied to this problem include the
use of the popular particle swarm optimization technique [54, 57|, artificial
immune systems [60, 184], firefly algorithm [59, 61], cuckoo search [68], esti-
mation of distribution algorithms [214], memetic algorithms [67], and hybrid
techniques [58, 62, 171].

5.3 Description of the Problem

In this section we provide the reader with the mathematical description of a
polynomial Bézier curve. Then, we describe the problem of data fitting with
polynomial Bézier curves.
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5.3.1 Mathematical background

In this section we assume that the reader is familiar with the main concepts
about free-form parametric curves [38]. A free-form parametric Bézier curve

C(t) of degree n is defined as:
C(t) = Y P;B}(1) (5.1)
j=0

where P; are vector coefficients (usually referred to as the control points),
B;L(t) are the Bernstein polynomials of index j and degree n, given by:

n ) .
B} (t) = (j) v (1—t)" (5.2)
and ¢ is the curve parameter, defined on a finite interval [0, 1]. Note that in
this paper vectors are denoted in bold. By convention, 0! = 1.

Different parameterizations {t;} can be considered for the fitting curve
based on the set of input data [154]. The simplest parameterization is given
by the equally spaced parameters:

This is called uniform parameterization. In general, it is not recommended
because it can produce undesirable effects (such as loops) when the data is
not evenly spaced.

A more common parameterization is given by the chord length method
as:

to=0  tnm=1 =t 1+ ,JQ"?_Q’H' j=1,...,m—=1 (5.4)

D1Qk — Qi
k=1

This parameterization is more suitable because it reflects the distribution
of data points while also approximates a uniform parameterization.

A variation of the chord length parameterization is given by the centripetal
method:

VIQr — Qi1 i1
>1Qk — Qi
k=1

to=0 bt =1 ti=1t; 1+

which performs better when the curves exhibits sharp turns.
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In this thesis we are interested to obtain the optimal result. So, instead
of relying on any of the previous given parameterizations, we consider the
parameterization to be subjected to optimization. Consequently, the data
parameters will also be variables to be computed during optimization, as
explained in next section.

5.3.2 Data fitting with polynomial Bézier curves

Let us suppose now that we are given a set of data points {Q;};—1, ., in
R? (usually d = 2 or d = 3). Our goal is to obtain the free-form parametric
Bézier curve C(t) that fits the data points better in the discrete least-squares
sense. To do so, we have to compute the control points P; (j = 0, ..., n) of the
approximating curve C(t) by minimizing the least-squares error, E, defined
as the sum of squares of the residuals:

_ i (Qi S PjB;?ui)) (5.6)

where we need a parameter value t; to be associated with each data point
Qi,i=1,....m

Considering the column vectors B; = (B}(t1), ..., B} (tm))",j = 0,.
where (.)7 means transposition, and Q= (Ql, ce Qm) q. (5 6 becomes
the following system of equations (called the normal equatzon).

Bl By, ... BL.B, Py Q.B,
: : : L= : (5.7)
Bl'B, ... BB, P, Q.B,
which can be compacted as:
MP =R (5.8)

with M =

ZB" )B(t ] ZQJB" ]forzl 0,....,n.

Note that 1f values are assigned to the t;, our problem is a classical linear
least-squares minimization, with the coefficients {P;} as unknowns. This
problem can readily be solved by standard numerical techniques.

On the contrary, if the values of ¢; are treated as unknowns, the problem
becomes much more difficult. Indeed, since the blending functions B} (t) are
nonlinear in ¢, the least-squares minimization of the errors is a nonlinear
continuous optimization problem. Note also that in many practical cases the
number of data points can be extremely large, meaning that we have to deal
with a large number of unknowns. In other words, we are also confronted
with a high-dimensional problem. It is also a multimodal problem, since




Section 5.4. Our approach 89

there might be arguably more than one data parameterization vector leading
to the optimal solution.

It is clear that, while solving the parameterization problem is the key to
obtain an optimal Bézier fitting curve of data, it also leads to a very difficult
multimodal, multivariate, continuous, nonlinear optimization problem. In
this work, we are interested to solve this general problem. In our approach
we make no assumption about the values of data parameters; instead, we
compute them at full extent.

5.4 Owur approach

5.4.1 Proposed method

Our approach to solve this general problem consists of applying the bat
algorithm described above to determine suitable parameter values for the
least-squares minimization of functional E according to (5.6).

To this aim, each bat, representing a potential solution, corresponds to
a parametric vector 7; = (t),t},...,t) € [0,1]™, (j = 1,...,P) and the
{tf}i:17___7m are strictly increasing parameters. These parametric vectors are
initialized with random values and then sorted. Application of our method
yields new positions and velocities of the bats representing the potential
solutions of this optimization problem. The process is performed iteratively
for a given number of generations, until the convergence of the minimization
of the error is eventually achieved.

Regarding the implementation issues, all computations in this chapter
have been performed on a 2.6 GHz. Intel Core i7 processor with 8 GB. of
RAM running on Windows 8. The source code has been implemented by
the authors in the native programming language of the popular scientific
program Matlab, version 2013b.

In our opinion, Matlab is a very suitable tool for this task: it is fast and
provides reliable, well-tested routines for efficient matrix manipulations. It
also contains a bulk of resources regarding the solving of systems of equations.
This feature proved to be very valuable in case of ill-conditioned matrices, i.e.,
with too large (or even infinite) condition number. This is a situation that
can actually happen in practice, for instance, when one or several singular
values in SVD decomposition are null or very near to zero. Advisable answer
to this problem is to set reciprocals of such singular values to zero. Matlab
command svd handles this situation for us.

Similarly, when LU decomposition is used instead, Matlab command lu
returns a suitable matrix factorization regardless the sparsity of the matrix,
although different (mostly LAPACK and UMFPACK) routines are invoked
in each case. Also, Matlab provides us with the command mldivide to solve
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Range of | Chosen
Symbol Meaning Values Value
P population size 10 — 200 100
Gy | VIR IMIDET 50 | 900
of generations
A° initial loudness (0,2) 0.5
Avin minimum loudness (0,1) 0.5
r? initial pulse rate [0,1] 0.5
fmaz | maximum frequency [0,10] 2
a multiplicative factor (0,1) 0.6
Y exponential factor [0,1] 0.4

Table 5.1: Parameters and values used in our method.

the equation A.X = B for both squared and non-squared systems (by using
Gaussian elimination with partial pivoting and least-squares techniques, re-
spectively). Depending on the general structure of matrix A, this command
applies specialized LAPACK and BLAS routines to get the best possible so-
lution to this system. Besides, Matlab provides excellent graphical options
and optimized code for input/output interaction and high performance com-
putations.

5.4.2 Parameter tuning

A critical issue when working with metaheuristic techniques is the parameter
tuning. It is well-known that the performance of these methods is strongly
dependent on the choice of suitable values for their parameters. Moreover,
such values are problem-dependent, making it hard to determine good values
in advance. Therefore, although there are some papers describing suitable
values for some problems, our choice must be necessarily empirical. To this
purpose, we carried out numerous computer simulations for different param-
eter values.

The different parameters used in our method are arranged in rows in
Table 5.1. For each parameter, the table shows (in columns) its symbol,
meaning, range of values, and the parameter value chosen in this paper.

The most important parameters in the bat algorithm are:

e population size: in general, increasing the number of individuals (bats)
decreases the number of required iterations, but it also increases the
number of function evaluations. Therefore, a trade-off between both
situations must be achieved for better performance. In this work, we
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# data | C° | Self-int. | 2D/3D | Total

points | points | curve curve | DOFs
Epitrochoid | 300 X v 2D 332
Piriform 100 v X 2D 110
Viviani 200 X v 3D 214

Table 5.2: Benchmark used in this chapter along with the main features of
each example.

tested populations ranging from 10 to 200 bats and found that while
very low values require too many iterations, values in the range 100 —
200 perform similarly, so we set this value to 100 individuals.

e maximum number of iterations: we tested our method for values of this
parameter in the range 100—3000 and found that the method converged
in less than 1500 iterations in all our executions. We finally set this
parameter in 2000 iterations, but to prevent wasting computation time
without any improvement, also set an additional termination criterion:
the method stops if no further improvement of the solution is reached
after 20 consecutive iterations, even although the total number of itera-
tions is less than 2000. With this additional criterion, the computation
times improved significantly without penalizing the quality of the final
solution.

e initial and minimum loudness and parameter o: they are set to 0.5,
0.5, and 0.6, respectively. However, from our computer experiments we
noticed that our results do not change significantly for values of the
initial loudness in the whole range (0, 2), meaning that this parameter
is very robust against variations on that interval. Empirically, we found
a = 0.6 to be a suitable value for this problem.

e initial pulse rate and parameter v: of these two parameters, the initial
pulse rate is the most relevant. In fact, parameter v only affects the
very early iterations. We set the initial pulse rate to 0.5, meaning that
the selection has an equal probability of change in the long term. We
also set v = 0.4.

With this choice of parameters, the bat algorithm is run iteratively for
the given number of generations. Final positions and velocities of the bats
are computed and ranked according to our fitness function E. The position
of the global best at the last iteration is taken as the final solution of our
minimization problem.
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Curve Fitting error
4.065316e-4 (mean E)
7.254377e-5 (best E)

1.164089e-3 (mean RMSE)

4.917444e-4 (best RMSE)
3.206772¢-5 (mean E)
1.378186e-6 (best E)
5.662837¢e-4 (mean RMSE)
1.173962¢-4 (best RMSE)
2.192432¢-4 (mean E)
3.527668e-5 (best E)
1.047003e-3 (mean RMSE)
4.199802e-4 (best RMSE)

Epitrochoid

Piriform

Viviani

Table 5.3: Fitting errors for the examples used in this paper (in rows): E
error and RMSFE for the mean and best results from 50 executions for our
bat algorithm-based method (in columns). Best results in our comparative
work are highlighted in bold (see our discussion in the main body text for
further details).

5.5 Experimental Results

The method described in previous section has been applied to some examples
chosen by the authors. Unfortunately, the field lacks a standardized bench-
mark for further analysis and comparative purposes. We still think, however,
that the examples presented here are good enough and suficiently useful to
determine the good applicability of our method to this problem. To keep
this thesis in manageable size, in this section we describe only three of them,
corresponding to 2D and 3D curves.

The benchmark in this paper is shown in Table 5.2, where the three
examples selected are arranged in rows. For each example, the table shows
(in columns) the number of data points used in our experiments along with
some other interesting features: whether or not the curve includes any non-
differentiable point (such as cusps) or self-intersections, which usually re-
present challenging features for data fitting techniques. It also reports the
dimensionality of both the curve (2D/3D) and the optimization problem, the
latter given by the number of degrees of freedom, DOFs for short (i.e., the
number of variables to be minimized). These examples have been primarily
chosen to reflect the diversity of situations our method can be applied to.
First example corresponds to a planar closed curve called epitrochoid, which
has several self-intersections; second example shows a curve called piriform,
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Figure 5.1: Application of our data fitting method to the epitrochoid curve.
Original data points are displayed as red x symbols and the reconstructed
curve is displayed as a blue solid line.

a planar closed curve with a cusp; and last example corresponds to a 3D
closed curve called the Viviani curve.

The experimental results for the three examples in this paper are shown
in Figures 5.1, 5.2, and 5.3, respectively. In all cases, the original data points
are displayed as red x symbols while the reconstructed curve is displayed as
a blue solid line.

The reader will notice the good visual fitting between the original data
points and the reconstructed curve for the three examples. They show that
our method is able to reconstruct the underlying shape of data points even
in presence of challenging features, such as several self-intersections or cusps.

This good visual behavior is confirmed by our numerical results, reported
in Table 5.3. Once again, the three examples are arranged in rows in first
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Figure 5.2: Application of our data fitting method to the piriform curve.
Original data points are displayed as red x symbols and the reconstructed
curve is displayed as a blue solid line.

column. For each example, the second column of the table reports respec-
tively:

e the average and best error of the functional E according to Eq. (5.6);

e the average and best value of the root-mean square error, given by:

RMSEzq/E.
m

The average error has been obtained as the mean value from 50 inde-
pendent executions of the algorithm, while the best value corresponds to the
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Figure 5.3: Application of our data fitting method to the 3D Viviani curve.
Original data points are displayed as red x symbols and the reconstructed
curve is displayed as a blue solid line.

results of the best execution from the 50 runs. As the reader can see, average
errors are of order 1074 ~ 107 (mean) to 10°° ~ 1075 (best) for the E error,
with RMSE of order 1072 ~ 10~* (mean) to 10~* (best) for the three exam-
ples in our benchmark. From the data in Table 5.3 we can conclude that the
method performs very well, being able to replicate the original shape with
high accuracy for all instances in our benchmark.

5.5.1 Comparison with other approaches

We have also compared our method with two other alternative parameteri-
zations, obtained through the arc-length and the firefly algorithm. They are



96 Chapter 5. Curve Reconstruction with Polynomial Bézier Curves
Curve Fitting error (arc-length) | Fitting error (firefly algorithm)
5.342768¢-3 (mean E) 4.526912¢-4 (mean E)
Epitrochoid 9.017334e-4 (best E) 1.034348e-4 (best E)
4.220097e-3 (mean RMSE) | 1.228401e-3 (mean RMSE)
1.733371e-3 (best RMSE) | 5.871819¢-4 (best RMSE)
5.532432¢-4 (mean E) 3.187544e-5 (mean E)
Piriform | 113864¢:5 (best E) 1.283742e-6 (best E)
2.352112¢-3 (mean RMSE) | 5.645833e-4 (mean RMSE)
7.151128¢-3 (best RMSE) | 1.113302e-4 (best RMSE)
8.174659¢-4 (mean E) 2.186931e-4 (mean E)
Viviani 9.364587e-5 (best E) 4.624328¢-5 (best E)
2.021714e-3 (mean RMSE) | 1.045689e-3 (mean RMSE)
6.842728¢-4 (best RMSE) | 4.808496¢-4 (best RMSE)

Table 5.4: Fitting errors for the examples used in this paper (in rows): E
error and RMSFE for the mean and best results from 50 executions for the
arc-length, firefly algorithm, and our method (in columns). Best results in
our comparative work are highlighted in bold (see our discussion in the main
body text for further details).

also reported in the last two columns of Table 5.4. Best results from the
comparison between our results with the bat algorithm method (reported
in Table 5.3) and the results with the arc-length parameterization and that
obtained with the firefly algorithm (reported in Table 5.4) are highlighted in
bold in both tables for easier identification.

As the reader can see from both tables, our method outperforms the arc-
length parameterization significantly for all instances in our benchmark. On
the other hand, our results are comparable with those of the firefly algo-
rithm, which has already been reported to be an excellent method for the
curve parameterization issue [59, 61, 64, 67]. These results confirm the good
performance of our approach and its applicability to data fitting with poly-
nomial Bézier curves.

5.6 Main Conclusions

This chapter described a new method for data fitting with polynomial Bézier
curves. This problem arises in a number of areas, such as computer-aided
design and manufacturing (CAD/CAM), virtual reality, medical imaging,
computer graphics, computer animation, and many others. Unfortunately,
it is also a highly nonlinear, over-determined, multivariate continuous opti-
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mization problem. As a consequence, classical mathematical methods cannot
solve it in its generality.

Our approach is based on a powerful nature-inspired optimization method
called bat algorithm, which has been recently introduced to solve hard con-
tinuous optimization problems. In spite of these remarkable features for
optimization, the bat algorithm has never been applied in the context of
data fitting for geometric modeling or computer graphics.

To analyze the performance of this approach, it has been applied to some
simple yet illustrative examples of Bézier curves with satisfactory results.
Our experimental results show that our method based on the bat algorithm
is very competitive to obtain a good parameterization for the fitting curve to
the cloud of data points. In particular, the method outperforms the classical
arc-length parameterization for all instances in our benchmark.

On the other hand, the results with the bat algorithm method are compa-
rable with those with the firefly algorithm, which has already been reported
to be an excellent method for the curve parameterization. These facts vali-
date the applicability and good performance of our bat algorithm approach.
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Chapter 6

Curve Reconstruction with
Rational Bézier Curves

In previous chapter we applied the bat algorithm to obtain an optimal pa-
rameterization of the polynomial Bézier curve that best fits a given set of
data points. In this chapter we are interested to extend this methodology
to the case of rational Bézier curves. As it will be discussed in this chapter,
this extension is not natural in the sense that the rational case is much more
complicated than the polynomial one. However, the method can indeed be
extended with proper care. Furthermore, we can still obtain pretty good
results.

The structure of this chapter is as follows: some previous work in the
subject of data fitting with rational parametric curves is briefly reported in
Section 6.2. The problem of curve approximation with rational Bézier curves
is discussed in Section 6.3. Our proposed approach to solve this problem is
described in Section 6.4. The section also discusses the important issue of
parameter tuning. Then, three illustrative examples of its application are
reported in Section 6.5. The paper closes with the main conclusions of this
contribution in Section 6.6.

6.1 Introduction

In previous chapter we applied the bat algorithm to obtain an optimal pa-
rameterization of the polynomial Bézier curve that best fits a given set of
data points. Some previous papers also addressed this problem by using
Bézier curves [68, 131]. In general, they obtained good results for a number
of shapes, as was presented, for instance, in previous chapter for bat algo-
rithm and in [59, 61, 67, 68, 131] for the firefly algorithm, the cuckoo search
and for the simulated annealing. However, this polynomial approach is still
limited, as it cannot adequately describe some particular shapes such as the
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conics (e.g., circles, ellipses, hyperbolas). As a consequence, there is still a
need for more powerful blending functions.

An interesting extension in this regard is given by the rational basis func-
tions, which are mathematically described as the quotient of two polynomi-
als. A remarkable advantage of this rational scheme is that the conics can
be canonically described as rational functions. In this chapter, we take ad-
vantage of this valuable feature to solve the curve approximation problem by
using rational Bézier curves.

Unfortunately, this rational approach becomes more difficult than the
polynomial one, since new parameters (the weights) are now introduced into
the problem. Consequently, we are confronted with the challenge of obtaining
optimal values for many parameters, namely, data parameters, poles, and
weights that are qualitatively different in nature. To make things worse, all
these sets of parameters are not independent but strongly related to each
other in an intricate and highly nonlinear way. As a consequence, we are
facing an extremely difficult over-determined high-dimensional continuous
nonlinear optimization problem.

Our approach to solve this issue consists of extending the bat algorithm
method developed in previous chapter and designed for polynomial Bézier
curves to the rational case. This issue will be discussed throughout this
chapter.

6.2 Previous Work

As mentioned in previous chapter, there are some approaches to data fit-
ting with free-form parametric shapes based on the application of nature-
inspired metaheuristic techniques. Some examples include genetic algorithms
[56, 171, 211], particle swarm optimization technique [54, 57], artificial im-
mune systems [60, 69], firefly algorithm [61, 62], cuckoo search [68], simu-
lated annealing [131], estimation of distribution algorithms [214], memetic
algorithms [67], and hybrid techniques [60, 171].

In general, all these methods yield good results for shapes that can be
properly described in polynomial terms, but more complicated shapes are
still elusive. That is the reason behind our proposal to use rational func-
tions as an extension of the polynomial case. In particular, none of these
approaches is directly applicable to rational curves. This fact is not acciden-
tal, but a clear indication of the difficulty to deal with rational shapes for
curve reconstruction. It is also a clear indication about the originality of the
proposal in this chapter.
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6.3 Description of the Problem

In this section we provide the reader with the mathematical description of
a rational Bézier curve. Then, we describe the problem of data fitting with
rational Bézier curves.

6.3.1 Mathematical background

In Section 5.3.1 we introduced the definition of a polynomial Bézier curve.
Now, we proceed in a similar way with the rational case. Mathematically, a
free-form rational Bézier curve ®(7) of degree n is defined as:

ijqub?(T)
B(r) = =

o (6.1)
ZWW?(T)

where A; are vector coefficients called the poles, w; are their scalar weights,
¢j(7) are the Bernstein polynomials of index j and degree 0, given by:

o) = (1) 7 -y

and 7 is the curve parameter, defined on the finite interval [0, 1]. By conven-
tion, 0! = 1.

Note that considering the rational Bernstein basis function, mathemati-
cally expressed as:

A = 240 (62
D wrdi(7)
Eq. (6.1) becomes:
2(r) = Y Agl(r) (6:3)

In other words, the rational curve can also be expressed as a linear com-
bination of basis functions, but such basis functions are at their turn rational
functions.



102 Chapter 6. Curve Reconstruction with Rational Bézier Curves

6.3.2 Data fitting with polynomial Bézier curves

Suppose now that we are given a set of data points {A;};—1_, in R” (usually
v =2or v = 3). Our goal is to obtain the rational Bézier curve ®(r)
performing discrete approximation of the data points {A;};.

To that purpose, we have to compute all parameters (i.e. poles Aj,
weights w;, and parameters 7; associated with data points A;, fori = 1,...,k,
j = 0,...,n) of the approximating curve ®(7) by minimizing the least-
squares error, T, defined as the sum of squares of the residuals:

_ : -
] S wiA6l(r)
Y = minimize Z A, — ]:?7— . (6.4)
{ri}i :
(A} =1 w; (T
{wils ;0 ]¢]( )

Considering the rational Bernstein basis functions in Eq. (6.2), Eq. (6.4)

becomes:
K n 2
T = minimize 2 (Ai — Z AjQO?(T)> ; (6.5)

{ri}i ‘ °
(Aj}; i=1 7=0

wjsj

which can be rewritten in matrix form as:
QA=E (6.6)

called the normal equation, where:

Q= (Z Tk (,OJ Tk )
i,J

(Z App] Tk))

A=(Ag,...,A)"

[
I
ﬁ

for i,7 =0,...,n, and (.)T means the transposition of a vector or a matrix.
In general, K >> 1 meaning that the system (6.6) is over-determined. If
values are assigned to the 7;, our problem can be solved as a classical linear
least-squares minimization, with the coefficients {A;};—o ., as unknowns.
This problem can readily be solved by standard numerical techniques.
On the contrary, if the values of 7; are treated as unknowns, the prob-
lem becomes much more difficult. Indeed, since the polynomial blending
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functions ¢ (7) are nonlinear in 7 and so are the rational blending functions
©](7), the least-squares minimization of the errors is a nonlinear continuous
optimization problem.

Note also that in many practical cases the number of data points can
be extremely large, meaning that we have to deal with a large number of
unknowns. In other words, we are also confronted with a high-dimensional
problem. It is also a multimodal problem, since there might be arguably
more than one set of parameter values leading to the optimal solution.

In conclusion, it is clear that the interplay among all sets of unknowns
(data parameters, poles, and weights) leads to a very difficult over-determined,
multimodal, multivariate, continuous, nonlinear optimization problem. In
this chapter, we are interested to solve this general problem. This means
that we make no assumption about the values of the free parameters; in-
stead, we compute them at full extent.

6.4 QOwur approach

6.4.1 Proposed method

Our approach to solve this general problem consists of applying the bat algo-
rithm described in Section 4.9 of this thesis to determine suitable parameter
values for the least-squares minimization of functional Y according to (6.4).
To this aim, each bat, representing a potential solution, corresponds to a
parametric vector S; of length x + n + 1 given by S; = [7;;W;], where
T; = (r{,7],...,77) € [0,1]" with the {r/},_1 . strictly increasing parame-
ters, and W; = (v}, ... ,w%) for j = 1,...,P. These parametric vectors are
initialized with random values according to the uniform distribution on the
unit interval. Once initialized, the coordinates of 7; are sorted to reproduce
the ordered structure of the data points.

Regarding Wj;, in this paper we consider values for the weights within
the range (0, 100), as values larger than 100 do not modify the shape of the
curve noticeably. Application of the bat algorithm described above yields
new positions and velocities of the bats representing the potential solutions
of our optimization problem.

As shown in the previous section, the introduction of the rational Bern-
stein basis functions allows us to rewrite the expression of the rational Bézier
curve as a linear combination of basis functions, leading to the normal equa-
tions in Eq. (6.6). This implies that the numerical routines required to solve
the problem in Eq. (6.6) are basically the same used to solve Eq. (5.8) for the
polynomial case. Since these numerical routines have already been described
in Section 5.4.1, they will be omitted here to avoid unnecessary duplication
of material.
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Range of | Chosen
Symbol Meaning Values Value
P population size 10 — 200 100
g | meimwmmmber 0 5000 | 9g0g
of generations
A° initial loudness (0,2) 0.5
Aoin minimum loudness [0,1] 0
r? initial pulse rate [0,1] 0.5
fmaz | maximum frequency [0,10] 2
a multiplicative factor (0,1) 0.6
Y exponential factor [0,1] 0.4

Table 6.1: Parameters and values used in our method.

6.4.2 Parameter tuning

The issue of parameter tuning for the bat algorithm was already discussed
in Section 5.4.2, where the most relevant parameters of the method were
explained in detail. Therefore, there is no need to repeat the same discussion
here. However, we remark that the most suitable choice for values for such
parameters was derived for the polynomial case, meaning that it might not be
directly applicable to the rational case. Once again, such values are problem-
dependent, and therefore our choice must be necessarily empirical.

To this purpose, we carried out numerous computer simulations for dif-
ferent parameter values. Similar to the polynomial case, the different pa-
rameters used in our method are arranged in rows in Table 6.1. For each
parameter, the table shows (in columns) its symbol, meaning, range of val-
ues, and the parameter value chosen in this paper.

In general, the values obtained for the polynomial case are still valid for
the rational one with little variations. The most significant one refers to the
minimum loudness parameter, which is set to 0 in this case, with the effect of
accelerating the convergence by allowing lower values than the initial choice
A%, Anyway, the reduction of computation time is not very dramatic actually,
at least in our computational experiments described in next section.

With this choice of parameters, the bat algorithm is run iteratively for
a given number of generations or until the convergence of the minimization
of the error is eventually achieved. Final positions and velocities of the bats
are computed and ranked according to our fitness function Y. The position
of the global best at the final iteration is taken as the final solution of our
minimization problem.
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Benchmark | # data | Open/closed | Non-differentiable | 2D/3D |  degrees
example points curve points curve | of freedom
Hypocycloid | 200 closed v 2D 124
Spiral 100 open X 2D 136
Helix 100 open X 3D 242

Table 6.2: Benchmark used in this paper along with the main features of each

example.
Curve Av,(mean) Av,,(best) T (mean) T (best) | RMSE (mean) | RMSE (best)
| 2 6.390788e-4 | x 1 3.294507e-5
Hypocycloid Yt 713817664 | y : 4.051993¢-5 3.47593be-4 | 3.075698¢e-5 | 1.318322¢-3 3.921542e-4
) x :6.998090e-3 | x : 2.532214¢e-4 -
Spiral Y 7.189277¢-3 | y : 2.985567c-A 8.589174e-4 | 1.867033e-5 | 2.930729e-3 4.320918e-4
2 :1.050018e-2 | z : 3.277831e-3
eliz :1.102567¢-2 | y : 2. e- . e-4 | 1. e- . e- . e-
Heli y : 1.102567e-2 | y : 2.689946e-3 | 3.261139¢-4 | 1.860439¢-5 | 1.217693e-3 4.313281e-4
2 :9.711053e-4 | y : 3.091722¢-4

Table 6.3: Fitting errors for the examples used in this paper (arranged in
rows): coordinate error, T error and RMSE for the mean and best results
from 50 executions (in columns).

6.5 Experimental Results

The method described in previous section has been applied to several exam-
ples chosen by the authors. In this chapter we describe only three of them,
corresponding to 2D and 3D curves as described in Table 6.2. In this table,
the three examples are reported in rows. For each example, the table shows
(in columns) the number of data points used in our experiments along with
some other interesting features: if the curve is open or closed, planar or 3D,
or whether it includes any non-differentiable point (such as cusps or discon-
tinuities). It also reports the number of degrees of freedom (DOFs) of the
optimization problem (i.e. the number of variables to be minimized).

These examples have been primarily chosen to reflect the diversity of
situations our method can be applied to. First example corresponds to a
planar closed curve called hypocycloid, which has several cusps; second ex-
ample shows a spiral, a planar open curve with a smooth yet challenging
shape; and last example corresponds to a helix, a 3D open curve with several
DOFs.

The fitting results we obtained for the three examples in our benchmark
are displayed in Figures 6.1, 6.2, and 6.3, respectively. In all cases, the
original data points are displayed as red empty circles while the reconstructed
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Figure 6.1: Examples of application of the bat algorithm for data approxi-
mation with rational Bézier curves to the hypocycloid curve. Original points
are displayed as red empty circles and the reconstructed points as blue +
symbols.

points are displayed as blue + symbols. Note the very good matching between
both sets of points for the three examples.

This good visual behavior is confirmed by our numerical results, reported
in Table 6.3. The three examples are arranged in rows. For each example,
the table reports (in columns):

e the average and the best error of the coordinates, according to the
K
equation: Av, = Z |05 — 0%], where §% and 0% represent respectively

i=1
the p coordinate of the input data and reconstructed data, with = x,y
for 2D curves (u = z,y, z for 3D curves);

e the average and best error of the functional T according to Eq. (6.5);
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Figure 6.2: Examples of application of the bat algorithm for data approxi-
mation with rational Bézier curves to the spiral curve. Original points are

displayed as red empty circles and the reconstructed points as blue + sym-
bols.

e the average and best error of the root-mean square error, given by:

RMSE = \/E.
K

The average error has been obtained as the mean value from 50 inde-
pendent executions of the algorithm, while the best value corresponds to the
results of the best execution from the 50 runs. As the reader can see, aver-
age errors are of order 107 (average) to 107> (best) for the Y error, with
RMSE of order 107 (average) to 107 (best) for the three examples in our
benchmark. Coordinate errors show more noticeable variations for the third
example due to the scale factor of the vertical component.

From the data in Table 6.3 we can conclude that the method performs
very well, being able to replicate the original shape with high accuracy for
all instances in our benchmark.
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Figure 6.3: Examples of application of the bat algorithm for data approx-
imation with rational Bézier curves to the helical curve. Original points
are displayed as red empty circles and the reconstructed points as blue +
symbols.

6.6 Main Conclusions

This chapter introduced a new method for discrete approximation of data
points with rational Bézier curves. Given a set of data points, the method
computes all relevant parameters (poles, weights, and data parameters) of the
rational Bézier fitting curve as the solution of a challenging over-determined
nonlinear multimodal multivariate continuous optimization problem. The
method is based on the bat algorithm and is an extension of the method we
developed for polynomial Bézier curves in the previous chapter. However, this
extension is not trivial at all. There are several reasons to explain this: on one
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hand, the problem is more complicated because new parameters (the weights)
are now introduced into the problem. On the other hand, all these sets
of parameters (data parameters, control points, weights) are quite different
between them and are not independent but strongly related to each other in
an intricate and highly nonlinear way. As a consequence, we are facing an
extremely difficult over-determined high-dimensional continuous nonlinear
optimization problem.

In spite of these difficulties, the bat algorithm performs well in obtaining
suitable values for all these parameters. To check the performance of our
approach, it has been applied to some illustrative examples of 2D and 3D
curves. Our results show that the method performs pretty well, being able
to yield a satisfactory approximating curve with a high degree of accuracy.
This approach generalizes the previous method for data fitting based on
polynomial basis functions to rational blending functions, thus expanding
the potential range of applications to include more difficult shapes.
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Chapter 7

Surface Reconstruction with
Polynomial Bézier Surfaces

The previous two chapters in this thesis were devoted to solve the problem
of curve reconstruction. In this chapter and the next one we shift our focus
to the problem of surface reconstruction. In some ways, they are very similar
problems. Both they gravitate around the idea of fitting a given cloud of
points by using a mathematical entity (be a curve or a surface) that more or
less replicate the inherent shape of the cloud of data points.

However, mathematically they are not exactly the same problem, and not
only because the surface is by definition a 3D entity, while curves can be 2D
as well. It is not just a matter of dimension. It is neither because the surfaces
require more parameters and typically more dense clouds to be accurately
outlined. Although it can be argued that the free-form parametric surfaces
are somehow an extension of the free-form parametric curves (which, by the
way, is true — at least, to a certain extent — for the polynomial case, but not
for the rational case anymore), the experience shows that they are different
problems at their own. Hopefully, this observation will become much clear
throughout the following two chapters, devoted to surface reconstruction with
polynomial Bézier surfaces and rational Bézier surfaces, respectively.

This chapter is aimed at solving the surface reconstruction problem by us-
ing polynomial Bézier surfaces. And once again, this problem becomes much
more complicated if no parameterization a prioriis assumed. In fact, the case
where the parameterization is given is mathematically of little interest, since
it can be solved by standard numerical tools such as linear least-squares and
other suitable routines. However, as soon as we assume no parameterization,
the problem becomes highly nonlinear, over-determined and multivariate.
It is also multimodal for many instances, as it will be discussed later on.
Therefore, no analytical solution can be expected; even worse, the standard
mathematical optimization techniques are not powerful enough to solve this
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problem. Once again, a different approach is needed. And the metaheuristics
described in Chapter 4 (particularly, the bat algorithm) come again to our
rescue.

Our proposal in this chapter applies the bat algorithm described in Sec-
tion 4.9 to solve the data reconstruction problem with polynomial Bézier
surfaces. To analyze the performance of our method, it will applied to three
illustrative examples. The computational experiments show that the method
performs well and can reconstruct an approximating surface with high accu-
racy.

This chapter is organized as follows: Section 7.1 introduces the problem
to be solved. Then, Section 7.2 briefly reports some previous work in the
subject. The fundamentals about parametric surfaces as well as the data
fitting problem with polynomial Bézier surfaces are discussed in Section 7.3.
Then, Section 7.4 describes our approach to solve this problem. Some com-
putational results of our method as applied to three illustrative examples are
described in Section 7.5. Finally, Section 7.6 reports the main conclusions of
this work.

7.1 Introduction

As discussed in Sections 3.1 and 3.3 of this thesis, obtaining a surface that
fits a given cloud of data points (a research topic commonly known as surface
reconstruction) is a classical problem in several scientific and technological
domains such as computer-aided design (CAD), computer aided manufactur-
ing (CAM), virtual reality, computer graphics, computer animation, medical
imaging, scientific visualization, and many others [12, 29, 45, 86, 154]. In
real-world applications, data points arise from measurements of an already
constructed geometric workpiece, as it often occurs in the automotive in-
dustry (car bodies), aerospatial (airplane fuselage), ship hull building, shoes
industry, medical imaging (computer tomography, magnetic resonance imag-
ing), and so on [33, 53, 57, 95, 94]. Usually, data points are captured by
devices such as 3D laser scanning, coordinate measuring machines, computer
tomography scanners, magnetic resonance, and so on. The amount of data
captured through these technologies can be very huge, typically ranging from
hundreds of thousands to billions of data points (see for instance, our dis-
cussion about the Michelangelo project in Section 3.3.2, and the illustrative
examples in Figures 3.2 and 3.3).

Dealing with these very large sets of data points is impractical and compu-
tationally expensive. Therefore, a major task in this context is to transform
the data from the real object into a digital model, the basis of the process
known as reverse engineering. The primary goal of this process is to get a
mathematical surface approximating the data accurately, thus replacing the
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massive cloud of points by a geometric entity with only a few parameters.
Advantages of this process have already been discussed in enough detail in
Chapter 3.

In real-world settings, measurement data are affected by irregular sam-
pling, measurement noise, or other artifacts [152]. As a result, approxima-
tion is chosen over interpolation, generally expressed as a least-squares fitting
problem [54]. This is the approach followed in this chapter. In this work we
will focus particularly on the case of irregularly sampled data points, which is
by far the most common (and most difficult) case in real-world applications.

Because of their remarkable mathematical properties, polynomial func-
tions (in particular, free-form parametric functions) are a classical choice for
surface reconstruction. In this chapter we focus on the particular case of
polynomial Bézier surfaces, a kind of free-form splines very popular in fields
such as computer graphics and geometric modeling.

In this case, a major problem is to determine an appropriate data param-
eterization [154]. In fact, the selection of a suitable parameterization is very
important for a good fitting. At the same time, it is a very hard problem.
As it is commonly known, it requires to solve a very difficult overdetermined
continuous nonlinear optimization problem. In addition, it is multivariate:
a huge number of data points implies a lot of unknown variables. Finally,
owing to the potential existence of several (global or local) optima of the
objective function, it is usually a multimodal problem as well. As a result,
traditional mathematical optimization techniques fail to solve it. Clearly,
more powerful approaches are needed instead.

7.2 Previous Work

The problem of data fitting through free-form parametric surfaces has been
an important issue of research for many years [29, 154, 157]. One of the
most important problems regarding this issue is the surface parameterization.
Two very popular choices in this regard are the uniform and the arc-length
parameterizations. The former is widely used because of its simplicity but it
is limited to smooth surfaces and regular sampling.

In many practical situations, it is convenient to apply the arc-length pa-
rameterization. In this case, constant steps on the parametric domain trans-
late into constant distances along an arc-length parameterized curve on the
surface. That is, constant parameter intervals on the domain induce regu-
lar spacing of points of the curve on the surface. This property has been
traditionally applied in metrology for design and manufacturing, to collect
measurement data from industrial parts of the designed and manufactured
products. Other example arises in CNC (computer numerically-controlled)
milling operations for manufacturing, where the tool-path of the manufac-
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turing machine has to be parametrized in such a way that the cutter neither
slows down nor speeds up along its path [152]. The only way to guarantee
this property is using the arc-length parameterization for the tool-path.

However, a prescribed parameterization does not necessarily lead to opti-
mal solutions in data fitting. In fact, it has been shown that better results can
be obtained when the data parameters are considered free unknowns of the
problem. Unfortunately, this poses a difficult nonlinear optimization prob-
lem that cannot be fully solved by using standard mathematical techniques.
Consequently, there has been a great interest to explore other possible ap-
proaches to this problem.

Some artificial intelligence techniques have achieved relevant results on
this parameterization problem [33, 79, 95, 94, 117]. Many of these methods
are based on different neural nets, such as classical neural nets [79], Kohonen’s
self-organizing maps (SOM) nets [86], Bernstein basis function nets [117], or
the like. Neural nets are also replaced by functional networks (which extend
the neural networks allowing the scalar weights to be functions) [33, 95, 94,
96] or other approaches [99]. The application of support vector machines
(SVM) to solve the least-squares curve fitting problem is reported in [108].

Other approaches rely on popular nature-inspired optimization techniques.
For instance, genetic algorithms have also been applied to this problem
[57, 211]. Other metaheuristic approaches applied to this problem include
the popular particle swarm optimization technique [54, 56], firefly algorithm
[59, 61], cuckoo search [68], memetic algorithms [67, 100], AIS [60], simulated
annealing [131], hybrid techniques [58, 62] and so on.

7.3 Description of the Problem

In this section we provide the reader with the mathematical description of
a polynomial Bézier surface. Then, we describe the problem of data fitting
with polynomial Bézier surfaces.

7.3.1 Mathematical background

A free-form polynomial parametric surface is defined as (see [38, 154] for
further details):

S(u,v) = Y > Piji(u)p;(v) (7.1)
i=0j=0
where {P;;}i—o. mj=o..n are vector coefficients in R? called the control
points, {¢;(u)}; and {p;(v)}; are two sets of basis functions, and (u,v) are
the surface parameters, usually defined on a bounded rectangular domain
[, Bu] % [, B,] = R2. Note that vectors are denoted in bold.
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In this chapter we will focus on the particular case of free-form polynomial
Bézier surfaces. In this case, Eq. (7.1) becomes:

B(u,v) = Y Y Py 0 (u) U7 (v) (7.2)
i—0j=0
where the blending functions W¢(w) are given by:

d d! k d—k
Ul (w) = W d—h) w* (1 —w)

I

and the surface parameters (u, v) are defined on the unit square [0, 1] x [0, 1].
Note that, by convention, 0! = 1.

7.3.2 Data fitting with polynomial Bézier surfaces

Suppose now that we are given a set of 3D data points {Qg}r=1,. pi=1,. 4
Our goal is to obtain the best fitting surface B(u,v) in the discrete least-
squares sense. To do so, we have to minimize the least-squares error, E:

P q m 2
E=)), (Qm -3 Pi,j\muk)\lfy(m)) (7.3)
k=11=1 i=04j=0

Minimization of (7.3) leads to the system of equations:
<Q>=<P> = (7.4)

where < Q >, < P > correspond to the vectorization of the sets {Qy,} and
{P, ;}, respectively, and E is a matrix given by:

1]

iy = ¥"(vy) © ¥y (u)

with
U (wi) = (Tg(wr),- -, U (wp))
for any ® = (6y,...,0k), and © represents the tensor product of vectors.

The indices in Eq. (7.4) vary in the ranges of values indicated throughout
the section.

It is important to remark that the problem in Eq. (7.4) is over-determined,
because we usually expect to fit the cloud of data points with many fewer
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parameters than the number of data points (otherwise, we could simply in-
terpolate all data points and hence, the fitting error would vanish). However,
if we are provided with a given parameterization, the problem is not really a
very serious issue, as it can readily be solved by standard numerical tools such
as linear least-squares and other suitable routines, such as those described
for the case of curves in Chapter 5 (actually, they operate properly on the
multi-dimensional case, so they can be extended to the case of surfaces with
little modification — if any).

In other words, the case where the parameterization is given is mathemat-
ically of little interest, since we can find its solution in a straightforward way.
Actually, the real deal arises when no parameterization a priori is assumed.
In this case, we have firstly to solve the parameterization problem, which
is the real challenge of the surface reconstruction problem with polynomial
parametric surfaces. It is at this critical step that the bat algorithm-based
method proposed in this thesis is applied.

Note that since the blending functions {¥}"(u)}; and {¥(v)}; are non-
linear, minimization of E is a nonlinear continuous optimization problem. In
many practical cases the number of data can be extremely large, meaning
that we are also confronted with a high-dimensional problem. It is also multi-
modal, since there might be arguably more than one parameterization vector
leading to the optimal solution. In summary, we have to deal with a dif-
ficult multimodal, high-dimensional, continuous, over-determined nonlinear
optimization problem.

7.4 Owur approach

In this section we describe the proposed method for solving the surface re-
construction problem indicated in the previous section. Firstly, a general
overview of the method and the corresponding workflow are presented. Then,
each step of the method is discussed in detail. Finally, the issue of parameter
tuning is also discussed.

7.4.1 Overview of the method

The graphical workflow in Figure 7.1 summarizes the main steps of our
method. The initial input consists of a set of irregularly sampled noisy 3D
data points assumed to lie on an unknown surface. The goal is to obtain the
polynomial Bézier surface that approximates these data points optimally. To
this purpose, we need to solve two important sub-problems: data parame-
terization and surface approximation.

To address data parameterization, we apply the bat algorithm on a pop-
ulation of bats representing the potential solutions of the parameterization
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Figure 7.1: Graphical workflow of the proposed method.

problems for both parametric variables. Then, we perform least-squares min-
imization in order to compute the control points of the approximating poly-
nomial Bézier surface. Finally, the fitting error is computed and compared
against a threshold value. When our fitting error gets better than the thresh-
old value, the method finishes and the approximating surface is returned.
Otherwise, the bat algorithm is re-initializaed with random values and the
procedure is re-started again.
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7.4.2 Data parameterization

The parameterization step consists of establishing the relationships among
the data points in the surface parametric domain. This process is essential
for a good fitting of data points. Some standard procedures are given by the
uniform, chord-length and centripetal parameterizations, already explained
in Section 5.3.1. However, these methods are only suitable for data points
distributed in a uniform grid, and tend to fail for unorganized, irregularly
sampled data.

An alternative procedure is based on the idea of projecting the data points
onto an additional surface, usually called base surface, reflecting the distri-
bution of data points and then computing a parameterization by using the
projected 2D points. The simplest case of this approach consists of using a
parametric plane [93], usually orthogonal to the main viewing direction of
the digitizing device. A better alternative is to use a suitable 3D surface for
data projection [134], usually a coarse approximation of final fitting surface,
which is expected to be modified by successive improvements of this initial
surface.

Our approach to solve this parameterization problem consists of apply-
ing the bat algorithm described above to solve the least-squares minimiza-
tion of functional E according to (7.3). To this aim, each bat, represent-
ing a potential solution, is given by: Be = (u§,us, ..., us;v5,v5,...,05) €
[0, 1]™* x [0,1]"* (( = 1,...,P). In other words, the surface parameteri-
zation problem is subdivided into the individual sub-problems of obtaining a
proper parameterization for each parametric variable. Note that this strat-
egy is only possible because of the tensor product of the polynomial Béizer
surface, meaning that it will not be available for the rational case addressed
in next chapter. Both sublists are initialized with random values and then
sorted, to reflect the ordered structure of the parametric values. The final
output of this step is an optimal parameterization of data points.

7.4.3 Least-squares minimization

Using the data parameterization obtained in the previous step, we now per-
form least-squares minimization of the functional £ according to (7.3). The
output of the first step is a near-to-optimal parameterization of data points.
Let u = (ug, ..., uy) denote such a parameterization for the variable u (a
similar discussion can be done for the variable v; it is omitted here to avoid
duplication of very similar material). Then, Eq. (7.4) can be rewritten as:

Uiy, ... iy, by QY,

BB, --- ¥Iw,| |b, Qv,
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Range of | Chosen
Symbol Meaning Values Value
P population size 10 — 200 100
G | VIRIR IMIMDET 50 | 900
of generations
A° initial loudness (0,2) 0.5
Ain minimum loudness (0,1) 0.5
r? initial pulse rate [0,1] 0.5
fmaz | maximum frequency [0,10] 2
« multiplicative factor (0,1) 0.3
Y exponential factor [0, 1] 0.3

Table 7.1: Parameters and values used in our method.

Surface | # data RMSE E
Ezxample | points fitting error fitting error
1.116440e — 3 (mean) | 3.388225¢ — 3 (mean)
1 2499
2.752097e — 4 (best) | 1.892753e — 4 (best)
5 1050 2.833084¢ — 3 (mean) | 8.427686e — 3 (mean)
7.200351e — 4 (best) | 5.443732e — 4 (best)
5 312 3.229615¢ — 3 (mean) | 8.469497¢ — 3 (mean)
9.731133e — 4 (best) | 7.689231e — 4 (best)

Table 7.2: The three examples in this paper with their number of data points
and the mean and best RMSE and E errors.

where W; = (U7 (uy), ..., ¥} (uy))" represents a column vector, b; represents
the control points of the surface along the parametric direction u, Q =
(Q1,-..,Qn) arow vector of the data points along a parametric direction,
and (.)T represents the transpose of a vector or matrix.

System (7.5) is overdetermined, so no analytical solution can be obtained.
Instead, we obtain an approximated solution through least-squares minimiza-
tion. If W* denote the generalized inverse (also known as Moore-Penrose
pseudo-inverse) of ¥ = (U,)T, P = ¥*Q is the solution of our problem in
the least-squares sense.

7.4.4 Parameter tuning

Regarding the issue of the parameter tuning, we already know that the choice
of suitable values for the parameters of the bat algorithm method is strongly
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(top) original

cloud of irregularly sampled data points; (bottom) best polynomial Bézier

Figure 7.2: Application of our method to the first example:
fitting surface.

dependent on the particular problem at hand, making it hard to determine

To

Therefore, our choice here is fully empirical.

good values in advance.
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Figure 7.3: Application of our method to the second example: (top) original
cloud of irregularly sampled data points; (bottom) best polynomial Bézier
fitting surface.

this purpose, we carried out numerous computer simulations for different
parameter values, finally reaching suitable values for our method.

The different parameters used in our method are arranged in rows in
Table 7.1. For each parameter, the table shows (in columns) its symbol,
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Figure 7.4: Application of our method to the third example: (top) original
cloud of irregularly sampled data points; (bottom) best polynomial Bézier

fitting surface.
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meaning, range of values, and the parameter value chosen in this paper.

With this choice of parameters, the bat algorithm is executed iteratively
for a previously chosen number of generations, or until convergence is even-
tually reached. Final positions and velocities of the bats are computed and
ranked according to our fitness function E. The position of the particle with
the global best is then chosen as the winner (i.e., the final solution of our
minimization problem).

7.5 Experimental Results

Our method has been applied to several examples. In this section, we focus on
three of them. They are arranged in rows in Table 7.2. For each example, the
table shows (in columns) the number of data points used in our experiments
along with the mean and the best fitting errors for the RMSFE (root-mean
square error) on the left and for the for F (given by Eq. (??7)) on the right.
The RMSE of our problem is given by:

FE
RMSE:\/(m+1)><(n+1)

The mean error has been obtained from 50 independent executions of the
algorithm (but with the same parameter values for the method), while the
best value corresponds to the results of the best execution from the 50 runs.

As the reader can see, mean errors are of order 1073 for both the RMSE
and F fitting errors, while the best results are of order 10™* for the three
examples in our benchmark. From these data we conclude that the method
works pretty well, as it is able to replicate the original shape with very good
accuracy for all examples in this paper.

These good numerical results are visually confirmed in Figures 7.2, 7.3
and 7.4, which represent graphically the three examples in our benchmark.
For each example, the figure above displays the cloud of original data points
displayed as black circles, while the best fitting surface is shown below. Each
surface in the bottom is displayed in green and then shaded with different
light sources the help the reader to identify the different features of the
surface, such as the hills and valleys and enhance the general visualization
of the fitting surface.

Notice that the clouds of points are very irregularly sampled, making
it hard (or impossible) to figure out the shape of the surface. Note also,
however, the good visual fitting between the original points and the approx-
imating surface for the three examples. They show that our method is able
to capture the underlying shape of data, even in the case of clouds with a
severe irregular pattern.
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7.6 Main Conclusions

This chapter addresses the problem of surface reconstruction problem by
using polynomial Bézier surfaces. This problem is strongly related to that
of surface parameterization, because the data fitting problem is only really
challenging when no parameterization is given, but considered to be a subset
of the unknowns of the corresponding optimization problem. In this sense,
our proposal to solve the surface reconstruction problem with polynomial
Bézier surfaces can be basically converted into that of solving the polyno-
mial Bézier surface parameterization from clouds of irregularly sampled data
points. This problem itself has many applications in several applied and in-
dustrial fields. It is also a very difficult mathematical issue; in fact, it leads
to a high-dimensional, nonlinear, overdetermined, continuous optimization
problem.

Our method for surface reconstruction is based in two main steps: surface
parameterization and surface fitting. The fist step is based on the applica-
tion of the bat algorithm to obtain a suitable parameterization of the fitting
surface from the data points. Then, surface fitting is carried out by means of
the least-squares methods for optimization of the values of the control points
of the approximating surface.

These two steps are repeated until the fitting error satisfies a prescribed
threshold error. Any time this condition does not hold, the procedure is re-
peated by applying a re-initialization of the bat algorithm in order to promote
diversity and improve the convergence rate.

To analyze the goodness of our scheme, it was applied to three examples
of Bézier surfaces. Other examples (omitted here due to keep the chapter
in manageable size) have also been tested with satisfactory results. Our
numerical and visual results confirm the good performance of this proposal
even for clouds of strong irregular patterns, a very challenging issue for many
optimization techniques.

In fact, the possibility to apply our method to noisy clouds of data points
is an important contribution with respect to some previous works in the field.
Many previous approaches tend to restrict themselves to clouds of points that
follow a strong quadrilateral structure. Although at first sight this is not an
important feature, it is very relevant in practical terms since it means that
we already have an internal topological structure that can be advantageously
used to determine a suitable surface parameterization without the difficulties
typically found in noisy clouds of data. Furthermore, such topological struc-
ture is often used to skip the parameterization step by simply considering
rather simple (even naive) strategies like projecting the data points onto a
reference plane, as the the cloud of points was always associated to a height
map. When the data points are affected by noise, these projection-based
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strategies tend to fail, because they do no longer maintain the squared struc-
ture. As a consequence, more powerful methods are required to solve the
parameterization issue. In this sense, the presented method is a significant
contribution to solve the general surface reconstruction problem, with poten-
tial applications to real-world problems where the noise in data is the norm
rather than the exception.
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Chapter 8

Surface Reconstruction with
Rational Bézier Surfaces

In the previous chapter we addressed the problem of surface reconstruction
from clouds of noisy data points with polynomial Bézier surfaces. We showed
that when no parameterization is assumed in the process, this issue leads to a
difficult nonlinear continuous optimization problem. Our proposal to tackle
this issue was based on two steps: in the first one, the bat algorithm was
applied to obtain a suitable parameterization of the approximating surface;
in the second step, we performed least-squares optimization to compute the
control points of the approximating polynomial surface and achieve surface
fitting.

The aim of the present chapter is to extend our previous method for
polynomial surfaces to the (more challenging) case of surface reconstructions
with rational Bézier surfaces. This problem is more difficult than it might
seem at first sight. The main reasons are:

e The free-form rational Bézier surfaces depend on many different sets
of variables (data parameters, poles, weights, surface degree) that are
qualitatively different regarding their behavior and their effect on the
fitting surface.

e Furthermore, all these sets of variables are strongly related to each
other in a highly complex and intertwined way, leading to a strongly
nonlinear continuous optimization problem.

e [t is also a multivariate problem, as it typically involves a large num-
ber of unknown variables for a large number of data points, the most
common case in real-world applications.

e Finally, the problem is also multimodal, i.e., the least-squares objective
function can exhibit many local optima, meaning that the problem

127
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might have several (global and/or local) good solutions.

Note that although our approach in this paper also relies on the bat
algorithm, the current problem is much more difficult and requires a more
sophisticated approach. In particular, in this work we propose a new method
where the bat algorithm is sequentially applied to compute the data param-
eters and the weights. This process is performed iteratively by injecting the
output of each bat algorithm as the input of the next one, and so on. Finally,
the poles are computed through classical least-squares optimization.

The structure of this paper is as follows: Section 8.1 introduces the prob-
lem to be solved. Section 8.2 describes some previous work in the field.
Then, the fundamentals about rational surfaces as well as the data fitting
problem with rational Bézier surfaces are discussed in Section 8.3. Section
8.4 describes our approach to solve this surface reconstruction problem with
rational surfaces. The computational results obtained by application of our
method to some illustrative examples are described in Section 8.5. Finally,
Section 8.6 reports the main conclusions of this work.

8.1 Introduction

As discussed above, the previous chapter addressed the problem of surface
reconstruction with free-form polynomial Bézier surfaces. In that case, the
problem consists of determining a suitable data parameterization, a very
important factor for a good fitting. The proposal to solve that problem
was based on the bat algorithm, to solve the parameterization step, while
least-squares optimization was applied to compute the control points.

In spite of these good results of that approach for several examples (see
our previous discussion in Section 7.5), the polynomial surfaces are still
strongly limited as they cannot adequately describe some particular shapes,
such as the quadrics. As a consequence, there is still a need for more powerful
and more general blending functions.

An interesting extension in this regard is given by the rational basis func-
tions, which are mathematically described as the quotient of two polyno-
mials. A remarkable advantage of this rational scheme is that the quadrics
and other shapes can be canonically described as rational functions. Unfor-
tunately, this rational approach becomes more difficult than the polynomial
one, since new parameters are now introduced into the problem. Conse-
quently, we are confronted with the challenge of obtaining optimal values for
many (qualitatively different) parameters, namely, data parameters, poles,
and weights. This leads to an even more difficult optimization problem, as
it will described in this chapter.
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8.2 Previous Work

The problem of surface reconstruction has been an important issue of research
for many years [29, 154, 157]. In many practical cases the only available in-
formation about the problem is a (typically dense and often unorganized)
cloud of noisy 3D data points obtained by using some sort of digitizing de-
vices. In that case, the reconstructed surface can be represented in three
different levels of accuracy:

e The coarsest representation is given by the polygonal mesh. in this
model, data points as used as vertices connected by lines (edges) that
work together to create a 3D model, comprised of vertices, edges and
faces. This representation is the first choice for many computer graph-
ics tasks, since it is very flexible and quicker to render and well suited
for dealing with current graphical cards. However, polygonal meshes
are never a truly faithful representation of a smooth surface. They are
merely linear approximations of curved shapes; as such, they only pro-
vide a coarse representation of real objects: in a polygonal mesh, curves
are approximated by linear segments, while surfaces are approximated
by triangular or quadrilateral flat polygons. In this sense, polygonal
meshes provide the lowest degree of accuracy, being mostly used for
coarse geometry and fast rendering. Surface reconstruction methods
with polygonal meshes can be found, for instance, in [46, 90, 91, 124,
148, 158] and references therein.

e The next level is given by the constructive solid geometry models (CSG
models). in this model, elementary geometries (such as spheres, boxes,
cylinders or cones) are combined in order to produce more elaborated
shapes by applying some simple (Boolean) operators: union, intersec-
tion, difference. Although often CSG (Constructive Solid Geometry)
presents a model or surface that appears visually complex, it is actu-
ally little more than a clever combination of simple objects by means
of rather simple operations. As such, it is also limited in terms of the
kind of objects it can represent: multi-branched, self-intersecting or
high-genus objects are very hard (if not impossible) to be constructed
with this technology. CSG models are barely applied to surface recon-
struction because their extreme simplicity is a limiting factor in order
to recover non-trivial shapes.

e The most sophisticated and most accurate level is described in terms
of the mathematical equation of the fitting surface, in particular, by
the free-form parametric surfaces. They provide the most sophisticated
and most accurate representation of smooth real-world objects. Among
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them, the rational surfaces are the most powerful free-form parametric
surfaces because of their flexibility, versatility, and the fact that they
represent well a wide variety of shapes in a very compact and intuitive
mathematical form. This is the preferred form for detailed surfaces,
since they faithfully represent real objects: using rational surfaces, a
sphere can be faithfully represented as a true mathematical sphere, not
a simple collection of flat polygons resembling a sphere.

Several papers in the literature addressed this problem through differ-
ent mathematical representations: subdivision surfaces [176], function recon-
struction [47, 178], implicit surfaces [128], algebraic surfaces [159], hierarchi-
cal splines [49], and so on.

However, in spite of all these references to previous work in the field, none
of the existing papers in the literature reports a method solving this problem
for rational Bézier surfaces. This fact clearly indicates the originality and
opportunity of this research work.

8.3 Description of the Problem

In this section we provide the reader with the mathematical description of a
rational Bézier surface. Then, we describe the problem of data fitting with
rational Bézier surfaces.

8.3.1 Mathematical background

We recall the reader that a free-form polynomial Bézier surface ®(t,s) of
degree (n,0) in R is given by:

®(t,5) = Y > Aol ()67 (s) (8.1)

i=0j=0

-----

tions ¢f(v) are the Bernstein polynomials of index r and degree p, given by:

and v is the function parameter, defined on the unit interval [0, 1].

The polynomial representation in Egs. (8.1)-(8.2) is not powerful enough
to represent a variety of shapes, particularly the quadratic surfacesor quadrics,
such as cones, cylinders, ellipsoids, paraboloids, hyperboloids, spheres, and
spheroids, which are very important in many different fields.
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One way to overcome this limitation is to use homogeneous coordinates
(see [38, 154] for details). The basic idea is to consider the projection of
the standard polynomial Bézier surface in R+, with new poles A};. The
resulting surface in R? is called a rational Bézier surface. Mathematically, this
surface can be described as a quotient of two bivariate polynomial functions.

In particular, a free-form rational Bézier surface W(t,s) of degree (n,0)
in R? is given by:

DD wi Aol () (s)
i=0 j=0
DD widl ()¢5 (s)

i=0 j=0

B(t,5) = (8.3)

where w; ; are positive scalar weights associated with the poles A; ;. Consi-
dering the rational bivariate Bernstein basis functions:

wr19, (1) 9] (s)

n

D) wi o ()67 (s)

i=0 j=0

EZ:;’@’S): (k=0,....,m;1=0,...,0) (8.4)

expression (8.3) can be rewritten as:

n o
W(ts) = > Y A BT (L s). (8.5)

k=01=0

Note that weights wy,; are the last coordinates of the homogeneous poles
AZJ. This new set of parameters provides us with additional degrees of
freedom for better shape approximation. However, they also increase the
model complexity because we introduce a new set of parameters that are
also to be computed.

8.3.2 The surface fitting problem

Let us suppose now that we are given a set of organized 3D data points
{A, 4} p=1. mq=1..n Inthis paper we assume that the data points are always
affected by measurement noise of low/medium intensity.

In this case, the problem consists of obtaining the rational Bézier surface,
W(t,s), of a certain degree (n, o) providing the best least-squares fitting of
the data points. This leads to a minimization problem of the least-squares
error functional T, related to the weighted sum of squares of the residuals:
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_ o -
m n 2 Z wi,in,jqb?(tp)(b?(sq)
T = minimize Z 2 A,y — Z:O;:OU . (8.6)
{(tp,sq)ip,q
{Ag Y5 p=lg=1 Wi i (¢ I(s
{wi;}i; ;)]z:;) 7]¢z ( p)¢j ( q)

The case of unorganized data points can be handled in a similar way. Let
now {A5}5:1 . be a set of unorganized 3D data points in R?. In this case,

the minimization problem of the least-squares error functional T becomes:

_ S 2]
) D D wighig o] (te) o] (se)
T = minimize 2 Ay — Z:ngoa : (8.7)
{tehe _ o
foele ¢=1 Z 2 wi @3 (te) 7 (se)
{Aivjiivj i=0j=0
Wi,j 1,5 — B

Note that solving either (8.6) or (8.7) (for organized or unorganized data
points, respectively), requires to compute all parameters, i.e., poles {A; ;}; ,
weights {w; ;}i;, and parameters {(¢,,5,)},4 Or {te}e and {s¢}¢ (associated
with data points {A, ,},, or {A¢}e, respectively) of the approximating sur-
face.

It is obvious that, since each blending function in (8.2) and (8.4) is non-
linear in ¢ and s, the problem (8.6) or (8.7) becomes highly non-linear. It
is also a continuous problem, since all parameters are real-valued. In many
practical cases the number of data can be extremely large, meaning that
we are also confronted with a high-dimensional problem. The problem is
also multimodal, since there might be arguably several optima of the target
function.

In summary, we have to deal once again with a difficult multimodal, high-
dimensional, continuous, nonlinear optimization problem. Unfortunately, the
classical optimization techniques cannot solve this problem in all its gener-
ality. Instead, only partial solutions have been reported in the literature so
far. Clearly, more powerful strategies are needed to tackle this issue. The re-
search work reported in this chapter aims at filling this gap with the approach
described in next section.

8.4 The Proposed Method

As discussed above, our problem consists of reconstructing the underlying
shape of a cloud of noisy 3D data points by using a rational Bézier sur-
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Figure 8.1: Graphical workflow of the proposed method for rational Bézier
surface reconstruction.

face, leading either to functional (8.6) or (8.7). Solving this problem requires
to compute three different sets of unknowns: data parameters, poles, and
weights. The proposed method to tackle this issue is a hybrid strategy com-
bining the bat algorithm described in Section 4.9 and the least-squares min-
imization. As it will be discussed later on, it consists of three major steps:
data parametrization, weight computation, and data fitting.

Figure 8.1 shows the graphical workflow of our proposal. The different
steps of the method are enclosed in areas of different background color. The
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name of the different phases is also displayed in different colors for easier
visual identification. In general, the text color is similar to the background
color of the corresponding area, but with a darker tone. The arrows from
top to bottom show the flow of work for the different steps in the method.

The method can be summarized as follows: assuming a certain surface
degree (n,0), the method starts with the initialization process, where the
data parameters {(,, s4)},.4, the poles {A; ;}; ; and the weights {w; ;}; ; are all
initialized with random uniform values over their respective domains. Then,
we apply the bat algorithm iteratively to perform data parameterization and
weight computation, as described in Section 8.4.1. Then, data fitting is
performed via least-squares to compute the poles of the surface, as described
in Section 8.4.2. Some further improvements on this scheme are discussed in
Section 8.4.3. Finally, the issue of parameter tuning for the bat algorithm is
discussed in detail in Section 8.4.4.

8.4.1 Data parameterization and weight computation

First two steps of our method are data parameterization and weight com-
putation. They are displayed on the right part of Figure 8.1 in background
colors light brown and cyan, respectively. In the figure, the different data
parameters are represented by a single symbol p; for simplicity. Similarly,
the weights are represented by symbol w;. The super-script B is used to
mean that the surface is a standard (i.e., polynomial) Bézier surface, while
super-script R means the surface is rational.

The goal of data parameterization is to obtain an association between
the set of parameters {t,, s}, , and the data points {A,,} . At its turn,
weight computation seeks to compute the best values for the weights {w; ;}; ;.
Note that although both sets of variables are quite different in nature, they
are not actually independent of each other, because the parameterization
affects the values of the weights, and conversely. This means that they can-
not be computed independently; instead, both steps are to be carried out
simultaneously.

In our method, data parameters and weights are computed by using an
iterative sequential procedure where at each iteration one set of variables
is initially computed and their values are then subsequently used as input
values to obtain the remaining set of variables. This sequence is performed
iteratively until a prescribed stopping criterion is reached.

Let us now explain our method in detail. The initial input of our method
is the surface degree (1, o) along with the cloud of data points, {A, 4}, . To
apply the bat algorithm, the population of bats, representing the candidate
solutions of our minimization problem, corresponds to the sets of unknown
variables. Since we have to deal with two sets of parameters and owing to
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the matrix structure of the data parameters, we consider three populations of
bats, namely, 7 = {t}., S = {sa}a, and W = (({wi;}:;)T), where t. = {t5},,
sq = {sd}, () denotes the vectorization of a matrix (the linear transformation
that converts the matrix into a column vector by stacking its columns on top
of one another) and (.)7 denotes the transpose of a vector or matrix.

All data parameters in t. (resp. s,4) are initialized with random numbers
within the hypercube [0, 1]™ (resp. [0,1]") and then sorted to replicate the
structure of data points. The weights in W are randomly initialized within
the search domain (0,100] 9> +1),

We also set the value of parameters of the bat algorithm (see Section 8.4.4
for details). Regarding our stopping criterion for the bat algorithm, we run
this procedure until no further improvement is reached after 30 consecutive
generations.

The sequential procedure begins with data parameterization for the poly-
nomial Bézier surface according to the procedure described in our previous
Chapter 7. That procedure applies the bat algorithm with the initial ran-
dom population in 7 and S to obtain an initial data parameterization for
the polynomial surface, denoted by t2 and s%, where the superscript is used
to indicate the iteration of our iterative sequential process'. This parameter-
ization is used as an initial seed to compute a set of weights for the rational
Bézier surface by applying the bat algorithm with the random set W.

Let us now call the resulting optimal weight vector w?. Now, we start the
iterative process of the sequence data parameterization—weight computation.
For every iteration 0, we consider the following procedure:

(S1) data parameterization: run the bat algorithm for the data parameters
by using the populations 7° and S° for the optimal vector wo~!. This
step yields the new optimal vectors t2 and s°.

(S2) weight computation: run the bat algorithm for the weights by using the
population W? for the optimal vectors t° and s obtained in step (S1).
This step yields the new optimal vector w?.

(S3) Repeat the sequence (S1)-(S2) until there is no further improvement of
the resulting solution.

As a consequence, this procedure returns the optimal values for the data
parameters and the weights, denoted by t,, s, and w,, respectively. They
are used to compute the poles, as described in next section.

!The reader is kindly warned about the difference between the number of iterations of
the bat algorithm, called generations in this chapter, and the number of iterations in our
iterative procedure of the sequence: data parameterization—weight computation.
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8.4.2 Data fitting

In this step, we calculate the surface poles {A, ;};; using the t,, s,, and w,
obtained in previous section. Using (8.5), Eq. (8.6) can be rewritten as:

A=EA (8.8)
where A = <({Ap7q}p,q)T>, A = <({Az~,j}z~,j)T>, and where the matrix 2

represents the vector of all rational basis functions given by Eq. (8.4) at the
best parameter values, given by:

Note that vector A has a length m x n while vector A has length (n+1) x
(0 + 1), so the system (8.8) is over-determined, meaning that no analytical
solution can be obtained. Pre-multiplication of both sides by E' gives:

ETA=ETE (8.9)

which can now be solved numerically by a classical linear least-squares min-
imization. From a computational point of view, it can be obtained by either
LU decomposition or singular value decomposition (SVD). In this work, we
choose SVD because it returns the best answer of this least-squares prob-
lem. To this purpose, SVD computes the generalized inverse (also known as
Moore-Penrose pseudo-inverse) of E, denoted by E*. Then, A = ET.A is
the least-squares solution of this data fitting problem.

8.4.3 Further improvements

We introduce some modifications on the original procedure described above
to further enhance the performance of our method:

e we improve the memory capacities of the method through elitism: the
best state from the current generation is always preserved unaltered for
the next generation. The effect of this new feature is to improve the
convergence rate with respect to the standard (non-elitist) version of
the bat algorithm.

e we add a new operator related to the domain of the problem. This extra
functionality checks whether a new generated solution at generation g
goes outside the search domain of the problem and sends it back into
the search space whenever it goes away. To do it, we consider a uniform
random convex combination of the solution at generation g—1 (assumed
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Range of | Chosen
Symbol Meaning Values Value
P population size 10 — 200 100
G | KRN DUDEL 035000 | 7000
of generations
A° initial loudness (0,2) 0.5
Aonin | minimum loudness (0,1) 0.1
r? initial pulse rate [0,1] 0.5
fmaez | maximum frequency [0,10] 2
« multiplicative factor (0,1) 0.3
Y exponential factor [0, 1] 0.3

Table 8.1: Parameters and values used in our method.

to be inside the search domain) and the projection of the new solution
at generation g outside the search domain on the domain boundary.
Clearly, the resulting solution of this convex combination is inside the
search domain and does not modify the probability of the boundary at
all.

e finally, we speed up the bat algorithm execution by considering two
stopping criteria working simultaneously: the bat algorithm procedure
stops when it reaches a maximum number of generations or when no
further improvement is reached after 30 consecutive generations, what-
ever comes first.

These new features improved the performance of our approach significantly
in terms of computational time and quality of results.

8.4.4 Parameter tuning

The different parameters used in our method are arranged in rows in Table
8.1. For each parameter, the table shows (in columns) its symbol, meaning,
range of values, and the parameter value chosen in this chapter.

It is worthwhile to introduce a comment about the maximum number
of generations. We tested our method for values of this parameter in the
range 100 — 10000 and found that the method converged in less than 5000
generations in all our executions. We finally set this parameter in 7000 gener-
ations, but to prevent wasting computation time without any improvement,
we also set an additional termination criterion: the method stops if no fur-
ther improvement of the solution is reached after 30 consecutive generations,
even although the total number of generations is less than 7000. With this
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Surface # data RMSE T
Ezxample points fitting error fitting error
1.010108E-2 (mean) | 1.072931E-1 (mean)
7.896673F-3 (best) | 6.547533E-2 (best)
3.024972E-3 (mean) | 4.483726E-2 (mean)
1.400709E-3 (best) | 9.613742E-3 (best)
7.0242041E-3 (mean) | 7.894311E-2 (mean)
4.701495E-3 (best) | 3.536649E-2 (best)

height-map | 30 x 35

twisted shape | 70 x 70

apple 40 x 40

Table 8.2: The three examples in this chapter with their number of data
points and the mean and best RMSFE and T errors.

additional criterion, the computation times improved significantly without
penalizing the quality of the final solution.

With this choice of parameters, the bat algorithm is run iteratively for a
given number of generations or until the convergence of the minimization of
the error is eventually achieved. Final positions and velocities of the bats are
computed and ranked according to our fitness function Y. The position of the
global best (t,,s., w,, A,) is taken as the final solution of our minimization
problem.

8.5 Experimental Results

The method described in previous section has been applied to several exam-
ples. In this section we describe only three of them to keep the paper in
manageable size. We think, however, that the examples reported here will
be useful to readers to determine the good applicability of our method to
this problem.

The examples correspond to three quite different free-form shapes: a
height-map surface, a complicated twisted shape, and a closed organic shape.
They have been primarily chosen because they reflect the great variety of
shapes to which our method can be applied. First example exhibits several
oscillations and changes of curvature, while the second and third examples
show very complicated shapes which are not well suited for polynomial re-
construction. In this sense, these examples are a good benchmark to check
the performance of our rational reconstruction approach. In all cases, data
points are affected by noise of medium intensity and irregular sampling, so
they actually replicate the usual conditions of real-world applications at full
extent.

The three examples in our benchmark are arranged in rows in Table 8.2.
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Figure 8.2: Application of our method to a height-map example: (top) cloud
of data points; (middle) best fitting rational Bézier surface; (bottom) com-
bination of the cloud of data points and their best fitting surface for better
visualization.
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Figure 8.3: Application of our method to a twisted shape example: (left)
cloud of data points; (middle) best fitting rational Bézier surface; (right)
combination of the cloud of data points and their best fitting surface for
better visualization.

For each example, the table shows (in columns) the number of data points
used in our experiments along with the mean and the best fitting errors
for T (given by Eq. (8.6)) and RMSE (root-mean square error), given by:

T
RMSE = A/ ——. The mean error has been obtained from 50 independent
mn

executions of the algorithm, while the best value corresponds to the results
of the best execution from the 50 runs.

First example corresponds to an academic shape representing a height-
map surface. As such, it is a relatively simple shape that can arguably
be reconstructed with a polynomial fitting surface. Yet, the shape is more
difficult than it may seem at first sight, because it exhibits several oscillations
and changes of curvature and it is strongly affected by measurement noise
and irregular sampling.

These challenging features are clearly visible in Figure 8.2(top), where
the noisy cloud of data points is displayed. The best fitting rational Bézier
surface we obtained is displayed in Fig. 8.2(middle). We also combine both
pictures in Fig. 8.2(bottom) for the sake of comparison. As the reader can
see, the surface fits the cloud of data points quite well, even although the
cloud of points of this example is strongly affected by measurement noise and
irregular sampling.

Second example corresponds to a complicated open twisted shape, repre-
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sented in Figure 8.3 (the description of the pictures in this figure is similar to
the previous example - but placed from left to right - and will be omitted here
to avoid redundant material). This example is very difficult to reconstruct
by using a strictly polynomial surface. In this example, we consider a set of
70 x 70 data points, which are affected by a medium-intensity measurement
noise. The best fitting surface is displayed in Figure 8.3(middle) and on the
right along with the data points. As the reader can see from Table 8.2, we
obtained values of order 1072 ~ 1073 for the mean error and of order 1073
for the best error of the RMSE and T fitting errors.

Third example corresponds to the closed shape of an apple, represented in
Figure 8.4. In this example, we consider a set of 40 x40 data points affected by
noise of medium intensity. This example is particularly challenging because
it contains a number of very difficult features. On one hand, it is a closed
surface in vertical and horizontal directions, so it cannot be reconstructed by
using only polynomial surfaces. In addition, it contains some turning points,
where the surface is no longer differentiable. It is also greatly affected by
irregular sampling. In fact, as the reader can see in Figure 8.4(top), the data
points are not regularly distributed at all.

In spite of all these challenging features, the method performs very well,
being able to replicate the original shape with high accuracy. Note, for
instance, the good visual matching between the original data points and the
approximating rational Bézier surface in Figure 8.4(bottom).

From the analysis of our numerical and graphical results we conclude that
the method works pretty well, as it is able to replicate the original shape with
very good accuracy for the examples in this paper. The numerical fitting er-
rors are of order 1071 ~ 1072 for the three examples in our benchmark. These
results are also confirmed visually: in all cases, there is a good visual fitting
between the original points and the best approximating rational surface, even
for clouds with a severe irregular pattern.

8.6 Main Conclusions

This method introduced in this chapter for surface reconstruction with ra-
tional Bézier surfaces is an extension of the method introduced in previous
Chapter for the case of polynomial Bézier surfaces. In that chapter, we in-
troduced a new method for polynomial Bézier surface parameterization from
clouds of irregularly sampled data points. The approach was based on the
application of the bat algorithm to compute a suitable parameterization for
the optimal fitting surface. In this chapter, the previous method has been
substantially extended to solve the problem of surface reconstruction with
rational surfaces. The motivation for this work is that there are many impor-
tant shapes (such as the quadrics) that cannot be adequately reconstructed
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through polynomial surfaces. This problem can be solved by using rational
surfaces, which provide a canonical representation of such shapes. However,
this rational case becomes much more complicated because new variables
(the weights) have also to be calculated in addition to the parameterization
problem. In fact, the rational Bézier surfaces have not been usually applied
to surface reconstruction so far. This is one of the major contributions of
this chapter.

To address this issue, this chapter proposed a new approach in which the
bat algorithm is sequentially applied to compute the data parameters and
the weights. This process is performed iteratively by using the output of each
bat algorithm as the input of the next one, and so on. Finally, the poles are
computed through classical least-squares optimization.

Our method has been applied to a benchmark of three illustrative ex-
amples exhibiting challenging features. Our experimental results show that
the method performs very well, and we can recover the underlying shape of
very difficult surfaces with very good accuracy even for clouds of data points
affected by strong measurement noise and irregular sampling, two very chal-
lenging features for many optimization techniques.
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Figure 8.4: Application of our method to a closed organic shape: (top) cloud
of data points; (middle) best fitting rational Bézier surface; (bottom) com-
bination of the cloud of data points and their best fitting surface for better
visualization.
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Chapter 9

Memetic Approaches for Curve
Reconstruction with
Polynomial Bézier Curves

In the previous Chapter 5 we addressed the problem of curve parameteri-
zation for data fitting with polynomial Bézier curves by applying the bat
algorithm. Although we obtained pretty good results on a number of ex-
amples, the method can still be further improved by considering a memetic
approach, in which the global search bat algorithm is hybridized with a lo-
cal search procedure to enhance the exploitation phase of the minimization
process (see our discussion about the much-needed trade-off between the op-
posing features of exploration and exploitation for metaheuristic algorithms
in Chapter 4 for details).

In this chapter we extend the research work carried out in Chapter 5
by considering two local search strategies: Luus-Jaakola and adaptive step
size random search (ASSRS for short). In both cases, the adaptive and self-
adaptive versions are considered, leading to four different memetic schemes.
Then, a comparative analysis of our results on a benchmark for these four
memetic schemes and our previous method is carried out. To allow fair
comparison, we consider the same examples of the benchmark in previous
Chapter 5. Our computer simulations show that the memetic approaches
improve the efficiency of the bat algorithm method at different extent for all
instances in our benchmark.

The structure of this chapter is as follows: in Section 9.1 we describe
the local search strategies used in this chapter along with their adaptive and
self-adaptive versions. The proposed memetic approaches introduced in this
thesis are described in Section 9.2. Then, a comparative analysis of the four
memetic approaches introduced in this chapter and the previous method
in Chapter 5 is reported in Section 9.3. The paper closes with the main
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conclusions of this contribution, reported in Section 9.4.

9.1 Local Search Procedures

Many real-world problems require to perform nonlinear optimization of very
complicated objective functions. Furthermore, no analytical solution for
these objective functions is commonly available, so we have to rely on numer-
ical methods instead. In such cases, we usually apply a search algorithm, in
which the objective function is first evaluated on a trial solution, even if it is
far from the optimal solution; then, the quality of the solution is sequentially
improved by perturbation of the initial solution according to some math-
ematical and/or stochastic procedures, formulas, rules, or heuristics until
convergence (or a sufficiently good value) is attained.

We all know a myriad of methods to carry out this task, such as Newton
and quasi-Newton methods, conjugate gradient methods, steepest descent,
perturbation stochastic approximation, interior point methods, and so on.
However, most of them impose strong constraints on the class of feasible
functions, such as differentiability, continuity, and the like. Although they
perform pretty well in many cases, such constraints are not generally met for
some given problems. In such cases, we need to apply alternatives strategies
for optimization, such as the direct search methods. The trademark of search
direct methods is that no derivatives of the objective function are involved
in the optimization process. As a consequence, they can be applied to un-
supervised learning, where no initial information about the optimal solution
is available. Clearly, the data fitting addressed in this thesis is one of such
problems.

It is well-known that the success of bio-inspired techniques such as the
bat algorithm relies largely on an adequate trade-off between two opposite
terms: exploration and exploitation. The former accounts for diversification,
i.e., to generate diverse solutions so as to explore the search space on a global
scale of the solution domain, while the latter accounts for intensification, i.e.,
to concentrate the effort in a local region around a current good solution
searching for better solutions in its neighborhood.

In our previous work in Chapter 5 for data fitting with polynomial Bézier
curves we propose to apply the bat algorithm to solve the global search
optimization problem. In other words, we focused on the exploration phase,
while the exploitation can still be further improved with the addition of a
local search procedure. This is the main contribution of the research work in
this chapter.

There are many local search procedures available in the literature such
as hill climbing, random optimization, random search, pattern search, iter-
ated local search, and many others (see, for instance, the nice book on the
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subject in [89]). Obviously, the choice of the local search method depends on
the particular problem under study. There are, however, some local search
procedures especially suited for continuous optimization problems. In this
paper, we hybridize our bat algorithm method for global optimization intro-
duced in Chapter 5 with two direct search methods, namely, Luus-Jaakola
and ASSRS. They are described in next paragraphs.

9.1.1 Luus-Jaakola local search method

The Luus-Jaakola local search method (LJLS) is a heuristic for optimiza-
tion of real-valued functions. This heuristics, firstly proposed by Luus and
Jaakola in 1973 to solve nonlinear programming problems [132], starts with
an initialization step, where random uniform values are chosen within the
search space. To this aim, we compute the upper and lower bounds for each
dimension. Then, a random uniform value in-between is sampled for each
component. This value is added to the current position of the potential so-
lution to generate a new candidate solution, which replaces the current one
if and only if the fitness at the new position is better than that at the pre-
vious position. Otherwise, the sampling space is multiplicatively decreased
by a factor, assumed to be constant in many instances. In practice, however,
we found that it is better to consider an adaptive size for this factor, with
the effect of speeding up the convergence to the steady state. This process
is repeated iteratively. With each iteration, the neighborhood of the point
decreases, so the procedure eventually collapses to a point.

This heuristics has been successfully applied in many fields, particularly
in the domains of chemical engineering and optimal control. It can be proved
that if the objective function of the optimization problem is C?, the Luus-
Jaakola method generates a sequence that has a convergent sub-sequence
[75]. More interesting for our discussion is the fact that this heuristics is very
well suited for optimization problems whose underlying functions are neither
convex nor differentiable. Consequently, it can be successfully applied to our
optimization problem without any limitation.

9.1.2 Adaptive step size random search (ASSRS)

The adaptive step size random search (ASSRS) is a member of the class of
random search methods, a family of direct search methods based on sampling
from a hypersphere surrounding the current position and then evolving itera-
tively to better positions in the search space [164]. The basic idea of random
search is to initialize a random position in the search space, then sampling
from the hypersphere of a given radius surrounding the current position to
generate a new position. The value of the fitness function at this new posi-
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tion is compared with the value at the current one. Whenever a better value
is obtained, the new position is accepted; otherwise, the current one prevails
and the process is repeated again. This strategy is applied iteratively until
a steady-state (convergence or near-convergence) is attained.

Random search is a set of methods rather than a single method itself.
Among the multiple variations of random search, the ASSRS has become very
popular because of its ability to tune the hypershpere radius adaptively [177].
Instead of considering just one new position, two new potential positions are
generated, one with the current nominal step size and another with a larger
step size. The larger step size will become the new nominal step size should it
lead to further improvement. If for a prescribed number of iterations neither
of the steps leads to any improvement, the nominal step size is reduced
according to a given factor.

A relevant issue is how to generate the sampling from the hypersphere so
that it follows a uniform distribution. This issue is not trivial as the simple
application of uniform random distributions on the variables in spherical
coordinates returns a set of points bunched near the poles. Other popular
methods for uniform sampling in the 3D sphere such as the Marsaglia method
[137] can only be generalized to up to the 4-dimensional sphere but not
beyond.

A feasible solution to this problem is the re-parameterization of the spher-
ical coordinate variables. However, this method is difficult to achieve in
high-dimensional spaces and it is also computationally expensive. Also, a
Monte Carlo method can be applied, but its computational time increases
drastically for large dimensions.

In this chapter, we applied a very efficient method consisting of the use of
Gaussian random distributions (as many as the dimension of the hyperspace)
modulated by the square root of the sum of the squares of the hyperspace
coordinates. This method generates a uniform distribution over the hyper-
sphere [137, 147]. It also provides the best performance in terms of accuracy
for high dimensional systems while simultaneously exhibiting linear compu-
tational time.

9.1.3 Adaptive and self-adaptive variants for local search

As disussed in previous paragraphs, the two local search methods considered
in this paper depend on some control parameters (mainly, the step size, the
total number of iterations and the number of iterations for a fixed step size).
In their simplest version, we can merely assume they take constant values
and run the algorithm. However, this strategy is far from optimal in many
cases.

In general, the choice of suitable values for the control parameters is
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strongly problem-dependent. Therefore, the performance of local search
strategies can improve dramatically when some kind of adaptive step size
is considered. In this chapter, we consider two different options for the
choice of control parameter values: adaptive tuning and self-adaptive (SA)
tuning. In the former case, the parameter values are applied according to
prescribed scaling factors. In the latter, we apply some kind of self-adaptive
procedure for better parameter tuning. The combination of the two local
search strategies with their adaptive and self-adaptive versions leads to four
different memetic approaches: the adaptive and self-adaptive Luus-Jaakola
methods (tagged as ALJLS and SALJLS, respectively), and the adaptive
and self-adaptive step size random search (tagged as ASSRS and SASSRS,
respectively).

In this chapter, the following settings for the adaptive versions are used:
the decreasing multiplicative factor ¢ for the Luus-Jaakola method is set to
0.95, while the larger radius R and smaller radius r for the ASSRS method
are set to 1.05p and 0.95p respectively, where p denotes the current radius
value. In both methods, the total number of iterations for the local search
method is denoted by 7, and the number of iterations for any fixed value
of the control parameter ¢ or r (for Luus-Jaakola and ASSRS respectively)
is denoted by ¢. For this work, the following values are taken: 7 = 100,
0 = 25. This choice is fully empirical as it worked very well in our computer
simulations.

Regarding the self-adaptive versions, the control parameters are tuned
according to some evolution equations. For the Luus-Jaakola method, we
consider a perturbation law driven by:

C(t)=¢(t—1) (1 - 1)0.1

T

with {(1) = 0.99, where ¢ denotes the current iteration. The meaning of this
formula is that we start with a high multiplicative value, e.g. { = 0.99, which
corresponds to a system where the search space is barely reduced, leading to
extensive exploration, and gradually reduce its size to lower values near to 0,
where the system performs intensive exploitation around the local optima.
This process is repeated iteratively. With each iteration, the neighborhood
of the point decreases, so the procedure eventually collapses to a point. Note
that many other functions can be used instead of this proposal as long as
they keep a similar behavior pattern.

For the SASSRS, we consider two perturbation rules for the larger, R,
and the smaller radius, r, as follows:

R(t) = R(t — 1) (1 + T_t>1/4

507



150Chapter 9. Memetic Approaches for Curve Reconstruction with Polynomial Bézier Curves

and

r(t) =r(t—1) (1 B t;T1>1/3

respectively, with R(1) = r(1) = p. The meaning of these formulas is that,
starting with two initial values equal to the nominal value, R (resp., r) is
iteratively increased (decreased) at relatively fast pace at the beginning and
then at slower pace as time increases to promote exploration (exploitation)
of the search space over the iterations. Once again, these formulas can be
replaced by others following a similar pattern.

9.2 The Proposed Method

As an extension of our previous method described in Chapter 5, our approach
here is comprised of two main stages. In next paragraphs we describe each
of these steps in detail.

9.2.1 First stage: global search of the optimal solution

The first stage of our method is focused on the global optimization step. In
it, we apply the bat algorithm to determine suitable parameter values for
the least-squares minimization of functional E according to (5.6). To this
aim, each bat, representing a potential solution, corresponds to a parametric
vector T; = (t,15,...,t5) € [0,1]™, (j = 1,...,P) and the {t/};; . are
strictly increasing parameters. These parametric vectors are initialized with
random values and then sorted.

We then apply our bat algorithm method with the same parameters values
described in Chapter 5. These parameter values are fully reported in Table
5.1 and their choice is discussed in Section 5.4.2. This procedure yields new
positions and velocities of the bats representing the potential solutions of
this optimization problem. The process is performed iteratively for a given
number of generations, until the convergence of the minimization of the error
is eventually achieved.

9.2.2 Second stage: local search refinement

In the second stage, the best solution obtained from the first stage is it-
eratively refined by application of the local search procedures described in
Section 9.1. But instead of generating just a new perturbed solution from
the current one, we consider a collection of p.n new solutions, where 7 rep-
resents the number of free variables of the optimization problem and pu is a
positive real multiplicative factor with the meaning of increasing (1 > 1) or
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decreasing (p < 1) the number of clones of the best solution attained so far
and subjected to local perturbation.

Note that increasing the value of u also increases the computational com-
plexity of every iteration, but could arguable reduce the number of iterations
required for convergence, while decreasing this value has exactly the oppo-
site effect. Therefore, an adequate trade-off between both cases is generally
required. However, the determination of an optimal value for this parameter
is once again problem-dependent and must be performed empirically.

In this work, we take ;i = 4 as it provided a reasonable balance between
these two competing factors, although other values close to this one might
also be acceptable. The local search procedures are then applied for the
number of iterations indicated in Section 9.1.3. At each iteration step, the
pool of solutions is ranked according to our fitness function and the best one
is preserved unaltered for the next iteration. Once the iteration loop is over,
the best global solution achieved so far is selected as the final solution of our
problem.

9.3 Experimental Results

The four memetic approaches described in previous section have been applied
to some illustrative examples corresponding to 2D and 3D curves. Then,
these results have been compared to those obtained with other alternative
methods. To allow a fair comparison, in this discussion we consider the same
examples of the benchmark in the previous paper, shown in Table 9.1, where
the three examples selected are arranged in rows. For each example, the table
shows (in columns) the number of data points used in our experiments along
with some other interesting features: whether or not the curve includes any
non-differentiable point (such as cusps) or self-intersections, which usually
represent challenging features for data fitting techniques. It also reports the
dimensionality of both the curve (2D/3D) and the optimization problem, the
latter given by the number of degrees of freedom, DOFs for short (i.e. the
number of variables to be minimized).

These examples have been primarily chosen to reflect the diversity of
situations our method can be applied to. First example corresponds to a
planar closed curve called epitrochoid, which has several self-intersections;
second example shows a curve called piriform, a planar closed curve with a
cusp; and last example corresponds to a 3D closed curve called the Viviani
curve.

Table 9.2 reports our numerical results. Once again, the three examples
are arranged in rows in first column. For each example and each method
applied, we compute:
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Example # data | C° | Self-int. | 2D/3D | Total
number: points | points | curve curve | DOFs
#1: Epitrochoid 300 X v 2D 332
#2: Piriform 100 v X 2D 110
#8: Viviani 200 X v 3D 214

Table 9.1: Benchmark used in this paper along with the main features of each
example.

e the mean and best error of the functional F according to Eq. (77),
represented by E™ and E°, respectively, and

e the mean and best value of the root-mean square error, given by:

A=l
m

represented by A™ and A’ respectively.

The mean error has been obtained as the mean fitting error value from
50 independent executions of the algorithm, while the best value corresponds
to the results of the best execution from the 50 runs. The different methods
considered in this comparison are arranged in columns. The methods are
(from third to ninth column respectively): the arc-length parameterization
(denoted by AL), the firefly algorithm (FFA), the original bat algorithm ap-
plied in Chapter 5, and the four bat algorithm memetic approaches, denoted
by bat-ALJLS, bat-SALJLS, bat-ASSRS, and bat-SASSRS, respectively.

A simple visual inspection of Table 9.2 shows that the four memetic ap-
proaches improve the previous bat algorithm for all instances in our bench-
mark. This is not very surprising, since the local search has been designed
to refine the solution obtained from the single bat algorithm.

We also remark, however, that the improvement is not dramatic, a clear
indication that the previous best solution was already pretty good. In fact,
we noticed that the new best solutions are virtually indistinguishable with
respect to the previous ones from a graphical point of view. This is the reason
we did not include any graphical output in this paper. As a consequence, we
have to rely exclusively on our numerical results for this comparative work.

From Table 9.2, we obtained the following conclusions:

1. In general, the new methods perform very well, with average fitting
errors of order 107 ~ 1075 (mean) to 1075 ~ 1076 (best) for the E
error, with A of order 1073 ~ 10™* (mean) to 10~ (best) for the three
examples in our benchmark,
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2. the four memetic algorithms improve previous results obtained with
the single bat algorithm,

3. Of the four memetic approaches, the self-adaptive versions perform bet-
ter than the adaptive ones. This shows the ability of the self-adaptive
schemes to effectively capture the inherent dynamical behavior of the
optimization problem and select suitable values accordingly.

4. At its turn, the ASSRS method outperforms the Luus-Jaakola method
for this particular problem.

In conclusion, the memetic methods discussed in this paper outperform
previous approaches for this optimization problem, but not dramatically.
However, they are simple to apply, easy to compute and do not add much
extra time to our previous computations. Based on these appealing features,
it is advisable to include them in future works in the field.

9.4 Conclusions

In this paper we extended our previous method developed for our curve re-
construction problem described in Chapter 5 of this thesis to address the
problem of computing the fitting curve from a cloud of data points. The
previous approach, based on the application of the bat algorithm to compute
an optimal parameterization of the Bézier curve that fits the data points
better in the least-squares sense, has been improved by hybridizing it with
local search methods for better performance. The rationale of this approach
is that the bat algorithm performs global search, which can be further re-
fined with a local search procedure to enhance the exploitation phase of the
optimization process.

In this chapter two local search strategies have been considered: Luus-
Jaakola and adaptive step size random search (ASSRS). In both cases, the
adaptive and self-adaptive versions are considered, leading to four different
memetic schemes. A comparative analysis of our results on the previous
benchmark for these four memetic schemes and our previous method has
been carried out.

Our experimental results on the chosen benchmark show that the memetic
approaches improve the efficiency of the previous method at different extent
for all instances in our benchmark. In this regard, the main observations from
our computer experiments are that the self-adaptive version outperforms the
adaptive one in all cases, and that the ASSRS version outperforms the Luus-
Jaakola approach on our benchmark.

Finally, based on the good properties of these local search methods (sim-
ple to apply, easy to compute, and do not require too much time to be
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computed), we conclude that it is advisable to include them in the future
developments in the field.
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Curve: | Error: AL FFA Bat alg.

E™ | 5.342768¢e-3 | 4.526912¢-4 | 4.065316e-4

41 EY 9.017334e-4 | 1.034348e-4 | 7.254377e-5

A™ 4.220097e-3 | 1.228401e-3 | 1.164089¢-3

AP 1.733371e-3 | 5.871819¢-4 | 4.917444e-4

E™ | 5.532432¢e-4 | 3.187544e-5 | 3.206772e-5

49 E? 5.113864e-5 | 1.283742¢-6 | 1.378186¢-6

A™ | 2.352112e-3 | 5.645833e-4 | 5.662837¢-4

AP 7.151128e-3 | 1.113302e-4 | 1.173962e-4

E™ 8.174659¢e-4 | 2.186931e-4 | 2.192432¢-4

43 E? 9.364587e-5 | 4.624328e-5 | 3.527668¢e-5

A™ | 2.021714e-3 | 1.045689¢-3 | 1.047003e-3

Ab 6.842728e-4 | 4.808496e-4 | 4.199802¢-4
Curve: | Error: | Bat-ALJLS | Bat-SALJLS | Bat-ASSRS | Bat-SASSRS
E™ | 4.013983e-4 | 3.914077e-4 | 3.974936e-4 | 3.859365¢-4
41 E? 7.198663e-5 | 7.142691e-5 | 7.173112e-5 | 7.085943e-5
A™ 1.156717e-3 | 1.142231e-3 | 1.151077e-3 | 1.134219e-3
AP 4.898524e-4 | 4.879443e-4 | 4.889823e-4 | 4.860021e-4
E™ | 3.191537e-5 | 3.185641e-5 | 3.189336e-5 | 3.164710e-5
49 E? 1.385526e-6 | 1.354716e-6 | 1.381075e-6 | 1.239567e-6
A™ 5.649368e-4 | 5.644148e-4 | 5.647420e-4 | 5.625575e-4
AY 1.177083e-4 | 1.163922¢-4 | 1.175191e-4 | 1.111335e-4
E™ 2.189953e-4 | 2.186433e-4 | 2.190122e-4 | 2.171532e-4
49 E? 3.495816e-5 | 3.526701e-5 | 3.511887¢-5 | 3.131206e-5
A™ 1.046411e-3 | 1.045570e-3 | 1.046451e-3 | 1.042001e-3
AP 4.180798e-4 | 4.199226e-4 | 4.190397e-4 | 3.956677e-4

Table 9.2: Fitting errors for the examples used in this paper (in rows): E error
and A for the mean and best results from 50 executions for the arc-length,
firefly algorithm, bat algorithm and the four bat algorithm memetic ap-
proaches (bat-ALJLS, bat-SALJLS, bat-ASSRS, bat-SASSRS) in this chap-

ter (in columns).
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Chapter 10

Conclusions

The aim of this chapter is twofold: on one hand, it summarizes the main
contributions of the research work carried out for this doctoral thesis. They
are described in Section 10.1. The chapter also describes briefly the publi-
cations that this thesis has produced so far along with some papers that are
currently under review in some scientific journals. These publications are
reported in Section 10.2.

10.1 Main Contributions of the Thesis

This section outlines some of the most important contributions of this doc-
toral thesis.

The main contribution of this thesis is the application of
a powerful metaheuristic, the bat algorithm, to solve the
problem of free-form shape reconstruction by using global-
support functions. In the research work of this thesis, we have
developed a methodology to reconstruct the underlying shape (either
as a curve or as a surface) of a cloud of noisy data points. Such a
methodology has been applied to derive suitable methods to address
the cases of polynomial and rational Bézier curves and surfaces, de-
scribed in Chapters 5 to 9 of this thesis.

The methodology developed in this thesis has been tested on four dif-
ferent benchmarks associated with the different types of curves and surfaces
considered in this work. The computational results that we have obtained
on the examples of each benchmark confirm that our approach works very
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well, as we have been able to capture the inherent shape of the clouds of data
points with high accuracy.

We have extended our results for polynomial shapes to the
rational case. Most of the research works on shape reconstruction
focus on the polynomial case only, since this is the most standard
case in the literature. However, there are interesting shapes (such
as the conics for curves and the quadrics for surfaces) that cannot
be represented faithfully by using the polynomial formalism. In this
thesis, we have extended our methods to the rational case for both
curves and surfaces.

Such extension is also valuable because the methods for polynomial shapes
cannot be extended to the rational case in a natural way. The rational shapes
are more complicated not only because we have some additional variables to
deal with (the weights) but mainly because the different sets of unknowns
(data parameters, control points, and weights) are related each other in a
highly nonlinear and complicated way. For instance, the locations of the
control points affect the values of the weights, the parameterization affects
the control points and weights, they at their turn affect the parameterization,
and so on. Solving this problem is not just a matter of applying the bat
algorithm on each set of unknowns as if they were completely independent.
Instead, we have to develop sophisticated strategies to compute the different
parameters taking into account their complex intertwined relationships. The
iterative strategy developed for the rational Bézier surfaces in Chapter 8 is
an illustrative examples of this complex approach.

A very important feature of our approach is its good appli-
cability to the case of clouds of data points affected by mea-
surement noise, irregular sampling and other artifacts. All
examples in our benchmarks are affected by these problems, which
typically appear in real-world scenarios. Our methods perform well
even under these very unfavourable conditions. This means that they
can be applied to real-world problems without any further improve-
ment or modification.

This is a very remarkable feature of our approach. Many papers intro-
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duce new methods that only work properly for clouds of data points that are
not affected by these problems. Although still valuable, it is clear that those
methods can be very limited, as they can only be applied to academic exam-
ples in theoretical works, but they fail when applied to real-world situations.
On the contrary, our methods have been tested under these problematic con-
ditions. In this sense, our methods are more general that many previous
approaches limited to ideal conditions that never happen in practice.

This thesis reports the first case of application of the bat
algorithm to shape reconstruction. To the best of our knowledge,
no previous work has applied the bat algorithm so far in the context
of geometric modeling or computer graphics, a clear evidence of the
originality of this research work.

As we mentioned in some parts of the thesis, this fact is not accidental
at all; the main reason is that we are dealing with a very difficult problem.
In fact, this problem has remained open for several decades. In spite of the
high relevance of this problem in many applied domains (see our discussion in
Chapter 3), the problem is still unsolved with the exception of some particular
cases.

Our methods not only solve the shape reconstruction prob-
lem for curves and surfaces. They can also be applied to
other tasks such as curve and surface parameterization. In
fact, we showed in Chapters 5 and 7 that the curves and surface recon-
struction for polynomial shapes can be transformed into the problem
of parameterization.

Indeed, although the emphasis of this thesis is on shape reconstruction,
the methodology described here can also be applied to many other different
problems. This fact can be better understood when we consider that we
are applying a metaheuristics (the bat algorithm) designed to solve difficult
continuous optimization problems. As expected, the same methodology can
also be applied to other optimization problems, such as, for instance, curve
and surface parameterization. This is one of the most promising features of



162 Chapter 10. Conclusions

our method, as it opens the door to other future developments in the field.

Another contribution of this thesis is the development of
some memetic approaches combining the bat algorithm
methodology with some local search methods for further ef-
ficiency and higher accuracy. In Chapter 9 of this thesis we intro-
duced four memetic approaches based on the hybridization of the bat
algorithm with two local search methods (Luus-Jaakola and adaptive
step size random search). We showed that this new feature improves
the performance of our proposal on the examples of the benchmark.

In fact, the experimental results have been obtained on the same bench-
mark used in Chapter 5 to test the original method for polynomial Bézier
curves. This means that these memetic approaches effectively improve the
performance by addition of the local search on top of the global optimization
scheme.

The developed methodology is very general. In our methods,
we do not make any assumption on the properties of the fitting curve
or surface (such as continuity, differentiability, or the like). Actually,
we do not assume any knowledge about the problem beyond the data
points.

This feature is very important, because it means that the method can be
applied to any cloud of points without any limitation. Similarly, it can be
applied to many different problems arising in industrial and applied environ-
ments in many different fields (such as those described in Chapter 3, but not
exclusively).

10.2 Publications of the Thesis

The contributions indicated in the previous section have led to some inter-
national publications. We found this process of publishing our results very
useful because it allowed, on one hand, to improve our work by incorporating
the comments and suggestions from other experts in the field into our work,
and, on the other hand, to have a better feedback to determine the level or
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originality of our proposal as well as its technical quality.

In this section, we provide a brief reference about every publication. For
the sake of clarity, each publication will be organized in the corresponding
chapter related to its technical content.

Chapter 5:

Iglesias, A., Galvez, A., Collantes, M.: “Bat Algorithm for Curve
Parameterization in Data Fitting with Polynomial Bézier Curves”.
Proc. of Int. Conference on Cyberworlds, CW 2015, Visby (Sweden).
IEEE Computer Society Press, Los Alamitos CA (2015) 107-114.

This conference is very prestigious in the fields of computer graphics and
geometric modeling. The conference has been sponsored by the two most
important scientific societies in computer graphics ACM Siggraph and Euro-
graphics, and the prestigious computer science society IFIP - Technical Group
on Computer Graphics. The edition of 2015 was held in Visby (Sweden), in
October 2015. The paper was reviewed by three experts and received very
good comments. Furthermore, the paper was selected for one of the special
issues of the conference (the publication associated with Chapter 9 below).

The proceedings of Cyberworlds’2015 conference are published by IEFE
Computer Society Press. Cyberworlds’2015 is a ERA-B conference.

Chapter 6:

Iglesias, A., Galvez, A., Collantes, M.: “Global-Support Rational
Curve Method for Data Approximation with Bat Algorithm”. Proc.
of Int. Conference Artificial Intelligence and Applications, AIAI’2015,
Bayonne (France). IFIP Advances in Information and Communica-
tion Technology, 458 (2015) 191-205.

This conference is very prestigious in the field of artificial intelligence. The
conference is sponsored by IFIP - Technical Group on Artificial Intelligence
The edition of 2015 was held in Bayonne (France), in September 2015. The
paper was reviewed by three experts and received very good comments.

The proceedings of C'W’2015 conference are published by Springer- Verlag,
in its IFIP Advances in Information and Communication Technology series.
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Chapter T7:

Iglesias, A., Galvez, A., Collantes, M.: “A Bat Algorithm for Poly-
nomial Bézier Surface Parameterization from Clouds of Irregularly
Sampled Data Points”. Proc. of Int. Conference Natural Computa-
tion 2015, ICNC’2015, Bayonne (France). Zhangjiajie (China). IEEE
Computer Society Press, Los Alamitos CA (2015) 1034-1039.

This conference is a classical one in the field of artificial intelligence and
soft computing. The conference is sponsored by IEEE Computer Society and
IEEE Computational Intelligence. The edition of 2015 was held in Zhangji-
ajie (China), in August 2015.

The paper was reviewed by three experts and received very positive com-
ments. Furthermore, the paper was selected for one of the special issues of
the conference (the publication associated with Chapter 8 below).

The proceedings of ICNC’2015 conference are published by IEEE Com-
puter Society Press.

Chapter 8:

Iglesias, A., Galvez, A., Collantes, M.: “Iterative Sequential Bat Al-
gorithm for Free-Form Rational Polynomial Bézier Surface Recon-
struction”. Int. Journal of Parallel Programming, (special issue of
ICNC’2015 conference). (Submitted on Nov. 30th 2015, currently un-
der review).

This paper corresponds to an extended version of the paper accepted
for ICNC’2015 conference indicated above. After the conference, the best
papers were selected for a special issue in this journal. The papers were
then subjected to a first review round in January, and will be subjected to
a second (final) review of the modifications made on the previous version of
the paper. Notification is expected for June 2016.

The Int. Journal of Parallel Programming (Springer) is a JCR-indexed
journal.
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Chapter 9:

Iglesias, A., Galvez, A., Collantes, M.: “Four Adaptive Memetic Bat
Algorithm Schemes for Bézier Curve Parameterization”. Transac-
tions on Computational Science, (special issue of CW’2015 confer-
ence). (Submitted on Dec. 31st. 2015, currently under review).

This paper corresponds to an extended version of the paper accepted for
CW’2015 conference indicated above. After the conference, the best papers
were selected for a special issue in this journal. The papers will be subjected
to a new review round. Notification is expected for July 2016.



166 Chapter 10. Conclusions




Chapter 11

Future Work

In spite of all research work carried out so far and reported in previous
chapters, the curve and surface reconstruction problems are still far from
being solved in all their generality. The primary reason is that we are facing
two very difficult optimization problems. We should not expect them to be
solved in just a shot. Although the field has witnessed significant progresses
during the last decades, there is still a long way to walk.

In this chapter we discuss some ideas for further improvement of the
research work described here. They can arguably open the door for new
lines of research in the field for coming years and help other researchers to
continue this task.

11.1 Emerging Trends

One of the major issues in the field of metaheurisitcs for optimization is
the determination of the best metaheuristic method to be applied to this
problem. The “no free lunch” theorem taught us that we should not expect
to find a universal “best method” for all optimization problems, as any two
methods perform equivalently on average for all problems [198].

However, this property is not as limiting as it could appear, because it
talks about the average. In this sense, we might arguably be able to identify
a method that outperforms any other for a specific given problem. Clearly, it
would be very helpful to be able to classify different metaheuristics in terms
of their performance for this reconstruction problem. A sub-product of this
approach would be to determine the “best metaheuristics” for this particular
problem, provided that such a best method really exists. In our opinion, the
application of these ideas to the fields of curve and surface reconstruction is
one of the emerging trends for the next few years.

To that purpose, a first valuable step would be the creation of a reliable,
standardized benchmark for the field. The primary goal of this benchmark
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is to facilitate a comparative analysis among the different metaheuristics,
something that is not currently available to researchers and practitioners.
Obviously, the second step in this process is the comparative analysis itself.
This is not a trivial task, as it requires to carry out many different tasks,
including the difficult one of parameter tuning.

Indeed, another challenging issue when working with metaheuristic al-
gorithms is their inherent problem-dependent nature. It means that the
parameter setting required for a method to work optimally is not universal
either, but specialized for each particular problem. In this sense, the other
factors being the same, the parameter setting leading to optimal performance
for a given problem might be completely inadequate for other problems. At
this moment, it is not even clear which are the best sets of parameters for a
given metaheuristics to perform optimally for this problem.

Other exciting future line of research is the extension of this research
to other families of curves and surfaces not addressed yet in the literature.
Although there are very strong reasons to deal with free-form parametric
functions, they are not the only ones with interest in applied and industrial
fields. However, little has been done so far in this regard. We anticipate an
increasing interest in this area for coming years.

Finally, there is still a promising field in the possible applications of these
methods in many areas. With the popularization of sensor and capturing
technologies such as 3D laser scanners and the wide availability of affordable
3D printers, we can envision a future of mass customization of products as a
growing trend. As the complexity of shapes of customer products is increas-
ing, more sophisticated methods for shape reconstruction will be required.
At that time, we can expect a new golden era in the development of these
reconstruction techniques.

11.2 Some Future Lines of Research

Focusing specifically in the research topics included in this thesis, this re-
search work can be extended in many different ways.

11.2.1 Future work for curve reconstruction
Regarding the curve reconstruction problem, our future work includes:

e The extension of our methodology to other families of curves with in-

terest in design and manufacturing, such as the B-spline curves and
NURBS.

e We are also interested to analyze its application to some industrial
processes and other interesting real-world problems in different fields.
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e the definition of a reliable, standardized benchmark for the field. This
benchmark should facilitate the comparative analysis among the differ-
ent metaheuristics applied to this particular optimization problem.

e A comparative analysis with other alternative approaches on a stan-
dardized benchmark (when available) is also part of our future goals.

e A theoretical analysis about the convergence of our methods for poly-
nomial and rational curves would also be very welcome.

e Finally, some other local search methods could also be arguably con-
sidered for our memetic approach described in Chapter 9.

11.2.2 Future work for surface reconstruction

Regarding the surface reconstruction problem, our future work includes:

e The extension of our methodology to other families of surfaces with

interest in design and manufacturing, such as the B-spline surfaces and
NURBS.

e We are also interested to analyze its application to some industrial
processes and other interesting real-world problems in different fields.

e A comparative work of our methods with other alternatives that could
appear in the literature of the field in coming years.
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Addenda

This apendix includes four addenda about the conventions for names, the
general notation of this thesis, and the definition and some properties of the
dot product (also called scalar product) and the cross product (also called
vector product).

Addendum A: Conventions for Names

The following conventions for names will be used throughout this thesis:

ACO: Ant Colony Optimization.

ASSRS: Adaptive Step Size random Search.
CAGD: Computer Aided Geometric Design.
CAD: Computer Aided Design.

CAM: Computer Aided Manufacturing.
CAE: Computer Aided Engineering.

FFA: Firefly Algorithm.

GA: GeneticAlgorithm.

NURBS: Non Uniform Rational B-spline.
ODE: Ordinary Differential Equation.

PSO: Particle Swarm Optimization.
RMSE: Root Mean Square Efrror.

SA: Simulated Annealing.
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Addendum B: General Notation

Unless otherwise stated, the following notation will be used throughout this
thesis:

Vo All vectors are denoted in bold

Vo Orthogonal vector to vector V

1R Modulus of a vector

[ Determinant of a square matrix

AT Transpose of a matrix A

vee(M) ..., Vectorization of a vector or matrix M

..................... Dot product / Scalar product

X Cross Product / Vector product
Ct) coveii Parametric curve of variable ¢

C o Tangent vector to the curve C’
S(u,v) v Parametric surface of variables (u, v)
S First partial derivative of surface S

with respect to variable u

N second partial derivative of surface S
with respect to u, v

VO oo Gradient vector of scalar function ®

P Entry-wise multiplication (in Chapter 4)

O Tensor product of vectors (in Chapter 7)

() Vectorization of a vector or matrix (in Chapter 8)
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Addendum C: Dot Product (also Scalar Pro-
duct)

in this thesis, we denote by“.” the dot product or scalar product of two
vectors in the Euclidean space IR™. Given two vectors a = (a1, as, ..., a,)
and b = (by, by, ..., b,) the scalar product returns the scalar number:

The functionsnorm ||.|| and distance d(.,.) in R"™ are defined by:

llal]| = Va.a

and

d(a,b) = |la —b|

respectively. These functions hold the following properties:

a.b=b.a
(a+b).c=a.c+b.c

(Aa).b = A(a.b) = a.(\b)

[1Aal| = [Allal]
where A € R.
The angle 6 between two vectors a y b can be computed as:
ab
cos(f) = ————, 0<0<m.
[lal| [[b]|

Note that this means that:

a.b
1<+ <1
[[a[| |[bl|
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Addendum D: Cross Product (also Vector Pro-
duct)

To define the cross product (or vector product) it is convenient to intro-
duce the following notation:

i=(1,0,0)
j=1(0,1,0)
k =(0,0,1)

Every vector a € R? can be written as:

a=(a,az,a3) =a;i+azj+ask.

Given two vectors a = (ay, as, az) y b = (by, ba, b3) in IR?, their cross product
is given by:

i j k
axb=|a a as
by by b3

that is:
a x b = (axbs — azbe)i — (a1bs — agby)j + (a1bs — asby k.
The cross product holds the following properties:
axb=-bxa
(a+b)xc=axc+bxc
(Aa) x b = A(a x b) = a x (Ab)
(a x b).(c xd) = (a.b)(c.d) — (a.d)(b.c)

The following properties relate the dot product and the cross product:

la < bl[> = [[a]]*[[b||* — (a.b)?

ax (bxc)=(ac)b—(ab)c

(a x b).c =a.(b x ¢)
for all A e R.
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