
Fenomenoloǵıa de Mezcla de Sabor
en Modelos Supersimétricos

Muhammad Rehman

Instituto de F́ısica de Cantabria,

Universidad de Cantabria





Flavor Mixing Phenomenology in
Supersymmetric Models

Muhammad Rehman

Instituto de F́ısica de Cantabria,

Universidad de Cantabria





Instituto de F́ısica de Cantabria
Universidad de Cantabŕıa
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Introducción

El Modelo Estándar (ME) de la f́ısica de part́ıculas [1–3], fruto de un inmenso esfuerzo
tanto teórico como experimental, muestra la naturaleza de los ingredientes que forman
nuestro universo y cómo interactúan entre śı. Según el ME, nuestro universo se com-
pone de fermiones (part́ıculas de spin 1/2), de los que seis son leptones y otros seis
quarks, contenidos en tres familias. A cada fermión le corresponde una anti-part́ıcula
con números cuánticos opuestos. Las part́ıculas asociadas con los campos de interacción
son bosones (part́ıculas de spin 1); los fotones (γ) y los bosones l (W± y Z) se asocian
a la interacción electrodébil, los gluones (g) a la fuerte. La gravedad no es parte del
ME. Las simetŕıas y los principios de invariancia determinan la forma de estas fuerzas,
el ME se basa en el grupo gauge SU(3)C × SU(2)L × U(1)Y. La renormalizabilidad
e invariancia gauge exigen que la simetŕıa SU(2)L × U(1)Y se rompa espontáneamente
mediante el llamado mecanismo de Higgs. Todas las predicciones establecidas por ME
se han confirmado experimentalmente. El descubrimiento de la última pieza que faltaba
por conocer, el bosón de Higgs, se anunció el 4 de julio de 2012 en el gran Colisionador
de Hadrones (LHC) del Conseil Européen pour la Recherche Nucleaire (CERN) [4, 5].
De este modo, el ME es la teoŕıa más precisa y elegante en la actualidad. Sin embargo,
a pesar su éxito, hay buenas razones tanto teóricas como experimentales que nos llevan
más allá del ME. De modo que puede pensarse que ME es un caso ĺımite de una teoŕıa
más general.

El primer problema no explicado por el ME está relacionado con el sector de los
neutrinos, considerados sin masa en el ME. En varios experimentos se ha observado
la desaparición del neutrinos electrónico o muónico. Esto ha aportado la evidencia
suficiente para aceptar su oscilación de sabor [6]. Esta observación ha confirmado que
los neutrinos tienen masas diferentes y que los tres sabores de neutrinos νe, νµ y ντ
se mezclan entre a śı para formar tres estados propios de masa. Esto implica la no
conservación del sabor leptónico, por lo tanto, la predicción de procesos de violacion de
sabor de leptones cagados (cLFV), como ocurre en el sector de los quarks.

La extensión más simple del ME para acomodar las masas de los neutrinos consiste en
introducir tres singletes fermiónicos SU(3)C × SU(2)L ×U(1)Y y acoplarlos a neutrinos
mediante interacciones Yukawa, las masas de los neutrinos se generaŕıan a través de
ruptura de simetŕıa electrodébil (EWSB). Sin embargo esta extensión del ME requiere
accoplamientos de Yukawa extremadamente pequeños y violar el número leptónico a
baja enerǵıa. Como ni los neutrinos dextrógiros ni la violación del número leptónico
se han observado a esa escala, es preciso buscar un mecanismo que explique las masas
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de los neutrinos respetando ambas evidencias. Una de las soluciones al problema es
incluir en la teoŕıa un mecanismo “see-saw” (mecanismo de balanćın) [7] para generar
las masas de los neutrinos, el cual no sólo permite los acoplamientos de Yukawa, sino que
además explica porque los neutrinos levógiros son más ligeros que los otros fermiones
de ME. Estos mecanismos asumen la existencia de neutrinos my pesados del tipo de
Majorana, los cuales se acoplan a los del ME mediante interacciones Yukawa. Las masas
de los neutrinos son generadas por un operador efectivo de dimension 5. Esto da lugar
a estados f́ısicos de neutrinos que mezclan el sabor y en consecuencia predicen violación
del sabor leptones (LFV).

Por otro lado ME tampoco explica suficientemente el sector de Higgs. Aunque el
ME es renormalizable, se cree que es válido sólo hasta cierta escala de enerǵıa, la cual
está realcionada con la aparición de f́ısica desconocida. Si esta escala se asocia con la
integración de la gravedad en teoŕıa, debeŕıa estar en torno a la masa de Planck (1019

GeV). De este modo, las correcciones a la masa del Higgs MH debidas a los fermiones
seŕıan:

δM2
H(f) = −|λf |2

8π2
[Λ2 + .....], (1)

donde λf representa el acoplamiento del fermión f al campo de Higgs y Λ es el corte
ultravioleta utilizado para regular el integral. Si éste se reemplaza por la masa de Planck
se obtiene δM2

H ≈ 1030 GeV2. Esta enorme corrección se podŕıa cancelar con una masa
original del mismo orden y signo opuesto. Sin embargo, estas dos contribuciones se
debeŕıan cancelar entre śı con una precisión de una parte en 1026 para explicar la masa
del Higgs observada experimentalmete. Este es el llamado “problema de la jerarqúıa”.

El tercer problema que el ME no explica es el de la materia oscura (MO). Las
primeras especulaciones sobre la existencia de MO se debieron al astrónomo Zwicky. En
1933, observó que la masa total de la materia luminosa procedente del cúmulo de Coma
es mucho menor que la masa total podemos suponer por movimiento de las galaxias
que lo integran [8]. En la actualidad hay diversas muestras de la presencia de MO
en nuestro universo. El efecto de lente gravitatoria y las curvas de rotación de las
galaxias espirales son observaciones que apuntan a la existencia de la llamada “masa
perdida” en el universo. Resultados recientes de los expeimentos WMAP [9] y Planck [10]
proporcionan un valor preciso de la masa del universo y la forma en que se divide entre
los diferentes tipos de materia y enerǵıa. No hay ninguna part́ıcula del ME que pueda
servir como candidato MO.

Por las razones anteriores hay que encontrar teoŕıas renormalizables que puedan
eliminar divergencias cuadráticas en la masa del bosón de Higgs, proporcionar un can-
didato a MO y explicar el la violación del sabor leptónico. Una de éstas, la extensión
supersimétrica del ME, cuya versión más simple es el Minimal Supersymmetric Standard
Model (MSSM) [11], puede hacer frente a los problemas mencionados. El MSSM predice
la existencia de una pareja para cada una de las part́ıculas fundamentales de la ME a las
que se atribuye un esṕın que se diferencia en media unidad de sus compañeros del ME.
La presencia de las super-part́ıculas contribuye a cancelar las divergencias cuadráticas
en el bosón masa de Higgs. También la part́ıcula supersimétrica más ligera (LSP) puede
ser un candidato a MO. Sin embargo, el MSSM, como el ME, asumen neutrinos sin masa,
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por lo que el MSSM tiene que ser ampliado para que sea consistente con las observaciones
de las mezclas de sabor de éstos [6].

Gran parte del esfuerzo del LHC se ha dedicado a descubrir la supersimetŕıa (SUSY),
pero hasta el momento ninguna part́ıcula SUSY se ha observado [12, 13]. Otro enfoque
para descubrir SUSY procede del estudio de los efectos indirectos de las part́ıculas SUSY
en otros observables [14]. Las mezclas de sabor ofrecen una perspectiva única en este
sentido, ya que la mayor parte de los efectos indirectos de las part́ıculas SUSY proce-
den de observaciones en los que éstas se producen. La primera de ellas, es el proceso
de cambio de sabor en el sector de los quarks en corrientes neutras (FCNC). En ME,
los procesos del tipo FCNC están ausentes a nivel de árbol y sólo pueden ocurrir en
nivel de un bucle. La única fuente de FCNC de en el ME es la matriz de Cabibbo,
Kobayashi y Maskawa (CKM), sin embargo no es significativa debido a la cancelación
entre las diversas contribuciones (mecanismo GIM ). Por otro lado, en el MSSM, la posi-
ble desalineación entre las matrices de masa de los quarks y sus parejas supersiméticas
(squarks) es otra fuente de violación de sabor, capaz de superar a la contribución ME en
varios órdenes de magnitud. Cualquier posible desviación experimental de la predicción
de ME para la FCNS seŕıa una evidencia clara de nueva f́ısica y, posiblemente, un indicio
del MSSM. Del mismo modo, las predicciones del MSSM para cLFV son cero. Incluso
las extensiones del tipo “see-saw” del ME no predicen tasas considerables para estos
procesos. Las tasas cLFV en esta extensión del ME son casi 40 órdenes de magnitud
menor que las actuales ĺımites experimentales y, por consiguiente sin posibilidad de ser
observadas. En cambio, la extensión “see-saw” del MSSM, predice valores más altos,
cercanos a los ĺımites de observación actuales. Por otro lado, tras el descubrimiento del
bosón de Higgs con una masa en torno a los 125 GeV, es preciso incorporar correcciones
radiativas grandes para su explicación. Una masa superior a 1 TeV de la pareja super-
simétrica del top, el s-top, podŕıa dar respuesta al problema, pero a costa de reintroducir
un ajuste innatural de los parámetros. Sin embargo, esta inconveniencia puede evitarse
con una mezcla fuerte entre las compontes quirales del stop o mediante una mezcla de
sabor ente los s-quarks.

La forma más general de introducir mezcla de sabor en el MSSM es a través de
los parámetros que rompen la supersimetŕıa. Estos parámetros, dotan de masas mod-
eramente grandes a las part́ıculas supersimétricas. De este modo, no es posible con
una única rotación en el espacio del sabor diagonalizar simultáneamente las masas de
los fermiones y las de sus correspondientes parejas supersimétricas. Esta desalineación
puede producirse por varias causas; un ejemplo son las ecuaciones de renormalización
(RGE): Aun partiendo de masas supersimétricas sin violación de sabor a una alta enerǵıa,
las RGE pueden inducirla debido a que contienen acoplamientos Yukawa no diagonales.
Este tipo de enfoque es conocido en la literatura como la violación de sabor mı́nima
(MFV) [15, 16], donde se supone que el sabor y la violación de la simetŕıa CP en el
sector de quarks se describe en su totalidad por la matriz CKM.

Los escenerios del tipo MFV están bien motivados por el hecho de que no introducen
nuevas fuentes de violación de sabor y de CP. Los cuales entraŕıan en conflicto con los
ĺımites experimentales en los sectores de los kaones y Bd, descritos por el ME con una
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precisión del% 10 [17]. Para la primera y segunda generación squarks, sensibles a los
datos de K0 − K̄0 y D0 − D̄0, las restricciones son muy fuertes. Sin embargo, sistemas
con la tercera generación están menos limitados, ya que los datos de la mezcla B0 − B̄0

aún dejan lugar para nuevas fuentes de violación sabor. Esto abre la posibilidad para
scenerios más generales como los de violación no mı́nima de sabor (NMFV), aparte de
los de MFV.

En esta tesis, se presenta un estudio sistemático y simultáneo de los efectos de la
mezcla de sabor en diferentes observables utilizando el MFV y el NMFV. Como un primer
paso estudiaremos las mezclas de squarks y sleptones en el MSSM a baja enerǵıa, sin
utilizar un modelo espećıfico (MI). Para el enfoque MI, introducimos arbitrariamente los
parámetros de mezcla de sabor en las matrices de masa de los sfermiones, sin tener en
cuenta el origen de estos parámetros. Estudiamos los efectos de la mezcla de los squark
en los observables de la interacción electrodébiles medidos con gran precisión (EWPO),
la f́ısica del quark b (BPO) y las desintegraciones del bosón de Higgs que violan el sabor.
Para la mezcla del sabor leptónico, estudiamos también los efectos sobre EWPO, la masa
del los bosones de Higgs y las desintegraciones de éstos que violan el sabor leptónico
(LFVHD). En segundo lugar, extendemos nuestro análisis a la fuente de la mezcla de
sabor. Para ello analizamos la mezcla de sabor inducida por las RGE en la evoulción
de los parámetros desde las escalas GUT y electrodébil. En este estudio trabajamos con
la hipótesis de MFV tanto para squarks como para sleptones. Por consiguiente, vamos
a investigar dos modelos (en los siguientes caṕıtulos se introduciran más definiciones y
citas):

(i) El modelo supersimétrico mı́nimo con rotura de la supersimetŕıa mediante paráme-
tros universales (CMSSM). En este caso solo hay violación de sabor en los squarks.

(ii) El modelo CMSSM ampliado mediante un mecanismo “see-saw” de tipo I [7],
llamado “CMSSM-seesaw I”

En muchos análisis del CMSSM o sus extensiones como el NUHM1 o NUHM2 (véase
la Ref. [18] y las referencias en él), se ha utilizado la hipótesis de MFV , asumiendo
que contribuciones procedentes de MFV son insignificantes tanto para procesos FCNC
como para otros observables como EWPO y la masa del bosón de Higgs masas ( ver
por ejemplo [19]). En este trabajo vamos a analizar si esta suposición está justificada,
y si la inclusión de los efectos MFV podŕıan conducir a restricciones adicionales del
espacio de parámetros del CMSSM. En este sentido, vamos a evaluar en el CMSSM y en
el CMSSMI el siguiente conjunto de observables: BPO, en particular, BR(B → Xsγ),
BR(Bs → µ+µ−) y ∆MBs

; EWPO, en particular, MW y el ángulo de Weinberg efectivo,
sin2 θeff ; la masas de los bosones de Higgs neutros y cargados en el MSSM, aśı como
cLFV y LFVHD.

La disposición de la tesis es la siguiente. El caṕıtulo 1 contiene una introducción al
ME. En el caṕıtulo 2 presentamos MSSM y sus extensiones “see-saw”. El caṕıtulo 3
está dedicado a la base de cálculo de los observables considerados en este trabajo. En
el caṕıtulo 4 presentaremos los resultados en el caso de la mezcla de sabor squark en el
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enfoque MI y el estudio sus efectos para los observables BPO, EWPO y QFVHD. En el
caṕıtulo 5, de estudian los efectos de la mezcla de los sleptones en EWPO, las correciones
a las masas de los Higgs y LFVHD en el contexto MI. El caṕıtulo 6 se centrará en el
análisis del CMSSM y CMSSMI, para los que presentamos los efectos de mezcla del
sabor en los observabels EWPO, BPO, las predicciones de masas del bosón de Higgs,
QFVHD, cLFV mezcla y LFVHD. El caṕıtulo 7 se reserva para las conclusiones.
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Introduction

The Standard Model (SM) of the fundamental interactions [1–3], the results of immense
experimental and theoretical effort, elucidates the ingredients forming our universe and
how do they interact. SM asserts that our universe is made up of fermions (spin 1/2
particles) interacting through fields of which they are the sources. Among the fermions,
there are six leptons and six quarks categorized in three families and have their respec-
tive anti particles with opposite quantum numbers. The particles associated with the
interaction fields are bosons (spin 1 particles) namely photon (γ), weak vector boson
(W±, Z) and gluons (g) and a scalar particle Higgs (H). The gauge bosons act as force
carriers of electromagnetic, weak and strong interactions. Gravity is not part of SM.
Symmetries and invariance principles determine the form of these forces. SM is based
on the gauge group SU(3)C × SU(2)L × U(1)Y. The renormalizability and gauge in-
variance demands the SU(2)L × U(1)Y symmetry to be spontaneously broken through
Higgs mechanism. All the predictions laid down by SM have been experimentally con-
firmed. The discovery of the last missing piece namely the Higgs boson at large hadron
collider (LHC) was announced on 4th July 2012 at Conseil Europeen pour la Recherche
Nucleaire (CERN) [4, 5], proving SM the most accurate and elegant theory at present.
In spite of all its successes SM is believed to be a limiting case of a more general theory.
There are well motivated theoretical as well as experimental reasons which coerce us to
go beyond the SM.

The first problem of the SM is related to the neutrino sector. Neutrinos are strictly
massless in the SM. Several key experiments with solar, atmospheric, reactor and accel-
erator neutrinos observed the disappearance of electron or muon neutrinos, the evidence
enough for scientists to acquiesce neutrino oscillation [6]. This observation has confirmed
that neutrinos have distinct masses and that 3 neutrino flavors νe, νµ and ντ mix among
themselves to form 3 mass eigenstates. The fact that neutrinos are massive and mix im-
plies non-conservation of lepton flavor, hence charged lepton flavor violating processes
(cLFV) are expected in lepton sector just as quark flavor violating processes arise in
quark sector.

The trivial extension to SM to accomodate neutrino masses is to introduce three
fermionic SU(3)C×SU(2)L×U(1)Y singlets (missing right handed neutrinos) and write
down the neutrino Yukawa couplings which generates neutrino masses via electroweak
symmetry breaking (EWSB). However this extension of SM requires extremely small
Yukawa couplings and violate lepton number at low energy scale. As right handed neu-
trinos and lepton number violation has not been observed at low energy, one should look
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for a mechanism that can generate masses for left handed neutrinos at low energy and
also respect the non observation of right handed neutrinos and lepton number violation.
One of the solutions to overcome this problem is the so called “seesaw mechanism” [7]
which can be used to generate neutrino masses which not only allow large neutrino
Yukawa couplings but also explain why left handed neutrinos are lighter compared to
other SM fermions. These mechanisms assume the nature of neutrinos to be Majorana
and existance of very massive particle that couple to the neutrinos in Yukawa analogue.
The neutrino masses are then generated by an effective dimension 5 operator. This gives
rise to neutrino physical states which are not flavor diagonal and consequently generate
lepton flavor violation (LFV).

On the other hand SM also lack sufficient explaination in Higgs sector. For example
SM is renormalizable, yet it is believed that SM is valid only up to some cut-off energy
scale. This cut-off can be related to the scale where new physics appear, for example
the Planck scale (1019 GeV) where quantum gravity becomes important. One-loop
corrections to the Higgs mass MH due to a fermion f in the loop are given by

δM2
H(f) = −|λf |2

8π2
[Λ2 + .....], (2)

where λf represents the fermion coupling to the Higgs field and Λ is the ultraviolet
cutoff used to regulate the loop integral. If one replace the cutoff by the Planck mass
one obtains δM2

H ≈ 1030 GeV2. One could cancel these large correction with a bare mass
of the same order and opposite sign. However, these two contributions should cancel
with a precision of one part in 1026 to provide the observed Higgs mass. This is the
so-called “hierarchy problem”.

Third and equally important issue is the Dark Matter (DM). First speculation about
the DM was due to astronomer Zwicky. In 1933, he observed that the mass from the
luminous matter coming from COMA cluster is much smaller than the total mass we
can derivate from the motion of the cluster member galaxies [8]. There are now several
pieces of observational evidence for DM in our universe. Gravitational lensing and the
unexpected rotational curves of spiral galaxies are among these observations that point
to there being so-called “missing mass” throughout the universe. Recent results from
WMAP [9] and PLANCK [10] give us our most accurate value for the total mass in the
universe and how it is divided among different types of matter and energy. There is no
SM particle that can serve as a DM candidate.

Due to all these reasons one needs to find renormalizable theories that can remove
quadratic divergences in the Higgs boson mass, a theory that can provide us with a DM
candidate and can explain LFV. Supersymmetric extension of the SM namely Minimal
Supersymmetric Standard Model (MSSM) [11], is technically well equipped to deal with
above mentioned discrepancies. The MSSM predicts the existence of a super-partner
for each of the fundamental degree of freedom of the SM with spin differing by half
unit. The presence of super-partners called sparticles in the loop cancels the quadratic
divergences in the Higgs boson mass. Also the lightest supersymmetric particle (LSP)
can be a DM candidate. However, the MSSM, like SM, assume neutrinos to be massless
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so simple version of MSSM has to be extended with a mechanism like the seesaw to
make it consistent with experimental observation of neutrino masses and mixing [6].

Much of the effort has been devoted at the LHC to discover supersymmetry (SUSY).
But as of yet no SUSY particle has been observed at the colliders [12, 13]. Another
approach to discover SUSY could be to study the indirect effects of the SUSY particles on
other observables [14]. Flavor mixing offer a unique prospective in this regard since most
of the indirect effects of the SUSY particles involve the flavor mixing observables. First
among these are the Flavor Changing Neutral Current (FCNC) processes in the quark
sector. In SM, FCNC processes are absent at tree level and can only occur at one-loop
level. The only source of FCNC’s in the SM is the Cabibbi Kobayashi Maskawa (CKM)
matrix. However these processes are highly supressed due to GIM cancellations. On the
other hand, in the MSSM, possible misalignment between the quark and squark mass
matrices is another source of flavor violation that can dominate the SM contribution by
several orders of magnitude. Any possible experimental deviation from the SM prediction
for FCNS’s would be a clear evidence of new physics and possibly a hint for MSSM.
Similarly, SM predictions for cLFV are zero. Even seesaw extensions of the SM do not
predict sizable rates for these processes, the cLFV rates in SM seesaw models are almost
40 orders of magnitude smaller than the present experimental bounds and consequently
beyond the experimental reach. On the other hand seesaw extensions of MSSM are
well capable of explaining the higher rates (touching the present experimental bounds)
for these processes if observed. Also after the discovery of the Higgs boson with mass
Mh ≈ 125 GeV, one needs large radiative corrections. One obvious choice would be
to choose scalar top mass heavier ≥ 1 TeV. However this could go into the direction
of (re-)introducing tuning. One can avoid this problem by choosing large left-right or
flavor mixing (instead of assuming heavy scalar top mass). Consequently the issue of
flavor mixing in SUSY needs to be explored in detail, which precisely is the aim of the
thesis in hand.

Within the MSSM, the possible presence of soft SUSY-breaking (SSB) parameters in
the squark and slepton sector, which are off-diagonal in flavor space (mass parameters as
well as trilinear couplings) are the most general way to introduce flavor mixing within the
MSSM. For example in MSSM, the off-diagonality in the sfermion mass matrix reflects
the misalignment (in flavor space) between fermions and sfermions mass matrices, that
cannot be diagonalized simultaneously. This misalignment can be produced from various
origins. For instance, off-diagonal sfermion mass matrix entries can be generated by
Renormalization Group Equations (RGE) running. Going from a high energy scale,
where no flavor violation is assumed, down to the electroweak (EW) scale can generate
such entries due to presence of non diagonal Yukawa matrices in RGE’s. This kind of
approach in the literature is known as the Minimal Flavor Violation (MFV) [15, 16],
where flavor and CP-violation in quark sector is assumed to be entirely described by the
CKM matrix, even in theories beyond the SM.

MFV scenerios are well motivated due to the fact that they do not introduce new
sources of flavor and CP-violation, which can potentially lead to large non-standard
effects in flavor processes, in conflict with experimental bounds particularly from the

9



kaon and Bd sectors which are well described by the SM upto an accuracy of the ∼ 10%
level [17]. For the first and second generation squarks which are sensitive to the data
on K0 − K̄0 and D0 − D̄0 the constraints are very tight. However the third generation
system is, in principle, less constrained, since present data on B0− B̄0 mixing still leaves
some room for new sources of flavor violation. This opens the prospect for the more
general scenerios, namely the Non Minimal Flavor Violation (NMFV) scenerios, other
then the MFV ones.

In this thesis we will present a systematic and simultanous study of the effects of
flavor mixing on different observables in MFV as well as the NMFV scenerios. As
a first step we will study squark and slepton mixing in the MSSM at low energy in
Model-Independent (MI) way. For MI approach, we introduce flavor mixing parameters
into the sfermion mass matrices by hand and do not consider the possible origin of
these parameters. For the squark mixing we will be presenting the effects to electroweak
precision observables (EWPO), B-Physics Observables (BPO) and quark flavor violating
higgs decays (QFVHD). For slepton mixing we will study the effects to EWPO, higgs
boson mass predictions and lepton flavor violating higgs decays (LFVHD).

In the second step we will extend our analysis to the source of flavor mixing and will
analyze the flavor mixing induced by RGE running from GUT to EW scale. In this study
we will work within the MFV hypothesis for squarks as well as sleptons. Consequently,
we will investigate two models (more detailed definitions and citations will follow in the
next chapters):

(i) the Constrained Minimal Supersymmetric Standard Model (CMSSM), where only
flavor violation in the squark sector is present.

(ii) the CMSSM augmented by the seesaw type I mechanism [7], called “CMSSM-
seesaw I” below.

In many analyses of the CMSSM, or extensions such as the NUHM1 or NUHM2
(see Ref. [18] and references therein), the hypothesis of MFV has been used, and it
has been assumed that the contributions coming from MFV are negligible not only for
FCNC processes but for other observables like EWPO and Higgs masses as well, see, e.g.,
Ref. [19]. We will analyze whether this assumption is justified, and whether including
these MFV effects could lead to additional constraints on the CMSSM parameter space.
In this respect we will evaluate in the CMSSM and in the CMSSM-seesaw I the following
set of observables: BPO, in particular BR(B → Xsγ), BR(Bs → µ+µ−) and ∆MBs

;
EWPO, in particular MW and the effective weak leptonic mixing angle, sin2 θeff ; the
masses of the neutral and charged Higgs bosons in the MSSM, as well as cLFV and
LFVHD.

The layout of the thesis is as follows. Chapter 1 contains the introduction to SM.
In chapter 2 we introduce MSSM and its seesaw extensions. Chapter 3 is devoted to
the calculational basis of the observables considered in this work. In chapter 4 we will
be presenting our results in the case of squark flavor mixing in MI approach and study
the effects to the BPO, EWPO and QFVHD. In chapter 5 slepton mixing effects to
EWPO, Higgs mass predictions and LFVHD in MI approach will be presented. Chapter
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6 will be focusing on our analysis in CMSSM and CMSSM-seesaw I where we present
the flavor mixing effects to EWPO, BPO, Higgs boson mass predictions, QFVHD, cLFV
and LFVHD. Chapter 7 is devoted to the summary and conclusions.
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Chapter 1

The Standard Model

Symmetries play an important role in physics. Their presence in a particular problem
often simplifies the problem. Particle physicists, using the concept of gauge symmetries,
are able to build SM, which is a very successful model to explain the fundamental parti-
cles and their interactions. The theory has been formulated by writing the Lagrangian
of the fundamental particles. The Lagrangian has been written by using the concept
of internal symmetries and gauge invariance. All these aspects are discussed in detail
hereafter and subsequent discussion follows closely Refs. [20, 21].

1.1 Fundamental particles and forces

Quarks and leptons (collectively called fermions, spin 1/2 particles) are (assumed to
be) elementary particles of nature. There are six types (flavors) of leptons and quarks
placed in three families. Fermions are chiral particles which connotes that left and right
handed fields transform differently. The left handed components are placed in EW SU(2)
doublets and right handed components are placed in EW singlets

L =

(
νe
e

)

L

,

(
νµ
µ

)

L

,

(
ντ
µ

)

L

,

eR, µR, τR, (1.1)

Q =

(
u

d

)

L

,

(
c

s

)

L

,

(
t

b

)

L

,

uR, dR, cR, sR, tR, bR (1.2)

L on the left represents lepton and in the subscript on the right it means left-handed.
Neutrinos being left handed are absent in the EW singlets. For the quarks another index
is required to describe how the quarks transform under SU(3) transformation.

Qα =

(
uα
dα

)

L

(1.3)
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Quarks and leptons interact through unified EW and strong forces. These forces
are transmitted by the exchange of particles, called gauge bosons (γ , W± and Z).
These are the mediators of the unified EW force and gluons are the mediators of strong
force. There is an additional particle called Higgs boson predicted by the SM, which
has implications with regard to the origin of mass. It was discovered recently at LHC
CERN [4,5].

1.2 Gauge transformation and invariance

All particles appear to have three kind of gauge invariances, (U(1), SU(2), SU(3)). The
U(1) is related to the electromagnetic charge, the SU(2) corresponds to the non-abelian
weak isospin and SU(3) is associated with the non-abelian strong (color) charge. In 1961
Glashow [1] proposed SU(2)L × U(1)Y structure of the SM. Weinberg and Salam [2, 3]
extended his idea and employed the hypothesis of spontaneous symmetry breaking in
their gauge theory models to generate masses of gauge boson and fermions. Later on the
Glashow, Weinberg and Salam model achieved the theoretical status when ’t Hooft [22]
demonstrated that the form of symmetry breaking would not spoil the renormalizability
possessed by the massless theory.

1.3 The SM Lagrangian

The complete Lagrangian for the SM can be written as

L = Lfermion + Lgauge + LHiggs (1.4)

Lfermion is given by the relation

Lfermion =
∑

f=L,Q

f̄ ιγµDµf, (1.5)

where L and Q are given in Eq. (1.1) and Eq. (1.2) and Dµ is a covariant derivative
given by

Dµ = ∂µ − ιg1
Y

2
Bµ − ιg2

σi

2
W i

µ − ιg3
λα

2
Gα

µ. (1.6)

It is to be noted that whenever the terms in Dµ act on a fermionic state of different
matrix form, they give zero, by definition. The second term represents the U(1) symme-
try. Bµ is spin 1 field needed to maintain gauge invariance and Y is the generator of U(1)
transformations, that is also called hypercharge. The g1 is the U(1) gauge coupling, the
third and the fourth term represents SU(2) and SU(3) symmetries respectively, three
Wi

µ for SU(2) and eight Gα
µ for SU(3), one for each generator (σi, λα) of transformation

whereas g2 and g3 are the SU(2) and SU(3) gauge couplings respectively.
The Lagrangian for the SU(2)L × U(1)Y gauge sector of the theory is

Lgauge = −1

4
W i

µνW
µν
i − 1

4
FµνF

µν , (1.7)
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where Fµν is the field strength tensor for U(1) gauge boson Bµ and is given by

Fµν = ∂µBν − ∂νBµ (1.8)

and
W i

µν = ∂µW
i
ν − ∂νW

i
µ + g2εijkW

j
µW

k
ν (1.9)

is the field strength tensor for the SU(2) gauge boson, εijk in the third term of Eq. (1.9)
is structure constant and this term appears due to non-abelian nature of the SU(2)
group.

L does not contain any mass term. In order to generate masses for fermions and
bosons, Higgs mechanism is introduced which will be discussed in Sect. 1.6.

1.4 Electroweak theory

By using Eq. (1.5), the U(1) and SU(2) terms for the Lagrangian of the first generation
of leptons can be written as

Llepton =
g1
2
[YL(ν̄Lγ

µνL + ēLγ
µeL) + YRēRγ

µeR)]Bµ

−g2
2
[ν̄Lγ

µνLW
o
µ − ēLγ

µeLW
o
µ −

√
2ν̄Lγ

µeLW
+
µ

−
√
2ēLγ

µνLW
−
µ ], (1.10)

as neutrinos do not have electromagnetic interactions, the terms of the form g1
2
YLν̄Lγ

µνLBµ

must be avoided. To do so the coefficient Zµ ∝ g1YLBµ − g2W
0
µ of the term ν̄Lγ

µνL is
assumed to be orthogonal to the electromagnetic field Aµ. After diagonalization one
gets

Aµ =
g2Bµ − g1YLW

0
µ√

g22 + g21Y
2
L

, (1.11)

Zµ =
g1YLBµ − g2W

0
µ√

g22 + g21Y
2
L

. (1.12)

Solving for Bµ and W 0
µ , one gets

Bµ =
g2Aµ + g1YLZµ√

g22 + g21Y
2
L

, (1.13)

W o
µ =

g2Zµ − g1YLAµ√
g22 + g21Y

2
L

. (1.14)

With these definitions the neutral current interactions of the electrons in Eq. (1.10)
are modified as

−Aµ[ēLγ
µeL

g1g2YL√
g22 + g21Y

2
L

+ ēRγ
µeR

g1g2YR

2
√
g22 + g21Y

2
L

],

−Zµ[ēLγ
µeL

g21Y
2
L − g22√

g22 + g21Y
2
L

+ ēRγ
µeR

g21YLYR

2
√
g22 + g21Y

2
L

]. (1.15)
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This gives

e =
−g1g2YL√
g22 + g21Y

2
L

(1.16)

and

e =
−g1g2YR

2
√
g22 + g21Y

2
L

(1.17)

From Eq. (1.16) and Eq. (1.17) it follows that

2YL = YR (1.18)

As g1 can be redefined to absorb any change in YL, YL has been set to −1 and Eq. (1.16)
is modified as

e =
g1g2√
g22 + g21

(1.19)

e = g2 sin θW (1.20)

where θW is EW mixing angle with sin2 θW = ( g1√
g2
2
+g2

1

)2.

1.5 Spontaneous symmetry breaking

The Lagrangian in Eq. (1.5) does not contain any mass term and mass terms can not be
added explicitly by hand as it would break gauge invariance. Mass terms are included
in SM Lagrangian by the Higgs mechanism, using the idea of spontaneous symmetry
breaking. Consider the Lagrangian for a scalar field φ

L =
1

2
∂µφ∂

µφ− (
1

2
µ2φ2 +

1

4
λφ4); λ > 0 (1.21)

Here

V =
1

2
µ2φ2 +

1

4
λφ4. (1.22)

If µ2 > 0 then the vacuum corresponds to φ0 = 0 but if µ2 < 0 then the minimum of
the potential is

∂V

∂φ
= 0

φ0(µ
2 + λφ2

0) = 0 (1.23)

φ0 = ±
√

−µ2

λ
= v (1.24)

where v is vacuum expectation value (VEV) of Higgs field φ. To determine the particle
spectrum one must study the theory in the region of the minimum by putting φ = v+η(x)
and expanding around η = 0. Using φ = v + η(x) and Eq. (1.24) in Eq. (1.21) yields

L =
1

2
∂µη∂

µη − (λvη2 + λvη3 +
1

4
λη4) + const. (1.25)
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The term in η2 has the correct sign so it can be interpreted as mass square and the
vacuum does not have the reflection symmetry of the original Lagrangian. This is called
spontaneous symmetry breaking.

1.6 Higgs mechanism

The renormalizability and gauge invariance of the theory demands that the symmetry
SU(2)L × U(1)Y be spontaneously broken through Higgs mechanism. For this purpose
a complex weak doublet of Higgs scalar with hypercharge Y = 1,

Φ(x) =

(
φ+(x)
φ0(x)

)
(1.26)

is introduced which is coupled to the gauge fields through

LHiggs = (DµΦ)
†(DµΦ)− V (Φ). (1.27)

In this case the covariant derivative is given by

Dµ = ∂µ − ι
g1
2
Bµ − ιg2

σi

2
W i

µ. (1.28)

The Higgs field self-interaction enters through the Higgs potential with constants µ2 and
λ,

V (Φ) = −µ2Φ†Φ +
λ

4
(Φ†Φ)2. (1.29)

In the ground state, the vacuum, the potential has a minimum. For µ2, λ > 0, the
minimum does not occur for Φ = 0; instead, V is minimized by all non-vanishing field
configurations with Φ†Φ = 2µ2 λ. Selecting the one which is real and electrically neutral,
one gets the VEV

〈Φ〉 = 1√
2

(
0
v

)
. (1.30)

Although the Lagrangian is symmetric under gauge transformations of the full SU(2)×
U(1) group, the vacuum configuration 〈Φ〉 does not have this symmetry: the symmetry
has been spontaneously broken. 〈Φ〉 is still symmetric under transformations of the
electromagnetic subgroup U(1)em, which is generated by the charge Q, thus preserving
the electromagnetic gauge symmetry.

The scalar feld in Eq. (1.26) can be written as

Φ(x) =

(
φ+(x)

(v +H(x) + ιχ(x)) /
√
2

)
, (1.31)

where the components φ+, H , χ have vacuum expectation values zero. Expanding the
potential in Eq. (1.29) around the vacuum configuration in terms of the components
yields a mass term for H , whereas φ+ and χ are massless. Exploiting the invariance
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of the Lagrangian, the components φ+ and χ can be eliminated by a suitable gauge
transformation; this means that they are unphysical degrees of freedom (called Higgs
ghosts or would-be Goldstone bosons). Choosing this particular gauge where φ+ = χ =
0, denoted as the unitary gauge, the Higgs doublet field has the simple form

Φ(x) =
1√
2

(
0

v +H(x)

)
. (1.32)

The real field H(x) thus describes physical neutral scalar particles, the Higgs bosons,
with mass

MH =
√
2µ =

√
λv. (1.33)

The gauge invariant Higgs–gauge field interaction in the kinetic part of Eq. (1.27)
gives rise to mass terms for the vector bosons in the non-diagonal form

1

2

(g2
2
v
)2

(W 2
1 +W 2

2 ) +
1

2

(v
2

)2 (
W 3

µ , Bµ

)( g22 g1g2
g1g2 g21

)(
W µ,3

Bµ

)
. (1.34)

The first term can be written as (g2
2
v
)2

W+
µ W

−µ. (1.35)

For the charged boson the expected mass term for the Lagrangian would be m2W+W−,
so we can conclude that the charged W boson has indeed acquired a mass

MW =
1

2
g2v. (1.36)

The second term in the Eq. (1.34) is not diagonal and we have to define new eigenvalues
to find the particles with definite mass. In fact, we already have the answer in hand,
because the combination of B andW 3 appearing in Eq. (1.34) is just the combination we
have called Zµ (see Eq. (1.12)). From Eq. (1.34) and normalization of Z in Eq. (1.12),
we can conclude that the neutral gauge boson Z acquires mass

MZ =
v

2

√
g22 + g21 =

MW

cos θW
, (1.37)

while the photon remains massless.
In SM, all quarks and charged fermions get their masses through the Yukawa cou-

plings with the Higgs field Φ:

LYukawa = (Y u)ijQ̄Li
Φ∗uRj

+ (Y d)ijQ̄Li
ΦdRj

+ (Y e)ijL̄Li
ΦeRj

, (1.38)

where Y u, Y d and Y e are up-quark down-quark and charged leptons Yukawa coupling,
QL and LL are left handed quark and lepton doublets, uR, dR and eR are SU(2)L -
singlet right-handed fields of up-type quarks, down-type quarks and charged leptons
respectively and i, j are the generation indices. After the EW symmetry is broken by
a nonzero VEV v of the Higgs field, the Yukawa terms in Eq. (1.38) yield the mass
matrices of quarks and charged leptons

(mu)ij = (Y u)ijv, (md)ij = (Y d)ijv, (me)ij = (Y e)ijv (1.39)

Neutrinos are massless in the SM. They cannot have Dirac masses because there are no
SU(2)L - singlet (“sterile”) right-handed neutrinos νR in the SM.
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1.7 The CKM matrix

The quark doublets introduced in Eq. (1.2) can have up-down transitions of the form
ui → di mediated by the W±, where ui can be any up type quark and di represents any
down type quark. These kind of interactions are absent among lepton doublets due to
conservation of lepton flavor. The mixing among different generations indicated by rare
kaon decay led Cabibbo [23] to introduce the mixing angle θc called cabibbo angle so
that the quark doublet given in Eq. (1.2) is modified to

(
u

d′

)
=

(
u

d cos θc + s sin θc

)
. (1.40)

This means that the weak eigenstate d′ is a linear combination of real mass eigenstates
d and s. This concept was modified by S.L. Glashow, J. Iliopoulos and L. Maiani [24].
They were able to predict the existence of charm quark even before its discovery. This
completed the two quark doublets. They explained the mixing with the help of 2 × 2
unitary matrix. As the concept of quark mixing was indicated through the rare kaon
decays, there was also indication of CP violation in these decays. So it was believed that
the CP violation has its origin in quark mixing. This idea was adopted by Kobayashi
and Maskawa [25] to introduce the third quark doublet, as CP violation cannot be
accommodated by two doublets, consequently, they proposed the 3×3 unitary matrix
called CKM matrix given by

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (1.41)

Thus the rotation from the SU(2) interaction eigenstate basis, qintL,R, to the physical

mass eigenstate basis, qphysL,R , is performed by the unitary transformations, V u,d
L,R:




uphysL,R

cphysL,R

tphysL,R


 = V u

L,R




uintL,R

cintL,R

tintL,R


 ,




dphysL,R

sphysL,R

bphysL,R


 = V d

L,R




dintL,R

sintL,R

bintL,R


 , (1.42)

such that the quark mass matrices in the physical basis are:

v√
2
V u
L Y

u∗V u†
R = diag (mu, mc, mt) , (1.43)

v√
2
V d
LY

d∗V d†
R = diag (md, ms, mb) . (1.44)

In short, the quark flavour mixing is encoded in the CKM matrix,

VCKM = V u
L V

d†
L . (1.45)

There are nine parameters in the CKM matrix as shown in Eq. (1.41) which can be
reduced to four in the standard parametrization [26]. The three Euler angles θ12, θ13, θ23

19



and one phase factor δ, which accounts for the CP violation. The CKM matrix in
standard parameterization is given by

VCKM =




c12c13 s12c13 s13e
−ιδ

−s12c23 − c12s13e
ιδ c12c23 − s12s23s13e

ιδ s23c13
s12s23 − c12c23s13e

ιδ −c12s23 − s12c23s13e
ιδ c13c23


 (1.46)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3). The elements of the CKM matrix
exhibit a pronounced hierarchy. While the diagonal elements are close to unity, the
off-diagonal elements are small, such that e.g. Vud ≫ Vus ≫ Vub. In terms of the angles
θij we have s12 ≫ s23 ≫ s13. This fact is usually expressed in terms of the Wolfenstein
parameterization [27], which can be understood as an expansion in λ = |Vus|. This reads
up to order λ3

VCKM =




1− λ2

2
λ Aλ3 (ρ− ιη)

−λ 1− λ2

2
Aλ2

Aλ3 (1− ρ− ιη) Aλ2 1


 (1.47)

with parameters A, ρ and η are assumed to be of order 1. The current values of the
CKM elements, obtained from a global fit using all the available measurements and
imposing the SM constraints, are collected in the following matrix [28]:

VCKM =




0.97427± 0.00014 0.22536± 0.00061 0.00355± 0.00015
0.22522± 0.00061 0.97343± 0.00015 0.0414± 0.0012
0.00886+0.00033

−0.00032 0.0405+0.0011
−0.0012 0.99914± 0.00005


 . (1.48)
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Chapter 2

Supersymmetry & Its Seesaw
Extention

A SUSY transformation turns a bosonic state into a fermionic state, and vice versa. The
operator Q that generates such transformations must be an anticommuting spinor, with

Q |Boson〉 = |Fermion〉 , Q |Fermion〉 = |Boson〉 . (2.1)

Spinors are intrinsically complex objects, so Q† (the hermitian conjugate of Q) is
also a symmetry generator. Because Q and Q† are fermionic operators, they carry spin
angular momentum 1/2, so it is clear that SUSY must be a spacetime symmetry. The
No-go theorem [29] asserts that it is impossible to mix internal and Lorentz space time
symmetries (when described by the commutators only) in a non-trivial way. If one wants
to extend the space-time structure, one will be left with the only choice of SUSY with
graded Lie algebra. The simplest realization is given by

{Qα, Q
†
.
α
} = 2σµ

α
.
α
Pµ, (2.2)

{Qα, Qβ} = {Q .
α, Q .

β
} = 0, (2.3)

[Qα, Pµ] = [Q .
α, Pµ] = 0, (2.4)

where P µ is the momentum generator of space-time translations and σµ = (1, σ1, σ2,
σ3). In the following sections, we will give some motivation for SUSY and review main
aspacts of the SUSY, in particular the MSSM and its seesaw extension. The subsequent
discussion follows closely Refs. [14, 30].

2.1 Motivation

SUSY can successfully explain some of the major deficiencies of SM, as discussed in the
introduction, in a more natural way.
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• Hierarchy problem: The simplest form of SUSY can solve the hierarchy problem
mentioned in the introduction. Quadratic divergences appearing at one loop level
in Higgs mass vanish due to cancellation between bosons and fermions. Consider
for example coupling of the Higgs field H to a Dirac fermion f with a term in the
Lagrangian −λfHf̄f . The one-loop radiative corrections to the Higgs mass MH

will be of the form

δM2
H(f) = −|λf |2

8π2
[Λ2 − 2m2

f ln
Λ

mf
+ .....] (2.5)

where mf is the mass of the fermion in the loop. As can be seen from above equa-
tion Higgs boson mass is quadratically divergent. In the case of fermion (gauge
boson), the chiral (gauge) symmetry constitutes the “natural barrier” preventing
their masses to become arbitrarily large. In the case of Higgs boson, there is no
symmetry that protects the scalar mass and in the limit MH → 0, the symme-
try of the model is not increased. SUSY constitutes so far the most interesting
answer to hierarchy problem. As we have mentioned in the introduction, SUSY
associates a scalar particle with every fermionic degree of freedom in the theory
with, in principle, identical masses and gauge quantum numbers. Therefore, in a
supersymmetric theory we would have a new contribution to the Higgs mass at
one loop given by

δM2
H(f̃) = −

λf̃
8π2

[Λ2 − 2m2
f̃
ln

Λ

mf̃

+ .....], (2.6)

where λf̃ is the SUSY particle coupling to the Higgs field, mf̃ is the mass of the
SUSY particle in the loop. If we compare Eq. (2.5) and Eq. (2.6) we see that with
|λf |2 = −λf̃ and mf = mf̃ we obtain a total correction δM2

H(f)+δM
2
H(f̃) = 0, i.e.

quadratic divergence cancels exactly. If SUSY was an exact symmetry of nature,
particles and their superpartners would have the same mass, and therefore the
superpartners should have been observed in collider experiments. However we have
not found scalars exactly degenerate with the SM fermions. This means SUSY can
not be an exact symmetry of nature, it must be a broken symmetry. By comparing
Eq. (2.5) and Eq. (2.6), we can see that we must still require |λf |2 = −λf̃ if we
want to ensure the cancellation of quadratic divergences. SUSY can be broken
only in couplings with positive mass dimension, as for instance the masses. This
is called “soft SUSY-breaking” [31]. Now if we take m2

f̃
= m2

f + δ2 we obtain a

correction to the Higgs mass,

δM2
H(f) + δM2

H(f̃) =
|λf |2
8π2

δ2ln
Λ

mf̃

+ ....., (2.7)

and this is only logarithmically divergent and proportional to mass difference be-
tween fermion and its scalar partner and is, therefor, under control.
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• Gauge coupling unification: The idea of gauge unification gets simplified by
the SUSY. The coupling constants α1, α2 and α3 vary with energy and the rate
of the variation of these coupling constants depends on the particle content of the
theory. If these coupling constants are extrapolated to the higher energies using the
particle content of the SM, these do not meet at the same point. However, when
the same extrapolation is repeated using the particle contents of the SUSY, the
three coupling constants meet at the same point [32–34]. The “exact” unification
of the gauge couplings within the MSSM may or may not be an accident. But it
provides enough reasons to consider supersymmetric models seriously as it links
SUSY and grand unification in an inseparable manner [35].

• Dark Matter candidate: There is no particle in the SM that can serve as a
DM candidate. However most of the SUSY models provide a particle which might
explain missing mass in the universe. For example lightest neutralino could be a
DM candidate in the MSSM (see details below).

• Supergravity: If SUSY is formulated as a local symmetry, a spin 2 particle
corresponding to the graviton, the hypothetical particle that mediates gravity, is
introduced. Then the supersymmetric models of gravity called supergravity have
the elegant feature to link the SM fundamental interactions with gravity [36].

2.2 Superpotential

In this section we will describe the concept of superpotential. The aim is to arrive
at a recipe that will allow to write down the allowed interaction terms of a general
supersymmetric theory, so that later these results can be applied to the special case of
the MSSM (see, e.g., the discussion in Ref. [30]).

The single-particle states of a supersymmetric theory fall into irreducible represen-
tations of the SUSY algebra, called supermultiplets. Each supermultiplet contains both
fermion and boson states, which are commonly known as superpartners of each other.
Each supermultiplet contains an equal number of fermionic and bosonic degrees of free-
dom.

The minimum fermion content of any theory in four dimensions consists of a single
left-handed two-component Weyl fermion ψ. Since this is an intrinsically complex object,
it seems sensible to choose as its superpartner a complex scalar field φ. This combination
of a two-component Weyl fermion and a complex scalar field is called a chiral or matter
or scalar supermultiplet.

The next-simplest possibility for a supermultiplet contains a spin-1 vector boson.
If the theory is to be renormalizable, this must be a gauge boson that is massless, at
least before the gauge symmetry is spontaneously broken. Its superpartner is therefore a
massless spin-1/2 Weyl fermion, called gaugino. Such a combination of spin-1/2 gauginos
and spin-1 gauge bosons is called a gauge or vector supermultiplet.

The simplest action one can write down for chiral supermultiplet just consists of
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kinetic energy terms for scalar and fermionic fields.

S =

∫
d4x(Lscalar + Lfermion) (2.8)

with
Lscalar = ∂µφ∗∂µφ, Lfermion = ιψ̄σ̄µ∂µψ. (2.9)

This is called the massless, non-interacting Wess-Zumino model. The number of fermionic
degrees of freedom must be equal to the number of bosonic degrees of freedom. But scalar
field contains one degree of freedom and one can add one more if a complex scalar field
is introduced. However, a fermionic field carries at least four components. Two of these
degrees of freedom can be fixed by Dirac equation. It means, the algebra of SUSY only
closes on-shell in this formulation. This can be fixed by a trick. One can invent a new
complex scalar field F, which does not have a kinetic term. Such fields are called auxil-
iary, and they are really just book-keeping devices that allow the SUSY algebra to close
off-shell. Thus the free part of the Lagrangian is

Lfree = ∂µφ∗i∂µφi + ιψ̄iσ̄µ∂µψi + F ∗iFi , (2.10)

where it is summed over repeated indices i (not to be confused with the suppressed
spinor indices). Now the most general set of renormalizable interactions for these fields
that is consistent with SUSY must have dynamical field content with mass dimension ≤
4. So, the candidate terms that are also SUSY invariant are:

Lint = −1

2
W ijψiψj +W iFi + c.c. (2.11)

A very useful object W called the superpotential is introduced.

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk (2.12)

where M ij is a symmetric mass matrix for the fermion fields, and yijk is the Yukawa
coupling of the scalar φk. One can write

W ij =
∂2

∂φi∂φj
W, W i =

∂W

∂φi
. (2.13)

The auxiliary fields Fi and F
∗i can be eliminated using their classical equations of

motion. The part of Lfree + Lint that contains the auxiliary fields is FiF
∗i + W iFi +

W ∗
i F

∗i, leading to the equations of motion

Fi = −W ∗
i ; F ∗i = −W i. (2.14)

After making the replacement Eq. (2.14) in Lfree + Lint, one obtains the Lagrangian
density

L = ∂µφ∗i∂µφi + ιψ̄iσ̄µ∂µψi −
1

2
(W ijψiψj +W ∗

ijψ̄
iψ̄j)−W iW ∗

i . (2.15)

In short, the most general non-gauge interactions for chiral supermultiplets are deter-
mined by a single analytic function of the complex scalar fields, the superpotential W .
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Superfields spin 0 spin 1/2 (SU(3)C , SU(2)L, U(1)Y )

Q̂ (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

Û ũ∗R u†R ( 3, 1, −2
3
)

D̂ d̃∗R d†R ( 3, 1, 1
3
)

L̂ (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

Ê ẽ∗R e†R ( 1, 1, 1)

Ĥ2 (H+
2 H0

2) (H̃+
2 H̃0

2) ( 1, 2 , +1
2
)

Ĥ1 (H0
1 H−

1 ) (H̃0
1 H̃−

1 ) ( 1, 2 , −1
2
)

Table 2.1: Chiral supermultiplets in the MSSM, their field content, and their represen-
tations in the gauge groups. Here u = u, c, t; d = d, s, b; e = e, µ, τ and ν = νe, νµ, ντ .

Superfields spin 1/2 spin 1 (SU(3)C , SU(2)L, U(1)Y )

Ĝa g̃ g ( 8, 1 , 0)

Ŵ i W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

B̂ B̃0 B0 ( 1, 1 , 0)

Table 2.2: Gauge supermultiplets in the MSSM, their field content, and their represen-
tations in the gauge groups.

2.3 The MSSM

The supersymmetric version of SM is called the MSSM with N = 1 generators, where N
refer to the number of distinct copies of Q and Q†. According to the MSSM each of the
fundamental particle of SM has a superpartner with spin differing by half unit. These
particles are placed either in chiral or gauge supermultiplet as shown in Tab. 2.1 and
Tab. 2.2.

In order to keep anomaly cancellation, contrary to the SM a second Higgs doublet is
needed [37]. One Higgs doublet, H1, gives mass to the d-type fermions (with weak isospin
-1/2), the other doublet, H2, gives mass to the u-type fermions (with weak isospin +1/2).
All SM multiplets, including the two Higgs doublets, are extended to supersymmetric
multiplets, resulting in scalar partners for quarks and leptons (“squarks” and “sleptons”)
and fermionic partners for the SM gauge boson and the Higgs bosons (“gauginos” and
“gluinos”) as shown in Tab. 2.1 and Tab. 2.2.

The mass eigenstates of the gauginos are linear combinations of these fields, denoted
as “neutralinos” and “charginos”. Also the left- and right-handed squarks (and sleptons)
can mix, yielding the mass eigenstates (denoted by the indices 1, 2 instead of L,R). The
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EW interaction eigenstates and mass eigenstates of the MSSM particle spectrum are
given in Tab. 2.3. Here mass eigenstates are written with the assumption of no flavor
violation. If flavor violation is assumed, all six up- and down-type squarks and all six
charged sleptons mix separately to give six mass eigenstates (see Sect. 2.3.6).

Particle Electroweak eigenstate Mass Eigenstate

squarks ũL,ũR,d̃L,d̃R ũ1,ũ2,d̃1,d̃2

c̃L,c̃R, s̃L,s̃R c̃1,c̃2,s̃1,s̃2

t̃L,t̃R,b̃L,b̃R t̃1,t̃2,b̃1,b̃2

sleptons ẽL,ẽR,ν̃e ẽ1,ẽ2,ν̃e

µ̃L,µ̃R,ν̃µ µ̃1,µ̃2,ν̃µ

τ̃L,τ̃R,ν̃τ τ̃1,τ̃2,ν̃τ

neutralinos B̃,W̃ ,H̃0
u,H̃

0
d χ̃0

1,χ̃
0
2,χ̃

0
3,χ̃

0
4

charginos W̃±,H̃+
u ,H̃

−
d χ̃±

1 ,χ̃
±
2

gauge boson B,W 1,W 2,W 3 W±,Z,γ

gluon and gluino g,g̃ g,g̃

Table 2.3: The EW interaction eigenstates and mass eigenstates of the MSSM particles.
No flavor mixing is assumed here.

At knowing the particle content of MSSM, one can write the most general SU(3)C×
SU(2)L × U(1)Y gauge invariant and renormalizable superpotential as [11]

WMSSM = ǫab[Y
e
ijĤ

a
1 L̂

b
i Ê

C
j + Y d

ijĤ
a
1 Q̂

b
iD̂

C
j + Y u

ij Ĥ
a
2 Q̂

b
i Û

C
j − µĤa

1 Ĥ
b
2] (2.16)

where L̂ represents the chiral multiplet of a SU(2)L doublet lepton, Ê a SU(2)L singlet
charged lepton, Ĥ1 and Ĥ2 two Higgs multiplets with opposite hypercharge. Similarly
Q̂, Û and D̂ represent chiral multiplets of quarks of a SU(2)L doublet and two singlets
with different U(1)Y charges whereas i, j = 1, 2, 3 are family indices and a, b are SU(2)
indices. The symbol ǫab is an anti-symmetric tensor with ǫ12 = 1.

As mentioned in Sect. 2.1, SUSY is not an exact symmetry of nature. It must be a
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broken symmetry. The general set-up for the SSB parameters is given by [11]

− Lsoft = (m2
Q̃
)ji Q̃†iQ̃j + (m2

Ũ
)ijŨ∗

i Ũ j + (m2
D̃
)ijD̃∗

i D̃j

+(m2
L̃
)ji L̃†iL̃j + (m2

Ẽ
)ijẼ∗

i Ẽ j

+m2
H1
H†

1H1 +m2
H2
H†

2H2 + (BµH1H2 + h.c.)

+((Ād)ijH1D̃∗
i Q̃j + (Āu)ijH2Ũ∗

i Q̃j + (Āe)ijH1Ẽ∗
i Ẽj

+
1

2
M1B̃

0
LB̃

0
L +

1

2
M2W̃

a
LW̃

a
L +

1

2
M3G̃

aG̃a + h.c.). (2.17)

Here we have used calligraphic capital letters for the sfermion fields in the interaction
basis with generation indices,

Ũ1,2,3 = ũR, c̃R, t̃R; D̃1,2,3 = d̃R, s̃R, b̃R; Q̃1,2,3 = (ũL d̃L)
T , (c̃L s̃L)

T , (t̃L b̃L)
T

Ẽ1,2,3 = ẽR, µ̃R, τ̃R; L̃1,2,3 = (ν̃eL ẽL)
T , (ν̃µL µ̃L)

T , (ν̃τL τ̃L)
T (2.18)

and all the gauge indices have been omitted. Here m2
Q̃
and m2

L̃
are 3 × 3 matrices in

family space (with i, j being the generation indeces) for the soft masses of the left handed
squark Q̃ and slepton L̃ SU(2) doublets, respectively. m2

Ũ
, m2

D̃
and m2

Ẽ
contain the soft

masses for right handed up-type squark Ũ , down-type squarks D̃ and charged slepton
Ẽ SU(2) singlets, respectively. Āu, Ād and Āe are the 3 × 3 matrices for the trilinear
couplings for up-type squarks, down-type squarks and charged slepton, respectively. mH1

and mH2
contain the soft masses of the Higgs sector. In the last line M1, M2 and M3

define the bino, wino and gluino mass terms, respectively.
It is noteworthy that the terms in Eq. (2.16) conserve lepton and baryon numbers,

which is neither required by gauge invariance nor by renormalization. One can add the
terms of the form

ǫab[λijkL̂
a
i L̂

b
jÊ

c
k + λ′ijkL̂

a
i Q̂

b
jD̂

c
k + λ′′ijkÛ

c
i D̂

c
jD̂

c
k] (2.19)

to Eq. (2.16) where λijk, λ
′
ijk and λ′′ijk are the R-parity violating couplings. However

these terms violate either lepton or baryon number by one unit, and presence of these
terms have dangerous impact on matter i.e. these terms lead to fast proton decay, which
is in contradiction to experimental observations. So in order to avoid this situation we
have to introduce ad-hoc symmetry, known as R-parity, defined as [38, 39]

Rp = (−1)3(B−L)+2s (2.20)

where B represents baryon number, L the lepton number and s the intrinsic spin of the
particle. Invariance of Lagrangian under R-parity implies −1 phase for sparticle and
+1 for SM particles. Under this condition the L and B number violating processes are
prohibited, this prevents the proton from decaying rapidly.

Though R-parity is introduced by hand just to safe proton decay, but it has large
impact on particle physics phenomenology. The conservation of R-parity demands that
the sparticles are always produced in pairs. e.g. the LSP must be stable and is assumed
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as the excellent candidate for DM. To detect a LSP, collider experiments search for
missing transverse energy that would arise if one of these particles were created during
a collision process and escaped undetected. For example, at the LHC, the major SUSY
production processes are gluinos g̃ and squarks q̃ e.g., p+ p→ g̃ + q̃. These then decay
into lighter SUSY particles. The final states involve two lightest neutralinos χ̃0

1 (giving
rise to missing transverse energy Emiss

T ), quarks (jets) and leptons. The signal is thus
Emiss

T + jets +leptons, which should be observable at the LHC detectors.

2.3.1 The scalar fermion sector

The squarks and charged sleptons mass term (sneutrinos being treated differently) of
the MSSM Lagrangian is given by

Lm
f̃
= −1

2

(
f̃ †
L, f̃

†
R

)
M

f̃


 f̃L

f̃R


 , (2.21)

where

M
f̃
=


 M2

f̃
+M2

Z cos 2β(If3 −Qfs
2
w) +m2

f mfXf

mfXf M2
f̃ ′
+M2

Z cos 2βQfs
2
w +m2

f


 , (2.22)

with Xf = Af − µ{cotβ; tanβ} and tanβ = v2/v1, the ratio of the VEV’s of the
two Higgs doublets, corresponds to d-type squarks and charged sleptons whereas cot β
corresponds to u-type squarks. The SSB term Mf̃ ′ represents right handed squarks and
right handed charged sleptons. Sneutrino mass term is given by

M2
ν̃ = m2

L̃
+

(
1

2
M2

Z cos 2β

)
(2.23)

In order to diagonalize the sfermion mass matrix and to determine the physical mass
eigenstates the following rotation has to be performed:


 f̃1

f̃2


 =


 cos θf̃ sin θf̃

− sin θf̃ cos θf̃





 f̃L

f̃R


 . (2.24)

The mixing angle θf̃ is given for tan β > 1 by:

cos θf̃ =

√
M2

f̃
+M2

Z cos 2β(If3 −Qfs2w) +m2
f −m2

f̃2√
m2

f̃1
−m2

f̃2

(2.25)

sin θf̃ =
mfXf√

M2
f̃
+M2

Z cos 2β(If3 −Qfs2w) +m2
f −m2

f̃2

√
m2

f̃1
−m2

f̃2

. (2.26)
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The masses are given by the eigenvalues of the mass matrix:

m2
f̃1,2

= m2
f +

1

2

[
M2

f̃
+M2

f̃ ′ +M2
Z cos 2βIf3 (2.27)

∓
√

[M2
f̃
−M2

f̃ ′
+M2

Z cos 2β(If3 −Qfs2w)]
2 + 4m2

f |Xf |2
]
. (2.28)

Since the non-diagonal entry of the mass matrix Eq. (2.22) is proportional to the fermion
mass, mixing becomes particularly important for f̃ = t̃, in the case of tan β ≫ 1 also for
f̃ = b̃.

2.3.2 The Higgs sector of the MSSM

The two Higgs doublets form the Higgs potential [40]

V = (m2
1 + |µ|2)|H1|2 + (m2

2 + |µ|2)|H2|2 −m2
12(ǫabHa

1Hb
2 + h.c.)

+
1

8
(g1

2 + g2
2)
[
|H1|2 − |H2|2

]2
+

1

2
g2

2|H†
1H2|2 , (2.29)

which contains m1, m2, m12 as SSB parameters. The doublet fields H1 and H2 are
decomposed in the following way:

H1 =


 H0

1

H−
1


 =


 v1 +

1√
2
(φ0

1 − iχ0
1)

−φ−
1




H2 =


 H+

2

H0
2


 =


 φ+

2

v2 +
1√
2
(φ0

2 + iχ0
2)


 . (2.30)

The potential (2.29) can be described with the help of two independent parameters
(besides g1 and g2): tan β and M2

A = −m2
12(tanβ + cotβ), where MA is the mass of the

CP-odd A boson.
The diagonalization of the bilinear part of the Higgs potential, i.e. the Higgs mass

matrices, is performed via the orthogonal transformations


 H0

h0


 =


 cosα sinα

− sinα cosα





 φ0

1

φ0
2


 (2.31)


 G0

A0


 =


 cos β sin β

− sin β cos β





 χ0

1

χ0
2


 (2.32)


 G±

H±


 =


 cos β sin β

− sin β cos β





 φ±

1

φ±
2


 . (2.33)
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The mixing angle α is determined through

tan 2α = tan 2β
M2

A +M2
Z

M2
A −M2

Z

; −π
2
< α < 0 . (2.34)

One gets the following Higgs spectrum:

2 neutral bosons, CP = +1 : h0, H0

1 neutral boson, CP = −1 : A0

2 charged bosons : H+, H−

3 unphysical Goldstone bosons : G0, G+, G−. (2.35)

The masses of the gauge bosons are given in analogy to the SM:

M2
W =

1

2
g22(v

2
1 + v22); M2

Z =
1

2
(g21 + g22)(v

2
1 + v22); Mγ = 0. (2.36)

At tree level the mass matrix of the neutral CP-even Higgs bosons is given in the
φ1-φ2-basis in terms of MZ , MA, and tanβ by

M2,tree
Higgs =


 m2

φ1
m2

φ1φ2

m2
φ1φ2

m2
φ2




=


 M2

A sin2 β +M2
Z cos2 β −(M2

A +M2
Z) sin β cos β

−(M2
A +M2

Z) sin β cos β M2
A cos2 β +M2

Z sin2 β


 , (2.37)

which by diagonalization according to Eq. (2.31) yields the tree-level Higgs boson masses

M2,tree
Higgs

α−→


 m2

H,tree 0

0 m2
h,tree


 . (2.38)

The mixing angle α satisfies

tan 2α = tan 2β
M2

A +M2
Z

M2
A −M2

Z

, −π
2
< α < 0. (2.39)

Since we treat all MSSM parameters as real there is no mixing between CP-even and
CP-odd Higgs bosons.

The tree-level results for the neutral CP-even Higgs-boson masses of the MSSM read

m2
(H,h),tree =

1

2

[
M2

A +M2
Z ±

√
(M2

A +M2
Z)

2 − 4M2
ZM

2
A cos2 2β

]
. (2.40)

This implies an upper bound of mh,tree ≤MZ for the light CP-even Higgs-boson mass of
the MSSM. The direct prediction of an upper bound for the mass of the light CP-even
Higgs-boson mass is one of the most striking phenomenological predictions of the MSSM.
The existence of such a bound, which does not occur in the case of the SM Higgs boson,
can be related to the fact that the quartic term in the Higgs potential of the MSSM is
given in terms of the gauge couplings, while the quartic coupling is a free parameter in
the SM.
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2.3.3 Charginos

The charginos χ̃+
i (i = 1, 2) are four component Dirac fermions. The mass eigenstates

are obtained from the winos W̃± and the charged higgsinos H̃−
1 , H̃

+
2 :

W̃+ =


 −iλ+

iλ̄−


 ; W̃− =


 −iλ−

iλ̄+


 ; H̃+

2 =


 ψ+

H2

ψ̄−
H1


 ; H̃−

1 =


 ψ−

H1

ψ̄+
H2


 .

(2.41)
The chargino masses are defined as mass eigenvalues of the diagonalized mass matrix,

Lχ̃+,mass = −1

2

(
ψ+, ψ−

)

 0 XT

X 0





 ψ+

ψ−


+ h.c. , (2.42)

or given in terms of two-component fields

ψ+ = (−iλ+, ψ+
H2
)

ψ− = (−iλ−, ψ−
H1
)

, (2.43)

where X is given by

X =




M2

√
2MW sin β

√
2MW cos β µ


 . (2.44)

The physical (two-component) mass eigenstates are obtained via unitary (2×2) ma-
trices U and V:

χ+
i = Vij ψ

+
j

χ−
i = Uij ψ

−
j

i, j = 1, 2 . (2.45)

This results in a four-component Dirac spinor

χ̃+
i =


 χ+

i

χ̄−
i


 i = 1, 2 , (2.46)

where U and V are given by

U = O− ; V =





O+ detX > 0

σ3O+ detX < 0

(2.47)

31



with

O± =


 cosφ± sinφ±

− sin φ± cosφ±


 ; (2.48)

cosφ± and sin φ± are given by (ǫ = sgn[detX])

tanφ+ =

√
2MW (sin βmχ̃+

1
+ ǫ cos βmχ̃+

2
)

(M2mχ̃+

1
+ ǫ µmχ̃+

2
)

tanφ− =
−µmχ̃+

1
− ǫM2mχ̃+

2√
2MW (sin βmχ̃+

1
+ ǫ cos βmχ̃+

2
)
. (2.49)

(If φ+ < 0 it has to be replaced by φ+ + π.) mχ̃+

1
and mχ̃+

2
are the eigenvalues of the

diagonalized matrix

M2
diag,χ̃+ = VX†XV

−1
= U∗XX† (U∗)

−1

Mdiag,χ̃+ = U∗XV−1 =


 mχ̃+

1
0

0 mχ̃+

2


 . (2.50)

They are given by

m2
χ̃+

1,2

=
1

2

{
M2

2 + µ2 + 2M2
W ∓

[
(M2

2 − µ2)2

+ 4M4
W cos2 2β + 4M2

W (M2
2 + µ2 + 2µM2 sin 2β)

] 1

2

}
. (2.51)

2.3.4 Neutralinos

Neutralinos χ̃0
i (i = 1, 2, 3, 4) are four-component Majorana fermions. They are the mass

eigenstates of the photino, γ̃, the zino, Z̃, and the neutral higgsinos, H̃0
1 and H̃0

2 , with

γ̃ =


 −iλγ

iλ̄γ


 ; Z̃ =


 −iλZ

iλ̄Z


 ; H̃0

1 =


 ψ0

H1

ψ̄0
H1


 ; H̃0

2 =


 ψ0

H2

ψ̄0
H2


 .

(2.52)
Analogously to the SM, the photino and zino are mixed states from the bino, B̃, and
the wino, W̃ ,

B̃ =


 −iλ′

iλ̄′


 ; W̃ 3 =


 −iλ3

iλ̄3


 , (2.53)

with

γ̃ = W̃ 3 sw + B̃ cw

Z̃ = W̃ 3 cw − B̃ sw . (2.54)
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The mass term in the Lagrange density is given by

Lχ̃0,mass = −1

2
(ψ0)T Y ψ0 + h.c. , (2.55)

with the two-component fermion fields

(ψ0)T = (−iλ′,−iλ3, ψ0
H1
, ψ0

H2
) . (2.56)

The mass matrix Y is given by

Y =




M1 0 −MZsw cos β MZsw sin β

0 M2 MZcw cos β −MZcw sin β

−MZsw cos β MZcw cos β 0 −µ
MZsw sin β −MZcw sin β −µ 0


 . (2.57)

The physical neutralino mass eigenstates are obtained with the unitary transformation
matrix N:

χ0
i = Nij ψ

0
j i, j = 1, . . . , 4, (2.58)

resulting in the four-component spinor (representing the mass eigenstate)

χ̃0
i =


 χ0

i

χ̄0
i


 i = 1, . . . , 4 . (2.59)

The diagonal mass matrix is then given by

Mdiag,χ̃0 = N∗YN−1 . (2.60)

2.3.5 Gluinos

The gluino, g̃, is the spin 1/2 superpartner (Majorana fermion) of the gluon. According
to the 8 generators of SU(3)C (colour octet), there are 8 gluinos, all having the same
Majorana mass

mg̃ = |M3| . (2.61)

In SUSY GUTs M1, M2 and M3 are not independent but connected via

mg̃ =M3 =
g23
g22
M2 =

αs

αem
s2wM2, M1 =

5

3

s2w
c2w
M2 . (2.62)

2.3.6 Scalar fermion sector with flavor mixing

In Sect. 1.7 we saw how quarks are rotated from the EW interaction eigenstate basis to
the mass eigenstate basis. Since squarks belong to the same supermultiplet, they need
to be rotated parallel to the quarks. The rotation is performed via same matrix i.e.
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the CKM matrix and the relavent terms in the SSB Lagrangian given in Eq. (2.17) get
rotated from the interaction eigenstate basis to what is known as the Super-CKM basis

Lsoft = −Ũ∗
Rim

2
ŨRij

ŨRj − D̃∗
Rim

2
D̃Rij

D̃Rj − Ũ∗
Lim

2
ŨLij

ŨLj − D̃∗
Lim

2
D̃Lij

D̃Lj

−ŨLiAu
ijŨ

∗
RjH0

2 − D̃Li(VCKM)kiAu
kjŨ

∗
RjH+

2 − ŨLi(V
∗
CKM)ikAd

kjD̃
∗
RjH−

1

+D̃LiAd
ijD̃

∗
RjH0

1 + h.c., (2.63)

where ŨL,R with U = u, c, t represents up-type squarks, D̃L,R with D = d, s, b represents
down-type squarks in Super-CKM basis. The soft masses mŨL

, mŨR
, mD̃L

, mD̃R
and tri-

linear couplings Aq with q = u, d in Super-CKM basis are related to the EW interaction
eigenstate basis by

Aq = V q
L Ā

qV q†
R , m2

ŨR
= V u

Rm
2
Ũ
V u†
R ,

m2
D̃R

= V d
Rm

2
D̃
V d†
R , m2

ŨL
= V u

Lm
2
Q̃
V u†
L ,

m2
D̃L

= V d
Lm

2
Q̃
V d†
L . (2.64)

In the Super-CKM basis, not only squarks with different flavor can mix among them-
selves but we will have left-right mixing also. This will results in 6×6 mass matrices for
up-type and down-type squarks. The same arguments hold for the sleptons but in this
case flavor mixing will be induced by the PMNS matrix of the neutrino sector and trans-
mitted by the (tiny) neutrino Yukawa couplings. Thus we will have 6 × 6 mass matrix
for the charged sleptons in the so called Super-PMNS basis, however for the sneutrinos
we have a 3 × 3 mass matrix, since within the MSSM even with type I seesaw (to be
defined below), we have only three EW interaction eigenstates, ν̃L with ν = νe, νµ, ντ
(right handed neutrinos decouple below their respective mass scale).

The non-diagonal entries in this 6× 6 general matrix for sfermions can be described
in terms of a set of dimensionless parameters δFAB

ij (F = Q,U,D, L,E;A,B = L,R;
i, j = 1, 2, 3, i 6= j) where F identifies the sfermion type, L,R refer to the “left-” and
“right-handed” SUSY partners of the corresponding fermionic degrees of freedom, and
i, j indices run over the three generations. (Non-zero values for the δFAB

ij are generated
via the processes discussed in the introduction.)

One usually writes the 6×6 non-diagonal mass matrices, M2
ũ and M2

d̃
being ordered

respectively as (ũL, c̃L, t̃L, ũR, c̃R, t̃R), (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R) in the Super-CKM basis, M2
l̃

being ordered as (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R) in the Super-PMNS basis and write them in
terms of left- and right-handed blocks M2

q̃ AB, M
2
l̃ AB

(q = u, d, A,B = L,R), which are
non-diagonal 3× 3 matrices,

M2
q̃ =




M2
q̃ LL M2

q̃ LR

M2 †
q̃ LR M2

q̃ RR


 , q̃ = ũ, d̃ , (2.65)
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where:

M2
ũ LL ij =m

2
ŨL ij

+
(
m2

ui
+ (T u

3 −Qus
2
w)M

2
Z cos 2β

)
δij ,

M2
ũ RR ij =m

2
ŨR ij

+
(
m2

ui
+Qus

2
wM

2
Z cos 2β

)
δij,

M2
ũ LR ij =

〈
H0

2

〉
Au

ij −mui
µ cotβ δij , ,

M2
d̃ LL ij

=m2
D̃L ij

+
(
m2

di
+ (T d

3 −Qds
2
w)M

2
Z cos 2β

)
δij,

M2
d̃ RR ij

=m2
D̃R ij

+
(
m2

di
+Qds

2
wM

2
Z cos 2β

)
δij ,

M2
d̃ LR ij

=
〈
H0

1

〉
Ad

ij −mdiµ tanβ δij , (2.66)

and

M2
l̃
=




M2
l̃ LL

M2
l̃ LR

M2 †
l̃ LR

M2
l̃ RR


 , (2.67)

where:

M2
l̃ LL ij

=m2
L̃ ij

+

(
m2

li
+ (−1

2
+ s2w)M

2
Z cos 2β

)
δij,

M2
l̃ RR ij

=m2
Ẽ ij

+
(
m2

li
− s2wM

2
Z cos 2β

)
δij ,

M2
l̃ LR ij

=
〈
H0

1

〉
Ae

ij −mliµ tanβ δij, (2.68)

with, i, j = 1, 2, 3, Qu = 2/3, Qd = −1/3, T u
3 = 1/2 and T d

3 = −1/2. (mu1
, mu2

, mu3
) =

(mu, mc, mt), (md1 , md2 , md3) = (md, ms, mb) are the quark masses and (ml1 , ml2 , ml3) =
(me, mµ, mτ ) are the lepton masses.

It should be noted that the non-diagonality in flavor comes exclusively from the SSB
parameters, that could be non-vanishing for i 6= j, namely: the masses m2

ŨL ij
, m2

ŨR ij
,

m2
D̃L ij

, m2
D̃R ij

, mL̃ ij , mẼ ij and the trilinear couplings, Af
ij.

In the sneutrino sector there is, correspondingly, a one-block 3×3 mass matrix, that
is referred to the (ν̃eL, ν̃µL, ν̃τL) Super-PMNS basis:

M2
ν̃ =

(
M2

ν̃ LL

)
, (2.69)

where:

M2
ν̃ LL ij = m2

L̃ ij
+

(
1

2
M2

Z cos 2β

)
δij , (2.70)

It is important to note that due to SU(2)L gauge invariance the same soft masses
mQ̃ ij enter in both up-type and down-type squarks mass matrices similarly mL̃ ij enter
in both the slepton and sneutrino LL mass matrices. The SSB parameters for the up-
type squarks differ from corresponding ones for down-type squarks by a rotation with
CKM matrix. The same would hold for sleptons i.e. the soft SUSY-breaking parameters
of the sneutrinos would differ from the corresponding ones for charged sleptons by a
rotation with the PMNS matrix. However, taking the neutrino masses and oscillations
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into account in the SM leads to LFV effects that are extremely small. For instance,
in µ → eγ they are of O(10−47) in case of Dirac neutrinos with mass around 1 eV
and maximal mixing [41–43], and of O(10−40) in case of Majorana neutrinos [41, 43].
Consequently we do not expect large effects from the inclusion of neutrino mass effects
here and neglect a rotation with the PMNS matrix. The sfermion mass matrices in
terms of the δFAB

ij are given as

m2
ŨL

=




m2
Q̃1

δQLL
12 mQ̃1

mQ̃2
δQLL
13 mQ̃1

mQ̃3

δQLL
21 mQ̃2

mQ̃1
m2

Q̃2
δQLL
23 mQ̃2

mQ̃3

δQLL
31 mQ̃3

mQ̃1
δQLL
32 mQ̃3

mQ̃2
m2

Q̃3


 , (2.71)

m2
D̃L

= V †
CKMm

2
ŨL
VCKM , (2.72)

m2
ŨR

=




m2
Ũ1

δURR
12 mŨ1

mŨ2
δURR
13 mŨ1

mŨ3

δURR
21 mŨ2

mŨ1
m2

Ũ2

δURR
23 mŨ2

mŨ3

δURR
31 mŨ3

mŨ1
δURR
32 mŨ3

mŨ2
m2

Ũ3


 , (2.73)

m2
D̃R

=




m2
D̃1

δDRR
12 mD̃1

mD̃2
δDRR
13 mD̃1

mD̃3

δDRR
21 mD̃2

mD̃1
m2

D̃2
δDRR
23 mD̃2

mD̃3

δDRR
31 mD̃3

mD̃1
δDRR
32 mD̃3

mD̃2
m2

D̃3


 , (2.74)

v2Au =




muAu δULR
12 mQ̃1

mŨ2
δULR
13 mQ̃1

mŨ3

δULR
21 mQ̃2

mŨ1
mcAc δULR

23 mQ̃2
mŨ3

δULR
31 mQ̃3

mŨ1
δULR
32 mQ̃3

mŨ2
mtAt


 , (2.75)

v1Ad =




mdAd δDLR
12 mQ̃1

mD̃2
δDLR
13 mQ̃1

mD̃3

δDLR
21 mQ̃2

mD̃1
msAs δDLR

23 mQ̃2
mD̃3

δDLR
31 mQ̃3

mD̃1
δDLR
32 mQ̃3

mD̃2
mbAb


 . (2.76)

m2
L̃
=




m2
L̃1

δLLL12 mL̃1
mL̃2

δLLL13 mL̃1
mL̃3

δLLL21 mL̃2
mL̃1

m2
L̃2

δLLL23 mL̃2
mL̃3

δLLL31 mL̃3
mL̃1

δLLL32 mL̃3
mL̃2

m2
L̃3


 (2.77)

v1Ae =




meAe δELR
12 mL̃1

mẼ2
δELR
13 mL̃1

mẼ3

δELR
21 mL̃2

mẼ1
mµAµ δELR

23 mL̃2
mẼ3

δELR
31 mL̃3

mẼ1
δELR
32 mL̃3

mẼ2
mτAτ


 (2.78)
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m2
Ẽ
=




m2
Ẽ1

δERR
12 mẼ1

mẼ2
δERR
13 mẼ1

mẼ3

δERR
21 mẼ2

mẼ1
m2

Ẽ2
δERR
23 mẼ2

mẼ3

δERR
31 mẼ3

mẼ1
δERR
32 mẼ3

mẼ2
m2

Ẽ3


 (2.79)

In this thesis, for simplicity, we are assuming that all δFAB
ij parameters are real,

therefore, hermiticity of M2
q̃, M2

l̃
and M2

ν̃ implies δFAB
ij = δFBA

ji .
The next step is to rotate the squark states from the Super-CKM basis, q̃L,R, to the

physical basis. If we set the order in the Super-CKM basis as above, (ũL, c̃L, t̃L, ũR, c̃R, t̃R)
and (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R), and in the physical basis as ũ1,..6 and d̃1,..6, respectively, these

last rotations are given by two 6× 6 matrices, Rũ and Rd̃,



ũ1

ũ2

ũ3

ũ4

ũ5

ũ6




= Rũ




ũL

c̃L

t̃L

ũR

c̃R

t̃R




,




d̃1

d̃2

d̃3

d̃4

d̃5

d̃6




= Rd̃




d̃L

s̃L

b̃L

d̃R

s̃R

b̃R




, (2.80)

yielding the diagonal mass-squared matrices for squarks as follows,

diag{m2
ũ1
, m2

ũ2
, m2

ũ3
, m2

ũ4
, m2

ũ5
, m2

ũ6
} = Rũ M2

ũ R
ũ† , (2.81)

diag{m2
d̃1
, m2

d̃2
, m2

d̃3
, m2

d̃4
, m2

d̃5
, m2

d̃6
} = Rd̃ M2

d̃
Rd̃† . (2.82)

Similarly we need to rotate the sleptons and sneutrinos from the Super-PMNS basis
to the physical mass eigenstate basis,




l̃1

l̃2

l̃3

l̃4

l̃5

l̃6




= Rl̃




ẽL

µ̃L

τ̃L

ẽR

µ̃R

τ̃R




,




ν̃1

ν̃2

ν̃3


 = Rν̃




ν̃eL

ν̃µL

ν̃τL


 , (2.83)

with Rl̃ and Rν̃ being the respective 6×6 and 3×3 unitary rotating matrices that yield
the diagonal mass-squared matrices as follows,

diag{m2
l̃1
, m2

l̃2
, m2

l̃3
, m2

l̃4
, m2

l̃5
, m2

l̃6
} = Rl̃ M2

l̃
Rl̃† , (2.84)

diag{m2
ν̃1
, m2

ν̃2
, m2

ν̃3
} = Rν̃ M2

ν̃ R
ν̃† . (2.85)
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2.4 Minimal Flavor Violation

The SM has been very successfully tested by low-energy flavor observables both from
the kaon and Bd sectors. In particular, the two B factories have established that Bd

flavor and CP-violating processes are well described by the SM up to an accuracy of
the ∼ 10% level [17]. This immediately implies a tension between the solution of the
hierarchy problem, calling for a New Physics (NP) scale at or below the TeV scale, and
the explanation of the Flavor Physics data require a multi-TeV NP scale, if the new
flavor-violating couplings are of generic size.

An elegant way to simultaneously solve the above problems is provided by the MFV
hypothesis [15,16], where flavor and CP-violation in quark sector is assumed to entirely
originate from the CKM matrix, even in theories beyond the SM. For example in the
MSSM the off-diagonality in the sfermion mass matrix reflects the misalignment (in
flavor space) between fermions and sfermions mass matrices, that cannot be diagonalized
simultaneously. This misalignment can be produced from various origins. For instance,
off-diagonal sfermion mass matrix entries can be generated by RGE running. Going from
a high energy scale, where no flavor violation is assumed, down to the EW scale, such
entries can be generated due to presence of non diagonal Yukawa matrices in RGE’s.
For instance, in the CMSSM (see Ref. [18] and references therein), the RGE effects on
non-diagonal sfermion SSB parameters are affected only by non-diagonal elements on the
Yukawa couplings and the trilinear terms which are taken as proportional to the Yukawas
at the GUT scale. We choose the following form of the Yukawa matrices (working in
the Super-CKM basis [44]),

Y d = diag(yd, ys, yb), Y u = V †
CKMdiag(yu, yc, yt) . (2.86)

Hence, all flavor violation in the quark and squark sector is generated by the RGE’s and
controlled by the CKM matrix, i.e. the Yukawa couplings have a strong impact on the
size of the induced off-diagonal entries in the squark mass matrices.

The situation is somewhat different in the slepton sector where neutrinos are strictly
massless (in the SM and the MSSM). Consequently, there is no slepton mixing, which
would induce LFV in the charged sector, allowing not yet observed processes like li → ljγ
(i > j; l3,2,1 = τ, µ, e) [45]. However in the neutral sector, we have strong experimental
evidence that shows that the neutrinos are massive and mix among themselves [6]. In
order to incorporate this, a seesaw mechanism (to be defined below) is used to gener-
ate neutrino masses, and the PMNS matrix plays the role of the CKM matrix in the
lepton sector. Extending the MFV hypothesis for leptons [46] we can assume that the
flavor mixing in the lepton and slepton sector is induced and controlled by the seesaw
mechanism.
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2.5 The Constrained MSSM

Within the CMSSM the SSB parameters are assumed to be universal at the Grand
Unification scale MGUT ∼ 2× 1016 GeV,

(m2
Q)ij = (m2

U )ij = (m2
D)ij = (m2

L)ij = (m2
E)ij = m2

0 δij ,

m2
H1

= m2
H2

= m2
0, (2.87)

mg̃ = mW̃ = mB̃ = m1/2,

(Āu)ij = A0e
iφA(Y u)ij, (Ād)ij = A0e

iφA(Y d)ij, (Āe)ij = A0e
iφA(Y e)ij .

There is a common mass (square) for all the scalars, m2
0, a single gaugino mass, m1/2,

and all the trilinear SSB terms are directly proportional to the corresponding Yukawa
couplings in the superpotential with a proportionality constant A0e

iφA, containing a
potential non-trivial complex phase.

With the use of the RGE of the MSSM, one can obtain the SUSY spectrum at the
EW scale. All the SUSY masses and mixings are then given as a function of m2

0, m1/2,
A0, and tanβ. We require radiative symmetry breaking to fix |µ| and |Bµ| [47,48] with
the tree–level Higgs potential.

By definition, this model fulfills the MFV hypothesis, since the only flavor violating
terms stem from the CKM matrix. The important point is that, even in a model with
universal SSB terms at some high energy scale as the CMSSM, some off-diagonality in
the squark mass matrices appears at the EW scale. Working in the basis where the
squarks are rotated parallel to the quarks i.e. the Super-CKM basis, the squark mass
matrices are not flavor diagonal at the EW scale. This is due to the fact that at MGUT

there exist two non-trivial flavor structures, namely the two Yukawa matrices for the
up and down quarks, which are not simultaneously diagonalizable. This implies that
through RGE evolution some flavor mixing leaks into the sfermion mass matrices. In
a general SUSY model the presence of new flavor structures in the SSB terms would
generate large flavor mixing in the sfermion mass matrices. However, in the CMSSM,
the two Yukawa matrices are the only source of flavor change. As always in the Super-
CKM basis, any off-diagonal entry in the sfermion mass matrices at the EW scale will
be necessarily proportional to a product of Yukawa couplings. This will play a crucial
role in the analysis in chapter 6.

2.6 Seesaw extensions of the MSSM

As already mentioned in the introduction, the neutrino masses can be generated through
dimension 5 operator. There are many possible ways to form a dimension-5 gauge singlet
term at low energy through the tree-level exchange of a heavy particle at the high energy:
(i) each LL-φ pair forms a fermion singlet, (ii) each of the LL-LL and φ-φ pair forms a
scalar triplet, (iii) each LL-φ pair forms a fermion triplet, and (iv) each of the LL-LL and
φ-φ pair forms a scalar singlet. Case (i) can arise from the tree-level exchange of a right
handed fermion singlet and this corresponds to the Type-I seesaw mechanism [7]. Case
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(ii) arises when the heavy particle is a Higgs triplet giving rise to the Type-II seesaw
mechanism [49,50]. For case (iii) the exchanged particle should be a right-handed fermion
triplet, which corresponds to the Type-III seesaw mechanism [51,52]. The last scenario

gives terms only of the form νCL eL, which cannot generate a neutrino mass. We describe
Type-I seesaw mechanisms in Sect. 2.6.1 in detail.

2.6.1 Supersymmetric Type-I seesaw model

In order to provide an explanation for the (small) neutrino masses, the MSSM can be
extended by the type-I seesaw mechanism [7]. The superpotential for MSSM-seesaw I
can be written as

WSI = WMSSM + Y ij
ν ǫαβĤ

α
2 N̂

c
i L̂

β
j +

1

2
M ij

N N̂
c
i N̂

c
j , (2.88)

where WMSSM is given in Eq. (2.16) and N̂ c
i is the additional superfield that contains the

three right-handed neutrinos, νRi, and their scalar partners, ν̃Ri. M
ij
N denotes the 3× 3

Majorana mass matrix for heavy right handed neutrino. The full set of SSB terms is
given by,

− Lsoft,SI = −Lsoft + (m2
ν̃)

i
j ν̃

∗
Riν̃

j
R + (

1

2
Bij

ν M
ij
N ν̃

∗
Riν̃

∗
Rj + Aij

ν h2ν̃
∗
Ri l̃Lj + h.c.),(2.89)

with Lsoft given by Eq. (2.17), (m2
ν̃)

i
j, A

ij
ν and Bij

ν are the new SSB parameters.
By the seesaw mechanism three of the neutral fields acquire heavy masses and de-

couple at high energy scale that we will denote as MN , below this scale the effective
theory contains the MSSM plus an operator that provides masses to the neutrinos.

WEW,SI = WMSSM +
1

2
(YνLH2)

TM−1
N (YνLH2), (2.90)

whereWEW,SI represent the MSSM seesaw I superpotential at EW scale. This framework
naturally explains neutrino oscillations in agreement with experimental data [6]. At the
electroweak scale an effective Majorana mass matrix for light neutrinos,

meff = −1

2
v2uYν ·M−1

N · Y T
ν , (2.91)

arises from Dirac neutrino Yukawa Yν (that can be assumed of the same order as the
charged-lepton and quark Yukawas), and heavy Majorana masses MN . The smallness
of the neutrino masses implies that the scale MN is very high, O(1014 GeV).

From Eqs. (2.88) and (2.89) we can observe that one can choose a basis such that the
Yukawa coupling matrix, Y e

ij , and the mass matrix of the right-handed neutrinos, M ij
N ,

are diagonalized as Y e
δ andM δ

R, respectively. In this case the neutrino Yukawa couplings
Y ij
ν are not generally diagonal, giving rise to LFV. Here it is important to note that the

lepton-flavor conservation is not a consequence of the SM gauge symmetry, even in the
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absence of the right-handed neutrinos. Consequently, slepton mass terms can violate
the lepton-flavor conservation in a manner consistent with the gauge symmetry. Thus
the scale of LFV can be identified with the EW scale, much lower than the right-handed
neutrino scale MN , leading to potentially observable rates.

In the SM augmented by right-handed neutrinos, the flavor violating processes such
as µ → eγ, τ → µγ etc., whose rates are proportional to inverse powers of M δ

R, would
be highly suppressed with such a large MN scale, and hence are far beyond current
experimental bounds. However, in SUSY theories, the neutrino Dirac couplings Yν enter
in the RGE’s of the SSB sneutrino and slepton masses, generating LFV. In the basis
where the charged-lepton Yukawa couplings matrix Y e is diagonal, the soft slepton-
mass matrix acquires corrections that contain off-diagonal contributions from the RGE
running from MGUT down to the Majorana mass scale MN , of the following form (in the
leading-log approximation) [53]:

(m2
L̃
)ij ∼

1

16π2
(6m2

0 + 2A2
0)
(
Yν

†Yν
)
ij
log

(
MGUT

MN

)

(m2
Ẽ
)ij ∼ 0

(Āe)ij ∼
3

8π2
A0Y

e
i

(
Yν

†Yν
)
ij
log

(
MGUT

MN

)
(2.92)

Consequently, even if the soft scalar masses were universal at the unification scale,
quantum corrections between the GUT scale and the seesaw scale MN would modify
this structure via renormalization-group running, which generates off-diagonal contribu-
tions [54–59] atMN in a basis such that Y e is diagonal. Below this scale, the off-diagonal
contributions remain almost unchanged.

Therefore the seesaw mechanism induces non trivial values for slepton δFAB
ij resulting

in a prediction for LFV decays li → ljγ, (i > j) that can be much larger than the non-
SUSY case. These rates depend on the structure of Yν at a seesaw scale MN in a basis
where Y e and MN are diagonal. By using the approach of Ref. [59] a general form of Yν
containing all neutrino experimental information can be written as:

Yν =

√
2

v2

√
M δ

RR
√
mδ

νU
† , (2.93)

where R is a general orthogonal matrix and mδ
ν denotes the diagonalized neutrino mass

matrix. In this basis the matrix U can be identified with the UPMNS matrix obtained as:

mδ
ν = UTmeffU . (2.94)

In order to find values for the slepton generation mixing parameters we need a spe-
cific form of the product Y †

ν Yν as shown in Eq. (2.92). The simple consideration of
direct hierarchical neutrinos with a common scale for right handed neutrinos provides a
representative reference value. In this case using Eq. (2.93) we find

Y †
ν Yν =

2

v2u
MRUm

δ
νU

† . (2.95)
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Here MR is the common mass assigned to the νR’s. In the conditions considered here,
LFV effects are independent of the matrix R.

For the forthcoming numerical analysis the values of the Yukawa couplings etc. have
to be set to yield values in agreement with the experimental data for neutrino masses
and mixings. In our computation, by considering a normal hierarchy among the neutrino
masses, we fix mν3 ∼

√
∆m2

atm ∼ 0.05 eV and require mν2/mν3 = 0.17, mν2 ∼ 100 ·mν1

consistent with the measured values of ∆m2
sol and ∆m2

atm [60]. The matrix U is identified
with UPMNS with the CP-phases set to zero and neutrino mixing angles set to the center
of their experimental values.

One can observe that meff remains unchanged by consistent changes on the scales of
MN and Yν . This is no longer correct for the off-diagonal entries in the slepton mass
matrices (parameterized by slepton δFAB

ij ). These quantities have quadratic dependence
on Yν and logarithmic dependence onMN , see Eq. (2.92). Therefore larger values ofMN

imply larger LFV effects. By setting MN = 1014 GeV, the largest values of Yν are of
about 0.29, this implies an important restriction on the parameters space arising from
the BR(µ→ eγ). An example of models with almost degenerate νR can be found in [54].
For our numerical analysis we tested several scenarios and we found that the one defined
here is the simplest and also the one with larger LFV prediction.
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Chapter 3

Precision Observables

In this chapter we will present the calculational details and experimetal status of the
various low energy observables considered in this thesis.

3.1 Higher order corrections to EWPO

EWPO that are known with an accuracy at the per-mille level or better have the po-
tential to allow a discrimination between quantum effects of the SM and SUSY models,
see Ref. [14] for a review. Examples are the W -boson mass MW and the Z-boson ob-
servables, such as the effective leptonic weak missxing angle sin2 θeff .

The W -boson mass can be evaluated from

M2
W

(
1− M2

W

M2
Z

)
=

πα√
2Gµ

(1 + ∆r) (3.1)

where α is the fine-structure constant and Gµ the Fermi constant. This relation arises
from comparing the prediction for muon decay with the experimentally precisely known
Fermi constant. The one-loop contributions to ∆r can be written as

∆r = ∆α− c2w
s2w

∆ρ+ (∆r)rem, (3.2)

where ∆α is the shift in the fine-structure constant due to the light fermions of the SM,
∆α ∝ log(MZ/mf ), and ∆ρ is the leading contribution to the ρ parameter [61] from
(certain) fermion and sfermion loops (see below). The remainder part (∆r)rem contains
in particular the contributions from the Higgs sector. The effective leptonic weak mixing
angle at the Z-boson resonance, sin2 θeff , is defined through the vector and axial-vector
couplings (gℓV and gℓA) of leptons (ℓ) to the Z boson, measured at the Z-boson pole. If
this vertex is written as iℓ̄γµ(gℓV − gℓAγ5)ℓZµ then

sin2 θeff =
1

4

(
1− Re

gℓV
gℓA

)
. (3.3)
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Loop corrections enter through higher-order contributions to gℓV and gℓA. Both of these
(pseudo-)observables are affected by shifts in the quantity ∆ρ according to

∆MW ≈ MW

2

c2w
c2w − s2w

∆ρ , ∆sin2 θeff ≈ − c2ws
2
w

c2w − s2w
∆ρ . (3.4)

The quantity ∆ρ is defined by the relation

∆ρ =
ΣT

Z(0)

M2
Z

− ΣT
W (0)

M2
W

(3.5)

with the unrenormalized transverse parts of the Z- and W -boson self-energies at zero
momentum, ΣT

Z,W (0). It represents the leading universal corrections to the EWPO
induced by mass splitting between partners in isospin doublets [61]. Consequently, it is
sensitive to the mass-splitting effects induced by flavor mixing.

Within the SM the corrections to ∆ρ stem from the splitting in one SU(2) doublet.
Due to the mixing of various scalar fermion states the picture is slightly more involved
in the MSSM. In MSSM without flavor violation the well known results for the third
generation squark contribution to ∆ρ (without flavor mixing) can be written as

∆ρ =
3Gµ

8
√
2π2

[
− sin2 θt̃ cos

2 θt̃F0(m
2
t̃1
, m2

t̃2
)− sin2 θb̃ cos

2 θb̃F0(m
2
b̃1
, m2

b̃2
)

+ cos2 θt̃ cos
2 θb̃F0(m

2
t̃1
, m2

b̃1
) + sin2 θb̃ cos

2 θt̃F0(m
2
t̃1
, m2

b̃2
)

+ sin2 θt̃ cos
2 θb̃F0(m

2
t̃2
, m2

b̃1
) + sin2 θt̃ sin

2 θb̃F0(m
2
t̃2
, m2

b̃2
)
]

(3.6)

with

F0(m
2
1, m

2
2) = m2

1 +m2
2 −

2m2
1m

2
2

m2
1 −m2

2

ln

(
m2

1

m2
2

)
. (3.7)

In the absence of intergenerational mixing there are only 2 × 2 mixing matrices to be
taken into account, here parametrized by θt̃ (θb̃) in the scalar top (bottom) case. Here
one can see that squarks do not need to be the SU(2) partners to give contribution to
∆ρ. In particular the first two terms of Eq. (3.6) describe contributions from the same
type (up type or down type) of scalar quarks. Going from this simple case to the one
with generation mixing one finds contribution from all three generations, including two
6×6 mixing matrices (which are difficult to analyze analytically). The two gauge boson
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self-energies are then given by (see also Ref. [62]),

ΣZZ(0) =
e2

288π2s2wc
2
w

(−
6∑

s,t=1

3∑

i,j=1

2[
1

8
F0(m

2
ũs
, m2

ũt
) +

1

4
(Afin

0 (m2
ũs
) + Afin

0 (m2
ũt
))]

{3Rũ
t,jR

ũ∗

t,j − 4s2w(R
ũ
t,jR

ũ∗

t,j +Rũ
t,3+jR

ũ∗

t,3+j)}
{3Rũ

s,iR
ũ∗

s,i − 4s2w(R
ũ
s,iR

ũ∗

s,i +Rũ
s,3+iR

ũ∗

s,3+i)}

−
6∑

s,t=1

3∑

i,j=1

2[
1

8
F0(m

2
d̃s
, m2

d̃t
) +

1

4
(Afin

0 (m2
d̃s
) + Afin

0 (m2
d̃t
))]

{3Rd̃
t,jR

d̃∗

t,j − 2s2w(R
d̃
t,jR

d̃∗

t,j +Rd̃
t,3+jR

d̃∗

t,3+j)}
{3Rũ

s,iR
ũ∗

s,i − 2s2w(R
d̃
s,iR

d̃∗

s,i +Rd̃
s,3+iR

d̃∗

s,3+i}

+
6∑

s=1

3∑

i=1

Afin
0 (m2

ũs
)[(3− 4s2w)

2Rũ
s,iR

ũ∗

s,i + 16s4wR
ũ
s,3+iR

ũ∗

s,3+i]

+

6∑

s=1

3∑

i=1

Afin
0 (m2

d̃s
)[(3− 2s2w)

2Rd̃
s,iR

d̃∗

s,i + 4s4wR
d̃
s,3+iR

d̃∗

s,3+i])

ΣWW (0) =
e2

32π2s2w
(−

6∑

s,t=1

3∑

i,j=1

4[
1

8
F0(m

2
ũs
, m2

d̃t
) +

1

4
(Afin

0 (m2
ũs
) + Afin

0 (m2
d̃t
))]

Rũ
s,iR

d̃
t,jR

ũ∗

s,jR
d̃∗

t,i

+
6∑

s=1

3∑

i=1

Afin
0 (m2

ũs
)Rũ

s,iR
ũ∗

s,i +
6∑

s=1

3∑

i=1

Afin
0 (m2

d̃s
)Rd̃

s,iR
d̃∗

s,i

Here Rũ and Rd̃ are the 6 × 6 rotation matrices for the up and down-type squarks
respectively, see Eq. (2.80). The finite part of the one point integral function is given by

Afin
0 (m2) = m2(1− log

m2

µ2
) . (3.8)

Here it is important to note that the corrections will come, as in Eq. (3.6), from
states connected via SU(2) as well as from “same flavor” contributions stemming from
the Z boson self-energy, see Eq. (3.5). Larger splitting between “same flavor” states due
to the intergenerational mixing thus leads to the expectation of increasing contributions
to ∆ρ from flavor violation effects.

The effects from flavor violation in the squark entering via ∆ρ were already evaluated
in Ref. [62] and included in FeynHiggs. We have calculated the effects of slepton flavor
mixing to ∆ρ via FeynArts/FormCalc setup and added the results to FeynHiggs for our
numerical evaluation. The details about the changes made to FeynArts, FormCalc and
FeynHiggs will be discussed in Sect. 3.7. In Fig. 3.1 and Fig. 3.2, we show the generic
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Figure 3.1: Generic Feynman diagrams for Z boson self-energies containing squarks and
sleptons in loops. ũs,t,d̃s,t and l̃s,t denote the six mass eigenstates of up-type, down-type
and charged sleptons respectively. ν̃i,j are the three sneutrinos states ν̃e, ν̃µ and ν̃τ .
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Figure 3.2: Generic Feynman diagrams forW boson self-energies containing squarks and
sleptons in loops. ũs,t,d̃s,t and l̃s,t denote the six mass eigenstates of up-type, down-type
and charged sleptons respectively. ν̃i,j are the three sneutrinos states ν̃e, ν̃µ and ν̃τ .

Feynman diagrams for Z and W boson self energies that enter in the calculation of ∆ρ.

The present experimental uncertainties for the EWPO are [63]

δM exp,today
W ∼ 15 MeV, δ sin2 θexp,todayeff ∼ 15× 10−5 , (3.9)
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which will further be reduced [64] to

δM exp,future
W ∼ 4 MeV, δ sin2 θexp,futureeff ∼ 1.3× 10−5 , (3.10)

at the ILC and at the GigaZ option of the ILC, respectively. Even higher precision could
be expected from the FCC-ee, see, e.g., Ref. [65].

The prediction of MW also suffers from various kinds of theoretical uncertainties,
parametric and intrinsic. Starting with the parametric uncertainties, an experimental
error of 1 GeV on mt yields a parametric uncertainty onMW of about 6 MeV, while the
parametric uncertainties induced by the current experimental error of the hadronic con-
tribution to the shift in the fine-structure constant, ∆αhad, and by the experimental error
of MZ amount to about 2 MeV and 2.5 MeV, respectively. The uncertainty of the MW

prediction caused by the experimental uncertainty of the Higgs mass δM exp
h

<∼ 0.3 GeV
is signifcantly smaller (≈ 0.2 MeV). The intrinsic uncertainties from unknown higher-
order corrections in the case of no flavor mixing have been estimated to be around
(4.7-9.4) MeV in the MSSM [66,67] depending on the SUSY mass scale. For our forth-
coming numerical analysis, we have added the parameteric uncertanities in quadrature
and add the result linearly to the uncertanity from the unknown higher order correc-
tions in the case of no flavor mixing. We assume an additional 10% uncertanity from
the flavor mixing contribution to ∆ρMSSM and (via Eq. (3.4)) add it linearly to the other
uncertainties.

3.2 Higher-order corrections in the Higgs sector

In order to calculate one-loop corrections to the Higgs boson masses, the renormalized
Higgs boson self-energies are needed. Here we follow the procedure used in Refs. [68, 69]
(and references therein). The parameters appearing in the Higgs potential, see Eq. (2.29),
are renormalized as follows:

M2
Z → M2

Z + δM2
Z , Th → Th + δTh, (3.11)

M2
W → M2

W + δM2
W , TH → TH + δTH ,

M2
Higgs → M2

Higgs + δM2
Higgs, tanβ → tanβ (1 + δtanβ ).

M2
Higgs denotes the tree-level Higgs boson mass matrix given in Eq. (2.37). Th and TH

are the tree-level tadpoles, i.e. the terms linear in h and H in the Higgs potential.

The field renormalization matrices of both Higgs multiplets can be set up symmet-
rically,



h

H


 →



1 + 1

2
δZhh

1
2
δZhH

1
2
δZhH 1 + 1

2
δZHH


 ·



h

H


 . (3.12)
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For the mass counter term matrices we use the definitions

δM2
Higgs =



δm2

h δm2
hH

δm2
hH δm2

H


 . (3.13)

The renormalized self-energies, Σ̂(p2), can now be expressed through the unrenormalized
self-energies, Σ(p2), the field renormalization constants and the mass counter terms. This
reads for the CP-even part,

Σ̂hh(p
2) = Σhh(p

2) + δZhh(p
2 −m2

h,tree)− δm2
h, (3.14a)

Σ̂hH(p
2) = ΣhH(p

2) + δZhH(p
2 − 1

2
(m2

h,tree +m2
H,tree))− δm2

hH , (3.14b)

Σ̂HH(p
2) = ΣHH(p

2) + δZHH(p
2 −m2

H,tree)− δm2
H . (3.14c)

Inserting the renormalization transformation into the Higgs mass terms leads to
expressions for their counter terms which consequently depend on the other counter
terms introduced in (3.11).

For the CP-even part of the Higgs sectors, these counter terms are:

δm2
h = δM2

A cos2(α− β) + δM2
Z sin2(α+ β) (3.15a)

+ e
2MZswcw

(δTH cos(α− β) sin2(α− β) + δTh sin(α− β)(1 + cos2(α− β)))

+ δtanβ sin β cos β (M2
A sin 2(α− β) +M2

Z sin 2(α+ β)),

δm2
hH = 1

2
(δM2

A sin 2(α− β)− δM2
Z sin 2(α+ β)) (3.15b)

+ e
2MZswcw

(δTH sin3(α− β)− δTh cos
3(α− β))

− δtanβ sin β cos β (M2
A cos 2(α− β) +M2

Z cos 2(α+ β)),

δm2
H = δM2

A sin2(α− β) + δM2
Z cos2(α+ β) (3.15c)

− e
2MZswcw

(δTH cos(α− β)(1 + sin2(α− β)) + δTh sin(α− β) cos2(α− β))

− δtanβ sin β cos β (M2
A sin 2(α− β) +M2

Z sin 2(α + β)) .

For the field renormalization we chose to give each Higgs doublet one renormalization
constant,

H1 → (1 + 1
2
δZH1

)H1, H2 → (1 + 1
2
δZH2

)H2 . (3.16)

This leads to the following expressions for the various field renormalization constants in
Eq. (3.12):

δZhh = sin2α δZH1
+ cos2α δZH2

, (3.17a)

δZhH = sinα cosα (δZH2
− δZH1

), (3.17b)

δZHH = cos2α δZH1
+ sin2α δZH2

. (3.17c)
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The counter term for tanβ can be expressed in terms of the vacuum expectation values
as

δ tan β =
1

2
(δZH2

− δZH1
) +

δv2
v2

− δv1
v1

, (3.18)

where the δvi are the renormalization constants of the vi:

v1 → (1 + δZH1
) (v1 + δv1) , v2 → (1 + δZH2

) (v2 + δv2) . (3.19)

It can be shown that the divergent parts of δv1/v1 and δv2/v2 are equal [69,70]. Conse-
quently, one can set δv2/v2 − δv1/v1 to zero.

Similarly for the charged Higgs sector, the renormalized self-energy is expressed in
terms of the unrenormalized one and the corresponding counter-terms as:

Σ̂H−H+

(
p2
)
= ΣH−H+

(
p2
)
+ δZH−H+

(
p2 −m2

H±,tree

)
− δm2

H± , (3.20)

where,
δm2

H± = δM2
A + δM2

W (3.21)

and,
δZH−H+ = sin2 β δZH1

+ cos2 β δZH2
. (3.22)

The renormalization conditions are fixed by an appropriate renormalization scheme.
For the mass counter terms on-shell conditions are used, resulting in:

δM2
Z = ReΣZZ(M

2
Z), δM2

W = ReΣWW (M2
W ), δM2

A = ReΣAA(M
2
A). (3.23)

For the gauge bosons Σ denotes the transverse part of the self-energy. Since the tadpole
coefficients are chosen to vanish in all orders, their counter terms follow from T{h,H} +
δT{h,H} = 0:

δTh = −Th, δTH = −TH . (3.24)

For the remaining renormalization constants for δ tan β, δZH1
and δZH2

the most con-
venient choice is a DR renormalization of δ tanβ, δZH1

and δZH2
,

δZH1
= δZDR

H1
= −

[
ReΣ′

HH |α=0

]div
, (3.25a)

δZH2
= δZDR

H2
= −

[
ReΣ′

hh |α=0

]div
, (3.25b)

δtanβ =
1

2
(δZH2

− δZH1
) = δtanβ DR . (3.25c)

The corresponding renormalization scale, µDR, is set to µDR = mt in all numerical
evaluations.

Finally, in the Feynman diagrammatic (FD) approach that we are following here, the
higher-order corrected CP-even Higgs boson masses are derived by finding the poles of
the (h,H)-propagator matrix. The inverse of this matrix is given by

(∆Higgs)
−1 = −i


 p2 −m2

H,tree + Σ̂HH(p
2) Σ̂hH(p

2)

Σ̂hH(p
2) p2 −m2

h,tree + Σ̂hh(p
2)


 . (3.26)
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Determining the poles of the matrix ∆Higgs in Eq. (3.26) is equivalent to solving the
equation

[
p2 −m2

h,tree + Σ̂hh(p
2)
] [
p2 −m2

H,tree + Σ̂HH(p
2)
]
−

[
Σ̂hH(p

2)
]2

= 0 . (3.27)

Similarly, in the case of the charged Higgs sector, the corrected Higgs mass is derived
by the position of the pole in the charged Higgs propagator, which is defined by:

p2 −m2
H±,tree + Σ̂H−H+

(
p2
)
= 0. (3.28)

The present experimental uncertanity at the LHC for the mass of light neutral higgs
Mh is ≤ 300 MeV [4, 5]. This can possibly be reduced by about 50% at the LHC
and below the level of ∼ 50 MeV at the ILC [71]. Similarly, for the mass of heavy
neutral higgs MH and charged higgs boson MH± an uncertainity at the 1% level could
be expected at the LHC [72]. This sets the goal for the theoretical uncertainty, which
should be reduced to the same (or higher) level of accuracy.

Higher order corrections to the masses and mixing angles of the Higgs bosons in the
MSSM have already been calculated in the literature. For the light and heavy CP-even
Higgs boson masses, complete one-loop contributions exist [69, 73–75]. Almost all the
dominant contributions at two-loop level are also known [76–90]. For example, with
the assumption of vanishing external momenta, the O(αtαs) contributions have been
calculated in the Feynman diagrammatic (FD) approach and effective potential (EP)
approach and the O(α2

t ), O(αbαs), O(αtαb) and O(α2
b) contributions are calculated

in the EP approach. The momentum dependence at two-loop level was evaluated in
Refs. [91–94] and in Ref. [95], a nearly full two-loop calculation in EP approach that
also include the leading three-loop contributions has been presented. The code H3m [96]
adds the leading three-loop corrections of O(αtα

2
s) to the FeynHiggs results. In the

very recent work [97], a combination of full one-loop results supplimented with leading
and subleading two-loop contributions and a resummation of the leading and subleading
logarithmic contributions from scalar-top sector is presented. This combination reduce
the theoretical uncertainty from about 3 GeV to about 2 GeV, for scalar-top masses at
or below the TeV scale, for the light CP-even Higgs boson mass. Flavor violation effects
for the case of squarks in MI approach were calculated in [98, 99]. We have calculated
the effects of slepton mixing to the Higgs boson masses in FeynArts/FormCalc setup
and added the result to the FeynHiggs. The details about the changes in FeynArts,
FormCalc and FeynHiggs can be found in Sect. 3.7. We also calculate the effects of
squark mixing in MFV CMSSM and MFV CMSSM-seesaw I. In Fig. 3.3, we show generic
Feynman diagrams for Higg self energy while Feynman diagrams for tadpoles are shown
in Fig. 3.4.

3.3 B-physics observables

In this thesis, we also consider several B-physics observables (BPO): BR(B → Xsγ),
BR(Bs → µ+µ−) and ∆MBs

. Concerning BR(B → Xsγ) included in the calculation
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ũs

φ

φ

d̃t

d̃s

φ

φ

ũt
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Figure 3.3: Generic Feynman diagrams for the Higgs boson self-energies. φ denotes
any of the Higgs bosons, h, H , A or H±; u stand for u, c, t; d stand for d, s, b; l stand
for e, µ, τ ; ũs,t, d̃s,t and l̃s,t are the six mass eigenstates of up-type, down-type squarks
and charged sleptons respectively and ν̃i,j are the three sneutrinos states ν̃e, ν̃µ and ν̃τ .

are the most relevant loop contributions to the Wilson coefficients: (i) loops with Higgs
bosons (including the resummation of large tanβ effects [100]), (ii) loops with charginos
and (iii) loops with gluinos. For BR(Bs → µ+µ−) there are three types of relevant one-
loop corrections contributing to the relevant Wilson coefficients: (i) Box diagrams, (ii) Z-
penguin diagrams and (iii) neutral Higgs boson φ-penguin diagrams, where φ denotes
the three neutral MSSM Higgs bosons, φ = h,H,A (again large resummed tan β effects
have been taken into account). In our numerical evaluation there are included what are
known to be the dominant contributions to these three types of diagrams [101]: chargino
contributions to box and Z-penguin diagrams and chargino and gluino contributions to
φ-penguin diagrams. Concerning ∆MBs

, in the MSSM there are in general three types
of one-loop diagrams that contribute: (i) Box diagrams, (ii) Z-penguin diagrams and
(iii) double Higgs-penguin diagrams (again including the resummation of large tan β
enhanced effects). In our numerical evaluation there are included again what are known
to be the dominant contributions to these three types of diagrams in scenarios with non-
minimal flavor violation (for a review see, for instance, [102]): gluino contributions to
box diagrams, chargino contributions to box and Z-penguin diagrams, and chargino and
gluino contributions to double φ-penguin diagrams. More details about the calculations
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Figure 3.4: Generic Feynman diagrams for the Higgs boson tadpoles. φ denotes any
of the Higgs bosons, h or H ; u stand for u, c, t; d stand for d, s, b; l stand for e, µ, τ ;
ũs,t, d̃s,t and l̃s,t are the six mass eigenstates of up-type, down-type squarks and charged
sleptons respectively and ν̃i,j are the three sneutrinos states ν̃e, ν̃µ and ν̃τ .

employed can be found in Refs. [98, 99]. We perform our numerical calculation with
the BPHYSICS subroutine taken from the SuFla code [103] (with some additions and
improvements as detailed in Refs. [98, 99]), which has been implemented as a subroutine
into (a private version of) FeynHiggs. The experimental values used in the numerical
analysis1 and SM prediction of these observables is given in the Tab. 3.1 [105–112].

Observable Experimental Value SM Prediction

BR(B → Xsγ) 3.43± 0.22× 10−4 3.15± 0.23× 10−4

BR(Bs → µ+µ−) (3.0)+1.0
−0.9 × 10−9 3.23± 0.27× 10−9

∆MBs
116.4± 0.5× 10−10 MeV (117.1)+17.2

−16.4 × 10−10 MeV

Table 3.1: Experimental values (used in our numerical analysis) of B-physics observables
with their SM prediction.

1Using the most up-to-date value of BR(Bs → µ+µ−) = 2.9 ± 0.7 × 10−9 [104] would have had a
minor impact on our analysis.
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3.4 h → b̄s + bs̄

In SM the branching ratio BR(h→ b̄s+bs̄) can be at most of O(10−7) [113], too small to
have a chance of detection at the LHC. But because of the strong FCNC gluino couplings
and the tan β-enhancement inherent to the MSSM Yukawa couplings, we may expect
several orders of magnitude increase of the branching ratio as compared to the SM result,
see Ref. [113, 114] . This decay in the framework of the MSSM has been analyzed in
the literature: the SUSY-QCD contributions for this decay were calculated in [113,114],
and the SUSY-EW contributions using the mass insertion approximation were calculated
in [115]. Later in [116] the SUSY-EW contributions and their interference effects with
the SUSY-QCD contribution were calculated using exact diagonalization of the squark
mass matrices. In all these analysis, only LL mixing in the squarks mass matrix was
considered, and experimental constraints were imposed only from BR(B → Xsγ). Most
recently in [117] also RR mixing has been included. However mixing of the LR or
RL elements of the mass matrix and constraints from other BPO or potential other
constraints were not taken into account (except in the most recent analysis in [117]).
We (re-)calculate full one-loop contributions from SUSY-QCD as well as SUSY-EW
loops with the help of the FeynArts [118,119] and FormCalc [120] packages. The lengthy
analytical results are not shown here. We take into account the experimental constraints
not only from BPO but also from the EWPO. In the scalar quark sector we not only
consider the LL mixing, but also include the LR-RL and RR mixing for our analysis of
BR(h→ b̄s + bs̄). For our numerical analysis we define

BR(h→ b̄s+ bs̄) =
Γ(h→ b̄s+ bs̄)

ΓMSSM
h,tot

(3.29)

where ΓMSSM
h,tot is the total decay width of the light Higgs boson h of the MSSM, as

evaluated with FeynHiggs [68, 77, 97, 121, 122]. The contributing Feynman diagrams
for the decay h → b̄s + bs̄ are shown in Fig. 3.7-3.5. Which BR might be detectable
at the LHC or an e+e− collider such as the ILC can only be established by means of
specific experimental analyses, which, to our knowledge, do not exist yet. However, in
the literature it is expected to measure BR’s at the level of 10−3 at the LHC [113]. In
the clean ILC environment in general Higgs boson branching ratios below the level of
10−4 can be observed, see e.g. Ref. [123] for a recent review. We will take this as a rough
guideline down to which level the decay h → b̄s + bs̄ could be observable. Feynman
diagram for SUSY-EW contributions to the decay h→ b̄s+ bs̄ are shown in Fig. 3.5 and
Fig. 3.6, and SUSY-QCD contributions are shown in Fig. 3.7.

3.5 li → ljγ

Neutrino oscillation experiments [6] have established the existence of lepton flavor vio-
lation. So, as a natural consequence of neutrino oscillations, one would expect flavour
mixing in the charged lepton sector as well. This mixing can be manifested in rare decay
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Figure 3.5: Feynman diagrams showing SUSY-EW contributions (except neutralino-
chargino) to the decay process h→ bs̄ + b̄s.

processes such as µ → eγ, τ → eγ, and τ → µγ. However, if only the lepton Yukawa
couplings carry this information on flavour mixing, as in the SM with massive neutrinos,
the expected rates of these processes are extremely tiny [41–43] being proportional to the
ratio of masses of neutrinos over the masses of the W bosons. These values are very far
from the present experimental upper bounds [124, 125] that can be read from Tab. 3.2.
The situation in the MSSM (extended by the seesaw mechanism) is completely different.
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Figure 3.6: Feynman diagrams showing neutralino-chargino contributions to the decay
process h→ bs̄ + b̄s.
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Figure 3.7: Feynman diagrams showing SUSY-QCD contributions to the decay process
h→ bs̄ + b̄s.

Here lepton-slepton misallignment (generated by the presence of seesaw parameters in
the RGE’s) can dominate the SM contribution by several orders of magnitude. Thus
making the study of rare LFV processes very attractive.

We analyze these processes in the framework of CMSSM (extended by Type I see-
saw mechanism). MSSM contributions to these decays originate from lepton-slepton-
neutralino and lepton-slepton-chargino couplings. The predictions for BR(li → ljγ) are
obtained with SPheno 3.2.4. We checked that the use of this code produces results
similar to the ones obtained by our private codes used in Ref. [54].

Observable Experimental value

BR(µ→ eγ) < 5.7× 10−13

BR(τ → eγ) < 3.3× 10−8

BR(τ → µγ) < 4.4× 10−8

Table 3.2: Present experimental status of LFV processes; their SM prediction is zero.
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3.6 h → l±i l
∓
j

Since the discovery of Higgs boson, special effort has been made to determine its prop-
erties. The motivation for such an effort resides on understanding the mechanism for
EWSB. At present, several aspects of the Higgs boson are to some extent well known,
in particular those related with some of its expected “standard” decay modes, namely:
WW ∗, ZZ∗, γγ, bb̄ and τ τ̄ . Currently, measurements of these decay modes have
shown compatibility with the SM expectations, although with large associated uncer-
tainties [126]. Indeed, it is due to these large uncertainties that there is still room for
nonstandard decay properties, something that has encouraged such searches at the LHC
as well. Searches for invisible Higgs decays have been published in [127, 128]. Recently
CMS collaboration using the 2012 dataset taken at

√
s = 8TeV with an integrated lu-

minosity of 19.7 fb−1, has found a 2.5 σ excess in the h→ µτ channel, which translates
into BR(h → µτ) ≈ 0.89+40

−37% [129]. However there is no statistically significant excess
in the ATLAS results [130].

One needs to find the theoretical framework which can accomodate larger rates for
LFVHD to explain CMS excess while still respecting the upper bounds on cLFV’s.
Efforts in such direction have been done in different contexts, with pioneer works in
Refs. [131, 132]. More recenty, Ref. [133] studied the problem in the MSSM, while [134]
in the R-parity violating MSSM. These decays have been considered as well in the inverse
seesaw model in [135]. Possible effects due to vectorlike leptons have been investigated
in [136]. Extended scalar sectors involving several Higgs doublets and flavor symmetries
(Yukawa textures) have been examined too [137–140]. Finally, the Type-III Two Higgs
Doublet Model has been considered in Refs. [141, 142]. Basically, the bottom line of
these analyses is that unless one deals with extra Higgs doublets, LFVHD are below the
LHC reach.

In this thesis we calculate the LFVHD in SUSY using FD approach. We study the
lepton-slepton misalignment effects to LFVHD, both in the MI approach and in MFV
CMSSM-seesaw I. We do not use mass insertion approximation and exact diagonalization
of the slepton mass matrix is performed. Feynman diagrams entering our calculation
are shown in Fig. 3.8 where first two rows correspond to the decay h → e±µ∓, middle
two rows correspond to h → e±τ∓ and last two rows correspond to h → µ±τ∓. For
the analytical calculation we used FeynArts/FormCalc setup. For this purpose, we
implimented LFV Feynman rules for the MSSM in these packages (see Sect. 3.7 for
details).

For numerical analysis we define the branching ratios of LFVHD as

BR(h→ l±i l
∓
j ) =

Γ(h→ l±i l
∓
j )

Γ(h→ l±i l
∓
j ) + ΓMSSM

h

(3.30)

where i, j = e, µ, τ and ΓMSSM
h is total decay width of CP-even light Higgs boson h.
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Figure 3.8: Feynman diagrams for LFV decays h→ l±i l
∓
j .
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3.7 Changes in FeynArts, FormCalc and FeynHiggs

FeynArts [118] and FormCalc [120] provide a high level of automation for perturbative
calculations up to one loop. This is particularly important for models with a large parti-
cle content such as the MSSM [119]. Here we briefly describe the recent extension of the
implementation of the MSSM in these packages to include LFV. Details on the previous
inclusion of NMFV can be found in Refs. [118, 143]. This involves firstly the modifi-
cation of the slepton couplings in the existing FeynArts model file for the MSSM and
secondly the corresponding initialization routines for the slepton masses and mixings,
i.e. the 6× 6 and 3× 3 diagonalization of the mass matrices in FormCalc.

3.7.1 FeynArts Model File

FeynArts’ add-on model file FV.mod applies algebraic substitutions to the Feynman
rules of MSSM.mod to upgrade minimal to non-minimal flavor mixing in the sfermion
sector. The original version modified only the squark sector, i.e. NMFV, and needed
to be generalized to include LFV. We solved this by allowing the user to choose which
sfermion types to introduce non-minimal mixing for through the variable $FV (set before
model initialization, of course). For example,

$FV = {11, 12, 13, 14};

InsertFields[..., Model -> {MSSM, FV}]

sets non-minimal mixing for all four sfermion types, with 11 = ν̃, 12 = l̃, 13 = ũ, and
14 = d̃ as usual in MSSM.mod. For compatibility with the old NMFV-only version, the
default is $FV = {13, 14}.

FV.mod introduces the following new quantities:

UASf[s1,s2,t] the slepton mixing matrix R, where

s1, s2 = 1 . . . 6,

t = 1 (ν̃), 2 (l̃), 3 (ũ), 4 (d̃),

MASf[s,t] the slepton masses, where

s = 1 . . . 6,

t = 1 (ν̃), 2 (l̃), 3 (ũ), 4 (d̃).

Entries 4 . . . 6 are unused for the sneutrino.

3.7.2 Model initialization in FormCalc

The initialization of the generalized slepton-mixing parameters MASf and UASf is al-
ready built into FormCalc’s regular MSSM model-initialization file model mssm.F but
not turned on by default. It must be enabled by adjusting the FV preprocessor flag in
run.F:
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#define FV 2

where 2 is the lowest sfermion type t for which flavor violation is enabled, i.e. l̃.

The flavor-violating parameters δFAB
ij are represented in FormCalc by the deltaSf

matrix:

double complex deltaSf(s1,s2,t) the matrix (δt)s1s2, where

s1, s2 = 1 . . . 6 (1 . . . 3 for ν̃),

t = 2 (l̃), 3 (ũ), 4 (d̃).

Since δ is an Hermitian matrix, only the entries above the diagonal are considered. The
δFAB
ij are located at the following places in the matrix δ:




· δLLL12 δLLL13 · δELR
12 δELR

13

· · δLLL23 δERL∗
12 · δELR

23

· · · δERL∗
13 δERL∗

23 ·

· · · · δERR
12 δERR

13

· · · · · δERR
23

· · · · · ·




The trilinear couplings Af acquire non-zero off-diagonal entries in the presence of LFV
through the relations

mf,i(Af )ij = (M2
f̃ ,LR

)ij , i, j = 1 . . . 3 , (3.31)

see Eq. (2.68). These off-diagonal trilinear couplings (and hence the δ’s) appear directly
in the Higgs–slepton–slepton couplings, whereas all other effects are mediated through
the masses and mixings.

The described changes are contained in the FeynArts 3.9 and FormCalc 8.4 packages
which are publicly available from www.feynarts.de.

3.7.3 Inclusion of LFV into FeynHiggs

As discussed above, the new corrections to the (renormalized) Higgs-boson self-energies
(and thus to the Higgs-boson masses), as well as to ∆ρ (and thus to MW and sin2 θeff)
have been included in FeynHiggs [68, 77, 97, 121, 122].

The corrections are activated by setting one or more of the δFAB
ij to non-zero values.

All δFAB
ij that are not set are assumed to be zero. The non-zero value can be set in three

ways:
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• by including them in the input file, e.g.

deltaLLL23 0.1

where the general format of the identifier is

deltaFXY ij, F = L,E,Q,U,D, XY = LL,LR,RL,RR, ij = 12,23,13

• by calling the subroutine FHSetLFV(...) from your Fortran/C/C++ code.

• by calling the routine FHSetLFV[...] from your Mathematica code.

The detailed invocation of FHSetLFV is given in the corresponding man page included in
the FeynHiggs distribution. The LFV corrections are included starting from FeynHiggs

version 2.10.2, available from feynhiggs.de.
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Chapter 4

Quark Flavor Mixing Effects in the
Model Independent Approach

MFV sceneraios put tight constraints on the possible value of the FCNC couplings,
especially for the first and second generation squarks which are sensitive to the data on
K0 − K̄0 and D0 − D̄0 mixing. However, the third generation is less constrained, since
present data on B0 − B̄0 mixing still leaves some room for FCNCs. This allows some
parameter space for the more general scenerios focusing on the mixing between second
and third generation (s)quarks. One such example is the neutral higgs decay h→ b̄s+bs̄.
The SM contribution is highly suppressed for this process but the SUSY-QCD quark-
squark-gluino loop contribution can enhance the MSSM contribuion by several orders
of magnitude. Also the SUSY-EW one loop contribution from quark-squark-chargino
and quark-squark-neutralino loop even though subdominent, can have sizable effects on
the BR(h → b̄s + bs̄), where in particular the interfrence effects of SUSY-QCD and
SUSY-EW loop corrections can be relevant.

This decay in the framework of the MSSM has been analyzed in the literature: the
SUSY-QCD contributions for this decay were calculated in [113, 114], and the SUSY-
EW contributions using the mass insertion approximation were calculated in [115]. Later
in [116] the SUSY-EW contributions and their interference effects with the SUSY-QCD
contribution were calculated using exact diagonalization of the squark mass matrices.
In all these analysis, only LL mixing in the squarks mass matrix was considered, and
experimental constraints were imposed only from BR(B → Xsγ). Most recently in [117]
also RR mixing has been included. However mixing of the LR or RL elements of the
mass matrix and constraints from other BPO or potential other constraints were not
taken into account (except in the most recent analysis in [117]).

In this chapter we will analyze the decay h→ b̄s+ bs̄, evaluated at the full one-loop
level, by taking into account the experimental constraints not only from BPO but also
from the EWPO. In the scalar quark sector we will not only consider the LL mixing, but
also include the LR-RL and RR mixing for our analysis of BR(h → b̄s + bs̄). We will
analyze this decay in the model independent approach where flavor mixing parameters
are put in by hand without any emphasis on the origin of this mixing (but respecting
the experimental bounds from BPO and EWPO). The results presented in this chapter
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were published in [144]. In the next section we enlist the input parameters for our MI
analysis.

4.1 Input parameters

Regarding our choice of MSSM parameters for our forthcoming numerical analysis, we
have chosen the framework of [145], This framework is well compatible with present
data.

In this framework, six specific points in the MSSM parameter space, have been
selected. These points are allowed by present data, including recent LHC searches and
the measurements of the muon anomalous magnetic moment. In Tab. 4.1 the values
of the various MSSM parameters as well as the values of the predicted MSSM mass
spectra are summarized. They were evaluated with the program FeynHiggs [68, 77,
97, 121, 122]. For simplicity, and to reduce the number of independent MSSM input
parameters we have assumed equal soft masses for the sleptons of the first and second
generations (similarly for the squarks), equal soft masses for the left and right slepton
sectors (similarly for the squarks, where Q̃ denotes the the “left-handed” squark sector,
whereas Ũ and D̃ denote the up- and down-type parts of the “right-handed” squark
sector) and also equal trilinear couplings for the stop, At, and sbottom squarks, Ab. In
the slepton sector we just consider the stau trilinear coupling, Aτ . The other trilinear
sfermion couplings are set to zero. Regarding the SSB parameters for the gaugino masses,
Mi (i = 1, 2, 3), we assume an approximate GUT relation. The pseudoscalar Higgs mass
MA, and the µ parameter are also taken as independent input parameters. In summary,
the six points S1, . . . , S6 are defined in terms of the following subset of ten input MSSM
parameters:

mL̃1
= mL̃2

; mL̃3
(with mL̃i

= mẼi
, i = 1, 2, 3)

mQ̃1
= mQ̃2

; mQ̃3
(with mQ̃i

= mŨi
= mD̃i

, i = 1, 2, 3)

At = Ab ; Aτ

M2 = 2M1 = M3/4 ; µ

MA ; tan β (4.1)

The specific values of these ten MSSM parameters in Tab. 4.1, to be used in the
forthcoming analysis, are chosen to provide different patterns in the various sparticle
masses, but all leading to rather heavy spectra, thus they are naturally in agreement
with the absence of SUSY signals at LHC. In particular all points lead to rather heavy
squarks and gluinos above 1200 GeV and heavy sleptons above 500 GeV (where the LHC
limits would also permit substantially lighter scalar leptons). The values of MA within
the interval (500, 1500) GeV, tan β within the interval (10, 50) and a large At within
(1000, 2500) GeV are fixed such that a light Higgs boson h within the LHC-favoured
range (123, 127) GeV is obtained. It should also be noted that the large chosen values
of MA ≥ 500 GeV place the Higgs sector of our scenarios in the so called decoupling
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S1 S2 S3 S4 S5 S6

mL̃1,2
500 750 1000 800 500 1500

mL̃3
500 750 1000 500 500 1500

M2 500 500 500 500 750 300

Aτ 500 750 1000 500 0 1500

µ 400 400 400 400 800 300

tan β 20 30 50 40 10 40

MA 500 1000 1000 1000 1000 1500

mQ̃1,2
2000 2000 2000 2000 2500 1500

mQ̃3
2000 2000 2000 500 2500 1500

At 2300 2300 2300 1000 2500 1500

ml̃1
−ml̃6

489-515 738-765 984-1018 474-802 488-516 1494-1507

mν̃1 −mν̃3 496 747 998 496-797 496 1499

mχ̃±

1
−mχ̃±

2
375-531 376-530 377-530 377-530 710-844 247-363

mχ̃0
1
−mχ̃0

4
244-531 245-531 245-530 245-530 373-844 145-363

Mh 126.6 127.0 127.3 123.1 123.8 125.1

MH 500 1000 999 1001 1000 1499

MA 500 1000 1000 1000 1000 1500

MH± 507 1003 1003 1005 1003 1502

mũ1
−mũ6

1909-2100 1909-2100 1908-2100 336-2000 2423-2585 1423-1589

md̃1
−md̃6

1997-2004 1994-2007 1990-2011 474-2001 2498-2503 1492-1509

mg̃ 2000 2000 2000 2000 3000 1200

Table 4.1: Selected points in the MSSM parameter space (upper part) and their corre-
sponding spectra (lower part). All mass parameters and trilinear couplings are given in
GeV.

regime [146], where the couplings of h to gauge bosons and fermions are close to the SM
Higgs couplings, and the heavy H couples like the pseudoscalar A, and all heavy Higgs
bosons are close in mass. Increasing MA the heavy Higgs bosons tend to decouple from
low energy physics and the light h behaves like HSM. This type of MSSM Higgs sector
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seems to be in good agreement with recent LHC data [147]. We have checked with the
code HiggsBounds [148] (but not yet taking into account the most recent update [149])
that the Higgs sector is in agreement with the LHC searches (where S3 is right “at the
border”). Particularly, the so far absence of gluinos at LHC, forbids too low M3 and,
therefore, given the assumed GUT relation, forbids also a too low M2. Consequently,
the values of M2 and µ are fixed as to get gaugino masses compatible with present
LHC bounds. Finally, we have also required that all our points lead to a prediction of
the anomalous magnetic moment of the muon in the MSSM that can fill the present
discrepancy between the SM prediction and the experimental value (see [145] for more
details).

4.2 Experimental constraints on δFABij

In this section we will present the present experimental constraints on the squark mixing
parameters δFAB

ij for the above mentioned MSSM points S1. . . S6 defined in Tab. 4.1.
The experimental constraints from BPO for the same set of parameters that we are
using were already calculated in [99] for one δFAB

ij 6= 0 , which we reproduce here for
completeness in the Tab. 4.2.

We now turn our attention to the constraints from MW . In Fig. 4.1 we show the
MW as a function of δQLL

23 , δULR
23 and δDLR

23 in the scenarios S1 . . . S6. The area between
the orange lines shows the allowed value of MW with 3σ experimental uncertainty. The
corresponding constraints from MW on δFAB

ij , also taking into account the theoretical
uncertainties as described at the end of Sect. 3.1, are shown in Tab. 4.3. No constraints
can be found on the δRR

ij , as their contribution to MW does not reach the MeV level,
and consequently we do not show them here. Furtheremore, the constraints for the δURL

23

and δDRL
23 are similar to those for δULR

23 and δDLR
23 , respectively, and not shown here.

On the other hand, the constraints on δQLL
23 are modified by the EWPO specially the

region (-0.83:-0.78) for the point S5, which was allowed by the BPO, is now excluded.
The allowed intervals for the points S1-S3 have also shrunk. However the point S4 was
already excluded by BPO, similarly the allowed interval for S6 do not get modified by
EWPO. The constraints on δULR

23 and δDLR
23 are less restrictive then the ones from BPO

except for the point S4 where the region (0.076:0.12) is excluded for δDLR
23 by EWPO.

4.3 BR(h → b̄s + bs̄)

In order to illustrate the contributions from different diagrams we show in Fig. 4.2 the
SUSY-EW, SUSY-QCD and total SUSY contribution to Γ(h→ b̄s+ bs̄) as a function of
δQLL
23 (upper left), δDLR

23 (upper right), δDRL
23 (lower left) and δDRR

23 (lower right). These
four δFAB

ij are the only relevant ones, since we are mainly concerned with the down-type
sector, and mixing with the first generation does not play a role.

In order to compare our results with the literature, we have used the same set of
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Figure 4.1: MW as a function of δQLL
23 (upper left), δULR

23 (upper right) and δDLR
23 (lower).

input parameters as in [116]:

µ = 800 GeV, mSUSY = 800 GeV, Af = 500 GeV,

MA = 400 GeV, M2 = 300 GeV, tan β = 35 , (4.2)

where we have chosen, for simplicity, mSUSY as a common value for the soft SUSY-
breaking squark mass parameters, mSUSY = MQ̃ = MŨ = MD̃, and all the various

trilinear parameters to be universal, Af = At = Ab = Ac = As. The value of the δFAB
ij ’s

are varied from -0.9 to 0.9, and GUT relations are used to calculate M1 and M3. In
Ref. [116], only LL mixing was considered. In this limit we find results in qualitative
agreement with Ref. [116]. This analysis has been done just to illustrate the different
contributions and we do not take into account any experimental constraints. A detailed
analysis for realisitic SUSY scenerios (defined in Tab. 4.1) constrained by BPO and
EWPO can be found below.

As can be seen in Fig. 4.2, for the decay width Γ(h → b̄s + bs̄) the SUSY-QCD
contribution is dominant in all the cases. For LL mixing shown in the upper left plot,

65



Total allowed intervals

δQLL
23

S1

S2

S3

S4

S5

S6

(-0.27:0.28)

(-0.23:0.23)

(-0.12:0.06) (0.17:0.19)

excluded

(-0.83:-0.78) (-0.14:0.14)

(-0.076:0.14)

δULR
23

S1

S2

S3

S4

S5

S6

(-0.27:0.27)

(-0.27:0.27)

(-0.27:0.27)

excluded

(-0.22:0.22)

(-0.37:0.37)

δDLR
23

S1

S2

S3

S4

S5

S6

(-0.0069:0.014) (0.12:0.13)

(-0.0069:0.014) (0.11:0.13)

(-0.0069:0.014) (0.11:0.13)

(0.076:0.12) (0.26:0.30)

(-0.014:0.021) (0.17:0.19)

(0:0.0069) (0.069:0.076)

δURL
23

S1

S2

S3

S4

S5

S6

(-0.27:0.27)

(-0.27:0.27)

(-0.27:0.27)

excluded

(-0.22:0.22)

(-0.37:0.37)

δDRL
23

S1

S2

S3

S4

S5

S6

(-0.034:0.034)

(-0.034:0.034)

(-0.034:0.034)

excluded

(-0.062:0.062)

(-0.021:0.021)

δURR
23

S1

S2

S3

S4

S5

S6

(-0.99:0.99)

(-0.99:0.99)

(-0.98:0.97)

excluded

(-0.99:0.99)

(-0.96:0.94)

δDRR
23

S1

S2

S3

S4

S5

S6

(-0.96:0.96)

(-0.96:0.96)

(-0.96:0.94)

excluded

(-0.97:0.97)

(-0.97:-0.94) (-0.63:0.64) (0.93:0.97)

Table 4.2: Present allowed (by BPO) intervals for the δFAB
ij for the MSSM points defined

in Tab. 4.1 [99].
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Total allowed intervals

δQLL
23

S1

S2

S3

S4

S5

S6

(-0.18:0.18)

(-0.18:0.18)

(-0.18:0.18)

(-0.53:-0.17)(0.10:0.45)

(-0.14:0.14)

(-0.23:0.23)

δULR
23 , δURL

23

S1

S2

S3

S4

S5

S6

(-0.41:0.41)

(-0.41:0.41)

(-0.41:0.41)

(0.10:0.50)

(-0.39:0.39)

(-0.47:0.47)

δDLR
23 , δDRL

23

S1

S2

S3

S4

S5

S6

(-0.43:0.43)

(-0.43:0.43)

(-0.43:0.43)

(0.16:0.99)

(-0.39:0.39)

(-0.49:0.49)

Table 4.3: Present allowed (by MW ) intervals for the squark mixing parameters δFAB
ij

for the selected S1-S6 MSSM points defined in Tab. 4.1.

the SUSY-QCD contribution reaches up to O(10−6), while the SUSY-EW contribution
reach up to O(10−7), resulting in a total contribution “in between”, due to the negative
interference between SUSY-EW and SUSY-QCD contribution. For LR and RL mixing,
shown in the upper right and lower left plot, respectively, the SUSY-QCD contribution
reach up to the maximum value of O(10−2), while the SUSY-EW contribution reach only
up to O(10−7). In this case total contriution is almost equal to SUSY-QCD contribution
as SUSY-EW contibution (and thus the interference) is relatively neglible. For RR
mixing, shown in the lower right plot, the SUSY-EW contribution of O(10−10) is again
neglible compared to SUSY-QCD contribution of O(10−7).

Now we turn to realistic scenarios that are in agreement with experimental data from
BPO and EWPO. Starting point are the scenarios S1. . . S6 defined in Tab. 4.1, where
we vary the flavor violating δFAB

ij within the experimentally allowed ranges following the
results given in Tabs. 4.2, 4.3. We start with the scenarios in which we allow one of the
δFAB
ij to be varied, while the others are set to zero. In Fig. 4.3 we show BR(h→ b̄s+ bs̄)

as a function of δQLL
23 (upper left), δDLR

23 (upper right), δDRL
23 (lower left) and δDRR

23 (lower
right), i.e. for the same set of δFAB

ij that has been analyzed in Fig. 4.2. It can be seen that
allowing only one δFAB

ij 6= 0 results in rather small values of BR(h→ b̄s+bs̄). LL (upper
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Total

QCD

EW

δQLL
23

Γ
(h

→
bs̄

+
b̄s
)

10.80.60.40.20-0.2-0.4-0.6-0.8-1

9.5× 10−7

9.0× 10−7

8.0× 10−7

7.0× 10−7

6.0× 10−7

5.0× 10−7

4.0× 10−7

3.0× 10−7

2.0× 10−7

1.0× 10−7

Total

SUSY-QCD

SUSY-EW

δDLR
23

Γ
(h

→
bs̄

+
b̄s
)

10.80.60.40.20-0.2-0.4-0.6-0.8-1

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

Total

SUSY-QCD

SUSY-EW

δDRL
23

Γ
(h

→
bs̄

+
b̄s
)

10.80.60.40.20-0.2-0.4-0.6-0.8-1

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

Total

SUSY-QCD

SUSY-EW

δDRR
23

Γ
(h

→
bs̄

+
b̄s
)

0.80.60.40.20-0.2-0.4-0.6-0.8

7.0× 10−7

6.5× 10−7

6.0× 10−7

5.5× 10−7

5.0× 10−7

4.5× 10−7

4.0× 10−7

3.5× 10−7

3.0× 10−7

2.5× 10−7

2.0× 10−7

1.5× 10−7

1.0× 10−7

5× 10−8

0

Figure 4.2: Γ(h→ b̄s+ bs̄) as a function of δQLL
23 (upper left), δDLR

23 (upper right), δDRL
23

(lower left) and δDRR
23 (lower right).

left) and RL (lower left plot) mixing results in O(10−7) values for BR(h→ b̄s+bs̄). One
order of magnitude can be gained in the RR mixing case (lower right). The largest
values of BR(h→ b̄s+ bs̄) are obtained in the case of δDLR

23 6= 0 (upper right plot). Here
in S4 and S5 values of BR(h→ b̄s+ bs̄) ∼ 2× 10−4 can be found, possibly in the reach
of future e+e− colliders, see Sect. 3.4.

So far we have shown the effects of independent variations of one δFAB
ij . Obviously, a

realistic model would include several δFAB
ij 6= 0 that may interfere, increasing or decreas-

ing the results obtained with just the addition of independent contributions. GUT based
MFV models that induce the flavor violation via RGE running automatically generate
several δFAB

ij 6= 0 at the EW scale. In the following we will present results with two or
three δFAB

ij 6= 0, where we combined the ones that showed the largest effects.

In Figs. 4.4-4.7, in the left columns we show the 3 σ contours (with experimental
and theory uncertainties added linearly) of BR(B → Xsγ) (Black), BR(Bs → µ+µ−)
(Green), ∆MBs

(Blue) and MW (Red). For non-visible contours the whole plane is
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S6

S5
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B
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B
R
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)
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7.3× 10−6

7.0× 10−6

6.0× 10−6

5× 10−6

4.0× 10−6

3.0× 10−6

2.0× 10−6

1.0× 10−6

Figure 4.3: BR(h → b̄s + bs̄) as a function of δQLL
23 (upper left), δDLR

23 (upper right),
δDRL
23 (lower left) and δDRR

23 (lower right).

allowed by that constraint. The right columns show, for the same parameters, the
results for BR(h → b̄s + bs̄). In Figs. 4.4 and 4.5 we present the results for the plane
(δQLL

23 ,δDLR
23 ) for S1. . . S3 and for S4. . . S6, respectively. Similarly, in Figs. 4.6 and 4.7 we

show the (δDRR
23 , δDLR

23 ) plane. The shaded area in the left columns indicates the area
that is allowed by all experimental constraints. In the (δQLL

23 , δDLR
23 ) planes one can see

that the large values for δQLL
23 are not allowed byMW , on the other hand, BR(B → Xsγ)

mostly restricts the value of δDLR
23 . The largest values for BR(h→ b̄s+ bs̄) in each plane

in the arrea allowed by the BPO and the EWPO are summarized in the upper part of
Tab. 4.4. One can see that in most cases we find BR(h → b̄s + bs̄) ∼ O(10−5), which
would render the observation difficult at current and future colliders. However, in the
(δQLL

23 , δDLR
23 ) plane in the scenarios S4 and S5 maximum values of O(3 × 10−4) can be

observed, which could be detectable at future ILC measurements. In the (δDRR
23 , δDLR

23 )
plane for these two scenarios even values of O(10−3) are reached, which would make a
measurement of the flavor violating Higgs decay relatively easy at the ILC.

As a last step in model independent analysis, we consider the case of three δFAB
ij 6= 0

at a time. For this purpose we scan the parameters in the (δQLL
23 , δDLR

23 ) plane and set
δDRR
23 = 0.5. For reasons of practicability we choose one intermediate value for δDRR

23 ; a
very small value will have no additional effect, and a very large value of δDRR

23 leads to
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Plane MSSM point Maximum possible value Figure

(δQLL
23 , δDLR

23 )

S1

S2

S3

S4

S5

S6

1.38× 10−5

1.39× 10−5

1.43× 10−5

3.34× 10−4

2.74× 10−4

1.36× 10−8

Fig. 4.4

Fig. 4.4

Fig. 4.4

Fig. 4.5

Fig. 4.5

Fig. 4.5

(δDRR
23 , δDLR

23 )

S1

S2

S3

S4

S5

S6

4.41× 10−6

3.32× 10−6

3.07× 10−5

1.66× 10−3

1.97× 10−3

6.03× 10−8

Fig. 4.6

Fig. 4.6

Fig. 4.6

Fig. 4.7

Fig. 4.7

Fig. 4.7

(δQLL
23 , δDLR

23 )

with δDRR
23 = 0.5

S1

S2

S3

S4

S5

S6

7.49× 10−6

7.33× 10−6

3.50× 10−6

Excluded

Excluded

Excluded

Fig. 4.8

Fig. 4.8

Fig. 4.8

Fig. 4.9

Fig. 4.9

Fig. 4.9

Table 4.4: Maximum possible value for BR(h → b̄s + bs̄) for two and three δFAB
ij 6= 0

case for the selected S1-S6 MSSM points defined in Tab. 4.1.

large excluded areas in the (δQLL
23 , δDLR

23 ) plane. We show our results in Figs. 4.8 and 4.9
in the scenarios S1-S3 and S4-S6, respectively. Colors and shadings are chosen as in the
previous analysis. Here it should be noted that in S4 the whole plane is excluded byMW ,
and in S5 by BR(Bs → µ+µ−) (both contours are not visible). In S6 no overlap between
the four constraints is found, and again this scenario is excluded. We have checked that
also a smaller value of δDRR

23 = 0.2 does not qualitatively change the picture for S4,
S5 and S6. The highest values that can be reached for BR(h → b̄s + bs̄) in the three
remaining scenarios in the experimentally allowed regions are shown in the lower part
of Tab. 4.4. One can see only very small valus or O(5 × 10−6) are found, i.e. choosing
δDRR
23 6= 0 did not lead to observable values of BR(h→ b̄s+ bs̄).

To summarize, in our model independent analysis, allowing for more than one δFAB
ij 6=

0 we find that the additional freedom resulted in somewhat larger values of BR(h →
b̄s + bs̄) as compared to the case of only one non-zero δFAB

ij . In particular in the two
scenarios S4 and S5 values of BR(h→ b̄s+ bs̄) ∼ 10−3 − 10−4 can be reached, allowing
the detection of the flavor violating Higgs decay at the ILC. The other scenarios always
yield values that are presumably too low for current and future colliders.
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Figure 4.4: Left: Contours of BR(B → Xsγ) (Black), BR(Bs → µ+µ−) (Green),
∆MBs

(Blue) and MW (Red) in (δQLL
23 , δDLR

23 ) plane for points S1-S3. The shaded area
shows the range of values allowed by all constraints. Right: corresponding contours for
BR(h→ b̄s + bs̄). 71
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Figure 4.5: Left: Contours of BR(B → Xsγ) (Black), BR(Bs → µ+µ−) (Green), ∆MBs

(Blue) and MW (Red) in (δQLL
23 , δDLR

23 ) plane for points S4-S6. The shaded area shows
the range of values allowed by all constraints. Right: corresponding contours for BR(h→
b̄s+ bs̄).
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Figure 4.6: Left: Contours of BR(B → Xsγ) (Black), BR(Bs → µ+µ−) (Green), ∆MBs

(Blue) and MW (Red) in (δDRR
23 , δDLR

23 ) plane for points S1-S3. The shaded area shows
the range of values allowed by all constraints. Right: corresponding contours for BR(h→
b̄s+ bs̄).
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Figure 4.7: Left: Contours of BR(B → Xsγ) (Black), BR(Bs → µ+µ−) (Green), ∆MBs

(Blue) and MW (Red) in (δDRR
23 , δDLR

23 ) plane for points S4-S6. The shaded area shows
the range of values allowed by all constraints. Right: corresponding contours for BR(h→
b̄s+ bs̄).

74



1.´10-6 0.000010.00001

0.0001

0.0001
0.001

0.001
0.01

0.01

0.1

0.1

-1.0 -0.5 0.0 0.5

-0.5

0.0

0.5

∆23
QLL

∆
23D

L
R

S1

1.´10-6 1.´10
0.00001

0.00001

0.0001

0.0001
0.001

0.001
0.01

0.01

0.1

0.1

-1.0 -0.5 0.0 0.5

-0.5

0.0

0.5

∆23
QLL

∆
23D

L
R

S2

1.´10-60.00001
0.00001 0.0001

0.0001
0.001

0.001

0.01

0.01

0.1

0.1

-1.0 -0.5 0.0 0.5

-0.5

0.0

0.5

∆23
QLL

∆
23D

L
R

S3

Figure 4.8: Left: Contours of BR(B → Xsγ) (Black), BR(Bs → µ+µ−) (Green), ∆MBs

(Blue) andMW (Red) in the (δQLL
23 , δDLR

23 ) plane with δDRR
23 = 0.5 for points S1-S3. The

shaded area shows the range of values allowed by all constraints. Right: corresponding
contours for BR(h→ b̄s+ bs̄).
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Figure 4.9: Left: Contours of BR(B → Xsγ) (Black), BR(Bs → µ+µ−) (Green), ∆MBs

(Blue) andMW (Red) in the (δQLL
23 , δDLR

23 ) plane with δDRR
23 = 0.5 for points S4-S6. The

shaded area shows the range of values allowed by all constraints. Right: corresponding
contours for BR(h→ b̄s+ bs̄).
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Chapter 5

Lepton Flavor Mixing Effects in the
Model Independent Approach

In this chapter we analyse the lepton flavor mixing in MI approach. We use the same
set of input parameter (Tab. 4.1) that was used in the previous chater. As a first step,
we have calculated the sensitivity of EWPO like the W -boson mass or the effective weak
leptonic mixing angle to the δFAB

ij ’s in slepton sector entering in the Z and W boson
self energies at one-loop level through the ρ parameter. Besides EWPO we also explore
the effects of LFV on the MSSM Higgs sector. We evaluate the effects of LFV on the
predictions of the masses of the light and heavy CP-even Higgs bosons, Mh and MH ,
as well as on the charged Higgs-boson mass MH± . Here we do not calculate predictions
for cLFV decays in the MI approach as they were already explored in [145] for the same
set of input parameters that we are using. They calculated the constraints on slepton
δFAB
ij ’s from cLFV decays (mentioned in the following section). We have also calculated
the predictions for LFVHD which will be presented in the last section. The results
presented in this chapter were published in [150].

5.1 Constraints on δFAB
ij from cLFV decays

We need to set the range of values for the explored δFAB
ij ’s. We use the constraints (shown

in Tab. 5.1) as taken from Ref. [145], calculated from the following LFV processes.

1.- Radiative LFV decays: µ → eγ, τ → eγ and τ → µγ. These are sensitive to the
δFAB
ij ’s via the (liljγ)1−loop vertices with a real photon.

2.- Leptonic LFV decays: µ → 3e, τ → 3e and τ → 3µ. These are sensitive to
the δFAB

ij ’s via the (liljγ)1−loop vertices with a virtual photon, via the (liljZ)1−loop

vertices with a virtual Z, and via the (liljh)1−loop, (liljH)1−loop and (liljA)1−loop

vertices with virtual Higgs bosons.

3.- Semileptonic LFV tau decays: τ → µη and τ → eη. These are sensitive to the
δFAB
ij ’s via (τµA)1−loop and (τeA)1−loop vertices, respectively, with a virtual A, and
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via (τµZ)1−loop and (τeZ)1−loop vertices, respectively with a virtual Z.

4.- Conversion of µ into e in heavy nuclei: These are sensitive to the δFAB
ij ’s via the

(µeγ)1−loop vertex with a virtual photon, via the (µeZ)1−loop vertex with a virtual
Z, and via the (µeh)1−loop and (µeH)1−loop vertices with a virtual h and H Higgs
boson, respectively.

S1 S2 S3 S4 S5 S6

|δLLL12 |max 10× 10−5 7.5× 10−5 5× 10−5 6× 10−5 42× 10−5 8× 10−5

|δELR
12 |max 2× 10−6 3× 10−6 4× 10−6 3× 10−6 2× 10−6 1.2× 10−5

|δERR
12 |max 1.5× 10−3 1.2× 10−3 1.1× 10−3 1× 10−3 2× 10−3 5.2× 10−3

|δLLL13 |max 5× 10−2 5× 10−2 3× 10−2 3× 10−2 23× 10−2 5× 10−2

|δELR
13 |max 2× 10−2 3× 10−2 4× 10−2 2.5× 10−2 2× 10−2 11× 10−2

|δERR
13 |max 5.4× 10−1 5× 10−1 4.8× 10−1 5.3× 10−1 7.7× 10−1 7.7× 10−1

|δLLL23 |max 6× 10−2 6× 10−2 4× 10−2 4× 10−2 27× 10−2 6× 10−2

|δELR
23 |max 2× 10−2 3× 10−2 4× 10−2 3× 10−2 2× 10−2 12× 10−2

|δERR
23 |max 5.7× 10−1 5.2× 10−1 5× 10−1 5.6× 10−1 8.3× 10−1 8× 10−1

Table 5.1: Present upper bounds on the slepton mixing parameters |δFAB
ij | for the

selected S1-S6 MSSM points defined in Tab. 4.1. The bounds for |δERL
ij | are similar to

those of |δELR
ij |.
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5.2 Numerical results

We have implemented the full one-loop results for the W and Z boson and the Higgs
boson self-energies in FeynHiggs, including all LFV mixing terms (see Sect. 3.7 for de-
tails). The analytical results are lenghty and are not shown here. They can, however, be
found in the latest version of our code, FeynHiggs 2.10.2. For the numerical investiga-
tion we have analyzed all 12 slepton δFAB

ij ’s for the MSSM scenarios defined in Tab. 4.1.
In order to get a good understanding of the LFV effects to ∆ρ and consequently MW

and sin2 θeff we define

∆ρLFV = ∆ρ−∆ρMSSM, (5.1)

δMLFV
W =MW −MMSSM

W , (5.2)

δ sin2 θLFVeff = sin2 θeff − sin2 θMSSM
eff , (5.3)

where ∆ρMSSM, MMSSM
W and sin2 θMSSM

eff are the values of the relevant observables with
all δFAB

ij = 0 (and the latter two evaluated with the help of Eq. (3.4)). Furthermore we
define

∆MLFV
h =Mh −MMSSM

h , (5.4)

∆MLFV
H =MH −MMSSM

H , (5.5)

∆MLFV
H± =MH± −MMSSM

H± , (5.6)

where MMSSM
h , MMSSM

H and MMSSM
H± corresponds to the Higgs masses with all δFAB

ij = 0.
The SM results for MW and sin2 θeff are MW = 80.361 GeV and sin2 θeff = 0.23152 as
evaluated with FeynHiggs (using the approximation formulas given in Refs. [151, 152]).
The numerical values of ∆ρ, MW , sin2 θeff , Mh, MH and MH± in the MSSM with all
δFAB
ij = 0 are summarized in Tab. 5.2.

Our numerical results are shown in Fig. 5.1 to Fig. 5.8. The six plots in each figure
are ordered as follows. Upper left: ∆ρLFV, upper right: δMLFV

W , middle left: δ sin2 θLFVeff ,
middle right: ∆MLFV

h , lower left: ∆MLFV
H , and lower right: ∆MLFV

H± , as a function of δLL13

(Fig.5.1), δLLL23 (Fig.5.2), δELR
13 (Fig.5.3), δELR

23 (Fig.5.4), δERL
13 (Fig.5.5), δERL

23 (Fig.5.6),
δERR
13 (Fig.5.7) and δERR

23 (Fig.5.8). The legends are shown only in the first plot of
each figure. We do not show results for LFV effects involving only the first and second
generation. While they are included for completeness in our analytical results, they are
expected to have a negligible effect on the observables considered here. The latter is
confirmed by the numerical analysis presented in the next subsections.

Applying the most recent limits from the above listed LFV process yield up-to-
date limits on the δFAB

ij [145]. Using the these upper bounds on δFAB
ij , as given in the

Tab. 5.1, we calculate the corrections to the Higgs boson masses and the EWPO. For
each explored non-vanishing delta, δFAB

ij , the corresponding sfermion physical masses and
the sfermion rotation matrices, as well as the EWPO and Higgs masses were numerically
computed with FeynHiggs 2.10.2, where we have included the analytical results of our
calculations.
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S1 S2 S3 S4 S5 S6

∆ρ 2.66× 10−5 1.72× 10−5 1.39× 10−5 2.35× 10−4 2.36× 10−5 2.14× 10−5

MW 80.362 80.362 80.361 80.375 80.364 80.363

sin2 θeff 0.23151 0.23152 0.23152 0.23143 0.23150 0.23151

Mh 126.257 126.629 126.916 123.205 123.220 124.695

MH 500.187 999.580 999.206 1001.428 1000.239 1499.365

MH± 506.888 1003.182 1003.005 1005.605 1003.454 1501.553

Table 5.2: The values of ∆ρ, MW , sin2 θeff , Mh, MH and MH± for the selected S1-S6
MSSM points defined in Tab. 4.1 (i.e. with all δFAB

ij = 0). Mass values are in GeV.

5.2.1 EWPO

We start with the investigation of the LFV effects on the EWPO. The experimental
bounds on δFAB

12 where A,B = L,R are very strict (as discussed above, see Tab. 5.1)
and does not yield sizable contribution. The bounds on the other δFAB

ij ’s are relatively
less strict but still in most cases we do not get sizable contributions for EWPO (but now
can quantify their corresponding sizes). The only sizable contribution that we get comes
from δLLL23 . The upper left plot in Fig. 5.2 shows our results for ∆ρ as functions of δLLL23 ,
under the presently allowed experimental range given in 5.1, where, depending on the
choice of the scenario (S1 . . . S6) values of up to O(10−3) can be reached. The largest
values are found in S5, where the largest values of δLLL23 of up to ±0.3 are permitted.
For the same value of δLLL23 we find the largest contributions in S6, which possesses
the relatively largest values of SSB parameters in the slepton sector. This indicates
that in general large contributions to the EWPO are possible as soon as heavy sleptons
are involved. Consequently, while such heavy sleptons are in general difficult to detect
directly at the LHC or the ILC, their presence could be visible in case of large LFV
contributions via a shift in the EWPO.

Turning to the (pseudo-)observables MW and sin2 θeff , which are shown in the upper
right and middle left plot of Fig. 5.2, respectively, we can compare the size of the LFV
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contributions to the current and future anticipated accuracies in these observables. The
black line in both plots indicates the result for δLLL23 = 0. The red line shows the current
level of accuracy, see Eq. (3.9), while the blue line indicates the future ILC/GigaZ pre-
cision, see Eq. (3.10). We refrain from putting the absolute values of these observables,
since their values strongly depend on the choice of the stop/sbottom sector (see Ref. [14]
and references therein), which is independent on the slepton sector under investigation
here. While the current level of accurcay only has the potential to restrict δLLL23 in S5
and S6, the future accuracy, in particular for sin2 θeff , can set stringent bounds in all six
scenarios.

The overall conclusion for the EWPO is that while δLLL23 is most difficult to restrict
from “conventional” LFV observables, see Sect. 5.1, it has (by far) the strongest impact
on EWPO. Even with the current precision, and even better with the (anticipated)
future accuracies, depending on the values of the scalar top/bottom sector new bounds
beyond the “conventional” LFV observables can be obtained.

5.2.2 Higgs masses

We now turn to the effects of the LFV contribtions on the prediction of the neutral
CP-even and the charged MSSM Higgs boson masses. As discussed in Sect. 3.2, the
theoretical accuracy should reach a precision of ∼ 50 MeV in the case of Mh and about
∼ 1% in the case of the heavy Higgs bosons. The calculation of Mh in the presence
of NMFV in the scalar quark sector, as obtained in Ref. [98], indicated that from the
colored sector corrections of O(10 GeV) are possible (i.e. for NMFV δFAB

ij in agreement
with all other precision data). Similar or even larger corrections where found for the
heavy Higgs bosons, in particular for the mass of the charged Higgs boson. Large cor-
rections were connected especially to non-zero values of δULR,URL

23 . While the corrections
from the scalar lepton sector are naturally much smaller than from the scalar quark
sector, it could be expected that the LFV contributions can exceed future and possibly
even current experimental uncertainties. In the absence of the knowledge of the exact
LFV contributions a theoretical uncertainty had to be assigned at least at the level
of O(100 MeV) for Mh and O(10 GeV) for MH± . Both uncertainties are at the level
(or exceeding) the future anticipated accuracies for these Higgs-boson masses. Conse-
quently, the LFV have to be evaluated and analyzed in order to reach the required level
of precision.

As described above, the Higgs-boson masses are shown in the middle right plot (Mh),
the lower left (MH) and the lower right plot (MH±) in each figure. As expected from the
NMFV analysis in the scalar quark sector [98], the largest effects are found for δELR,ERL

23 ,
but similarly for δELR,ERL

13 , indicating that only the electroweak, but not the Yukawa
couplings, play a relevant role in these corrections. Contrary to the expectations, the
corrections to Mh always stay below the level of a few MeV. While this result eliminates
the above menioned uncertainty of O(100 MeV), these contributions are too small to
yield a sizable numerical effect.

Turning to the heavy Higgs bosons, the contributions to MH , most sizable again for
δELR,ERL
23,13 , do not exceed O(100 MeV) and are thus effectively negligible. Substantially
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larger corrections are found, in agreement with the expectations from Ref. [98] for the
charged Higgs-boson mass. They can reach the level of nearly −2 GeV, see Figs. 5.3 -
5.6. For the chosen values of MA (or MH±) this stays below the level of 1%. However,
the absolute size of the corrections is not connected to the value of MH± in S1-S6.
Choosing starting values of MA somewhat smaller (requiering a new evaluation of the
corresponding bounds on the LFV δFAB

ij ), could yield relative corrections to MH± at
the level of 1%. Furthremore, as in the case of the light Higgs-boson mass, the explicit
calculation of the LFV effects eliminates the theory uncertainty associated to these
effects, thus improving the theoretical accuracy.

5.2.3 BR(h → l±i l
∓
j )

As a last step in MI analysis, we present here the slepton mixing effects to the LFVHD.
These decays were calculated using newly modified (see Sect. 3.7) FeynArts/FormCalc
setup. The constraints from cLFV decays on slepton δFAB

ij ’s are very tight and we
do not expect large values for the BR’s. In Fig. 5.9 we present our numerical results
for BR(h → e±τ∓) and BR(h → µ±τ∓) as a function of slepton mixing δFAB

ij ’s for
the six points defined in the Tab. 4.1. BR(h → e±µ∓) can only reach O(10−17) at
maximum and we do not show them here. BR(h → e±τ∓) and BR(h → µ±τ∓) can
reach at most to O(10−9) for some parameter points, which is very small compared to
the CMS excess [129]. The reason for such a small value in the experimentally allowed
parameter range is the following. The same couplings namely chargino-lepton-slepton
and neutralino-lepton-slepton are responsible for the cLFV decays and LFVHD, making
it very difficult to find any larger values for LFVHD BR’s. Our results show that if the
excess shown in the CMS results [129] persists, we will need to find some other sources
of LFV to explain CMS result. Lepton-slepton misalignment is not sufficient to explain
this excess. On the other hand our results are in agreement with the ATLAS results [130]
which do not see any excess over SM background.
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Figure 5.1: EWPO and Higgs masses as a function of δLLL13 .
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Figure 5.2: EWPO and Higgs masses as a function of δLLL23 . Solid red (blue) line shows
the present (future) experimental uncertainty.
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Figure 5.5: EWPO and Higgs masses as a function of δERL
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Figure 5.6: EWPO and Higgs masses as a function of δERL
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Figure 5.8: EWPO and Higgs masses as a function of δERR
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ij for the six points defined in the Tab. 4.1.
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Chapter 6

Flavor Mixing Effects in MFV
CMSSM & its Seesaw Extension

After presenting the MI analysis in the previous chapters, here we will investigate the
predictions for off-diagonal sfermion SSB mass terms and flavor mixing effects in the
CMSSM and CMSSM-seesaw I.

This work is motivated by the fact that in many analyses of the CMSSM, or ex-
tensions such as the NUHM1 or NUHM2 (see Ref. [18] and references therein), the
hypothesis of MFV has been used, and it has been assumed that the contributions com-
ing from MFV are negligible not only for FCNC processes but for other observables like
EWPO and Higgs masses as well, see, e.g., Ref. [19]. In this chapter we will analyze
whether this assumption is justified, and whether including these MFV effects could lead
to additional constraints on the CMSSM parameter space. In this respect we evaluate
in the CMSSM and in the CMSSM-seesaw I the following set of observables:

• BPO, in particular BR(B → Xsγ), BR(Bs → µ+µ−) and ∆MBs
,

• EWPO, in particular MW and the effective weak leptonic mixing angle, sin2 θeff ,

• the masses of the neutral and charged Higgs bosons in the MSSM,

• QFVHD in particular h→ b̄s+ bs̄,

• cLFV decays in particular µ→ eγ, τ → eγ, τ → µγ as well as

• LFVHD in particular h→ e±µ∓, h→ e±τ∓ and h→ µ±τ∓.

In order to perform our calculations, we used SPheno [153] to generate the CMSSM
(containing also the type I seesaw) particle spectrum by running RGE from the GUT
down to the EW scale. The particle spectrum was handed over in the form of an SLHA
file [154] to FeynHiggs [68,77,97,121,122] to calculate EWPO and Higgs boson masses.
The BPO were calculated by the BPHYSICS subroutine included in the SuFla code [103]
(see also Refs. [98, 99] for the improved version used here). QFVHD and LFVHD were
calculated using FeynArts/FormCalc setup whereas cLFV decays were calculated with
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SPheno 3.2.4. The following section describes the details of our computational setup.
The results presented in this chapter were published in [155].

6.1 Computational setup

The SUSY spectra have been generated with the code SPheno 3.2.4 [153] (for the
CMSSM and the CMSSM-seesaw I). We defined the SLHA [154] file at the GUT scale.
In a first step within SPheno, gauge and Yukawa couplings at MZ scale are calculated
using tree-level formulas. Fermion masses, the Z boson pole mass, the fine structure
constant α, the Fermi constant GF and the strong coupling constant αs(MZ) are used as
input parameters. The gauge and Yukawa couplings, calculated atMZ , are then used as
input for the one-loop RGE’s to obtain the corresponding values at the GUT scale which
is calculated from the requirement that g1 = g2. The CMSSM boundary conditions are
then applied to the complete set of two-loop RGE’s and are evolved to the EW scale. At
this point the SM and SUSY radiative corrections are applied to the gauge and Yukawa
couplings, and the two-loop RGE’s are again evolved to GUT scale. After applying the
CMSSM boundary conditions again the two-loop RGE’s are run down to EW scale to get
SUSY spectrum. This procedure is iterated until the required precision is achieved. The
output is then written in the form of an SLHA, file which is used as input to calculate
low energy observables discussed below.

For our scans of the CMSSM-seesaw I parameter space we use SPheno 3.2.4 [153]
with the model “see-saw type-I” and apply a similar procedure to that in the CMSSM
case. The neutrino related input parameters are included in the respective SLHA input
blocks (see Ref. [154] for details). The predictions for BR(li → ljγ) are also obtained
with SPheno 3.2.4, see the discussion in Sect. 6.4. We checked that the use of this code
produces results similar to the ones obtained by our private codes used in Ref. [54].

6.2 Input parameters

In order to get an overview about the size of the effects in the CMSSM parameter space,
the relevant parameters m0, m1/2 have been scanned as, or in case of A0 and tanβ have
been set to all combinations of

m0 = 500 GeV . . . 5000 GeV , (6.1)

m1/2 = 1000 GeV . . . 3000 GeV , (6.2)

A0 = −3000,−2000,−1000, 0 GeV , (6.3)

tanβ = 10, 20, 35, 45 , (6.4)

with µ > 0. Primarily we are not interested in the absolute values for EWPO BPO
and Higgs masses but the effects that comes from flavor violation within the MFV
framework, i.e. the effect from the off-diagonal entries in the sfermion mass matrices.
We first calculate the low-energy observables by setting all δFAB

ij = 0 by hand. In a
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second step we evaluate the observables with the values of δFAB
ij obtained through RGE

running. We then evaluate the “pure MFV effects”,

∆BRMFV(B → Xsγ) = BR(B → Xsγ)− BRMSSM(B → Xsγ) , (6.5)

∆BRMFV(Bs → µ+µ−) = BR(Bs → µ+µ−)− BRMSSM(Bs → µ+µ−) , (6.6)

∆MMFV
Bs

= ∆MBs
−∆MMSSM

Bs
, (6.7)

where BRMSSM(B → Xsγ), BRMSSM(Bs → µ+µ−) and ∆MMSSM
BS

corresponds to the
values of relevant observables with all δFAB

ij = 0. Furthermore we define

∆MMFV
h = Mh −MMSSM

h (6.8)

∆MMFV
H = MH −MMSSM

H (6.9)

∆MMFV
H± = MH± −MMSSM

H± (6.10)

where MMSSM
h , MMSSM

H and MMSSM
H± corresponds to the Higgs masses with all δFAB

ij = 0.
Similarly we define for the EWPO

∆ρMFV = ∆ρ−∆ρMSSM (6.11)

∆MMFV
W = MW −MMSSM

W (6.12)

∆ sin2 θMFV
eff = sin2 θeff − sin2 θMSSM

eff (6.13)

where ∆ρMSSM, MMSSM
W and sin2 θMSSM

eff are the values of the relavant observables with
all δFAB

ij = 0.

6.3 Effects of squark mixing in the CMSSM

In this section we analyze the effects from RGE induced flavor violating mixing in the
scalar quark sector in the CMSSM (i.e. with no mixing in the slepton sector). The RGE
running from the GUT scale to the EW has been performed as described in Sect. 6.1,
with the subsequent evaluation of the low-energy observables as discussed in Chap: 3.

In Figs. 6.1-6.8 we show the results of our CMSSM analysis in the m0–m1/2 plane
for four different combinations of tan β = 10, 45 (left and right column) and A0 =
0,−3000 GeV (upper and lower row). This set represents four “extreme” cases of the
parameter space and give an overview about the possible sizes of the effects and their
dependences on tan β and A0 (which we verified with other, not shown, combinations).

6.3.1 Squark δFAB
ij ’s

We start with the three most relevant δFAB
ij ’s. In Figs. 6.1-6.3 we show the results for

δQLL
13 , δQLL

23 and δULR
23 , respectively, which are expected to yield the largest results. The

values show the expected pattern of their size with δQLL
23 ∼ O(10−2) being the largest

one, and δQLL
13 and δULR

23 about one or two orders of magnitude smaller. All other δFAB
ij

95



which are not shown reach only values of O(10−5). One can observe an interesting
pattern in these figures: the values of δFAB

ij increase with larger values of either tan β
or A0. The values for δQLL increase with m0, whereas the δ

ULR and δDLR decrease with
m0. This behavior can be understood for the RGE’s of the non diagonal SUSY breaking
parameters (see, e.g., Ref. [156]), δQLL’s are defined as ratios of off-diagonal soft terms
that grow with m2

0 over diagonal soft masses that also grow with m0. However, δULR’s
and δDLR’s arises from the ratio of the RGE generated off-diagonal trilinear terms which
depend on the value of A0, that is considered fixed in our case, over m0 growing diagonal
soft masses. As discussed above, these δFAB

ij 6= 0 are often neglected in phenomenological
analyses of the CMSSM (see, e.g., Ref. [19]). We also emphasize that these effects are
purely due to the presenece of the CKM matrix on the RGE’s, their contribution will
vanish when the mixing of the two first generation with the third generation is neglected
(as we have checked numerically).
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Figure 6.1: Contours of δQLL
13 in the m0–m1/2 plane for different values of tan β and A0

in the CMSSM.
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Figure 6.2: Contours of δQLL
23 in the m0–m1/2 plane for different values of tan β and A0

in the CMSSM.

6.3.2 EWPO

In Figs. 6.4-6.6 we analyze the effects of the non-zero δFAB
ij on the EWPO ∆ρMFV,

∆MMFV
W and ∆ sin2 θMFV

eff , respectively. Here the same pattern is reflected for the EWPO,
i.e. by increasing the value of tanβ or A0, we find larger contributions to the EWPO.
In particular one can observe a non-decoupling effect for large values of m0. Larger soft
SUSY-breaking parameters with the non-zero values in particular of δQLL

23 , see above,
lead to an enhanced splitting in masses belonging to an SU(2) doublet, and thus to
an enhanced contribution to the ρ-parameter. The corresponding effects on MW and
sin2 θeff , form0

>∼ 3 TeV, exhibit corrections that are several times larger than the current
experimental accuracy (whereas the SUSY corrections with all δFAB

ij = 0 decouple and
go to zero). Consequently, including the non-zero values of the δFAB

ij and correctly taking
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Figure 6.3: Contours of δULR
23 in the m0–m1/2 plane for different values of tanβ and A0

in the CMSSM.

these corrections into account, would yield an upper limit on m0, which in the known
analyses so far is unconstrained from above [19]. A more detailed analysis within the
CMSSM will be needed to determine the real upper bound on m0, which, however, is
beyond the scope of this thesis.

In order to gain more insight about the source of the large corrections to ∆ρ (and
thus to the EWPO), we show in Fig. 6.7 several relative mass (square) differences, (m2

2−
m2

1)/(m
2
2 + m2

1) in the m0–m1/2 plane for fixed A0 = 0 and tan β = 45. The left plot
shows the mass difference for the two most stop-like squarks (i.e. in the limit of zero
inter-generational mixing they coincide with the two scalar tops). The right plot shows
the relative mass difference for the lightest most stop-like and most sbottom-like squark.
(These results are simply the Spheno output in our scenario.) In both cases one can
see that the relative mass differences increase (controlled by the non-zero δFAB

ij induced
by the CKM matrix in the RGE running) in a fashion similar as the δQLL discussed
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above, i.e. in particular for m0 > m1/2 > 1 TeV. These increasing mass differences lead
(together with contributions from the mixing matrices) to the observed increase of ∆ρ
as in Fig. 6.4.

Our findings can be briefly compared to the existing literature. The EWPO in the
context of flavor violation were evaluated first in Ref. [62], where correspondingly large
corrections were found for large δQLL

23 (in fact, that was the only parameter dependence
analyzed in that paper, and only the mixing between the second and third generation
of squarks was taken into account). Subsequently, the EWPO were also evaluated for
the full three-generation mixing in Ref. [157]. The numerical analysis, however, was
restricted to a degenerate and fixed SUSY mass scale. Correspondingly, no large effects
with increasing SUSY mass scales were analyzed and only relative small corrections were
found. Due to the different numerical set-up, however, there is no contradiction with
our results for ∆ρ.
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Figure 6.4: Contours of ∆ρMFV in the m0–m1/2 plane for different values of tan β and
A0 in the CMSSM.
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Figure 6.5: Contours of ∆MMFV
W in GeV in the m0–m1/2 plane for different values of

tan β and A0 in the CMSSM.

6.3.3 Higgs masses and the BPO

In Fig. 6.8 we show the results of our CMSSM analysis with the effects of the non-
zero δFAB

ij on the Higgs mass calculations and on the BPO in the m0–m1/2 plane for
tan β = 45 and A0 = −3000. We only show this “extreme” case, where smaller values
of tan β and A0 would lead to smaller effects. In the upper left, upper right and middle
left plot we show ∆MMFV

h , ∆MMFV
H and ∆MMFV

H± , respectively. It can be seen that the
effects on the neutral Higgs boson masses are negligible w.r.t. the experimental accuracy.
The effects onMH± can reach O(100 MeV), where largest effects are found for both very
small values of m0 and m1/2 (dominated by δULR

23 ) or very large values of m0 and m1/2

(dominated by δQLL
13,23). Corrections of up to −300 MeV are found, but still remaining

below the foreseeable future precision. Consequently, also in the Higgs mass evaluation
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Figure 6.6: Contours of ∆ sin2 θMFV
eff in the m0–m1/2 plane for different values of tan β

and A0 in the CMSSM.

not taking into account the non-zero values of the δFAB
ij is a good approximation. In the

middle right, lower left and lower right plot of Fig. 6.8 we show the results for the BPO
∆BRMFV(B → Xsγ), ∆BRMFV(Bs → µ+µ−) and ∆MMFV

Bs
, respectively. The effects in

∆BRMFV(B → Xsγ) are of O(−10−5) and thus one order of magnitude smaller than
the experimenal accuracay. Similarly, we find ∆BRMFV(Bs → µ+µ−) ∼ O(10−10) and
∆MMFV

Bs
∼ O(10−15 GeV), i.e. one or several orders of magnitude below the experimental

precision. This shows that for the BPO neglecting the effects of non-zero δFAB
ij in the

CMSSM is a good approximation.

6.3.4 BR(h → b̄s + bs̄)

The results are shown in Fig. 6.9, where we display the contours of BR(h→ b̄s+ bs̄) in
the (m0, m1/2) plane for tanβ = 10, A0 = 0 (upper left), tan β = 10, A0 = −3000 GeV
(upper right), tan β = 45, A0 = 0 (lower left) and tan β = 45, A0 = −3000 GeV (lower
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Figure 6.7: Contours of (m2
2 −m2

1)/(m
2
2 +m2

1) in the m0–m1/2 plane for fixed values of
A0 = 0 and tan β = 45. Left: the two most stop-like squarks (i.e. in the limit of zero
inter-generational mixing they coincide with the two scalar tops), right: the lightest
most stop-like and most sbottom-like squarks (see text).

right). By comparison with planes for other tanβ-A0 combinations we have varyfied that
these four planes constitute a representative example. The allowed parameter space can
be deduced by comparing to the results presented above and in Refs. [158]. While not
all the planes are in agreement with current constraints, large parts, in particular for
larger values of m0 and m1/2 are compatible with a combination of direct searches, flavor
and electroweak precision observables as well as astrophysical data. Upper bounds on
m0 at the few TeV level could possibly be set by including the findings of Sect. 6.3.2
into a global CMSSM analysis.

In Fig. 6.9 one can see that for most of parameter space values of O(10−7) are found
for BR(h → b̄s + bs̄), i.e. outside the reach of current or future collider experiments.
Even for the “most extreme” set of parameters we have analyzed, tanβ = 45 and
A0 = −3000 GeV, no detectable rate has been found. Turning the argument around,
any observation of the decay h → b̄s + bs̄ at the (discussed) future experiments would
exclude the CMSSM as a possible model.
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Figure 6.8: Contours of Higgs mass corrections (∆MMFV
h , ∆MMFV

H and ∆MMFV
H± in GeV)

and BPO (∆BRMFV(B → Xsγ), ∆BRMFV(Bs → µ+µ−) and ∆MMFV
Bs

) in the m0–m1/2

plane for tan β = 45 and A0 = −3000 GeV in the CMSSM.
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Figure 6.9: Contours of BR(h → bs̄ + b̄s) in the m0–m1/2 plane for different values of
tan β and A0 in the CMSSM.
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6.4 Effects of slepton mixing in CMSSM-seesaw I.

In this section we analyze the effects of non-zero δFAB
ij values in the CMSSM-seesaw I.

In order to investigate the effects induced just by the mixings in the slepton sector,
such that we can compare their contribution from the one produced by the mixings in
the squak sector (and to discriminate it from effects from mixings in the squark sector)
we present here the results with only δFAB

ij in the slepton sector non-zero, i.e. after
the RGE running with both CKM and seesaw parameters non-zero, the δFAB

ij from the
squark sector are set to zero by hand at the EW scale. The effects of the squark mixing in
the CMSSM-seesaw I are nearly indistinguishable from the ones analyzed in the previous
subsection.

As mentioned in Sect. 2.6.1, the calculations in this section are done by using the
values of Yν constructed from Eq. (2.93) with degenerate MR’s. The matrix R is set
to the identity since it does not enter in Eq. (2.95) and therefore the slepton δFAB

ij ’s
do not depend on it. The matrix mδ

ν is a diagonal mass matrix adjusted to reproduce
neutrino masses at low energy compatible with the experimental observations and with
hierarchical neutrino masses. We performed our computation by using the seesaw scale
MN = 1014 GeV. With this choice the bound BR(µ → eγ) < 5.7 × 10−13 [124] im-
poses severe restrictions on the m0–m1/2 plane, excluding values of m0 below 2–3 TeV
(depending on tanβ and A0). The values of the slepton δFAB

ij will increase as the scale
MN increases but also does the parameter space excluded by the BR(µ → eγ) bound.
For example, by increasing MN by an order of magnitude, the largest entries in the
matrix Yν will become of O(1) and the bound on BR(µ → eγ) will only be satisfied if
m0 ≈ 5 TeV (see more details below).

6.4.1 Slepton δFAB
ij ’s

Our numerical results in the CMSSM-seesaw I are shown in Figs. 6.10 - 6.16. As in
the CMSSM we present the results in the m0–m1/2 plane for four combinations of
tan β = 10, 45 (upper and lower row) and A0 = 0,−3000 GeV (left and right column),
again capturing the “extreme” cases. We start presenting the three most relevant δFAB

ij .
Figs. 6.10-6.12 show δLLL12 , δLLL13 and δLLL23 , respectively. As expected, δLLL23 turns out to
be largest of O(0.01), while the other two are about one order of magnitude smaller.
The dependence on tanβ is not very prominent, but going from A0 = 0 to −3000 GeV
has a strong impact on the δFAB

ij . For small A0 the size of the δFAB
ij is increasing with

larger m0 and m1/2, for A0 = −3000 GeV the largest values are found for small m0 and
m1/2.

6.4.2 EWPO

In Figs. 6.13-6.15 we show the results for the EWPO. The same pattern and non-
decoupling behavior for EWPO as in the case of CMSSM (squark δFAB

ij ) can be ob-
served. However, the corrections induced by slepton flavor violation are relatively small
compared to squark case. For the most extreme cases, i.e. the largest values of m0, the
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Figure 6.10: Contours of δLLL12 in the m0–m1/2 plane for different values of tanβ and A0

in the CMSSM-seesaw I.

corrections toMW turn out to be of the same order of the experimental uncertainty. For
those parts of the parameter space neglecting the effects of LFV to the EWPO could
turn out to be an insufficient approximation, in particular in view of future improved
experimental accuracies.

6.4.3 Higgs masses

Finally, in Fig. 6.16 we present the corrections to the Higgs boson masses induced by
slepton flavor violation. Here we only show ∆MMFV

h (left) and ∆MMFV
H± (right) for tanβ =

10 and A0 = 0. They turn out to be negligibly small in both cases. Corrections to
∆MMFV

H , which are not shown, are even smaller. We have checked that these results
hold also for other combinations of tanβ and A0. Consequently, within the Higgs sector
the approximation of neglecting the effects of the δFAB

ij is fully justified.
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Figure 6.11: Contours of δLLL13 in the m0–m1/2 plane for different values of tanβ and A0

in the CMSSM-seesaw I.

6.4.4 BR(li → ljγ)

The experimental limit BR(µ → eγ) < 5.7 × 10−13 put severe constraints on slepton
δFAB
ij ’s as discussed before. In Fig. 6.17, we show the predictions for BR(µ → eγ) in
m0–m1/2 for different values of A0 and tan β in CMSSM-seesaw I. The selected values
of Yν result in a large prediction for, e.g., BR(µ → eγ) that can eliminate some of the
m0–m1/2 parameter plane, in particular combinations of low values of m0 and m1/2. For
tan β = 10 and A0 = 0, BR(µ → eγ) (upper left plot of Fig. 6.17) do not exclude any
region in m0–m1/2 plane, whereas with tanβ = 10 and A0 = −3000 lower left region
below m0, m1/2 = 2000 is excluded (see upper right plot of Fig. 6.17). For combinations
like tan β = 45, A0 = 0 and tan β = 45, A0 = −3000 even larger parts of the plane
are excluded by BR(µ → eγ). In Fig. 6.18 and Fig. 6.19, we show the predictions for
BR(τ → eγ) and BR(τ → µγ) respectively. It can be seen that these processes do not
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Figure 6.12: Contours of δLLL23 in the m0–m1/2 plane for different values of tanβ and A0

in the CMSSM-seesaw I.

reach their respective experimental bounds BR(τ → eγ) < 3.3 × 10−8, BR(τ → µγ) <
4.4× 10−8. Consequently they do not exclude any parameter space.

6.4.5 BR(h → l±i l
∓
j )

Fig. 6.20 shows the results for BR(h → eµ). The largest value is of the O(10−16)
for low m0 and m1/2 values but is excluded from BR(µ → eγ). In the allowed range
they are typically O(10−18). Similarly Fig. 6.21 and Fig. 6.22 shows the predictions for
BR(h → eτ) and BR(h → τµ) respectively. Predictions of the O(10−14) and O(10−12)
are possible for BR(h → eτ) and BR(h → τµ) in the lower left region of the m0–m1/2

plane respectively but are excluded from BR(µ → eγ) bound. In the allowed region they
are of the O(10−16) or less. These results are in a clear contradiction to the recently
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Figure 6.13: Contours of ∆ρMFV in the m0–m1/2 plane for different values of tanβ and
A0 in the CMSSM-seesaw I.

reported CMS excess [129]. If this excess seen in the CMS is confirmed in the future
analysis, we will need models other than the CMSSM-seesaw I to explain this excess.
However our findings are in agreement with the ATLAS reports [130], where they do
not see any significant excess over background. It remains to be seen how these results
will develop with the LHC Run II.
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Figure 6.14: Contours of ∆MMFV
W in GeV in the m0–m1/2 plane for different values of

tan β and A0 in the CMSSM-seesaw I.
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Figure 6.15: Contours of ∆ sin2 θMFV
eff in the m0–m1/2 plane for different values of tan β

and A0 in the CMSSM-seesaw I.
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Figure 6.16: Contours of ∆MMFV
h (left) and ∆MMFV

H± (right) in the m0–m1/2 plane for
tan β = 10 and A0 = 0 in the CMSSM-seesaw I.
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Figure 6.17: Contours of BR(µ→ eγ) in the m0–m1/2 plane for different values of tan β
and A0 in the CMSSM-seesaw I.
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Figure 6.18: Contours of BR(τ → eγ) in the m0–m1/2 plane for different values of tan β
and A0 in the CMSSM-seesaw I.
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Figure 6.19: Contours of BR(τ → µγ) in the m0–m1/2 plane for different values of tan β
and A0 in the CMSSM-seesaw I.
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Figure 6.20: Contours of BR(h→ eµ) in the m0–m1/2 plane for different values of tan β
and A0 in the CMSSM-seesaw I.
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Figure 6.21: Contours of BR(h→ eτ) in the m0–m1/2 plane for different values of tan β
and A0 in the CMSSM-seesaw I.
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Figure 6.22: Contours of BR(h→ τµ) in the m0–m1/2 plane for different values of tan β
and A0 in the CMSSM-seesaw I.
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Chapter 7

Summary & Conclusions

SUSY proves to be a very powerful and technically well equiped theory as it successfully
explains some of the major deficiencies of the SM, but still lacks experimental endorse-
ment. Direct searches for sparticles at LHC did not succeed so far. The other way
around is to probe SUSY via virtual effects of additional particles to the precision ob-
servables. For example, in the MSSM, the fermion-sfermion misallignment can generate
flavor changing effects that can dominate the SM effects by several orders of magnitude.
Any possible experimental deviation from the SM results for the precision observales
could be a hint of SUSY. Also, as this misallignment arises from the soft SUSY-breaking
terms, this may provide guidlines for the SUSY model building. In this thesis, keeping
the above mentioned points in mind, we studied the possible phenomenological conse-
quences of flavor mixing to various observables.

The flavor mixing was parameterized in terms of a set of dimensionless parameters
δFAB
ij (F = Q,U,D, L,E;A,B = L,R; i, j = 1, 2, 3). In chapter 1, we reviewed some
aspacts of the SM, similarly in chapter 2, a general introduction to MSSM and its seesaw
extension was discussed. Calculational details for the considered observables were given
in chapter 3 where we presented the higher order corrections to the electroweak precision
observables (EWPO), higher order corrections to Higgs boson masses, calculational de-
tails of the B-physics observables (BPO), quark flavor violating Higgs decays (QFVHD)
and lepton flavor violating Higgs decays (LFVHD). In order to calculate slepton mix-
ing effects (squark mixing was already present), we prepared an add-on model file for
FeynArts to include lepton flavor violation in the already existing MSSM model file of
the FeynArts. FormCalc drivers were also modified accordingly. The inclusion of lepton
flavor violation (LFV) into FeynArts/FormCalc allowed us to calculate the one-loop
LFV effects on EWPO (via the calculation of gauge-boson self-energies) as well on the
Higgs-boson masses of the MSSM (via the calculation of the Higgs-boson self-energies).
The corresponding results have been included in the code FeynHiggs and are publicly
available from version 2.10.2 on. We have (re-)caculated the decay h → b̄s + bs̄ in the
FeynArts and FormCalc setup. The BPO and EWPO constraints have been evalated
with the help of (a private version of) FeynHiggs, taking into account the full flavor vio-
lating one-loop corrections to MW and to the relevant BPO (supplemented with further
MSSM higher-order corrections).
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The effects of squarks mixing to EWPO, BPO and QFVHD such as h → b̄s + bs̄
in the Model Independent (MI) approach were presented in chapter 4. This evaluation
improved on existing analyses in various ways. We took into account the full set of SUSY
QCD and SUSY EW corrections, allowing for LL, RL, LR and RRmixing simultaneously.
The parameter space was restricted not only by BPO, but also by EWPO, in particular
the mass of the W boson. We have shown that MW can yield non-trivial, additional
restrictions on the parameter space of the squark flavor violating δFAB

ij .

In six representative scenarios, which are allowed by current searches for SUSY par-
ticles and heavy Higgs bosons, we have evaluated the allowed parameter space for the
various δFAB

ij by applying BPO and EWPO constraints. Within these allowed ranges we
have then evaluated BR(h→ b̄s+ bs̄). In the case of only one δFAB

ij 6= 0 we have found
that only relatively large values of δDLR

23 could lead to rates of BR(h→ b̄s+ bs̄) ∼ 10−4,
which could be in the detectable range of future e+e− colliders. Allowing two δFAB

ij 6= 0
simultaneously lead to larger values up to BR(h → b̄s + bs̄) ∼ 10−3, which would make
the observation at the ILC relatively easy. Allowing for a third δFAB

ij 6= 0, on the other
hand, did not lead to larger values of the flavor violating branching ratio.

The effects of slepton mixing to EWPO, Higgs boson masses and LFVHD in the MI
approach were presented in chapter 5. The numerical analysis was performed on the
basis of same six benchmark points as in the previous chapter. These benchmark points
represent different combinations of parameters in the sfermion sector. The restrictions
on the various slepton δFAB

ij in these six scenarios, provided by experimental limits on
LFV processes (such as µ → eγ) were taken from Ref. [145], and the effects on EWPO
and Higgs-boson masses were evaluated in the experimentally allowed ranges. In this
way we were able to provide a general overview about the possible size of LFV effects and
potential new restrictions on the slepton δFAB

ij from EWPO and Higgs-boson masses.

The LFV effects in the EWPO turned out to be sizable for δLLL23 but (at least in
the scenarios under investigation) negligible for the other δFAB

ij . The effects of varying
δLLL23 in the experimentally allowed ranges turned out to exceed the current experimental
uncertainties of MW and sin2 θeff in the case of heavy sleptons. No new general bounds
could be set on δLLL23 , however, since the absolute values of MW and sin2 θeff strongly
depend on the choices in the stop/sbottom sector, which is disconnected from the slepton
sector presently under investigation. Such bounds could be set on a point-by-point
basis in the LFV MSSM parameter space, however. Looking at the future anticipated
accuracies, also lighter sleptons yielded contributions exceeding that precision. It may
therefore be possible in the future to set bounds on δLLL23 from EWPO that are stronger
than from direct LFV processes.

In the Higgs sector, based on evaluations for flavor violation in the squark sector,
non-negligible corrections to the light CP-even Higgs mass as well as to the charged
Higgs-boson mass could be expected. The associated theoretical uncertainties exceeded
the anticipated future precision forMh andMH± . Taking the existing limits on the δFAB

ij

from LFV processes into account, however, the corrections mostly turned out to be small.
For the light CP-even Higgs mass they stay at the few-MeV level. For the charged Higgs
boson mass they can reach O(2 GeV), which, depending on the choice of the heavy
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Higgs-boson mass scale, could be at the level of the future experimental precision. More
importantly, the theoretical uncertainty from LFV effects that previously existed for the
evaluation of the MSSM Higgs-boson masses, has been reduced below the level of future
experimental accuracy.

The predictions for the LFVHD in the MI approach were also presented in chapter
5. However due to very tight constraints on the slepton δFAB

ij ’s from cLFV decays, the
BR’s for these processes turned out to be very small.

Effects of squark mixing in the the CMSSM and slepton mixing in CMSSM extended
by type I Seesaw under the Minimal Flavor Violation (MFV) hypothesis were presented
in chaptor 6. This work was motivated by the fact that in many phenomenological
analyses of the CMSSM the effects of intergenerational mixing in the squark and/or
slepton sector are neglected. However, such mixings are naturally induced, assuming no
flavor violation at the GUT scale, by the RGE running from the GUT to the EW scale
exactly due to the presence of the CKM and/or the PMNS matrix. In this sense the
CMSSM and the CMSSM-seesaw I represent two simple “realistic” GUT based models,
in which flavor violation in induced solely by RGE running. The spectra of the CMSSM
and CMSSM-seesaw I have been numerically evaluated with the help of the program
SPheno by taking the GUT scale input run down via the appropriate RGEs to the EW
scale.

We have evaluated the predictions for BPO, MSSM Higgs boson masses, EWPO
in the CMSSM and CMSSM-seesaw I. In order to numerically analyze the effects of
neglecting intergenerational mixing these observables have been evaluated with the full
spectrum at the EW scale, as well as with the spectrum, but with all intergenerational
mixing set artificially to zero (as it has been done in many phenomenological analyses).

The difference in the various observables indicates the possible size of the effects
neglected in those analyses. In this way it can be checked whether neglecting those
mixing effects is a justified approximation.

Within the CMSSM we have taken a fixed grid of A0 and tan β, while scanning
the m0–m1/2 plane. We found that the value of δFAB

ij increases with the increase of
the A0 or tan β values. The Higgs boson masses receive corrections below current and
future experimental uncertainties, where the shifts in MH± were found largest at the
level of O(100 MeV). Similarly for the BPO the induced effects are at least one order
of magnitude smaller than the current experimental uncertainty. For those two groups
of observables the approximation of neglecting intergenerational mixing explicitly is a
viable option.

The picture changes for the EWPO. We find that the masses of the squarks grow
with m0, and thus do the mixing terms, inducing a splitting between masses in an
SU(2) doublet, leading to a non-decoupling effect. For m0

>∼ 3 TeV the effects induced
in MW and sin2 θeff are found to be several times larger than the current experimental
uncertainties and could shift the CMSSM prediction outside the allowed experimental
range. In this way, taking the intergenerational mixing into account could in principle set
bounds onm0 that are not present in recent phenomenological analyses. By investigating
numerically squark mass differences, we have shown that this behavior can be traced
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back to the non-decoupling effects in the scalar quark mass matrices, provided by Spheno
when taking into account the CKM matrix in the RGE running. However, we would like
to point out that this bound only holds because of the particularly simple structure of the
CMSSM and cannot be extended easily to other, more complicated model frameworks.

In the final step of the numerical analysis within the CMSSM we have evaluated
BR(h → b̄s + bs̄). Here we have found that for most of parameter space values of
O(10−7) are found for BR(h → b̄s + bs̄), i.e. outside the reach of current or future
collider experiments.

Going to the CMSSM-seesaw I the numerical results depend on the concrete model
definition. We have chosen a set of parameter that reproduces correctly the observed
neutrino data and simultaneously induces large LFV effects and induces relatively large
corrections to the calculated observables. Consequently, parts of the parameter space
are excluded by the experimental bounds on BR(µ → eγ). However BR(τ → eγ) and
BR(τ → µγ) do not reach to their respective experimental limits. Again predictions for
the BR of LFVHD turned out very small in CMSSM-seesaw I. We can conclude that
we will need models other than the CMSSM-seesaw I to explain the CMS excess (if it
persists) for the channel BR(h→ µτ). Concerning the precision observables we find that
BPO are not affected, we also find that the additional effects induced by slepton flavor
violation on Higgs boson masses are negligible. Again the EWPO are found to show
the largest impact, where for MW effects at the same level as the current experimental
accuracy have been observed for very large values ofm0. As above, we would like to point
out that these effects are due to the relatively simple structure of the CMSSM-seesaw I.

To summarize our MFV analysis: we have analyzed two “realistic” GUT based mod-
els in which flavor violation is solely induced by the CKM matrix via RGE running (as
evaluated using the Spheno code). We find that artificially setting all flavor violating
terms to zero in the CMSSM and CMSSM-seesaw I is an acceptable approximation for
BPO, Higgs boson masses (evaluated using a private version of FeynHiggs). However, in
the EWPO (also evaluated with FeynHiggs) in our numerical analysis we find larger ef-
fects in the CMSSM and CMSSM-seesaw I. The numerical contributions are larger than
the current experimental accuracy in MW and sin2 θeff . Taking those effects correctly
into account could in principle place new bounds on m0 that are not present in recent
phenomenological analyses.
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Resumen y Conclusiones

La teoŕıa supersimétrica ha demostrado un enorme potencial para explicar algunas de
los mayores problemas del Modelo Estánder (ME), aunque hasta la fecha no se haya en-
contrado ninguna evidencia experimental de sus predicciones. Por ejemplo, la búsqueda
directa de part́ıculas supersimétricas no ha tenido éxito por el momento. Sin embargo,
es posible detectar la presencia de las nuevas part́ıculas en los cambios que éstas pro-
ducen en algunos parámetros medidos con gran precisión. En particular, el modelo
supersimétrico mı́nimo (MSSM) predice nuevas contribuciones al cambio de sabor (FC)
de los fermiones debido a mezclas entre las masas de sus correspondientes parejas su-
persimétricas. Esta mezcla está originada por los parámetros responsables de la rotura
de la Supersimetŕıa, lo cual tiene un gran interés desde el punto de vista del diseño
de modelos supersimétricos concretos. El cambio de sabor derivado de la no alineación
entre fermiones y sus parejas escalares no se manifiesta en la aproximación a nivel más
bajo (“tree level”) de los cálculos, pero śı en el primer orden (“one-loop” level) cuya
contribución puede ser importante para ciertos valores de los parámetros del MSSM.

En esta tesis, se ha estudiado la posible contribución de la mezcla de sabor fermiónico
a varias observaciones. La mezcla de sabor se ha introducido por medio de un con-
junto de parámetros adimensionales denominados δFAB

ij (F = Q,U,D, L,E;A,B = L,R;
i, j = 1, 2, 3). En el caṕıtulo 1, se revisaron algunos aspectos del ME; en el caṕıtulo 2, se
introdujo el MSSM y la extensión de éste que incluye un mecanismo del tipo “see-saw”
para explicar las oscilaciones de sabor de los neutrinos. Los detalles de la contribución
SUSY a algunos observables de interés se presenta en el caṕıtulo 3, en concreto se
consideran: observables de la teoŕıa electro-débil medidos con gran precisión (EWPO),
correcciones a la masa del bosón de Higgs, detalles en el cómputo de la f́ısica relacionada
con el quark b (B-physics observables (BPO)), desintegraciones del bosón de Higgs con
violación de sabor de quark (QFVHD) y finalmente, desintegraciones del bosón de Higgs
con violación de sabor leptónico (LFVHD). Para calcular los efectos de la mezcla del
sector leptónico se elaboró un algoritmo adicional para FeynArts, con él se incluye LFV
en el modelo del MSSM que el paquete ya tiene definido. Con ello ampliamos la capaci-
dad de los programas incluidos en FeynArts/FormCalc para computar el efecto del LFV
en observables como EWPO (a partir del cómputo de las auto-enerǵıas de los bosones
gauge) y también sobre la masa de los bosones de Higgs del MSSM. Los resultados cor-
respondientes han sido incluidos en el el código FeynHiggs y están disponibles para su
libre distribución a partir de la versión 2.10.2. Se revisó el cálculo de la desintegración
h → b̄s + bs̄ utilizando los códigos actualizados de FeynArts y FormCalc. Los cálculos
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para evaluar los observables BPO y EWPO se realizaron con la ayuda de FeynHiggs

(utilizando una versión no pública), teniendo en cuenta la contribución a la de todos los
términos que violan sabor, en el caso de MW y de los más relevantes en el caso de BPO.

En el caṕıtulo 4 se han estudiado los efectos de la mezcla de sabor de los squarks
en la observación de EWPO, BPO y QFVHD (por ejemplo en h → b̄s + bs̄) de una
manera independiente del modelo (MI) que produce la mezcla de sabor. Nuestro cálculo
mejora otros previos en varios aspectos: se ha tenido en cuenta el total de las correcciones
supersimétricas del tipo fuerte y electro-débil y, además, se permitió la mezcla simultánea
de contribuciones del tipo LL, RL, LR y RR. También se consideró la limitación del
valor de los parámetros impuesta no solo por los BPO, sino también por los EWPO,
en particular la masa del bosón MW . Se mostró que la contribución a MW produce
restricciones adicionales al espacio de los parámetros δFAB

ij que mezclan el sabor de los
squarks.

En la evaluación de los posibles valores de los parámetros δFAB
ij se han teniendo en

cuenta las limitaciones procedentes de los valores de los BPO y EWPO. Para ello, se
consideraron seis escenarios representativos no excluidos ni por la búsqueda de part́ıculas
SUSY ni por el valor experimental de la masa del bosón de Higgs. Los valores de δFAB

ij

obtenidos se usaron para calcular BR(h → b̄s + bs̄). En el caso de tomar sólo uno
de los δFAB

ij 6= 0 se encontró que únicamente valores relativamente grandes de δDLR
23

predicen valores de BR(h→ b̄s+bs̄) ∼ 10−4, detectables en futuros colisionadores e+e− .
Permitiendo dos δFAB

ij 6= 0 simultáneamente se obtiene un valor BR(h→ b̄s+bs̄) ∼ 10−3,
que podŕıa observarse en el ILC. En cambio, si se permite un tercer δFAB

ij 6= 0, no
incrementa más el valor de esas predicciones.

En el caṕıtulo 5 se estudiaron los efectos de la mezcla de sabor de los sleptones en los
EWPO, las masas de los bosones de Higgs de una manera independiente del modelo que
origina la mezcla del sabor. Nuestro análisis numérico toma como referencia seis modelos
supersimétricos a los que se atribuyen determinados valores de los parámetros de modo
que las propiedades de los fermiones sean diferentes en cada uno de los casos. Los valores
de los δFAB

ij en los seis escenarios están limitados por la no observación de la violación
del sabor leptónico (LFV) en procesos como µ→ eγ [145], lo que se ha tenido en cuenta
en la evaluación del los EWPO y las masas de los bosones de Higgs. De este modo
hemos podido computar, de una manera general, el posible impacto de las restricciones
en el valor de los δFAB

ij debido a éstos observables en la predicción de procesos con LFV.
Encontramos que éstas son considerables para δLLL23 e insignificantes para el resto de los
δFAB
ij , al menos en los escenarios considerados en nuestra investigación. El efecto de
variar los valores de δLLL23 dentro de los intervalos permitidos experimentalmente implica
contribuciones para MW y sin2 θeff que pueden exceder el margen de error con el que
están medidos. Sin embargo, esto no implica nuevas restricciones en los valores de
δLLL23 , ya que los valores absolutos de MW y sin2 θeff dependen en gran medida del s-top
y el s-bottom. Este sector está desconectado del de los sleptones, objeto de nuestra
investigación. Sin embargo, en algunos casos, los limites que resultan de los EWPO
pueden ser más restrictivos que los procedentes de la medida directa de procesos con
LFV. En el sector de los bosones de Higgs, la introducción de violación de sabor de
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los s-quarks implica contribuciones no triviales a las masas del bosón de Higgs neutro
más ligero Mh y a la del cargado MH± . En ambos casos, la incertidumbre teórica en
su determinación es superior a la experimental. Si consideramos los valores para δFAB

ij

permitidos por los ĺımites de procesos con LFV , la contribución a ambas masas es
pequeña. Para Mh es del orden de unos pocos MeVs mientras para MH± puede llegar
hasta 2 GeV. Esta última puede alcanzar el valor de la futura precisión experimental,
dependiendo de la masa del bosón de Higgs neutro más pesado. Pero lo más relevante,
es el hecho de que la incertidumbre derivada de los efectos de LFV en la evaluación
de las masas de los bosones de Higgs neutros se ha reducido hasta hacerse del mismo
orden que la que se prevé alacanzar en experimentos futuros. En el caṕıtulo 5 tambien
se presentaron las predicciones para LFVHD siguiendo la técnica MI. Sin embargo, las
severas restricciones impuestas por los procesos con cLFV hacen que las predicciones
para esos procesos sean muy pequeñas.

En el caṕıtulo 6 se estudiaron los efectos de la mezcla de squarks en el CMSSM y de
sleptones en la extensión de éste con un mecanismo “see-saw” de tipo I. En ambos casos
se utilizó la hipótesis de violación de sabor mı́nima (MFV). Este trabajo fue motivado
por el hecho de que muchos análisis fenomenológicos del CMSSM no incluyen estos
efectos. Sin embargo, aparecen de manera natural en la evolución de los parámetros
del modelo entre las escalas de enerǵıa de gran unficiación (GUT) y electro-débil (EW)
debido a la presencia de las matrices CKM y PMNS en las RGE´s. En este sentido,
los modelos CMSSM y CMSSM-seesaw I constituyen dos ejemplos sencillos de modelos
con gran unificación en los que la violación de sabor procede únicamente de las RGE.
El espectro de masas de las part́ıculas supersimétricas en ambos casos se ha evaluado
numéricamente mediante el programa Spheno, a partir de los valores a la escala GUT. Se
calcularon las predicciones para BPO, y la masa de los bosones de Higgs en el CMSSM
y el CMSSM-seesaw I. Se evaluó el impacto de incluir la mezcla de sabor comparando
el cómputo con el caso simple en el que ésta se desprecia, como ocurre en otros análisis
previos al nuestro. Los resultados indican en qué casos pueden ignorarse las mezclas de
sabor.

En el caso del CMSSM se ha hecho un recorrido a través de una red de valores
en el plano m0–m1/2 para valores fijos de A0 y tan β. Se encontró que el valor de
δFAB
ij aumenta al incrementar los valores de éstos últimos valores. Los valores de las
correcciones a las masas de los bosones de Higgs son inferiores a la precisión en su valor
experimental (presente y futuro) . De manera análoga el impacto sobre los BPO está
por debajo de la incertidumbre en su medida experimental. Por tanto, encontramos que
para estos dos grupos de observables está justificado el ignorar los efectos de la mezcla.
La conclusión es diferente en el caso de los EWPO, aqúı encontramos que las masas
de los squarks aumentan con m0, y con ello los parámetros de mezcla, esto genera una
diferencia entre las masas del doblete de SU(2) que debe ser tenida en cuenta en el
cómputo de estos observables. Para m0

>∼ 3 TeV encontramos que induce a valores de
MW y sin2 θeff que superan varias veces la incertidumbre experimental, hasta el punto
llevar a las predicciones del CMSSM fuera de los ĺımites experimentales. De esta manera,
nuestro análisis permite establecer ĺımites para la masa del m0 que no aparećıan en
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trabajos anteriores. El origen de la diferencia en las masas de los squarks responsable
de ésta contribución fue corroborado numéricamente utilizando Spheno, con el que se
compararon los efectos de incluir o ignorar la matriz CKM en la integración de las RGE.
Sin embargo, debemos señalar que nuestras conclusiones son dif́ıciles de extrapolar a
modelos más complejos que los aqúı utilizados.

El último eslabón de nuestro análisis con el CMSSM ha sido la evaluación del
BR(h → b̄s + bs̄). En este caso, encontramos valores del orden de 10−7. Esto es, fuera
del alcance de su detección en los experimentos proyectados para un futuro próximo. En
el caso del CMSSM-seesaw I los resultados numéricos dependen de cómo esté definido
el modelo. Se eligió un conjunto de parámetros que reproduce correctamente las ob-
servaciones referentes a los neutrinos y a su vez induce a contribuciones apreciables de
LFV en los observables que estudiamos. En consecuencia, algunas regiones del espacio
de parámetros están exlúıdas por su predicción a BR(µ → eγ). En cambio, las de los
BR(τ → eγ) y BR(τ → µγ) no alcanzan sus respectivos ĺımites experimentales. Las
predicciones para los BR de LFVHD son muy pequeñas también en el CMSSM-seesaw I.
Con ello concluimos que precisamos de modelos diferentes del CMSSM-seesaw I para
explicar la observación de BR(h→ µτ) en el detector CMS del CERN. En lo tocante a
los observables medidos con gran precisión, encontramos que los BPO no están afecta-
dos. Tampoco las predicciones de las masas de los bosones de Higgs. El mayor impacto
aparece una vez más en los EWPO, en el caso de la MW pueden ser del orden de la
incertidumbre experimental.

En resumen, en nuestro estudio de MFV hemos utilizado dos modelos con gran
unificación “realistas” en los que la violación de sabor es introducida al tener en cuenta
la presencia de las matrices CKM y PMNS en las RGE’s. Se encontró que el desestimar
los efectos de violación de sabor es adecuado para los BPO y las masas de los bosones
de Higgs. Sin embargo, para los EWPO se encontraron efectos grandes. El valor de la
contribución a MW y sin2 θeff es superior a la incertidumbre de su valor experimental.
Por tanto, los efectos de violación de sabor, objeto de nuestro estudio imponen un nuevo
ĺımite superior a m0 que no se ha tenido en cuenta en otros análisis fenomenológicos
recientes.
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