
main 3 de febrero de 2016 13:07 Page i �
�	

�
�	 �
�	

�
�	

PROGRAMA DE DOCTORADO EN CIENCIAS, TECNOLOGÍA Y COMPUTACIÓN

GRUPO DE COMPUTACIÓN AVANZADA Y E-CIENCIA

INSTITUTO DE FÍSICA DE CANTABRIA

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC)

SCIENTIFIC CLOUD COMPUTING:

IMPROVED RESOURCE PROVISIONING,

INTEROPERABILITY AND FEDERATION

—

COMPUTACIÓN CIENTÍFICA EN LA NUBE:

MEJORAS EN LA PLANIFICACIÓN DE

RECURSOS, INTEROPERABILIDAD Y

FEDERACIÓN

Memoria presentada por

ÁLVARO LÓPEZ GARCÍA

para optar al grado de Doctor por la Universidad de Cantabria

Santander, Febrero 2016

main 3 de febrero de 2016 13:07 Page ii �
�	

�
�	 �
�	

�
�	

main 3 de febrero de 2016 13:07 Page iii �
�	

�
�	 �
�	

�
�	

Agradecimientos

Quisiera mostrar mi agradecimiento a las personas que han contribuido al desarrollo de
este trabajo.

En primer lugar me gustaría agradecer a mi director de tesis Jesús Marco y a mi
codirector Enol Fernandez, ya que sin su dedicación, supervisión, motivación y paciencia
este trabajo no habría sido posible. Gracias también a Isabel Campos, por la con�anza
depositada a lo largo de estos años, poniendo su experiencia y dedicación a mi disposición.

En segundo lugar, gracias a mi compañero y amigo Pablo, con el que he trabajado de
forma cercana durante todo este tiempo, ya que parte del trabajo que hemos realizado
juntos ha contribuido al desarrollo de esta tesis. Gracias a Miguel Ángel por toda la
ayuda prestada y su disposición siempre que se lo he solicitado.

Me gustaría agradecer también mis compañeros, tanto del Grupo de Computación
avanzada y e-Ciencia como del resto del Instituto de Física de Cantabria, con los que he
trabajado y compartido mi tiempo durante estos años.

I would like to thank the people from the CC-IN2P3 that made possible my stage in
Lyon. Thanks to Hélène Cordier for hosting me, and specially to my colleague Mattieu
Puel. Special thanks to Leonello Servoli and Mirko Mariotti, from the INFN and University
of Perugia, as they gave me the opportunity to start working in distributed computing
ten years ago, making possible that I have arrived at this point.

Gracias a María por todos sus consejos, sus ánimos y su incansable apoyo. Gracias
por estar en todo momento conmigo.

main 3 de febrero de 2016 13:07 Page iv �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page v �
�	

�
�	 �
�	

�
�	

Abstract

Nowadays it is di�cult to �nd an area in science or engineering that does not
rely on computing techniques. The advancements in Scienti�c Computing have
enabled studies in areas that were otherwise impossible. Due to the large impact of
the computational science in the ongoing societal and scienti�c challenges, several
computing research infrastructures have been developed and implemented during
the last years, based on di�erent consolidated paradigms, such as High Performance
Computing, High Throughput Computing and Grids. Researchers now have access
to unprecedented facilities that have revolutionized the way science is performed.

In this context, cloud computing has been embraced as a new emerging and
promising paradigm by the scienti�c community due to the expectations generated
around clouds. However, even if it is already being used by some research communi-
ties, we cannot neglect the fact that the cloud paradigm has been modelled to satisfy
the industry needs for the next generation of enterprise and web applications. Scien-
ti�c applications are unique on their own, therefore they have unique requirements
that the cloud model is not able to satisfy due to its origins in the corporate world.
This fact does not necessarily bring the feasibility of the cloud into question, but it
is needed to perform an initial study so as to evaluate where the weak points are.

In this thesis I perform this initial gap analysis as a �rst step for collecting a
set of requirements and challenges for Science Clouds. As a second step, in this
work I will tackle some of the challenges yielded from this initial study. To this end,
we consider two di�erent but complimentary areas: the resource provisioning and
federation and interoperability in clouds.

Regarding the �rst aspect, scienti�c workloads are di�erent from those in the
commercial world, therefore they need special attention from the Resource Provider
and the open source Cloud Management Framework perspective. I have addressed
how the distribution of Virtual Machine Images can in�uence the deployment time
for the resources requested and how this time can be reduced. Secondly, I propose
an implementation of preemptible instances as a way to increase the usage of clouds
for opportunistic usage.

The federation and interoperability area is important due to the distributed and
collaborative nature of modern science, where di�erent researchers from di�erent
institutions join forces to reach their goals. In this context it is important to promote
an open and collaborative environment, as other existing infrastructures did in the
past. To this end, this work proposes the usage of Open Standards for tackling the

main February 3, 2016 13:07 Page vi �
�	

�
�	 �
�	

�
�	

di�erent federation aspects is proposed, including an initial solution for authenti-
cation and authorization based on the Virtual Organization Membership Service
(VOMS).

In summary, the work and results presented here demonstrate that the cloud
can be e�ectively use for accommodating scienti�c applications, but it is needed to
tackle some outstanding technological and operational challenges to ensure that
Science Clouds can satisfy the expectations created around them.

main 3 de febrero de 2016 13:07 Page vii �
�	

�
�	 �
�	

�
�	

Resumen

Hoy en día es difícil encontrar un campo en ciencia o ingeniería que no haga
uso de técnicas de cómputo para alcanzar sus objetivos. Los avances en compu-
tación cientí�ca han facilitado estudios en áreas que no hubiera sido posible realizar
anteriormente. Debido al alto impacto que la computación cientí�ca tiene en los
retos cientí�cos y sociales, durante los últimos años se han desarrollado varias infra-
estructuras de cálculo cientí�co, basadas en paradigmas muy consolidados, como
la supercomputación, el High Throughput Computing o la computación Grid. Los
investigadores tienen a su alcance infraestructuras de computación sin precedente,
lo que ha revolucionado la manera en que se lleva a cabo la ciencia.

En este contexto, la comunidad cientí�ca está comenzando a aceptar la compu-
tación cloud como un nuevo y prometedor paradigma, debido a las altas expectativas
creadas en torno al mismo. Sin embargo, y pese a que ya está siendo utilizado por
algunas comunidades cientí�cas, no se puede olvidar que este modelo ha surgido
del mundo empresarial, por lo que se ha formado de acuerdo a los requerimien-
tos de la nueva generación de aplicaciones web y empresariales. Por otro lado, las
aplicaciones cientí�cas tienen características únicas, por lo que sus requerimientos
también son especiales. El modelo de computación cloud no satisface algunos de
estos requerimientos, al haber surgido del mundo empresarial. Este hecho, de todos
modos, no pone en cuestión la viabilidad el modelo para acomodar aplicaciones
cientí�cas, pero es necesario realizar un estudio inicial para evaluar cuales son los
puntos débiles del mismo.

En este trabajo de tesis realizo un análisis inicial, obteniendo un conjunto de re-
querimientos y desafíos para un cloud cientí�co. Como segundo paso, abordo algunas
de las problemáticas identi�cadas previamente, como son la plani�cación y obten-
ción de recursos en entornos cloud y por otra parte la federación e interoperabilidad
de dichas infraestructuras.

En lo que respecta al primer aspecto, la carga de trabajo de una aplicación
cientí�ca di�ere de la de una aplicación en el ámbito empresarial, por lo que necesitan
una atención especial por parte de los middleware cloud y los proveedores de recursos.
En este ámbito he abordado como la distribución de las imágenes de las máquinas
virtuales pueden in�uenciar el tiempo de respuesta de una infraestructura y como el
mismo puede ser reducido. En segundo lugar propongo la implementación de un
nuevo tipo de instancias cloud interrumpibles por otras de mayor prioridad, como un
método para proveer a los usuarios de acceso a recursos oportunistas, incrementando
el uso global de la infraestructura.

main 3 de febrero de 2016 13:07 Page viii �
�	

�
�	 �
�	

�
�	

La federación e interoperabilidad de recursos e infraestructuras es un área muy
importante dado la naturaleza distribuida y colaborativa de la ciencia moderna, donde
cientí�cos de diferentes instituciones, distribuidos de forma global, trabajan juntos
para alcanzar sus objetivos. En este contexto es necesario promover un entorno
colaborativo y abierto, tal y como otras infraestructuras han hecho en el pasado. Por
ello, propongo el uso de estándares abiertos para abordar los diferentes aspectos
de la federación, así como una solución inicial para obtener una autenticación y
autorización federadas basadas en el Virtual OrganizationMembership Service (VOMS)

En resumen, el trabajo y los resultados presentados en este trabajo demues-
tran que la computación cloud puede utilizarse de manera efectiva para acomodar
aplicaciones cientí�cas, pero es necesario abordar algunos desafíos tecnológicos y
operacionales pendientes, de forma que los cloud cientí�cos puedan satisfacer las
expectativas creadas a su alrededor.

main February 3, 2016 13:07 Page ix �
�	

�
�	 �
�	

�
�	

Contents

List of Figures xv

List of Tables xix

Objectives and Description of Work 1

Objetivos y descripción del trabajo 5

I Background 9

1 Cloud Computing 11

1.1. Cloud Computing De�nition . 13
1.2. Cloud Computing Characteristics . 14

1.2.1. On-demand Self Service . 14
1.2.2. Elastic Provisioning and Scalability 15

main February 3, 2016 13:07 Page x �
�	

�
�	 �
�	

�
�	

1.2.3. Metered Usage and Billing . 15
1.2.4. Multi-tenancy and Dynamic Resource Pooling 16

1.3. Cloud Computing Actors . 16
1.4. Key and Enabling Technologies . 17

1.4.1. Utility and Grid Computing . 17
1.4.2. Virtualization . 17
1.4.3. Web Services . 19

1.5. Cloud Taxonomy and Classi�cation . 20
1.5.1. Cloud Service Models . 20
1.5.2. Deployment Modes . 22

1.6. Cloud Computing Challenges . 23
1.6.1. Vendor Lock-in . 23
1.6.2. Security and Privacy . 24

2 Scienti�c Computing 25

2.1. The Computational Problem . 29
2.2. e-Science and the Grid . 32
2.3. What Are The Requirements of Computational Science 33

2.3.1. Large Capacity . 33
2.3.2. High-end Resources . 33
2.3.3. Availability and reliability . 34
2.3.4. Flexibility . 34
2.3.5. Security and Privacy . 34
2.3.6. Collaboration . 35

3 Science Clouds 37

3.1. Expectations from Science Clouds . 40
3.1.1. Customized Environments . 40
3.1.2. Reduced Costs . 42
3.1.3. On-demand Access . 42
3.1.4. Rapid Elasticity . 43
3.1.5. Execution of non Conventional Application Models 43
3.1.6. Infrastructure Interoperability and Federation 43

3.2. Selected Application Use Cases . 44

main February 3, 2016 13:07 Page xi �
�	

�
�	 �
�	

�
�	

3.2.1. PROOF . 45
3.2.2. Particle Physics Phenomenology 48
3.2.3. EGI Federated Cloud . 49

3.3. Science Clouds Open Challenges . 52
3.3.1. Usability Requirements . 52
3.3.2. Resource Allocation Problems 54
3.3.3. Interoperability and Federation 64

3.4. Related Work . 66
3.5. Conclusions . 68

II Improved Resource Provisioning 71

4 Scheduling andResournce Provisioning inCloudManagement Frame-

works 73

4.1. Scheduling strategy . 75
4.2. Scheduling algorithms . 76
4.3. Scheduling in OpenStack . 77
4.4. Conclusions . 79

5 E�cient Image Deployment 81

5.1. Problem Statement . 84
5.2. Related Work . 89

5.2.1. Shared Storage . 89
5.2.2. Image Transfer Improvements 90
5.2.3. Other Methods . 93

5.3. Transfer Method Evaluation . 93
5.3.1. Experimental Setup . 94
5.3.2. Test Results . 95
5.3.3. Result Comparison . 98

5.4. E�cient Image Distribution . 101
5.4.1. Evaluation . 103
5.4.2. Image pre-fetch . 106

5.5. Conclusions . 107

main February 3, 2016 13:07 Page xii �
�	

�
�	 �
�	

�
�	

6 Preemptible Instances Scheduling 111

6.1. Problem Statement . 113
6.2. Related Work . 116
6.3. Preemptible Instances Design . 117
6.4. Preemptible Aware Scheduling . 118
6.5. Implementation and Evaluation . 121

6.5.1. Evaluation . 122
6.6. Conclusions . 126

III Cloud Federation and Interoperability 129

7 Open Standards for Interoperable and Federated Clouds 131

7.1. Introduction to Federation . 133
7.2. Related work . 135
7.3. Cloud Federation Open Challenges . 136

7.3.1. On Uniform Access and Management 137
7.3.2. On Portability . 137
7.3.3. On Authentication and Authorization 138
7.3.4. On Information Discovery . 138
7.3.5. On Accounting and Billing . 139

7.4. Federation Enabling Standards . 139
7.4.1. Uniform Access and Management 139
7.4.2. Portability . 140
7.4.3. Authentication and Authorization 141
7.4.4. Information Discovery . 141
7.4.5. Accounting . 142

7.5. Conclusions . 142

8 An Implementation of an Open Standard for the Cloud 145

8.1. The Open Cloud Computing Inteface (OCCI) 147
8.2. Motivation and signi�cance . 148
8.3. Software Description . 149

8.3.1. Foreword on WSGI . 149

main February 3, 2016 13:07 Page xiii �
�	

�
�	 �
�	

�
�	

8.3.2. Interacting with OpenStack . 150
8.4. ooi Functionality . 154
8.5. Performance Comparison . 154
8.6. Conclusions . 156

9 Federating VO-based Cloud Infrastructures 159

9.1. Identity Federation, Challenges and Problematic 161
9.1.1. Current Solutions . 162

9.2. VOMS Support in OpenStack . 163
9.2.1. Keystone External Authentication 165
9.2.2. Keystone VOMS Integration . 165

9.3. Conclusions . 168

IV Conclusions 171

10 Conclusions 173

10.1. Contributions . 175
10.2. Publications . 176
10.3. Future Work and Perspective . 180

V Appendices 183

A Experimental Facilities 185

A.1. CSIC IFCA Science Cloud Production Infrastructure 185
A.2. IFCA Batch System . 187
A.3. CSIC IFCA Cloud Test Infrastructure 188
A.4. OCCI Testing Environment . 189
A.5. HEP Spec Tests . 189

Bibliography 191

List of Terms and Acronyms 223

main February 3, 2016 13:07 Page xiv �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page xv �
�	

�
�	 �
�	

�
�	

List of Figures

1.1. Layered cloud computing general architecture. 21

2.1. Scienti�c Computing. 27

2.2. Worldwide LHC Computing Grid (WLCG) disk requirements from 2009 to
2017 [54, 55]. 30

2.3. WLCG requirements from 2009 to 2017 [54, 55]. 31

2.4. Scienti�c computing ecosystem. 31

3.1. European Grid Infrastructure (EGI) Operating System (OS) �avors in pro-
duction by number of CPUs. 41

3.2. Parallel ROOT Facility (PROOF) task duration. 46

3.3. PROOF daily request pattern along a three and a half year period. 47

3.4. Capacity evolution of EGI Federated Cloud resources. 50

3.5. Time needed to boot the number of requested instances. 58

main February 3, 2016 13:07 Page xvi �
�	

�
�	 �
�	

�
�	

3.6. Aggregated performance for the High Energy Physics (HEP) Spec 06 bench-
mark, with Virtual Machine (VM) sizes and con�gurations for one host. . . 59

4.1. OpenStack scheduling algorithm. 78

5.1. Boot chart for one VM on an OpenStack cloud. 86
5.2. Boot chart for one VM on an OpenStack cloud, using Copy on Write (CoW)

images. 88
5.3. Image popularity based on the number of Virtual Machines spawned. . . . 92
5.4. Waiting time as a function of the number of instances requested, using Hiper

Text Transfer Protocol (HTTP) as the transfer method. 96
5.5. Waiting time as a function of the number of instances requested, using File

Transfer Protocol (FTP) as the transfer method. 97
5.6. Waiting time in function of the number of instances requested, using Bit-

Torrent as the transfer method. 98
5.7. Seconds elapsed from request until all the machines were avaialble. 99
5.8. Seconds elapsed from request until the �rst machine of the request is available. 100
5.9. CPU usage on the image catalogue. 101
5.10. Network usage on the image catalogue. 102
5.11. Seconds elapsed to boot a machine for 80 requests during 1 h, with the

corresponding reques trace. 104
5.12. Kernel Density Estimation (KDE) for the time elapsed to boot the requests

in Figure 5.11. 105
5.13. Seconds elapsed to boot a machine for 100 requests during 1 h, with the

corresponding requests trace. 106
5.14. Kernel Density Estimation (KDE) for the time elapsed to boot the requests

in Figure 5.13. 107
5.15. Waiting time in function of the number of instances requested. 108

6.1. Preemptible Instances Scheduling Algorithm. 119

8.1. Proposed Open Cloud Computing Interface (OCCI)’s place in a provider’s
architecture according to the standard. 150

8.2. OCCI place in a provider’s infrastructure, following ooi’s architecture. . . 151
8.3. ooi processing pipeline. 152

main February 3, 2016 13:07 Page xvii �
�	

�
�	 �
�	

�
�	

8.4. Performance comparison between the existing OpenStack OCCI implemen-
tations. 156

9.1. Authentication request in Keystone. 166
9.2. VOMS support in Keystone. 168

main February 3, 2016 13:07 Page xviii �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page xix �
�	

�
�	 �
�	

�
�	

List of Tables

5.1. Request characteristics. 95

6.1. Con�gured VM sizes. 124
6.2. Test-1, preemptible instances evaluation using the same VM size. 125
6.3. Test-2, preemptible instances evaluation using the same VM size. 125
6.4. Test-3, preemptible instances evaluation using di�erent VM sizes. 126
6.5. Test-4, preemptible instances evaluation using di�erent VM sizes. 127

7.1. Summary of enabling standards. 143

8.1. OCCI feature comparison of the several implementations. 155

A.1. Type-1 Virtualization Node characteristics. 186
A.2. Type-2 Virtualization Node characteristics. 187
A.3. Type-3 Virtualization Node characteristics. 187
A.4. Type-4 Virtualization Node characteristics. 187

main February 3, 2016 13:07 Page xx �
�	

�
�	 �
�	

�
�	

A.5. Type-5 Virtualization Node characteristics. 187
A.6. Type-1 Worker Node characteristics. 188
A.7. Type-2 Worker Node characteristics. 188
A.8. Type-3 Worker Node characteristics. 188
A.9. Test node characteristics. 188
A.10. Test node characteristics.. 189
A.11. Test node characteristics. 190

main February 3, 2016 13:07 Page 1 �
�	

�
�	 �
�	

�
�	

Objectives and Description of Work

Cloud computing has permeated into the IT industry in the last years as one of
the most promising business models and paradigms for resource providers and infras-
tructure operators. The cloud enforces a new vision of compute, storage, network and
software as an on demand service following the industry needs, being shaped to ful�l
the requirements of the next generation of enterprise and web applications. Cloud
Computing has already settled in the industry but it can be still considered in its early
phase, as considerable developments and evolutions are being performed.

Nowadays, the advancement in the easy access to computational resources has made
possible to develop a new way of doing science, where in many cases researchers spend
as much time in front of the computer as in the laboratory. Scienti�c computing plays a
key role in modern science as it has give way to overcoming scienti�c and engineering
problems that could not be addressed in the past. Therefore, successful research and
innovation requires access to �rst class computing infrastructures. The e-Science term
has emerged as a way to designate a di�erent form of collaborative research, as scienti�c
and computing infrastructures are collaboratively utilized, sharing operational costs and
avoiding resource fragmentation.

main February 3, 2016 13:07 Page 2 �
�	

�
�	 �
�	

�
�	

In this context, the cloud pervasiveness has leaded to an increase of its popularity
among the scienti�c computing users, and now it is considered as a promising paradigm
that has the potential to improve the e-Science panorama by giving scientists a new
computational framework, �lling some of the gaps and drawbacks that exist in other
computing infrastructures. However, even if clouds are a good prospect they are far from
being perfect for scienti�c applications. Clouds have been developed by the industry and
for the industry, without taking into account science needs. However, Science Clouds
are a reality, therefore scienti�c users need to be taken into account when developing
and enhancing existing cloud solutions.

The main objective of this thesis is to advance in the state of the art in the cloud
computing model so as to accommodate scienti�c users and workloads more e�ciently.
By carrying out an initial analysis of the existing cloud ecosystem, followed by a study
of the current literature, including some selected use cases, I extract a list of challenges
that Science Clouds need to address to create a di�erence, when compared with other
existing infrastructures.

For some of the depicted challenges I have proposed and implemented a solution
to tackle them. On the one hand I have focused on improving the resource provision-
ing strategies so as to accommodate scienti�c workloads more easily, proposing some
solutions that are of general interest for broader usage types. On the other hand I
have considered the interoperability, portability and federation aspects. Science is no
longer produced in single institutions, but in global distributed collaborations. Scienti�c
users already have access to globally distributed and federated e-Infrastructures, there-
fore federation and interoperability are considered a must for a scienti�c computing
infrastructure so as to enable an e�ective collaboration of their users.

Outline of the Thesis

This dissertation has been split into �ve di�erent parts, structured as follows:

Background Part I of this work consists of an introductory overview of the two main
areas this thesis is related with: cloud computing and scienti�c computing. In
Chapter 1 I give an introduction to the cloud computing term, outlining its def-
inition, its key technologies and a brief classi�cation of the cloud computing
infrastructures according to its service models and deployment modes. In Chap-

2

main February 3, 2016 13:07 Page 3 �
�	

�
�	 �
�	

�
�	

Objectives and Description of Work

ter 2 I introduce the scienti�c computing �eld. In Chapter 3 I put together the
cloud and scienti�c computing areas, trying to answer the following question:
Is the cloud computing model a feasible paradigm to run scienti�c applications?.
Moreover, I present a list of challenges that need to be addressed when operating
and implementing a scienti�c cloud infrastructure.

Improved Resource Provisioning Part II addresses some of the resource provisioning
challenges that are described in Chapter 3. First of all, in Chapter 4 I give an
outlook of the current scheduling strategies and algorithms in the major Cloud
Management Frameworks (CMFs). In Chapter 5 I cover how the Virtual Machine
Image (VMI) distribution method used can in�uence in the users perception of the
cloud reactiveness, proposing a modi�cation on the distribution method and in the
scheduling algorithms. In Chapter 6 I propose an implementation of preemptible
instances as a way to increase the overall usage on cloud infrastructures without
impacting on-demand access to users that require interactivity.

Cloud Federation and Interoperability Part III tackles a complimentary challeng-
ing area, introduced in Chapter 3, that is the Federation and Interoperability of
cloud computing infrastructures. In Chapter 7 I give an introduction to the infras-
tructure federation, describing the main challenges that need to be addressed and
how the existing or raising open standards can help on building such a federated
infrastructure. In Chapter 8 I describe and implement one of the major cloud stan-
dards, the Open Cloud Computing Interface (OCCI) for OpenStack. In Chapter 9
I propose the usage of the Virtual Organization Membership Service (VOMS) to
provide an initial identity federation on cloud infrastructures, making possible to
transition from systems where the authentication is based on VOMS and X.509
certi�cates to the cloud.

Conclusions Part IV consists only of Chapter 10, where I summarize the main con-
tributions of this dissertation. I also present possible future works, as long as a
perspective on the technology evolution.

Appendices Part V collects the appendices to this thesis.

3

main 3 de febrero de 2016 13:07 Page 4 �
�	

�
�	 �
�	

�
�	

main 3 de febrero de 2016 13:07 Page 5 �
�	

�
�	 �
�	

�
�	

Objetivos y descripción del trabajo

El cloud computing, comúnmente traducido como computación en la nube es un
nuevo modelo de computación que hace posible ofrecer recursos de computación como
servicios bajo demanda. De este modo, usuarios y clientes del cloud computing acceden
a los recursos cuando es necesario, pagando tan solo por su uso y sin necesitad de una
inversión inicial. Este nuevo modelo de computación ha despertado gran interés en todos
los sectores de las TIC, desde la industria al mundo académico, debido a las prometedoras
características que ofrece. Aún así, hay que tener en cuenta que pese a que el cloud
computing se ha establecido ampliamente en la industria, aún se puede considerar que
está en su etapa inicial, y se esperan importantes desarrollos y evoluciones en esta
tecnología.

Hoy en día, los grandes avances y la facilidad de acceso a recursos de computación
han hecho posible el desarrollo de una nueva manera de llevar a cabo la investigación,
donde el cientí�co pasa tanto tiempo delante de un ordenador como en el laboratorio.
La computación juega un papel fundamental en la ciencia moderna, haciendo posible
abordar problemas cientí�cos y de ingeniería que serían imposibles de abarcar o de
estudiar sin su apoyo. Por lo tanto, es un hecho que el acceso a recursos de computación

main 3 de febrero de 2016 13:07 Page 6 �
�	

�
�	 �
�	

�
�	

de alto nivel es un requisito necesario para llevar a cabo una investigación y desarrollo
fructífera y competitiva. La e-Ciencia ha surgido como nueva forma de investigación co-
laborativa, donde los recursos e infraestructuras son compartidos de forma colaborativa,
compartiendo los recursos de operación, evitando de esta manera la fragmentación de
recursos.

En este context, la ubicuidad del cloud ha suscitado a un creciente interés por parte
de de la comunidad cientí�ca, y se le considera como un paradigma de computación muy
prometedor ya que se considera que puede tener el potencial de alterar el panorama
de la e-Ciencia, dando acceso a los cientí�cos a un nuevo modelo de computación que
puede satisfacer las necesidades y carencias existentes en otros modelos e infraestruc-
turas. Aún así, y pese al prometedor potencial del cloud, este está lejos de ser perfecto
para aplicaciones cientí�cas. Las infraestructuras de computación en la nube han sido
desarrolladas por la industria y para la industria, sin tener en cuenta las necesidades
de la investigación. Sin embargo, los cloud cientí�cos son una realidad por lo que las
necesidades de sus usuarios han de ser tenidas en cuenta en futuros desarrollos y mejoras
de las soluciones existentes.

El objetivo principal de esta tesis es avanzar en el estado del arte del modelo de
computación en la nube, de forma que las aplicaciones de cálculo cientí�co puedan
hacer un mejor uso de dicho modelo. En un primer lugar se ha realizado un análisis del
ecosistema cloud junto con la literatura existente así como una serie de casos de uso de
aplicaciones cientí�cas que han hecho uso de una infraestructura en la nube. De este
modo se ha construido una lista de expectaciones y desafíos tecnológicos que un cloud

cientí�co ha de abordar.

A continuación se han abordado algunos de los desafíos identi�cados previamente.
En primer lugar se ha abordado la problemática de la provisión e�ciente de recursos en
infraestructuras cloud de forma que una infraestructura pueda admitir más fácilmente
este tipo de aplicaciones. Se han propuesto algunas soluciones que pese a haber sido
desarrolladas e implementadas teniendo en cuenta las necesidades de la computación
cientí�ca son extrapolables a un uso más generalista de los recursos. Por otro lado,
se han considerado los aspectos de interoperabilidad y federación de proveedores de
recursos. El desarrollo de la ciencia hoy en día no está limitado a una única institución,
sino que se desarrolla de forma global, en colaboraciones distribuidas a nivel mundial.
En este contexto, los usuarios tienen acceso a infraestructuras distribuidas, por lo que

6

main 3 de febrero de 2016 13:07 Page 7 �
�	

�
�	 �
�	

�
�	

Objetivos y descripción del trabajo

la interoperabilidad se considera como un requisito casi imprescindible en cualquiera
infraestructura cientí�ca.

Descripción de la tesis

Este documento ha sido dividido en cinco partes diferentes, estructuradas tal y como
se describe a continuación:

Background La Parte I de este trabajo consiste en una guía introductoria de las dos
áreas principales que conciernen al mismo: La computación en la nube (cloud
computing) y la computación cientí�ca. En el Capítulo 1 realizo una introducción
al cloud computing y su de�nición, haciendo énfasis en las tecnologías claves que
hacen posible este modelo de computación. Asimismo, doy una breve clasi�cación
de las infraestructuras de cómputo en la nube de acuerdo a sus modelos de servicio
y de despliegue. En el Capítulo 2 doy una breve descripción de la computación
cientí�ca. Por último, en el Capítulo 3 reúno ambos términos tratando de responder
a la pregunta «¿Es el modelo de computación en la nube un paradigma factible
para ejecutar aplicaciones cientí�cas?». Asimismo, en este capítulo presento una
lista de desafíos tecnológicos que han de ser abordarlos cuando se trate de utilizar
la computación cloud para ejecutar tales aplicaciones.

Improved Resource Provisioning La Parte II aborda algunos de los problemas exis-
tentes para la provisión de recursos en entornos cloud, tal y como se describen en
el Capítulo 3. En primer lugar, en el Capítulo 4 realizo una breve introducción a
los algoritmos y estrategias de plani�cación en los middleware cloud más impor-
tantes. A continuación hago frente a dos diferentes problemas de los presentados
anteriormente. Por un lado, en el Capítulo 5 abordo como el método utilizado
para distribuir las imágenes de disco de las máquinas virtuales a ejecutar puede
in�uenciar negativamente en la velocidad de respuesta y la reactividad de una
infraestructura cloud, proponiendo una modi�cación en el método de distribución
de las imágenes, así como una mejora en el algoritmo de plani�cación de los
middleware cloud existentes. Por otro lado, en el Capítulo 6 propongo la imple-
mentación y el uso de instancias de máquinas virtuales terminables (preemptible)
como un método para incrementar el uso global de una infraestructura cloud, sin

7

main February 3, 2016 13:07 Page 8 �
�	

�
�	 �
�	

�
�	

producir un impacto negativo en los usuarios que requieren de interactividad y
acceso bajo demanda.

Cloud Federation and Interoperability La Parte III afronta un área complementaria
como es la federación e interoperabilidad de infraestructuras, introducida en el
Capítulo 3. En el Capítulo 7 doy una introducción a la federación de infraestructu-
ras de computación en la nube basadas en estándares, describiendo los mayores
desafíos existentes y como ciertos estándares abiertos pueden ayudar a construir
tal federación de proveedores. Asimismo, se introduzco una implementación de
uno de los estándares más importantes en el ámbito cloud como es el Open Cloud

Computing Interface (OCCI) para OpenStack en el Capítulo 8. En el Capítulo 9
propongo el uso del Virtual Organization Membership Service (VOMS) para propor-
cionar una federación de identidad en infraestructuras cloud, haciendo posible la
transición de otros sistemas e infraestructuras cuya autenticación está basada en
certi�cados X.509 y VOMS.

Conclusions La Parte IV consiste tan solo en el Capítulo 10, donde realizo un resumen
de las principales contribuciones de este trabajo de tesis. De la misma manera,
presento posibles trabajos futuros derivados de esta tesis, así como una perspectiva
en la evolución de las tecnologías descritas a lo largo del trabajo presentado.

Appendices La Parte V reune los anejos a este trabajo de tesis.

8

main February 3, 2016 13:07 Page 9 �
�	

�
�	 �
�	

�
�	

I
Background

main February 3, 2016 13:07 Page 10 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 11 �
�	

�
�	 �
�	

�
�	

1Cloud Computing

main February 3, 2016 13:07 Page 12 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 13 �
�	

�
�	 �
�	

�
�	

Chapter 1. Cloud Computing

Cloud computing has emerged in the Information Technology (IT) �eld, evolving
from just a buzzword and a hype to a complete computing paradigm that has been
widely adopted by the industry and community.

In this chapter I will give an overview of the existing de�nitions of cloud computing
(Section 1.1), pointing to the main characteristics that are associated with the cloud. The
cloud has its foundations in well established techniques, and it is a combination of them
the fact that leaded to its success, as I will explain in Section 1.4. Then, in Section 1.5 I
present a general taxonomy and classi�cation of the di�erent cloud models. Finally, I
present the open challenges and risks of the cloud in Section 1.6.

1.1. Cloud Computing De�nition

The cloud computing model is a new computing paradigm that enforces the view
of compute, storage, network and software as an on demand service. According to the
United States’ National Institute of Standards and Technology (NIST), it can be de�ned
as [1]:

“(...) a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of con�gurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management e�ort or service provider interac-
tion.”

The same argumentation line —that is, on-demand access, rapid provisioning, mini-
mal management— is shared by other authors. Vaquero et al. [2] introduced the usage
of virtualization in their cloud de�nition:

“Clouds are a large pool of easily usable and accessible virtualized resources
(such as hardware, development platforms and/or services). These resources
can be dynamically re- con�gured to adjust to a variable load (scale), al-
lowing also for an optimum resource utilization. This pool of resources is
typically exploited by a pay- per-use model in which guarantees are o�ered
by the Infrastructure Provider by means of customized SLAs. (...) The set
of features that most closely resemble this minimum de�nition would be
scalability, pay-per-use utility model and virtualization.”

13

main February 3, 2016 13:07 Page 14 �
�	

�
�	 �
�	

�
�	

Buyya et al. [3] de�nes the cloud as follows, continuing with the usage of virtualiza-
tion:

“A cloud is a type of parallel and distributed system consisting of a collec-
tion of inter- connected and virtualized computers that are dynamically
provisioned and presented as one or more uni�ed computing resources
based on service-level agreements established through negotiation between
the service provider and consumers.”

Virtualization is also mentioned by Foster et al. [4], de�ning a cloud as:

“A large-scale distributed computing paradigm that is driven by economies
of scale, in which a pool of abstracted, virtualized, dynamically-scalable,
managed computing power, storage, platforms, and services are delivered
on demand to external customers over the Internet.”

Armbrust et al. [5] de�ne the cloud taking into account three novel aspects from the
hardware provisioning and pricing point of view:

“The appearance of in�nite computing resources available on demand (...).
The elimination of an up-front commitment by cloud users (...). The ability
to pay for use of computing resources on a short-term basis as needed (...).”

Some common key characteristics can be inferred from the multiple de�nitions given.
These are not exclusive from the cloud, but it is the combination of all of them what
makes the di�erence against other computing models such as the grid, High Performance
Computing (HPC) and High Throughput Computing (HTC) clusters and other computing
models. The two most important characteristics that have been they key for the success
of the cloud computing model are the on-demand self service and the elastic provisioning,
but there are other important facts that di�erentiate the cloud.

1.2. Cloud Computing Characteristics

1.2.1. On-demand Self Service

The users are able to provision and manage their own computing environment
according to their needs, without further intervention from the provider. This character-

14

main February 3, 2016 13:07 Page 15 �
�	

�
�	 �
�	

�
�	

Chapter 1. Cloud Computing

istic implies that he is able to request any kind of resources o�ered by the provider such
as computing resources, storage space, network connectivity, etc.

This feature is considered one major advantage over other computing models such
as the grid, where the user is tied to the environments de�ned by the resource provider
[6]. On the other hand, this self service manageability implies a stronger awareness of
the resources being used and the environment involved.

1.2.2. Elastic Provisioning and Scalability

The cloud model tries to deliver easily and rapidly the resources to the users, in a
short-deadline basis. This feature, called elasticity, means that users are able to scale in
and out their infrastructure so as to satisfy the real demand, not only by increasing their
capacity, but also by shrinking it whenever it is not needed. Normally, the elasticity
creates an illusion of in�nite resource capacity for the users, that seem to be able to
request as many resources as they want.

The elasticity, together with a self-service interface, makes possible the implementa-
tion of an automated resource management, making possible to satisfy demand surges
by quickly reacting upon them.

1.2.3. Metered Usage and Billing

Although the pricing scheme may vary from one provider to another, normally a
metered usage is in place [7]. This means that resources are being accounted by their
usage, rather than following a subscription model. This billing scheme is an implicit
requirement that follows from the on-demand and elastic self service characteristics that
make a subscription billing scheme not feasible or appropriate. Users may not be aware
about what their future usage will be, therefore subscribing for a service paying a fee
may imply that they are over or under committing, whereas with a metered usage and
billing customers are being charged only for the resources that they are actually using.

This accounting model introduces several key bene�ts:

There is no upfront commitment, since the customer is only accounted for what
it is being used. This lowers the barrier for accessing computing capacity to small
groups and companies, leading to a faster Return of Investment (ROI) and a lower
cost of ownership.

15

main February 3, 2016 13:07 Page 16 �
�	

�
�	 �
�	

�
�	

Introduces an ethics of resource conservation, making users aware of what they
are actually using.

There is a better understanding of the actual resource utilization for both the
resource provider and the cloud users.

1.2.4. Multi-tenancy and Dynamic Resource Pooling

Multi-tenancy can be de�ned as the ability for a software or provider to deliver a
service to several parties simultaneously [8] and it is a key factor in cloud computing,
since services owned by several users are being co-located in the same resources [9],
permeating through the several cloud layers [10] described in Section 1.5.

Users have transparent and location-independent access to a uniform pool of abstract
resources. That pool is dynamically managed under the hood by the resource provider
that is able to reassign resources so that the user’s demands are satis�ed. This capability
also makes possible that a provider reassigns the resources to satisfy their capacity plans
or to save costs.

1.3. Cloud Computing Actors

Following the de�nition from Armbrust et al. [5], we can assume three di�erent
roles in the cloud environment. However, these roles can sometimes overlap, depending
on the service model and the deployment mode (Section 1.5).

Cloud Resource Provider A Resource Provider (RP) manages a set of hardware and
software systems, providing access to them following the cloud computing model.
The RP is responsible for allocating the resources so that they meet the Service
Level Agreements (SLAs) agreed with the other cloud actors.

Cloud User The cloud users access clouds and manage directly their resources. They
can build services on top of those resources —with an agreed SLA— or they can
exploit them directly, acting also as the end users.

End User The end users generate the workloads that are going to be executed using the
cloud resources. End users behaviour in�uences on how resources are managed
and provisioned, even though they do not have management decisions.

16

main February 3, 2016 13:07 Page 17 �
�	

�
�	 �
�	

�
�	

Chapter 1. Cloud Computing

1.4. Key and Enabling Technologies

O�ering computing services on-demand with a metered usage is not a revolutionary
model, as similar concepts have been studied and proposed during the last decades.
However, as it will be explained along the following sections, it is the combination of
several technologies and factors what makes the cloud computing model obtain the
huge success it currently has.

1.4.1. Utility and Grid Computing

The utility computing model [11, 7] tries to deliver computing services in a pay-as-
you-go basis, similar to other daily utilities that we can access (such as gas and electricity).
One illustrative example of the utility computing model is the grid computing paradigm
[12, 13], where computing power and storage is delivered in an infrastructure following
an analogy with the electrical power grids.

Cloud computing has some similarities with the grid computing [13], and it is
commonly seen as a natural evolution and continuation of it [4]. The grid changed the
way of delivering resources, and it has been specially pervasive within many scienti�c
communities. Infrastructures, such as EGI [14, 15] make possible to tackle new scienti�c
challenges [16] that were otherwise impossible to cope with. Also, the cooperative
aspects of the grid model were specially suitable for large and globally distributed
collaborations.

1.4.2. Virtualization

As it has been described in Section 1.1, one of the premises of the cloud computing
model is the abstraction of the resources that are delivered to the users as a kind of
utility. In this context, the development and irruption of the virtualization techniques
into the datacenters played a key role.

Computing virtualization refers to the abstraction and encapsulation of the hardware
resources into smaller Virtual Machines (VMs) by the usage of an hypervisor or Virtual
Machine Monitor (VMM). Therefore, a given physical host can then execute several VMs
that are isolated –to the extent implemented by the VMM– between them.

This is not a new topic in Computer Science, since it has been present in the IT �eld
for decades. Back in 1974, Goldberg stated that "Virtual machines have �nally arrived"

17

main February 3, 2016 13:07 Page 18 �
�	

�
�	 �
�	

�
�	

[17], identifying the bene�ts and advantages of virtualization for its usage in mainframe
computing.

However, with the adoption of the low cost personal computers the interest for the
virtualization decreased, helped by the fact that modern architectures did not met the
requirements for being e�ciently virtualizable, as already stated by Popek and Goldberg
in their 1974 paper [18]. Their theorems states that for an e�ciently virtualizable pro-
cessor, its sensitive instructions must be a subset of its privileged instructions. This was
not the case for the early Intel x86 architectures —one of the most popular architectures
in the 1995-2005 period— so any VMM was forced to rely on software circumventions to
meet those requirements. This fact produced the ine�cient and heavyweight solutions
that rendered virtualization unattractive, due to the performance loss that it introduced
[19].

Nevertheless, virtualization became attractive again with the rebirth of the para-
virtualization by the Xen project[20], making possible to achieve near to bare-metal
performance on the running para-virtualized systems at the cost of porting and modifying
the guest Operating System (OS). In a para-virtualized system (a new word for an old
IBM concept back in 1970s [21]), the OS is modi�ed so that it access a software interface
(o�ered by the hypervisor) that is similar, but not identical, to the underlying hardware.
This way, a simpler and more e�cient VMM can be designed, reducing the performance
loss introduced by the virtualization [20].

Besides, hardware improvements introduced in 2005 by means of the Intel Virtu-
alization Technology (Intel-VT) [22] and AMD-V [23] extensions focused on making
virtualization much easier, without needing to adapt the guest OS. This leaded to the
extension of the Xen hypervisor to support this new hardware assisted virtualization
[24] and the birth of the Kernel-based Virtual Machine (KVM) monitor [25].

Today virtualization is present in many datacenters, due to the important bene�ts
that it delivers to the providers and operators, enabling to manage their infrastructure
more e�ciently. Virtualization is they key to carry out server consolidation [26] —that
is, the execution of several VMs inside one single physical server— thus decreasing
hardware and maintenance costs as the number of physical machines needed inside
a datacenter is reduced. This fact leads to important energy savings [27] and makes
possible to develop more advanced energy-aware placement policies [28, 29].

Virtualization makes also possible to decouple to a certain extent the OS and software

18

main February 3, 2016 13:07 Page 19 �
�	

�
�	 �
�	

�
�	

Chapter 1. Cloud Computing

environment from the underlying hardware. Virtualization functions in hardware devices
make possible to share some hardware resources (like network cards, In�niband cards or
GPUs) with several VMs. Moreover, it enables the coexistence of di�erent OSes, avoiding
incompatibilities between di�erent softwares and libraries.

This rebirth of the virtualization has boosted the development of the cloud computing.
With virtualization already in the datacenters, it is possible to abstract the physical
hardware into virtual resources, and provide the capability of pooling those resources
dynamically, allocating them to the users on demand.

It is worth notice that although some authors state that cloud computing can take
place without virtualization, being it an implementation detail [30], it is true that the
cloud could hardly exist in its current form without virtualization in place. This second
virtualization trend made possible that providers could start rethinking in a way of
o�ering their resources, leading to the cloud success.

1.4.2.1. Virtualization Performance Loss

Traditionally virtualization has been associated with a performance loss, due to the
overhead introduced by the VMM. However, nowadays it is assumed that the perfor-
mance penalty can be neglected [31] with a proper hypervisor tuning so that it is put on
a level comparable to the bare metal hardware. This fact is specially true when using
modern hardware adapted with special characteristics for virtualization [32] or when
using other virtualization techniques such as OS-level virtualization [33, 34].

Studies related with e�cacy of parallel communications in virtualized HPC envi-
ronments have been carried out in [35, 36]. More recent e�orts introduce also the
characterization of low-latency communications –by means of the virtualization or
passthrough of In�niband interconnects– as described in [37, 38].

1.4.3. Web Services

With the raise of thew Web 2.0, the concept of Web Services (WS) became popular
as a method of communicating two di�erent systems over the Internet. The W3C [39]
de�nes it as follows:

“A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface de-

19

main February 3, 2016 13:07 Page 20 �
�	

�
�	 �
�	

�
�	

scribed in a machine-processable format (speci�cally WSDL). Other systems
interact with the Web service in a manner prescribed by its description us-
ing SOAP-messages, typically conveyed using Hiper Text Transfer Protocol
(HTTP) with an XML serialization in conjunction with other Web-related
standards.”

Over the last years the application of the REST architecture to Web Services has
been popularized. REST has simpli�ed the original XML-based web services by applying
the same simple concepts that leaded to the web success, thus the so-called RESTful
Application Programming Interfaces (APIs) have emerged.

The Web Services have made possible to put together disparate systems as building
blocks for more complex applications, relying on open and well established standards
and protocols (such as SOAP and REST). This has contributed to the advances in software
and systems integration and composition over the internet. Cloud computing APIs are
o�ered as web services, making possible to use them as building blocks for more complex
applications.

1.5. Cloud Taxonomy and Classi�cation

There are multiple cloud taxonomies in the scienti�c literature [40, 41, 42]. However,
the most widespread classi�cation follows the simple taxonomy proposed by the NIST
[1] classifying clouds based on the service model o�ered (also called by other authors
business model) and the cloud deployment model.

1.5.1. Cloud Service Models

Cloud computing has been an umbrella where di�erent service and business models
have been categorized. Due to the hype caused by the cloud trend, a lot of existing
computing services have been categorized under the cloud term, even if they existed
well in advance.

Currently three main service models are being di�erentiated: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). Each of
these models corresponds to a di�erent level of abstraction that is being provided. These
models are combined in a layered model, as shown in Figure 1.1 where services of a

20

main February 3, 2016 13:07 Page 21 �
�	

�
�	 �
�	

�
�	

Chapter 1. Cloud Computing

higher layer are composed by services of the underlying ones. This classi�cation allows
for the de�nition of additional models following this XaaS pattern, but normally they
are a particular case, specialization or combination of these three basic models.

IaaS

PaaS

SaaS

Compute Resources Network Resources Storage Resources

Provisioning Layer

Orchestration Layer

Cloud Services

Cloud Applications

Figure 1.1: Layered cloud computing general architecture.

Infrastructure as a Service (IaaS) The IaaS model corresponds to the lowest level of
abstraction and it can be considered as the foundation of the cloud model. IaaS
o�ers its infrastructure resources —i.e. computing, networking, storage, etc.— to
the users, that are able to manage them on their own. This way users can deploy
its own OS, software, network con�guration, etc.

This service model works by abstracting the underlying fabric (i.e. the physical
resources) into a uniform resource layer —by virtualizing or encapsulating the
raw resources— that is then exposed to the users. Users get transparent access
to this layer as if they were using the bare metal resources, being able to deploy
any infrastructure on top of it without the extra burden of directly managing the
di�erent physical resources.

Platform as a Service (PaaS) The PaaS layer is a second step in the abstraction level,
where resources coming from an IaaS —that is, storage, network and compute—
are composed so that they can be consumed by the users without requiring the

21

main February 3, 2016 13:07 Page 22 �
�	

�
�	 �
�	

�
�	

management or the knowledge of the underlying infrastructure. A PaaS should
o�er an environment where a user can deploy and manage its applications using
the libraries, software, tools, APIs, etc. supported by the provider, but without
knowing and without having control on the resources.

This service model makes possible to deliver complex applications involving di�er-
ent components to end-users without the need of direct managing of the machine
con�gurations and deployment, but it also allows to de�ne the requirements of
those applications, so that the platform layer is able to orchestrate the resources.

Software as a Service (SaaS) The SaaS layer corresponds to the higher level of ab-
straction. This layer comprises the applications that are running on top of a cloud
infrastructure. Access to SaaS applications are normally addressed using ad-hoc
thin clients executed inside web browsers or applications that are executed on
tablets or smartphones, directly addressing the end user.

1.5.2. Deployment Modes

Cloud computing infrastructures can be also classi�ed according to its deployment
mode, not only by its service model. Some authors [43] classify cloud infrastructures in
two types: Private and Public clouds, while others extend it with more particular cases
of the aforementioned: Hybrid and Community clouds [1]. This classi�cation makes
emphasis on who are the users, owners and operators of the infrastructure.

Public clouds In a public cloud, access is open to anyone willing to use the infras-
tructure (i.e. they imply multi-tenancy), either free or in a pay-per-use basis and
are operated by third-party companies or organizations. The cloud computing
commercial providers deliver this kind of service to the users.

Private clouds A private Cloud infrastructure is one that is operated exclusively for
the sole usage of a given organization or its customers. However, in spite of its
name, it does not need to be owned or operated by the same organization that
makes use of it, that can leverage such tasks on any external party.

Community clouds A community cloud is a special case of a public cloud. In this
case the access is granted only to a community of users with shared interests,
whereas in a public cloud it is opened to the general public. As in the public cloud

22

main February 3, 2016 13:07 Page 23 �
�	

�
�	 �
�	

�
�	

Chapter 1. Cloud Computing

case, it does not imply that the infrastructure is operated or owned by the user
community.

Hybrid clouds An hybrid cloud is a mixed operation mode of the above (private, public
and/or community clouds). A common example is a organization private cloud that
is able to scale up when it has reached its complete capacity, by using resources
of a public cloud provider.

1.6. Cloud Computing Challenges

The cloud still presents some challenges, risks and limitations that need to be tackled
in order to take advantage of its features. Armbrust et al. [5] identi�ed the a) availabili-
ty/business continuity, b) data lock-in, c) data con�dentiality and auditability, d) perfor-
mance unpredictability, e) scalable storage, f) scaling quickly, g) reputation fair sharing,
and h) software licensing as the main limitations and risks for cloud computing. Cur-
rently, it is widely accepted that the two main challenges for clouds are the aspects
regarding the data and vendor lock-in, and all the aspects around cloud security [44].

1.6.1. Vendor Lock-in

Many cloud users consider the vendor lock-in [5] as a major concern. The cloud is
still a maturing model, therefore the computing infrastructures and middleware do not
o�er a high degree of interoperability, making it di�cult for the users to migrate their
resources from one cloud to another. Commercial providers do not adopt open cloud
computing interfaces, making even more di�cult that interoperability.

The vendor lock-in and interoperability problem could be alleviated via the promo-
tion and adoption of open standards [45], both for the cloud and for the underlying
virtualization layers. Standardization e�orts should take into account that cloud re-
sources are being executed on top of virtualized infrastructures, therefore it is also
needed to consider the compatibility and migration from one virtualization stack to
another one and not stopping only at the cloud layer.

23

main February 3, 2016 13:07 Page 24 �
�	

�
�	 �
�	

�
�	

1.6.2. Security and Privacy

Every new computing paradigm introduces new security risks, and the cloud is not
an exception. Security in cloud is two folded [46]. On the one hand, we should consider
the security regarding the workloads being executed by the users, that are exposed to
the network [5], because their cloud infrastructure is not any longer on their premises
but it is outsourced. Several research works exist on this area so as to ensure enough
security and privacy is delivered in a convenient way to the cloud users [47, 48].

The second part —and probably the one that more concerns raises— is due to the
cloud’s multi-tenancy and the isolation between the di�erent resources being executed
in a single infrastructure or in a single virtual machine. This isolation between di�erent
computations —malicious or not— is normally ful�lled by using virtualization [49].
However, even though virtualization has widely accounted into its bene�ts that it is
possible to securely isolate virtual machines running in a same host, this is not always
true: vulnerabilities for all kinds of hypervisors do exist, therefore virtualization is
clearly introducing multi-tenancy security issues that will never exist if the resources
were not virtualized [50]. It must be said however that any e�cient operation of the
current computing resources, including multicore machines, would need to address
similar problems.

24

main February 3, 2016 13:07 Page 25 �
�	

�
�	 �
�	

�
�	

2Scienti�c Computing

main February 3, 2016 13:07 Page 26 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 27 �
�	

�
�	 �
�	

�
�	

Chapter 2. Scienti�c Computing

Scienti�c computing —not to be confused with Computer Science— can be de�ned as
the e�cient usage of computer processing in order to solve numerical problems present
in science and engineering. Heath [51] de�nes scienti�c computing as follows:

“Numerical analysis is concerned with the design and analysis of algorithms
for solving mathematical problems that arise in computational science and
engineering. For this reason, numerical analysis has more recently become
known as scienti�c computing.”

Karniadakis and Kirby de�ne it as the “intersection of numeral mathematics, com-
puter science and modelling” [52], as shown in Figure 2.1, being at the heart of simulation
science.

Computer Science

Numerical
Mathematics

Modelling

Scienti�c
Computing

Figure 2.1: Scienti�c Computing.

Traditionally, the application of the computational science to tackle many scienti�c
problems comprised the following steps [52, 53] to complete the simulation cycle:

1. Scientists elaborate a mathematical model of the system subject of study.

27

main February 3, 2016 13:07 Page 28 �
�	

�
�	 �
�	

�
�	

2. They develop and implement the algorithmic procedures to numerically solve the
model equations.

3. They execute this software in some kind of computing system and collect the
generated results.

4. They analyze the obtained data and visualize the results, interpreting and validat-
ing them.

The use of scienti�c computing has permeated so deeply in the scienti�c world that
nowadays it is di�cult to �nd an area in science or engineering where scientists do not
rely on the simulation and modelling of the physical systems they are studying, spending
as much time in front of a computer as in the laboratory. The traditional methods are
more and more being substituted by the simulate and analyze approach. Computational
science has made possible to study systems that would have been impossible or not
a�ordable to tackle before by means of theoretical, observational or experimental meth-
ods by themselves. As a matter of fact, a large fraction of science today relies heavily on
computing and it would be impossible to do research on some areas without relying on
scienti�c computing.

A wide number of the problems that are addressed trough the application of com-
putational science are aimed to understand some natural phenomena (in the case of
science) or to design some device or artifact (in the case of engineering). It is being
applied in cases where it is di�cult to obtain results directly in a laboratory, or in cases
where it is more convenient as it economizes research costs (for instance it is more
e�ective to simulate the air �ow for a new vehicle or the �uid dynamics of a new kind
of wastewater treatment reactor, compared with the traditional prototype design).

Moreover, scienti�c computing is not only focused just on the simulation of systems
or phenomena. Some experiments produce such a vast amount of data that our capacity
for assimilating it is over�own. Scienti�c computations can generate data during the
course of their execution, and they need from input and output data. All of these data
have to be curated, stored, transfered, visualized, �ltered, classi�ed, processed and
analyzed. Data management is one of the current trending topics of the Computer
Science, as the literate reader will know by the BigData term.

In Summary, scienti�c computing is a multidisciplinary �eld that has its roots on
numerical analysis, modelling and simulation, and Computer Science so as to get the

28

main February 3, 2016 13:07 Page 29 �
�	

�
�	 �
�	

�
�	

Chapter 2. Scienti�c Computing

most convenient way of using up the current computer systems to solve scienti�c and
engineering problems in an e�cient way.

2.1. The Computational Problem

The advance in the computing power allows to simulate systems that some years
ago would be impossible. Nevertheless, even with all the improvements in the �eld,
the problems that are undertaken by the computational scientist are more and more
complex, therefore they are normally not a�ordable by means of traditional computation
(i.e. using a single computer), implying the usage of specialized resources and computing
clusters.

Another important aspect is the fact that there are some disciplines that are data-
driven as well. The exponential technology improvements have leaded to a situation
where vast quantities of data are being produced and collected in �elds such as astronomy,
meteorology, �nances and biology; just to cite some of them.

One good example of this kind of data-driven science can be the experiments tak-
ing place at the Large Hadron Collider (LHC) facilities at CERN, Geneva. The LHC
experiments (ALICE, ATLAS, CMS, LHCb) operate the Worldwide LHC Computing
Grid (WLCG) infrastructure, whose disk requirements from 2013 to 2016 are shown
in Figure 2.2 [54, 55]. This data needs to be preprocessed, distributed, analysed and
archived properly, requiring from large computing facilities that are able not only to
store the data, but also to process it. The CPU requirements for the WLCG are shown in
Figure 2.3 [54, 55].

Due to the large impact of the computational science in the societal and scienti�c
challenges that exist [56, 57], several computing research infrastructures have been
developed and implemented during the last years. Researchers have access to unprece-
dented facilities that have revolutionized the way science is performed. However, there
is no rule of thumb for a computing infrastructure to be suitable for all kinds of scienti�c
workloads. Di�erent applications have di�erent requirements, thus scientists need access
to a large range of computing facilities and infrastructures. For example, data-bound
applications will bene�t from a high-speed data access, while parallel programs will
need a high-speed and low latency communication channel instead.

Scienti�c computing traditionally spans a wide range of computing models and

29

main February 3, 2016 13:07 Page 30 �
�	

�
�	 �
�	

�
�	

2009
2010

2011
2012

2013
2014

2015
2016

2017

Year

0

50

100

150

200

250

300

350

400
TB

yt
es

WLCG storage pledged resources

Figure 2.2: WLCG disk requirements from 2009 to 2017 [54, 55].

infrastructures as shown in Figure 2.4. From the bottom of the pyramid to the top, the
�rst layer is composed of the personal computers and workstations that are directly used
by scientists for their �nal analysis. Clusters are the next in size, and they span a broad
range of topologies. They are typically resources owned by a single institution or research
group, providing local researchers with computing power. The top of the pyramid is
occupied by the High Performance Computing (HPC) resources, or supercomputing
referring to the usage of large and massively parallel computers run in specialized
high-end centers, whose systems are normally designed to deliver a high performance
to large and tightly parallel applications.

With the improvements in network communications over the last years, and the
current internet ubiquity it was possible to consider technically feasible the usage
of distributed computing —not to be confused with parallel computing. Distributed
computing not only makes possible to get additional computing power from systems that
are geographically distributed, but it also ensures its availability and an e�cient usage
of the resources. A good and successful example of a distributed computing system is

30

main February 3, 2016 13:07 Page 31 �
�	

�
�	 �
�	

�
�	

Chapter 2. Scienti�c Computing

2009
2010

2011
2012

2013
2014

2015
2016

2017

Year

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000
HE

PS
PE

C0
6

WLCG CPU pledged resources

Figure 2.3: WLCG requirements from 2009 to 2017 [54, 55].

Workstations, Personal Computers

Everyday development

Clusters

Research insitutions with
enough computational power

HPC

National level

∼ PFlops

∼ GFlops

Grids

Figure 2.4: Scienti�c computing ecosystem.

31

main February 3, 2016 13:07 Page 32 �
�	

�
�	 �
�	

�
�	

the grid, as we will cover in section 2.2.

2.2. e-Science and the Grid

The e-Science term was originally crafted by Dr. John Taylor from the United King-
dom o�ce of science and technology as follows: “e-Science is about global collaboration
in key areas of science and the next generation of infrastructure that will enable it” [58].
During the last decade, the term e-Science has been used as an umbrella to refer to
computationally intensive science that leverages highly distributed and disparate com-
puting network and data environments, promoting worldwide collaborations between
scientists.

Currently it is notorious how science is not any longer produced in a single research
institution, therefore e-Science has become a fundamental actor in the computational
science arena as it creates a suitable environment for such worldwide collaborations.

Undoubtedly, one of the key computing models that triggered the e-Science evolution
was the grid. The term grid computing was initially de�ned as “a hardware and software
infrastructure that provides dependable, consistent, pervasive and inexpensive access
to high-end computational capabilities” [59] and aims to be similar in concept to the
electrical power grids. The grid computing model aims to deliver access to either HPC
and High Throughput Computing (HTC) resources, federating heterogeneous providers
that are geographically distributed. Currently, the grid has settled as one of the most
prominent distributed scienti�c computing infrastructures.

This computational model is sometimes referred as distributed HTC. The term HTC
is used in contrast with HPC infrastructures, as they are architecturally and conceptually
di�erent, being governed by di�erent access policies. Even though it is possible to access
HPC resources using the grid, HPC resources are normally governed and driven by strict
access policies, in contrast with the more loose policies that govern the grid.

The grid has made possible that scientists could access vast amounts of resources
without the overhead needed for acquiring and maintaining ad-hoc computing infras-
tructures. In this way, its pervasiveness has played a key role in the spread of the
computational science. Currently a considerable number of grid infrastructures exist.
The European Grid Infrastructure (EGI) [60] operates a federation of resource providers,
delivering integrated computing services —comprising more than 800 000 CPU cores

32

main February 3, 2016 13:07 Page 33 �
�	

�
�	 �
�	

�
�	

Chapter 2. Scienti�c Computing

[61]— to European researchers. Similarly, the Open Science Grid Consortium (OSG) [62]
facilitates a similar access to HTC resources within the United States.

2.3. What Are The Requirements of Computational Science

The complex set of computations that are usually performed within the scienti�c
applications require unique features from the infrastructures where they are going
to be executed. In the following sections we will brie�y discuss the corresponding
requirements.

2.3.1. Large Capacity

Researchers tend to consume vast amounts of computational resources, as it was
already exposed in Section 2.1. Scienti�c computing facilities need to deliver enough
capacity so as to satisfy the computational needs of their users. The major challenges
that computational science is tackling increase year after year, spanning a large range of
disciplines such as weather and climatology, astrophysics, high energy physics, materials
science, life sciences, and engineering; just to cite some [56]. Infrastructure federations
like EGI and OSG facilitate access to large pools of resources to scientists that are able
to access resources from several institutions and providers.

2.3.2. High-end Resources

Leaving aside the obvious CPU performance, there are other aspects that may be
in�uenced if the underlying hardware is not e�cient enough and is not able to deliver
the required performance.

For instance, data-intensive applications will require an e�cient access to the data
being analyzed and scienti�c applications often involve parallel calculations that can
span several nodes by utilizing some kind of message passing application programming
interfaces. In these cases, it is required that the resource provider is able to provide
high-end network interconnects that are able to deliver high throughput and very low
latency communications —such as In�niband— so that the application can exploit its
parallelism e�ectively.

In addition, there are some calculations that can be performed more e�ciently by a
Graphics Processing Unit (GPU) instead of a CPU. GPUs are high-performance many-

33

main February 3, 2016 13:07 Page 34 �
�	

�
�	 �
�	

�
�	

core processors capable of very high computation and data throughput, that can be used
for general purpose computing —this technique is called General Purpose Computing
on GPUs (GPGPUs)—. Some scienti�c applications can leverage these devices to obtain
their results much faster.

2.3.3. Availability and reliability

Besides obtaining enough capacity over long periods of time, sometimes the resources
need to be available when the researchers need them, not when the provider is able to
deliver them. For instance, when research is bounded and driven by external factors
such as disaster mitigation it is not feasible for the researchers to wait for a long period
of time in order to obtain their resources.

Moreover some workloads can take weeks or months to complete. Scienti�c users
need highly reliable infrastructures, as otherwise a failure would imply the loss of several
days of work.

2.3.4. Flexibility

Scienti�c software evolves fast in time, with the necessity of analyzing new data, sim-
ulating new scenarios and environments or simply because of the normal improvement
and bug �xing that happens in every software. Therefore, scienti�c applications require
a certain degree of �exibility from the underlying infrastructure, posing a challenge
for scienti�c centers to keep up to date scienti�c applications, that cannot be managed
easily by the users without dedicated cooperation from the infrastructure operators.

2.3.5. Security and Privacy

Security is always a concern in large-scale shared facilities, being them scienti�c or
not. Research needs to remain con�dential, due to the use of sensitive and con�dential
data —such as medical records— or until the authors decide to publish their results
whenever they decide they are camera ready. Enough privacy needs to be guaranteed,
not only during the executions in multi-tenancy environments, but also for the long-term
preservation of data.

34

main February 3, 2016 13:07 Page 35 �
�	

�
�	 �
�	

�
�	

Chapter 2. Scienti�c Computing

2.3.6. Collaboration

Collaborations in science are essential, and distributed collaborations are nowadays
more and more common. A distributed scienti�c computing infrastructure will enable
the linking of those scienti�c communities, encouraging the sharing of resources and
increasing the transmission of knowledge, creating interdisciplinary environments
where researchers and technical people can share and improve their skills.

35

main February 3, 2016 13:07 Page 36 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 37 �
�	

�
�	 �
�	

�
�	

3Science Clouds: Context, De�nition,

Expectations and Challenges

Part of this chapter has been published as: Á. López García and E. Fernández-

del-Castillo. “Analysis of Scienti�c Cloud Computing requirements”. In: Pro-
ceedings of the IBERGRID 2013 Conference. 2013, p. 147 158

main February 3, 2016 13:07 Page 38 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 39 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

As I already explained in Chapter 2, modern scienti�c computing takes advantage of
several computing infrastructures that are grouped trough the e-Science umbrella. The
best example and the most concrete realization of the e-Science has been achieved by
means of the Grid computing.

Cloud computing has the potential to improve the e-Science panorama [64] by giving
scientists a new computational model that will �ll some of the existing gaps in other
infrastructures. Several studies have been performed so as to evaluate the performance
and feasibility of the current cloud o�erings. However, even if performance is a key
factor, there are other aspects that need to be taken into account. The cloud in its current
form presents several drawbacks that hinder its consolidation among the scienti�c users.

The success gathered by the cloud computing in the industry was not common into
the scienti�c computing �eld. Virtualization has been considered as one of the main
show stoppers due to the performance penalty introduced [34], but already explained
in Section 1.4.2 from Chapter 1, this overhead can be neglected, and the scienti�c
community is not considering this anymore an obstacle [31, 65]. Therefore, leaving apart
the performance issue, a gap analysis for an Infrastructure as a Service (IaaS) aiming to
deliver cloud resources for scienti�c usage —that is a Science Cloud— is needed, trying
to answer the following questions taking into account the perspective of all stakeholders
involved: users and resource providers.

Is the cloud computing model a feasible paradigm to run scienti�c applications?

What are the expectations for a Science Cloud from the user’s standpoints?

Does the current cloud o�erings satisfy these expectations?

What are the main challenges that an IaaS Science Cloud has to tackle?

The rest of the chapter is organized as follows. Section 3.1 outlines some of the
expectations created around clouds form the scienti�c user perspective. In Section 3.2 I
study some selected applications from several user communities that have migrated their
workloads to a cloud. In Section 3.3 I elaborate the challenges for cloud infrastructures
running scienti�c applications. Section 3.4 describes similar work in the area. Finally,
the conclusions are presented in Section 3.5.

39

main February 3, 2016 13:07 Page 40 �
�	

�
�	 �
�	

�
�	

3.1. Expectations from Science Clouds

Many of the features of the cloud computing model are already present in current
scienti�c computing infrastructures. As exposed in Chapter 2 academic researchers have
used shared clusters and supercomputers since long, and they are being accounted for
their usage in an utilization basis —i.e. without a �xed fee— based on their CPU-time and
storage consumption. Moreover, Grid computing tried to make possible the seamless
access to worldwide-distributed computing infrastructures composed by heterogeneous
resources, spread across di�erent sites and administrative domains.

However, the cloud computing model can �ll some gaps that are impossible or
di�cult to satisfy and address with any the current computing models in place at
scienti�c datacenters [66, 4]. In the following sections I describe the major bene�ts
that the cloud can bring to scienti�c communities and the expectations created around
Science Clouds.

3.1.1. Customized Environments

One of the biggest di�erences between the cloud model and any of the other scienti�c
computing models (High Performance Computing (HPC), High Throughput Computing
(HTC) and Grids) is the �exibility for the allocation of custom execution environments.
While in conventional scienti�c infrastructures the execution environment is completely
�xed by the providers (e.g. European Grid Infrastructure (EGI), one of the majors grid
infrastructures with more than 300 resource centers providing more than 800 000 cores
[61], even if it supports only a few Operating System (OS) �avors as shown in Figure 3.1,
the vast majority of the resources are using the same RedHat Linux distribution family),
in the cloud model the execution environments are easily adaptable or even provided by
the �nal users. This enables the deployment of completely customized environments
that perfectly �t the requirements of the �nal scientist’s applications.

This lack of �exibility in the current computing infrastructures —where a speci�c (or
a very limited group) OS �avor with a speci�c set of software and libraries is deployed
across all the available computing nodes— forces most applications to go through a
preparatory phase before being executed to adapt them to the execution environment
idiosyncrasies, such as library and compiler versions [67]. As a consequence, once an

40

main February 3, 2016 13:07 Page 41 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

ScientificLinux

UbuntuDebian
CentOS

FedoraSUSELinux

RedHatEnterprise

Gentoo

EGI percentage of CPUs by Operating System

ScientificLinux
Ubuntu
Debian
CentOS
Fedora
SUSELinux
RedHatEnterprise
Gentoo

Figure 3.1: EGI OS �avors in production by number of CPUs. Data has been extracted from the
EGI production information system.

application is correctly deployed, it is hard, complex and time consuming to perform
any updates or apply any patches.

Moreover, some scienti�c applications use legacy libraries that are not compatible
with the available environments, rendering this preparation step quite time-consuming
or even impossible in some cases. The users could get rid of this procedure to an extent
if they were able to provide its own computing environment, that will be the one used
for its computations.

The requirement of a �xed environment and the absence of customization has been
identi�ed [68, 6] as one of the main show-stoppers for many scienti�c communities to
adopt the grid computing model. Only large communities are able to tackle this issue,
thanks to dedicated manpower that manage and adapt their software deployment to all
the available scenarios. The Long-Tail of Science —the large number of laboratories and
researches that do not have access to specialized Information Technology (IT) sta� in
contrast to Big-Science experiments —may �nd their research hindered by the lack of
easy access to computational power [69]. If we take the other way around, the cloud

41

main February 3, 2016 13:07 Page 42 �
�	

�
�	 �
�	

�
�	

�exibility will allows full control over the OS and software environment, and it has been
found as a substantial advantage of the cloud over grids and clusters [6].

The abstraction of the underlying resources that is being provided by the cloud
(leveraging a virtualization layer), will also alleviate the problems introduced by di�erent
and heterogeneous hardware [6] present in the Grid.

Finally, this cloud characteristic makes possible for the long-term preservation of
the application environment. This fact opens the possibility of running legacy software
with current and future hardware, which may help in the long-term preservation of data
(and analysis methods for those data) of scienti�c experiments [70].

3.1.2. Reduced Costs

Exploiting an in-house computing infrastructure means that research groups need
to have budget for buying and maintain the hardware equipment as well as the quali�ed
personnel that brings the expertise needed to operate the infrastructure. Research groups,
specially those in the Long-Tail of Science often run in an tight budget that does not
allow for large and sustained expenditures on infrastructure, therefore Science Clouds
could play a key role (o�ering IaaS resources).

3.1.3. On-demand Access

Arguably, one of the facts that have made the cloud a success is the illusion of in�nite
resources that can be accessed on a pay-as-you go basis by the users. Cloud customers
perceive that they can access as much resources as they can a�ord, without restrictions,
as far as they can pay for them.

However providing an in�nite resource capacity is not feasible in scienti�c datacen-
ters. In these environments idle resources are not desirable, leading to situations where
there are literally no available resources for satisfying a user request. Nevertheless,
on-demand access to them is still a mandatory feature for users requiring interactivity,
and there should be a trade-o� between delivering resources following an on-demand
basis (i.e. interactively) and a e�cient usage of the infrastructure.

42

main February 3, 2016 13:07 Page 43 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

3.1.4. Rapid Elasticity

Resources in the cloud model are elastically provisioned and released, meaning that
the infrastructure is able to react to the user input, both increasing and decreasing the
resources allocated rapidly. This implies that the burden of providing resources to the
users is done by the Cloud Management Framework (CMF) without further human
interaction form the resource provider side. The elasticity opens the door to using
disposable environments without the aforementioned human management overhead.
These kind of disposable environments can be used for large-scale scalability tests of
parallel applications, or for testing new code or library versions without disrupting
production services already in place.

3.1.5. Execution of non Conventional Application Models

Most scienti�c computing resources (supercomputers, shared clusters and grids) are
focused on processing and execution of atomic tasks, where each of these tasks may
be parallel or sequential and they may have interdependencies between them or be
executed concurrently. All the tasks have a common life-cycle: they are started, they
process some data and eventually return a result.

However, in an IaaS cloud, this traditional task concept does not exist: instead of
tasks, users manage instances of virtual machines, which are started, stopped, paused
and terminated according to the users’ needs. This di�erent life-cycle makes possible to
create creation of complex and dynamical long-running systems. For example this feature
is used in the simulation of dynamic software agents, as in [71, 72]; the decision making
process in urban management [73] or behavioral simulations using shared-nothing
Map-reduce techniques [74].

3.1.6. Infrastructure Interoperability and Federation

As already explained in Chapter 2 Science today is no longer exclusively produced in
single research institutions or within national boundaries. Modern scienti�c challenges
require integrated solutions that provide computing power with �exible usage to analyse
vast amounts of data. Other computational models such as the Grid have obtained great
success in enabling an homogeneous access to a disparate number of resources in an
interoperable way.

43

main February 3, 2016 13:07 Page 44 �
�	

�
�	 �
�	

�
�	

Science Clouds are nowadays being considered as a complementary evolution of the
Grid and they are have entered the e-Infrastructures ecosystem, with strong initiatives
such as the Open Science Cloud [75]. Therefore the same openness, interoperability and
federation level is expected by the scienti�c users.

Clouds will complement other existing facilities, therefore a Science Cloud should
consider not only interoperability and federation in an inter-cloud scenario, but broaden
it to a more general interoperability landscape, where several di�erent and disparate
providers (comprising grids, clouds, clusters and even commercial providers) are feder-
ated, building the next-generation of e-Science infrastructures.

Moreover, there are several more pragmatical motivations for moving to a resource
federation, to cite some of the most relevant:

A resource provider federation allows to cope with the limitations of a single
provider which normally cannot provide all the capacity or all types of services
that a certain community requires

A federation allows communities to move computation to data when moving the
data is not feasible (e.g. data with restrictive policies that cannot be moved from a
given location or too large data sets that are not practical to move from one center
to another)

A federation creates a network of centres that both promote local economies and
exploit the already existing expertise or create new knowledge hubs at multiple
locations.

3.2. Selected Application Use Cases

In this section I present some preliminary use cases deployed in a cloud infrastructure.
These preliminary pilot use cases have been deployed in the CSIC IFCA Science Cloud
infrastructure described in Appendix A.1. For each use case we have identi�ed what
are the main bene�ts that the users obtain comparing to their current status and the
drawbacks that should be addressed so that these scienti�c user could get a better
experience or the infrastructure could react better to their demands.

44

main February 3, 2016 13:07 Page 45 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

3.2.1. PROOF

The Parallel ROOT Facility (PROOF) [76] is a commonly used tool by the High Energy
Physics (HEP) community to perform interactive analysis of large datasets produced by
the current HEP experiments. PROOF exploits the data-level parallelization to perform
the analysis by distributing the work load (input data to process) to a set of execution
hosts, following the traditional SPMD (single program, multiple data) pattern. The
negligible dependencies and communication between this kind of tasks make the cloud
a good candidate to accommodate embarrassingly parallel applications [77, 78, 79]

PROOF is used in the last phases of the physics analysis to produce the �nal plots
and numbers, where the possibility of interactively change the analysis parameters to
steer the intermediate results facilitates the researchers work and allows them to reach
faster to better results. Data analyzed in this phase contains the relevant physics objects
in set of �les —produced by several previous processing and �ltering steps of the original
raw data collected from the detector— that may range from several GB to a few TB.

These analysis tasks are usually Input/Output (I/O) bounded [80] due to the big
volume of data to process and their relatively low CPU requirements: most codes perform
�ltering of the data according to the relevant physics to be measured.

Running PROOF requires the pre-deployment and con�guration of a master, that acts
as entry point and distributes the workload, and a set of workers where the user’s analysis
code is executed. There are tools that automatize the creation of such deployments,
which is not trivial for most users, in batch-system environments [80, 81]. In a this case
these tasks are sharing their time with other jobs.

We have collected the usage patterns for a 3.5 year period from a batch system
specially con�gured to support this kind of tasks. The underlying infrastructure cor-
responds with the one described in Appendix A.2. Figure 3.2 shows the number of
requests regarding the task duration. As it can be seen, all the requests can be considered
short-lived, since its maximum duration is below 2 h, with the highest concentration
being below 2 h.

Figure 3.3 depicts the request pattern along a three year period for the same infras-
tructure (Appendix A.2). As it can be seen, this kind of jobs are executed in bursts or
waves, meaning that a set of users will have a high demand of resources for short periods
of time —i.e. when an analysis is at a �nal stage.

As already stated, these traces were obtained from a batch system that is highly

45

main February 3, 2016 13:07 Page 46 �
�	

�
�	 �
�	

�
�	

0 1000 2000 3000 4000 5000 6000 7000 8000
Maximum duration (seconds)

0

200

400

600

800

1000

1200
Nu

m
be

r o
f j

ob
s

PROOF maximum duration

Figure 3.2: PROOF task duration.

customized and con�gured, involving a �ne-tuning of the scheduling algorithms to make
possible to get a job slot to satisfy an interactive request, even if the cluster is full. This
requires close collaboration between the research community and the resource provider
so as to obtain such a tuning that is able to ful�l their requirements. In some cases it is
not possible to apply such a complex con�guration on the batch system and the provider
simply decides to reserve some nodes in advance. However, as it is shown in Figure 3.3
the usage pattern for PROOF tasks is not homogeneous, hence having nodes reserved
for this kind of usage will lead to the infra-utilization of the resources in the periods of
time when the workload is low.

PROOF was successfully executed on the CSIC IFCA Science Cloud infrastructure
[80]. This pilot case showed that this kind of loosely coupled analysis is well suited for
the cloud environment as other SPMD applications. The cloud elasticity made possible
to accommodate the undetermined and high-burst patters that characterize this kind of
interactive analysis (i.e short lived sessions initiated on-demand by the users). Moreover,

46

main February 3, 2016 13:07 Page 47 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

January July
January July

January July
January July

Date

0

20

40

60

80

100

120

140

160
Nu

m
be

r o
f r

eq
ue

st
s

Number of PROOF requests per day

Figure 3.3: PROOF daily request pattern along a three and a half year period.

the cloud adoption enabled the deployment of a customized environments disposed
when the analysis �nishes, based on a speci�cally built OS for HEP scientists [70].

However, the cloud is far from being perfect and several obstacles were found during
the deployment of the pilot case:

Node co-allocation PROOF being a parallel application needs node co-allocation for
each request, meaning that it cannot start until all nodes are ready. Current cloud
schedulers are not smart enough and in some cases it is not possible to make such
a request. Moreover, assuming a request is successfully scheduled, an uncertainty
exists on the time needed until the nodes are available [82, 83].

Elasticity not always true The illusion of the existence of in�nite resources available
at any time that is associated with the cloud can only be considered in commercial
providers. Scienti�c data centers have limited resources, therefore the claimed
elasticity is not always available.

47

main February 3, 2016 13:07 Page 48 �
�	

�
�	 �
�	

�
�	

Data access PROOF is a data intensive application, therefore it needs of the data being
available trough a corresponding high performance access [80]. Moreover, existing
data in external services and storage systems needs to be made available for the
users in a transparent and seamless way.

3.2.2. Particle Physics Phenomenology

As many other communities, the Particle Physics Phenomenology communities
develop their own software for producing their scienti�c results. Software packages
developed by them have evolved independently for several years, each of them with
particular compiler and library dependencies. These software packages are usually
combined into complex work�ows, where each step requires input from previous codes
execution, thus the installation and con�guration of several software packages are
mandatory to produce the �nal scienti�c results. Moreover, each scienti�c scenario
to be analyzed may require di�erent versions of the software packages, therefore the
researchers need to take into account the di�erent package versions characteristics for
installing and using them.

Some of these packages also require access to proprietary software (e.g. Mathematica)
that is license-restricted. Although institutional licenses may be available, these are
di�cult to control in shared resources (like grids or clusters) due to the lack of �ne
grained access control to resources.

Setting up a proper computing environment becomes an overhead for the everyday
work of researchers as they have to face several problems that hinder their research:

They must solve the potential con�icts that appear when installing multiple
packages and versions on the same machine.

The �xed execution environment supported by the resource providers forces them
to deploy the tools in their own ad-hoc clusters —that are under-utilized— or even
their own desktops —that cannot deliver enough computing power.

Preservation of an execution environment at a given point in time is di�cult, as
the OS and its associated libraries evolve over time.

The research performed by this community was hindered due to the lack of access
to more powerful computational resources, as they had to execute the simulations on

48

main February 3, 2016 13:07 Page 49 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

their daily desktop computers. By porting their applications to the CSIC IFCA Science
Cloud, these researchers were able to deploy a stable infrastructure built with the exact
requirements for their analysis where each machine is adapted to the di�erent scienti�c
scenarios to be evaluated, i.e. with the speci�c software versions needed for the analysis.

Moreover, the possibility of creating snapshots of the machines allowed the to
easily recover any previous experiment without recreating the whole software setup
from scratch. They bene�ted from contextualization tools that automatically set up
and handle any dependencies of the software packages needed for the analysis upon
machine creation [31].

The most important fact is that they were able to self-manage their infrastructure,
with almost no intervention from the cloud operators, but some disadvantages were
identi�ed.

Software licenses The CMF should be able to enforce any usage or license restrictions
for proprietary software, taking into account the current used and available license
slots.

Improved contextualization Current IaaS contextualization methods need to be im-
proved, making possible for users to easily store and retrieve contextualization
scripts and recipes, easily integrated with the user interface tools.

Performance unpredictability Users perceived an uncertainty and unpredictability
between di�erent requests when requesting the same resources, due to the virtu-
alization multi-tenancy, where di�erent Virtual Machines (VMs) interfered the
execution of others.

3.2.3. EGI Federated Cloud

The EGI community started the development of a new type of infrastructure to
broaden the support for di�erent research communities and their applications design
models in 2011. The IaaS cloud service model was considered as a clear candidate to
widen the usage models supported and enable higher �exibility to the �nal users. After
an initial evaluation and collection of requirements, the EGI Federated Cloud [84] was
launched into production in May 2014. It o�ers IaaS capabilities (VM, Block Storage,
and Object Storage management) with a open library of Virtual Machine Images (VMIs)

49

main February 3, 2016 13:07 Page 50 �
�	

�
�	 �
�	

�
�	

and mechanisms to automatically replicate and distribute those images to the federation
participants. The federation is enabled by the integration with a set of core services
which allow the operation of a global production infrastructure. The capacity o�ered
has notably increased from the initial tests in 2011, in contrast with the Grid resources,
as shown in Figure 3.4.

20
10

20
11

20
12

20
13

20
14

Year

102

103

104

105

106

Nu
m

be
r o

f c
pu

s (
lo

g)

EGI Capacity

cloud grid

Figure 3.4: Capacity evolution of EGI Federated Cloud resources.

This Federated Cloud supports a large number of communities and applications, and
we have supported the execution of several of them inside the CSIC IFCA Science Cloud
infrastructure described in Appendix A.1.

The EGI Federated Cloud is not a user community per se, but a cloud provider
federation. Its resource providers currently support more than 26 scienti�c communities
and more than 50 use cases coming from di�erent research disciplines: bio-informatics,
physics, earth sciences, basic medicine, arts, language and architecture, mathematics,
computer science, etc. In the remaining part of the section I will discuss some use cases
coming from the federation, identifying the problems faced by the users regarding the

50

main February 3, 2016 13:07 Page 51 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

execution of their application.

3.2.3.1. Example of Use Cases

Chipster [85] is a user-friendly analysis software for next generation sequencing
developed by CSC, the Finnish IT Center for Science. It provides an auto-installable Java
client that connects to a set of computing servers that perform the actual analysis by
combining tools in user de�ned work�ows. Chipster is packaged as a virtual machine
image, however �nal users struggle to set up their own server as they lack a suitable
computing platform. The federation helps these users by providing an infrastructure to
run the VMs whose VMIs are automatically distributed to the cloud providers. It also
opens the door to European-wide horizontal scaling of the Chipster servers during load
peaks although the lack of proper real-time information on the available resources and
advanced brokers make this possibility hard to exploit.

VCycle [86] is a software that implements the vacuum model [87] in an IaaS cloud
infrastructure, where resources appear in the vacuum, process some tasks and then
disappear. For the resource providers this is an interesting computing model, since it
gives them direct control over the shares that are being o�ered to the users, ensuring
that they are being e�ectively used, since they will be processing tasks from a queue as
long as there are pending requests. This kind of execution could potentially bene�t from
opportunistic usage, similarly to opportunistic back�lling in traditional batch systems.
However, due to the limitations of the cloud scheduling algorithms this was not possible,
and the resources had to be statically partitioned.

3.2.3.2. Problems Inherent to the Federation

The EGI Federated Cloud provides the technological building blocks that help to
create cloud provider federations, however, there still are challenges that in some cases
hinder the users experience. These problems, mainly related to the inherent hetero-
geneity of such a federation or the limitation of the current implementations, are the
following:

Interoperability problems Since the federation is a collection if heterogeneous re-
source providers, there are di�erent CMF being used, with di�erent and non

51

main February 3, 2016 13:07 Page 52 �
�	

�
�	 �
�	

�
�	

compatible interfaces and virtualization technologies. This heterogeneity poses
a problem for the users that �nd di�cult to i) interact with di�erent CMF and
di�erent Application Programming Interfaces (APIs) and ii) to migrate their exe-
cutions from one provider to another due to the di�erent underlying virtualization
technologies.

Authentication and Authorization EGI provides single sign on through IGFT [88]
identities based on X.509 certi�cates, but users expect to be able to access with their
existing institutional credentials for authentication. Authorization is achieved
by using Virtual Organization Membership Service (VOMS) proxies [89]. These
kind of proxies are not easily usable on web-based interfaces, thus limiting the
usability of the platform.

Information discovery In an heterogeneous environment such as a federation the
user faces the problem of knowing exactly what are the available resources at a
given point in time. The information currently available at the EGI Federated cloud
o�ers an insu�cient view of the resources and cannot be used to dynamically
scale deployed applications depending on the resource usage.

Resource brokering The increased complexity of dealing with several providers can
be alleviated by using resource brokering services that aid in the selection of the
most appropriate resources for the execution of the user applications and hide the
infrastructure heterogeneity.

3.3. Science Clouds Open Challenges

Many of the resources and services needed to stablish Science Clouds already ex-
ist. However, there are technological challenges that need to be addressed. Scienti�c
applications have unique requirements, therefore a Science Cloud shall provide unique
features and face unique challenges. In the following sections we will cover the existing
gaps in the current cloud o�erings regarding scienti�c applications.

3.3.1. Usability Requirements

The deployment of customized environments is one of the biggest advantages of
the cloud computing model against any other traditional paradigms, but it may also

52

main February 3, 2016 13:07 Page 53 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

represent a drawback for users that are not familiar with systems administration. In this
context, scienti�c application catalogs and contextualization mechanisms are needed.

3.3.1.1. Scienti�c Application Catalogs

The cloud �exibility to deploy customized virtual machines is one of the most
prominent features of this computing model. However, great power is associated with
great responsibility. In this case this fact means that the users are in charge of creating
and managing their instances, not only regarding proper con�guration for their image
to be executed, but also taking into account security concerns. Undoubtedly this implies
advanced IT systems management skills, that are normally not available for the Long-
Tail of scientists, as exposed in Section 3.1.1. The management of the software in the
cloud is much more �exible than other systems as the user has complete access to the
machine, but the entry barrier may still be high. In this context, even if the application
catalogs may be considered at a higher cloud service model (i.e. at a Platform as a Service
(PaaS) layer), it is needed to o�er a prede�ned set of standard scienti�c applications as a
baseline for the users.

Scienti�c Application Catalogs Open Challenges

How to ease the way scientists can build and deploy their applications.

How to provide VMI catalogs in a way that scienti�c software is available across
di�erent resource providers.

3.3.1.2. Image Contextualization

The contextualization of images can be de�ned as the process of installing, con�g-
uring and preparing software upon boot time on a pre-de�ned virtual machine image.
This way, the pre-de�ned images can be stored as generic and small as possible, since
all the customizations will take place at boot time.

The image contextualization is tightly coupled with the scienti�c application catalogs
described in Section 3.3.1.1. The catalogs are useful for bundling self-contained and ready
to use images containing standard scienti�c applications that can be then customized to
the user needs by means of contextualization scripts.

53

main February 3, 2016 13:07 Page 54 �
�	

�
�	 �
�	

�
�	

In those cases, instead of creating and uploading a new image for each application
version and/or modi�cation (a tedious process that is a time consuming task for the image
creator), the installation and/or customization can be delayed until the machine boot
time. By means of this mechanism the newest version can be automatically fetched and
con�gured, or the de�ned and variable user-data provided to the image. This is done by
means of ready to use and compatible image that contains all the necessary dependencies
and requisites for the scienti�c applications to be installed. This contextualization-aware
images will then be launched with some metadata associated, indicating the software to
install and con�gure.

Nowadays powerful con�guration management tools exist that can help with the
implementation of the described contextualization mechanisms. Tools such as Ansible1,
Puppet2, CFengine3, Chef4, etc. make possible to de�ne a machine pro�le that will
be then applied to a machine, so that an given machine will �t into that pro�le after
applying it. However, these languages and tools introduce a steep learning curve, so
that the CMF should provide a method to expose the de�ned pro�les to the users easily.
Therefore, Science Clouds should o�er a way for users to create, deploy and shared
these contextualization recipes in an easy way so as to lower the access barrier for the
scienti�c users [31].

Image Contextualization Open Challenges

How to ease the way scienti�c users can contextualize their applications without
a steep learning curve.

3.3.2. Resource Allocation Problems

Current CMF is designed to satisfy the industry needs. In a commercial cloud provider
users are charged (i.e. they have to pay) according to their resource consumption.
Therefore a commercial resource provider might not worry about the actual usage of
the resources, as they are getting paid by the consumed capacity, even if they are idle
resources. This situation is not acceptable in scienti�c facilities where the maximum

1
Ansible. 2015. url: http://www.ansible.com/.

2
Puppet. 2015. url: https://puppetlabs.com/.

3
CFengine. 2015. url: http://www.cfengine.com.

4
Chef. 2015. url: http://www.opscode.com/chef/.

54

http://www.ansible.com/
https://puppetlabs.com/
http://www.cfengine.com
http://www.opscode.com/chef/

main February 3, 2016 13:07 Page 55 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

utilization of the resources is an objective. Idle resources are an undesirable scenario
as it prevents other users from accessing and using the infrastructure. Access to most
scienti�c datacenters is not based on a pay per use basis, as user communities are granted
with an average capacity over long periods of time. This capacity, even if accounted,
is not paid by the users, but it is rather supported by means of long-term grants or
agreements.

In traditional scienti�c datacenters users executed their tasks by means of traditional
batch systems, where the jobs are normally time-bounded (i.e. they have a speci�c
duration). Di�erent policies are then applied to adjust the job priorities so that the
resources are properly shared between the di�erent users and groups. Even if the user
does not specify a duration, a batch system is able to stop its execution after a given
amount of time, con�gured by the resource provider.

However, there is no such duration concept in the cloud model, where a virtual
machine is supposed to live as long as the user wants. Users may not stop their instances
when they have �nished their job (they are not getting charged for them), ignoring the
fact that they are consuming resources that may be used by other groups. Therefore,
resource providers have to statically partition their resources so as to ensure that all
users are getting their share in the worst situation. This leads to an underutilization of
the infrastructure, since a usage spike from a group cannot be satis�ed by idle resources
assigned to another group.

Taking as an example the PROOF use cases studied in Section 3.2, Figure 3.2 showed
a typical usage pattern for interactive scienti�c applications, where jobs are executed in
bursts or waves. This kind of usage (i.e. short lived executions that are not constant over
the time) is quite common for scienti�c applications [31, 94, 95, 96, 97] and presents a
demanding challenge for resource providers. Enough computing capacity needs to be
delivered for absorbing this kind or requests, minimizing the reserved resources that
will be idle for long periods of time.

Implementing an e�ective scheduling and resource allocation policies to ensure
that the elasticity is perceived as true is a challenging task. An allocation policy that is
driven by a resource provider decision can result in a low value from the user standpoint,
whereas an allocation under user control may result in a high cost for the provider [98].

55

main February 3, 2016 13:07 Page 56 �
�	

�
�	 �
�	

�
�	

3.3.2.1. Instance Co-allocation

Compute and data intensive scienti�c workloads tend to use parallel techniques to
improve their performance. Parallel executions are complex since they require intercom-
munication between processes, usually spread across several nodes, scenario in which
resource provisioning task becomes even more challenging. Based on the assumption
that a provider is capable of satisfying a request involving di�erent instances, one has
to consider the fact of managing them as an atomic workload so to assure that these
instances are actually being provisioned at the same time, i.e. they are being co-allocated.
Proper co-allocation policies should take into account network requirements, such as
satisfying low latencies and appropriate bandwidths, and ful�ll any constraints imposed
by the parallel framework being used, as e.g. OpenMPI’s intra-subnet allocation check
[99].

In homogeneous and static environments, guaranteeing ordered co-allocation of
resources can be easily tackled, if compared to heterogeneous scenarios. In the speci�c
case of cloud computing, the �exibility that it introduces, makes multi-resource allocation
a challenging task that must take into consideration not only the synchronized startup
(see more at Section 3.3.2.2) of master and worker instances, but also how these resources
are physically distributed and what are the hardware constraints (network, cpu, memory)
to be considered. Only by doing this, parallel tasks provisioned in clouds would have
a similar application performance to what can be obtained with homogeneous ad-hoc
resources, but getting rid of the rigidity that they introduce.

Instance Co-allocation Open Challenges

How to o�er a proper Service Level Agreement (SLA) to ensure that instances
need to be co-allocated.

How to ensure that instances that need co-allocation are actually started at the
same time.

How to account (or not account) for instances that requiring co-allocation have
been provisioned with an unacceptable delay. When a user is requiring this feature
but the requirement cannot be ful�lled this should be taken into account.

56

main February 3, 2016 13:07 Page 57 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

How to ensure that when the instances are already scheduled they are allocated
within a time-frame. VM management introduces overheads and delays that
should be taken into account to ensure a proper co-allocation.

3.3.2.2. Short Startup Overhead

When a request is made, the corresponding images have to be distributed from the
catalog to the compute nodes that will host the virtual machines. If the catalog repository
is not shared or the image is not already cached by the compute nodes, this distribution
will introduce a penalty on the start time of the requested nodes. This overhead can
be quite signi�cant and has a large in�uence in the startup time for a request. This is
specially true when large [83] requests are made by a user. Figure 3.5 shows this e�ect
in the OpenStack test infrastructure described in Appendix A.3, using 2 GB images that
were distributed using Hiper Text Transfer Protocol (HTTP). As it can be seen, the time
needed to get all the machines within a single request increased with the size of the
request.

Short Startup Overhead Open Challenges

How to deploy the images into the nodes in an e�cient way.

How to deal with spikes on the requests, so that the systems are not saturated
transmitting the images into a large number of nodes.

How to implement cache mechanisms in the nodes, implementing sanity checks
so that similar workloads are not constrained into a few nodes.

How to forecast workloads, so that images can be pre-deployed, anticipating the
user’s requests.

3.3.2.3. Performance Aware Placement

In order to improve resource utilization, cloud schedulers can be con�gured to
follow a �ll-up strategy that might end up in multiple virtual machines running con-
currently on the same physical server. This scenario leads to resource competition
which surely will a�ect application performance. In this regard, the scheduler needs
to be performance-aware (or even degradation-aware), so that e.g. two data-intensive

57

main February 3, 2016 13:07 Page 58 �
�	

�
�	 �
�	

�
�	

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

Number of instances

0

200

400

600

800

1000
Ti

m
e

(s
)

Time needed to boot N instances

Figure 3.5: Time needed to boot the number of requested instances. Tests were performed the
infrastructure described in Appendix A.3, with an image of 2GB.

applications, executing I/O consuming tasks are not scheduled in the same physical
server and, therefore, not hitting each other’s performance.

Several approaches have been raised in order to diminish degradation. Some do not
act directly on pro-active scheduling but instead in reactive reallocation of the a�ected
virtual instances by using underneath hypervisor capabilities like live migration [50].
But, instead of relying in monitoring the application performance and take reallocation
decisions based upon its degradation, a more pro-active scheduling is needed so to
improve the suitability of the resource selection. Feeding the scheduler with more
�ne-grained hardware requirements, provided by the user request, such as low-latency
interconnects (e.g. In�niband, 10 GB Ethernet) or GPGPU selection, provides a better
resource categorization and, consequently, will directly contribute to a more e�cient
execution of the application. To accomplish this, the specialized hardware must be
exposed into the virtual instances, by means of PCI passthrough with IOMMU or Single
Root I/O Virtualization (SR-IOV) techniques, and eventually managed by the CMF using

58

main February 3, 2016 13:07 Page 59 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

the underlying virtualization stack.

ba
re

meta
l

8x
4 n

oe
pt

an
d c

pu
pin

8x
4 n

oe
pt 8x

4
1x

32

1x
32

 cp
up

in

1x
32

 no
ep

t

VM configuration

150

200

250

300

350

HE
P

Sp
ec

 0
6

Performance degradation according to various VM configurations

Figure 3.6: Aggregated performance regarding the HEP Spec 06 [100] benchmark, taking into
account di�erent virtual machine sizes and con�gurations for one host.

The hypervisor providing the virtualization appears as an important factor when
measuring performance. It is widely accepted that virtualization introduces a penalty
when compared with bare-metal executions. However this penalty depend on how
the hypervisor is being used. Figure 3.6 shows the degradation of the aggregated
performance delivered by a physical machine, using di�erent virtual CPUs (vCPUs) sizes.
The physical node where the tests were performed in described in Appendix A.5. The
virtual machines were dimensioned so as to consume —in aggregate— all the resources
available on the host. The label "noept" means that the Extended Page Tables (EPT)
support has been disabled. The label "cpupin" means that the vCPUs have been pinned

59

main February 3, 2016 13:07 Page 60 �
�	

�
�	 �
�	

�
�	

to the physical CPUs.
Science clouds need to deliver the maximum performance possible. Therefore, the

CMF should take this fact into account, by implementing scheduling policies that would
help to prevent the above identi�ed performance drops.

Performance Aware Placement Open Challenges

How to minimize the performance loss when scheduling various virtual machines
inside one host.

How to pro-actively scheduling could be used to minimize resource competition.

How to detect performance interferences between VMs and take appropriate
actions (like live migration) to minimize them.

How to redistribute the running instances between the resources without impact-
ing the running applications.

3.3.2.4. Data Aware Scheduling

Several scienti�c disciplines —such as HEP, Astronomy or Genomics just to cite
some of them— generate considerably large amounts of data (in the order of PB) that
need to be analyzed. Location and access modes have clear impacts to data-intensive
applications [101, 102] and any platform that supports these kinds of applications should
provide data-locality and data-aware scheduling to reduce any possible bottlenecks that
may even prevent the actual execution of the application.

Storage in clouds is normally decoupled from the virtual machines and attached
during runtime upon user’s demand. This poses a bigger challenge to the scheduler since
the location of data to be accessed is not known a priori by the system. Science clouds
should be able to provide high-bandwidth access to the data, which is usually accessed
over the network (e.g. block storage may use ATA over Ethernet or iSCSI; object storage
usually employs HTTP). This may require enabling the access to specialized hardware
from the virtual machines (e.g. In�niband network) or re-locating the virtual machines
to hosts with better connectivity to the data sources. Data-locality can also be improved
by using caches at the physical nodes that host the VMs, by replicating locally popular
data hosted externally to the cloud provider, or by leveraging tools like CernVMFS [103]
that deliver fast access to data using HTTP proxies.

60

main February 3, 2016 13:07 Page 61 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

Data Aware Scheduling Open Challenges

How to take into account cloud data management speci�cities when scheduling
machines.

How to ensure that the access delivers high performance for the application being
executed.

3.3.2.5. Flexible Resource Allocation Policies

Long-running tasks are common in computational science. Those kind of workloads
do not require from interactivity and normally are not time-bounded. Such tasks can be
used as opportunistic jobs that �ll the computing infrastructure usage gaps, leading to a
better utilization of resources.

In traditional scienti�c datacenters and time-sharing facilities this is normally done in
by means of several techniques, such as back�lling, priority adjustments, task preemption
and checkpointing. Some of these techniques require that the tasks are time-bounded,
but in the cloud a virtual machine will be executed as long as the user wants.

Commercial cloud providers have tackled this issue implementing the so called spot
instances or preemptible instances. This kind of instances can be terminated without
further advise by the provider if some policy is violated. For example, if the resource
provider cannot satisfy a normal request —in the preemptible case— or because the user
is paying a prize that is considered too low over a published price baseline —in the spot
mode, where the price is governed by a stock-options like market.

The usage of this kind of instances in science clouds could make possible that the
infrastructure is �lled with opportunistic [104] jobs that can be stopped by higher priority
tasks, such as interactive demands. The Vacuum computing model [87], where resources
appear in the vacuum to process some tasks and then disappear is an ideal candidate to
leverage this kind of spot instances. Tools such as VCycle [86] are already being used to
pro�t from opportunistic usage in existing scienti�c infrastructures.

Flexible Resource Allocation Policies Open Challenges

How to maximize the resource utilization without preventing interactive users
from accessing the infrastructure.

61

main February 3, 2016 13:07 Page 62 �
�	

�
�	 �
�	

�
�	

How to specify dependencies between virtual machines so that more complex
workloads can be scheduled in a more easy way.

How to account for resources that are suitable for being stopped or preempted.

How to select the best instances that can be stopped to leave room for higher
priority requests, with the compromise of reducing the revenue loss and with the
smallest impact to the users.

3.3.2.6. Performance Predictability

Popular IaaS CMFs do not currently expose mechanisms for customers to de�ne a
speci�c set of hardware requirements that would guarantee a minimum performance
when running their applications in the cloud, as performance variations exists within
same instance types [105]. Real time demanding or latency sensitive applications are
indeed seriously hit by this limitation, which appears as a big obstacle for integrating
this type of applications into clouds [106].

Computing capabilities provide only a magnitude of multi-threading e�ciency based
on the number of vCPUs selected. Customers are then tied to a generic vCPU selection
that may be mapped to di�erent processors by the underlying framework, in which case
di�erent performance results could be obtained based on the same set of requirements.
This unpredictability will be increased whenever resource overcommit is in place, that
could lead to CPU cycle sharing among di�erent applications.

Lack of network performance guarantees contribute also to unexpected application
behavior. Enforcing network QoS to achieve customer-required network bandwidth
can greatly improve application predictability, but network requirement selection are
seldom o�ered by cloud providers [107].

Improved performance predictability is a key requirement for users [108] but also
to providers. The lack of predictability leads to uncertainty [109], a fact that should
be mitigated for both users and providers. An accurate provision of customer needs in
terms of computing and network capabilities will not only boost user experience but
also will provide a clear estimation of cost based on the di�erent service levels that the
resource provider can o�er.

Performance Predictability Open Challenges

62

main February 3, 2016 13:07 Page 63 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

How to expose enough granularity in the request speci�cation without exposing
the underlying abstracted resources.

How to guarantee the performance predictability between di�erent requests with
the same hardware requests.

3.3.2.7. Licensed Software Management

One of the major barriers scientists �nd when moving their applications to the cloud
relies in licensing troubles. Software vendors that count with policies about how to
deal with licensing in virtualized environments propose the usage of Floating Network
Licenses (FNL). These special licenses usually increment costs, as they can be used by
di�erent virtual instances, and require the deployment of license managers in order to be
able to use the software in the cloud infrastructures. Additionally, the license managers
might need to be hosted within a organization’s network.

Using FNLs are the most popular solution provided by vendors, but the imposed
requirements mentioned above can be di�cult to satisfy in some cases: hosting a
license manager is not always possible by some scienti�c communities and it introduces
maintenance costs, whose avoidance is one of the clear bene�ts of moving to a cloud
solution.

The need for a more straightforward way of getting licensed or proprietary software
to work in virtualized environments is a must that software vendors should consider. In
commercial cloud infrastructures, like Amazon Amazon Web Services (AWS), customers
can make use of pre-con�gured images, license-granted, with the proprietary software
locally available and ready to use. At the time of writing, Amazon AWS does not have
agreements with all of the major software vendors, but it appears as a neat and smooth
solution that requires no extra work from the end users side.

Besides the above administrative di�culties, the actual technical challenge in re-
source allocation for licensed software is that cloud schedulers are not license-aware
[110]. This gap needs to be �lled by the cloud middleware stacks, as it was solved years
ago in HPC clusters.

Licensed Software Management Open Challenges

63

main February 3, 2016 13:07 Page 64 �
�	

�
�	 �
�	

�
�	

Persuade commercial vendors to release more �exible licensing methods, speci�c
for the cloud.

How to deal with license slots within the scheduler.

3.3.3. Interoperability and Federation

3.3.3.1. Federation

As explained in Section 3.1.6 the federation introduces some bene�ts in the context
of e-Science infrastructures, however it also introduces some problems that are perceived
not only by the users, but also by the resource providers operating the infrastructures.
Apart from interoperability problems (that will be covered in Section 3.3.3.2) there
are other facts that need to be taken into account when federating disparate resource
providers. Initiatives such as the EGI Federated Cloud [84] have put a great e�ort on
these areas, but there are still some missing points where a lot of improvements are
needed and foreseen.

In a federated ecosystem whenever a new user group appears in the scene it is needed
to procure resources that support their research. For the big-science collaborations this
is done through agreed SLAs. However, a more dynamic procurement and tender process
needs to be developed to support new use cases more rapidly without a bureaucratic
burden.

Moreover, a federation should go one step beyond from just being an aggregation
of a number of providers. Proper brokering policies should be in place so that users do
not have to deal with each individual resource provider and all of its particularities. In
this context, a proper information and discovery system is needed, as a mean to obtain
proper information about the available resources for the users.

Federation Open Challenges

How to publish dynamic information about the current cloud resources being
o�ered to the users.

How to provide brokering functionality so that the best resource provider is
selected.

64

main February 3, 2016 13:07 Page 65 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

How to federate the resource providers so that users can request resources di-
rectly from the federation, without knowing the particular provider procuring the
infrastructure.

How to perform intra-cloud networking in an e�ective way.

How to create and maintain Science Cloud marketplaces dynamically, so that
users can choose the best option for their needs.

How to e�ectively support and procure resources for new use cases that could
pop out.

How to account for the resource usage across several providers.

How to federate identities across di�erent and disparate cloud providers.

3.3.3.2. Interoperability

Some commercial providers promote lock-ins in their infrastructures as a way of
keeping their users captive on their resources, instead of trying to keeping their cus-
tomers by some other added-value features. This is being considered nowadays a harmful
practice and users are more and more reluctant to deploy their applications in such
infrastructures.

Regarding lock-ins, two di�erent kinds should be considered:

Vendor lock-in, where the vendor or provider forces the user to remain with them,
for instance by means of proprietary and non interoperable interfaces. In some
cases, user data can even be captive on their systems by not providing an easy
way of accessing it.

Technology lock-in, where a user is induced to remain using a given technology
(for example a given hypervisor), as it is not compatible with other similar tech-
nologies. A technology lock-in can be an induced case of vendor lock-in or it can
be completely unintentional.

65

main February 3, 2016 13:07 Page 66 �
�	

�
�	 �
�	

�
�	

Interoperability Open Challenges

How to ensure that proper interoperability is provided between di�erent cloud
providers.

How to ensure that users are not locked-in in a given infrastructure or provider.

How to ensure that data can be migrated between di�erent providers.

How to ensure that a running virtual machine can be migrated to a di�erent cloud
provider, taking into account the underlying virtualization technology.

3.3.3.3. Seamless Access Across e-Infrastructures

Interoperability across di�erent infrastructures and technologies (like grids, clouds
and even commercial services) is an important feature for many communities that need
access to their legacy data and applications. In this context, the usage of open and
established standards could alleviate these interoperability problems. However, clouds
have evolved at the industry pace, not taking into account the current existing e-Science
infrastructures.

Seamless Access Across e-Infrastructures Open Challenges

How to ensure that di�erent and disparate infrastructures are interoperable.

How to ensure access to legacy data sets and applications from Science Clouds.

How to homogenize identities, credentials, authentication and authorization mech-
anisms across infrastructures boundaries.

3.4. Related Work

As I explained in Chapter 2 scienti�c infrastructures give access to unprecedented
computational power to scientists, and the cloud computing infrastructures are being
embraced so as to enrich the scienti�c computing ecosystem.

Several EU actors —EUDAT, LIBER, OpenAIRE, EGI and GÉANT— have started
the Open Science Cloud initiative [75], outlining the eight elements of success for
such an infrastructure: i) Open, meaning that it should be based on open access

66

main February 3, 2016 13:07 Page 67 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

and open standards; ii) Public funded and governed, to guarantee persistence and
sustainability; iii) Research-centric, ensuring the development of services responsive
to their needs; iv) Comprehensive, meaning that it should be universal and speci�c to
no particular community; v) Diverse and distributed, so as to leverage the richness of
the EU distrubuted e-Infrastructures; vi) Interoperable, trough the promotion of open
standards and protocols; vii) Service Oriented; and viii) Social.

Moreover, there are some previous studies regarding the general challenges and
implications of running a Science Clouds at a more technical level. The work by Blanquer
et al. [111], in the scope of the VENUS-C project, evaluated the requirements of scienti�c
applications by performing a broad survey of scienti�c applications within the project.
Their study showed that the cloud computing model is perceived as bene�cial by the
users (being one of the key expectations the elasticity), although some drawbacks need
to be tackled so as to improve its adoption (such as interoperability, learning curve, etc.).

Juve et al. [112] outlined what is expected from a science cloud in contrast with
a commercial provider (shared memory, parallel applications, shared �lesystems) so
as to e�ectively support scienti�c work�ows. Besides, it concluded that cloud can be
bene�cial for scienti�c users, assuming that science clouds will be build ad-hoc for its
users, clearly di�ering from commercial o�ers.

Susa et al. [113] proposed a Software as a Service (SaaS) marketplace for scienti�c
applications to be executed on top of public IaaS providers, presenting the problems
faced during the deployment and testing of the �rst pilot version. However, they did
only focus on commercial providers, without taking into consideration the usage of
scienti�c cloud infrastructures.

The United States Department of Energy (DOE) Magellan project conducted a similar
study, published by Ramakrishnan et al. [114]. This work also focused on identifying the
gaps and challenges for a resource provider so as to build a science cloud. Some of the
requirements identi�ed by them are coincident with our �ndings, such as the i) access to
low-latency interconnects and �lesystems, ii) access to legacy data-sets, iii) availability
of pre-installed and pre-tuned application software stacks; among others.

On the other hand, there is a considerable amount of research works addressing
cloud resource provisioning and scheduling from the user or consumer perspective
[115, 96, 116, 117]. Some authors have studied how to implement hybrid provisioning
of resources between several cloud providers [118, 119], or even between di�erent

67

main February 3, 2016 13:07 Page 68 �
�	

�
�	 �
�	

�
�	

computing infrastructures such as grids and clouds [120]. The work�ow model is widely
used in many scienti�c computing areas, and there is a vast amount of studies regarding
the feasibility and challenges of executing work�ows in the cloud [121, 122, 123, 124,
125, 126, 127, 128].

Regarding resource provisioning strategies from the provider standpoint. Sotomayor
et al. studied how to account and manage the overheads introduced the virtual resources
management [129]. Hu et al. [130] studied how to deliver a service according to several
agreed SLA by using the smallest number of resources. Garg et al. [131] presented how
to deal with SLAs that imply interactive and non-interactive applications. Cardonha et
al. [132] proposed a patience-aware scheduling that take into account the user’s level of
tolerance (i.e. the patience) to de�ne how to deliver the resources to the users.

Manvi et at. [98] performed an exhaustive review of the resource provisioning, allo-
cation and mapping problems for a IaaS resource provider, stating some open challenges
like i) how to design a provisioning algorithm for optimal resource utilization based
on arrival data; ii) how and when to reallocate VMs; iii) how to minimize the cost of
mapping the request into the underlying resources; iv) how to develop models that are
able to predict applications performance; among many others.

In addition, there is a lot of research regarding resource provisioning in clouds that
is only focused on energy aware aspects [29, 133, 134]. Smith et al. [135] modelled how
di�erent workloads a�ected energy consumption, so that an accurate proper power
prediction could be made to perform an e�cient scheduling. Several authors have
studied how the consolidation of virtual servers in a cloud provider could lead to a
reduction of the energy consumption [136, 28]. This fact can be used to increase the
revenues by implementing energy-aware resource allocation policies [137].

3.5. Conclusions

In this chapter I have given a short overview —as there is a lot of literature regarding
the cloud bene�ts— of the advantages that the cloud computing model can o�er to
scienti�c users. I have identi�ed the expectations that the cloud adoption has created
among scienti�c users, to afterwards evaluate several real and representative use cases
obtained from our experience operating a Science Cloud. In the last part of this chapter
I have elaborated a set of open challenges for Science Clouds.

68

main February 3, 2016 13:07 Page 69 �
�	

�
�	 �
�	

�
�	

Chapter 3. Science Clouds

As it was noted through this chapter, Cloud Management Frameworks (CMFs) are
normally being developed taking into account the point of view commercial providers
and industry, focusing on satisfying their needs, but not really ful�lling science demands.
scienti�c workloads have unique requirements that need to be speci�cally addressed.

From our experience, one of the main �elds needing from improvement in these
CMFs is the scheduling and provisioning of resources, as described in Section 3.3.2.
Current scheduling strategies are too simple to accommodate the complex work�ows
and heavy workloads that characterize the scienti�c applications.

The interoperability, portability and federation aspects are important when consid-
ering that scientists will access a myriad of heterogeneous systems in a distributed way.
The cloud has to learn from previous federated e-Infrastructures, and adopt the best
practices and open standards and protocols that those infrastructures have promoted
through the last years.

In summary, the cloud is not a silver bullet for scienti�c users, but rather a new
paradigm that will enter the ecosystem. In the upcoming years scienti�c computing
datacenters have to move towards a mixed and combined model, where a given user will
have access to the more traditional computational power, but also they should provide
their users with additional cloud power that will complement the former computing
infrastructures. These Science Clouds should need to be tuned to accommodate the
demands of the user communities supported. This way, both the users will bene�t from a
richer environment and resource providers can get a better utilization of their resources,
since they will allow for new execution models that are currently not available.

69

main February 3, 2016 13:07 Page 70 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 71 �
�	

�
�	 �
�	

�
�	

II
Improved Resource Provisioning

main February 3, 2016 13:07 Page 72 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 73 �
�	

�
�	 �
�	

�
�	

4Scheduling and Resournce

Provisioning in Cloud Management

Frameworks

main February 3, 2016 13:07 Page 74 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 75 �
�	

�
�	 �
�	

�
�	

Chapter 4. Scheduling and Resournce Provisioning in Cloud Management Frameworks

Chapter 1 exposed how the cloud computing model is aimed on delivering resources
(such as virtual machines, storage and network capacity) as an on demand service.
The most accepted publication de�ning the cloud from the United States National
Institute of Standards and Technology (NIST), emphasizes the rapid elasticity as one
of the essential characteristics of the cloud computing model: “(...) capabilities can be
elastically provisioned and released, (...), to scale rapidly outward and inward (...)” [1].
Moreover, users and consumers consider them as the new key features that are more
attractive [9, 5] when embracing the cloud if compared to other infrastructures.

If we take into consideration virtual machines delivered by an Infrastructure as a
Service (IaaS) resource provider, these two outstanding features imply two di�erent
facts:

Elasticity is the ability to start and dispose one or several Virtual Machines (VMs)
almost immediately.

On demand access implies that VMs are allocated whenever the user requires
them, without prior advise and without human intervention from the Resource
Provider (RP).

Therefore, it is the Cloud Management Framework (CMF) duty —through their
scheduling component— to ensure that these perceptions are true.

In this Chapter I will give an overview of the current scheduling strategies (Sec-
tion 4.1) and algorithms (Section 4.2) in the most common open source CMFs. In
Section 4.3 I describe more in depth the OpenStack Compute scheduler, as it will be the
chosen CMF for the implementation of the proposed solutions during the rest of this
dissertation. In summary, this Chapter is a brief introduction to the CMF scheduling
aspects, that will be referred later in in Chapter 5 and Chapter 6, where I will address
some of the provisioning challenges presented in Chapter 3.

4.1. Scheduling strategy

Clouds do not implement queuing as other computing models do as they are more
focused on the rapid scaling of the resources, rather than in batch processing, where
queuing becomes useful. The default scheduling strategies in the current CMFs are based
on the immediate allocation or resources. The cloud schedulers provision them when

75

main February 3, 2016 13:07 Page 76 �
�	

�
�	 �
�	

�
�	

requested, or they are not provisioned at all. Therefore, cloud requests are processed on
a �rst-come, �rst-served basis, without implementing any queuing at all, as this state
can be considered against the cloud model.

However, some users require for a queuing system —or some more advanced features
like advance reservations— for running virtual machines. In those cases, there are
some external services such as Haizea [118, 138] for OpenNebula or Blazar [139] for
OpenStack. Those systems lay between the CMF and the users, intercepting their
requests and interacting with the cloud system on their behalf, implementing the required
functionality.

4.2. Scheduling algorithms

Besides simplistic scheduling policies like �rst-�t or random chance node selection,
current CMFs implement a scheduling algorithm that is based on a rank selection of
hosts.

OpenNebula [140] uses by default a match making scheduler, implementing the Rank
Scheduling Policy [118]. This policy �rst performs a �ltering of the existing hosts,
excluding those that do not meet the request requirements. Afterwards, the
scheduler evaluates some operator de�ned rank expressions against the recorded
information from each of the hosts so as to obtain an ordered list of nodes. Finally,
the resources with a higher rank are selected to ful�l the request.

OpenStack [141] implements a Filter Scheduler [142], based on two separated phases.
The �rst phase consists on the �ltering of hosts that will exclude the hosts that
cannot satisfy the request. This �ltering follows a modular design, so that it is
possible to �lter out nodes based on the user request (RAM, number of virtual
CPUs (vCPUs)), direct user input (such as instance a�nity or anti-a�nity) or
operator con�gured �ltering. The second phase consists on the weighing of hosts,
following the same modular approach. Once the nodes are �ltered and weighed,
the best candidate is selected from that ordered set.

CloudStack [143] utilizes the term allocator to determine which host will be selected
to place the new VM requested. The nodes that are used by the allocators are the
ones that are able to satisfy the request.

76

main February 3, 2016 13:07 Page 77 �
�	

�
�	 �
�	

�
�	

Chapter 4. Scheduling and Resournce Provisioning in Cloud Management Frameworks

Eucalyptus [144] implements a greedy or round robin algorithm. The former strategy
uses the �rst node that is identi�ed as suitable for running the VM. This algorithm
exhausts a node before moving on to the next node available. On the other hand,
the later schedules each request in a cyclic manner, distributing evenly the load in
the long term.

All the presented scheduling algorithms share the view that the nodes are �rstly
�ltered out —so that only those that can run the request are considered— and then ordered
or ranked according to some de�ned rules rules. Generally speaking, the scheduling
algorithm can be expressed as the pseudo-code in the Algorithm 1.

Algorithm 1 Scheduling Algorithm.
1: function Schedule Reqest(req,H)

INPUT: req: user request
INPUT: H : all host states

2: hosts← [] . empty list
3: for all hi ∈ H do

4: if filter(hi, req) then
5: Ωi ← 0
6: for all r,m in ranks do . r is a rank function, m the rank multiplier
7: Ωi ← Ωi + mj ∗ rj(hi, req)
8: end for

9: hosts← hosts + (hi,Ωi) . append to the list
10: end if

11: end for

12: return hosts
13: end function

4.3. Scheduling in OpenStack

OpenStack Compute includes two di�erent schedulers: the Chance scheduler and
the Filter Scheduler. The former selects hosts randomly, so it is unusable in production
system, so the Filter Scheduler can be considered as the default in an OpenStack cloud.

The Filter Scheduler is a rank scheduler, implementing two di�erent phases: �ltering
and weighting, as shown in Figure 4.1.

77

main February 3, 2016 13:07 Page 78 �
�	

�
�	 �
�	

�
�	

Host 1

Host 2

Host 3

Host 4

Host 5

Host 6

Host 7

Host 8

Host 9

Filtering Host 5

Host 2

Host 1

Host 6

Host 8

Weighing Host 5 (w:10)

Host 2 (w:7)

Host 1 (w:7)

Host 6 (w:6)

Host 8 (w:1)

Original Hosts

Filtered Hosts Weighted Hosts

Figure 4.1: OpenStack scheduling algorithm.

Filtering The �rst step is the �ltering phase. The scheduler applies a concatenation of
�lter functions to the initial set of available hosts, based on the host properties
and state —e.g. free RAM or free CPU number— user input —e.g. a�nity or
anti-a�nity with other instances— and resource provider de�ned con�guration.
When the �ltering process has concluded, all the hosts in the �nal set are able to
satisfy the user request.

Weighing If the �ltering phase yields a list of suitable hosts, the weighting stage starts
so that the best host —according to the de�ned con�guration— is selected. The
scheduler will apply all hosts the same set of weighters functions wi(h), taking
into account each host state h. Those weighter functions will return a value
considering the characteristics of the host received as input parameter, therefore,
total weight Ω for a node h is calculated as follows:

Ω =

n∑
mi ·N(wi(h))

Where mi is the multiplier for a weighter function, N(wi(h)) is the normalized

78

main February 3, 2016 13:07 Page 79 �
�	

�
�	 �
�	

�
�	

Chapter 4. Scheduling and Resournce Provisioning in Cloud Management Frameworks

weight between [0, 1] calculated via a rescaling like:

N(wi(h)) =
wi(h)−minW

maxW −minW

where wi(h) is the weight function, and minW , maxW are the minimum and
maximum values that the weighter has assigned for the set of weighted hosts.
This way, the �nal weight before applying the multiplication factor will be always
in the range [0, 1].

Once the set of hosts have weights assigned to them, the scheduler will select the
host with the maximum weight and will schedule the request into it. If several nodes
have the same weight, the �nal host will be randomly selected from that set.

As I explained in Section 4.1, if the scheduler is not able to provision the resources
when the request is made, it will return an error. However, in order to alleviate spurious
problems tha may occur, the scheduler implements a retry cycle, con�gurable by the
cloud operator.

4.4. Conclusions

In this Chapter I have given an brief introductory overview to the Cloud Management
Framework (CMF) scheduling strategies and algorithms. The following chapters will
address some resource provisioning challenges, and they will leverage the information
outlined in this Chapter.

79

main February 3, 2016 13:07 Page 80 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 81 �
�	

�
�	 �
�	

�
�	

5E�cient Image Deployment

Part of this chapter will been published as: Á. López García and E. Fernández-

del-Castillo. “E�cient image deployment in Cloud environments”. In: Journal
of Network and Computer Applications (2016). issn: 1084-8045 (accepted
paper).

main February 3, 2016 13:07 Page 82 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 83 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

Any cloud must be able to deliver rapidly the requested machines to provide a satis-
factory elastic and on-demand perception according to any Service Level Agreement
(SLA) [146] established with the users or customers. With this fact in mind, the Cloud
Management Frameworks (CMFs) —and as a consequence the resource providers oper-
ating a cloud— face a challenge when they are requested to provision a large number
of resources, specially when running large infrastructures [147] comprising more than
a few nodes. These on-demand and elastic perceptions mostly depend on the time
needed to serve the �nal resource requested, so a rapid provisioning should be one of
the objectives of any cloud provider.

This fact is specially true in Science Clouds, considering that a vast number of
scienti�c applications requiring interactive analysis need from the rapid provisioning
of resources, otherwise users must wait for their resources to be allocated, losing the
needed interactivity (Section 3.3.2.2).

On the other hand, some requests need co-allocation of the Virtual Machines (VMs),
as explained in Section 3.3.2.1. As I will explain later in Section 5.1 once the resources are
allocated for a request there is still a delay until they are actually available for the user.
Therefore, CMFs must ensure proper co-allocation not only ensuring that resources are
provisioned at the same time, but also assuring that they are delivered at the same time.

As it will be explained later on, besides the inherent delays introduced by the CMF
there are other factors contributing to this delay from the user standpoint. Any reduction
in each of these factors will yield on a better reactivity of the cloud, leading to an increase
of the ability to satisfy elastic requests on-demand.

In summary, in order to deliver a rapid service, this spawning delay or penalty has
to be decreased. It is the duty of the cloud provider to be able to provision e�ciently
the resources to the users, regardless of the size of the request, minimizing the costs of
mapping the request into the underlying resources[98].

We need to study how current CMFs can reduce the start time of the virtual machines
requested, therefore in this chapter:

We will study how the deployment of Virtual Machine Images (VMIs) into the
physical machines poses a problem to an Infrastructure as a Service (IaaS) resource
provider and how it introduces a penalty towards the users.

We will discuss several VMI transfer methods that alleviate this problem and

83

main February 3, 2016 13:07 Page 84 �
�	

�
�	 �
�	

�
�	

review the related work.

We implement and evaluate some of the described methods in an existing CMF.

We propose an improvement of the scheduling algorithm to take pro�t of the
VMIs cached at the physical nodes.

The rest of the chapter is structured as follows: Section 5.1 presents and develops the
problem statement that has been outlined in this introduction. Section 5.2 presents the
related research in the area. Section 5.3 contains the evaluation of some of the methods
described in the previous section. Section 5.4 contains a proposal of a modi�cation to the
scheduling algorithms, being evaluated in combination with the studied VMI transfer
methods. Finally, conclusions and future works are outlined in Section 5.5.

5.1. Problem Statement

Whenever a VM is spawned in a cloud environment, its VMI disk must be available
at the physical server. Obviously, if the image is not available on that host it needs to be
transfered, therefore the spawning will be delayed until the transfer is �nished. This
delay is specially magni�ed if the request consists on more than a few virtual machines,
as more data needs to be transfered over the network. As the underlying infrastructure
increases its size the problem becomes also bigger, as the potential number of requests
need to be satis�ed may become larger.

Regardless of the CMF being used, the process of launching a VM in an IaaS cloud
infrastructure comprises a set of common steps:

1. A VMI is created by some actor, such as a system administrator or an experienced
user, containing an speci�c software environment.

2. This image is uploaded to the cloud infrastructure image catalog or image reposi-
tory. This image is normally stored as read-only, therefore, if further modi�cations
(for example any user customization) need to be done on a given image, a new
one must be created, or an incremental di�erence can be stored, if the CMF allows
for that functionality.

3. A user requests one or several VMs based on this image, that will be spawned into
the physical machines.

84

main February 3, 2016 13:07 Page 85 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

4. The running VMs are customized on boot time to satisfy the user needs. This step
is normally referred as contextualization and it is performed by the cloud users.

The �rst two steps normally happen once in the lifetime of a VMI, meaning that
once the image is created and is available in the catalog, it is ready for being launched,
so there is no need to recreate the image and upload it again and again.

Assuming that the IaaS provider is able to immediately satisfy the user request (i.e.
there are enough available resources) whenever a user launches a VM, only the two
former steps will introduce a delay in the boot time. However, the last contextualiza-
tion phase is made once the virtual instance has booted, and it is normally a user’s
responsibility as it goes beyond the CMF control [31, 148].

Hence, the �eld where a IaaS resource provider can take actions to reduce the boot
time of a virtual machine is the spawning phase. This stage involves several management
and preparation operations that will depend on the CMF being used. Generally, these
operations will consist on one or several of the following steps:

Scheduling phase where the software selects the most suitable nodes to satisfy the
user’s request.

Image transfer if the image data is not available in the selected physical machine, the
CMF has to transfer it from the catalog into that host.

Image duplication once the image is available at the node. Some CMF duplicate the
image before spawning the virtual machine. This way, the original image remains
intact and it can be reused afterwards for another VM based on that same image.

Image preparation consisting in all the further image modi�cations prior to the virtual
machine spawning, needed to satisfy the user’s request. For instance, this step
can comprise the image resize, image format conversion, user-data injection into
the image, �le system checks, etc.

Taking as an example the OpenStack cloud testbed described in the experimental
setup of Section 5.3.1, Figure 5.1 shows the boot sequence for an instance once the request
is scheduled into a physical machine. In this request a 10 GB image was launched with
an additional local ephemeral disk of 80 GB. This ephemeral empty space is created
on the �y on the local disk of the physical machine, therefore it is not transferred over

85

main February 3, 2016 13:07 Page 86 �
�	

�
�	 �
�	

�
�	

the network. In this initial setup, the images are stored in the catalog server and are
transferred using Hiper Text Transfer Protocol (HTTP) when they are needed in the
compute host.

0 50 100 150 200 250 300 350
Time (seconds)

net config

data injection

eph disk creation

img resize

img duplication

img download

resource claim

Copy on Write (CoW) disabled

Figure 5.1: Chart of the boot process for one VM on an OpenStack cloud. The image used was
10GB large with an 80GB ephemeral disk.

According to Figure 5.1, the OpenStack spawning process is broken down into several
sub steps:

Resource claim The compute node checks if the requested resources are available,
and claims them before spawning the instance.

Image download The image is fetched from the image catalog, and it is stored in the
local disk.

Image duplication An exact replica image is created from the downloaded one.

86

main February 3, 2016 13:07 Page 87 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

Image resize The image is resized to �t into the size request by the user. Normally
minimal images are stored in order to spare disk and save transfer times, therefore
these images need to be resized into the correct �nal size.

Ephemeral disk creation An ephemeral virtual disk is created in the local disk. This
virtual disk is created on the �y and it is normally located on the local machine
disk, since it is a disposable space destroyed when the instance is terminated.

Data injection Any data speci�ed by the user is injected into the image. This step
needs to �gure out the image layout and try to inject the data into the correct
location. This is a prone to errors step since the image structure is unknown to
the middleware and therefore it can fail. It could be avoided with the usage of
contextualization, assuming that the images are properly con�gured.

Network con�guration The virtual network is con�gured and set up in the physical
node to ensure that the instance will have connectivity.

The Resource claim step belongs to the Scheduling phase, and the steps labeled
Image resize, Ephemeral disk creation, Data injection, Network con�guration belong to
the aforementioned Image preparation phase. Observing Figure 5.1 we can extract that
there are three big contributors to the boot time, namely Image download, the Image

duplication and the Ephemeral disk creation steps.
In this �rst test, raw images were used, meaning that the duplication involved the

creation of a complete copy of the original image. This could be easily diminished by
using Copy on Write (CoW) images.

The support for CoW images is implemented in all of the most common hypervisors
(being the only di�erence the supported formats). Forcing the usage of CoW by the CMF
reduces considerably the overhead, since it is not needed to duplicate the whole image
container [149]. The ephemeral disk (if it exists) can be also created using CoW, so its
contribution to the overhead will be diminished too. Therefore, one of the two biggest
contributors to the boot time for an instance can be easily shrink with the adoption of
CoW.

Figure 5.2 shows the same request, when the cloud infrastructure has been con�gured
to use CoW images. As it is seen, two of the three biggest penalties are reduced just by
switching to this method.

87

main February 3, 2016 13:07 Page 88 �
�	

�
�	 �
�	

�
�	

0 50 100 150 200 250 300 350
Time (seconds)

net config

data injection

eph disk cretion

img resize

img duplication

img download

resource claim

Copy on Write (CoW) disabled

Figure 5.2: Chart of the boot process for one VM on an OpenStack cloud con�gured to use CoW
images. The image used was 10GB large with an 80GB ephemeral disk.

However, the Image download still introduces a considerable penalty. Unfortunately,
this time is dependent on several factors:

The image delivery method used will have a large impact on the �nal time. It is
not the same to download an image from a single central location that transfer it
using peer-to-peer techniques.

The amount of data being transferred and obviously the image size: if several
hundred gigabytes need to be transferred over the network each time a machine
is booted, the delay will be di�cult to shrink.

The size of the request. It is not the same to swap just a few virtual machines than
spawning hundreds of VMs.

The load on the implied systems: the network usage, catalog server and compute
hosts load have an in�uence on the overall process.

88

main February 3, 2016 13:07 Page 89 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

Virtual machine images range from a few hundreds of MB to several GB [150, 151],
hence an e�cient image deliver method should try to tackle as much factors as possible.
It should try to use a good image transfer method, should try to reduce the amount of
data being transferred and thus reduce the load on the system. It should be also able
to satisfy large requests, that are quite common on scienti�c workloads. For example,
it is known that scienti�c communities often deploy a virtual cluster to support their
users [152, 153]; sets of machines to execute a parallel application or work�ow based
applications [121].

5.2. Related Work

Several authors have also identi�ed the image deployment phase as the biggest
overhead to be solved when spawning VMs in a cloud infrastructure. The following
subsections will describe several of the proposals that exist in the scienti�c literature for
addressing the image distribution issue.

One of the �rst approaches to reduce the image distribution time is to eliminate the
step itself. This could be accomplished by the usage of of a shared storage (Section 5.2.1)
or by the pre-deployment or pre-fetch of images (Section 5.2.2.2 and Section 5.2.2.3
respectively). The election of a good delivery method (Section 5.2.2.1) is also crucial.
Finally, some authors point towards di�erent and novel methods requiring further
developments (Section 5.2.3), that seem promising.

5.2.1. Shared Storage

This approach leverages the usage of a shared storage (such as access to a Network
Attached Storage (NAS) or a Storage Area Network (SAN)) to eliminate at all any explicit
image transfer. The catalog and the nodes share the same storage backend, thus once an
image is uploaded to the system it will be directly available on the physical hosts. This
method may seem ideal, however it has some drawbacks:

The VMI is served over the network and nodes with an intensive Input/Output
(I/O) may underperform.

It needs a dedicated and specialized storage system and network in order to not
overload the instance’s network with the access to the disks. This network needs

89

main February 3, 2016 13:07 Page 90 �
�	

�
�	 �
�	

�
�	

to be properly scaled, meaning that a good performance access and acceptable
reliability and availability are a must: if the shared storage does not perform as
expected, it will become a bottleneck for the cloud infrastructure and will impact
negatively on the virtual machines performance.

If the system is not reliable or has a low availability, the images could not be
accessed. Therefore, the IaaS resource provider needs to invest in having a good
shared storage solution, with a high availability.

The access to the shared storage by the physical machines (i.e. the hypervisor
nodes) will consume resources and create undesirable Virtual Machine Monitor
(VMM) Noise. This VMM Noise has been shown to have a negative impact in the
virtualized guests running on those hosts and is something to avoid in scienti�c
computing environments [154, 155, 156, 157] due to the disturbances that it may
cause in the executions.

5.2.2. Image Transfer Improvements

5.2.2.1. On Demand Downloading

If no shared storage is in place, the most common approach in many CMFs is to
transfer the images on-the-�y into the compute nodes when a request to launch a speci�c
machine is made.

This is the most common and simple approach, and as already exposed in Section 5.1
the penalty introduced by this method will vary according to the size of the image, the
size of the request, the network connectivity of the infrastructure, the load on the catalog
servers and the transfer protocol being used.

In this case, the objective should be reducing the image transfer time. In this line there
is a clear trend towards studying Peer-to-Peer (P2P) mechanisms in cloud infrastructures
and data-centers. Zhang Chen et al. [147] proposed an e�ective approach for virtual
images provisioning based on BitTorrent. Laurikainen et al. conducted a research
focused on the OpenNebula CMF, taking only into account the replacement of the native
image transfer method by either BitTorrent or Multicast [158]. Their conclusions showed
that the existent image transfer manager (based on SSH) was rather ine�cient for large
requests and therefore it needed to be modi�ed.

90

main February 3, 2016 13:07 Page 91 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

Wartel et al. studied BitTorrent among other solutions as the image transfer method
for their initial CERN cloud infrastructure [159]. This study showed a signi�cant per-
formance gain when using BitTorrent over the other studied methods (that included
multicasting). In the same line, Yang Chen et al. have proposed a solution based on mul-
ticasting the images instead of a direct download from the image catalog, in combination
with a more e�cient scheduling [160] algorithm. However, transfer an image using
multicast into the nodes implies that the server is initiating the transfer (i.e. the server
pushes the image into the nodes) instead of the image being pulled from the hosts. This
also forces that the deployment of the images is synchronized, therefore introducing
extra complexity to the scheduling algorithms that must take this synchronization into
account.

Once the image is downloaded into the node, this image can be cached and reused
afterwards in a subsequent request. This feature opens the door to the pre-deployment
of images and the image pre-fetch, that will be discussed in Section 5.2.2.2 and Sec-
tion 5.2.2.3 respectively. Multicasting is an interesting option for these two cases, since
the deployment could be done in a coordinated way, without interfering with the
scheduling algorithms, but when compared with multicast, using a P2P method intro-
duces another advantage: the nodes that have an image available are part of the P2P
network, participating actively in the transfer when a new request is made.

5.2.2.2. Pre-Deployment of Images

A di�erent approach towards the elimination of the image transfer prior to the image
boot consists on the pre deployment of the whole or a portion of the image catalog into
the physical machines. In some environments this might be a valid solution, but it is not
a�ordable in large setups for several reasons:

In an infrastructure with a large catalog, storing some TB images, a considerable
amount of disk space would be wasted on the nodes, not to say the penalty incurred
when transmitting those images over the network. Considering that not all the
images will be spawned into all the nodes at a time, this resource consumption is
not a�ordable.

The pre-deployment process can overload the catalog server when it is triggered,
causing a denial of service if it is not carefully scheduled.

91

main February 3, 2016 13:07 Page 92 �
�	

�
�	 �
�	

�
�	

A CMF using this method should also consider that a VMI that has been recently
uploaded to the catalog may not be immediately available to the user, since it has
to be pre-seeded into the nodes, so an alternative, on-demand method should still
be available.

5.2.2.3. Smart Pre-Fetch

Another possibility, related to the previous one, is performing a selective pre-
deployment of the images into the nodes (i.e. smart pre-fetch). Instead of the passive
deployment of the whole catalog (or a large portion of it) into the nodes, the scheduler
may chose to trigger a download of an image in advance, so that it anticipates a user
request.

Image popularity (i.e. how often an image is instantiated) can be used as a parameter
to decide which images to pre-fetch. A naive approach could be summing up how many
virtual machines have been instantiated from a given image. Figure 5.3 shows the image
popularity for a set of 13 500 VMs execute by 150 di�erent users on the IFCA production
infrastructure described in Appendix A.1 during one year in ascending order. The Y-axis
shows the number of instances that were based on a given image.

VM Images (sorted)
0

100

200

300

400

500

600

Nu
m

be
r o

f i
ns

ta
nc

es
 (l

og
)

Image popularity

Figure 5.3: Image popularity based on the number of Virtual Machines spawned per image. Each
bar represents a di�erent image.

As it can be seen, and even if this popularity calculation is too naive and simplistic,
a large proportion of the spawned instances is based on a small number of images. This

92

main February 3, 2016 13:07 Page 93 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

is con�rmed by some other authors that have observed the same behaviour in related
works, such as Peng et al. [161].

Therefore, if the CMFs could take advantage of the image popularity making those
VMs available on some nodes the e�ciency of the image booting process will improve.

5.2.3. Other Methods

Lagar-Cavilla et al. have developed Snow�ock [162], a new model for cloud comput-
ing that introduces VM forking in a way similar to the well known and familiar concept
of process forking. This method permits the cloning of an already running VM into
several identical copies. However this is not transparent, and the users need to be aware
of its semantics and program their application accordingly.

Some other authors have chosen a totally di�erent approach relying on the fact that
the image is not needed completely at once, therefore it can be divided into smaller
chunks that will be transferred when they are needed. Peng et al. propose the usage of
a collaborative network based on the sharing of similar image chunks [161]. In their
studies, they found that this approach was more e�cient than the usage of a P2P network,
but it requires a long running preprocessing step. Moreover, this is true for the cases
analyzed, where the number of di�erent VMs requested at a time was not big but this
may not apply to other cases, such as scienti�c cloud providers where the same image
may need to be spawned into several nodes.

The work from Nicolae et al. is also based on this approach. They implemented a self
adaptive mechanism, based on lazy downloads of image chunks, based on previously
recorded access patterns [163].

5.3. Transfer Method Evaluation

As Section 5.2 exposed, there is not a single solution for solving the image distribution
problems, as all of the presented schemes have their advantages and disadvantages. In
some situations, the usage of a shared backend may be the best solution but it would
not �t others. For example, sites deploying virtual machines that need high availability
may already use a shared backend so that it is possible to quickly recover a running
machine from a failure, whereas sites devoted to HTC and HPC computing may not �nd
this deployment appropriate as it may impact their performance.

93

main February 3, 2016 13:07 Page 94 �
�	

�
�	 �
�	

�
�	

However, there is room for improvement in the image transfer method, taking into
account that this is the default method for the most used CMF. Therefore, in this Section
several image transfer methods will be evaluated and compared.

5.3.1. Experimental Setup

In order to implement the solution proposed we have used the OpenStack [141]
CMF, in its Icehouse (2014.1) version, on top of the testbed described in Appendix A.3,
consisting on a head node hosting all the required services to manage the cloud in-
frastructure, an image catalog server and 24 compute nodes that will eventually host
the spawned virtual machines. All of them are identical machines, with two four-core
Intel®Xeon®E5345 2.33 GHz processors, 16 GB of RAM and one 140 GB, 10 000 rpm
hard disk.

The network setup of the testbed consists on two 10 Gbit Ethernet switches, inter-
connected with a 10 Gbit Ethernet link. All the hosts are evenly connected to these
switches using a 1 Gbit Ethernet connection.

The operating system being used for these tests is an Ubuntu Server 14.04 LTS,
running the Linux 3.8.0 Kernel.

In order to execute the same tests easily, a benchmarking as a service product was
used: Rally [164]. This tool allows for the de�nition and repetition of benchmarks, so
that the benchmarking tests can be reproduced later on.

OpenStack’s default method for distributing the images into the nodes is an on-
demand deployment: the images are fetched from the catalog when the new virtual
machine is scheduled into a compute (physical) node and its image cannot be found on
that host.

The catalog service component (whose codename is Glance) stores the images using
one of the many available backends, but independently of the backend used and the
default transfer method is HTTP. When Glance stores the images in a �lesystem it is
possible to setup a shared �lesystem so that the space where the images are stored
by Glance are available on the compute nodes. Other backends allow to distribute the
images over the network using di�erent protocols and methods (for example, using the
Ceph Rados Block Devices (RBD)). However, since we wanted to test the in�uence of
the transfer from the catalog to the nodes, the default method was used.

94

main February 3, 2016 13:07 Page 95 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

5.3.2. Test Results

In order to evaluate the e�ect of the image transfer method the system was stressed
by making requests that involved fetching a large number of images, as described in
Table 5.1, using several methods: HTTP, File Transfer Protocol (FTP) and BitTorrent.
5 GB images were used and the scheduler was con�gured to evenly distribute the images
among the hosts in the cluster in order to maximize the e�ect of the image transfer on
the nodes. All the tests were done by triplicate.

Name VMs per host Di�erent images Total number of VMs

1x192 8 1 192
2x96 8 2 192
4x48 8 4 192
8x24 8 8 192

Table 5.1: Request characteristics.

5.3.2.1. HTTP Transfer

In the �rst place the images were transferred using HTTP, since it is the default
image transfer method available on OpenStack. Figure 5.4, shows the required time to
boot the virtual machines for each of the requests in Table 5.1.

The best scenario in these tests is where a user requests a single image (1x192 in
Figure 5.4). This is mainly because of the e�ect of the cache that is available in each of
the nodes. Once the image is downloaded in a node, all the subsequent virtual machines
can be spawned using that cached image (this fact is also true for the other studied
methods). The worst scenario is when the user requested 8 groups if 24 virtual machines
(8x24 in Figure 5.4), since all the 8 images had to be downloaded into each of the nodes.

5.3.2.2. FTP Transfer

As a second step, the File Transfer Protocol (FTP) was used, therefore the built-in
HTTP server was substituted with a dedicated FTP. Figure 5.5 shows again the results
for the requests in Table 5.1.

As it can be seen, the boot time is almost the same for both methods, being FTP
more homogeneous over HTTP, resulting in a most uniform boot time for the machines.

95

main February 3, 2016 13:07 Page 96 �
�	

�
�	 �
�	

�
�	

0 50 100 150 200
Number of instances

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Ti

m
e

(s
)

Transfer method: http

1x192 2x96 4x48 8x24

Figure 5.4: Waiting time as a function of the number of instances requested when the images
are fetched using HTTP. 1x192 means 1 request of 192 machines using the same image; 2x96, 2
requests of 96 machines using two di�erent images, 4x48, 4 requests of 48 machines with four
di�erent images; and 8x24 8 requests of 24 machines with eight di�erent images.

5.3.2.3. BitTorrent Deployment

Both the HTTP (Section 5.3.2.1) and FTP (Section 5.3.2.2) are based on a centralized
client-server model. In order to see how the system performs using a P2P model we
adapted OpenStack image delivery method to use BitTorrent. It was chosen for several
reasons: it is a protocol designed for to reduce the impact of transferring large amounts of
data over the network [165]; it is widely used in a daily basis and there is a wide range of
libraries, clients and applications available; moreover, due to this lively implementation
ecosystem, we found that it could be easily integrated into OpenStack.

The chosen implementation was libtorrent [166], as it has Python bindings and
OpenStack is written entirely in Python, thus it was easily integrable. Our swarm used

96

main February 3, 2016 13:07 Page 97 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

0 50 100 150 200
Number of instances

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Ti

m
e

(s
)

Transfer method: ftp

1x192 2x96 4x48 8x24

Figure 5.5: Waiting time as a function of the number of instances requested when the images are
fetched using FTP. 1x192 means 1 request of 192 machines using the same image; 2x96, 2 requests
of 96 machines using two di�erent images, 4x48, 4 requests of 48 machines with four di�erent
images; and 8x24 8 requests of 24 machines with eight di�erent images.

the BitTorrent Distributed Hash Table (DHT) extension, so that it was possible to use
tracker-less torrents, although it is perfectly feasible to run a tracker. The client in each
node was con�gured to run only three concurrent active downloads, since in preliminary
tests we observed this was the best choice for our infrastructure.

The results for serving the same requests as in the HTTP and FTP cases are show in
Figure 5.6.

In our implementation a new torrent is generated whenever a new image is uploaded
to the catalog. The torrent metadata is stored along with the ordinary image metadata
so that whenever a download of this image is requested, both the normal HTTP and the
torrent’s magnet link are provided to the compute node. If the node needs to download

97

main February 3, 2016 13:07 Page 98 �
�	

�
�	 �
�	

�
�	

0 50 100 150 200
Number of instances

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Ti

m
e

(s
)

Transfer method: bittorrent 3 active

1x192 2x96 4x48 8x24

Figure 5.6: Waiting time in function of the number of instances requested when the images are
fetched using BitTorrent. 1x192 means 1 request of 192 machines using the same image; 2x96, 2
requests of 96 machines using two di�erent images, 4x48, 4 requests of 48 machines with four
di�erent images; and 8x24 8 requests of 24 machines with eight di�erent images.

the image, and a magnet link is available, this peer (i.e. a BitTorrent client) will join the
swarm (i.e. all peers sharing a torrent). Due to the segmented �le transfer that BitTorrent
implements, this peer is able to seed (i.e. send its available data) the received data to the
other peers. This way, the original seeder of the image (i.e. the catalog server) is freed
from sending that portion to every peer of the network.

5.3.3. Result Comparison

A comparison of the three methods evaluated (that is, transfer the images using
HTTP, FTP and BitTorrent, and pro�t from the images caching) is shown in Figure 5.7.

Both FTP and HTTP threw similar results, being those limited by the bandwidth of

98

main February 3, 2016 13:07 Page 99 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

1x
19

2

2x
96

4x
48

8x
24

Request type

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Ti

m
e

(s
)

Time needed to boot all the requested machines

bittorrent 3 active ftp http

Figure 5.7: Seconds elapsed from request until all the machines were available. The VMIs used
was 5GB large, and they were spawned on 24 hosts.

the server node. Using BitTorrent, there is a signi�cant transfer time reduction. In the
worst scenario (8x24: running 192 virtual machines, distributed in 8 di�erent images in
24 nodes) it was possible to start the 192 machines at approximately one third of the
time required to run those machines using HTTP or FTP.

If we take into account the boot time for the �rst machine of the request we can �nd
interesting results. Figure 5.8 shows the elapsed time until the �rst machine is available.
In this case, BitTorrent also outperforms the other transfer methods, making possible
to deliver the machines earlier to the users except in the case of transferring only one
image into all the nodes. In this case, HTTP and BitTorrent throw similar results.

Another important fact is that the adoption of BitTorrent not only has the e�ect of
reducing the transfer time, but it also reduces the load of the catalog server. Since the
image distribution leverages the advantages of the P2P network, where all the nodes
participate in the transfer, the catalog does not need to transfer all the data to all of the
nodes.

99

main February 3, 2016 13:07 Page 100 �
�	

�
�	 �
�	

�
�	

1x
19

2

2x
96

4x
48

8x
24

Request type

0

1000

2000

3000

4000

5000

6000

7000

8000
Ti

m
e

(s
)

Time needed to boot the first machine

bittorrent 3 active ftp http

Figure 5.8: Seconds elapsed from request until the �rst machine of the request is available. The
VMIs used was 5GB large, and they were spawned on 24 hosts.

As it can be seen in Figure 5.9 and Figure 5.10, using BitTorrent makes possible to
satisfy the same request at a fraction of the CPU usage and specially network bandwidth
when compared with HTTP and FTP, resulting in a better utilization of the resources.

However, using BitTorrent has its drawbacks also. It needs another running service
(a tracker, although it could be avoided using a Distributed Hash Table (DHT)). Moreover,
the creation of a torrent �le whenever a new machine image is added to the catalog
takes a considerable amount of time and resources, growing with the size of the �le.
Therefore the torrent will not be available as soon as the image is uploaded, but a lapse
of time will be introduced. Since this operation is done only once in the lifetime of a
virtual machine it can be considered as part of the initial upload process.

100

main February 3, 2016 13:07 Page 101 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

(a) HTTP.

(b) FTP.

(c) BitTorrent.

Figure 5.9: CPU usage for a 192 VMs request using 8 di�erent images (8x24) on the catalogue
node.

5.4. E�cient Image Distribution

The previous made emphasis in the e�ect of the image distribution method on
the boot time for a virtual machine. All of the presented tests started from a clean
environment, meaning that there were no images cached in the nodes. The tests were
designed to stress the infrastructure so that the image transfer e�ects could be clearly
noticed. In this section a di�erent test will be performed so as to take into account
the images cached in a physical node when making scheduling decisions under more
realistic scenarios.

In order to evaluate the proposed solution, I have implemented the design described

101

main February 3, 2016 13:07 Page 102 �
�	

�
�	 �
�	

�
�	

(a) HTTP.

(b) FTP.

(c) BitTorrent.

Figure 5.10: Network usage for a 192 VMs request using 8 di�erent images (8x24) on the catalogue
node.

next for the OpenStack Filter Scheduler, as described in Section 4.3.
Four di�erent scenarios were tested: using the OpenStack’s unmodi�ed scheduling

algorithm and using a cache-aware scheduler; using both HTTP and BitTorrent as the
transfer methods. This way the tests would asses not only the e�ect of the cache but
also the transfer method.

In our test environment all the hosts have the same hardware characteristics, so
when they are empty they are equally eligible for running a machine. As explained, the
nodes will get the same weight and �nally a random selection is done. Therefore it is
possible that a machine is scheduled in a node that does not have the image available,

102

main February 3, 2016 13:07 Page 103 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

when there is another node with the same weight with the image cached. In the best
case, the image is transferred only once (that, is for the �rst request), whereas in the
worst case the image will have to be transferred every time it is used.

By default OpenStack has an image cache in each of the nodes, but the scheduler
does not take it into account when selecting the host that will execute a machine. I
developed several modules for OpenStack1, allowing to weight the hosts taking into
account their cached images. First of all, the nodes have report their cached images
back to the scheduler. Afterwards, the cache weighter will simply weight the nodes as
follows:

wcache(h) =

{
1 if image is cached
0 otherwise

No other other sanity checks were applied in the weighter since this is not the
purpose of our function (there are speci�c weighters and �lters that should prevent to
overload a host).

Therefore, with the above con�guration in the cache-aware tests, the images were
only transferred the �rst time they are scheduled, since all the subsequent requests will
be scheduled in any of those hosts.

5.4.1. Evaluation

In order to make a realistic evaluation, I executed di�erent simulated request traces
for each of the scenarios described before: that is, an scheduler with and without cache,
using HTTP and BitTorrent.

Two arrival patterns using an exponential distribution [168] were generated: one
requesting at a rate of 80 machines per hour and a second one for 100 machines per
hour. For each of the requests I assigned an image chosen randomly from a given set of
4 images. Finally, the two resulting traces were executed in each of the four scenarios.

Figure 5.11 shows the scatter plot of the seconds needed to boot each of the requests
and its respective request pattern for 80 machines at an arrival rate of 80 machines per
hour. Figure 5.12 shows the kernel density estimation of the test.

1
Á. LópezGarcía. OpenStack Compute Scheduler Cache Aware. url: https://blueprints.launchpad.

net/nova/+spec/cache-aware-weigher.

103

https://blueprints.launchpad.net/nova/+spec/cache-aware-weigher
https://blueprints.launchpad.net/nova/+spec/cache-aware-weigher

main February 3, 2016 13:07 Page 104 �
�	

�
�	 �
�	

�
�	

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

Se
co

nd
s

Seconds elapsed to boot a machine (rate 80 VM per hour)
cache bt
cache http
nocache bt
nocache http

0 500 1000 1500 2000 2500 3000 3500 4000
Time

img A

img B

img C

img D

Im
ag

e

Request pattern

Figure 5.11: Seconds elapsed to boot a machine for 80 requests during 1 h, with the corresponding
requests trace. nocache http and nocache bt refer to the default scheduling method using HTTP
and BitTorrent respectively, whereas cache http and cache bt refer to the cache-aware scheduler,
using HTTP and BitTorrent respectively.

Besides, Figure 5.13 contains the plot for 100 machines at an arrival rate of 100

machines per hour, with the corresponding density function shown in Figure 5.14.
As it can be seen in both Figures 5.11 and 5.13, in all evaluated scenarios the minimum

values are similar and very low due to the e�ect of the cache. In the cases when the
scheduler did not have this feature available there is still a random chance that a machine
is scheduled in a node with the image cached, thus the observed results. The probability
of using a node with the image already available increases with time (more nodes have
been used and therefore more nodes have the image cached) and as a consequence the
boot times for the last images was lower. When the cache-aware scheduler was used,
only the �rst machines started require transfer to the nodes, hence the boot times are
reduced to the minimum early in the execution of the trace.

On the other hand, Figures 5.12 and 5.14 thrown interesting results, considering the
size of the requests. The best results are always obtained when using BitTorrent and a

104

main February 3, 2016 13:07 Page 105 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

0 200 400 600 800 1000
Seconds

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
De

ns
ity

KDE (rate 80 VM per hour)

cache bt cache http nocache bt nocache http

Figure 5.12: Kernel Density Estimation (KDE) for the time elapsed to boot the requests in Figure 5.11.
nocache http and nocache bt refer to the default scheduling method using HTTP and BitTorrent
respectively, whereas cache http and cache bt refer to the cache-aware scheduler, using HTTP and
BitTorrent respectively.

cache-aware scheduler. However, the next best case depends on the request pattern. In
the case of a rate request of 100 machines per hour, using BitTorrent without a cache is
better than using HTTP with a cache, but in the case of a rate of 80 machines per hour it
is better to use the later. This observation is due to the fact that in the 100 machines case
there is a large initial portion of images that need to be transmitted if compared with
the 80 machines case (as depicted by the dots between time 0 and 500 in Figures 5.11
and 5.13). Therefore BitTorrent outperforms HTTP, as already explained in Section 5.3.3.
The cache does not consider the images that are being fetched, therefore the scheduler
cannot take them into account. As the 100 machines case requests machines at a higher
rate they are being scheduled when the images are not yet available, thus the observed

105

main February 3, 2016 13:07 Page 106 �
�	

�
�	 �
�	

�
�	

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

1400
Se

co
nd

s
Seconds elapsed to boot a machine (rate 100 VM per hour)

cache bt
cache http
nocache bt
nocache http

0 500 1000 1500 2000 2500 3000 3500 4000
Time

img A

img B

img C

img D

Im
ag

e

Request pattern

Figure 5.13: Seconds elapsed to boot a machine for 100 requests during 1 h, with the corresponding
requests trace. nocache http and nocache bt refer to the default scheduling method using HTTP
and BitTorrent respectively, whereas cache http and cache bt refer to the cache-aware scheduler,
using HTTP and BitTorrent respectively.

results.

5.4.2. Image pre-fetch

As already explained, the usage of the cache with BitTorrent outperforms all of the
other methods. In order to evaluate its e�ect regarding the tests shown in Section 5.3
the same requests from Table 5.1 were recreated with the images already cached on the
nodes. Obviously, in this test we do not evaluate the penalty introduced by the image
transfer since there is no transfer at all, but it is interesting in order to evaluate the
overall performance of the system. As it can be seen in Figure 5.15, the booting time
was dramatically reduced in all cases: booting all the 192 machines was done in less
than 45 seconds as the only delays introduced where due to the scheduling algorithm
and the di�erent management operations.

106

main February 3, 2016 13:07 Page 107 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

0 500 1000 1500 2000
Seconds

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
De

ns
ity

KDE (rate 100 VM per hour)

cache bt cache http nocache bt nocache http

Figure 5.14: Kernel Density Estimation (KDE) for the time elapsed to boot the requests in Figure 5.13.
nocache http and nocache bt refer to the default scheduling method using HTTP and BitTorrent
respectively, whereas cache http and cache bt refer to the cache-aware scheduler, using HTTP and
BitTorrent respectively.

5.5. Conclusions

In this chapter, I have evaluated several methods for the distribution of Virtual
Machine Images (VMIs) into the compute nodes of a cloud infrastructure. Although the
work was performed using the OpenStack Cloud Management Framework (CMF), the
results can be extrapolated to other CMFs using similar transfer methods.

The experiments showed that composing a Peer-to-Peer (P2P) network based on a
well established protocol such as BitTorrent is a simple, feasible and realistic solution to
decrease the burden on the server and to reduce the transfer time to a smaller fraction
of time.

Moreover, we also evaluated the usage of an image cache in each of the compute

107

main February 3, 2016 13:07 Page 108 �
�	

�
�	 �
�	

�
�	

0 50 100 150 200
Number of instances

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Ti

m
e

(s
)

Transfer method: cache

1x192 2x96 4x48 8x24

Figure 5.15: Waiting time in function of the number of instances requested when the images
are cached in the nodes. 1x192 means 1 request of 192 machines using the same image; 2x96, 2
requests of 96 machines using two di�erent images, 4x48, 4 requests of 48 machines with four
di�erent images; and 8x24 8 requests of 24 machines with eight di�erent images.

nodes. Using an image cache obviously reduces the boot time to a minimum, since there
is no transfer at all, therefore having a scheduler that takes this into account is a need.
The best results were obtained when the the scheduler was adapted to take into account
this cache, coupled with the usage of BitTorrent as the image transfer method. Therefore,
both solutions are complementary: on the one hand we reduce the image transfer time
when it is needed, and on the other hand we pro�t from the cached images whenever
possible.

Taking into account those results, there is room for future work and improvements
in the cloud scheduling algorithms so as to improve the boot time for virtual machines.
Cloud schedulers should be adapted to be cache-aware, implementing at the same time

108

main February 3, 2016 13:07 Page 109 �
�	

�
�	 �
�	

�
�	

Chapter 5. E�cient Image Deployment

policies that would ensure a compromise between a fast boot time (i.e. the usage of a
node with an image cached) and a fair utilization of the resources (i.e. not constricting
all request to be scheduled only in one node). In this regard, the OpenStack Compute
Scheduler has been a modi�ed so as to take into account cached images when scheduling
new instances2.

On the other hand users tend to request images comprised in an small set of images (as
shown in Figure 5.3 and explained in Section 5.2.2.3). Therefore, the usage of popularity
based distribution algorithms (so that the most used images are available in the hosts)
together with the cache aware scheduling would introduce remarkable improvements
in the deployment times. In this regard, cloud monitoring [146] plays a key role, since
one of the premises for doing a proper pre-fetching is proper monitoring so as to get
proper metrics to evaluate if an image will be deployed or not.

2
Á. LópezGarcía. OpenStack Compute Scheduler Cache Aware. url: https://blueprints.launchpad.

net/nova/+spec/cache-aware-weigher.

109

https://blueprints.launchpad.net/nova/+spec/cache-aware-weigher
https://blueprints.launchpad.net/nova/+spec/cache-aware-weigher

main February 3, 2016 13:07 Page 110 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 111 �
�	

�
�	 �
�	

�
�	

6Preemptible Instances Scheduling

main February 3, 2016 13:07 Page 112 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 113 �
�	

�
�	 �
�	

�
�	

Chapter 6. Preemptible Instances Scheduling

As it has been already explained, using clouds for batch processing introduces
resource allocation problems for resource providers if the resources are going to be shared
with di�erent workloads (for example, interactive executions) or they are requested by
di�erent users. Since virtual machines spawned in a cloud do not have a termination
time, the resource providers need to manage their resources in a way that all users and
kinds of workloads are able to access the infrastructure. Normally, this is accomplished
by a static partitioning of the resources, that will eventually lead to an underutilization
of the infrastructure or that will make impossible to react to demand peaks.

In this chapter I will tackle this allocation problem from the perspective of the re-
source provider, proposing a mechanism based on preemptible or terminable instances.
This mechanism would make possible that resources are used together to run long
running and fault tolerant tasks —such as batch processing— together with other work-
loads that need from interactivity or that are not fault-tolerant. The system proposed is
modular enough so that more complex pricing of priorities system can be developed on
top of it.

Even if the work is set out so as to satisfy the di�erent workloads being executed
in scienti�c datacenters, its use cases are not limited to that �eld, as the preemptible
mechanism could be easily adopted by commercial providers so as to get a better usage
of their infrastructure, o�ering an interesting computational option to their users.

In Section 6.1 I present the problem statement and background. I review the related
work in Section 6.2. In Section 6.3 I propose a design for scheduling preemptible instances,
that I evaluate in Section 6.4. Finally, the conclusions are presented in Section 6.6.

6.1. Problem Statement

Performing an e�cient resource provisioning is a fundamental aspect for any re-
source provider. Traditionally, Local Resource Management Systems (LRMS) or batch
systems have been used for decades to obtain the best usage of the resources as long as
they provide a fair usage and partition of the resources for the users. In these systems,
tasks (jobs) with a de�ned duration are executed according to their priority in the avail-
able resources. The system manages the tasks for several users, so as to ensure that all
of them have their share in a given time window.

On the other hand, as I already explained, clouds are gaining interest in the scien-

113

main February 3, 2016 13:07 Page 114 �
�	

�
�	 �
�	

�
�	

ti�c computing. However, unlike in batch processing environments, virtual machines
spawned in a cloud do not have �xed duration in time and are supposed to live forever
—or until the user decides to stop them. This fact, as explained in Chapter 3, is one of
the factors that make di�cult for a provider to scale and partition their resources, since
the requested resources can live forever if the user decides to do so.

In a commercial cloud provider this would not be a problem, since customers are
being charged for their usage, so the provider would get revenues even if the machines
are idle, but in the academia users do not usually pay —or at least they are not charged
directly— for their resources. In a scienti�c computing facility it is desirable to get the
maximum utilization of the resources, therefore idle nodes are not desirable as long as
there is processing that needs to be done.

This issue could be solved by limiting the amount of resources that a user or group
is able to consume, that is, doing a static partitioning of the resources. This kind of
resource allocation, however, leads to an underutilization of the infrastructure since
the partitioning needs to be conservative enough so that other users could utilize the
resources.

The adoption of special instance types with a �xed duration or wall time could be
considered as another possibility, so that a cloud computing infrastructure would behave
like a batch system, queuing requests until there is some room for them. Due to the
fact that the running virtual machines have a �xed duration, there would be a free slot
sooner or later, so the request will be ful�lled after some queued time. However, this
approach collides with the rapid elasticity and on-demand characteristics of the cloud
model [1], expected by many users [114]. Since the requests need to be queued until
they can be scheduled, users are not able to get a machine in a short period of time they
lose the interactivity needed by their applications. Once again, this could be solved by a
�xed resource allocation, but this will lead to a resource underutilization as well.

Another approach more would be �nding a scheduling mechanism that makes
possible that batch processing and interactive sessions could live together. This is an
option possible in traditional batch systems using advanced techniques such as task
suspension, preemption and checkpointing [169, 170, 171], where a higher priority task
(for example, a short and interactive task) is able to get a slot because some other lower
priority batch tasks are stopped or preempted so that their slots can be used by the new
ones.

114

main February 3, 2016 13:07 Page 115 �
�	

�
�	 �
�	

�
�	

Chapter 6. Preemptible Instances Scheduling

In the cloud, some commercial providers provide similar concepts in their o�erings.
For example, in the Amazon Elastic Compute Cloud (EC2) (EC2) Spot Instances [172]
users are able to select how much they are willing to pay for their resources —i.e. they
put a bid on their desired price— in a market where the price �uctuates accordingly to
the demand. Those requests will be executed taking into account the following points:

The EC2 Spot Instances will run as long as the published spot price is lower than
their bid.

The EC2 Spot Instance will be terminated when the spot price is higher than the
bid (out-of-bid).

If the user terminates their spot instances, the complete usage will be accounted,
but if it gets terminated by the system, the last partial hour period will not be
accounted.

When an out-of-bid situation happens —meaning that there is no room in the
infrastructure to satisfy a request with a higher price—, the running spot instances
will be terminated without further advise. This rough explanation of the Amazon’s Spot
Instances can be considered similar to the traditional job preemption based on priorities,
with the di�erence that the priorities are being driven by an economic model instead by
the usual fair-sharing or credit mechanism used in batch systems.

More recently, the Google Cloud Engine (GCE) [173] has released a new product
branded as Preemptible Virtual Machines [174]. These new Virtual Machine (VM) types
are short-lived compute instances suited for batch processing and fault-tolerant jobs,
that can last for up to 24 h and that can be terminated if there is a need for more space
for higher priority tasks within the GCE.

This kind of cloud usage can be leveraged by many fault-tolerant use cases not
limited to scienti�c computing with applications ranging from Big Data to web crawling.
The preemptible or spot instances can accommodate workloads designed or adapted to
be interruption tolerant, so the customers running them can access computing resources
at a fraction of the normal price. This concept of terminable instances can be used
therefore to increase the global usage of a cloud computing infrastructure, making
possible that users get computing power at a fraction of the price.

In order to be able to model any prizing, bidding or priority mechanism, an initial
abstraction needs to be implemented in the underlying Cloud Management Framework

115

main February 3, 2016 13:07 Page 116 �
�	

�
�	 �
�	

�
�	

(CMF) so that an instance can be tagged as preemptible and terminated by the cloud
scheduler if needed. Once this initial abstraction is done, it would be possible to im-
plement a market driven by an economic model, as the Amazon EC2 Spot Instances
does, but it also makes possible to develop any other model, driven by a fair-sharing
mechanism or a credit system, just to cite some possibilities.

6.2. Related Work

The resource provisioning from cloud computing infrastructures using spot instances
or similar mechanisms has been addressed profusely in the scienti�c literature in the last
years. However, the vast majority of this work has been done from the users’ perspective
when using and consuming spot instances.

Voorsluys et al. have studied the usage of spot instances to deploy reliable virtual
clusters [96, 116], managing reliably the allocated spot instances. Jain et al. have
performed studies in the same line, but focused on using a batch system that leverages
the spot instances [175]. In [127] the authors develop a work�ow scheduling scheme
that reduces the waiting time using spot instances.

Regarding Big Data analysis, several authors have studied how the usage of spot
instances could be used to execute MapReduce workloads reducing the monetary costs,
such as in [176, 177].

The usage of spot instances for opportunistic computing is another usage that
has awaken a lot of interest, especially regarding the design of an optimal bidding
algorithm that would reduce the costs for the users [178, 179]. There are already existing
applications such as the vCluster framework [180] that can consume resources from
heterogeneous cloud infrastructures in a fashion that could take advantage of the lower
price that the spot instances should provide.

Due to the unpredictable nature of the spot instances, there are several research
papers that try to improve the task completion time —making the task resilient against
termination— and reduce the costs for the user. Andrzejak et al. [181] propose a
probabilistic model to obtain the bid prices so that the costs and performance and
reliability can be improved. In [182, 183, 184, 185] the task checkpointing is addressed
so as to minimize costs and improve the whole completion time.

116

main February 3, 2016 13:07 Page 117 �
�	

�
�	 �
�	

�
�	

Chapter 6. Preemptible Instances Scheduling

To the best of our knowledge, there is a lack of research in the feasibility, problematics,
challenges and implementation from the perspective of the IaaS provider.

Nadjaran Toosi et al. have developed a Spot Instances as a Service (SIPaaS) framework,
a set of web services that makes possible to run a spot market on an OpenStack cloud
[186]. However, this framework is designed to work on top of a cloud, not being
integrated with the rest of the system. A system such as SIPaaS or the related Ex-CORE
auction algorithm could pro�t from my proposed architecture and design, integrating
the execution of spot instances within the OpenStack scheduler.

6.3. Preemptible Instances Design

As brie�y exposed in Section 6.1, the �rst step for making preemptible instances
a reality is the initial abstraction inside the CMFs schedulers so that a user can tag
an instance as being preemptible. This basic functionality should be the keystone for
modeling any more complex system, such as the ones based in stock prices �uctuations.

This functionality should be designed and implemented in an agnostic and modular
way, so that it is not dependant on any economic or priority model driving the price
and instance selection. This way, the most basic preemptible instances mechanism
—that is, without taking into account prices or priorities, just preemptible versus normal
instances— can be o�ered by the resource providers.

The aim of this work is to design a modular system so that it would be possible
to model any more complex model on top of this design once the initial preemptible
mechanism is in place. With this vision, the scheduler should be smart enough to
discriminate between two instance types: preemptible and non-preemptible or normal
instances. A normal instance should be able to occupy the space utilized by a preemptible
instance if the scheduler is not able to satisfy this request using free resources. Therefore,
whenever a new request needs to be scheduled, the CMF should take the appropriate
action, taking into account if it is a preemptible instance or not.

If it is a normal instance and there are no free resources for it, it must check if the
termination of any running preemptible instance will leave enough space for the
new instance.

• If this is true, those instances should be cleared out and the new VM should
be scheduled into that freed node.

117

main February 3, 2016 13:07 Page 118 �
�	

�
�	 �
�	

�
�	

• If this is not possible, then the request should continue with the failure
process de�ned in the scheduling algorithm (it can be an error, or it can be
retried after some elapsed time).

If it is a preemptible instance, it should try to schedule it without other considera-
tions.

The challenge here is how to perform this selection in a e�cient way, ensuring that
the selected preemptible instances are the less costly for the provider.

6.4. Preemptible Aware Scheduling

The proposed algorithm �ow chart for scheduling preemptible instances is shown
in Figure 6.1 and will be described next, taking into account that all the algorithms
described in Chapter 4 are based on two complimentary phases: �ltering and raking.

The �ltering phase eliminates the hosts that are not able to host the new request due
to its current state —for instance, because of a lack of resources or a VM anti-a�nity—,
whereas the raking phase is the one in charge of assigning a rank or weight to the
�ltered hosts so that the best candidate is selected.

Therefore, the �rst step is the �ltering. In order to perform a �ltering that is able to
take into account preemptible instances, I propose to utilize two di�erent states for the
physical hosts:

hf This state will take into account all the running VMs inside that host, that is, the
preemptible and non preemptible instances.

hn This state will not take into account all the preemptible instances inside that host.
That is, the preemptible instances running into a particular physical host are not
accounted in term of consumed resources.

Whenever a new request arrives, the scheduler will use the hf or hn host states for
the �ltering phase, depending on the type of the request:

When a normal request arrives, the scheduler will use hn.

When a preemptible request arrives, the scheduler will use hf .

118

main February 3, 2016 13:07 Page 119 �
�	

�
�	 �
�	

�
�	

Chapter 6. Preemptible Instances Scheduling

schedule request

Incoming request

is a pre-
emptible

req?

get hf get hn

�lter

hosts pass?

get hf

weight and select

overcommit?

error

schedule

select preemptible

terminate
preemptible

y n

y

n

n

y

Figure 6.1: Preemptible Instances Scheduling Algorithm.

119

main February 3, 2016 13:07 Page 120 �
�	

�
�	 �
�	

�
�	

This way the scheduler ensures that a normal instance can run regardless of any
preemptible instance occupying its place, so after this stage, the resulting list of hosts
will contain all the hosts susceptible to host the new request, either by evacuating one
or several preemptible instances or because there are enough free resources.

Once the hosts are �ltered out, the ranking phase will start. However, in order to
perform the correct ranking, it is needed to use the full state of the hosts, that is, hf .
This is needed as the di�erent rank functions will require the information about the
preemptible instances so as to select the best node.

The list of �ltered hosts may contain hosts that are able to accept the request because
they have free resources and nodes that would imply the termination of one or several
instances. In order to discriminate between them the ranking function described in
Algorithm 2 be implemented.

Algorithm 2 Ranking function detecting overcommit of resources.
1: function Overcommit Rank(req, hf)

INPUT: req: user request
INPUT: hf : host state

2: if req.resources > hf .free_resources then
3: return −1
4: end if

5: return 0
6: end function

This function assigns a negative value if the free resources are not enough to ac-
commodate the request, detecting an overcommit produced by the fact that it is needed
to terminate one or several preemptible instances. This ranking function needs to be
prioritised accordingly (via a large multiplier), so that it is taken into account against
other ranks.

However, this basic function only establishes a rank between machines that can host
the new request by killing a preemptible instance and machines that already have the
resources available. In the case that it is needed to terminate some instances, this function
does not establish any rank between them. In this case other rank functions need to be
created, depending on the business model implemented by the provider. For instance,
commercial providers tend to charge by complete periods of 1 h, so partial hours are
not accounted. A ranking function based in this business model can be expressed as

120

main February 3, 2016 13:07 Page 121 �
�	

�
�	 �
�	

�
�	

Chapter 6. Preemptible Instances Scheduling

Algorithm 3, ranking hosts according to the preemptible instances running inside them
and the time needed until the next complete period.

Algorithm 3 Ranking function based on 1 h consumption periods.
1: function Period Rank(req, hf)

INPUT: req: user request
INPUT: hf : host state

2: weight← 0
3: for all instance ∈ get_instances(hf) do
4: if (is_spot(instance) then
5: if (instance.run_time mod 3600) > 0 then

6: weight← weight + instance.run_time mod 3600
7: end if

8: end if

9: end for

10: return −weight
11: end function

At this stage, the scheduler will have the best candidate for the new request. However,
it is still needed to select those preemptible instances that need to be cleared out from
that host, if any. Therefore, this design maintains the two phases, �ltering and weighing
with some modi�cations, and adds a third phase, so as to terminate the preemptible
instances if needed.

This last phase will perform an additional raking and selection of the candidate
preemptible instances inside the selected host, so as to select the less costly for the
provider. This selection should leverage a similar ranking process, performed on the
preemptible instances, considering all the preemptible instances combination and the
costs for the provider, as shown in Algorithm 4.

6.5. Implementation and Evaluation

In order to evaluate the proposed solution I have implemented a modi�ed OpenStack
Filter Scheduler based on the described functionality, as shown in Algorithm 5. Moreover,
I have implemented the ranking functions described in Algorithm 2 and Algorithm 3 as
weighters, using the OpenStack terminology and the Scheduler design from Section 4.3.
It is worth to notice that due to the modular design of the OpenStack Scheduler, it is

121

main February 3, 2016 13:07 Page 122 �
�	

�
�	 �
�	

�
�	

Algorithm 4 Preemptible instance selection and termination.
1: procedure Select and Terminate(req, hf)

INPUT: req: user request
INPUT: hf : host state

2: selected_instances← []
3: for all instances ∈ get__all_preemptible_combinations(hf) do
4: if

∑
(instances.resources) > req.resources then

5: if cost(instances) < cost(selected_instances)0 then

6: selected_instances← instances
7: end if

8: end if

9: end for

10: Terminate(selected_instances)
11: end procedure

possible to de�ne any other weighting function depending on the needs of the Resource
Provider (RP).

The scheduler has been also modi�ed so as to introduce the additional select and
termination phase (Algorithm 4). This phase has been implemented following the same
same modular approach as the OpenStack weighting modules, allowing to de�ne and
implement additional cost modules to determine which instances are to be selected for
termination.

As for the cost functions, I have implemented a module following Algorithm 3.
This cost function assumes that customers are charged by periods of 1 h, therefore it
prioritizes the termination of spot instances with the lower partial-hour consumption
(i.e. if we consider instances with 120 min, 119 min and 61 min of duration, the instance
with 120 min will be terminated).

This has been implemented for the OpenStack Kilo (2015.2) version, and this was
deployed on top of the testbed described in Appendix A.3.

6.5.1. Evaluation

The purpose of this evaluation is to ensure that the proposed algorithm is working
as expected, so that:

The scheduler is able to deliver the resources for a normal request, by terminating

122

main February 3, 2016 13:07 Page 123 �
�	

�
�	 �
�	

�
�	

Chapter 6. Preemptible Instances Scheduling

Algorithm 5 Preemptible Instances Scheduling Algorithm.
1: function Select Destinations(req)

INPUT: req: user request
2: host← Schedule(req)
3: if host is overcommitted then

4: Select and Terminate(req,host)
5: end if

6: return host
7: end function

8: function Schedule(req)
INPUT: req: user request

9: Hf ← host_states(full)
10: Hp ← host_states(partial)
11: if is_spot(req) then
12: Hfiltered ← filter(req,Hf)
13: else

14: Hfiltered ← filter(req,Hp)
15: end if

16: Hweighted ← weight(req,Hf)
17: best← select_best(Hweighted)
18: return best
19: end function

20: procedure Select and Terminate(req, hf)
INPUT: req: user request
INPUT: hf : host state
21: selected_instances← []
22: for all instances ∈ get_all_preemptible_combinations(hf) do
23: if

∑
instances.resources > req.resources then

24: if cost(instances) < cost(selected_instances)0 then

25: selected_instances← instances
26: end if

27: end if

28: end for

29: Terminate(selected_instances)
30: end procedure

one or several preemptible instances when there are not enough free idle resources.

123

main February 3, 2016 13:07 Page 124 �
�	

�
�	 �
�	

�
�	

The scheduler selects the best preemptible instance for termination, according to
the con�gured policies by means of the scheduler weighters.

I have executed two di�erent batches of tests: using the same VM size for all the
requests, and using di�erent VM sizes, according to Table 6.1. The tests were executed in
the infrastructure described in Appendix A.3, using only four of the con�gured compute
nodes for the sake of simplicity.

Name vCPUs RAM (MB) Disk (GB)

small 1 2000 20
medium 2 4000 40

large 4 8000 80

Table 6.1: Con�gured VM sizes.

6.5.1.1. Scheduling using same Virtual Machine sizes

For the �rst batch of tests, I have considered same size instances, to evaluate if
the proposed algorithm choses the best physical host and selects the best preemptible
instance for termination. I generated requests for both preemptible and normal instances
—chosen randomly—, of random duration between 10 min and 300 min, using an expo-
nential distribution [168] until the �rst scheduling failure for a normal instance was
detected.

The compute nodes used (Appendix A.3) have 16 GB of RAM and eight CPUs
(Appendix A.3). The VM size requested was the medium one, according to Table 6.1,
therefore each compute node could host up to four VMs.

I executed these requests and monitored the infrastructure until the �rst scheduling
failure for a normal instance took place, thus the preemptible instance termination
mechanism was triggered. At that moment I took a snapshot of the nodes statuses, as
shown in Table 6.2 and Table 6.3. These tables depict the status for each of the physical
hosts, as well as the running time for each of the instances that were running at that
point. The shaded cells represents the preemptible instance that was terminated to free
the resources for the incoming non preemptible request.

Considering that the preemptible instance selection was done according to Algo-
rithm 4 using the cost function in Algorithm 3, the chosen instance has to be the one

124

main February 3, 2016 13:07 Page 125 �
�	

�
�	 �
�	

�
�	

Chapter 6. Preemptible Instances Scheduling

Host Instances Preeptible Instances
ID Run Time (min) ID Run Time (min)

host-A A1 272 AP1 96
A2 172 AP2 207

host-B B1 136 BP1 71
B2 200 BP2 91

host-C C1 97 CP1 210
C2 275 CP2 215

host-D D1 16
DP1 85
DP2 199
DP3 152

Table 6.2: Test-1, preemptible instances evaluation using the same VM size. The highlighted cell
indicates the terminated instance.

with the lowest partial-hour period. In Table 6.2 this is the instance BP1. By chance, it
corresponds with the preemptible instance with the lowest run time.

Host Instances Preeptible Instances
ID Run Time (min) ID Run Time (min)

host-A

AP1 247
AP2 463
AP3 403
AP4 410

host-B B1 388 BP1 344
B2 103 BP2 476

host-C C1 481 CP1 181
C2 177 CP2 160

host-D D1 173
DP1 384
DP2 168
DP3 232

Table 6.3: Test-2, preemptible instances evaluation using the same VM size. The highlighted cell
indicates the terminated instance.

Table 6.3 shows a di�erent test execution under the same conditions and constraints.
Again, the selected instance has to be the one with the lowest partial-hour period. In
Table 6.3 this corresponds to CP1, as its remainder is 1 min. In this case this is not the

125

main February 3, 2016 13:07 Page 126 �
�	

�
�	 �
�	

�
�	

preemptible instance with the lowest run time (being it CP2).

6.5.1.2. Scheduling using di�erent Virtual Machine sizes

For the second batch of tests I requested instances using di�erent sizes, always
following the sizes in Table 6.1. Table 6.4 depicts the testbed status when a request for
a large VM caused the termination of the AP2, AP3 and AP4 preemptible instances. In
this case, the scheduler decided that it was terminated these three instances caused a
smaller impact on the provider, as the sum of their 1 h remainders (55) was lower than
any of the other possibilities (58 for BP1, 57 for CP1, 112 for CP2 and CP3).

Host Instances Preeptible Instances
ID Run Time (min) Size ID Run Time (min) Size

host-A AP1 298 large
AP2 278 medium
AP3 190 small
AP4 187 small

host-B B1 494 large BP1 178 large

host-C
CP1 297 large
CP2 296 medium
CP3 296 small

host-D
D1 176 medium
D2 200 medium
D3 116 large

Table 6.4: Test-3, preemptible instances evaluation using di�erent VM sizes. The highlighted cell
indicates the terminated instances.

Table 6.5 shows a di�erent test execution under the same conditions and constraints.
In this case, the preemptible instance termination was triggered by a new VM request of
size medium and the selected instance was BP3, as host-B will have enough free space
just by terminating one instance.

6.6. Conclusions

I have proposed a preemptible instance design that does not modify substantially the
scheduling algorithms, but that it is able to e�ectively terminate preemptible instances

126

main February 3, 2016 13:07 Page 127 �
�	

�
�	 �
�	

�
�	

Chapter 6. Preemptible Instances Scheduling

Host Instances Preeptible Instances
ID Run Time (min) Size ID Run Time (min) Size

host-A A1 234 large AP1 172 medium
A2 122 medium

host-B
BP1 272 large
BP2 212 medium
BP3 380 small

host-C
C1 182 small
C2 120 medium
C3 116 large

host-D

DP1 232 large
DP2 213 small
DP3 324 medium
DP4 314 small

Table 6.5: Test-4, preemptible instances evaluation using di�erent VM sizes. The highlighted cell
indicates the terminated instances.

whenever it is needed. The modular rank and cost mechanisms allows to de�ne and
implemented the desired Resource Provider (RP) policies. In this initial implementation
and evaluation we have considered that the RP preemptible instances business model is
based on charging customers by complete 1 h periods.

The presented design has been proposed for inclusion in the OpenStack Sched-
uler1 and a prototype has been implemented in the IFCA Cloud Test Infrastructure
(Appendix A.3) so as to be evaluated under real-world conditions by some candidate
use-cases that require opportunistic usage.

1
Á. López García. OpenStack Spot Instances Support Speci�cation. url: https : / / blueprints .

launchpad.net/nova/+spec/spot-instances.

127

https://blueprints.launchpad.net/nova/+spec/spot-instances
https://blueprints.launchpad.net/nova/+spec/spot-instances

main February 3, 2016 13:07 Page 128 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 129 �
�	

�
�	 �
�	

�
�	

III
Cloud Federation and

Interoperability

main February 3, 2016 13:07 Page 130 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 131 �
�	

�
�	 �
�	

�
�	

7Open Standards for Interoperable

and Federated Clouds

main February 3, 2016 13:07 Page 132 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 133 �
�	

�
�	 �
�	

�
�	

Chapter 7. Open Standards for Interoperable and Federated Clouds

This chapter will review the open challenges when building an interoperable science
cloud federation and the enabling standards that can be used to leverage the construction
of such a federation of Infrastructure as a Service (IaaS) resource providers. We will
focus on an horizontal federation between di�erent IaaS providers, therefore a vertical

federation spanning several layers is out of the scope of this analysis.
In Section 7.1 I present an introduction to the topic and the related work in the area.

In Section 7.2 I review the related work in the area. In Section 7.3 I present the biggest
challenges that an interoperable cloud federation must assess. In Section 7.4 I focus
on the existing and raising standards and how they can be used to tackle the problems
presented in Section 7.3. Finally, the conclusions are presented in Section 7.5.

7.1. Introduction to Federation

The IT �eld, and in particular the cloud area is always evolving at a fast pace. Over
the last years, a large number of commercial cloud providers have emerged in the market.
Each of those vendors tries to di�erentiate their infrastructure from their competitors
o�ering added value features on their resources. This has led to a situation where several
closed and proprietary interfaces have evolved over the time, some being considered
as de-facto standards by the industry. The resulting scenario includes infrastructures
using di�erent solutions that are actually incompatible and not interoperable. Vendor
lock-ins are often considered a desirable feature by commercial providers, as a way of
keeping users attached to their resources, but it is perceived negatively by cloud users
and customers [188].

More recently, several open source Cloud Management Frameworks (CMFs) have
appeared in the cloud ecosystem. Some of them decided to adopt those industry de-facto

standards as their main interface, whereas others have built their own open interfaces.
These decisions, instead of agreeing on a common and open interface are contribut-
ing to adding more entropy and heterogeneity. Users willing to exploit several cloud
infrastructures face a discouraging panorama.

As the cloud computing paradigm is maturing and it is growing in heterogeneity,
cloud interoperability and federation is becoming more important by all the involved
stakeholders: that is industry, academia, providers, developers, users and customers.
Chapter 3 introduced in its Section 3.1.6 the necessity for federated and interoperable

133

main February 3, 2016 13:07 Page 134 �
�	

�
�	 �
�	

�
�	

Science Clouds, but this is not a topic exclusively related to scienti�c environments. It
is needed to provide mechanisms to provide the incorporation and interoperability of
di�erent systems [189].

In spite of introducing an additional complexity, a federated infrastructure brings
some unique bene�ts, such as the following:

There is a collaboration between Resource Providers, so that they can cope with
limitations in their infrastructure, moving workloads to di�erent providers when
needed.

Enables communities to access several resource providers in a seamless way,
interacting with several providers with the same credentials, having uniformly
accessible and structured principals.

Makes possible to move computation near data, for cases when it is not possible
to move data to computation, due to restrictive policies or due to the dataset size,
making impractical to move data outside their original location.

A Federated model, in contrast with a centralized one, creates a collaborative
network of compute centers, promoting local economies, increasing and reusing
expertise at multiple locations distributed geographically.

Federation and interoperability are nowadays considered as one of the main pressing
issues towards cloud computing adoption [190]. The vendor lock-ins that currently exist
are perceived negatively by users. Even if scientists are considering more and more
Software as a Service (SaaS) solutions, the vendor lock-in still persists, as is not desirable
to remain captive one vendor infrastructure. The cloud computing ecosystem, with
strong industrial actors driving the developments, have promoted indirectly a panorama
where de-facto, industry-driven standards have dominated the cloud landscape for years.

The cloud computing is still considered as an emerging technology, although it is
now leaving its infancy phase. Standardization in the cloud was not considered an urgent
matter to be addressed. An excessive focus on standardization and interoperability in
the early stages of a technology can hinder its evolution, not leaving much room for the
innovation needed on the early stages of the technology.

134

main February 3, 2016 13:07 Page 135 �
�	

�
�	 �
�	

�
�	

Chapter 7. Open Standards for Interoperable and Federated Clouds

7.2. Related work

Nowadays there is a growing interest and research into cloud federation, interoper-
ability and standardization. Building and de�ning frameworks for cloud interoperability
is becoming therefore a topic that is gaining more and more momentum [191, 192, 193,
194, 84].

Political and government bodies such as the European Commission have stated their
position towards the need for federation and interoperability of clouds [190], together
with the promotion of Open Standards in in clouds for science and public administration
[45, 64], with the aim of easing the aforementioned interoperability. The Open Science
Cloud initiative [75] has outlined that interoperable, distributed and open principles
should drive the evolution of Science Clouds as the key to success.

There are many non academic works regarding the need or lack thereof for a cloud

standard. Authors tend to agree that there would be not such a unique standard to rule
all the cloud aspects. Some preliminary work regarding the need of standards for the
cloud has been done in this regard by Borenstein et at. [188] and Machado et al. [195].

G. Lewis [196] report tackles several standardization areas such as workload man-
agement, data and cloud management Application Programming Interfaces (APIs), con-
cluding that there will be not a single standard for the cloud due to pressures and the
in�uences of existing vendors. The author states that an agreement on a set of standards
for each of the needed areas would reduce the migration e�orts and enable the third
generation of cloud systems.

Harsh et al. [197] work surveyed the existing standards for the management of cloud
computing services and infrastructure within the Contrail project so as to avoid vendor
lock-in issues and ensure interoperability. In the same line, Zhang et al. [198] performed
a quite complete survey regarding Infrastructure as a Service access, management and
interoperability, studying Open Virtualization Format (OVF), Cloud Data Management
Interface (CDMI) and Open Cloud Computing Interface (OCCI) [198]. However, they
have not entered into other details and challenges such as accounting or information
discovery.

On top of those academic e�orts, some open source CMFs have started to take
into consideration the federation issues. There are development e�orts aimed to make
possible to federate di�erent aspects of distributed cloud infrastructures to an extent:

135

main February 3, 2016 13:07 Page 136 �
�	

�
�	 �
�	

�
�	

OpenStack [141] implements several levels of federation by the usage of cells
and regions. The former allows to run a distributed cloud sharing the same
API endpoint, whereas the latter is based on having separate API endpoints,
federating some common services: OpenStack also allows the usage of a federated
authentication mechanism [199], so that the identity service is able to authenticate
users coming from trusted external services or from another identity service.

CloudStack [143] follows the same line and implements the concept of regions in
their software.

OpenNebula [140] makes possible to con�gure several installations into a tightly
integrated federation, sharing the same users, groups and con�gurations along
several installations.

Eucalyptus [144] provides with identity and credential federation between several
regions. Moreover, there is a partnership for o�ering interoperability for the
interoperability between Eucalyptus private clouds and Amazon’s Amazon Web
Services (AWS) [200].

However, all of them rely on the fact of federating several instances of the same
software stack (i.e. several OpenNebula installations, for instance), being impossible
or di�cult to federate disparate and heterogeneous infrastructures (e.g. an OpenStack
installation together with an OpenNebula instance).

On top of that, there a few prominent existing federated infrastructures, some of
them being built on top of standards, others not. Some examples of standards-based
federations are the EUBrazil Cloud Connect [201], whose middleware is being based
on standards for interoperability [202]; and the European Grid Infrastructure (EGI)
[60], that started as a federation of grid sites, took the strategic position of exploring
and adopting a technology agnostic and based on open standards cloud [84] into their
services portfolio.

7.3. Cloud Federation Open Challenges

Cloud federation goes beyond just making several clouds interoperable [203]. A
federation shall enable the collaboration and cooperation of di�erent providers in de-
livering resources to the users when a single resource provider is not able to satisfy

136

main February 3, 2016 13:07 Page 137 �
�	

�
�	 �
�	

�
�	

Chapter 7. Open Standards for Interoperable and Federated Clouds

the user demands, in a collaborative way. Therefore, on top of the interoperability and
portability issues, there are several challenges that any federation must tackle.

7.3.1. On Uniform Access and Management

One of the �rst obstacles that a heterogeneous cloud federation has to overcome is
the lack of a uni�ed cloud interface. Evolving from commercial cloud providers, each
middleware implements their own —proprietary or not— interface. Some open CMFs
implement an AWS Elastic Compute Cloud (EC2) (EC2) [204] compatibility layer since
it was considered as the de-facto standard for the cloud since its launch in 2006.

The adoption of the EC2 API could make two di�erent CMFs being interoperable,
but it presents several obvious drawbacks. The most prominent one is the fact that the
API is proprietary and it is subject to change without prior advise by the original vendor.
This will render into incompatibilities between providers and CMFs other than the
original creator of the API, Amazon in this case. Implementers of proprietary interfaces
need to keep aligned with the reference implementation, and are forced to invest time
in following the modi�cations so that they ensure that its implementation remains
compatible.

Secondly, its usage has as a consequence that it indirectly introduces a vendor lock-in
since users may be captive into one infrastructure if the vendor decides to change its
API from one day to another. Moreover, it is not a RESTful API, making di�cult for
developers to create applications that interact with it as they have to learn the semantics
of the protocol being used instead of the well known REST architectural style.

7.3.2. On Portability

Cloud computing leverages virtualization technologies to abstract the resources being
o�ered to the users. Several virtualization hypervisors (such as Xen, KVM, VMWare,
Hyper-V) exist in the market, and each cloud provider will be using the one of its choice.
Moreover, recently Operating System (OS) level virtualization (that is, container-based
such as LXC, OpenVZ and Docker) have entered the game and they are being more and
more adopted by the providers.

This situation renders di�cult the migration of one virtual appliance prepared to be
executed in one cloud provider using one virtualization technology to another provider

137

main February 3, 2016 13:07 Page 138 �
�	

�
�	 �
�	

�
�	

with a di�erent underlying technology. Moreover, the underlying technology is hidden
and abstracted from the users by the CMFs, hence even if they had the technological
skills to prepare and modify a virtual appliance to be executed on another hypervisor
they would have found di�culties in doing so. Porting one Virtual Machine to another
hypervisor may require access to consoles and debugging output that cloud providers
may be reluctant to provide.

7.3.3. On Authentication and Authorization

The delivery of an homogeneous authentication and authorization via a federated
identity management system in distributed environment is a challenging topic [199, 205]
not exclusive to cloud computing. As a matter of fact, cloud computing is just another
player in the game. Such system should facilitate �exible authentication methods and
federated authorization management.

The lack of a federated identity management systems makes di�cult to manage the
users globally at the federation, that is, specifying what resources a user is able to access
or globally disabling a user becomes a challenging task.

Moreover, this challenge has two additional faces as it a�ects both the users and the
resource providers.

From the user’s perspective, they are forced to cope with the burden of managing
several credentials and identities. Moreover, client tools need to deal with them as
well, identifying that identity A should be used against provider A but not provider
B.

It increases the management complexity for the resource providers. If there is not
such a federated identity management system, users are to be managed manually,
thus incurring in a tremendous overhead.

7.3.4. On Information Discovery

Once a federation is established, the next challenge is how users are able to discover
what resources and capabilities are o�ered by the federation so that they can consume
them.

This information may be exposed to the users via each of the middleware native APIs
by each of the resource providers participating in the federation, but it is not structured

138

main February 3, 2016 13:07 Page 139 �
�	

�
�	 �
�	

�
�	

Chapter 7. Open Standards for Interoperable and Federated Clouds

in an homogeneous way so that clients can fetch that information and help users making
a decision.

7.3.5. On Accounting and Billing

In federated infrastructures it is often required to keep track of resource usage for
each user and group at every individual provider, so that this information is shared
and aggregated at the federation level and users are accounted properly. This aspect
is tightly coupled with the federated identity management systems, as users need to
be unambiguously identi�ed throughout the infrastructure. Currently, each CMF and
provider may have their own accounting method, but there is no common way for
accessing and/or aggregating that information at the federation level.

7.4. Federation Enabling Standards

It may be possible to obtain interoperability without the usage of Open Standards
[206], but it is arguably a more logical way to develop an interoperable federation based
on them.

There is not a unique cloud standard to rule all of the aspects regarding clouds [195],
neither there is such a federation standard. Nevertheless, there are several well estab-
lished standards covering some of the open issues described in Section 7.3, developed
prior to the raise of cloud computing and that can be simply reused, adapted or updated
to �ll in the needed gaps. On top of them there is a number of emerging standards being
developed speci�cally to cover more speci�c cloud computing topics.

It is the combination of both —existing and emerging standards— they key to solve
the federation and interoperability issues described in Section 7.3, as it will be described
through the rest of the section.

7.4.1. Uniform Access and Management

Several organizations and standardization bodies have started working from the early
stages of cloud computing trying to build standards for cloud management. Currently,
the most prominent examples regarding IaaS computing and storage management are
Open Cloud Computing Interface (OCCI), Cloud Infrastructure Management Interface

139

main February 3, 2016 13:07 Page 140 �
�	

�
�	 �
�	

�
�	

(CIMI), Topology and Orchestration Speci�cation for Cloud Applications (TOSCA) and
Cloud Data Management Interface (CDMI):

OCCI The Open Grid Forum (OGF) [207] has proposed the OCCI [208, 209, 210], focus-
ing on facilitating an interoperable access and management of IaaS cloud resources.
OCCI o�ers di�erent renderings over the Hiper Text Transfer Protocol (HTTP)
protocol, leading to a RESTful API implementation.

CIMI The CIMI [211] is a proposal from the Distributed Management Task Force
(DMTF) [212] that has been recently registered as an ISO/IEC standard [213]. CIMI
targets the management of the life-cycle of the IaaS resources, o�ering a RESTful
API over the HTTP protocol with various renderings.

TOSCA The TOSCA standard [214] is a speci�cation from the Organization for the
Advancement of Structure Information Standards (OASIS) [215]. TOSCA provides
a language to describe composite services and applications on a cloud, as well
as their relationships (i.e. the topology), makes also possible to describe its oper-
ational and management aspects (i.e. its orchestration). Although TOSCA is at
a higher level than simply managing the IaaS resources —it is more focused on
the orchestration of the resources—, it should be considered as a complementary
standard for the management of the resources.

CDMI The Storage Networking Industry Association (SNIA) has proposed CDMI [216],
also recently registered as an ISO/IEC standard [217], de�ning an interface to
perform di�erent operations (creation, retrieval, update and removal) on data
stored on a cloud.

7.4.2. Portability

Open Virtualization Format (OVF) [218] is a standard developed by the DMTF for
packaging and describing a Virtual Appliance (VA), comprised of an arbitrary number
of Virtual Machine Images (VMIs) in a portable and vendor neutral format. An OVF
package contains a XML description (e.g. hardware con�guration, disks used, network
con�guration, contextualization information, etc.) of each component of the VA.

140

main February 3, 2016 13:07 Page 141 �
�	

�
�	 �
�	

�
�	

Chapter 7. Open Standards for Interoperable and Federated Clouds

7.4.3. Authentication and Authorization

There is a large number of standards that can be used for authentication and autho-
rization. The implementation and adoption of one technology or another will eventually
depend on the infrastructures that are going to be federated, and there will be no silver
bullet that will �t all of the existing infrastructures. Authentication and Authorization
sometimes imply policy issues that are out of the scope of the standardization e�orts.

The X.509 Public Key Infrastructure [219] has been used for authentication in the
grid world via the Grid Security Infrastructure (GSI), based on X.509 certi�cate proxies
[220]. Authorization is done by embedding Attribute Certi�cates (AC) into the proxy,
containing assertions about the user. The most notable service is the Virtual Organiza-
tion Membership Service (VOMS) [89], being used in several cloud infrastructures [221].
However, direct use of X.509 certi�cates is not considered being user-friendly —due to
the management burden— and an in�exible —for instance, it is di�cult to perform a del-
egation of trust— solution in spite of being settled on several distributed infrastructures
over the years.

The OASIS Security Assertion Markup Language (SAML) [222] is built in X.509 and
de�nes a way to de�ne authentication and attribute assertions in XML. Shibboleth [223]
is an implementation of SAML and is focused on the federation of resource providers
with di�erent authentication and authorization schemes. Several projects have started
looking at SAML and Shibboleth [224, 225] as a promising way to provide access to
distributed infrastructures, although they have not substituted the direct use of X.509
certi�cates yet.

OAuth 1.0 [226] and 2.0 [227] is an IETF open standard for authorization, providing
delegated access to some resources on behalf of the resource owner. OAuth has not
been designed for authentication, therefore OpenID Connect (OIDC) [228] has been
developed as an authentication layer on top of OAuth 2.0. ORCID [229] is a popular
author registry service in the academic and research world, can be used with OAuth2
and has on its roadmap to become an OpenID Connect provider.

7.4.4. Information Discovery

Information discovery is a problem present in other federated computing paradigms
such as Grids. The Grid Laboratory Uniform Enviroment (GLUE) Schema —in its versions

141

main February 3, 2016 13:07 Page 142 �
�	

�
�	 �
�	

�
�	

1.x [230] and 2.0 [231]— has been designed by the OGF in order to create an information
model relying on the knowledge and experience from the operations of several large
Grid infrastructures.

The current GLUE 2.0 speci�cation [231] only de�nes a conceptual model. It makes
possible to publish, separately from the standard, concrete data model pro�les that will
dictate how the information is generated and used for in concrete implementation, in-
frastructure, etc. Therefore, the OGF GLUE 2.0 schema is a good candidate for publishing
information relative to cloud infrastructures.

7.4.5. Accounting

As with the information discovery, the accounting problem is a problem that has
been already tackled in the grid. The OGF Usage Record (UR) 2.0 [232] de�nes a common
format to share and exchange basic accounting data, coming from di�erent providers
and di�erent resources. It supersedes and integrates the di�erent resource usage records
that leveraged the previous UR 1.0 in the various infrastructures that implemented it.

The OGF UR does not specify how the records should be exploited (e.g. how they
should be exported, used, aggregated, summarized, etc.) or transported. Examples on
how the UR is used exist in projects such as RESERVOIR [233] and infrastructures such
as EGI [60].

7.5. Conclusions

In this chapter I have presented the existing challenges that need to be tackled
for building an interoperable federation of cloud providers and I have surveyed the
existing and arising standards that can be used to solve those problems. Current Cloud
Management Frameworks (CMFs) should adopt these existing standards for the func-
tionality they are o�ering, so as to avoid vendor lock-in issues and to ensure a that
proper interoperability is delivered to the users.

Cloud federation involves a lot of di�erent areas and challenges —management, au-
thentication, accounting, interoperability, etc—, therefore there is not a unique standard
for it. However, there is a set of settled and emerging standards that can cover all the
federation aspects and their problematics, as summarized in Table 7.1.

142

main February 3, 2016 13:07 Page 143 �
�	

�
�	 �
�	

�
�	

Chapter 7. Open Standards for Interoperable and Federated Clouds

Challenge Enabling Standard

Uniform access and management
OGF OCCI [208, 209, 210]
DMTF CIMI [211]
OASIS TOSCA [214]

Portability DMTF OVF [218]

Authentication and authorization
OASIS SAML [222]
OpenID Connect [228]
X.509 [219]

Information discovery OGF GLUE [230, 231]

Accounting OGF UR [232]

Table 7.1: Summary of enabling standards.

The European Commission is encouraging the usage of Open Standards in its ”Euro-
pean Interoperability Framework for pan-European eGovernment Services“ [45]. Simi-
larly, the United Kingdom Government provided similar set of principles, adopted in
2014 [234]. Other European initiatives, such as the Open Science Cloud [75], are also
promoting the usage of Open Standards. Cloud federations must take into account
these recommendations and they should promote its usage as the path to a successful
federation and interoperability.

143

main February 3, 2016 13:07 Page 144 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 145 �
�	

�
�	 �
�	

�
�	

8An Implementation of an Open

Standard for the Cloud

Part of this chapter will be published as: Á. López García, E. Fernández-del-
Castillo, and P. Orviz Fernández. “OpenStack OCCI Interface”. In: SoftwareX
(2016). issn: 2352-7110. doi: 10. 1016/ j. softx. 2016. 01. 001 (accepted

paper).

http://dx.doi.org/10.1016/j.softx.2016.01.001

main February 3, 2016 13:07 Page 146 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 147 �
�	

�
�	 �
�	

�
�	

Chapter 8. An Implementation of an Open Standard for the Cloud

In the following Sections I present an implementation of the Open Grid Forum
(OGF)’s Open Cloud Computing Interface (OCCI) for OpenStack, namely ooi [236],
promoting interoperability with other OCCI-enabled Cloud Management Frameworks
(CMFs) and infrastructures. ooi focuses on being non-invasive with a vanilla OpenStack
installation, not tied to a particular OpenStack release version.

8.1. The Open Cloud Computing Inteface (OCCI)

The OGF has proposed the OCCI [237] as an open standard de�ning a RESTful
Application Programming Interface (API) for managing cloud resources, developed as a
joint e�ort between industry and academia.

OCCI has been one of the �rst standards in the cloud ecosystem, providing the
foundations for basic management tasks in Infrastructure as a Service (IaaS) providers
and it can be easily extended easily so as to provide additional functionality. OCCI is
a standard relevant for both cloud users and cloud providers as a way to provide an
interoperable infrastructure, removing any kind of vendor lock-in.

The speci�cation is a set of complementary documents divided into three categories:
the OCCI Core, the OCCI Renderings and the OCCI Extensions. At the time of writing
this document the current version of the standard is OCCI 1.1, with OCCI 1.2 version
being currently under development.

OCCI Core This is a single document [209] de�ning the OCCI Core abstract model.
This model can be interacted with the renderings and is expanded by the OCCI
extensions.

OCCI Renderings The OCCI Renderings describe how the OCCI Core model should
be rendered. The current OCCI Hiper Text Transfer Protocol (HTTP) Rendering
speci�cation [208] de�nes how to interact with the OCCI core model and its exten-
sions over a HTTP protocol based RESTful API. Multiple and di�erent renderings
may interact with the same instances of the OCCI Core protocol, thus not being
limited to use a concrete rendering.

OCCI Extensions These speci�cations describe additions to the OCCI core model. The
OCCI Infrastructure speci�cation [210] contains the extension for the IaaS domain,

147

main February 3, 2016 13:07 Page 148 �
�	

�
�	 �
�	

�
�	

de�ning the needed resource types, attributes and actions that can be taken on
each resource type.

Mixins are used to modify a particular OCCI resource, by associating one or several
to a particular resource instance. Besides the ones de�ned within the standard, there are
some Mixin extensions that have been developed so as to add additional functionality,
and that are currently widely adopted.

Contextualization Extension Contextualization is the process of installing, con�g-
uring and preparing software upon boot time on a pre-de�ned virtual machine
image. This Mixin extension allows to pass some data to the instance [238] that
can be further fetched from inside the virtual machine by a software such as
cloud-init [239] or Flamingo [240].

Key Pair Extension This Mixin extension allows users to inject a Secure Shell (SSH)
public key for the authenticated access to the provisioned Virtual Machine (VM) [238,
241].

8.2. Motivation and signi�cance

Currently some OCCI implementations already exist for several cloud vendors or in
the form of general frameworks that can be extended with several backends. In order to
get an OCCI-enabled Openstack [141] deployment, we considered two candidates: rOCCI
and OCCI-OS. Other implementations exist, but either they do not have recent activity
in their codebase or they are too general frameworks that needed a lot of integration
e�orts (for instance for the authentication and authorization parts).

rOCCI [194] is one of the most notable projects implemeting OCCI. It is a framework
written in Ruby that aims to improve interoperability in the cloud by delivering an
OCCI implementation that can be used by both at the server and at the client side.
The rOCCI-server component makes possible to add an OCCI interface to some
existing cloud stacks and vendors via one of the existing con�gurable backends,
such as OpenNebula [242], Apache CloudStack [143], VMware [243] and Amazon
Elastic Compute Cloud (EC2) (EC2) [244]. It stands as a standalone server (rOCCI-
server) that proxies the requests to the underlying CMF. The rOCCI-cli on the

148

main February 3, 2016 13:07 Page 149 �
�	

�
�	 �
�	

�
�	

Chapter 8. An Implementation of an Open Standard for the Cloud

other hand is the client component of rOCCI, making possible to interact with
any OCCI-enabled framework.

OCCI-OS [245] is an implementation of OCCI for OpenStack [245], leveraging the
Python Service Sharing Facility (pyssf) [246]. It consists on a new Web Server
Gateway Interface (WSGI) application that uses the internal OpenStack APIs.

rOCCI-server could be adapted to be used over an OpenStack installation, but the
fact of being written in Ruby is an obstacle for reusing the existing OpenStack modules
(e.g. authentication) already available.

On the other hand, OCCI-OS’ WSGI application speaks directly to the OpenStack
internal APIs. These APIs are not versioned and can be subject to change at any point
in the development, leading to incompatibilities between the OCCI modules and the
di�erent OpenStack versions. As a result, the need of several OCCI-OS releases, each one
aligned with its corresponding OpenStack API version, is a must. Changes in the internal
OpenStack APIs happen even between minor releases, making impractical to update
the code for each new version. Making OCCI-OS use the public APIs instead involves
a complete refactorization of its codebase, as it leverages all the internal backends to
accomplish the desired actions.

As an aim to overcome these architectural issues, I present in this chapter ooi, a
Python-based application designed to be easily integrated with the OpenStack core
components.

8.3. Software Description

8.3.1. Foreword on WSGI

The Python Web Server Gateway Interface (WSGI) standard [247] proposes an
interface between web servers and Python web applications so that it is possible for an
application to handle HTTP requests using Python code. Among other things, it de�nes
the WSGI application, server and middleware.

The WSGI application object receives a representation of the HTTP request,
processes it and returns a response that will be eventually sent back to the client.

149

main February 3, 2016 13:07 Page 150 �
�	

�
�	 �
�	

�
�	

The WSGI server invokes the application for each request that is targeted to it.
Therefore, an application receives the request from a server.

The WSGI middleware receives a WSGI request, performs some logic on it, and
sends it to the next WSGI middleware or application. Therefore, the WSGI mid-
dleware is seen as an application by a WSGI server, and as a server by a WSGI
application.

It is then possible to chain several WSGI middleware together, each one adding some
additional functionality before actually passing the request to the �nal application. This
appears as an analogy with pipes on UNIX systems, thus often using the term pipeline to
refer to this chain of WSGI middleware and applications.

Following this structure, the OpenStack native API is a WSGI application that
leverages several of such middleware that perform additional functionalities like authen-
tication (against the OpenStack Identity Component), and rate and size limiting, just to
cite some.

8.3.2. Interacting with OpenStack

The OCCI standard de�nes the API as a boundary interface that acts as a frontend
to the internal management APIs, as shown in Figure 8.1.

OCCI

Propietary
API

Cloud
Management
Framework

Resources

Comm.
is HTTP

Comm. is re-
lated to CMF
interface reqs

Comm. is
internal

Service provider
domain

Figure 8.1: Proposed OCCI’s place in a provider’s architecture according to the standard. Boxes in
yellow explain the type of communication being made, green depicts the CMF components, red
the OCCI interface.

150

main February 3, 2016 13:07 Page 151 �
�	

�
�	 �
�	

�
�	

Chapter 8. An Implementation of an Open Standard for the Cloud

To interact with OpenStack, ooi leverages its public API interfaces [248] (Figure 8.2)
rather than using the private API, as OCCI-OS [245]. This architecture decision is
motivated by the fact that OpenStack public API is versioned, whereas its private
interfaces are not; hence there is no contract to maintain its signature between OpenStack
releases.

OpenStack
public API

OCCI

OpenStack
API

OpenStack
Compute Resources

Comm.
is HTTP

Internal RPC
OpenStack
private API

Service provider
domain

Figure 8.2: OCCI place in a provider’s infrastructure, following ooi’s architecture. Instead of using
the private APIs, OCCI requests are translated to native OpenStack requests. Boxes in yellow
explain the type of communication being made, green depicts the OpenStack components, red the
OCCI interface.

This fact causes that any application using the private, internal interfaces may need
to be adapted throughout OpenStack releases. On the other hand, changes in the public
REST API are versioned (each change increases the minor version of the API), and the
same version is supported across several releases. A given version of OpenStack public
API is not subject to functionality or backwards incompatible changes, since that kind
of changes will increase the version number.

In this context, instead of implementing ooi as a WSGI application, it has been
developed as a WSGI middleware that proxies the OCCI requests and translates it to
an appropriate OpenStack request. This is a key aspect of ooi’s architecture design
that, unlike other solutions (OCCI-OS [245]) does not appear as a standalone WSGI
application that calls OpenStack internal interfaces but rather makes use if its public

151

main February 3, 2016 13:07 Page 152 �
�	

�
�	 �
�	

�
�	

API.

ooi’s work�ow is shown in Figure 8.3. The red shaded area represents the OCCI
WSGI pipeline, whose components are depicted as gray boxes. As it is shown in the
Figure, each of the WSGI middleware process the request and perform some operation
with it (for example, authentication), then they call the next application or middleware in
the pipeline, until the request gets downs to the �nal OpenStack API WSGI application.
Then, the application will return a response, that will be processed back in reverse order
by each of the WSGI middleware until it gets up to the WSGI server.

O
CC

I(
oo

i)
W

SG
Ip

ip
el

in
e

User WSGI server OpenStack WSGI middleware ooi middleware OpenStack API WSGI app

OCCI op

get_response(OCCI req)

process_request(OCCI req)

get_response()

process_request(OCCI req)

get_response()

OStack resp

ifif additional req needed

get_response()

OStack resp

process_response(OStack resp)

OCCI resp
OCCI resp

process_response(OCCI resp)

OCCI resp
OCCI resp

OCCI resp

Figure 8.3: ooi processing pipeline. This �gure illustrates the sequence diagram for processing
an OCCI request. The red shaded area represents the WSGI pipeline, whose components are
depicted with grayed boxes. Solid arrows represent operations or method calls, dashed arrows
represent data types, OCCI op is a request for an OCCI operation, OCCI req represents an OCCI
request type, OStack resp is an OpenStack response, OCCI resp is an OCCI response, OpenStack
WSGI middleware are the preceding and unmodi�ed OpenStack WSGI default middleware that
are present in the pipeline.

152

main February 3, 2016 13:07 Page 153 �
�	

�
�	 �
�	

�
�	

Chapter 8. An Implementation of an Open Standard for the Cloud

Therefore, whenever a OCCI request arrives to the ooi middleware, this request is
processed and translated into a new equivalent OpenStack request, based on its public
API. Not only the request itself is translated, as the application Uniform Resource Locatior
(URL) is also modi�ed so as to point to the corrent path regarding the OpenStack WSGI
application route.

For instance, sending the OCCI request to create a server shown in Listing 8.1
via the POST method to the OCCI endpoint would be translated to the corresponding
OpenStack V2.0 JavaScript Object Notation (JSON) request shown in Listing 8.2. If
further information is needed so as to build the request, it is done transparently to
the user. Whenever this transformation �nishes, ooi passes down the corresponding
OpenStack request to the OpenStack API WSGI application —the last step in the pipeline—
and an OpenStack response is obtained. This response is processed again by the OCCI
middleware, so that it is rendered back as a proper and valid OCCI response, and it
continues its path upstream to the WSGI server.

Listing 8.1: OCCI 1.1 Server creation request.

1 Content -Type: text/occi
2 Category : compute ; scheme =" http :// schemas .ogf.org/occi/ infrastructure

#"; class =" kind"
3 Category : 8941 da23 -909d -4d7d -804f -54 df629b6a86 ; scheme =" http ://

schemas . openstack .org/ template / resource #"; class =" mixin "
4 Category : 4e9765ae -63ae -4b57 -be86 -495 ce8fb9408 ; scheme =" http ://

schemas . openstack .org/ template /os #"; class =" mixin "

Listing 8.2: OpenStack v2.0 Server creation JSON request, corresponding to Listing 8.1.

1 {
2 " server ": {
3 "name": "server -1",
4 " imageRef ": "4e9765ae -63ae -4b57 -be86 - 495ce8fb9408 ",
5 " flavorRef ": "8941da23 -909d -4d7d -804f - 54df629b6a86 "
6 }
7 }

The development work that involves supporting new major releases of OpenStack
public API is alleviated by ooi’s modular architecture, making possible to plug additional
modules without modifying substantial parts of the code. Moreover, several OCCI
endpoints, supporting di�erent OpenStack API versions, can co-exist in a single ooi

153

main February 3, 2016 13:07 Page 154 �
�	

�
�	 �
�	

�
�	

installation allowing isolated environments to be used for di�erent purposes. Thus
e.g testing experimental API features can live together with the production endpoint
without risks.

Currently, the supported OpenStack version is v2.1 [249]. However, it is possible to
deploy ooi on top of the previous v2.0 API, since v2.1 is backwards compatible with the
addition of strong API validation.

8.4. ooi Functionality

ooi implements the OCCI 1.1 standard as described in Section 8.2. It implements
the OCCI Core Speci�cation [209], the OCCI Infrastructure Extension [210] as well as
the OCCI HTTP Rendering [208]. Additionally, two widely used extensions have been
implemented: the contextualization and SSH credentials extensions.

During the development stages of ooi I have focused not only on following the stan-
dard, but also on remaining compatible with any other existing OCCI implementations.
A comparison of the di�erent OCCI implementations and the operations that can be
performed in each of them is summarized in Table 8.1.

It is worth notice that OCCI does not mandate that all operations are actually
supported by the respective backend (in this case OpenStack), therefore operations
marked as N/A or marked as not implemented in Table 8.1 render the correct result as
speci�ed in the OCCI standard (that is, the HTTP 501 Not Implemented error code).

8.5. Performance Comparison

Even though it is not the original purpose of this new implementation, I found
interesting to compare ooi performance against the existing OpenStack implementation
—OCCI-OS— so as to ensure that our implementation does not impede the overall
performance of the system.

For an accurate comparison to be made, I have deployed both ooi and OCCI-OS
over the same OpenStack Infrastructure and performed some basic operations using
ooi, OCCI-OS and the native OpenStack API. The utilized setup is described in Sec-
tion A.4. In order to eliminate any potential overhead introduced by a client tool (such
as authentication or data veri�cation), the operations have been made directly to the
API using the corresponding HTTP methods (i.e. GET, POST and DELETE in this case).

154

main February 3, 2016 13:07 Page 155 �
�	

�
�	 �
�	

�
�	

Chapter 8. An Implementation of an Open Standard for the Cloud

Q
u
e
r
y
I
n
t
e
r
f
a
c
e

rO
CC

I
O

CC
I-O

S
oo

i

re
tri

ev
e

m
od

el
Y

Y
Y

�l
te

r
N

N
N

I
n
f
r
a
s
t
r
u
c
t
u
r
e
e
x
t
e
n
s
i
o
n
:
c
o
m
p
u
t
e

qu
er

y
Y

Y
Y

qu
er

y
an

d
�l

te
r

N
N

N
cr

ea
te

Y
Y

Y
de

le
te

Y
Y

Y
ac

tio
ns

:s
ta

rt
Y

Y
Y

ac
tio

ns
:s

to
p

Y
Y

Y
ac

tio
ns

:r
es

ta
rt

Y
Y

Y
ac

tio
ns

:s
us

pe
nd

Y
Y

Y

I
n
f
r
a
s
t
r
u
c
t
u
r
e
e
x
t
e
n
s
i
o
n
:
n
e
t
w
o
r
k

qu
er

y
Y

N
Y

qu
er

y
an

d
�l

te
r

N
N

N
cr

ea
te

P
N

Y
de

le
te

Y
N

Y
at

ta
ch

to
co

m
pu

te
Y

Y
Y

at
ta

ch
to

co
m

pu
te

Y
Y

Y
de

ta
ch

fro
m

co
m

pu
te

Y
Y

Y
ac

tio
ns

:u
p

N
N

/A
N

/A
ac

tio
ns

:d
ow

n
N

N
/A

N
/A

I
n
f
r
a
s
t
r
u
c
t
u
r
e
e
x
t
e
n
s
i
o
n
:
s
t
o
r
a
g
e

rO
CC

I
O

CC
I-O

S
oo

i

qu
er

y
Y

Y
Y

qu
er

y
an

d
�l

te
r

N
N

N
cr

ea
te

Y
Y

Y
de

le
te

Y
Y

Y
at

ta
ch

to
co

m
pu

te
Y

Y
Y

de
ta

ch
fro

m
co

m
pu

te
Y

Y
Y

ac
tio

ns
:o

nl
in

e
Y

N
/A

N
/A

ac
tio

ns
:o

�
in

e
Y

N
/A

N
/A

ac
tio

ns
:b

ac
ku

p
Y

N
/A

N
/A

ac
tio

ns
:s

na
ps

ho
t

N
N

N
ac

tio
ns

:r
es

iz
e

N
N

/A
N

/A

C
o
n
t
e
x
t
u
a
l
i
z
a
t
i
o
n
e
x
t
e
n
s
i
o
n

co
nt

ex
tu

al
iz

e
co

m
pu

te
Y

Y
Y

S
S
H

K
e
y
e
x
t
e
n
s
i
o
n

as
an

ar
gu

m
en

t
Y

Y
Y

ex
ist

in
g

ke
y

N
N

Y

Ta
bl

e
8.1

:O
CC

If
ea

tu
re

co
m

pa
ris

on
of

th
e

se
ve

ra
li

m
pl

em
en

ta
tio

ns
.T

he
la

ck
of

fe
at

ur
es

in
rO

CC
Ii

sd
ue

to
th

e
ba

ck
en

d,
no

tr
O

CC
Ii

ts
el

f,
sin

ce
it

re
fe

rs
to

th
eO

pe
nN

eb
ul

a
ba

ck
en

d
as

th
er

ei
sn

o
O

pe
nS

ta
ck

ba
ck

en
d

av
ai

la
bl

e.
N:

no
ti

m
pl

em
en

te
d

or
av

ai
la

bl
e,

Y:
im

pl
em

en
te

d,
P:

pa
rti

al
ly

im
pl

em
en

te
d,

N
/A

:n
ot

ap
pl

ic
ab

le
(b

ac
ke

nd
do

es
no

ts
up

po
rt

it)
.

155

main February 3, 2016 13:07 Page 156 �
�	

�
�	 �
�	

�
�	

create delete list (80 VMs) query show
operation

10-1

100

101

102
lo

g
tim

e
(s

)
Time spent in satisfying the request

OCCI-OS
ooi
OpenStack Compute API

Figure 8.4: Performance comparison between the existing OpenStack implementations, using a
logarithmic scale in the Y-axis. The listing of the running instances has been made against an
infrastructure running 80 instances. Error bars shows statistical uncertainity. Note that the query

operation for OpenStack is not applicable, as it is OCCI speci�c and there is no equivalent in
OpenStack.

As it can be seen in Figure 8.4, the results for the most common operations are
similar, with the exception of listing a large number of VMs (for this comparison I have
deployed 80 VMs). It is worth to notice that there is no query operation or any equivalent
in the native OpenStack Compute API, therefore it is not possible to show the results
for such operation.

8.6. Conclusions

Standards in the cloud cannot evolve without a rich ecosystem of available imple-
mentations. In this context, Open Cloud Computing Interface (OCCI) is the reference
standard for some federated cloud infrastructures, such as the European Grid Infras-

156

main February 3, 2016 13:07 Page 157 �
�	

�
�	 �
�	

�
�	

Chapter 8. An Implementation of an Open Standard for the Cloud

tructure (EGI) Federated Cloud [84]. In such federated infrastructures, having a stable
implementation of the OCCI interface for all of the Cloud Management Frameworks
(CMFs) used —such as OpenStack— is a must. As I have stated in Section 8.2, the rOCCI
framework has provided great OCCI support for several open source CMFs, there was a
clear lack of a stable implementation of the OCCI standard for OpenStack.

ooi has been presented to the EGI Federated cloud as an alternative implementation
for OpenStack with great acceptance, and is being adopted gradually by the OpenStack
resource providers in the infrastructure.

157

main February 3, 2016 13:07 Page 158 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 159 �
�	

�
�	 �
�	

�
�	

9Federating VO-based Cloud

Infrastructures

Part of this chapter has been published as: Á. López García, E. Fernández-del-
Castillo, andM. Puel. “Identity Federation with VOMS in Cloud Infrastructures”.

In: 2013 IEEE 5th International Conference on Cloud Computing Technology
and Science. 2013, pp. 42–48. isbn: 978-0-7695-5095-4. doi: 10. 1109/

CloudCom. 2013. 13 . url: http: // ieeexplore. ieee. org/ lpdocs/

epic03/ wrapper. htm? arnumber= 6753776

http://dx.doi.org/10.1109/CloudCom.2013.13
http://dx.doi.org/10.1109/CloudCom.2013.13
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6753776
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6753776

main February 3, 2016 13:07 Page 160 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 161 �
�	

�
�	 �
�	

�
�	

Chapter 9. Federating VO-based Cloud Infrastructures

Chapter 7 described how the main drawbacks for a federated cloud infrastructure
are a clear consequence of its heterogeneity: di�erent resource providers, using di�erent
Cloud Management Frameworks (CMFs), that are neither designed nor adapted to
interoperate and cooperate the way that any federated infrastructure is expected to
do. In this context, the identity federation has been identi�ed as one of the primary
challenges to be addressed.

In this chapter I propose the usage of the Virtual Organization Membership Service
(VOMS) [250] as an initial step to e�ectively federate the authentication and authorization
in a multi-institutional cloud testbed, geographically distributed and with di�erent CMFs.
I have implemented this as a new authentication mechanism for the OpenStack CMF.

9.1. Identity Federation, Challenges and Problematic

In a heterogeneous ecosystem composed by independent Resource Providers (RPs)
—with multiple CMFs and each one with multiple credential management systems— the
identity and access policy management are challenging issues. Identity federation must
be the cornerstone of any federation since it will create the foundations where the rest
of the federated services will lean on.

From the user’s perspective, identity federation is one of the core parts of any
interoperable infrastructure (even when the users are not aware of that federation). If
identity federation does not exist, users cannot access the infrastructure transparently,
as they would need to be concerned with the speci�c details on how to access any given
service provider, i.e. dealing with di�erent CMFs and the tedious procedure of managing
multiple identities and credentials.

Moreover, any federated infrastructure should leverage the establishment of rela-
tionships between the users and the resource providers. If a federated identity system
does not exist, the resource providers need to de�ne access policies individually for each
of the users and groups willing to access the infrastructure, whereas the users need to
negotiate their access policy and shares of the resources with each of the RPs. When the
number of users increase this becomes an overwhelming task for the resource providers.

The problematic described above is common to any kind of federation. For example,
the Shibboleth authentication system [223] has the concept of Shibboleth Federations
making possible to establish agreements and trust relationships between organizations

161

main February 3, 2016 13:07 Page 162 �
�	

�
�	 �
�	

�
�	

planning to share resources. These methods are normally focused on institutional
authentication, namely validating that a user is who says he is within an institution.

However, it is di�cult to establish the user membership within a more abstract
group —such as multi-institutional scienti�c collaborations— that is not bounded to
any particular organization. This problem is not new, and has been already e�ciently
addressed in the Grid computing model by means of the Virtual Organization (VO)
concept. A VO can be de�ned as a group of individuals and/or institutions emerged from
a set of resource-sharing rules across dynamical and multi-institutional collaborations
[12].

Resource providers can give access to their infrastructure on a VO-basis, meaning
that a resource provider can make its resources VO-aware and create an agreement with
a Virtual Organization on sharing and giving access to their resources, keeping under
control what is shared and how it is shared. This way:

A user belonging to a VO can get access to a given set of resources, using the same
set of credentials, across several resource providers.

A resource provider will be able to share its resources, with �ne-grained control
on what it is shared and not with a VO. The resource provider should have enough
con�dence in the VO users as they must sign an agreed acceptable usage policy.

A resource provider does not need to manage individually each of the users in
the VO, since this is leveraged to the VO administrators. The RP will trust the
credentials endorsed by the VO.

Once a VO —that is normally tied to a collaboration— obtains access to an infras-
tructure the RP can leverage to them the responsibility of tracking the internal
usage of their resources, partitioning them, and prioritizing the access according
to their member’s needs.

9.1.1. Current Solutions

Cloud middleware developers are aware of the identity federation problematic and
are tackling the problem at two di�erent levels: establishing trust between compatible
middleware and integration of external identity mechanisms.

162

main February 3, 2016 13:07 Page 163 �
�	

�
�	 �
�	

�
�	

Chapter 9. Federating VO-based Cloud Infrastructures

In the �rst case, two sites, site A and site B, using the same or compatible cloud
software can establish a trust between them, so that users from site A can use their
credentials to access the resources of site B. This authentication relies on the trust of the
credentials issued by one of the sites in the other site, normally by using some Public Key
Infrastructure (PKI) mechanism so that a site can verify that the credentials are really
issued by the other partner. This kind of authentication requires trust relationships to
be established by every pair of sites in the federation and is limited to speci�c CMF with
compatible identity services. These limitations and how some standards can alleviate
them have been already discussed in Section 7.3.3 and Section 7.4.3 respectively.

Resource Providers also need to de�ne authorization rules to access their resources
once the user is authenticated. Grid infrastructures have handled this problem e�ciently
with the concept of VOs and the VOMS service. This service is currently the de-facto
standard for VO management in EGI [60] and OSG [251] Grid infrastructures. Existing
Grid middleware (such as EMI [252] and the Globus Toolkit [253]) include VOMS support
as one of its core features.

VOMS allows VO managers to assign roles and groups to any given user within
a VO. The VOMS server creates signed assertions with the user’s VO attributes, thus
RPs can trust these assertions and de�ne the access rules for their resources according
to the included attributes. The current VOMS implementation is based in X.509 Proxy
Certi�cates [220], storing the VOMS attributes as Attribute Certi�cates (AC) along with
the user proxy. Any VO-enabled service is therefore able to extract and verify these
these AC against the VOMS certi�cate, leveraging the VO membership management to
its managers. A user that is removed from a VO, won’t be able to request the VOMS
attributes and won’t be able to use the VO-aware services at all.

9.2. VOMS Support in OpenStack

Identity in OpenStack is managed by the OpenStack Identity Service, whose code-
name is Keystone. It provides a common identity management for all the OpenStack
services and serves as entry point to the other services. Keystone is organized as a group
of internal modules —Identity, Token, Catalog and Policy— running as a Web Server
Gateway Interface (WSGI) [247] application; each of them can be con�gured to use a
speci�c back-end that adapts to di�erent deployment scenarios.

163

main February 3, 2016 13:07 Page 164 �
�	

�
�	 �
�	

�
�	

The Identity service performs the credential validation and provides data and any
associated meta-data about users, tenants and roles. Each user has some account creden-
tials (consisting on a username and password) and should be associated to one or more
tenants. The tenant is the unit of ownership in OpenStack, similarly to groups at the OS
level. The role is a �rst-class piece of meta-data associated with a user-tenant pair, i.e.
user U in tenant T has role R. Policy rules are de�ned using these three data types. The
default Identity service back-end stores data persistently using any SQLAlchemy [254]
compatible database engine.

The Token service is in charge of validating, creating and revoking the tokens that
authenticate all the requests in OpenStack. The Catalog service provides an endpoint
registry for discovery of other OpenStack services. Finally, the Policy service provides a
rule-based authorization engine and the associated rule management tools.

The �rst action a user needs to perform to access the OpenStack services is to request
an authentication token to Keystone. This is done by submitting a POST request to the
/tokens with the user credentials included in the body of the request as a JavaScript
Object Notation (JSON) document in the following form:

Listing 9.1: Keystone V2.0 password authentication JSON request.

1 {
2 "auth": {
3 " passwordCredentials ": {
4 " username ": " JohnDoe ",
5 " password ": "Top Secret "
6 }
7 }
8 }

If the auth dictionary contains a tenantName �eld a scoped token will be issued
but, whereas this token will be unscoped if this �eld is missing. The di�erence with both
types is that the former represents the authenticated user within a tenant. This token
can be used therefore to authenticate the user with the rest of the cloud services. The
latter —the unscoped token— does not have any tenant associated and can be only used
against the Keystone service to i) enumerate the list of tenants the user has access to
(useful for access discovery) or ii) request an scoped tenant without the need to provide
its user credentials again .

164

main February 3, 2016 13:07 Page 165 �
�	

�
�	 �
�	

�
�	

Chapter 9. Federating VO-based Cloud Infrastructures

9.2.1. Keystone External Authentication

Keystone implements the concept of External Authentication. This functionality
makes possible to perform authentication externally to the Keystone process and/or
independently of the Identity back-end used: the Identity service considers that a user
is successfully authenticated if the WSGI environment variable REMOTE_USER is set,
otherwise the back-end serves as authentication handler. With this new architecture
several authentication mechanisms can be used irrespective of the concrete back-end
that still manages the users, tenants and roles data. The following two scenarios arise.

If Keystone is running as a WSGI process inside a HTTPD server with authentica-
tion capabilities, such as Apache, the web server modules can be used to authenticate
any request. This allows to re-use the authentication mechanisms that are already
implemented and tested in the most common web servers.

Additionally, if a developer needs to implement a particular authentication method
not available in the web server, or if any extra operation before the token request should
be performed, a WSGI �lter middleware can be used. This �lter is a module that can
analyze the user request and conditionally perform the authentication if it is able to
handle the credentials. The administrator can con�gure a set of �lters that are executed
before the token back-end consumes the request: if any of those correctly authenticate
the user (and consequently set the REMOTE_USER variable), the Identity service will
consider the user as valid. Figure 9.1 shows a sample call sequence for an authentication
request in Keystone where there is a single WSGI �lter con�gured.

9.2.2. Keystone VOMS Integration

The VOMS support is implemented as an external authentication handler in Keystone
and executed as a WSGI of an HTTPD server enabled to use OpenSSL and con�gured
to accept proxy certi�cates. The user authenticates against the HTTPD server with a
VOMS proxy, and the server, after the proxy validation, includes the SSL information
in the request environment. This information reaches the VOMS �lter, that will try to
authorize those requests that include the following JSON in the body:

Listing 9.2: Keystone V2.0 VOMS authentication JSON request.

1 {
2 "auth": {

165

main February 3, 2016 13:07 Page 166 �
�	

�
�	 �
�	

�
�	

Ke
ys

to
ne

W
SG

IA
pp

lic
at

io
n

Ke
ys

to
ne

-V
O

M
S

W
SG

Ip
ip

el
in

e

User HTTP WSGI server WSGI �lters VOMS middleware Keystone App Identity back-end Token back-end

POST /token

call

process request

REMOTE_USER

if applicableif applicable

get token

authenticate

if !REMOTE_USERif !REMOTE_USER

get user data

get token

token
token

token

Figure 9.1: Authentication request in Keystone: i) The user performs a POST request to /token;
ii) the WSGI server calls the con�gured WSGI pipeline; iii) the last WSGI middleware invokes
Keystone, that uses the Identity back-end to authenticate the user if no REMOTE_USER is de�ned
and to get user data from the back-end storage; iv) Token back-end issues the token; and v) is
returned to the user.

3 "voms": true
4 }
5 }

The VOMS module invokes the VOMS library to check if the proxy is valid and
if it is allowed in the server. As with any other services using VOMS, this operation
uses .lsc �les which contain the trust chain from the Certi�cate Authority (CA) to the
VOMS server so no additional request is made against the VOMS servers. The server
signature in clients’ proxy is veri�ed in accordance with this trust chain. Once the proxy
is considered valid and allowed, the VOMS module considers the Distinguished Name
(DN) of the proxy issuer as the user name. For the tenant, a JSON con�guration �le
de�nes the mapping between VOMS attributes (VO name, VO groups, VO roles, etc.)
and the local OpenStack tenants. Each mapping is de�ned as an entry in a dictionary of
the following form:

166

main February 3, 2016 13:07 Page 167 �
�	

�
�	 �
�	

�
�	

Chapter 9. Federating VO-based Cloud Infrastructures

Listing 9.3: VO and group JSON mapping.

1 " voname ": {
2 " tenant ": " local_tenant "
3 }

where voname is the Fully Quali�ed Attribute Names (FQANs) used by VOMS and
local_tenant is the name of the tenant in the local OpenStack installation. For example,
for the dteam VO, the �le could be con�gured as:

Listing 9.4: sample VO and group JSON mapping.

1 {
2 " dteam ": {
3 " tenant ": " dteam "
4 },
5 "/ dteam / NGI_IBERGRID ": {
6 " tenant ": " dteam_ibergrid "
7 }
8 }

In the example above, the users of dteam VO in the NGI_IBERGRID group would be
mapped to the dteam_ibergrid tenant, while any other dteam VO members would be
matched to the dteam tenant.

It is worth to note that the mapping for a VO can vary between di�erent providers.
This can be seen as an issue since di�erent tenant names can produce inconsistencies
towards the user. Anyhow, this can be circumvented using the Keystone’s ability to list
the tenants that the user is able to get access to, using a unscoped token (as described in
Section 9.2) so that the actual tenant will be selected from the obtained list.

The mapped local tenant must exist in advance for a user to be authorized. If the
mapped tenant doest not exist, the authorization will fail. The same applies for the
user, with the particularity that the VOMS module is able to automatically create new
users if enabled in the con�guration. This option is disabled by default, but if the
administrator wants to authorize all the users belonging to a particular VO to access
the infrastructure, it should be enabled. Once a user has been granted access, the
administrator can manage it as with any other user in the Keystone Identity back-end
(i.e. disable/enable, grant/revoke roles, etc.). Figure 9.2 describes a token request with
the VOMS module.

167

main February 3, 2016 13:07 Page 168 �
�	

�
�	 �
�	

�
�	

HTTPD

Certification
AuthorityVOMS Server

VOMS WSGI
Middleware

Token
Backend

Identity store

Keystone WSGI

Keystone server

(a)(b)

(d)

(c)

(g)

(f)

(e)

Figure 9.2: VOMS support in Keystone: a) The user request a certi�cate; b) creates a VOMS proxy;
c) authenticates against Keystone using the proxy; d) the HTTPD server veri�es the proxy against
the CA and CRLs; e) WSGI middleware extracts VO information and maps to a tenant; f) token is
issued; and g) credentials are returned to the user.

Once a user is removed from a VO, he won’t be able to access the RP resources. The
VOMS server will refuse to issue a valid VOMS proxy for that user, thus authentication
will not take place.

9.3. Conclusions

With the introduction of the Virtual Organization Membership Service (VOMS)
support in Keystone, it is possible to create a federation of OpenStack services where a
single identity can be used to access the resources from di�erent providers. Resource
providers based in any other Cloud Management Frameworks (CMFs) may also join
the federation if the VOMS authentication and authorization is supported. OpenNebula,
through the rOCCI framework [194], also supports VOMS authentication for the Open
Cloud Computing Interface (OCCI) interface. Several OpenStack and OpenNebula re-
source providers are integrated within the European Grid Infrastructure (EGI) Federated
Cloud task force by using a common Application Programming Interface (API) (OCCI)
with a single identity (based on VOMS proxies).

The identity federation should be one of the �rst steps when establishing a federation,
since it creates the foundations where all the other services —accounting, brokering,

168

main February 3, 2016 13:07 Page 169 �
�	

�
�	 �
�	

�
�	

Chapter 9. Federating VO-based Cloud Infrastructures

etc.— will rely on.
In a well established infrastructure, introducing a new authentication method is

disruptive for either the resource providers —that are familiar and con�dent on the
current system— and the �nal users —that are used to a set of tools. This is the case of
the European Grid infrastructures, that have e�ectively deployed a working authentica-
tion and authorization framework via their National Research and Education Networks
(NRENs), the EuGridPMA accredited Certi�cation Authorities and the Virtual Organi-
zation (VO)-management model. Applying and adapting this same model to the CMFs
that the resource providers are deploying is a step forward to the establishment of a
federated European cloud.

This work is only an initial step towards a federated authentication and authorization
framework, based on the VO concept. The current development is based in X.509
certi�cate and X.509 certi�cate proxies that are considered to be un-friendly by several
user communities. However, the work presented in this chapter is used within the EGI
Federated Cloud Task Force.

169

main February 3, 2016 13:07 Page 170 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 171 �
�	

�
�	 �
�	

�
�	

IV
Conclusions

main February 3, 2016 13:07 Page 172 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 173 �
�	

�
�	 �
�	

�
�	

10Conclusions

main February 3, 2016 13:07 Page 174 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 175 �
�	

�
�	 �
�	

�
�	

Chapter 10. Conclusions

10.1. Contributions

The work presented in this dissertation contributes to the enhancement and adapta-
tion of the cloud computing model to accommodate scienti�c applications, advancing
from the current state of the art of the cloud technologies. In order to reach this objec-
tive, the cloud computing ecosystem has been analysed, considering the requirements
imposed by scienti�c computing characteristics.

In particular, in this work I have focused on two di�erent and broad areas: the
improvements in the resource allocation strategies and the need for a federated and
interoperable cloud due to the way modern science is performed. Regarding the resource
allocation policies, I have focused in some of the provisioning aspects that in�uence the
elasticity perceptions for a scienti�c use. Considering federation and interoperability, I
have analysed the main existing challenges for establishing a cloud federation based in
open standards.

In summary, the major contributions of this dissertation are:

The analysis of the cloud computing ecosystem focusing in its feasibility to execute
scienti�c applications, taking into account their speci�c requirements and the
challenges that a cloud provider is facing when operating a Science Cloud. With
this analysis I have settled the outstanding challenges for the current technologies.
Some of these challenges are addressed in this dissertation.

The proposal of an enhancement of the Virtual Machine Image (VMI) distribution
methods and the improvement of the scheduling policies within the Cloud Man-
agement Frameworks (CMFs) so that a rapid provisioning of Virtual Machines
(VMs) is possible, specially when performing large requests.

The proposal and study of preemptible instances as a way to improve the usage
of the cloud infrastructures, making possible to obtain opportunistic resources
for fault-tolerant and batch computing tasks, making possible that on-demand
request can coexist more easily with long-running workloads.

An implementation of the Open Cloud Computing Interface (OCCI) standard
for OpenStack, making possible to integrate OpenStack-based clouds in existing
federations based on open standards, such as the European Grid Infrastructure
(EGI) Federated Cloud.

175

main February 3, 2016 13:07 Page 176 �
�	

�
�	 �
�	

�
�	

The proposal, implementation and deployment of the Virtual Organization Mem-
bership Service (VOMS) system for obtaining a federated authentication and
authorization framework in cloud systems, making easier the transition and inter-
operability between existing grid and cloud infrastructures.

Even if the work of this dissertation has been focused on satisfying requirements
and challenges for scienti�c applications, the addressed topics are of general interest for
the community, therefore their impact is not limited to Science Clouds.

10.2. Publications

The work described in this dissertation has produced a number of publications in
scienti�c journals and international conferences and workshops, as it will be outlined
next. Moreover, this work has produced some software products that are currently being
in use in European projects and production infrastructures, such as the EGI Federated
Cloud and the Spanish National Research Council (CSIC) Science Cloud infrastructure
at the Instituto de Física de Cantabria (IFCA).

The following research papers have been published in scienti�c journals:

Á. López García and E. Fernández-del-Castillo. “E�cient image deployment in
Cloud environments”. In: Journal of Network and Computer Applications (2016).
issn: 1084-8045 (accepted paper).

Á. López García, E. Fernández-del-Castillo, and P. Orviz Fernández. “OpenStack
OCCI Interface”. In: SoftwareX (2016). issn: 2352-7110. doi: 10.1016/j.softx.

2016.01.001 (accepted paper).

I. Campos Plasencia, E. Fernández-del-Castillo, S. Heinemeyer, Á. López García,
F. Pahlen, and G. Borges. “Phenomenology tools on cloud infrastructures using
OpenStack”. In: The European Physical Journal C 73.4 (Apr. 2013), p. 2375. issn:
1434-6044. doi: 10.1140/epjc/s10052-013-2375-0. arXiv: arXiv:1212.

4784v1. url: http://link.springer.com/10.1140/epjc/s10052-013-

2375-0.

The following papers have been submitted to the corresponding journals:

176

http://dx.doi.org/10.1016/j.softx.2016.01.001
http://dx.doi.org/10.1016/j.softx.2016.01.001
http://dx.doi.org/10.1140/epjc/s10052-013-2375-0
http://arxiv.org/abs/arXiv:1212.4784v1
http://arxiv.org/abs/arXiv:1212.4784v1
http://link.springer.com/10.1140/epjc/s10052-013-2375-0
http://link.springer.com/10.1140/epjc/s10052-013-2375-0

main February 3, 2016 13:07 Page 177 �
�	

�
�	 �
�	

�
�	

Chapter 10. Conclusions

Á. López García, E. Fernández-del-Castillo, and P. Orviz Fernández. “Standards
for enabling heterogeneous IaaS cloud federations”. In: Computer Standards &

Interfaces (2016). issn: 0920-5489 (under review).

Á. López García, E. Fernández-del-Castillo, and P. Orviz Fernández. “Resource
provisioning in Science Clouds: requirements and challenges”. In: Journal of Grid
Computing (2016). issn: 1572-9184 (under review).

Contributions to scienti�c conferences directly related to the topics of the disserta-
tion:

E. Fernández-del-Castillo, D. Scardaci, and Á. López García. “The EGI Federated
Cloud e-Infrastructure”. In: Procedia Computer Science 68 (2015), pp. 196–205. issn:
18770509. doi: 10.1016/j.procs.2015.09.235. url: http://linkinghub.

elsevier.com/retrieve/pii/S187705091503080X.

I. Blanquer, G. Donvito, P. Fuhrmann, Á. López García, and G. Molto. An inte-

grated IaaS and PaaS architecture for scienti�c computing. Oral Contribution. EGI
Community Forum: Bari (Italy), Nov. 10–13, 2015

Á. López García, P. Fuhrmann, G. Donvito, and A. Chierici. Improving IaaS

resources to accommodate scienti�c applications. Oral Contribution. HEPiX Fall
2015 Workshop: Brookhaven National Laboratory, New York (USA), Oct. 12–16,
2015

Á. López García, P. Orviz Fernández, F. Aguilar, E. Fernández-del-Castillo, I.
Campos Plasencia, and J. Marco de Lucas. “The role of IBERGRID in the Feder-
ated Cloud of EGI”. in: Proceedings of the IBERGRID 2014 Conference. Editorial
Universidad Politecnica de Valencia, 2014, pp. 3–14. isbn: 978-84-9048-246-9.

Á. López García. OpenStack Cloud Workshop. Workshop. 8th Iberian Grid Com-
puting Conference – IBERGRID 2014: University of Aveiro, Aveiro (Portugal),
Sept. 8–10, 2014

Á. López García. OpenStack hands on. Workshop. EGI Community Forum:
Helsinki (Finland), May 19–23, 2014

177

http://dx.doi.org/10.1016/j.procs.2015.09.235
http://linkinghub.elsevier.com/retrieve/pii/S187705091503080X
http://linkinghub.elsevier.com/retrieve/pii/S187705091503080X

main February 3, 2016 13:07 Page 178 �
�	

�
�	 �
�	

�
�	

Á. López García, E. Fernández-del-Castillo, and M. Puel. “Identity Federation
with VOMS in Cloud Infrastructures”. In: 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science. 2013, pp. 42–48. isbn: 978-0-7695-5095-4.
doi: 10.1109/CloudCom.2013.13. url: http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=6753776.

Á. López García and E. Fernández-del-Castillo. “Analysis of Scienti�c Cloud
Computing requirements”. In: Proceedings of the IBERGRID 2013 Conference. 2013,
p. 147 158.

Á. López García and P. Orviz Fernández. Integrating cloud computing within an

existing infrastructure. Poster. EGI Technical Forum: Madrid (Spain), Sept. 16–20,
2013

Á. López García and E. Fernández-del-Castillo. Analysis of Scienti�c Cloud Com-

puting requirements. Oral Contribution. EGI Technical Forum: Madrid (Spain),
Sept. 16–20, 2013

Á. López García and E. Fernández-del-Castillo. Analysis of Scienti�c Cloud Com-

puting requirements. Oral Contribution. 7th Iberian Grid Computing Conference –
IBERGRID 2013: Madrid (Spain), Sept. 19–20, 2013

E. Fernández-del-Castillo, I. Campos, S. Heinemeyer, Á. López García, and F.
Pahlen. Phenomenology Tools on a OpenStack Cloud Infrastructure. Oral Contri-
bution. EGI Community Forum 2013: The University of Manchester, Manchester
(UK), Apr. 8–12, 2012

M. Airaj, C. Cavet, V. Hamar, M. Jouvin, C. Loomis, et al. “Vers une fédération de
Cloud Académique dans France Grilles”. In: Journées SUCCES 2013. Paris, France,
Nov. 2013. url: https://hal.archives-ouvertes.fr/hal-00927506.

A. Y. Rodríguez-Marrero, I. González Caballero, A. Cuesta Noriega, E. Fernández-
del-Castillo, Á. López García, et al. “Integrating PROOF Analysis in Cloud and
Batch Clusters”. In: Journal of Physics: Conference Series 396.3 (Dec. 2012), p. 32091.
issn: 1742-6588. doi: 10.1088/1742- 6596/396/3/032091. url: http:

//stacks.iop.org/1742- 6596/396/i=3/a=032091?key=crossref.

a4219812d32b8f4fb9c750e66cfcde37.

178

http://dx.doi.org/10.1109/CloudCom.2013.13
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6753776
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6753776
https://hal.archives-ouvertes.fr/hal-00927506
http://dx.doi.org/10.1088/1742-6596/396/3/032091
http://stacks.iop.org/1742-6596/396/i=3/a=032091?key=crossref.a4219812d32b8f4fb9c750e66cfcde37
http://stacks.iop.org/1742-6596/396/i=3/a=032091?key=crossref.a4219812d32b8f4fb9c750e66cfcde37
http://stacks.iop.org/1742-6596/396/i=3/a=032091?key=crossref.a4219812d32b8f4fb9c750e66cfcde37

main February 3, 2016 13:07 Page 179 �
�	

�
�	 �
�	

�
�	

Chapter 10. Conclusions

E. Fernández-del-Castillo, Á. López García, I. Campos Plasencia, M. A. Nuñez
Vega, J. Marco de Lucas, et al. “IberCloud: federated access to virtualized resources”.
In: Proceedings of the IBERGRID 2012 Conference. Lisbon, Nov. 2012, pp. 195–205.

E. Fernández-del-Castillo, Á. López García, I. Campos, M. Á. Nuñez, J. Marco,
et al. IberCloud: federated access to virtualized resources. Oral Contribution. EGI
Technical Forum 2012: Prague (Czech Republic), Sept. 17–21, 2012

E. Fernández-del-Castillo, Á. López García, I. Campos, M. Á. Nuñez, J. Marco,
et al. IberCloud: federated access to virtualized resources. Oral Contribution. 6th
Iberian Grid Computing Conference – IBERGRID 2012: Lisbon (Portugal), Sept. 7–
9, 2012

Á. López García and M. Puel. France-Grilles dans la Federation Cloud Task-Force

d’EGI. Oral Contribution. Atelier Operations France-Grilles: INRA, Villenave
d’Ornon (France), Nov. 29–30, 2012

Á. López García and M. Puel. Cloud Computing at CC-IN2P3. Invited Talk.
Rencontre LCG-France: SUBATECH, Nantes (France), Sept. 18–19, 2012

The work performed in this dissertation has produced additional software products
that enable the integration of OpenStack clouds in the EGI Federated Cloud infrastruc-
ture:

Keystone-VOMS1, a module for the OpenStack Identity service (Keystone) that
provides VOMS-based authentication and authorization.

ooi2 [235], an implementation of the Open Grid Forum (OGF) OCCI standard for
the OpenStack CMF.

cASO3, an accounting extractor, based on the OGF cloud Usage Record (UR)
standard.

1
Á. López García and E. Fernández-del-Castillo. Keystone-VOMS. url: https://github.com/IFCA/

keystone-voms.
2
Á. López García, E. Fernández-del-Castillo, and P. Orviz Fernández. OpenStack OCCI Interface. 2016.

url: https://github.com/openstack/ooi.
3
Á. López García and E. Fernández-del-Castillo. cASO: OpenStack Accounting Extractor. url: https:

//github.com/IFCA/caso.

179

https://github.com/IFCA/keystone-voms
https://github.com/IFCA/keystone-voms
https://github.com/openstack/ooi
https://github.com/IFCA/caso
https://github.com/IFCA/caso

main February 3, 2016 13:07 Page 180 �
�	

�
�	 �
�	

�
�	

The cloud information system provider4, a module for extracting information
from the underlying CMF and publishing it using the Grid Laboratory Uniform
Enviroment (GLUE) 2.0 schema.

In addition, besides the standalone software products outlined above, I have con-
tributed several improvements to the upstream OpenStack project:

I have implemented the current weight normalization (as described in Section 4.3
mechanism in the OpenStack Compute Scheduler5. Some of the work performed
in this dissertation relies in how the scheduler weights the nodes so as to select the
best suited host for scheduling a request. The scheduler applied several weights
to each of the hosts according to the weighed characteristics (for instance free
RAM or number of Input/Output (I/O) operations) without normalizing them (i.e.
the values were in a free range), hence it was impossible to predict the scheduling
behaviour or to apply a higher priority to one weight against others.

I have proposed and implemented a cache-aware weigher for the OpenStack
scheduler6, according to the functionality described in Chapter 5

I have submitted an initial proposal for the implementation of the preemptible
instances mechanism described in this dissertation7, following the design described
in Chapter 6.

10.3. Future Work and Perspective

Although the proposed solutions in this dissertation are functional and provide and
advancement in the state of the art on their own, there are research areas that can be
explored in the future so as to enhance and complete the proposed solutions.

4
Á. López García and E. Fernández-del-Castillo. cloud-bdii-provider. url: https://github.com/EGI-

FCTF/cloud-bdii-provider.
5
Á. López García. OpenStack Compute Scheduler weight normalization. url: https://blueprints.

launchpad.net/nova/+spec/normalize-scheduler-weights.
6
Á. LópezGarcía. OpenStack Compute Scheduler Cache Aware. url: https://blueprints.launchpad.

net/nova/+spec/cache-aware-weigher.
7
Á. López García. OpenStack Spot Instances Support Speci�cation. url: https : / / blueprints .

launchpad.net/nova/+spec/spot-instances.

180

https://github.com/EGI-FCTF/cloud-bdii-provider
https://github.com/EGI-FCTF/cloud-bdii-provider
https://blueprints.launchpad.net/nova/+spec/normalize-scheduler-weights
https://blueprints.launchpad.net/nova/+spec/normalize-scheduler-weights
https://blueprints.launchpad.net/nova/+spec/cache-aware-weigher
https://blueprints.launchpad.net/nova/+spec/cache-aware-weigher
https://blueprints.launchpad.net/nova/+spec/spot-instances
https://blueprints.launchpad.net/nova/+spec/spot-instances

main February 3, 2016 13:07 Page 181 �
�	

�
�	 �
�	

�
�	

Chapter 10. Conclusions

In Chapter 5 we have demonstrated how an image cache aware scheduler reduces
the boot time when large requests are made. However, the cache mechanism
still relies in the fact that the VMI is available in the physical node, otherwise a
cache miss will exist. I think that it is worth exploring a method for a smart image
preseed into the nodes based on a calculated usage popularity. This design would
detect if there are nodes able to satisfy a popular request at a given moment and
preseed the popular images to the free nodes if it is not possible.

Regarding the preemptible instances support exposed in Section 6, this function-
ality can be exploited so as to implement more complex policies on top of it. A
bidding system with a price �uctuation depending on the past and current usage of
the infrastructure (similar to a stock market) could be interesting for commercial
providers willing to increase their revenues. The preemptible instances makes
possible to implement other policies, such as credit systems or fair-sharing.

The AAI and identity federation is evolving at a fast pace, moving to more in-
tegrated solutions where users can use several identities (for instance X.509,
institutional identity providers using OpenID Connect, etc.) being mapped to the
same account within one realm, regardless of the authentication method being
used.

Standards need to evolve to satisfy the needs of the actors using them and become
useful instruments. The OCCI 1.2 speci�cation that is under development has ad-
dressed some of these requirements after collecting feedback from all the involved
parties (that is, resource providers and users). Contributions to these standards
and the relevant standardization bodies is a must, so as to enrich and enhance the
open standards ecosystem.

Besides, some of the proposed challenges in Chapter 3 still remain open, mainly
those related with the resource provisioning and scheduling.

Part II of this dissertation was focused on VMs as the resources that are managed
by the CMF. Nowadays Operating System (OS)-level virtualization is becoming
very popular. This virtualization technique, in contrast with the Virtual Machine
Monitor (VMM)-based, leverages the OS kernel to isolate several user-space in-
stances instead of just one, called containers —such as Docker, LXC, etc. OS-based

181

main February 3, 2016 13:07 Page 182 �
�	

�
�	 �
�	

�
�	

virtualization imposes little no overhead, therefore it is gradually becoming more
popular among users, such as the INDIGO-Datacloud EU project8. From the CMF
point of view, containers can be treated as lightweight virtual machines, therefore
all the proposed improvements in Part II still apply.

8
INDIGO-Datacloud. 2015. url: http://indigo-datacloud.eu.

182

http://indigo-datacloud.eu

main February 3, 2016 13:07 Page 183 �
�	

�
�	 �
�	

�
�	

V
Appendices

main February 3, 2016 13:07 Page 184 �
�	

�
�	 �
�	

�
�	

main February 3, 2016 13:07 Page 185 �
�	

�
�	 �
�	

�
�	

AExperimental Facilities

Unless stated otherwise, each of the tests performed in this dissertation have been
performed in one of the following testing infrastructures or environments.

A.1. CSIC IFCA Science Cloud Production Infrastructure

The Spanish National Research Council (CSIC) Science Cloud infrastructure at the
Instituto de Física de Cantabria (IFCA) consists on the following services:

A Head node hosting:

• The OpenStack Compute Application Programming Interfaces (APIs).

• The OpenStack OCCI Interface.

• The OpenStack Compute Scheduler service.

An OpenStack Identity Service (Keystone)

An OpenStack Volume Service (Cinder)

main February 3, 2016 13:07 Page 186 �
�	

�
�	 �
�	

�
�	

A MariaDB 10.1.0 server.

Two nodes hosting the RabbitMQ 3.2.4 servers and the OpenStack Compute
Condutor service.

An Image Catalog running the OpenStack Image Service (Glance) serving images
from its local disk.

Several OpenStack Compute nodes, as explained below.

These servers —except the compute nodes— are deployed as virtual machines on a
dedicated infrastructure that is devoted to run services in High Availability.

The OpenStack Compute nodes consist on a variety of servers, utilizing Xen version
4.X as the virtualization technology.

36 nodes with the characteristics described in Table A.1.

34 nodes with the characteristics described in Table A.2.

18 nodes with the characteristics described in Table A.3.

8 nodes with the characteristics described in Table A.4.

32 nodes with the characteristics described in Table A.5.

The Operating System (OS) being installed in all of these nodes is Ubuntu Server
14.04 LTS, running the Linux 3.8.0 Kernel. The OpenStack version deployed has evolved
during the writing of this thesis, starting with the 2012.1 (Essex) version up to 2015.2
(Liberty).

CPU 2 x Intel®Xeon®CPU X5670 @ 2.93GHz
RAM 48GB
Disk 250GB

Network 4 x 1Gbit Ethernet

Table A.1: Type-1 Virtualization Node characteristics.

186

main February 3, 2016 13:07 Page 187 �
�	

�
�	 �
�	

�
�	

Appendix A. Experimental Facilities

CPU 2 x Intel®Xeon®CPU E5-2670 0 @ 2.60GHz
RAM 128GB
Disk 500GB

Network 2 x 10Gbit Ethernet

Table A.2: Type-2 Virtualization Node characteristics.

CPU 2 x Intel®Xeon®CPU E5-2697 v2 @ 2.70GHz
RAM 96GB
Disk 400GB

Network 2 x 10Gbit Ethernet

Table A.3: Type-3 Virtualization Node characteristics.

CPU 2 x Amd Opteron 6176 SE
RAM 256GB
Disk 860GB

Network 2 x 10Gbit Ethernet

Table A.4: Type-4 Virtualization Node characteristics.

CPU 2 x Intel®Xeon®CPU E31260L @ 2.40GHz
RAM 16GB
Disk 1TB

Network 2 x 1Gbit Ethernet

Table A.5: Type-5 Virtualization Node characteristics.

A.2. IFCA Batch System

The IFCA Batch System runs on top of the cloud resources described in A.1. All
the nodes run the same Scienti�c Linux 6 OS and is orchestrated using the Son of Grid
Engine [276] batch system. Therefore, the worker nodes are virtualized machines with
following the con�guration described below:

36 nodes with the characteristics described in Table A.6.

34 nodes with the characteristics described in Table A.7.

18 nodes with the characteristics described in Table A.8.

187

main February 3, 2016 13:07 Page 188 �
�	

�
�	 �
�	

�
�	

CPU 2 x Intel®Xeon®CPU X5670 @ 2.93GHz
RAM 45GB
Disk 220GB

Network 1 x 1Gbit Ethernet

Table A.6: Type-1 Worker Node characteristics.

CPU 2 x Intel®Xeon®CPU E5-2670 0 @ 2.60GHz
RAM 124GB
Disk 320GB

Network 1 x 10Gbit Ethernet

Table A.7: Type-2 Worker Node characteristics.

CPU 2 x Intel®Xeon®CPU E5-2697 v2 @ 2.70GHz
RAM 92GB
Disk 290GB

Network 1 x 10Gbit Ethernet

Table A.8: Type-3 Worker Node characteristics.

A.3. CSIC IFCA Cloud Test Infrastructure

The CSIC IFCA Cloud test infrastructure consists on a dedicated cloud testbed that
comprises a set of 26 identical IBM HS21 blade servers, with the characteristics shown
in Table A.9

CPU 2 x Intel®Xeon®Quad Core E5345 2.33GHz
RAM 16GB
Disk 140GB, 10 000 rpm hard disk

Network 1Gbit Ethernet

Table A.9: Test node characteristics.

The network setup of the testbed consists on two 10 Gbit Ethernet switches, inter-
connected with a 10 Gbit Ethernet link. All the hosts are evenly connected to these
switches using a 1 Gbit Ethernet connection.

The system architecture is as follows:

A Head node hosting all the required services to manage the cloud test infrastruc-

188

main February 3, 2016 13:07 Page 189 �
�	

�
�	 �
�	

�
�	

Appendix A. Experimental Facilities

ture, that is:

• The OpenStack Compute APIs.

• The OpenStack Compute Scheduler service.

• The OpenStack Compute Condutor service.

• The OpenStack Identity Service (Keystone)

• A MariaDB 10.1.0 server.

• A RabbitMQ 3.2.4 server.

An Image Catalog running the OpenStack Image Service (Glance) serving images
from its local disk.

24 Compute Nodes running OpenStack Compute, hosting the spawned instances.

The OS being used for these tests is an Ubuntu Server 14.04 LTS, running the Linux
3.8.0 Kernel. The OpenStack version deployed depends on the test performed, therefore
it has been stated in each individual chapter.

A.4. OCCI Testing Environment

In order to perform the performance comparison of the di�erent Open Cloud Com-
puting Interface (OCCI) implementations, we deployed it on a virtual machine with the
characteristics depicted in Table A.10

CPU 1 x eight-core Intel®Xeon®E5-2640 2.00GHz equivalent.
RAM 16GB

Network 1Gbit Ethernet

Table A.10: Test node characteristics..

This machine only executed the required APIs (that is, the OpenStack native API,
ooi, and OCCI-OS) making use of the rest of the services described in Section A.3. The
OpenStack version used for these tests was the OpenStack 2015.2 (Kilo) release.

A.5. HEP Spec Tests

189

main February 3, 2016 13:07 Page 190 �
�	

�
�	 �
�	

�
�	

CPU 2 x Intel®Xeon®E5-2670 2.60GHz.
RAM 128GB

Table A.11: Test node characteristics.

190

main February 3, 2016 13:07 Page 191 �
�	

�
�	 �
�	

�
�	

Bibliography

[1] P. Mell, T. Grance, and P. Mell. The NIST de�nition of cloud computing. Tech. rep.
Special Publication 800-145. National Institute of Standards and Technology
({NIST}), Sept. 2011.

[2] L. M. L. L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. “A break in
the clouds: towards a cloud de�nition”. In: ACM SIGCOMM Computer Commu-

nication Review 39.1 (2008), pp. 50–55. url: http://dl.acm.org/citation.

cfm?id=1496100.

[3] R. Buyya, C. S. Yeo, and S. Venugopal. “Market-Oriented Cloud Computing:
Vision, Hype, and Reality for Delivering IT Services as Computing Utilities”.
In: 2008 10th IEEE International Conference on High Performance Computing and

Communications. 2008, pp. 5–13. isbn: 978-0-7695-3352-0. doi: 10.1109/HPCC.

2008.172. arXiv: 0808.3558. url: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=4637675.

[4] I. Foster, Y. Zhao, I. Raicu, and S. Lu. “Cloud computing and grid computing
360-degree compared”. In: Grid Computing Environments Workshop, 2008. GCE’08.

http://dl.acm.org/citation.cfm?id=1496100
http://dl.acm.org/citation.cfm?id=1496100
http://dx.doi.org/10.1109/HPCC.2008.172
http://dx.doi.org/10.1109/HPCC.2008.172
http://arxiv.org/abs/0808.3558
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4637675
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4637675

main February 3, 2016 13:07 Page 192 �
�	

�
�	 �
�	

�
�	

2008, pp. 1–10. url: http://ieeexplore.ieee.org/xpls/abs%7B%5C_

%7Dall.jsp?arnumber=4738445.

[5] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Gri�th, et al. “A view of cloud
computing”. In:Communications of the ACM 53.4 (Apr. 2010), p. 50. issn: 00010782.
doi: 10.1145/1721654.1721672. url: http://portal.acm.org/citation.

cfm?doid=1721654.1721672.

[6] F. Oesterle, S. Ostermann, R. Prodan, and G. J. Mayr. “Experiences with dis-
tributed computing for meteorological applications: grid computing and cloud
computing”. In: Geoscienti�c Model Development 8.7 (2015), pp. 2067–2078. issn:
1991-9603. doi: 10.5194/gmd-8-2067-2015.

[7] M. a. Rappa. “The utility business model and the future of computing services”.
In: IBM Systems Journal 43.1 (2004), pp. 32–42. issn: 0018-8670. doi: 10.1147/

sj.431.0032.

[8] J. M. A. Calero, N. Edwards, J. Kirschnick, L. Wilcock, M. Wray, J. M. Alcaraz
Calero, N. Edwards, J. Kirschnick, L. Wilcock, and M. Wray. “Toward a multi-
tenancy authorization system for cloud services”. In: IEEE Security and Privacy

8.6 (2010), pp. 48–55. issn: 15407993. doi: 10.1109/MSP.2010.194.

[9] Q. Zhang, L. Cheng, and R. Boutaba. “Cloud computing: state-of-the-art and
research challenges”. In: Journal of Internet Services and Applications 1.1 (Apr.
2010), pp. 7–18. issn: 1867-4828. doi: 10.1007/s13174-010-0007-6. url:
http://www.springerlink.com/index/10.1007/s13174-010-0007-6.

[10] Juniper Networks. Securing the multitenancy and cloud computing. Tech. rep.
2012, pp. 1–5.

[11] G. J. Feeney, R. D. Hilton, R. L. Johnson, T. J. O’Rourke, and T. E. Kurtz. “Util-
ity Computing: A Superior Alternative?” In: Proceedings of the May 6-10, 1974,

National Computer Conference and Exposition. AFIPS ’74. New York, NY, USA:
ACM, 1974, p. 1003. doi: 10.1145/1500175.1500370. url: http://doi.acm.

org/10.1145/1500175.1500370.

[12] I. Foster, C. Kesselman, and S. Tuecke. “The anatomy of the grid”. In: International
Journal of Supercomputer Applications 15.3 (Aug. 2001), pp. 200–222. issn: 1094-
3420. doi: 10.1177/109434200101500302. arXiv: 0103025 [cs]. url: http:

//hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$

192

http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=4738445
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=4738445
http://dx.doi.org/10.1145/1721654.1721672
http://portal.acm.org/citation.cfm?doid=1721654.1721672
http://portal.acm.org/citation.cfm?doid=1721654.1721672
http://dx.doi.org/10.5194/gmd-8-2067-2015
http://dx.doi.org/10.1147/sj.431.0032
http://dx.doi.org/10.1147/sj.431.0032
http://dx.doi.org/10.1109/MSP.2010.194
http://dx.doi.org/10.1007/s13174-010-0007-6
http://www.springerlink.com/index/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1145/1500175.1500370
http://doi.acm.org/10.1145/1500175.1500370
http://doi.acm.org/10.1145/1500175.1500370
http://dx.doi.org/10.1177/109434200101500302
http://arxiv.org/abs/0103025
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf

main February 3, 2016 13:07 Page 193 �
�	

�
�	 �
�	

�
�	

Bibliography

nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$

nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.

55 . 83 . 52 / ebooks / Electrical % 20and % 20computer % 20enginering /

501571.pdf.

[13] I. Foster. “What is the grid? A three point checklist”. In: GRIDtoday (2002). url:
http://www.citeulike.org/group/1880/article/798241.

[14] D. Kranzlmüller, J. M. de Lucas, and P. Öster. “The european grid initiative (EGI)”.
In: Remote Instrumentation and Virtual Laboratories. Springer, 2010, pp. 61–66.
url: http://www.egi.eu.

[15] T. Ferrari and L. Gaido. “Resources and services of the EGEE production infras-
tructure”. In: Journal of Grid computing 9.2 (2011), pp. 119–133.

[16] EGI.eu. EGI Case Studies. Tech. rep. EGI.eu. url: https://www.egi.eu/case-

studies/.

[17] R. P. Goldberg. “Survey of virtual machine research”. In: Computer 7.6 (1974),
pp. 34–45.

[18] G. J. Popek and R. P. Goldberg. “Formal requirements for virtualizable third
generation architectures”. In: Communications of the ACM (1974). url: http:

//dl.acm.org/citation.cfm?id=361073.

[19] R. Figueiredo, P. a. Dinda, and J. Fortes. “Resource virtualization renaissance”. In:
Computer 38.5 (2005), pp. 28–31. issn: 00189162. doi: 10.1109/MC.2005.159.

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. War�eld. “Xen and the art of virtualization”. In: Proceedings of the
nineteenth ACM symposium on Operating systems principles SE - SOSP ’03. New
York, NY, USA: ACM, 2003, pp. 164–177. isbn: 1-58113-757-5. url: citeulike-

article-id:168648%20http://dx.doi.org/10.1145/945445.945462.

[21] K. Milberg. IBM and HP virtualization: A comparative study of UNIX virtualization

on both platforms. Tech. rep. 2009, pp. 1–11. url: http://www.ibm.com/

developerworks/aix/library/au-aixhpvirtualization/index.html.

193

http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://hpc.sagepub.com/content/15/3/200.abstract$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.full.pdf$%5Cbackslash$nhttp://hpc.sagepub.com/content/15/3/200.short%20http://213.55.83.52/ebooks/Electrical%20and%20computer%20enginering/501571.pdf
http://www.citeulike.org/group/1880/article/798241
http://www.egi.eu
https://www.egi.eu/case-studies/
https://www.egi.eu/case-studies/
http://dl.acm.org/citation.cfm?id=361073
http://dl.acm.org/citation.cfm?id=361073
http://dx.doi.org/10.1109/MC.2005.159
citeulike-article-id:168648%20http://dx.doi.org/10.1145/945445.945462
citeulike-article-id:168648%20http://dx.doi.org/10.1145/945445.945462
http://www.ibm.com/developerworks/aix/library/au-aixhpvirtualization/index.html
http://www.ibm.com/developerworks/aix/library/au-aixhpvirtualization/index.html

main February 3, 2016 13:07 Page 194 �
�	

�
�	 �
�	

�
�	

[22] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. Martins, A. V. Anderson, S. M.
Bennett, A. Kägi, F. H. Leung, and L. Smith. Intel virtualization technology. Tech.
rep. 03. 2005, pp. 48–56. doi: 10.1535/itj.1003. url: http://ieeexplore.

ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=1430631.

[23] AMD. “Putting Server Virtualization to Work”. In: AMD White Paper (2007),
pp. 1–4.

[24] Y. Dong, S. Li, A. Mallick, J. Nakajima, K. Tian, X. Xu, F. Yang, W. Yu, and Yaozu
DongShaofan LiAsit MallickJun NakajimaKun TianXuefei XuFred YangWilfred
Yu. “Extending Xen with Intel Virtualization Technology.” In: Intel Technology
Journal 10.3 (2006), p. 193. issn: 1535864X. doi: 10.1535/itj.1003.

[25] A. Kivity, U. Lublin, A. Liguori, Y. Kamay, and D. Laor. “kvm: the Linux virtual
machine monitor”. In: Proceedings of the Linux Symposium. Vol. 1. 2007, pp. 225–
230.

[26] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin. Performance Evaluation

of Virtualization Technologies for Server Consolidation. Tech. rep. HPL-2007-59.
HP Laboratories, 2007, p. 15. doi: 10.1.1.70.4605. url: http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.70.4605%7B%5C&%7Damp;

rep=rep1%7B%5C&%7Damp;type=pdf.

[27] M. Guazzone. “Power and Performance Management in Cloud Computing Sys-
tems”. PhD thesis. University of Torino.

[28] S. Srikantaiah, A. Kansal, and F. Zhao. “Energy Aware Consolidation for Cloud
Computing”. In: Proceedings of HotPower ’08Workshop on Power Aware Computing

and Systems. San Diego, CA, USA: USENIX, 2008. url: citeulike-article-

id:4234554%20http://www.usenix.org/events/hotpower08/tech/

full%7B%5C_%7Dpapers/srikantaiah/srikantaiah.pdf.

[29] R. Buyya, A. Beloglazov, and J. Abawajy. “Energy-E�cient Management of
Data Center Resources for Cloud Computing: A Vision, Architectural Elements,
and Open Challenges”. In: PDPTA 2010: Proceedings of the 2010 International

Conference on Parallel and Distributed Processing Techniques and Applications.
CSREA Press, 2010, pp. 6–17. url: citeulike-article-id:7356645%20http:

//arxiv.org/abs/1006.0308.

194

http://dx.doi.org/10.1535/itj.1003
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=1430631
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=1430631
http://dx.doi.org/10.1535/itj.1003
http://dx.doi.org/10.1.1.70.4605
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4605%7B%5C&%7Damp;rep=rep1%7B%5C&%7Damp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4605%7B%5C&%7Damp;rep=rep1%7B%5C&%7Damp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4605%7B%5C&%7Damp;rep=rep1%7B%5C&%7Damp;type=pdf
citeulike-article-id:4234554%20http://www.usenix.org/events/hotpower08/tech/full%7B%5C_%7Dpapers/srikantaiah/srikantaiah.pdf
citeulike-article-id:4234554%20http://www.usenix.org/events/hotpower08/tech/full%7B%5C_%7Dpapers/srikantaiah/srikantaiah.pdf
citeulike-article-id:4234554%20http://www.usenix.org/events/hotpower08/tech/full%7B%5C_%7Dpapers/srikantaiah/srikantaiah.pdf
citeulike-article-id:7356645%20http://arxiv.org/abs/1006.0308
citeulike-article-id:7356645%20http://arxiv.org/abs/1006.0308

main February 3, 2016 13:07 Page 195 �
�	

�
�	 �
�	

�
�	

Bibliography

[30] E. Keller, J. Szefer, J. Rexford, and R. Lee. “NoHype: virtualized cloud infras-
tructure without the virtualization”. In: Computer Architecture News (2010). url:
http://dl.acm.org/citation.cfm?id=1816010.

[31] I. Campos Plasencia, E. Fernández-del-Castillo, S. Heinemeyer, Á. López García,
F. Pahlen, and G. Borges. “Phenomenology tools on cloud infrastructures using
OpenStack”. In: The European Physical Journal C 73.4 (Apr. 2013), p. 2375. issn:
1434-6044. doi: 10.1140/epjc/s10052-013-2375-0. arXiv: arXiv:1212.

4784v1. url: http://link.springer.com/10.1140/epjc/s10052-013-

2375-0.

[32] A. Ranadive, M. Kesavan, A. Gavrilovska, and K. Schwan. “Performance implica-
tions of virtualizing multicore cluster machines”. In: HPCVirt ’08: Proceedings
of the 2nd workshop on System-level virtualization for high performance com-

puting. New York, NY, USA: ACM, 2008, pp. 1–8. isbn: 978-1-60558-120-0. url:
citeulike- article- id:4504070%20http://dx.doi.org/10.1145/

1435452.1435453.

[33] J. P. Walters, V. Chaudhary, M. Cha, S. G. Jr., and S. Gallo. “A Comparison of Vir-
tualization Technologies for HPC”. In: 22nd International Conference on Advanced
Information Networking and Applications (aina 2008). Ieee, 2008, pp. 861–868. isbn:
978-0-7695-3095-6. doi: 10.1109/AINA.2008.45. url: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4482796.

[34] N. Regola and J.-C. Ducom. “Recommendations for Virtualization Technologies in
High Performance Computing”. In: 2010 IEEE Second International Conference on

Cloud Computing Technology and Science. IEEE, Nov. 2010, pp. 409–416. isbn: 978-
1-4244-9405-7. doi: 10.1109/CloudCom.2010.71. url: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708479.

[35] L. Youse�, R. Wolski, B. Gorda, and R. Krintz. “Paravirtualization for HPC Sys-
tems”. In: IN PROC. WORKSHOP ON XEN IN HIGH-PERFORMANCE CLUSTER

AND GRID COMPUTING (2006), pp. 474–486. url: http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.112.3446.

[36] L. Youse�, R. Wolski, B. Gorda, and C. Krintz. “Evaluating the Performance
Impact of Xen on MPI and Process Execution For HPC Systems”. In: Virtualiza-
tion Technology in Distributed Computing, 2006. VTDC 2006. First International

195

http://dl.acm.org/citation.cfm?id=1816010
http://dx.doi.org/10.1140/epjc/s10052-013-2375-0
http://arxiv.org/abs/arXiv:1212.4784v1
http://arxiv.org/abs/arXiv:1212.4784v1
http://link.springer.com/10.1140/epjc/s10052-013-2375-0
http://link.springer.com/10.1140/epjc/s10052-013-2375-0
citeulike-article-id:4504070%20http://dx.doi.org/10.1145/1435452.1435453
citeulike-article-id:4504070%20http://dx.doi.org/10.1145/1435452.1435453
http://dx.doi.org/10.1109/AINA.2008.45
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4482796
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4482796
http://dx.doi.org/10.1109/CloudCom.2010.71
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708479
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708479
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.3446
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.3446

main February 3, 2016 13:07 Page 196 �
�	

�
�	 �
�	

�
�	

Workshop on. 2006, p. 1. url: citeulike- article- id:2902268%20http:

//dx.doi.org/10.1109/VTDC.2006.4.

[37] B. Li, Z. Huo, P. Zhang, and D. Meng. “Virtualizing Modern High-Speed Inter-
connection Networks with Performance and Scalability”. In: Cluster Comput-

ing (CLUSTER), 2010 IEEE International Conference on. 2010, pp. 107–115. url:
citeulike-article-id:10418487%20http://dx.doi.org/10.1109/

CLUSTER.2010.19.

[38] W. Huang. “High Performance Network I/O in Virtual Machines over Modern
Interconnects”. In: Engineering (2008). url: http://nowlab.cse.ohio-state.

edu/NOW/dissertations/huang.pdf.

[39] W3C Working Group. Web Services Glossary. 2015. url: http://www.w3.org/

TR/2004/NOTE-ws-gloss-20040211/ (visited on 01/01/2015).

[40] C. Weinhardt, A. Anandasivam, B. Blau, N. Borissov, T. Meinl, W. Michalk, and
J. Stößer. “Cloud Computing – A Classi�cation, Business Models, and Research
Directions”. In: Business {&} Information Systems Engineering 1.5 (2009), pp. 391–
399. issn: 1867-0202. doi: 10.1007/s12599-009-0071-2.

[41] C. N. Höfer and G. Karagiannis. “Cloud computing services: Taxonomy and
comparison”. In: Journal of Internet Services and Applications 2.2 (2011), pp. 81–94.
issn: 18674828. doi: 10.1007/s13174-011-0027-x.

[42] D. de Oliveira, F. A. Baião, and M. Mattoso. “Towards a taxonomy for cloud
computing from an e-science perspective”. In: Cloud Computing. Springer, 2010,
pp. 47–62.

[43] A. Fox and R. Gri�th. Above the clouds: A Berkeley view of cloud computing.
Tech. rep. 2009, pp. 7–13. url: http://www-inst.cs.berkeley.edu/%7B~%

7Dcs10/sp11/lec/20/2010Fa/2010- 11- 10- CS10- L20- AF- Cloud-

Computing.pdf.

[44] T. Dillon, C. W. C. Wu, and E. Chang. “Cloud Computing: Issues and Challenges”.
In: Advanced Information Networking and Applications (AINA), 2010 24th IEEE

International Conference on. 2010, pp. 27–33. isbn: 978-1-4244-6695-5. doi: 10.

1109/AINA.2010.187.

[45] Idabc. European Interoperability Framework for pan-European eGovernment Ser-

vices. Tech. rep. 2004, pp. 1–25. doi: 10.1109/HICSS.2007.68.

196

citeulike-article-id:2902268%20http://dx.doi.org/10.1109/VTDC.2006.4
citeulike-article-id:2902268%20http://dx.doi.org/10.1109/VTDC.2006.4
citeulike-article-id:10418487%20http://dx.doi.org/10.1109/CLUSTER.2010.19
citeulike-article-id:10418487%20http://dx.doi.org/10.1109/CLUSTER.2010.19
http://nowlab.cse.ohio-state.edu/NOW/dissertations/huang.pdf
http://nowlab.cse.ohio-state.edu/NOW/dissertations/huang.pdf
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://dx.doi.org/10.1007/s12599-009-0071-2
http://dx.doi.org/10.1007/s13174-011-0027-x
http://www-inst.cs.berkeley.edu/%7B~%7Dcs10/sp11/lec/20/2010Fa/2010-11-10-CS10-L20-AF-Cloud-Computing.pdf
http://www-inst.cs.berkeley.edu/%7B~%7Dcs10/sp11/lec/20/2010Fa/2010-11-10-CS10-L20-AF-Cloud-Computing.pdf
http://www-inst.cs.berkeley.edu/%7B~%7Dcs10/sp11/lec/20/2010Fa/2010-11-10-CS10-L20-AF-Cloud-Computing.pdf
http://dx.doi.org/10.1109/AINA.2010.187
http://dx.doi.org/10.1109/AINA.2010.187
http://dx.doi.org/10.1109/HICSS.2007.68

main February 3, 2016 13:07 Page 197 �
�	

�
�	 �
�	

�
�	

Bibliography

[46] M. Christodorescu and R. Sailer. “Cloud security is not (just) virtualization
security: a short paper”. In: Proceedings of the 2009 ACM workshop on Cloud

computing security. 2009, pp. 97–102. isbn: 9781605587844. url: http://dl.

acm.org/citation.cfm?id=1655022.

[47] D. Zissis and D. Lekkas. “Addressing cloud computing security issues”. In: Future
Generation Computer Systems 28.3 (2012), pp. 583–592. issn: 0167739X. doi: 10.

1016/j.future.2010.12.006. arXiv: S0167739X10002554. url: http://

www.sciencedirect.com/science/article/pii/S0167739X10002554.

[48] M. Zhou. “Data security and integrity in cloud computing”. PhD thesis. University
of Wollongong, 2013.

[49] F. Lombardi and R. Di Pietro. “Secure virtualization for cloud computing”. In: Jour-
nal of Network and Computer Applications 34.4 (July 2011), pp. 1113–1122. issn:
10848045. doi: 10.1016/j.jnca.2010.06.008. url: http://linkinghub.

elsevier.com/retrieve/pii/S1084804510001062.

[50] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. “Cross-VM side channels and
their use to extract private keys”. In: Proceedings of the 2012 ACM conference on

Computer and communications security - CCS ’12. New York, New York, USA:
ACM Press, 2012, p. 305. isbn: 9781450316514. doi: 10.1145/2382196.2382230.
url: http://dl.acm.org/citation.cfm?doid=2382196.2382230.

[51] M. T. Heath. Scienti�c computing. McGraw-Hill, 2001.

[52] G. E. Karniadakis, R. M. Kirby, and I. I. Kirby. Parallel Scienti�c Computing in

C++ and MPI. Cambridge University Press, 2003. isbn: 978-0521520805. url:
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%

7B%5C&%7Dq=intitle:Parallel+Scientific+Computing+in+C+++and+

MPI%7B%5C#%7D2%20http://scholar.google.com/scholar?hl=en%7B%

5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:RM:+Parallel+Scientific+

Computing+in+C+++and+MPI%7B%5C#%7D0.

[53] Z. Constantinescu. “A Desktop Grid Computing Approach for Scienti�c Com-
puting and Visualization”. PhD thesis. Norwegian University of Science and
Technology, 2008, p. 246. isbn: 9788247191583.

197

http://dl.acm.org/citation.cfm?id=1655022
http://dl.acm.org/citation.cfm?id=1655022
http://dx.doi.org/10.1016/j.future.2010.12.006
http://dx.doi.org/10.1016/j.future.2010.12.006
http://arxiv.org/abs/S0167739X10002554
http://www.sciencedirect.com/science/article/pii/S0167739X10002554
http://www.sciencedirect.com/science/article/pii/S0167739X10002554
http://dx.doi.org/10.1016/j.jnca.2010.06.008
http://linkinghub.elsevier.com/retrieve/pii/S1084804510001062
http://linkinghub.elsevier.com/retrieve/pii/S1084804510001062
http://dx.doi.org/10.1145/2382196.2382230
http://dl.acm.org/citation.cfm?doid=2382196.2382230
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:Parallel+Scientific+Computing+in+C+++and+MPI%7B%5C#%7D2%20http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:RM:+Parallel+Scientific+Computing+in+C+++and+MPI%7B%5C#%7D0
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:Parallel+Scientific+Computing+in+C+++and+MPI%7B%5C#%7D2%20http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:RM:+Parallel+Scientific+Computing+in+C+++and+MPI%7B%5C#%7D0
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:Parallel+Scientific+Computing+in+C+++and+MPI%7B%5C#%7D2%20http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:RM:+Parallel+Scientific+Computing+in+C+++and+MPI%7B%5C#%7D0
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:Parallel+Scientific+Computing+in+C+++and+MPI%7B%5C#%7D2%20http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:RM:+Parallel+Scientific+Computing+in+C+++and+MPI%7B%5C#%7D0
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:Parallel+Scientific+Computing+in+C+++and+MPI%7B%5C#%7D2%20http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:RM:+Parallel+Scientific+Computing+in+C+++and+MPI%7B%5C#%7D0

main February 3, 2016 13:07 Page 198 �
�	

�
�	 �
�	

�
�	

[54] V. Breton, T. Cass, J. Flynn, F. Gaede, J. Kleist, et al. Computing Resources Scrutiny

Group Report. Tech. rep. CERN-RRB-2015-014. Geneva: CERN, Mar. 2015. url:
http://cds.cern.ch/record/2002240.

[55] I. Bird, P. Buncic, F. Carminati, M. Cattaneo, P. Clarke, et al. Update of the

Computing Models of the WLCG and the LHC Experiments. Tech. rep. CERN-
LHCC-2014-014. LCG-TDR-002. Geneva: CERN, Apr. 2014. url: https://cds.

cern.ch/record/1695401.

[56] M. Guest. PRACE – The Scienti�c Case for HPC in Europe. Tech. rep. PRACE, 2012.

[57] European Comission. High-Performance Computing: Europe’s place in a Global

Race. Tech. rep. Brussels: European Comission, 2012.

[58] a. J. G. Hey and a. E. Trefethen. “The UK e-Science Core Programme and the
Grid”. In: Future Generation Computer Systems 18.8 (2002), pp. 1017–1031. issn:
0167739X. doi: 10.1016/S0167-739X(02)00082-1. url: http://eprints.

ecs.soton.ac.uk/7644/.

[59] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Ed. by I. Foster and C. Kesselman. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999, pp. 13–24. isbn: 1558604758. doi: citeulike-article-

id:340626. url: http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20%7B%5C&%7Dpath=ASIN/1558604758.

[60] European Grid Initiative. EGI. 2015. url: http://www.egi.eu/%20http:

//egi.eu.

[61] EGI in numbers. 2015. url: https://www.egi.eu/infrastructure/operations/

egi%7B%5C_%7Din%7B%5C_%7Dnumbers/index.html.

[62] Open Science Grid (OSG). 2014.

[63] Á. López García and E. Fernández-del-Castillo. “Analysis of Scienti�c Cloud
Computing requirements”. In: Proceedings of the IBERGRID 2013 Conference. 2013,
p. 147 158.

[64] G. Cattaneo, M. Claps, S. Conway, M. (Bardellini, S. Muscella, S. Parker, and
N. (I. Ferguson. Cloud for science and public authorities. Tech. rep. European
Commission, 2013, p. 104. doi: 10.2759/25446.

198

http://cds.cern.ch/record/2002240
https://cds.cern.ch/record/1695401
https://cds.cern.ch/record/1695401
http://dx.doi.org/10.1016/S0167-739X(02)00082-1
http://eprints.ecs.soton.ac.uk/7644/
http://eprints.ecs.soton.ac.uk/7644/
http://dx.doi.org/citeulike-article-id:340626
http://dx.doi.org/citeulike-article-id:340626
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%7B%5C&%7Dpath=ASIN/1558604758
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%7B%5C&%7Dpath=ASIN/1558604758
http://www.egi.eu/%20http://egi.eu
http://www.egi.eu/%20http://egi.eu
https://www.egi.eu/infrastructure/operations/egi%7B%5C_%7Din%7B%5C_%7Dnumbers/index.html
https://www.egi.eu/infrastructure/operations/egi%7B%5C_%7Din%7B%5C_%7Dnumbers/index.html
http://dx.doi.org/10.2759/25446

main February 3, 2016 13:07 Page 199 �
�	

�
�	 �
�	

�
�	

Bibliography

[65] G. Birkenheuer, A. Brinkmann, J. Kaiser, A. Keller, M. Keller, et al. “Virtualized
HPC: a contradiction in terms?” In: Software: Practice and Experience 42.4 (Apr.
2012), pp. 485–500. issn: 00380644. doi: 10.1002/spe.1055. url: http://doi.

wiley.com/10.1002/spe.1055.

[66] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl. “Scienti�c
Cloud Computing: Early De�nition and Experience”. In: 2008 10th IEEE Inter-

national Conference on High Performance Computing and Communications. Ieee,
Sept. 2008, pp. 825–830. isbn: 978-0-7695-3352-0. doi: 10.1109/HPCC.2008.38.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4637787.

[67] M. Iliaš and M. Dobrucký. “Grid Computing with Relativistic Quantum Chemistry
Software”. In: Journal of Grid Computing 12.4 (2014), pp. 681–690. issn: 1570-7873.
doi: 10.1007/s10723-014-9309-4. url: http://link.springer.com/10.

1007/s10723-014-9309-4.

[68] C. Ho�a, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J. Good.
“On the Use of Cloud Computing for Scienti�c Work�ows”. In: 2008 IEEE Fourth

International Conference on eScience. Ieee, Dec. 2008, pp. 640–645. isbn: 978-1-
4244-3380-3. doi: 10.1109/eScience.2008.167. url: http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4736878.

[69] R. Mitchum. Unwinding the ’Long Tail’ of Science. url: https : / / www . ci .

uchicago.edu/blog/unwinding-long-tail-science.

[70] P. Buncic, C. Aguado Sánchez, J. Blomer, a. Harutyunyan, and M. Mudrinic. “A
practical approach to virtualization in HEP”. In: The European Physical Journal

Plus 126.1 (2011), p. 13. issn: 2190-5444. doi: 10.1140/epjp/i2011-11013-1.
url: http://www.springerlink.com/index/10.1140/epjp/i2011-

11013-1.

[71] P. Sethia and K. Karlapalem. “A multi-agent simulation framework on small
Hadoop cluster”. In: Engineering Applications of Arti�cial Intelligence 24.7 (Oct.
2011), pp. 1120–1127. issn: 09521976. doi: 10 . 1016 / j . engappai . 2011 .

06 . 009. url: http : / / linkinghub . elsevier . com / retrieve / pii /

S0952197611001096.

199

http://dx.doi.org/10.1002/spe.1055
http://doi.wiley.com/10.1002/spe.1055
http://doi.wiley.com/10.1002/spe.1055
http://dx.doi.org/10.1109/HPCC.2008.38
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4637787
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4637787
http://dx.doi.org/10.1007/s10723-014-9309-4
http://link.springer.com/10.1007/s10723-014-9309-4
http://link.springer.com/10.1007/s10723-014-9309-4
http://dx.doi.org/10.1109/eScience.2008.167
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4736878
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4736878
https://www.ci.uchicago.edu/blog/unwinding-long-tail-science
https://www.ci.uchicago.edu/blog/unwinding-long-tail-science
http://dx.doi.org/10.1140/epjp/i2011-11013-1
http://www.springerlink.com/index/10.1140/epjp/i2011-11013-1
http://www.springerlink.com/index/10.1140/epjp/i2011-11013-1
http://dx.doi.org/10.1016/j.engappai.2011.06.009
http://dx.doi.org/10.1016/j.engappai.2011.06.009
http://linkinghub.elsevier.com/retrieve/pii/S0952197611001096
http://linkinghub.elsevier.com/retrieve/pii/S0952197611001096

main February 3, 2016 13:07 Page 200 �
�	

�
�	 �
�	

�
�	

[72] D. Talia. “Cloud Computing and Software Agents: Towards Cloud Intelligent
Services”. In: WOA. Ed. by G. Fortino, A. Garro, L. Palopoli, W. Russo, and G.
Spezzano. Vol. 741. CEUR Workshop Proceedings. CEUR-WS.org, 2011, pp. 2–6.
url: http://dblp.uni-trier.de/db/conf/woa/woa2011.html%7B%5C#

%7DTalia11%20http://ceur-ws.org/Vol-741/INV02%7B%5C_%7DTalia.

pdf.

[73] Z. Khan, D. Ludlow, R. McClatchey, and A. Anjum. “An architecture for integrated
intelligence in urban management using cloud computing”. In: Journal of Cloud
Computing: Advances, Systems and Applications 1.1 (2012), p. 1. issn: 2192-113X.
doi: 10.1186/2192- 113X- 1- 1. url: http://www.cloud- casa.com/

content/1/1/1.

[74] G. Wang, M. Salles, B. Sowell, and X. Wang. “Behavioral simulations in mapre-
duce”. In: Proceedings of the VLDB Endowment. VLDB Endowment, 2010, pp. 952–
963. arXiv: arXiv:1005.3773v1. url: http://dl.acm.org/citation.cfm?

id=1920962.

[75] K. Koski, K. Hormia-Poutanen, M. Chatzopoulos, Y. Legré, and B. Day. Position
Paper: European Open Science Cloud for Research. Tech. rep. October. Bari: EUDAT,
LIBER, OpenAIRE, EGI, GÉANT, 2015.

[76] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, et al. “ROOT – A C++
framework for petabyte data storage, statistical analysis and visualization”. In:
Computer Physics Communications 180.12 (2009), pp. 2499–2512. issn: 0010-4655.
doi: 10.1016/j.cpc.2009.08.005.

[77] T. Gunarathne, T. L. Wu, J. Y. Choi, S. H. Bae, and J. Qiu. “Cloud computing
paradigms for pleasingly parallel biomedical applications”. In: Concurrency Com-

putation Practice and Experience 23.17 (2011), pp. 2338–2354. issn: 15320626. doi:
10.1002/cpe.1780.

[78] A. Gupta and D. Milojicic. “Evaluation of HPC applications on cloud”. In: Pro-
ceedings - 2011 6th Open Cirrus Summit, OCS 2011. IEEE. 2012, pp. 22–26. isbn:
9780769546506. doi: 10.1109/OCS.2011.10.

[79] S. N. Srirama, P. Jakovits, and E. Vainikko. “Adapting scienti�c computing prob-
lems to clouds using MapReduce”. In: Future Generation Computer Systems 28.1
(Jan. 2012), pp. 184–192. issn: 0167739X. doi: 10 . 1016 / j . future . 2011 .

200

http://dblp.uni-trier.de/db/conf/woa/woa2011.html%7B%5C#%7DTalia11%20http://ceur-ws.org/Vol-741/INV02%7B%5C_%7DTalia.pdf
http://dblp.uni-trier.de/db/conf/woa/woa2011.html%7B%5C#%7DTalia11%20http://ceur-ws.org/Vol-741/INV02%7B%5C_%7DTalia.pdf
http://dblp.uni-trier.de/db/conf/woa/woa2011.html%7B%5C#%7DTalia11%20http://ceur-ws.org/Vol-741/INV02%7B%5C_%7DTalia.pdf
http://dx.doi.org/10.1186/2192-113X-1-1
http://www.cloud-casa.com/content/1/1/1
http://www.cloud-casa.com/content/1/1/1
http://arxiv.org/abs/arXiv:1005.3773v1
http://dl.acm.org/citation.cfm?id=1920962
http://dl.acm.org/citation.cfm?id=1920962
http://dx.doi.org/10.1016/j.cpc.2009.08.005
http://dx.doi.org/10.1002/cpe.1780
http://dx.doi.org/10.1109/OCS.2011.10
http://dx.doi.org/10.1016/j.future.2011.05.025
http://dx.doi.org/10.1016/j.future.2011.05.025

main February 3, 2016 13:07 Page 201 �
�	

�
�	 �
�	

�
�	

Bibliography

05.025. url: http://www.sciencedirect.com/science/article/pii/

S0167739X11001075.

[80] A. Y. Rodríguez-Marrero, I. González Caballero, A. Cuesta Noriega, E. Fernández-
del-Castillo, Á. López García, et al. “Integrating PROOF Analysis in Cloud and
Batch Clusters”. In: Journal of Physics: Conference Series 396.3 (Dec. 2012), p. 32091.
issn: 1742-6588. doi: 10 . 1088 / 1742 - 6596 / 396 / 3 / 032091. url: http :

//stacks.iop.org/1742- 6596/396/i=3/a=032091?key=crossref.

a4219812d32b8f4fb9c750e66cfcde37.

[81] P. Malzacher and A. Manafov. “PROOF on Demand”. In: Journal of Physics:
Conference Series 219.7 (2010), p. 72009. doi: 10.1088/1742-6596/219/7/

072009.

[82] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema. “A
Performance Analysis of EC2 Cloud Computing Services for Scienti�c Comput-
ing”. In: Cloud computing. Springer, 2010, pp. 115–131.

[83] M. Mao and M. Humphrey. “A Performance Study on the VM Startup Time in the
Cloud”. In: 2012 IEEE Fifth International Conference on Cloud Computing. Ieee, June
2012, pp. 423–430. isbn: 978-1-4673-2892-0. doi: 10.1109/CLOUD.2012.103.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6253534.

[84] E. Fernández-del-Castillo, D. Scardaci, and Á. López García. “The EGI Federated
Cloud e-Infrastructure”. In: Procedia Computer Science 68 (2015), pp. 196–205. issn:
18770509. doi: 10.1016/j.procs.2015.09.235. url: http://linkinghub.

elsevier.com/retrieve/pii/S187705091503080X.

[85] M. A. Kallio, J. T. Tuimala, T. Hupponen, P. Klemelä, M. Gentile, I. Scheinin, M.
Koski, J. Käki, and E. I. Korpelainen. “Chipster: user-friendly analysis software
for microarray and other high-throughput data.” In: BMC genomics 12.1 (2011),
p. 507. issn: 1471-2164. doi: 10.1186/1471-2164-12-507. url: http://www.

biomedcentral.com/1471-2164/12/507.

[86] VCycle: VM lifecycle management. 2015. url: http://www.gridpp.ac.uk/

vcycle/.

201

http://dx.doi.org/10.1016/j.future.2011.05.025
http://dx.doi.org/10.1016/j.future.2011.05.025
http://dx.doi.org/10.1016/j.future.2011.05.025
http://dx.doi.org/10.1016/j.future.2011.05.025
http://dx.doi.org/10.1016/j.future.2011.05.025
http://dx.doi.org/10.1016/j.future.2011.05.025
http://dx.doi.org/10.1016/j.future.2011.05.025
http://dx.doi.org/10.1016/j.future.2011.05.025
http://dx.doi.org/10.1016/j.future.2011.05.025
http://dx.doi.org/10.1016/j.future.2011.05.025
http://www.sciencedirect.com/science/article/pii/S0167739X11001075
http://www.sciencedirect.com/science/article/pii/S0167739X11001075
http://dx.doi.org/10.1088/1742-6596/396/3/032091
http://stacks.iop.org/1742-6596/396/i=3/a=032091?key=crossref.a4219812d32b8f4fb9c750e66cfcde37
http://stacks.iop.org/1742-6596/396/i=3/a=032091?key=crossref.a4219812d32b8f4fb9c750e66cfcde37
http://stacks.iop.org/1742-6596/396/i=3/a=032091?key=crossref.a4219812d32b8f4fb9c750e66cfcde37
http://dx.doi.org/10.1088/1742-6596/219/7/072009
http://dx.doi.org/10.1088/1742-6596/219/7/072009
http://dx.doi.org/10.1109/CLOUD.2012.103
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6253534
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6253534
http://dx.doi.org/10.1016/j.procs.2015.09.235
http://linkinghub.elsevier.com/retrieve/pii/S187705091503080X
http://linkinghub.elsevier.com/retrieve/pii/S187705091503080X
http://dx.doi.org/10.1186/1471-2164-12-507
http://www.biomedcentral.com/1471-2164/12/507
http://www.biomedcentral.com/1471-2164/12/507
http://www.gridpp.ac.uk/vcycle/
http://www.gridpp.ac.uk/vcycle/

main February 3, 2016 13:07 Page 202 �
�	

�
�	 �
�	

�
�	

[87] a. McNab, F. Stagni, and M. U. Garcia. “Running Jobs in the Vacuum”. In: Journal
of Physics: Conference Series 513.3 (2014), p. 32065. issn: 1742-6588. doi: 10.1088/

1742-6596/513/3/032065. url: http://stacks.iop.org/1742-6596/

513/i=3/a=032065?key=crossref.9c1d2ef7e37d7f8ebe4db79276add6d4.

[88] Interoperable Global Trust Federation (IGTF). 2015. url: http://www.igtf.eu/.

[89] V. Venturi and F. Stagni. “Virtual organization management across middleware
boundaries”. In: IEEE International Conference on e-Science and Grid Computing.
2007, pp. 545–552. isbn: 0769530648. doi: 10.1109/e- Science.2007.19.
url: http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?

arnumber=4426930.

[90] Ansible. 2015. url: http://www.ansible.com/.

[91] Puppet. 2015. url: https://puppetlabs.com/.

[92] CFengine. 2015. url: http://www.cfengine.com.

[93] Chef. 2015. url: http://www.opscode.com/chef/.

[94] P. Nilsson, K. De, A. Filipcic, A. Klimentov, T. Maeno, D. Oleynik, S. Panitkin, T.
Wenaus, and W. Wu. “Extending ATLAS Computing to Commercial Clouds and
Supercomputers”. In: The International Symposium on Grids and Clouds (ISGC).
Vol. 2014. 2014, pp. 1–11.

[95] V. Fernández Albor, M. Seco, V. Méndez Muñoz, T. Fernández, J. S. Silva Pena,
and R. Graciani Diaz. “Multivariate Analysis of Variance for High Energy Physics
Software in Virtualized Environments”. In: International Symposium on Grids

and Clouds, Academia Sinica, Taipei, Taiwan. Vol. 160. 2015, pp. 1–15.

[96] W. Voorsluys, S. K. Garg, and R. Buyya. “Provisioning spot market cloud resources
to create cost-e�ective virtual clusters”. In: Lecture Notes in Computer Science

7016 LNCS.PART 1 (2011), pp. 395–408. issn: 03029743. doi: 10.1007/978-3-

642-24650-0{_}34. arXiv: 1110.5972.

[97] G. Juve and E. Deelman. “Resource Provisioning Options for Large-Scale Scienti�c
Work�ows”. In: 2008 IEEE Fourth International Conference on eScience. Ieee, Dec.
2008, pp. 608–613. isbn: 978-1-4244-3380-3. doi: 10.1109/eScience.2008.

160.

202

http://dx.doi.org/10.1088/1742-6596/513/3/032065
http://dx.doi.org/10.1088/1742-6596/513/3/032065
http://stacks.iop.org/1742-6596/513/i=3/a=032065?key=crossref.9c1d2ef7e37d7f8ebe4db79276add6d4
http://stacks.iop.org/1742-6596/513/i=3/a=032065?key=crossref.9c1d2ef7e37d7f8ebe4db79276add6d4
http://www.igtf.eu/
http://dx.doi.org/10.1109/e-Science.2007.19
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=4426930
http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=4426930
http://www.ansible.com/
https://puppetlabs.com/
http://www.cfengine.com
http://www.opscode.com/chef/
http://dx.doi.org/10.1007/978-3-642-24650-0{_}34
http://dx.doi.org/10.1007/978-3-642-24650-0{_}34
http://arxiv.org/abs/1110.5972
http://dx.doi.org/10.1109/eScience.2008.160
http://dx.doi.org/10.1109/eScience.2008.160

main February 3, 2016 13:07 Page 203 �
�	

�
�	 �
�	

�
�	

Bibliography

[98] S. S. S. S. S. S. S. S. Manvi, G. K. Shyam, and G. Krishna Shyam. “Resource
management for Infrastructure as a Service (IaaS) in cloud computing: A survey”.
In: Journal of Network and Computer Applications 41 (May 2014), pp. 424–440.
issn: 10958592. doi: 10.1016/j.jnca.2013.10.004. url: http://www.

sciencedirect.com/science/article/pii/S1084804513002099.

[99] C. Evangelinos and C. N. Hill. “Cloud Computing for parallel Scienti�c HPC
Applications: Feasibility of Running Coupled Atmosphere-Ocean Climate Models
on Amazon’s EC2”. In: The 1st Workshop on Cloud Computing and its Applications

(CCA). Vol. 2. 2.40. 2008, pp. 2–34. isbn: 1047-6210. doi: 10.1136/emj.2010.

096966. url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.296.3779%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf%20http:

//www.cca08.org/speakers/evangelinos.php.

[100] M. Michelotto, M. Alef, A. Iribarren, H. Meinhard, P. Wegner, et al. “A compari-
son of HEP code with SPEC ¹ benchmarks on multi-core worker
nodes”. In: Journal of Physics: Conference Series 219.5 (2010), p. 052009. issn:
1742-6596. doi: 10 . 1088 / 1742 - 6596 / 219 / 5 / 052009. url: http : / /

stacks . iop . org / 1742 - 6596 / 219 / i = 5 / a = 052009 ? key = crossref .

1b7af551798d30461b7c4603051d4e3e.

[101] J. Shamsi, M. A. Khojaye, and M. A. Qasmi. “Data-Intensive Cloud Computing:
Requirements, Expectations, Challenges, and Solutions”. In: Journal of Grid
Computing 11.2 (2013), pp. 281–310. issn: 1570-7873. doi: 10.1007/s10723-

013-9255-6. url: http://link.springer.com/10.1007/s10723-013-

9255-6.

[102] T. Kosar. “A new paradigm in data intensive computing: Stork and the data-aware
schedulers”. In: Challenges of Large Applications in Distributed Environments, 2006

IEEE. 2006, pp. 5–12. isbn: 1-4244-0420-7. doi: 10.1109/CLADE.2006.1652048.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1652048.

[103] J. Blomer, P. Buncic, I. Charalampidis, a. Harutyunyan, D. Larsen, and R. Meusel.
“Status and future perspectives of CernVM-FS”. In: Journal of Physics: Conference
Series 396.5 (2012), p. 052013. issn: 1742-6588. doi: 10.1088/1742- 6596/

203

http://dx.doi.org/10.1016/j.jnca.2013.10.004
http://www.sciencedirect.com/science/article/pii/S1084804513002099
http://www.sciencedirect.com/science/article/pii/S1084804513002099
http://dx.doi.org/10.1136/emj.2010.096966
http://dx.doi.org/10.1136/emj.2010.096966
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.296.3779%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf%20http://www.cca08.org/speakers/evangelinos.php
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.296.3779%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf%20http://www.cca08.org/speakers/evangelinos.php
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.296.3779%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf%20http://www.cca08.org/speakers/evangelinos.php
http://dx.doi.org/10.1088/1742-6596/219/5/052009
http://stacks.iop.org/1742-6596/219/i=5/a=052009?key=crossref.1b7af551798d30461b7c4603051d4e3e
http://stacks.iop.org/1742-6596/219/i=5/a=052009?key=crossref.1b7af551798d30461b7c4603051d4e3e
http://stacks.iop.org/1742-6596/219/i=5/a=052009?key=crossref.1b7af551798d30461b7c4603051d4e3e
http://dx.doi.org/10.1007/s10723-013-9255-6
http://dx.doi.org/10.1007/s10723-013-9255-6
http://link.springer.com/10.1007/s10723-013-9255-6
http://link.springer.com/10.1007/s10723-013-9255-6
http://dx.doi.org/10.1109/CLADE.2006.1652048
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1652048
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1652048
http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://dx.doi.org/10.1088/1742-6596/396/5/052013

main February 3, 2016 13:07 Page 204 �
�	

�
�	 �
�	

�
�	

396/5/052013. url: http://stacks.iop.org/1742-6596/396/i=5/a=

052013?key=crossref.a5336f7112426095113f65d2f9576b27.

[104] M. Hategan, J. Wozniak, and K. Maheshwari. “Coasters: Uniform Resource Provi-
sioning and Access for Clouds and Grids”. In: Fourth IEEE International Conference
on Utility and Cloud Computing. 2011, pp. 114–121. isbn: 978-1-4577-2116-8. doi:
10.1109/UCC.2011.25. url: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6123488.

[105] O. Adam, Y. C. Lee, and A. Y. Zomaya. “Constructing Performance-Predictable
Clusters with Performance-Varying Resources of Clouds”. In: Computers, IEEE

Transactions on PP.99 (2015), p. 1. issn: 0018-9340. doi: 10.1109/TC.2015.

2510648.

[106] J. A. Stankovic and K. Ramamritham. “What is predictability for real-time sys-
tems?” In: Real-Time Systems 2.4 (1990), pp. 247–254.

[107] J. C. Mogul and L. Popa. “What we talk about when we talk about cloud network
performance”. In: ACM SIGCOMM Computer Communication Review 42.5 (2012),
pp. 44–48.

[108] F. Fakhfakh, H. H. Kacem, and A. H. Kacem. “Work�ow Scheduling in Cloud
Computing: A Survey”. In: IEEE 18th International Enterprise Distributed Object

Computing Conference Workshops and Demonstrations (EDOCW), 2014. Vol. 71. 9.
Springer US, 2014, pp. 372–378. isbn: 978-1-4799-5467-4. doi: 10.1109/EDOCW.

2014.61. url: http://ieeexplore.ieee.org/ielx7/6971861/6975303/

06975385.pdf?tp=%7B%5C&%7Darnumber=6975385%7B%5C&%7Disnumber=

6975303.

[109] A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, and E.-g. Talbi. “Towards Under-
standing Uncertainty in Cloud Computing Resource Provisioning”. In: Procedia
Computer Science 51 (2015), pp. 1772–1781. issn: 18770509. doi: 10.1016/j.

procs.2015.05.387. url: http://linkinghub.elsevier.com/retrieve/

pii/S1877050915011953.

[110] M. a. Vouk. “Cloud computing — Issues, research and implementations”. In:
ITI 2008 - 30th International Conference on Information Technology Interfaces

(June 2008), pp. 31–40. doi: 10.1109/ITI.2008.4588381. url: http://

ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4588381.

204

http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://dx.doi.org/10.1088/1742-6596/396/5/052013
http://stacks.iop.org/1742-6596/396/i=5/a=052013?key=crossref.a5336f7112426095113f65d2f9576b27
http://stacks.iop.org/1742-6596/396/i=5/a=052013?key=crossref.a5336f7112426095113f65d2f9576b27
http://dx.doi.org/10.1109/UCC.2011.25
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6123488
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6123488
http://dx.doi.org/10.1109/TC.2015.2510648
http://dx.doi.org/10.1109/TC.2015.2510648
http://dx.doi.org/10.1109/EDOCW.2014.61
http://dx.doi.org/10.1109/EDOCW.2014.61
http://ieeexplore.ieee.org/ielx7/6971861/6975303/06975385.pdf?tp=%7B%5C&%7Darnumber=6975385%7B%5C&%7Disnumber=6975303
http://ieeexplore.ieee.org/ielx7/6971861/6975303/06975385.pdf?tp=%7B%5C&%7Darnumber=6975385%7B%5C&%7Disnumber=6975303
http://ieeexplore.ieee.org/ielx7/6971861/6975303/06975385.pdf?tp=%7B%5C&%7Darnumber=6975385%7B%5C&%7Disnumber=6975303
http://dx.doi.org/10.1016/j.procs.2015.05.387
http://dx.doi.org/10.1016/j.procs.2015.05.387
http://linkinghub.elsevier.com/retrieve/pii/S1877050915011953
http://linkinghub.elsevier.com/retrieve/pii/S1877050915011953
http://dx.doi.org/10.1109/ITI.2008.4588381
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4588381
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4588381

main February 3, 2016 13:07 Page 205 �
�	

�
�	 �
�	

�
�	

Bibliography

[111] I. Blanquer, G. Brasche, and D. Lezzi. “Requirements of Scienti�c Applications
in Cloud O�erings”. In: Proceedings of the 2012 Sixth Iberian Grid Infrastructure

Conference. 2012, pp. 173–182. isbn: 978-989-98265-0-2.

[112] G. Juve and E. Deelman. “Scienti�c work�ows and clouds”. In: Crossroads 16.3
(Mar. 2010), pp. 14–18. issn: 15284972. doi: 10.1145/1734160.1734166. url:
http://portal.acm.org/citation.cfm?doid=1734160.1734166.

[113] D. Susa, H. Castro, and M. Villamizar. “Closing the Gap between Cloud Providers
and Scienti�c Users”. In: Cloud Computing with e-Science Applications. CRC Press,
Jan. 2015, pp. 115–140. isbn: 978-1-4665-9115-8. doi: doi:10.1201/b18021-7.
url: http://dx.doi.org/10.1201/b18021-7.

[114] L. Ramakrishnan and P. T. T. T. Zbiegel. “Magellan: experiences from a science
cloud”. In: Proceedings of the 2nd international workshop on Scienti�c cloud com-

puting. 2011, pp. 49–58. isbn: 9781450306997. url: http://dl.acm.org/

citation.cfm?id=1996119.

[115] S. Chaisiri, R. Kaewpuang, B. S. Lee, and D. Niyato. “Cost minimization for
provisioning virtual servers in amazon elastic compute cloud”. In: IEEE Interna-

tional Workshop on Modeling, Analysis, and Simulation of Computer and Telecom-

munication Systems - Proceedings. 2011, pp. 85–95. isbn: 9780769544304. doi:
10.1109/MASCOTS.2011.30.

[116] W. Voorsluys and R. Buyya. “Reliable provisioning of spot instances for compute-
intensive applications”. In: Proceedings - International Conference on Advanced In-
formation Networking and Applications, AINA (2012), pp. 542–549. issn: 1550445X.
doi: 10.1109/AINA.2012.106. arXiv: 1110.5969.

[117] H. Huang, L. Wang, B. C. Tak, and C. Tang. “CAP 3: A Cloud Auto-Provisioning
Framework for Parallel Processing Using On-demand and Spot Instances”. In:
IEEE Sixth International Conference on Cloud Computing (CLOUD), 2013. 2013,
pp. 228–235. url: http://www.cs.uwyo.edu/%7B~%7Dlwang7/papers/

Cloud-2013.pdf.

[118] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. “Virtual infrastructure
management in private and hybrid clouds”. In: IEEE Internet Computing 13 (2009),
pp. 14–22. issn: 10897801. doi: 10.1109/MIC.2009.119.

205

http://dx.doi.org/10.1145/1734160.1734166
http://portal.acm.org/citation.cfm?doid=1734160.1734166
http://dx.doi.org/doi:10.1201/b18021-7
http://dx.doi.org/10.1201/b18021-7
http://dl.acm.org/citation.cfm?id=1996119
http://dl.acm.org/citation.cfm?id=1996119
http://dx.doi.org/10.1109/MASCOTS.2011.30
http://dx.doi.org/10.1109/AINA.2012.106
http://arxiv.org/abs/1110.5969
http://www.cs.uwyo.edu/%7B~%7Dlwang7/papers/Cloud-2013.pdf
http://www.cs.uwyo.edu/%7B~%7Dlwang7/papers/Cloud-2013.pdf
http://dx.doi.org/10.1109/MIC.2009.119

main February 3, 2016 13:07 Page 206 �
�	

�
�	 �
�	

�
�	

[119] R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente. “An elasticity model
for High Throughput Computing clusters”. In: Journal of Parallel and Distributed
Computing 71.6 (June 2011), pp. 750–757. issn: 07437315. doi: 10.1016/j.jpdc.

2010.05.005. url: http://www.sciencedirect.com/science/article/

pii/S0743731510000985.

[120] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya. “The Aneka
platform and QoS-driven resource provisioning for elastic applications on hybrid
Clouds”. In: Future Generation Computer Systems 28.6 (2012), pp. 861–870. issn:
0167739X. doi: 10.1016/j.future.2011.07.005. url: http://dx.doi.

org/10.1016/j.future.2011.07.005.

[121] M. Hardt, T. Jejkal, I. Campos Plasencia, E. Fernández-del-Castillo, A. Jackson,
M. Weiland, B. Palak, M. Plociennik, and D. Nielsson. “Transparent Access to
Scienti�c and Commercial Clouds from the Kepler Work�ow Engine”. In: Com-

puting and Informatics 31.1 (2012), p. 119. url: http://www.ipe.fzk.de/

%7B~%7Dstotzka/publications/publications/Hardt2012.1.pdf.

[122] Y. C. Lee, H. Han, A. Y. Zomaya, and M. Yousif. “Resource-e�cient work�ow
scheduling in clouds”. In: Knowledge-Based Systems 80 (2015), pp. 153–162. issn:
09507051. doi: 10 . 1016 / j . knosys . 2015 . 02 . 012. url: http : / / www .

sciencedirect.com/science/article/pii/S0950705115000556.

[123] Q. Jiang. “Executing Large Scale Scienti�c Work�ows in Public Clouds”. PhD
thesis. University of Sidney, 2015.

[124] S. Smanchat and K. Viriyapant. “Taxonomies of work�ow scheduling problem
and techniques in the cloud”. In: Future Generation Computer Systems 52 (2015),
pp. 1–12. issn: 0167739X. doi: 10.1016/j.future.2015.04.019. url: http:

//linkinghub.elsevier.com/retrieve/pii/S0167739X15001776.

[125] M. A. Rodriguez and R. Buyya. “Deadline Based Resource Provisioning and
Scheduling Algorithm for Scienti�c Work�ows on Clouds”. In: IEEE Transactions

on Cloud Computing 2.2 (2014), pp. 222–235.

[126] X. Lin and C. Q. Wu. “On scienti�c work�ow scheduling in clouds under budget
constraint”. In: Proceedings of the International Conference on Parallel Processing.
2013, pp. 90–99. isbn: 9780769551173. doi: 10.1109/ICPP.2013.18.

206

http://dx.doi.org/10.1016/j.jpdc.2010.05.005
http://dx.doi.org/10.1016/j.jpdc.2010.05.005
http://www.sciencedirect.com/science/article/pii/S0743731510000985
http://www.sciencedirect.com/science/article/pii/S0743731510000985
http://dx.doi.org/10.1016/j.future.2011.07.005
http://dx.doi.org/10.1016/j.future.2011.07.005
http://dx.doi.org/10.1016/j.future.2011.07.005
http://www.ipe.fzk.de/%7B~%7Dstotzka/publications/publications/Hardt2012.1.pdf
http://www.ipe.fzk.de/%7B~%7Dstotzka/publications/publications/Hardt2012.1.pdf
http://dx.doi.org/10.1016/j.knosys.2015.02.012
http://www.sciencedirect.com/science/article/pii/S0950705115000556
http://www.sciencedirect.com/science/article/pii/S0950705115000556
http://dx.doi.org/10.1016/j.future.2015.04.019
http://linkinghub.elsevier.com/retrieve/pii/S0167739X15001776
http://linkinghub.elsevier.com/retrieve/pii/S0167739X15001776
http://dx.doi.org/10.1109/ICPP.2013.18

main February 3, 2016 13:07 Page 207 �
�	

�
�	 �
�	

�
�	

Bibliography

[127] D. Jung, J. Lim, H. Yu, J. Gil, and E. Lee. “A work�ow scheduling technique
for task distribution in spot instance-based cloud”. In: Ubiquitous Information

Technologies and Applications. Springer, 2014, pp. 409–416.

[128] C. Szabo, Q. Z. Sheng, T. Kroeger, Y. Zhang, and J. Yu. “Science in the Cloud:
Allocation and Execution of Data-Intensive Scienti�c Work�ows”. In: Journal of
Grid Computing 12.2 (2014), pp. 245–264. issn: 15707873. doi: 10.1007/s10723-

013-9282-3.

[129] B. Sotomayor, K. Keahey, and I. Foster. “Overhead Matters: A Model for Virtual
Resource Management”. In: Proceedings of the 2nd International Workshop on Vir-

tualization Technology in Distributed Computing SE - VTDC ’06. Washington, DC,
USA: IEEE Computer Society, 2006, p. 5. isbn: 0-7695-2873-1. url: citeulike-

article-id:2902283%20http://dx.doi.org/10.1109/VTDC.2006.9.

[130] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu. “Resource provisioning for cloud com-
puting”. In: Proceedings of the 2009 Conference of the Center for Advanced Studies
on Collaborative Research - CASCON ’09 (2009), p. 101. doi: 10.1145/1723028.

1723041. url: http://portal.acm.org/citation.cfm?doid=1723028.

1723041.

[131] S. K. Garg, S. K. Gopalaiyengar, and R. Buyya. “SLA-Based Resource Provisioning
for Heterogeneous Workloads in a Virtualized Cloud Datacenter”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Arti�cial Intelli-

gence and Lecture Notes in Bioinformatics) 7016 LNCS.PART 1 (2011), pp. 371–384.
issn: 03029743. doi: 10.1007/978-3-642-24650-0{_}32.

[132] C. Cardonha, M. D. Assunção, M. A. S. Netto, R. L. F. Cunha, and C. Queiroz.
Patience-aware scheduling for cloud services: Freeing users from the chains of

boredom. Ed. by S. Basu, C. Pautasso, L. Zhang, and X. Fu. Springer Berlin
Heidelberg, 2013. isbn: 9783642450044. doi: 10.1007/978-3-642-45005-

1{_}45. arXiv: arXiv:1308.4166v1.

[133] A.-C. Orgerie, M. Assunção, and L. Lefèvre. “Energy Aware Clouds”. In: Computer

Communications and Networks. Ed. by M. Cafaro and G. Aloisio. London: Springer
London, 2011, pp. 143–166. isbn: 978-0-85729-048-9. url: citeulike-article-

id:9050498%20http://dx.doi.org/10.1007/978- 0- 85729- 049-

6%7B%5C_%7D7.

207

http://dx.doi.org/10.1007/s10723-013-9282-3
http://dx.doi.org/10.1007/s10723-013-9282-3
citeulike-article-id:2902283%20http://dx.doi.org/10.1109/VTDC.2006.9
citeulike-article-id:2902283%20http://dx.doi.org/10.1109/VTDC.2006.9
http://dx.doi.org/10.1145/1723028.1723041
http://dx.doi.org/10.1145/1723028.1723041
http://portal.acm.org/citation.cfm?doid=1723028.1723041
http://portal.acm.org/citation.cfm?doid=1723028.1723041
http://dx.doi.org/10.1007/978-3-642-24650-0{_}32
http://dx.doi.org/10.1007/978-3-642-45005-1{_}45
http://dx.doi.org/10.1007/978-3-642-45005-1{_}45
http://arxiv.org/abs/arXiv:1308.4166v1
citeulike-article-id:9050498%20http://dx.doi.org/10.1007/978-0-85729-049-6%7B%5C_%7D7
citeulike-article-id:9050498%20http://dx.doi.org/10.1007/978-0-85729-049-6%7B%5C_%7D7
citeulike-article-id:9050498%20http://dx.doi.org/10.1007/978-0-85729-049-6%7B%5C_%7D7

main February 3, 2016 13:07 Page 208 �
�	

�
�	 �
�	

�
�	

[134] A. Beloglazov, J. Abawajy, and R. Buyya. “Energy-aware resource allocation
heuristics for e�cient management of data centers for Cloud computing”. In:
Future Generation Computer Systems 28.5 (2012), pp. 755–768. issn: 0167739X. doi:
10.1016/j.future.2011.04.017. url: http://linkinghub.elsevier.

com/retrieve/pii/S0167739X11000689.

[135] J. W. Smith and I. Sommerville. “Workload Classi�cation & Software Energy
Measurement for E�cient Scheduling on Private Cloud Platforms”. In: ACM
SOCC 2011. Vol. abs/1105.2. 2011, p. 10. arXiv: 1105.2584. url: http://arxiv.

org/abs/1105.2584.

[136] A. Corradi, M. Fanelli, and L. Foschini. “VM consolidation: A real case based
on OpenStack Cloud”. In: Future Generation Computer Systems 32 (Mar. 2014),
pp. 118–127. issn: 0167739X. doi: 10.1016/j.future.2012.05.012. url:
http://www.sciencedirect.com/science/article/pii/S0167739X12001082.

[137] M. Mazzucco, D. Dyachuk, and R. Deters. “Maximizing Cloud Providers Revenues
via Energy Aware Allocation Policies”. In: IEEE 3rd International Conference

on Cloud Computing (CLOUD), 2010. 2011. url: citeulike - article - id :

8825819%20http://arxiv.org/abs/1102.3058.

[138] B. Sotomayor. Haizea. 2009. url: http://haizea.cs.uchicago.edu/.

[139] OpenStack Blazar. 2015. url: https://launchpad.net/blazar.

[140] OpenNebula Project. OpenNebula. 2015. url: http://opennebula.org/.

[141] OpenStack Foundation. OpenStack. 2015. url: http://www.openstack.org%

20http://openstack.org.

[142] O. Litvinski and A. Gherbi. “Experimental evaluation of OpenStack compute
scheduler”. In: Procedia Computer Science 19.Ant (2013), pp. 116–123. issn: 18770509.
doi: 10.1016/j.procs.2013.06.020. url: http://dx.doi.org/10.1016/

j.procs.2013.06.020.

[143] Apache Foundation. Apache CloudStack. 2015. url: https://cloudstack.

apache.org%20http://incubator.apache.org/cloudstack/%20http:

//cloudstack.apache.org/.

[144] Eucalyptus Systems. Eucalyptus. 2015. url: https://www.eucalyptus.com/.

208

http://dx.doi.org/10.1016/j.future.2011.04.017
http://linkinghub.elsevier.com/retrieve/pii/S0167739X11000689
http://linkinghub.elsevier.com/retrieve/pii/S0167739X11000689
http://arxiv.org/abs/1105.2584
http://arxiv.org/abs/1105.2584
http://arxiv.org/abs/1105.2584
http://dx.doi.org/10.1016/j.future.2012.05.012
http://www.sciencedirect.com/science/article/pii/S0167739X12001082
citeulike-article-id:8825819%20http://arxiv.org/abs/1102.3058
citeulike-article-id:8825819%20http://arxiv.org/abs/1102.3058
http://haizea.cs.uchicago.edu/
https://launchpad.net/blazar
http://opennebula.org/
http://www.openstack.org%20http://openstack.org
http://www.openstack.org%20http://openstack.org
http://dx.doi.org/10.1016/j.procs.2013.06.020
http://dx.doi.org/10.1016/j.procs.2013.06.020
http://dx.doi.org/10.1016/j.procs.2013.06.020
https://cloudstack.apache.org%20http://incubator.apache.org/cloudstack/%20http://cloudstack.apache.org/
https://cloudstack.apache.org%20http://incubator.apache.org/cloudstack/%20http://cloudstack.apache.org/
https://cloudstack.apache.org%20http://incubator.apache.org/cloudstack/%20http://cloudstack.apache.org/
https://www.eucalyptus.com/

main February 3, 2016 13:07 Page 209 �
�	

�
�	 �
�	

�
�	

Bibliography

[145] Á. López García and E. Fernández-del-Castillo. “E�cient image deployment in
Cloud environments”. In: Journal of Network and Computer Applications (2016).
issn: 1084-8045.

[146] G. Aceto, A. Botta, W. De Donato, and A. Pescape. “Cloud monitoring: De�nitions,
issues and future directions”. In: 2012 1st IEEE International Conference on Cloud

Networking, CLOUDNET 2012 - Proceedings. 2012, pp. 63–67. isbn: 9781467327985.
doi: 10.1109/CloudNet.2012.6483656.

[147] Z. C. Z. Chen, Y. Z. Y. Zhao, X. M. X. Miao, Y. C. Y. Chen, and Q. W. Q. Wang.
“Rapid Provisioning of Cloud Infrastructure Leveraging Peer-to-Peer Networks”.
In: 2009 29th IEEE International Conference on Distributed Computing Systems

Workshops. 2009, pp. 324–329. isbn: 1545-0678. doi: 10.1109/ICDCSW.2009.35.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5158873.

[148] W. Li, P. Svard, J. Tordsson, and E. Elmroth. “A General Approach to Service
Deployment in Cloud Environments”. In: Cloud and Green Computing (CGC),

2012 Second International Conference on (2012), pp. 17–24. doi: 10.1109/CGC.

2012.90.

[149] M. McLoughlin. The QCOW2 image format. 2008. url: https://people.gnome.

org/%7B~%7Dmarkmc/qcow-image-format.html.

[150] B. Segal, P. Buncic, C. Aguado Sanchez, J. Blomer, D. Garcia Quintas, a. Haru-
tyunyan, P. Mato, J. Rantala, D. Weir, and Y. Yao. “LHC Cloud Computing
with CernVM”. In: Proceedings of the 13th International Workshop on Advanced

Computing and Analysis Techniques in Physics Research. February 22-27, 2010,

Jaipur, India. http://acat2010. cern. ch/. Published online at http://pos. sissa. it/cgi-

bin/reader/conf. cgi? con�d=. Vol. 1. 2010, p. 4. url: http://pos.sissa.it/

archive/conferences/093/004/ACAT2010%7B%5C_%7D004.pdf.

[151] M. Femminella, E. Nunzi, G. Reali, and D. Valocchi. “Networking issues related to
delivering and processing genomic big data”. In: International Journal of Parallel,
Emergent and Distributed Systems 30.1 (2014), pp. 46–64. issn: 1744-5760. doi:
10.1080/17445760.2014.929685. url: http://www.tandfonline.com/

doi/abs/10.1080/17445760.2014.929685.

209

http://dx.doi.org/10.1109/CloudNet.2012.6483656
http://dx.doi.org/10.1109/ICDCSW.2009.35
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5158873
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5158873
http://dx.doi.org/10.1109/CGC.2012.90
http://dx.doi.org/10.1109/CGC.2012.90
https://people.gnome.org/%7B~%7Dmarkmc/qcow-image-format.html
https://people.gnome.org/%7B~%7Dmarkmc/qcow-image-format.html
http://pos.sissa.it/archive/conferences/093/004/ACAT2010%7B%5C_%7D004.pdf
http://pos.sissa.it/archive/conferences/093/004/ACAT2010%7B%5C_%7D004.pdf
http://dx.doi.org/10.1080/17445760.2014.929685
http://www.tandfonline.com/doi/abs/10.1080/17445760.2014.929685
http://www.tandfonline.com/doi/abs/10.1080/17445760.2014.929685

main February 3, 2016 13:07 Page 210 �
�	

�
�	 �
�	

�
�	

[152] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa. “Science clouds:
Early experiences in cloud computing for scienti�c applications”. In: Cloud com-

puting and applications 2008 (2008), pp. 825–830. url: http://www.chinacloud.

cn/download/research/ScienceClouds.pdf.

[153] E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko, and J. Taylor. “Galaxy
CloudMan: delivering cloud compute clusters”. In: BMC bioinformatics 11 Suppl
1.Suppl 12 (Jan. 2010), S4. issn: 1471-2105. doi: 10.1186/1471-2105-11-S12-

S4. url: http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=3040530%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=

abstract.

[154] A. Menon, J. R. Santos, Y. Turner, J. Janakiraman, W. Zwaenepoel, G. J. Janakira-
man, W. Zwaenepoel, J. Janakiraman, and W. Zwaenepoel. “Machine Environ-
ment Diagnosing Performance Overheads in the Xen Virtual Machine Environ-
ment”. In: Proceedings of the 1st ACM/USENIX International Conference on Virtual

Execution Environments. VEE ’05 June. 2005, pp. 11–12. isbn: 1-59593-047-7. doi:
10.1145/1064979.1064984.

[155] K. B. Ferreira, P. Bridges, and R. Brightwell. “Characterizing Application Sensi-
tivity to OS Interference Using Kernel-Level Noise Injection”. In: Proceedings of
the 2008 ACM/IEEE conference on Supercomputing. IEEE Press. 2008, pp. 1–20.

[156] F. Petrini, D. J. D. Kerbyson, and S. Pakin. “The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI
Q”. In: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing. SC
’03 September 2001. New York, NY, USA: ACM, 2003, pp. 55–. isbn: 1-58113-
695-1. doi: 10.1145/1048935.1050204. url: http://doi.acm.org/10.

1145 / 1048935 . 1050204 % 20http : / / stumptown . cc . gt . atl . ga . us :

8080/cse6230-hpcta-fa09/paper-pres-Black-Petrini-2003jb.pdf.

[157] A. Gavrilovska, S. Kumar, H. Raj, K. Schwan, V. Gupta, R. Nathuji, R. Niranjan,
A. Ranadive, and P. Saraiya. “High-performance hypervisor architectures: Virtu-
alization in hpc systems”. In: Workshop on System-level Virtualization for HPC

(HPCVirt). 1. Citeseer. 2007. isbn: 1595930906. url: http://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.182.1105%7B%5C&%7Drep=

rep1%7B%5C&%7Dtype=pdf.

210

http://www.chinacloud.cn/download/research/ScienceClouds.pdf
http://www.chinacloud.cn/download/research/ScienceClouds.pdf
http://dx.doi.org/10.1186/1471-2105-11-S12-S4
http://dx.doi.org/10.1186/1471-2105-11-S12-S4
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3040530%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3040530%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3040530%7B%5C&%7Dtool=pmcentrez%7B%5C&%7Drendertype=abstract
http://dx.doi.org/10.1145/1064979.1064984
http://dx.doi.org/10.1145/1048935.1050204
http://doi.acm.org/10.1145/1048935.1050204%20http://stumptown.cc.gt.atl.ga.us:8080/cse6230-hpcta-fa09/paper-pres-Black-Petrini-2003jb.pdf
http://doi.acm.org/10.1145/1048935.1050204%20http://stumptown.cc.gt.atl.ga.us:8080/cse6230-hpcta-fa09/paper-pres-Black-Petrini-2003jb.pdf
http://doi.acm.org/10.1145/1048935.1050204%20http://stumptown.cc.gt.atl.ga.us:8080/cse6230-hpcta-fa09/paper-pres-Black-Petrini-2003jb.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.1105%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.1105%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.1105%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf

main February 3, 2016 13:07 Page 211 �
�	

�
�	 �
�	

�
�	

Bibliography

[158] R. Laurikainen, J. Laitinen, P. Lehtovuori, and J. K. Nurminen. “Improving
the E�ciency of Deploying Virtual Machines in a Cloud Environment”. In:
2012 International Conference on Cloud and Service Computing. Ieee, Nov. 2012,
pp. 232–239. isbn: 978-1-4673-4724-2. doi: 10.1109/CSC.2012.43. url: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6414505.

[159] R. Wartel, T. Cass, B. Moreira, E. Roche, M. Guijarro, S. Goasguen, and U. Schwick-
erath. “Image Distribution Mechanisms in Large Scale Cloud Providers”. In: 2010
IEEE Second International Conference on Cloud Computing Technology and Science

(Nov. 2010), pp. 112–117. doi: 10.1109/CloudCom.2010.73.

[160] Y. Chen, T. Wo, and J. Li. “An E�cient Resource Management System for On-
Line Virtual Cluster Provision”. In: 2009 IEEE International Conference on Cloud

Computing (2009), pp. 72–79. doi: 10.1109/CLOUD.2009.64. url: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

5284146.

[161] C. Peng, M. Kim, Z. Zhang, and H. Lei. “VDN: Virtual machine image distri-
bution network for cloud data centers”. In: 2012 Proceedings IEEE INFOCOM

(Mar. 2012), pp. 181–189. doi: 10.1109/INFCOM.2012.6195556. url: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6195556.

[162] H. A. Lagar-Cavilla, J. a. Whitney, R. Bryant, P. Patchin, M. Brudno, E. de Lara,
S. M. Rumble, M. Satyanarayanan, and A. Scannell. “SnowFlock: Virtual Machine
Cloning as a First-Class Cloud Primitive”. In: ACM Transactions on Computer

Systems 29.1 (Feb. 2011), pp. 1–45. issn: 07342071. doi: 10.1145/1925109.

1925111. url: http://portal.acm.org/citation.cfm?doid=1925109.

1925111.

[163] B. Nicolae, F. Cappello, and G. Antoniu. “Optimizing multi-deployment on clouds
by means of self-adaptive prefetching”. In: Euro-Par 2011 Parallel Processing.
Vol. 6852 LNCS. 2011, pp. 503–513. isbn: 9783642233999. doi: 10.1007/978-3-

642-23400-2{_}46.

[164] OpenStack Foundation. OpenStack Rally. 2015. url: https://wiki.openstack.

org/wiki/Rally.

211

http://dx.doi.org/10.1109/CSC.2012.43
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6414505
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6414505
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6414505
http://dx.doi.org/10.1109/CloudCom.2010.73
http://dx.doi.org/10.1109/CLOUD.2009.64
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5284146
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5284146
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5284146
http://dx.doi.org/10.1109/INFCOM.2012.6195556
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6195556
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6195556
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6195556
http://dx.doi.org/10.1145/1925109.1925111
http://dx.doi.org/10.1145/1925109.1925111
http://portal.acm.org/citation.cfm?doid=1925109.1925111
http://portal.acm.org/citation.cfm?doid=1925109.1925111
http://dx.doi.org/10.1007/978-3-642-23400-2{_}46
http://dx.doi.org/10.1007/978-3-642-23400-2{_}46
https://wiki.openstack.org/wiki/Rally
https://wiki.openstack.org/wiki/Rally

main February 3, 2016 13:07 Page 212 �
�	

�
�	 �
�	

�
�	

[165] B. Cohen. BEP 3: The Bittorrent Protocol Speci�cation. Tech. rep. BitTorrent.org,
2008.

[166] A. Norberg. libtorrent. 2015. url: http://www.libtorrent.org/.

[167] Á. López García. OpenStack Compute Scheduler Cache Aware. url: https://

blueprints.launchpad.net/nova/+spec/cache-aware-weigher.

[168] D. E. Knuth. The Art of Computer Programming (Volume 2). Addison–Wesley, 1981.
isbn: 0201038226. url: http://profs.scienze.univr.it/%7B~%7Dmanca/

storia-informatica/mmix.pdf.

[169] J. Ansel, K. Aryay, and G. Coopermany. “DMTCP: Transparent checkpointing
for cluster computations and the desktop”. In: Parallel & Distributed Processing,

2009. IPDPS 2009. IEEE International Symposium on. IEEE. 2009, pp. 1–12.

[170] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and migration

of UNIX processes in the Condor distributed processing system. Computer Sciences
Department, University of Wisconsin, 1997.

[171] P. H. Hargrove and J. C. Duell. “Berkeley lab checkpoint/restart (blcr) for linux
clusters”. In: Journal of Physics: Conference Series. Vol. 46. 1. IOP Publishing. 2006,
p. 494.

[172] Amazon. Amazon EC2 Spot Instances. 2015. url: http://aws.amazon.com/

ec2/purchasing-options/spot-instances/.

[173] Google Compute Engine. 2015. url: https://cloud.google.com/products/

compute-engine.

[174] Google Compute Engine Preemptible Virtual Machines. 2015. url: https://

cloud.google.com/preemptible-vms/.

[175] I. Menache and O. Shamir. “On-demand, Spot, or Both: Dynamic Resource Allo-
cation for Executing Batch Jobs in the Cloud”. In: 11th International Conference

on Autonomic Computing (ICAC 14) (2014), pp. 177–187. url: https://www.

usenix.org/conference/icac14/technical-sessions/presentation/

menache.

212

http://www.libtorrent.org/
https://blueprints.launchpad.net/nova/+spec/cache-aware-weigher
https://blueprints.launchpad.net/nova/+spec/cache-aware-weigher
http://profs.scienze.univr.it/%7B~%7Dmanca/storia-informatica/mmix.pdf
http://profs.scienze.univr.it/%7B~%7Dmanca/storia-informatica/mmix.pdf
http://aws.amazon.com/ec2/purchasing-options/spot-instances/
http://aws.amazon.com/ec2/purchasing-options/spot-instances/
https://cloud.google.com/products/compute-engine
https://cloud.google.com/products/compute-engine
https://cloud.google.com/preemptible-vms/
https://cloud.google.com/preemptible-vms/
https://www.usenix.org/conference/icac14/technical-sessions/presentation/menache
https://www.usenix.org/conference/icac14/technical-sessions/presentation/menache
https://www.usenix.org/conference/icac14/technical-sessions/presentation/menache

main February 3, 2016 13:07 Page 213 �
�	

�
�	 �
�	

�
�	

Bibliography

[176] N. Chohan, C. Castillo, M. Spreitzer, and M. Steinder. “See Spot Run: Using
Spot Instances for MapReduce Work�ows”. In: HotCloud 2010 (2012), pp. 1–
7. url: papers2 : / / publication / uuid / F72C8382 - 8639 - 45E6 - 8B12 -

957738AA3973.

[177] H. Liu. “Cutting MapReduce Cost with Spot Market”. In: USENIX HotCloud’11

(2011), p. 5.

[178] Y. Song, M. Zafer, and K.-W. Lee. “Optimal bidding in spot instance market”.
In: INFOCOM, 2012 Proceedings IEEE. Mar. 2012, pp. 190–198. doi: 10.1109/

INFCOM.2012.6195567.

[179] K. Sowmya and R. P. Sundarraj. “Strategic Bidding for Cloud Resources under
Dynamic Pricing Schemes”. In: Cloud and Services Computing (ISCOS), 2012

International Symposium on. Dec. 2012, pp. 25–30. doi: 10.1109/ISCOS.2012.

28.

[180] S.-Y. Noh, S. C. Timm, and H. Jang. “Vcluster: a Framework for Auto Scalable
Virtual Cluster System in Heterogeneous Clouds”. In: Cluster Computing 17.3
(2013), pp. 741–749. issn: 1386-7857. doi: 10.1007/s10586-013-0292-5. url:
http://link.springer.com/10.1007/s10586-013-0292-5.

[181] a. Andrzejak, D. Kondo, and S. Y. S. Yi. “Decision Model for Cloud Computing
under SLA Constraints”. In: Modeling, Analysis & Simulation of Computer and

Telecommunication Systems (MASCOTS), 2010 IEEE International Symposium on.
2010. isbn: 978-1-4244-8181-1. doi: 10.1109/MASCOTS.2010.34.

[182] S. Yi, D. Kondo, and A. Andrzejak. “Reducing costs of spot instances via check-
pointing in the Amazon Elastic Compute Cloud”. In: Proceedings - 2010 IEEE 3rd

International Conference on Cloud Computing, CLOUD 2010 (2010), pp. 236–243.
doi: 10.1109/CLOUD.2010.35.

[183] S. Yi, A. Andrzejak, and D. Kondo. “Monetary cost-aware checkpointing and
migration on amazon cloud spot instances”. In: IEEE Transactions on Services

Computing 5.4 (2012), pp. 512–524. issn: 19391374. doi: 10.1109/TSC.2011.44.

[184] S. Khatua and N. Mukherjee. “Application-centric resource provisioning for
Amazon EC2 spot instances”. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics)

213

papers2://publication/uuid/F72C8382-8639-45E6-8B12-957738AA3973
papers2://publication/uuid/F72C8382-8639-45E6-8B12-957738AA3973
http://dx.doi.org/10.1109/INFCOM.2012.6195567
http://dx.doi.org/10.1109/INFCOM.2012.6195567
http://dx.doi.org/10.1109/ISCOS.2012.28
http://dx.doi.org/10.1109/ISCOS.2012.28
http://dx.doi.org/10.1007/s10586-013-0292-5
http://link.springer.com/10.1007/s10586-013-0292-5
http://dx.doi.org/10.1109/MASCOTS.2010.34
http://dx.doi.org/10.1109/CLOUD.2010.35
http://dx.doi.org/10.1109/TSC.2011.44

main February 3, 2016 13:07 Page 214 �
�	

�
�	 �
�	

�
�	

8097 LNCS (2013), pp. 267–278. issn: 03029743. doi: 10.1007/978-3-642-

40047-6{\{}{_}{\}}29. arXiv: arXiv:1211.1279v1.

[185] D. Jung, S. Chin, K. Chung, H. Yu, and J. Gil. “An e�cient checkpointing scheme
using price history of spot instances in cloud computing environment”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Arti�cial

Intelligence and Lecture Notes in Bioinformatics) 6985 LNCS (2011), pp. 185–200.
issn: 03029743. doi: 10.1007/978-3-642-24403-2{\{}{_}{\}}16.

[186] A. Nadjaran Toosi, F. Khodadadi, and R. Buyya. “SipaaS: Spot instance pricing
as a Service framework and its implementation in OpenStack”. In: Concurrency
and Computation: Practice and Experience (2015), n/a–n/a. issn: 1532-0634. doi:
10.1002/cpe.3749. url: http://dx.doi.org/10.1002/cpe.3749.

[187] Á. López García. OpenStack Spot Instances Support Speci�cation. url: https:

//blueprints.launchpad.net/nova/+spec/spot-instances.

[188] N. Borenstein and J. Blake. “Cloud computing standards: Where’s the beef?” In:
IEEE Internet Computing 15.3 (2011), pp. 74–78. issn: 10897801. doi: 10.1109/

MIC.2011.58.

[189] L. Schubert, K. Je�ery, and B. Neidecker-Lutz. A Roadmap for Advanced Cloud

Technologies under H2020. Tech. rep. December. European Commission, 2012,
p. 30.

[190] L. Schubert, K. Je�ery, and B. Neidecker-Lutz. The Future of Cloud Computing.

Opportunities for European Cloud Computing Beyond 2010. Tech. rep. European
Commission, 2010, p. 66. doi: 10.1016/B978-1-59749-537-0.00012-0.

[191] E. Fernández-del-Castillo, Á. López García, I. Campos Plasencia, M. A. Nuñez
Vega, J. Marco de Lucas, et al. “IberCloud: federated access to virtualized re-
sources”. In: Proceedings of the IBERGRID 2012 Conference. Lisbon, Nov. 2012,
pp. 195–205.

[192] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow. “Blueprint
for the intercloud - Protocols and formats for cloud computing interoperability”.
In: Proceedings of the 2009 4th International Conference on Internet and Web

Applications and Services, ICIW 2009 (2009), pp. 328–336. doi: 10.1109/ICIW.

2009.55.

214

http://dx.doi.org/10.1007/978-3-642-40047-6{\{}{_}{\}}29
http://dx.doi.org/10.1007/978-3-642-40047-6{\{}{_}{\}}29
http://arxiv.org/abs/arXiv:1211.1279v1
http://dx.doi.org/10.1007/978-3-642-24403-2{\{}{_}{\}}16
http://dx.doi.org/10.1002/cpe.3749
http://dx.doi.org/10.1002/cpe.3749
https://blueprints.launchpad.net/nova/+spec/spot-instances
https://blueprints.launchpad.net/nova/+spec/spot-instances
http://dx.doi.org/10.1109/MIC.2011.58
http://dx.doi.org/10.1109/MIC.2011.58
http://dx.doi.org/10.1016/B978-1-59749-537-0.00012-0
http://dx.doi.org/10.1109/ICIW.2009.55
http://dx.doi.org/10.1109/ICIW.2009.55

main February 3, 2016 13:07 Page 215 �
�	

�
�	 �
�	

�
�	

Bibliography

[193] B. Parák and Z. Sustr. “Challenges in Achieving IaaS Cloud Interoperability across
Multiple Cloud Management Frameworks”. In: Utility and Cloud Computing

(UCC), 2014 IEEE/ACM 7th International Conference on. IEEE. 2014, pp. 404–411.

[194] B. Parák, Z. Sustr, F. Feldhaus, P. Kasprzak, and M. Srba. “The rOCCI Project –
Providing Cloud Interoperability with OCCI 1.1”. In: (2014), pp. 1–15.

[195] G. S. Machado, D. Hausheer, and B. Stiller. “Considerations on the Interoperability
of and between Cloud Computing Standards”. In: Scenario Section 4 (2009),
pp. 1–4. url: http://www.csg.uzh.ch/publications/ogf27-g2cnet-

discussion-cc-standards-finalversion.pdf.

[196] G. a. Lewis. The Role of Standards in Cloud- Computing Interoperability. Tech. rep.
CMU/SEI-2012-TN-012. Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2012, p. 39. url: http://resources.sei.cmu.edu/

library/asset- view.cfm?AssetID=28017%20http://www.sei.cmu.

edu/reports/12tn012.pdf.

[197] P. Harsh, F. Dudouet, R. G. Cascella, Y. Jégou, and C. Morin. “Using Open Stan-
dards for Interoperability - Issues, Solutions, and Challenges facing Cloud Com-
puting”. In: Network and service management (cnsm), 2012 8th international confer-

ence and 2012 workshop on systems virtualiztion management (svm). 2012, pp. 435–
440. isbn: 9783901882487. arXiv: 1207.5949. url: http://arxiv.org/abs/

1207.5949.

[198] Z. Zhang, C. Wu, and D. W. L. Cheung. “A Survey on Cloud Interoperability:
Taxonomies, Standards, and Practice”. In: SIGMETRICS Perform. Eval. Rev. 40.4
(2013), pp. 13–22. issn: 0163-5999. doi: 10 . 1145 / 2479942 . 2479945. url:
http://doi.acm.org/10.1145/2479942.2479945.

[199] D. W. Chadwick, K. Siu, C. Lee, Y. Fouillat, and D. Germonville. “Adding Federated
Identity Management to OpenStack”. In: Journal of Grid Computing 12.1 (2014),
pp. 3–27. issn: 1570-7873. doi: 10.1007/s10723-013-9283-2. url: http:

//link.springer.com/10.1007/s10723-013-9283-2.

[200] Hewlett Packard Enterprise. HPE Helion Eucalyptus - Extend your private cloud

to work with AWS. Tech. rep., p. 2015.

[201] EUBrazil Cloud Connect. EUBrazil Cloud Connect. 2015. url: http://www.

eubrazilcloudconnect.eu/.

215

http://www.csg.uzh.ch/publications/ogf27-g2cnet-discussion-cc-standards-finalversion.pdf
http://www.csg.uzh.ch/publications/ogf27-g2cnet-discussion-cc-standards-finalversion.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=28017%20http://www.sei.cmu.edu/reports/12tn012.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=28017%20http://www.sei.cmu.edu/reports/12tn012.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=28017%20http://www.sei.cmu.edu/reports/12tn012.pdf
http://arxiv.org/abs/1207.5949
http://arxiv.org/abs/1207.5949
http://arxiv.org/abs/1207.5949
http://dx.doi.org/10.1145/2479942.2479945
http://doi.acm.org/10.1145/2479942.2479945
http://dx.doi.org/10.1007/s10723-013-9283-2
http://link.springer.com/10.1007/s10723-013-9283-2
http://link.springer.com/10.1007/s10723-013-9283-2
http://www.eubrazilcloudconnect.eu/
http://www.eubrazilcloudconnect.eu/

main February 3, 2016 13:07 Page 216 �
�	

�
�	 �
�	

�
�	

[202] M. J. Dias de Lima and G. Baptista. D3.1 Adaptation Requirements for CSGrid

Middleware. Tech. rep. EU-Brazil Cloud Connect, 2014, pp. 1–20.

[203] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze. “Cloud Feder-
ation”. In: Proceedings of the 2nd International Conference on Cloud Computing,

GRIDs, and Virtualization (CLOUD COMPUTING 2011). 2011. isbn: 9781612081533.

[204] Amazon. Amazon Web Services. 2015. url: http://aws.amazon.com.

[205] S. S. Y. Shim, G. Bhalla, and V. Pendyala. “Federated Identity Management”. In:
Computer 38.September (2001), pp. 120–122. issn: 00189162. doi: 10.1109/MC.

2005.408.

[206] International Telecommunication Union (ITU). De�nition of "Open Standards.
2015. url: http://www.itu.int/en/ITU-T/ipr/Pages/open.aspx.

[207] Open Grid Forum (OGF). 2015. url: https://www.ogf.org%20http://www.

ogf.org/.

[208] T. Metsch and A. Edmonds. Open cloud computing interface-RESTful HTTP ren-

dering. Tech. rep. Open Grid Forum, 2011.

[209] R. Nyrén, T. Metsch, A. Edmonds, and A. Papaspyrou. Open cloud computing

interface–core. Tech. rep. Open Grid Forum, 2010. url: https://ogf.org/

Public%7B%5C_%7DComment%7B%5C_%7DDocs/Documents/2010-12/ogf%

7B%5C_%7Ddraft%7B%5C_%7Docci%7B%5C_%7Dcore.pdf.

[210] T. Metsch and A. Edmonds. “Open Cloud Computing Interface – infrastructure”.
In: Open Grid Forum-OCCI Working group (2010). url: http://ogfweb.ogf.

org/Public%7B%5C_%7DComment%7B%5C_%7DDocs/Documents/2010-12/

ogf%7B%5C_%7Ddraft%7B%5C_%7Docci%7B%5C_%7Dinfrastructure.pdf.

[211] DMTF Cloud Management Working Group. Cloud Infrastructure Management

Interface (CIMI) Model and RESTful HTTP-based Protocol. ISO ISO/IEC 19831:2015.
Technical report, Distributed Management Work Force (DMTF), 2012.

[212] Distributed Management Task Force (DMTF). 2015. url: https://www.dmtf.

org.

[213] DMTF Cloud Management Working Group. Cloud Infrastructure Management In-

terface (CIMI) Model and RESTful HTTP-based Protocol – An Interface for Managing

Cloud Infrastructure. ISO ISO/IEC 19831:2015. ISO, 2015.

216

http://aws.amazon.com
http://dx.doi.org/10.1109/MC.2005.408
http://dx.doi.org/10.1109/MC.2005.408
http://www.itu.int/en/ITU-T/ipr/Pages/open.aspx
https://www.ogf.org%20http://www.ogf.org/
https://www.ogf.org%20http://www.ogf.org/
https://ogf.org/Public%7B%5C_%7DComment%7B%5C_%7DDocs/Documents/2010-12/ogf%7B%5C_%7Ddraft%7B%5C_%7Docci%7B%5C_%7Dcore.pdf
https://ogf.org/Public%7B%5C_%7DComment%7B%5C_%7DDocs/Documents/2010-12/ogf%7B%5C_%7Ddraft%7B%5C_%7Docci%7B%5C_%7Dcore.pdf
https://ogf.org/Public%7B%5C_%7DComment%7B%5C_%7DDocs/Documents/2010-12/ogf%7B%5C_%7Ddraft%7B%5C_%7Docci%7B%5C_%7Dcore.pdf
http://ogfweb.ogf.org/Public%7B%5C_%7DComment%7B%5C_%7DDocs/Documents/2010-12/ogf%7B%5C_%7Ddraft%7B%5C_%7Docci%7B%5C_%7Dinfrastructure.pdf
http://ogfweb.ogf.org/Public%7B%5C_%7DComment%7B%5C_%7DDocs/Documents/2010-12/ogf%7B%5C_%7Ddraft%7B%5C_%7Docci%7B%5C_%7Dinfrastructure.pdf
http://ogfweb.ogf.org/Public%7B%5C_%7DComment%7B%5C_%7DDocs/Documents/2010-12/ogf%7B%5C_%7Ddraft%7B%5C_%7Docci%7B%5C_%7Dinfrastructure.pdf
https://www.dmtf.org
https://www.dmtf.org

main February 3, 2016 13:07 Page 217 �
�	

�
�	 �
�	

�
�	

Bibliography

[214] P. (T. Lipton, S. (Moser, D. (Palma, and T. (Spatzier. Topology and Orchestration
Speci�cation for Cloud Applications. Tech. rep. March. OASIS Standard, 2013,
pp. 1–114. url: http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/

TOSCA-v1.0-cs01.html.

[215] Organization for the Advancement of Structured Information Standards (OASIS).
2015. url: https://www.oasis-open.org.

[216] Storage Networking Industry Association. Cloud data management interface

(CDMI). Tech. rep. Storage Networking Industry Association, 2015, p. 276.

[217] Storage Networking Industry Association (SNIA). Cloud Data Management Inter-

face (CDMI). ISO ISO/IEC 17826:2012. ISO, 2015.

[218] DMTF OVF Workgroup. Open Virtualization Format Speci�cation (OVF). Tech.
rep. DMTF Standard, 2014.

[219] R. Housley, W. F. T. Polk, and D. Solo. Internet X.509 Public Key Infrastructure

Certi�cate and CRL Pro�le. 1999. url: http://www.ietf.org/rfc/rfc2459.

txt.

[220] S. Tuecke, V. Welch, and D. Engert. Internet X.509 public key infrastructure (PKI)

proxy certi�cate pro�le. Tech. rep. Internet Engineering Task Force, 2004, pp. 1–
37.

[221] Á. López García, E. Fernández-del-Castillo, and M. Puel. “Identity Federation
with VOMS in Cloud Infrastructures”. In: 2013 IEEE 5th International Conference

on Cloud Computing Technology and Science. 2013, pp. 42–48. isbn: 978-0-7695-
5095-4. doi: 10.1109/CloudCom.2013.13. url: http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=6753776.

[222] OASIS. Assertions and Protocols for the OASIS security assertion markup lan-

guage (SAML) v2.0. Tech. rep. March. 2005, pp. 1–86. url: https : / / svn .

softwareborsen.dk/sosi-gw/tags/release-1.1.4/vendor/doc/saml-

core-2.0-os.pdf.

[223] R. L. B. Morgan, S. Cantor, S. Carmody, W. Hoehn, and K. Klingenstein. “Federated
Security: The Shibboleth Approach”. In: EDUCAUSE quarterly 27.4 (2004), pp. 12–
17.

217

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
https://www.oasis-open.org
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2459.txt
http://dx.doi.org/10.1109/CloudCom.2013.13
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6753776
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6753776
https://svn.softwareborsen.dk/sosi-gw/tags/release-1.1.4/vendor/doc/saml-core-2.0-os.pdf
https://svn.softwareborsen.dk/sosi-gw/tags/release-1.1.4/vendor/doc/saml-core-2.0-os.pdf
https://svn.softwareborsen.dk/sosi-gw/tags/release-1.1.4/vendor/doc/saml-core-2.0-os.pdf

main February 3, 2016 13:07 Page 218 �
�	

�
�	 �
�	

�
�	

[224] W. Qiang, A. Konstantinov, D. Zou, and L. T. Yang. “A standards-based interoper-
able single sign-on framework in ARC Grid middleware”. In: Journal of Network
and Computer Applications 35.3 (2012), pp. 892–904.

[225] R. Murri, P. Z. Kunszt, S. Ma�oletti, and V. Tschopp. “GridCertLib: a single sign-
on solution for Grid web applications and portals”. In: Journal of Grid Computing

9.4 (2011), pp. 441–453.

[226] D. Hardt. The OAuth 2.0 authorization framework. Tech. rep. Internet Engineering
Task Force, 2012.

[227] B. Leiba. “OAuth web authorization protocol”. In: IEEE Internet Computing 16.1
(2012), pp. 74–77. issn: 10897801. doi: 10.1109/MIC.2012.11.

[228] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. “Openid
connect core 1.0”. In: The OpenID Foundation (2014).

[229] Open Researcher and Contributor ID (ORCID). 2015. url: http://orcid.org/.

[230] S. Andreozzi, B. Stephen, L. Field, S. Fisher, J. Jensen, K. Balazs, M. Viljoen, A.
Wilson, and R. Zappi. “GLUE Schema Speci�cation version 1.3”. In: Open Grid

Forum-Glue Schema Working group (2007), pp. 1–26.

[231] S. Andreozzi, S. Burke, L. Field, G. Galang, B. Konya, M. Litmaath, P. Millar,
and J. P. Navarro. GLUE Speci�cation v. 2.0. Tech. rep. 2009, p. 76. url: http:

//www.ogf.org/documents/GFD.147.pdf.

[232] A. Cristofori, J. K. Nilsen, J. Gordon, M. Jones, J. A. Kennedy, and R. Müller-
Pfe�erkorn. “Usage Record – Format Recommendation”. In: Open Grid Forum

(2013), pp. 1–62.

[233] E. Elmroth, F. G. Márquez, D. Henriksson, and D. P. Ferrera. “Accounting and
billing for federated cloud infrastructures”. In: 8th International Conference on

Grid and Cooperative Computing, GCC 2009 (2009), pp. 268–275. doi: 10.1109/

GCC.2009.37.

[234] UK Government Cabinet O�ce. Open Standards Principles. 2015. url: https://

www.gov.uk/government/publications/open-standards-principles/

open-standards-principles.

218

http://dx.doi.org/10.1109/MIC.2012.11
http://orcid.org/
http://www.ogf.org/documents/GFD.147.pdf
http://www.ogf.org/documents/GFD.147.pdf
http://dx.doi.org/10.1109/GCC.2009.37
http://dx.doi.org/10.1109/GCC.2009.37
https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles
https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles
https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles

main February 3, 2016 13:07 Page 219 �
�	

�
�	 �
�	

�
�	

Bibliography

[235] Á. López García, E. Fernández-del-Castillo, and P. Orviz Fernández. “OpenStack
OCCI Interface”. In: SoftwareX (2016). issn: 2352-7110. doi: 10.1016/j.softx.

2016.01.001.

[236] Á. López García, E. Fernández-del-Castillo, and P. Orviz Fernández. OpenStack
OCCI Interface. 2016. url: https://github.com/openstack/ooi.

[237] Open Grid Forum (OGF). OCCI Working Group. 2015. url: https://www.ogf.

org.

[238] E. Fernandez. OCCI Contextualization Extension. 2015. url: https://wiki.

egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation%7B%5C#

%7DContextualization.

[239] cloud-init. 2015. url: https://launchpad.net/cloud-init.

[240] Flamingo. 2015. url: https://github.com/tmrts/flamingo.

[241] F.-W. project. OCCI Key Pair extension. 2015. url: https://forge.fiware.

org / plugins / mediawiki / wiki / fiware / index . php / DCRM % 7B % 5C _

%7DOCCI%7B%5C_%7DOpen%7B%5C_%7DRESTful%7B%5C_%7DAPI%7B%5C_

%7DSpecification%7B%5C#%7DKey%7B%5C_%7DPair%7B%5C_%7DExtension.

[242] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente. “IaaS Cloud Ar-
chitecture: From Virtualized Datacenters to Federated Cloud Infrastructures”.
In: Computer 45.12 (2012), pp. 65–72. issn: 0018-9162. doi: http : / / doi .

ieeecomputersociety.org/10.1109/MC.2012.76.

[243] VMWare. 2015. url: http://www.vmware.com.

[244] Amazon Elastic Compute Cloud (EC2). 2015. url: http://aws.amazon.com/

ec2/%20https://aws.amazon.com/ec2/.

[245] OCCI-OS. 2015. url: https://wiki.openstack.org/wiki/Occi.

[246] T. Metsch and C. Smith. Service Sharing Facility. 2015. url: http://pyssf.

sourceforge.net.

[247] P. J. Eby. Python Web Server Gateway Interface v1.0.1. Sept. 2010. url: http:

//legacy.python.org/dev/peps/pep-3333/.

[248] OpenStack Foundation.OpenStack APIs. 2015. url: http://developer.openstack.

org/.

219

http://dx.doi.org/10.1016/j.softx.2016.01.001
http://dx.doi.org/10.1016/j.softx.2016.01.001
https://github.com/openstack/ooi
https://www.ogf.org
https://www.ogf.org
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation%7B%5C#%7DContextualization
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation%7B%5C#%7DContextualization
https://wiki.egi.eu/wiki/Fedcloud-tf:WorkGroups:Contextualisation%7B%5C#%7DContextualization
https://launchpad.net/cloud-init
https://github.com/tmrts/flamingo
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM%7B%5C_%7DOCCI%7B%5C_%7DOpen%7B%5C_%7DRESTful%7B%5C_%7DAPI%7B%5C_%7DSpecification%7B%5C#%7DKey%7B%5C_%7DPair%7B%5C_%7DExtension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM%7B%5C_%7DOCCI%7B%5C_%7DOpen%7B%5C_%7DRESTful%7B%5C_%7DAPI%7B%5C_%7DSpecification%7B%5C#%7DKey%7B%5C_%7DPair%7B%5C_%7DExtension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM%7B%5C_%7DOCCI%7B%5C_%7DOpen%7B%5C_%7DRESTful%7B%5C_%7DAPI%7B%5C_%7DSpecification%7B%5C#%7DKey%7B%5C_%7DPair%7B%5C_%7DExtension
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/DCRM%7B%5C_%7DOCCI%7B%5C_%7DOpen%7B%5C_%7DRESTful%7B%5C_%7DAPI%7B%5C_%7DSpecification%7B%5C#%7DKey%7B%5C_%7DPair%7B%5C_%7DExtension
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2012.76
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2012.76
http://www.vmware.com
http://aws.amazon.com/ec2/%20https://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/%20https://aws.amazon.com/ec2/
https://wiki.openstack.org/wiki/Occi
http://pyssf.sourceforge.net
http://pyssf.sourceforge.net
http://legacy.python.org/dev/peps/pep-3333/
http://legacy.python.org/dev/peps/pep-3333/
http://developer.openstack.org/
http://developer.openstack.org/

main February 3, 2016 13:07 Page 220 �
�	

�
�	 �
�	

�
�	

[249] OpenStack Foundation.OpenStack Compute API v2.1. 2015. url: http://developer.

openstack.org/api-ref-compute-v2.1.html.

[250] R. Al�eri, R. Cecchini, V. Ciaschini, L. Dell’Agnello, A. Frohner, A. Gianoli, K.
Lorentey, and F. Spataro. “VOMS, an authorization system for virtual organiza-
tions”. In: Proceedings of the 1st European Across Grids Conference. Springer. 2004,
pp. 33–40.

[251] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, et al. “The open science
grid”. In: Journal of Physics: Conference Series. Vol. 78. 1. IOP Publishing. 2007,
p. 012057. doi: 10.1088/1742-6596/78/1/012057.

[252] European Middleware Initiative (EMI). 2015. url: http://www.eu-emi.eu/.

[253] The Globus Toolkit. 2015. url: http://www.globus.org/toolkit/.

[254] SQLAlchemy. 2015. url: http://www.sqlalchemy.org/.

[255] Á. López García, E. Fernández-del-Castillo, and P. Orviz Fernández. “Standards
for enabling heterogeneous IaaS cloud federations”. In: Computer Standards &

Interfaces (2016). issn: 0920-5489.

[256] Á. López García, E. Fernández-del-Castillo, and P. Orviz Fernández. “Resource
provisioning in Science Clouds: requirements and challenges”. In: Journal of Grid
Computing (2016). issn: 1572-9184.

[257] I. Blanquer, G. Donvito, P. Fuhrmann, Á. López García, and G. Molto. An inte-

grated IaaS and PaaS architecture for scienti�c computing. Oral Contribution. EGI
Community Forum: Bari (Italy), Nov. 10–13, 2015.

[258] Á. López García, P. Fuhrmann, G. Donvito, and A. Chierici. Improving IaaS

resources to accommodate scienti�c applications. Oral Contribution. HEPiX Fall
2015 Workshop: Brookhaven National Laboratory, New York (USA), Oct. 12–16,
2015.

[259] Á. López García, P. Orviz Fernández, F. Aguilar, E. Fernández-del-Castillo, I.
Campos Plasencia, and J. Marco de Lucas. “The role of IBERGRID in the Feder-
ated Cloud of EGI”. In: Proceedings of the IBERGRID 2014 Conference. Editorial
Universidad Politecnica de Valencia, 2014, pp. 3–14. isbn: 978-84-9048-246-9.

220

http://developer.openstack.org/api-ref-compute-v2.1.html
http://developer.openstack.org/api-ref-compute-v2.1.html
http://dx.doi.org/10.1088/1742-6596/78/1/012057
http://www.eu-emi.eu/
http://www.globus.org/toolkit/
http://www.sqlalchemy.org/

main February 3, 2016 13:07 Page 221 �
�	

�
�	 �
�	

�
�	

Bibliography

[260] Á. López García. OpenStack Cloud Workshop. Workshop. 8th Iberian Grid Com-
puting Conference – IBERGRID 2014: University of Aveiro, Aveiro (Portugal),
Sept. 8–10, 2014.

[261] Á. López García. OpenStack hands on. Workshop. EGI Community Forum:
Helsinki (Finland), May 19–23, 2014.

[262] Á. López García and P. Orviz Fernández. Integrating cloud computing within an

existing infrastructure. Poster. EGI Technical Forum: Madrid (Spain), Sept. 16–20,
2013.

[263] Á. López García and E. Fernández-del-Castillo. Analysis of Scienti�c Cloud Com-

puting requirements. Oral Contribution. EGI Technical Forum: Madrid (Spain),
Sept. 16–20, 2013.

[264] Á. López García and E. Fernández-del-Castillo. Analysis of Scienti�c Cloud Com-

puting requirements. Oral Contribution. 7th Iberian Grid Computing Conference
– IBERGRID 2013: Madrid (Spain), Sept. 19–20, 2013.

[265] E. Fernández-del-Castillo, I. Campos, S. Heinemeyer, Á. López García, and F.
Pahlen. Phenomenology Tools on a OpenStack Cloud Infrastructure. Oral Contribu-
tion. EGI Community Forum 2013: The University of Manchester, Manchester
(UK), Apr. 8–12, 2012.

[266] M. Airaj, C. Cavet, V. Hamar, M. Jouvin, C. Loomis, et al. “Vers une fédération de
Cloud Académique dans France Grilles”. In: Journées SUCCES 2013. Paris, France,
Nov. 2013. url: https://hal.archives-ouvertes.fr/hal-00927506.

[267] E. Fernández-del-Castillo, Á. López García, I. Campos, M. Á. Nuñez, J. Marco,
et al. IberCloud: federated access to virtualized resources. Oral Contribution. EGI
Technical Forum 2012: Prague (Czech Republic), Sept. 17–21, 2012.

[268] E. Fernández-del-Castillo, Á. López García, I. Campos, M. Á. Nuñez, J. Marco,
et al. IberCloud: federated access to virtualized resources. Oral Contribution. 6th
Iberian Grid Computing Conference – IBERGRID 2012: Lisbon (Portugal), Sept. 7–
9, 2012.

[269] Á. López García and M. Puel. France-Grilles dans la Federation Cloud Task-Force

d’EGI. Oral Contribution. Atelier Operations France-Grilles: INRA, Villenave
d’Ornon (France), Nov. 29–30, 2012.

221

https://hal.archives-ouvertes.fr/hal-00927506

main February 3, 2016 13:07 Page 222 �
�	

�
�	 �
�	

�
�	

[270] Á. López García and M. Puel. Cloud Computing at CC-IN2P3. Invited Talk.
Rencontre LCG-France: SUBATECH, Nantes (France), Sept. 18–19, 2012.

[271] Á. López García and E. Fernández-del-Castillo. Keystone-VOMS. url: https:

//github.com/IFCA/keystone-voms.

[272] Á. López García and E. Fernández-del-Castillo. cASO: OpenStack Accounting

Extractor. url: https://github.com/IFCA/caso.

[273] Á. López García and E. Fernández-del-Castillo. cloud-bdii-provider. url: https:

//github.com/EGI-FCTF/cloud-bdii-provider.

[274] Á. López García. OpenStack Compute Scheduler weight normalization. url:
https://blueprints.launchpad.net/nova/+spec/normalize-scheduler-

weights.

[275] INDIGO-Datacloud. 2015. url: http://indigo-datacloud.eu.

[276] Son of Grid Engine. 2015. url: https://arc.liv.ac.uk/trac/SGE.

[277] E. Parzen. “On estimation of a probability density function and mode”. In: The
annals of mathematical statistics (1962), pp. 1065–1076.

[278] R. T. Fielding. “Architectural styles and the design of network-based software
architectures”. PhD thesis. University of California, Irvine, 2000.

222

https://github.com/IFCA/keystone-voms
https://github.com/IFCA/keystone-voms
https://github.com/IFCA/caso
https://github.com/EGI-FCTF/cloud-bdii-provider
https://github.com/EGI-FCTF/cloud-bdii-provider
https://blueprints.launchpad.net/nova/+spec/normalize-scheduler-weights
https://blueprints.launchpad.net/nova/+spec/normalize-scheduler-weights
http://indigo-datacloud.eu
https://arc.liv.ac.uk/trac/SGE

main February 3, 2016 13:07 Page 223 �
�	

�
�	 �
�	

�
�	

List of Terms and Acronyms

A

API

Application Programming Interface. 20, 22, 52, 135–138, 140, 147, 149–154, 156,
168, 185, 189

AWS

Amazon Web Services. 63, 136, 137

C

CDMI

Cloud Data Management Interface. 135, 140

CIMI

Cloud Infrastructure Management Interface. 139, 140, 143

main February 3, 2016 13:07 Page 224 �
�	

�
�	 �
�	

�
�	

CMF

Cloud Management Framework. 3, 43, 49, 51, 52, 54, 58, 60, 62, 69, 75, 76, 79, 83–85,
87, 90, 92–94, 107, 115, 117, 133, 135, 137–139, 142, 147, 148, 150, 157, 161, 163, 168,
169, 175, 179–182

CoW

Copy on Write. 87, 88

D

DMTF

Distributed Management Task Force. 140, 143

E

EC2

Elastic Compute Cloud (EC2). 115, 116, 137, 148

EGI

European Grid Infrastructure. 32, 33, 40, 41, 49–52, 64, 66, 136, 142, 156, 157, 168,
169, 175, 176, 179

F

FTP

File Transfer Protocol. 95–102

G

GLUE

Grid Laboratory Uniform Enviroment. 141–143, 180

H

HEP

High Energy Physics. 45, 47, 59, 60

224

main February 3, 2016 13:07 Page 225 �
�	

�
�	 �
�	

�
�	

List of Terms and Acronyms

HPC

High Performance Computing. 14, 19, 30, 32, 40, 63

HTC

High Throughput Computing. 14, 32, 33, 40

HTTP

Hiper Text Transfer Protocol. 20, 57, 60, 86, 94–107, 140, 147, 149, 154

I

I/O

Input/Output. 45, 58, 89, 180

IaaS

Infrastructure as a Service. 20, 21, 39, 42, 43, 49, 51, 62, 67, 68, 75, 83–85, 90, 133,
139, 140

IT

Information Technology. 13, 17, 41, 53

J

JSON

JavaScript Object Notation. 153, 164–167

K

Kernel Density Estimation (KDE)

KDE is a non-parametric way of estimating the probability density function
population [277]. 105, 107

L

LHC

Large Hadron Collider. 29

225

main February 3, 2016 13:07 Page 226 �
�	

�
�	 �
�	

�
�	

N

NAS

Network Attached Storage. 89

NIST

National Institute of Standards and Technology. 13

O

OASIS

Organization for the Advancement of Structure Information Standards. 140, 141,
143

OCCI

Open Cloud Computing Interface. 3, 8, 135, 139, 140, 143, 147–157, 168, 175, 179,
181, 189

OGF

Open Grid Forum. 140, 142, 143, 147, 179

OS

Operating System. 18, 19, 21, 40–42, 47, 48, 137, 181, 186, 187, 189

OSG

Open Science Grid Consortium. 33

OVF

Open Virtualization Format. 135, 140, 143

P

P2P

Peer-to-Peer. 90, 91, 93, 96, 99, 107

226

main February 3, 2016 13:07 Page 227 �
�	

�
�	 �
�	

�
�	

List of Terms and Acronyms

PaaS

Platform as a Service. 20–22, 53

PROOF

Parallel ROOT Facility. 45–48, 55

R

REST

Representational State Transfer (REST) is the software architectural style of the
World Wide Web. REST was de�ned by Roy Thomas Fielding [278]. RESTful
systems typically, but not always, communicate over HTTP using the HTTP verbs
GET, POST, PUT, DELETE, etc. REST systems interface with external systems as
web resources identi�ed by URI. 20, 137, 140, 147, 151

RP

Resource Provider. 16, 75, 122, 127, 161–163, 168

S

SaaS

Software as a Service. 20, 22, 67, 134

SAN

Storage Area Network. 89

SLA

Service Level Agreement. 16, 56, 64, 68, 83

SNIA

Storage Networking Industry Association. 140

SR-IOV

Single Root I/O Virtualization. 58

227

main February 3, 2016 13:07 Page 228 �
�	

�
�	 �
�	

�
�	

SSH

Secure Shell. 148

swarm

All the peers sharing a torrent. 96

T

TOSCA

Topology and Orchestration Speci�cation for Cloud Applications. 140, 143

U

UR

Usage Record. 142, 143, 179

URL

Uniform Resource Locatior. 153

V

vCPU

virtual CPU. 59, 62, 76

VM

Virtual Machine. 17–19, 49, 51, 57, 60, 68, 75–77, 83–86, 88, 89, 92, 93, 95, 101, 102,
115, 117, 118, 124–127, 148, 156, 175, 181

VMI

Virtual Machine Image. 3, 49, 51, 53, 83–85, 89, 92, 99, 100, 107, 140, 175, 181

VMM

Virtual Machine Monitor. 17–19, 90, 181

VO

Virtual Organization. 162, 163, 166–169

228

main February 3, 2016 13:07 Page 229 �
�	

�
�	 �
�	

�
�	

List of Terms and Acronyms

VOMS

Virtual Organization Membership Service. 3, 8, 52, 141, 161, 163, 165–168, 176

W

WLCG

Worldwide LHC Computing Grid. 29–31

WSGI

Web Server Gateway Interface. 149–153, 163, 165, 166, 168

X

X.509

X.509 is a standard for a public key infrastructure (PKI) and Privilege Manage-
ment Infrastructure (PMI), specifying standard formats for public key certi�cates,
certi�cate revocation lists, attribute certi�cates, and a certi�cation path validation
algorithm. 3, 52, 141, 143

229

main February 3, 2016 13:07 Page 230 �
�	

�
�	 �
�	

�
�	

	Portada
	Agradecimientos
	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	Objectives and Description of Work
	Objetivos y descripción del trabajo
	1. Cloud Computing
	1.1. Cloud Computing De˙nition
	1.2. Cloud Computing Characteristics
	1.2.1. On-demand Self Service
	1.2.2. Elastic Provisioning and Scalability
	1.2.3. Metered Usage and Billing
	1.2.4. Multi-tenancy and Dynamic Resource Pooling

	1.3. Cloud Computing Actors
	1.4. Key and Enabling Technologies
	1.4.1. Utility and Grid Computing
	1.4.2. Virtualization
	1.4.3. Web Services

	1.5. Cloud Taxonomy and Classiffication
	1.5.1. Cloud Service Models
	1.5.2. Deployment Modes

	1.6. Cloud Computing Challenges
	1.6.1. Vendor Lock-in
	1.6.2. Security and Privacy

	2. Scientific Computing
	2.1. The Computational Problem
	2.2. e-Science and the Grid
	2.3. What Are The Requirements of Computational Science
	2.3.1. Large Capacity
	2.3.2. High-end Resources
	2.3.3. Availability and reliability
	2.3.4. Flexibility
	2.3.5. Security and Privacy
	2.3.6. Collaboration

	3. Science Clouds: Context, Definition,Expectations and Challenges
	3.1. Expectations from Science Clouds
	3.1.1. Customized Environments
	3.1.2. Reduced Costs
	3.1.3. On-demand Access
	3.1.4. Rapid Elasticity
	3.1.5. Execution of non Conventional Application Models
	3.1.6. Infrastructure Interoperability and Federation

	3.2. Selected Application Use Cases
	3.2.1. PROOF
	3.2.2. Particle Physics Phenomenology
	3.2.3. EGI Federated Cloud

	3.3. Science Clouds Open Challenges
	3.3.1. Usability Requirements
	3.3.2. Resource Allocation Problems
	3.3.3. Interoperability and Federation

	3.4. RelatedWork
	3.5. Conclusions

	4. Scheduling and ResournceProvisioning in Cloud Management Frameworks
	4.1. Scheduling strategy
	4.2. Scheduling algorithms
	4.3. Scheduling in OpenStack
	4.4. Conclusions

	5. Efficient Image Deployment
	5.1. Problem Statement
	5.2. Related Work
	5.2.1. Shared Storage
	5.2.2. Image Transfer Improvements
	5.2.3. Other Methods

	5.3. Transfer Method Evaluation
	5.3.1. Experimental Setup
	5.3.2. Test Results
	5.3.3. Result Comparison

	5.4. Efficient Image Distribution
	5.4.1. Evaluation
	5.4.2. Image pre-fetch

	5.5. Conclusions

	6. Preemptible Instances Scheduling
	6.1. Problem Statement
	6.2. Related Work
	6.3. Preemptible Instances Design
	6.4. Preemptible Aware Scheduling
	6.5. Implementation and Evaluation
	6.5.1. Evaluation

	6.6. Conclusions

	7. Open Standards for Interoperable and Federated Clouds
	7.1. Introduction to Federation
	7.2. Related work
	7.3. Cloud Federation Open Challenges
	7.3.1. On Uniform Access and Management
	7.3.2. On Portability
	7.3.3. On Authentication and Authorization
	7.3.4. On Information Discovery
	7.3.5. On Accounting and Billing

	7.4. Federation Enabling Standards
	7.4.1. Uniform Access and Management
	7.4.2. Portability
	7.4.3. Authentication and Authorization
	7.4.4. Information Discovery
	7.4.5. Accounting

	7.5. Conclusions

	8. An Implementation of an Open Standard for the Cloud
	8.1. The Open Cloud Computing Inteface (OCCI)
	8.2. Motivation and significance
	8.3. Software Description
	8.3.1. Foreword on WSGI
	8.3.2. Interacting with OpenStack

	8.4. ooi Functionality
	8.5. Performance Comparison
	8.6. Conclusions

	9. Federating VO-based Cloud Infrastructures
	9.1. Identity Federation, Challenges and Problematic
	9.1.1. Current Solutions

	9.2. VOMS Support in OpenStack
	9.2.1. Keystone External Authentication
	9.2.2. Keystone VOMS Integration

	9.3. Conclusions

	10. Conclusions
	10.1. Contributions
	10.2. Publications
	10.3. Future Work and Perspective

	Appendix A. Experimental Facilities
	Bibliography
	List of Terms and Acronyms

