HYPERQUADRATIC POWER SERIES IN $\mathbb{F}_3((T^{-1}))$ WITH PARTIAL QUOTIENTS OF DEGREE 1

DOMINGO GOMEZ* AND ALAIN LASJAUNIAS**

ABSTRACT. In this note we describe a large family of nonquadratic continued fractions in the field $\mathbb{F}_3((T^{-1}))$ of power series over the finite field \mathbb{F}_3 . These continued fractions are remarkable for two reasons: they satisfy an algebraic equation with coefficient in $\mathbb{F}_3[T]$, explicitly given, and all the partial quotients in the expansion are polynomials of degree 1. In 1986, in a basic article in this area of research [MR], Mills and Robbins gave the first example of an element belonging to this family.

1. Introduction

We are concerned with power series in 1/T over a finite field, where T is an indeterminate. If the base field is \mathbb{F}_q , the finite field of characteristic p with q elements, these power series belong to the field $\mathbb{F}_q((T^{-1}))$, which will be here denoted by $\mathbb{F}(q)$. Thus a nonzero element of $\mathbb{F}(q)$ is represented by

$$\alpha = \sum_{k \le k_0} u_k T^k$$
 where $k_0 \in \mathbb{Z}, u_k \in \mathbb{F}_q$ and $u_{k_0} \ne 0$.

An absolute value on this field is defined by $|\alpha| = |T|^{k_0}$ where |T| > 1 is a fixed real number. We also denote by $\mathbb{F}(q)^+$ the subset of power series α such that $|\alpha| > 1$. We know that each irrational element $\alpha \in \mathbb{F}(q)^+$ can be expanded as an infinite continued fraction. This is denoted

$$\alpha = [a_1, a_2, \dots, a_n, \dots]$$
 where $a_i \in \mathbb{F}_q[T]$ and $\deg(a_i) > 0$ for $i \ge 1$.

By truncating this expansion we obtain a rational element, called a convergent to α and denoted by x_n/y_n for $n \geq 1$. The polynomials $(x_n)_{n\geq 0}$ and $(y_n)_{n\geq 0}$, called continuants, are both defined by the same recursion formula: $K_n = a_n K_{n-1} + K_{n-2}$ for $n \geq 2$, with the initial conditions $x_0 = 1$ and $x_1 = a_1$ or $y_0 = 0$ and $y_1 = 1$. The polynomials a_i are called the partial quotients of the expansion. For $n \geq 1$, we

 $^{2000\} Mathematics\ Subject\ Classification.\quad 11J70\ 11J61\ 11T55.$

Key words and phrases. Finite fields, Fields of power series, Continued fractions.

denote $\alpha_{n+1} = [a_{n+1}, a_{n+2}, \dots]$, called the complete quotient, and we have

$$\alpha = [a_1, a_2, \dots, a_n, \alpha_{n+1}] = (x_n \alpha_{n+1} + x_{n-1})/(y_n \alpha_{n+1} + y_{n-1}).$$

The reader may consult [S] for a general account on continued fractions in power series fields and also [T] for a wider presentation of diophantine approximation in function fields and more references.

In 1986 [MR], Mills and Robbins, developing the pioneer work by Baum and Sweet [BS], introduced a particular subset of algebraic power series. These power series are irrational elements $\alpha \in \mathbb{F}(q)$ satisfying an equation $\alpha = f(\alpha^r)$ where r is a power of the characteristic p of the base field and f is a linear fractional transformation with integer (polynomials in $\mathbb{F}_q[T]$) coefficients. The subset of such elements is denoted by $\mathbb{H}_r(q)$ and its elements are called hyperquadratic.

Throughout this note the base field is \mathbb{F}_3 , i.e. q = 3. We are concerned with elements in $\mathbb{H}_3(3)$ which are not quadratic and have all partial quotients of degree 1 in their continued fraction expansion. A first example of such power series appeared in [MR, p. 401-402].

2. Results

In [L1] the second named author of this note investigated the existence of elements in $\mathbb{H}_3(3)$ with all partial quotients of degree 1. The theorem which we present here is an extended version of the one presented there [L1]. However the proof given here is based on a different method. This method used to obtain other continued fraction expansions of hyperquadratic power series was developed in [L2]. We have the following:

Theorem 1. Let $m \in \mathbb{N}^*$, $\boldsymbol{\eta} = (\eta_1, \eta_2, \dots, \eta_m) \in (\mathbb{F}_3^*)^m$ where $\eta_m = (-1)^{m-1}$ and $\mathbf{k} = (k_1, k_2, \dots, k_m) \in \mathbb{N}^m$ where $k_1 \geq 2$ and $k_{i+1} - k_i \geq 2$ for $i = 1, \dots, m-1$. We define the following integers,

$$t_{i,n} = k_m(3^n - 1)/2 + k_i 3^n$$
 for $1 \le i \le m$ and $n \ge 0$.

We observe that we have $t_{i,n} < t_{i+1,n}$ for all (i,n) and $t_{m,n} < t_{1,n+1}$. Also $t_{i,n} \neq t_{j,n'} + 1$. Accordingly, we can define two sequences $(\lambda_t)_{t\geq 1}$ and $(\mu_t)_{t\geq 1}$ in \mathbb{F}_3 . For $n\geq 0$, we have

$$\lambda_t = \begin{cases} 1 & \text{if} & 1 \le t \le t_{1,0}, \\ (-1)^{mn+i} & \text{if} & t_{i,n} < t \le t_{i+1,n} & \text{for } 1 \le i < m, \\ (-1)^{m(n+1)} & \text{if} & t_{m,n} < t \le t_{1,n+1}. \end{cases}$$

Also $\mu_1 = 1$ and for $n \ge 0$, $1 \le i \le m$ and t > 1

$$\mu_t = \begin{cases} (-1)^{n(m+1)} \eta_i & \text{if } t = t_{i,n} \text{ or } t = t_{i,n} + 1, \\ 0 & \text{otherwise.} \end{cases}$$

Let $\omega(m, \eta, \mathbf{k}) \in \mathbb{F}(3)$ be defined by the infinite continued fraction expansion

$$\omega(m, \eta, \mathbf{k}) = [a_1, a_2, \dots, a_n, \dots]$$
 where $a_n = \lambda_n T + \mu_n$ for $n \ge 1$.

We consider the two usual sequences $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ as being the numerators and denominators of the convergents to $\omega(m, \eta, \mathbf{k})$. Then $\omega(m, \eta, \mathbf{k})$ is the unique root in $\mathbb{F}(3)^+$ of the quartic equation

$$X = \frac{x_l X^3 + (-1)^{m-1} x_{l-3}}{y_l X^3 + (-1)^{m-1} y_{l-3}},$$

where $l = 1 + k_m$.

Remark. The case m = 1 and thus $\eta = (1)$, $\mathbf{k} = (k_1)$, of this theorem is proved in [L1]. The case m = 2, $\eta = (-1, -1)$ and $\mathbf{k} = (3, 6)$ corresponds to the example introduced by Mills and Robbins [MR].

The generality of this theorem is underlined by the following conjecture, based on extensive computer checking.

Conjecture. Let $\alpha \in \mathbb{H}_3(3)$ be an element which is not quadratic; then α has all its partial quotients of degree 1, except for the first ones, if and only if there exist a linear fractional transformation f, with coefficients in $\mathbb{F}_3[T]$ and determinant in \mathbb{F}_3^* , a triple (m, η, \mathbf{k}) and a pair $(\lambda, \mu) \in \mathbb{F}_3^* \times \mathbb{F}_3$ such that $\alpha(T) = f(\omega(m, \eta, \mathbf{k})(\lambda T + \mu))$.

3. Proofs

The proof of the theorem stated above will be divided into three steps.

• First step of the proof: According to [L2, Theorem 1, p. 332], there exists a unique infinite continued fraction $\beta = [a_1, \ldots, a_l, \beta_{l+1}] \in \mathbb{F}(3)$, satisfying

$$\beta^3 = (-1)^m (T^2 + 1)\beta_{l+1} + T + 1$$
 and $a_i = \lambda_i T + \mu_i$, for $1 \le i \le l$,

where λ_i , μ_i are the elements defined in the theorem. We know that this element is hyperquadratic and that it is the unique root in $\mathbb{F}(3)^+$ of the algebraic equation $X = (x_l X^3 + B)/(y_l X^3 + D)$ where

$$B = (-1)^m (T^2 + 1) x_{l-1} - (T+1) x_l$$
 and $D = (-1)^m (T^2 + 1) y_{l-1} - (T+1) y_l$.

We need to transform B and D. Using the recursive formulas for the continuants, we can write

(1)
$$K_{l-3} = (a_l a_{l-1} + 1) K_{l-1} - a_{l-1} K_l.$$

The l first partial quotients of β are given, from the hypothesis of the theorem, and we have

(2)
$$a_{l-1} = (-1)^{m-1}(T+1)$$
 and $a_l = (-1)^{m-1}(-T+1)$.

Combining (1), applied to both sequences x and y, and (2), we get

$$B = (-1)^{m-1} x_{l-3}$$
 and $D = (-1)^{m-1} y_{l-3}$.

Hence we see that β is the unique root in $\mathbb{F}(3)^+$ of the quartic equation stated in the theorem.

- Second step of the proof: In this section $l \geq 1$ is a given integer. We consider all the infinite continued fractions $\alpha \in \mathbb{F}(3)$ defined by $\alpha = [a_1, \ldots, a_l, \alpha_{l+1}]$ where $\alpha_{l+1} \in \mathbb{F}(3)$ and
- (3) $a_i = \lambda_i T + \mu_i$ with $(\lambda_i, \mu_i) \in \mathbb{F}_3^* \times \mathbb{F}_3$, for $1 \le i \le l$ and

(4)
$$\alpha^3 = \epsilon(T^2 + 1)\alpha_{l+1} + \epsilon'T + \nu_0$$
 with $(\epsilon, \epsilon', \nu_0) \in \mathbb{F}_3^* \times \mathbb{F}_3^* \times \mathbb{F}_3$.

See [L2, Theorem 1, p. 332], for the existence and unicity of $\alpha \in \mathbb{F}(3)$ defined by the above relations. Our aim is to show that these continued fraction expansions can be explicitly described, under particular conditions on the parameters $(\lambda_i, \mu_i)_{1 \leq i \leq l}$ and $(\epsilon, \epsilon', \nu_0)$. Following the same method as in [L2], we first prove:

Lemma 2. Let $(\lambda, \epsilon, \epsilon') \in (\mathbb{F}_3^*)^3$ and $\nu \in \mathbb{F}_3$. We set $U = \lambda T^3 - \epsilon' T + \nu$, and $V = \epsilon(T^2 + 1)$. We set $\delta = \lambda + \epsilon'$ and we assume that $\delta \neq 0$. We define $\epsilon^* = 1$ if $\nu = 0$ and $\epsilon^* = -1$ if $\nu \neq 0$. Then the continued fraction expansion for U/V is given by

$$U/V = [\epsilon \lambda T, -\epsilon(\delta T + \nu), -\epsilon(\epsilon^* \delta T + \nu)].$$

Moreover, setting $U/V = [u_1, u_2, u_3]$, then for $X \in \mathbb{F}(3)$ we have

$$[U/V, X] = [u_1, u_2, u_3, \frac{X}{(T^2 + 1)^2} + \frac{\epsilon^* \epsilon (\delta T + \nu)}{T^2 + 1}].$$

Proof. Since $\epsilon^2 = 1$ and $\delta^2 = 1$, we can write

(5)
$$U = \epsilon \lambda T V - \delta T + \nu$$
 and $V = \epsilon (\delta T + \nu)(\delta T - \nu) + \epsilon (1 + \nu^2)$.

Clearly (5) implies the following continued fraction expansion

(6)
$$U/V = [\epsilon \lambda T, -\epsilon(\delta T + \nu), \epsilon(1 + \nu^2)(-\delta T + \nu)].$$

Finally, observing that $\epsilon(1+\nu^2) = \epsilon^* \epsilon$ and $\epsilon^* \epsilon \nu = -\epsilon \nu$, we see that (6) is the expansion stated in the lemma. The last formula is obtained from [L2, Lemma 3.1 p. 336]. According to this lemma, we have

$$[U/V, X] = [u_1, u_2, u_3, X']$$
 where $X' = X(u_2u_3+1)^{-2} - u_2(u_2u_3+1)^{-1}$.

We check that $u_2u_3 = T^2$ if $\nu = 0$ and $u_2u_3 = \nu^2 - T^2$ if $\nu \neq 0$, therefore we have $u_2u_3 + 1 = \epsilon^*(T^2 + 1)$ and this implies the desired equality. \square

We shall prove now a second lemma. In the sequel we define f(n) as 3n + l - 2 for $n \ge 1$. We have the following:

Lemma 3. Let $\alpha = [a_1, \ldots, a_n, \ldots]$ be an irrational element of $\mathbb{F}(3)$. We assume that for an index $n \geq 1$ we have $a_n = \lambda_n T + \mu_n$ with $(\lambda_n, \mu_n) \in \mathbb{F}_3^* \times \mathbb{F}_3$ and

$$\alpha_n^3 = \epsilon(T^2 + 1)\alpha_{f(n)} + z_n T + \nu_{n-1}$$
 where $(\epsilon, z_n, \nu_{n-1}) \in (\mathbb{F}_3^*)^2 \times \mathbb{F}_3$.

We set $\nu_n = \mu_n - \nu_{n-1}$ and $\epsilon_n^* = 1$ if $\nu_n = 0$ or $\epsilon_n^* = -1$ if $\nu_n \neq 0$. We set $\delta_n = \lambda_n + z_n$, and $z_{n+1} = -\epsilon_n^* \delta_n$. We assume that $\delta_n \neq 0$. Then we have:

$$(a_{f(n)}, a_{f(n)+1}, a_{f(n)+2}) = (\epsilon \lambda_n T, -\epsilon(\delta_n T + \nu_n), -\epsilon(\epsilon_n^* \delta_n T + \nu_n))$$

and

$$\alpha_{n+1}^3 = \epsilon (T^2 + 1)\alpha_{f(n+1)} + z_{n+1}T + \nu_n.$$

Proof. We can write $\alpha_n^3 = [a_n^3, \alpha_{n+1}^3] = [\lambda_n T^3 + \mu_n, \alpha_{n+1}^3]$. Consequently

$$\alpha_n^3 = \epsilon (T^2 + 1)\alpha_{f(n)} + z_n T + \nu_{n-1}$$

is equivalent to

(7)
$$[(\lambda_n T^3 + \mu_n - z_n T - \nu_{n-1})/(\epsilon(T^2 + 1)), \epsilon(T^2 + 1)\alpha_{n+1}^3] = \alpha_{f(n)}.$$

Now we apply Lemma 2 with $U = \lambda_n T^3 - z_n T + \nu_n$ and $X = \epsilon (T^2 + 1)\alpha_{n+1}^3$. Consequently (7) can be written as

(8)
$$[\epsilon \lambda_n T, -\epsilon(\delta_n T + \nu_n), -\epsilon(\epsilon_n^* \delta_n T + \nu_n), X'] = \alpha_{f(n)}$$

where

(9)
$$X' = (\epsilon \alpha_{n+1}^3 + \epsilon \epsilon_n^* (\delta_n T + \nu_n)) / (T^2 + 1).$$

Moreover we have $|\alpha_{n+1}^3| \geq |T^3|$ and consequently |X'| > 1. Thus (8) implies that the three partial quotients $a_{f(n)}$, $a_{f(n)+1}$ and $a_{f(n)+2}$ are as stated in this lemma and also that we have $X' = \alpha_{f(n+1)}$. Combining this last equality with (9), and observing that $-\epsilon_n^* \nu_n = \nu_n$, we obtain the result.

Applying Lemma 2, we see that for a continued fraction defined by (3) and (4), the partial quotients, from the rank l+1 onward, can be given explicitly three by three, as long as the quantity δ_n is not zero. This is taken up in the following proposition:

Proposition 4. Let $\alpha \in \mathbb{F}(3)$ be an infinite continued fraction expansion defined by (3) and (4). Then there exists $N \in \mathbb{N}^* \cup \{\infty\}$ satisfying the following conditions.

1. For $1 \le n < f(N)$, we have $a_n = \lambda_n T + \mu_n$ where $(\lambda_n, \mu_n) \in \mathbb{F}_3^* \times \mathbb{F}_3$. 2. For $1 \le n < f(N)$, define $\nu_n = \sum_{1 \le i \le n} (-1)^{n-i} \mu_i + (-1)^n \nu_0$. Then we have

$$\mu_{f(n)} = 0$$
 and $\mu_{f(n)+1} = \mu_{f(n)+2} = -\epsilon \nu_n$ for $1 \le n < N$.

3. For $1 \le n < N$, define $\epsilon_n^* = 1$ if $\nu_n = 0$ or $\epsilon_n^* = -1$ if $\nu_n \ne 0$. Let $(\delta_n)_{1 \le n \le N}$ be the sequence defined recursively by

$$\delta_1 = \lambda_1 + \epsilon'$$
 and $\delta_n = \lambda_n - \epsilon_{n-1}^* \delta_{n-1}$ for $2 \le n \le N$.

Then, for $1 \le n < N$, we have

$$\lambda_{f(n)} = \epsilon \lambda_n, \quad \lambda_{f(n)+1} = -\epsilon \delta_n \quad and \quad \lambda_{f(n)+2} = -\epsilon \epsilon_n^* \delta_n.$$

Proof. Starting from (4), since f(1) = l + 1, setting $\epsilon' = z_1$ and observing that all the partial quotients are of degree 1, we can apply repeatedly Lemma 3 as long as we have $\delta_n \neq 0$. If δ_n happens to vanish, the process is stopped and we denote by N the first index such that $\delta_N = 0$, otherwise N is ∞ . The formula $\nu_n = \mu_n - \nu_{n-1}$, implies clearly the equality for ν_n . From the formulas $\delta_n = \lambda_n + z_n$ and $z_{n+1} = -\epsilon_n^* \delta_n$ for $n \geq 1$, we obtain the recursive formulas for the sequence δ . Finally the formulas concerning μ and λ are directly derived from the three partial quotients $a_{f(n)}$, $a_{f(n)+1}$ and $a_{f(n)+2}$ given in Lemma 3.

• Last step of the proof: We start from the element $\beta \in \mathbb{F}(3)$, introduced in the first step of the proof, defined by its l first partial quotients, where $l = k_m + 1$, and by (4) with $(\epsilon, \epsilon', \nu_0) = ((-1)^m, 1, 1)$. According to the first step of the proof, we need to show that $\beta = \omega(m, \eta, \mathbf{k})$. To do so, we apply Proposition 4 to β , and we show that $N = \infty$ and that the resulting sequences $(\lambda_n)_{n\geq 1}$ and $(\mu_n)_{n\geq 1}$ are the one which are described in the theorem.

From the definition of the *l*-tuple (μ_1, \ldots, μ_l) and $\nu_o = 1$, we obtain (10)

$$\nu_t = \eta_i$$
 if $t = t_{i,0}$ and $\nu_t = 0$ otherwise, for $1 \le t \le l$.

Since $\mu_{f(n)+1} = \mu_{f(n)+2}$, we have $\nu_{f(n)+2} = \nu_{f(n)}$. Since $\mu_{f(n)} = 0$, we also have $\nu_{f(n)} = -\nu_{f(n)-1} = -\nu_{f(n-1)+2}$. This implies $\nu_{f(n)+2} = 0$

 $(-1)^{n-1}\nu_{f(1)+2}$. Since $\nu_{f(1)+2} = \nu_{f(1)} = -\nu_{f(1)-1} = -\nu_l = 0$, we obtain

(11)
$$\nu_{f(n)} = \nu_{f(n)+2} = 0 \quad \text{for} \quad 1 \le n < N.$$

Moreover, from $\nu_{f(n)+1} = \mu_{f(n)+1} - \nu_{f(n)}$ and (11), we also get

(12)
$$\nu_{f(n)+1} = -\epsilon \nu_n \quad \text{for} \quad 1 \le n < N.$$

Now, it is easy to check that we have $f(t_{i,n}) + 1 = t_{i,n+1}$. Since $\epsilon = (-1)^m$, (12) implies $\nu_{t_{i,n}} = (-1)^{m+1}\nu_{t_{i,n-1}}$ if $t_{i,n} < f(N)$. By induction from (10), with (11) and (12), we obtain (13)

$$\nu_{t_{i,n}} = (-1)^{(m+1)n} \eta_i$$
 and $\nu_t = 0$ if $t \neq t_{i,n}$, for $1 \leq t < f(N)$.

Since we have $\mu_n = \nu_n + \nu_{n-1}$, from (11) and $\nu_0 = 1$, we see that μ_n satisfies the formulas given in the theorem, for $1 \leq n < f(N)$. Moreover, (13) implies clearly the following:

(14)
$$\epsilon_t^* = \begin{cases} -1 & \text{if } t = t_{i,n}, \\ 1 & \text{otherwise} \end{cases} \text{ for } 1 \le t < f(N).$$

Now we turn to the definition of the sequence $(\lambda_n)_{n\geq 1}$ given in the theorem, corresponding to the element ω . With our notations and according to (14), we observe that this definition can be translated into the following formulas

(15)
$$\lambda_1 = 1$$
 and $\lambda_n = \epsilon_{n-1}^* \lambda_{n-1}$ for $2 \le n < f(N)$.

Consequently, to complete the proof, we need to establish that $N=\infty$ and that (15) holds. The recurrence relation binding the sequences δ and λ , introduced in Proposition 4, can be written as

(16)
$$\delta_n + \lambda_n = -\epsilon_{n-1}^* (\delta_{n-1} + \lambda_{n-1}) + \epsilon_{n-1}^* \lambda_{n-1} - \lambda_n$$
 for $2 \le n \le N$.

Comparing (15) and (16), we see that $\delta_n + \lambda_n = 0$, for $n \geq 1$, will imply that δ_n never vanishes, i.e. $N = \infty$, and that the sequence $(\lambda_n)_{n\geq 1}$ is the one which is described in the theorem. So we only need to prove that $\delta = -\lambda$. Since β and ω have the same first partial quotients, (15) holds for $2 \leq n \leq l$. Since $\delta_1 = \lambda_1 + \epsilon' = -1 = -\lambda_1$, combining (15) and (16), we obtain $\delta_n = -\lambda_n$ for $1 \leq n \leq l$. We also have, by Proposition 4, $\lambda_{l+1} = \lambda_{f(1)} = \epsilon \lambda_1 = (-1)^m = \lambda_l$, and therefore we get $\delta_{l+1} = \lambda_{l+1} - \epsilon_l^* \delta_l = \lambda_{l+1} + \lambda_l = -\lambda_{l+1}$. By induction, we shall now prove that $\delta_t = -\lambda_t$ for t = f(n) + 1, f(n) + 2 and f(n+1) with $n \geq 1$. From (11) and (12), we have $\epsilon_{f(n)}^* = \epsilon_{f(n)+2}^* = 1$ and $\epsilon_{f(n)+1}^* = \epsilon_n^*$. Thus

we get, using Proposition 4:

$$\begin{split} \delta_{f(n)+1} &= \lambda_{f(n)+1} - \epsilon_{f(n)}^* \delta_{f(n)} = \lambda_{f(n)+1} + \lambda_{f(n)} = -\epsilon \delta_n + \epsilon \lambda_n = -\lambda_{f(n)+1}.\\ \delta_{f(n)+2} &= \lambda_{f(n)+2} - \epsilon_{f(n)+1}^* \delta_{f(n)+1} = \lambda_{f(n)+2} + \epsilon_n^* \lambda_{f(n)+1} = -\lambda_{f(n)+2}.\\ \delta_{f(n+1)} &= \lambda_{f(n+1)} - \epsilon_{f(n)+2}^* \delta_{f(n)+2} = \epsilon \lambda_{n+1} + \lambda_{f(n)+2} = \epsilon (\lambda_{n+1} - \epsilon_n^* \delta_n)\\ &= \epsilon \delta_{n+1} = -\epsilon \lambda_{n+1} = -\lambda_{f(n+1)}. \end{split}$$

So the proof of the theorem is complete.

References

- [BS] L. Baum and M. Sweet, Continued fractions of algebraic power series in characteristic 2, Annals of Mathematics 103 (1976), 593–610.
- [L1] A. Lasjaunias, Quartic power series in $\mathbb{F}_3((T^{-1}))$ with bounded partial quotients, Acta Arithmetica **95.1** (2000), 49-59.
- [L2] A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite field, Finite Fields and their Applications 14 (2008), 329-350.
- [MR] W. Mills and D. Robbins, Continued fractions for certain algebraic power series, Journal of Number Theory 23 (1986), 388–404.
- [S] W. Schmidt, On continued fractions and diophantine approximation in power series fields, Acta Arithmetica 95.2 (2000), 139-166.
- [T] D. Thakur, Function Field Arithmetic, World Scientific, 2004.
 - (*) UNIVERSIDAD DE CANTABRIA, 39005 SANTANDER, SPAIN *E-mail address*: domingo.gomez@unican.es *URL*: http://personales.unican.es/gomezd
 - (**) UNIVERSITÉ BORDEAUX 1, C.N.R.S.-UMR 5251, 33405 TALENCE, FRANCE $E\text{-}mail\ address$: Alain.Lasjaunias@math.u-bordeaux1.fr URL: http://www.math.u-bordeaux1.fr/~lasjauni/