HYPERQUADRATIC POWER SERIES IN F;((T1))
WITH PARTIAL QUOTIENTS OF DEGREE 1
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ABSTRACT. In this note we describe a large family of nonquadratic
continued fractions in the field F3((7 1)) of power series over the fi-
nite field F3. These continued fractions are remarkable for two rea-
sons : they satisfy an algebraic equation with coefficient in F3[T7,
explicitly given, and all the partial quotients in the expansion are
polynomials of degree 1. In 1986, in a basic article in this area
of research [MR], Mills and Robbins gave the first example of an
element belonging to this family.

1. INTRODUCTION

We are concerned with power series in 1/7" over a finite field, where 7'
is an indeterminate. If the base field is F,, the finite field of character-
istic p with ¢ elements, these power series belong to the field F, (7)),
which will be here denoted by F(g). Thus a nonzero element of F(q) is
represented by

o= Z wT®  where ko € Z,uy, € F, and u, #0.
k<ko

An absolute value on this field is defined by |a| = |T'|* where |T'| > 1 is
a fixed real number. We also denote by F(g)™ the subset of power series
a such that || > 1. We know that each irrational element o € F(q)*
can be expanded as an infinite continued fraction. This is denoted

a=lay,as,...,an,...] where a; € F [T] and deg(a;) > 0 for i > 1.

By truncating this expansion we obtain a rational element, called a
convergent to « and denoted by z,/y, for n > 1. The polynomials
(Zn)n>0 and (yn)n>0, called continuants, are both defined by the same
recursion formula: K, = a,K,_1 + K,,_o for n > 2, with the initial
conditions xg = 1 and x; = a4 or yp = 0 and y; = 1. The polynomials
a; are called the partial quotients of the expansion. For n > 1, we
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denote a1 = [@ny1, Gnyo, - .., called the complete quotient, and we
have

o = [ala ag, ..., 0y, an+1] - (xnan-l—l + xn—l)/<ynan+1 + yn—l)-

The reader may consult [S] for a general account on continued fractions
in power series fields and also [T} for a wider presentation of diophantine
approximation in function fields and more references.

In 1986 [MR], Mills and Robbins, developing the pioneer work by
Baum and Sweet [BS], introduced a particular subset of algebraic
power series. These power series are irrational elements o € F(q) sat-
isfying an equation a = f(a”) where r is a power of the characteristic
p of the base field and f is a linear fractional transformation with in-
teger (polynomials in F[T]) coefficients. The subset of such elements
is denoted by H.,.(¢) and its elements are called hyperquadratic.

Throughout this note the base field is F3, i.e. ¢ = 3. We are con-
cerned with elements in Hj3(3) which are not quadratic and have all
partial quotients of degree 1 in their continued fraction expansion. A
first example of such power series appeared in [MR, p. 401-402].

2. RESuULTS

In [L1] the second named author of this note investigated the exis-
tence of elements in Hj3(3) with all partial quotients of degree 1. The
theorem which we present here is an extended version of the one pre-
sented there [L1]. However the proof given here is based on a different
method. This method used to obtain other continued fraction expan-
sions of hyperquadratic power series was developed in [L2]. We have
the following;:

Theorem 1. Let m € N*, . = (n1,m2,...,mm) € (F5)™ where n,, =
(=)™ and k= (ky, ko, ..., kn) € N™ where ky > 2 and ki —k; > 2
fori=1,....,m — 1. We define the following integers,

tin=Fhkn(3"—1)/2+ k3" for 1<i<m and n>0.

We observe that we have t;,, < tis1, for all (i,n) and t,,, < t1,4+1.
Also t;n, # tjw + 1. Accordingly, we can define two sequences (A)i>1
and (pt)e>1 in Fs. Forn >0, we have

1 Zf 1 S t S tl,O)

A=1Q (=)™, <t <ti1, forl<i<m,
(=1)meH+D Gt <t <t
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Also pp =1 and forn>0,1<i<m andt>1

(=)t g, it =t ort =t + 1,
He = 0 otherwise.

Let w(m,n, k) € F(3) be defined by the infinite continued fraction ex-
Pansion

w(m,n, k) =lai,as,...,a,,...] where a,=NT4p, forn>1.

We consider the two usual sequences (Ty,)n>1 and (Yn)n>1 as being the
numerators and denominators of the convergents to w(m,n, k).
Then w(m,mn, k) is the unique root in F(3)T of the quartic equation
o CL‘ZX?’ + (—1)m715L‘Z_3
Y X3+ (1) ly 5’

where l =1+ k,,.

Remark. The case m =1 and thus m = (1), k= (k1), of this theorem
is proved in [L1]. The case m = 2, n = (=1,—1) and k = (3,6)
corresponds to the example introduced by Mills and Robbins [MR].

The generality of this theorem is underlined by the following conjec-
ture, based on extensive computer checking.

Conjecture. Let a € H3(3) be an element which is not quadratic;
then « has all its partial quotients of degree 1, except for the first ones,
if and only if there exist a linear fractional transformation f, with
coefficients in F3[T| and determinant in F} | a triple (m,n,k) and a
pair (A, 1) € Fi x F3 such that o(T) = f(w(m,n,k)(A\T + u)).

3. PROOFS

The proof of the theorem stated above will be divided into three

steps.

e Flirst step of the proof: According to [L2, Theorem 1, p. 332|, there
exists a unique infinite continued fraction 5 = [ay, ..., a;, Bi4+1] € F(3),
satisfying

B = (—D)™T*+ 1)1 +T+1 and a; = NT 4, for 1 <i <1,

where \;, u; are the elements defined in the theorem. We know that
this element is hyperquadratic and that it is the unique root in F(3)*
of the algebraic equation X = (;X? + B)/(y,X? + D) where

B = (—1)™(T*4+1)z;-1—(T4+1)z; and D = (=1)™(T*+1)y,_1—(T+1)y,.
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We need to transform B and D. Using the recursive formulas for the
continuants, we can write

(1) Kl_g = (alal_l + 1)Kl_1 - al_lKl.

The [ first partial quotients of § are given, from the hypothesis of the
theorem, and we have

2)  aqa=C)"YT+1) and a=(-1)"""(-T+1).
Combining (1), applied to both sequences x and y, and (2), we get
B=(-1)""'z.3 and D= (-1)""1y_s.

Hence we see that 5 is the unique root in F(3)™ of the quartic equation
stated in the theorem.

e Second step of the proof: In this section [ > 1 is a given integer.
We consider all the infinite continued fractions a € F(3) defined by
a =[ay,...,a;, 1] where a;1 € F(3) and

(3) a; = )\ZT + [ with ()\Z, Mz) S Fg X Fg, for 1 <1< [ and
(4) o® =e(T* + Va1 + €T +vy  with (e,€, 1) € Fi x Fj x Fs.
See [L2, Theorem 1, p. 332], for the existence and unicity of o € F(3)
defined by the above relations. Our aim is to show that these contin-
ued fraction expansions can be explicitly described, under particular

conditions on the parameters (\;, p;)1<i<; and (e, €, v). Following the
same method as in [L2], we first prove:

Lemma 2. Let (A, ¢,¢) € (F5)3 andv € F3. We set U = XT3 —€'T+v,
and V =€(T? +1). We set § = X+ € and we assume that § # 0. We
define € =1 if v = 0 and ¢ = —1 if v # 0. Then the continued
fraction expansion for U/V is given by

UV = [eAT, —e(0T + v), —€(e"0T + v)].
Moreover, setting U/V = [uy, us, us], then for X € F(3) we have

X (6T + v)

[U/V, X] = [Ul,UQ,Ug, (T2 + 1)2 T2 +1 ]

Proof. Since €2 = 1 and 6% = 1, we can write
(5) U=e TV —6T+v and V =e(6T +v)(0T —v) + e(1+ v?).
Clearly (5) implies the following continued fraction expansion

(6) UV = [eAT, —e(6T + v), e(1 + v*) (=0T +v)].
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Finally, observing that €(1+ v?) = €*¢ and e*erv = —ev, we see that (6)
is the expansion stated in the lemma. The last formula is obtained
from [L2, Lemma 3.1 p. 336]. According to this lemma, we have

UV, X] = [uy,ug,us, X']  where X' = X (ugus+1)"?—ug(ugus+1)"".

We check that upus = T? if v = 0 and usus = v*—T? if v # 0, therefore
we have usuz +1 = ¢*(T?+1) and this implies the desired equality. [

We shall prove now a second lemma. In the sequel we define f(n) as
3n+1—2 for n > 1. We have the following:

Lemma 3. Let o = [ay,...,an,...] be an irrational element of F(3).
We assume that for an index n > 1 we have a, = N\,T + p, with
(Ans ttn) € F% x F3 and

o =e(T? + Dagmy + 20T 4+ vn—1  where  (€,2,,Vp1) € (F%)? x Fs.

We set vy, = iy, — V1 and €, =1 if v, =0 or e, = —1 if v, #0. We
set 0, = A+ 2pn, and 2,41 = —€.0,. We assume that 6, # 0. Then we
have:

(@fm)s Qg5 Ay +2) = (AT, —€(0,T + 1), —e(€r,0nT + 1))
and
O‘i+1 = e(T% + Daymsr) + 2ns1T + vy
Proof. We can write o = [a3, a2 \] = [\yT?+ 1, @ ,]. Consequently
o = e(T? + Dagmy + 20T + vpa
is equivalent to

(7) (AT + i — 20T = voa) /(e(T? + 1)), e(T* + Doy 1] = -

Now we apply Lemma 2 with U = A\, 7% — 2, T + v, and X = €(T? +
1)a3 ;. Consequently (7) can be written as

(8) (AT, —€(0,T + ), —€(€,0,T + 1), X' = vy
where
(9) X' = (ea .| +eci(6,T +vy))/(T? + 1).

Moreover we have |o}, ;| > |T?| and consequently |X’| > 1. Thus (8)
implies that the three partial quotients as(,), afm)+1 and afm)42 are as
stated in this lemma and also that we have X’ = a(,41). Combining
this last equality with (9), and observing that —€}v,, = v, we obtain
the result. U
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Applying Lemma 2, we see that for a continued fraction defined by
(3) and (4), the partial quotients, from the rank [ 4+ 1 onward, can be
given explicitly three by three, as long as the quantity d, is not zero.
This is taken up in the following proposition :

Proposition 4. Let o € F(3) be an infinite continued fraction expan-
sion defined by (3) and (4). Then there exists N € N*U{oo} satisfying
the following conditions.

1. For1 <n < f(N), we have a,, = N\, T+ p,, where (A, pi,) € Fi x Fs.
2. For1 <n < f(N), define v, =Y, ;e (=1)"“p; + (—=1)"1.

Then we have o

prmy =0 and  ppmys1 = Ppmy42 = —€vp  for 1 <n <N.

3. For1 <n < N, definee; =11ifv, =0 ore, =—11ifv, #0.
Let (0,)1<n<n be the sequence defined recursively by

hh=M+¢ and O,=N—¢€ 0,1 for 2<n<N.
Then, for 1 <n < N, we have
/\f(n) = 6)\,“ /\f(n)+1 = —6(5n and /\f(n)+2 = —6625,1.

Proof. Starting from (4), since f(1) = [ + 1, setting ¢ = z; and ob-
serving that all the partial quotients are of degree 1, we can apply
repeatedly Lemma 3 as long as we have 6,, # 0. If 9,, happens to van-
ish, the process is stopped and we denote by N the first index such that
Oy = 0, otherwise N is co. The formula v,, = pu,, — v,,_1, implies clearly
the equality for v,,. From the formulas d,, = A\, + 2, and 2,41 = —€,0,
for n > 1, we obtain the recursive formulas for the sequence 9. Finally
the formulas concerning p and A are directly derived from the three
partial quotients ay(,), @fm)+1 and afm)42 given in Lemma 3. U

e Last step of the proof: We start from the element § € F(3), introduced
in the first step of the proof, defined by its [ first partial quotients,
where | = k,, + 1, and by (4) with (¢, €, 1) = ((—1)™,1,1). According
to the first step of the proof, we need to show that 5 = w(m,n,k).
To do so, we apply Proposition 4 to 3, and we show that N = co and
that the resulting sequences (\,),>1 and ({4, ),>1 are the one which are
described in the theorem.

From the definition of the I-tuple (uq,..., ) and v, = 1, we obtain
(10)
vw=mn if t=t, and 1 =0 otherwise, for 1<¢<L

Since Hfn)+1 = Hfn)+2, we have Vim)+2 = Vf(n)- Since Hfm)y = O,
we also have vy = —Vpm)—1 = —Vymn-1)42. This implies vy =
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(=1)"wp1y4e. Since vyayye = Vay = —Viay-1 = — = 0, we obtain
(11) Vim) = Vimy42 =0 for 1 <n <N.

Moreover, from vymyt1 = fifm)+1 — Viw) and (11), we also get
(12) Vimy1 = —€vp for 1 <n <N.

Now, it is easy to check that we have f(¢;,) +1 = t;,,41. Since € =
(=1)™, (12) implies vy, , = (=1)™*'w,, _, if t;,, < f(N). By induction
from (10), with (11) and (12), we obtain

(13)

Vi, = (=)™ and v, =01if t £ty for 1<t < f(N).
Since we have p, = v, + v,_1, from (11) and vy = 1, we see that
iy, satisfies the formulas given in the theorem, for 1 < n < f(N).
Moreover, (13) implies clearly the following:

(14) e — { R e )
1 otherwise

Now we turn to the definition of the sequence (A,)n>1 given in the

theorem, corresponding to the element w. With our notations and

according to (14), we observe that this definition can be translated

into the following formulas

(15) AM=1 and X\, =¢,

n—1

A1 for  2<n< f(N).

Consequently, to complete the proof, we need to establish that N = oo
and that (15) holds. The recurrence relation binding the sequences d
and A , introduced in Proposition 4, can be written as

(16) 0p+Ay = —€5 1 (On—1+Ap1)F+€n 1 Apm1—A,  for 2<n < N.

Comparing (15) and (16), we see that 9, + A, = 0, for n > 1, will imply
that d,, never vanishes, i.e. N = oo, and that the sequence (\,),>1 is
the one which is described in the theorem. So we only need to prove
that § = —\. Since 5 and w have the same first partial quotients, (15)
holds for 2 < n < [. Since 61 = A\ +€¢ = —1 = —\;, combining
(15) and (16), we obtain §,, = —\, for 1 < n < [. We also have, by
Proposition 4, A1 = Ajq) = €A = (=1)™ = X;, and therefore we get
di41 = Nig1 — €0, = Nig1 + A = —Ai41. By induction, we shall now
prove that §; = —\; for t = f(n)+ 1, f(n) +2 anf f(n+1) with n > 1.
From (11) and (12), we have €},) = €}(,y,o = 1 and €}, = €;,. Thus
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we get, using Proposition 4 :

Of(n)+1 = Af(n)+1 = €Epm)0f(n) = Afm)+1 + Apn) = —€0n + €Ay = =Apm)41-
Of(n)+2 = Af(m)+2 = Efm)+10f(m)+1 = Afm)+2 T €A fm)+1 = —Afm)+2-
5f(n+1) = )\f(n+1) - 6;(71)+25f(n)+2 = €e\py1 + )‘f(n)+2 = €(>\n+1 - 67*1571)

- 6(SnJrl = _6)\n+1 = _)\f(n—i-l)-

So the proof of the theorem is complete.
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