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Abstract

The generalizedMarcum functionsQµ(x, y) and Pµ(x, y) have as particular cases
the non-central χ2 and gamma cumulative distributions, which become central
distributions (incomplete gamma function ratios) when the non-centrality pa-
rameter x is set to zero. We analyze monotonicity and convexity properties for
the generalized Marcum functions and for ratios of Marcum functions of consec-
utive parameters (differing in one unity) and we obtain upper and lower bounds
for the Marcum functions. These bounds are proven to be sharper than previous
estimations for a wide range of the parameters. Additionally we show how to
build convergent sequences of upper and lower bounds. The particularization to
incomplete gamma functions, together with some additional bounds obtained for
this particular case, lead to combined bounds which improve previously exiting
inequalities.

Keywords: Generalized Marcum function, cumulative chi-square and gamma
distributions, bounds, monotonicity, convexity.
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1. Introduction and definitions

Generalized Marcum functions are defined as

Qµ(x, y) = x
1
2
(1−µ)

∫ +∞

y

t
1
2
(µ−1)e−t−xIµ−1

(
2
√
xt
)
dt, (1)

where µ > 0 and Iµ(z) is the modified Bessel function [10, 10.25.2]. The gener-
alized Marcum Q-function is an important function used in radar detection and
communications. They also occur in statistics and probability theory, where
they are called non-central chi-square or non central gamma cumulative distri-
butions (see [5] and references cited therein).
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The complementary function is,

Pµ(x, y) = x
1
2
(1−µ)

∫ y

0

t
1
2
(µ−1)e−t−xIµ−1

(
2
√
xt
)
dt, (2)

and for µ > 0 and x, y ≥ 0 we have

Pµ(x, y) +Qµ(x, y) = 1. (3)

The central chi-square or gamma cumulative distributions P (a, y) andQ(a, y)
are a particular case of the non-central distributions with non-centrality param-
eter x equal to zero: P (a, y) = Pa(0, y), Q(a, y) = Pa(0, y). These are functions
related to the incomplete gamma function ratios

P (a, y) =
1

Γ(a)
γ(a, y), Q(a, y) =

1

Γ(a)
Γ(a, y), (4)

where

γ(a, y) =

∫ y

0

ta−1e−t dt, Γ(a, y) =

∫
∞

y

ta−1e−t dt. (5)

There are other notations for the generalized Marcum function in the liter-
ature. Among them, probably the most popular is the following

Q̃µ(α, β) = α1−µ

∫ +∞

β

tµe−(t2+α2)/2Iµ−1(αt)dt, (6)

where we have added a tilde in the definition to distinguish it from the definition
we are using (1). For µ = 1 this coincides with the original definition of the
Marcum Q-function [8]. The relation with the notation we use is simple:

Qµ(x, y) = Q̃µ(
√
2x,
√
2y), (7)

and similarly for the P function.
Our notation for the P and Q functions is directly related to the χ2 cumu-

lative distribution function P(x; k, λ) by the relation

P(x; k, λ) = Pk/2(λ/2, x/2). (8)

In the χ2 cumulative distribution, integer values of k appear. We consider the
more general case of real positive k, in which case the distributions Q and P
are also called noncentral gamma distributions.

In this paper we study monotonicity and convexity properties for the cumu-
lative distribution functions defined by (2) and (3), and for ratios of functions
of consecutive orders, as well as bounds these functions.

We start by summarizing some basic properties of Pµ(x, y) and Qµ(x, y),
including monotonicity and convexity (section 2). Then, in section 3, mono-
tonicity properties and bounds for the ratios of functions of consecutive orders
Pµ+1(x, y)/Pµ(x, y) andQµ+1(x, y)/Qµ(x, y) are obtained, which lead to bounds
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for Pµ(x, y) and Qµ(x, y) in terms of two modified Bessel functions of consecu-
tive orders. It is also discussed how to obtain convergent sequences of upper and
lower bounds. Particularizing for x = 0 we obtain bounds for the central case;
additional bounds for the central case are also obtained from new monotonic-
ity properties for the incomplete gamma function ratios (section 4). Finally, in
section 5 we compare our new bounds with previous bounds and we conclude
that the new bounds for the noncentral distributions improve previous results
(of similar complexity) for a wide range of the parameters, and that combined
bounds in the central case improve previous existing bounds in the full range of
parameters.

2. Basic properties

Considering integration by parts together with the relation zµIµ−1(z) =
d
dz (z

µIµ(z)) we get

Qµ+1(x, y) = Qµ(x, y) +
( y
x

)µ/2
e−x−yIµ(2

√
xy),

Pµ+1(x, y) = Pµ(x, y)−
(y
x

)µ/2
e−x−yIµ(2

√
xy),

(9)

where the relation for Q holds for all real µ while for P it only holds for µ > 0.
From this, we can obtain the following recurrence

yµ+1 − (1 + cµ)yµ + cµyµ−1 = 0, cµ =

√
y

x

Iµ (2
√
xy)

Iµ−1 (2
√
xy)

, (10)

satisfied both by Qµ(x, y) and Pµ(x, y).
From [10, 10.41.1] we see that cµ = O(µ−1) as µ → +∞; Perron-Kreuser

theorem [4, Theorem 4.5] guarantees that the recurrence has a minimal solution
such that yµ+1/yµ ∼ cµ as µ → +∞. This corresponds with the Pµ(x, y)
function. The dominant solutions of the recurrence are such that yµ+1/yµ ∼ 1,
and this corresponds to the case of the Qµ(x, y) function. Therefore

lim
µ→+∞

1

cµ(x, y)

Pµ(x, y)

Pµ−1(x, y)
= 1, lim

µ→+∞

Qµ(x, y)

Qµ−1(x, y)
= 1. (11)

Later we will prove that Pµ/Pµ−1(x, y) < cµ(x, y) ≤ µ/y and Pµ/Pµ−1(x, y) <
1.

Applying n times the backward recurrence for the P -function (9) we have

Pµ(x, y) = Pµ+n+1(x, y) +

n∑

k=0

Fµ+n(x, y), µ > 0, (12)

where

Fµ(x, y) =
( y
x

)µ/2
e−x−yIµ(2

√
xy). (13)
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And because Pµ(x, y) → 0 as µ → +∞,

Pµ(x, y) =
∞∑

k=0

Fµ+k(x, y) = e−x−y
∞∑

k=0

(y
x

)µ+k
2

Iµ+k(2
√
xy). (14)

Taking the derivative with respect to y in (1) and using (9) we have

∂Qµ(x, y)

∂y
= Qµ−1(x, y)−Qµ(x, y). (15)

Taking the derivative with respect to x, and using the relation I ′ν(z) =
Iν+1(z) +

ν
z Iν(z), we obtain

∂Qµ(x, y)

∂x
= Qµ+1(x, y)−Qµ(x, y) = −∂Qµ+1(x, y)

∂y
. (16)

The same relations hold for the P -functions.
Using (9) we see that Qµ(x, y) (Pµ(x, y)) is an increasing (decreasing) func-

tion of x and a decreasing (increasing) function of y. With respect to µ, Qµ(x, y)
is increasing and Pµ(x, y) is decreasing [17].

We have the following particular values

Qµ(x, 0) = 1, Qµ(x,+∞) = 0,

Qµ(0, y) = Qµ(y), Qµ(+∞, y) = 1,

Q+∞(x, y) = 1,

(17)

and similar complementary relations for Pµ(x, y).
Usually, we will consider Marcum functions Qµ(x, y) and Pµ(x, y) for positive

µ, where both functions are positive and (3) holds. However, in order to extend
the validity for some of the bounds we will obtain for the Q-function, it will be
convenient to consider smaller values of µ. The Q-function defined in Eq. (1)
is continuous for any real value of µ; the same is not true for Pµ(x, y) which is
only defined for µ ≥ 0 and is discontinuous from the right at µ = 0. It is easy
to show that, using the definition of the Q and P functions and [3, 4.16 (16)]

Q0(x, y) + P0(x, y) = 1− e−x,

and (3) does not hold because of the discontinuity of Pµ(x, y) at µ = 0. Also, the
recurrence (9) does not hold for µ = 0; instead, we have P1(x, y) = P0(x, y) −
F0(x, y) + e−x.

For negative µ, Qµ(x, y) satisfies the same recurrence relations as for positive
µ and the series in terms of incomplete gamma functions (obtained by using the
Frobenius series for Iµ−1(z) in the definition (1)) also holds, namely:

Qµ(x, y) = e−x
∞∑

k=0

xk

k!
Qµ+k(y). (18)
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We observe that [10, 10.27.2]

I−ν(z) = Iν(z) +
2

π
sin νπKν(z)

implies that Qµ(x, y) > 0 if µ ∈ [−2k,−2k+1], k ∈ N, but that Qµ(x, y) can be
negative for other negative values of µ, and particularly when x is small enough;
indeed Qµ(0, y) = Qµ(y) < 0 for these values of µ because Qµ(y) = Γ(µ, y)/Γ(µ)
and Γ(µ) < 0. However, for sufficiently large x, Qµ(x, y) becomes positive. In
particular, we have the following:

Proposition 1. Let µ0 ∈ (−1, 0) and y > 0, if

x ≥ yµ0e−y/Γ(µ0 + 1, y)− 1 (19)

then Qµ0
(x, y) > 0.

Proof. Using Eq. (18), we see that Qµ0
(x, y) > 0 if Qµ0

(y) + xQµ0+1(y) > 0
(because Qµ0+k(y) > 0, k = 2, 3, . . .). Then, considering the recurrence (9) for
x = 0 (Fµ(0, y) = yµe−y/Γ(µ+ 1)) the result is proved.

Using an inequality we will prove later (Eq. (88)), we have:

Corollary 1. Let y > 0 and µ0 ∈ (−1, 0), if

x ≥ Lµ0
(y) =

√
(y − µ0 − 2)2 + 4y − y − µ0

2y

then Qµ(x, y) > 0 for all µ ≥ µ0.

Proof. Considering the bound (88) it is immediate to check that the condition
x ≥ Lµ0

(y) implies the condition (19) and therefore Qµ0
(x, y) > 0. But because

Lµ(y) is decreasing as a function of µ, then it is also true that x > Lµ(y) holds
for any µ ≥ µ0 and therefore Qµ(x, y) > 0 for all µ ≥ µ0.

Corollary 2. If µ ≥ −2 and xy ≥ 1 then Qµ(x, y) > 0.

Proof. For µ ∈ [−2,−1] we have Qµ(x, y) > 0 for any positive x and y, and if
x ≥ F−1(y) = 1/y then we have Qµ(x, y) > 0 for all µ > −1 (Corollary 1).

2.1. Convexity properties

Next we study the convexity properties of Marcum functions and, more
specifically, we bound the values of x and y for the inflection points. This is
important information for the construction of algorithms for the inversion of
Marcum functions [6].

Using (15), (16) and (9), we obtain

∂2Qµ(x, y)

∂x2 = (cµ+1(x, y)− 1)Fµ(x, y),

∂2Qµ(x, y)

∂y2
= (cµ−1(x, y)− 1)Fµ−2(x, y),

(20)
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with cµ(x, y) as defined in (10) and Fµ as in (13). Because Iµ(t) > 0 for t > 0
and µ ≥ −1 we have that Fµ(x, y) > 0 if x ≥ 0, y > 0, and µ ≥ −1 (the case
x → 0+ is easy to check using the limiting form [10, 10.30.1]); then, the sign of
the derivative ∂2Qµ(x, y)/∂x

2 is the same as the sign of cµ+1(x, y)−1 if µ ≥ −1
(and x ≥ 0, y > 0) while the sign of ∂2Qµ(x, y)/∂x

2 coincides with the sign of
cµ−1(x, y)− 1 if µ ≥ 1.

For analyzing the convexity properties, and also for analyzing the bounds
we will later obtain, Lemma 2 will be useful. For proving that result, we will
need to consider the following bounds:

Lemma 1.
t

fν(t)
<

Iν(t)

Iν−1(t)
<

t

fν−1(t)
, ν ≥ 0, (21)

where
fλ(t) = (λ+

√
λ2 + x2)−1. (22)

For ν ≥ 1/2 a sharper upper bound is

Iν(t)

Iν−1(t)
<

t

fν−1/2(t)
. (23)

Proof. The lower bound and the second upper bound are known results (see for
instance [16, Corollary 3] and [16, Theorem 3] respectively).

The first upper bound is a consequence of [16, Theorem 4]. Starting with
the lower bound in (21) bν(x) = t/fν(t) an upper bound is given by

Iν(t)

Iν−1(t)
<

t

2ν + tbν+1(t)
=

t

ν − 1 +
√
(ν + 1)2 + t2

, ν ≥ 0. (24)

Obviously
√
(ν + 1)2 + t2 ≥

√
(ν − 1)2 + t2 if ν ≥ 0, which proves the result.

Lemma 2. The function cµ(x, y) =

√
y

x

Iµ (2
√
xy)

Iµ−1 (2
√
xy)

, x, y > 0, µ ≥ 0, is

increasing as a function of y, decreasing as a function of x and decreasing as a
function of µ. Specific values are:

cµ(0
+, y) = y/µ, cµ(+∞, y) = 0,

cµ(x, 0
+) = 0, cµ(x,+∞) = +∞,

c+∞(x, y) = 0.
(25)

In addition, we have that

cµ(x, y) > 1 if y > x+ µ, µ ≥ 0,
cµ(x, y) < 1 if y < x+ µ− 1/2, µ ≥ 1/2,
cµ(x, y) < 1 if y < x+ µ− 1, µ ≥ 0.

(26)
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Proof. The particular values (25) are straightforward to verify by using well
known limiting forms [10, 10.30].

Fro proving monotonicity with respect to x and y it will be useful to consider
the Riccati equation satisfied by gµ(t) = Iµ(t)/Iµ−1(t). It is easy to check that
(see [16, Eq. (11)]):

g′µ(t) = 1− 2µ− 1

t
gµ(t)− gµ(t)

2. (27)

The monotonicity with respect to x > 0 of cµ(x, y) is equivalent to the
monotonicity of hµ(t) = gµ(t)/t as a function of t > 0 for µ ≥ 0. From (27) we
have th′

µ(t) = 1− 2µgµ(t)/t− gµ(t)
2; and because gµ(t) > t/fµ(t), t > 0, µ ≥ 0

(Lemma 1) (see also [7]) the Riccati equation for hµ(t) implies that h′

µ(t) < 0,
t > 0. This proves that cµ(x, y) is decreasing as a function of x > 0.

The fact that cµ(x, y) is increasing as a function of y is equivalent to the
fact that pµ(t) = tgµ(t) is increasing as a function of t > 0 for µ ≥ 0. From
(27) we have p′µ(t) = t

[
1− 2(µ− 1)gµ(t)/t− gµ(t)

2
]
; and because 0 < gµ(t) <

t/fµ−1(t), t > 0, µ ≥ 0 (Lemma 1), using this Riccati equation we see that
p′µ(t) > 0, µ ≥ 0, which implies that cµ(x, y) is increasing as a function of
y > 0.

The monotonicity with respect to µ follows from the monotonicity of gµ(t) =
Iµ(t)/Iµ−1(t) with respect to µ. To prove that this ratio is decreasing we take
into account that gµ(0

+) > gµ′(0+) if µ < µ′ (see (25)) and we prove that
this implies, on account of (27), that gµ(t) > gµ′(t) for all t > 0. We suppose
the contrary and we arrive at a contradiction: let tc be the smallest positive
value such that g(tc) = gµ(tc) = gµ′(tc); because gµ(t) > gµ′(t) if t < tc then
g′µ(tc) < g′µ′(tc); but considering (27) we have

g′µ′(tc) = 1− 2µ′ − 1

tc
g(tc)− g(tc)

2 < 1− 2µ− 1

tc
g(tc)− g(tc)

2 = g′µ(tc),

and there is a contradiction. 1

For proving the inequalities, we write the equation cµ(x, y) = 1 as

Dµ(x, y) = 0, Dµ(x, y) =
1

z

Iµ(z)

Iµ−1(z)
− 1

2y
= 0. (28)

Now, we consider the bounds (21); we can write for µ ≥ 0:

fµ(z)−
1

2y
< Dµ(x, y) < fµ−1(z)−

1

2y
, fν(z) = (ν +

√
ν2 + z2)−1. (29)

1In other words, the proof of monotonicity with respect to µ follows from the fact that
gµ(0+) < gµ′(0+) if µ > µ′ and that, for a fixed value of gν(t),

∂

∂ν
(g′ν(t)) = −

2

t
gν(t),

where we have derived the Riccati equation but taking gν(t) fixed (not depending on ν).
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Because fν(z) is decreasing as a function of ν and continuous, there exist only

one value µ∗ such that 1
2y = fµ∗(z); this value is µ∗ = y − x. Therefore

fµ(z) − 1
2y > 0 if µ < µ∗ and fµ−1(z) − 1

2y < 0 if µ − 1 > µ∗, which implies

that cµ(x, y) > 1 (Dµ(x, y) > 0) if y > x + µ and cµ(x, y) < 1 if y < x+ µ− 1,
µ ≥ 0. If in (29) we use the upper bound (23) instead, we get that cµ(x, y) < 1
if y < x+ µ− 1/2 when µ ≥ 1/2.

Lemma 2 is key to prove the convexity properties and it will be also impor-
tant in the derivation of bounds. The monotonicity of cµ(x, y) with respect to
x and y is mentioned without proof in [15], where the first two inequalities of
(26) are also proved in a different way.

Now we prove the following result

Theorem 1. The following convexity properties with respect to x hold for µ ≥ 0:

∂2Qµ(x, y)

∂x2 ≤ 0 if 0 < y ≤ µ+ 1, x ≥ 0, (30)

where the equality only takes place for x = 0, y = µ+ 1.

∂2Qµ(x, y)

∂x2 < 0 if x > y − µ− 1
2 ,

∂2Qµ(x, y)

∂x2 > 0 if x < y − µ− 1.

(31)

Proof. Because we have cµ+1(0, y) = y/(µ + 1) and cµ+1(x, y) decreases as a
function of x, if y < µ + 1 we have cµ+1(x, y) < 1 for all x ≥ 0. This implies
Eq. (30).

For y > µ + 1 there is necessarily an inflection point with respect to x and
only one (because cµ+1 is monotonic) and Lemma 2 gives information on the
location of the inflexion point that leads to Eq. (31).

With respect to y we have the following result:

Theorem 2. The following convexity properties with respect to y hold for µ ≥ 1:

∂2Qµ(x, y)

∂y2
> 0 if y > x+ µ− 1,

∂2Qµ(x, y)

∂y2
< 0 if y < x+ µ− 2.

(32)

If µ ≥ 3/2 the range of the last inequality can be improved

∂2Qµ(x, y)

∂y2
< 0 if y < x+ µ− 3/2. (33)
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Observe that for µ ≥ 1 there is always one and only one inflection point with
respect to y because cµ−1(x, y) is monotonically increasing as a function of y and
cµ−1(x, 0) = 0, cµ−1(x,+∞) = +∞ if µ ≥ 1. Contrarily, for µ < 1 this analysis
can not be made, because the monotonicity properties of cµ−1(x, y) may not
hold and, additionally, the sign of the second derivative is not determined by
the sign of cµ−1(x, y) − 1. There are cases for which ∂2Qµ(x, y)/∂y

2 changes
sign twice when µ ∈ (0, 1).

3. Non-central distributions: monotonicity and bounds

Next we obtain monotonicity properties for the ratios Pµ+1/Pµ andQµ+1/Qµ

and bounds for these ratios which, taking into account (9), will give bounds for
Pµ and Qµ.

Remark 1. In the following, except explicitly stated otherwise, we will assume
that in all the expressions involving Pµ(x, y) or Qµ(x, y) we have x ≥ 0, y > 0
and µ > 0; µ = 0 will be also allowed for Qµ(x, y).

First, we observe that Pµ+1(x, y)/Pµ(x, y) < Qµ+1(x, y)/Qµ(x, y) because,
using (3), this is equivalent to Qµ(x, y)−Qµ+1(x, y) < 0 which holds on account
of the recurrence (9).

We will prove that both ratios are increasing as a function of y and decreasing
as functions of x and µ. Also, we derive upper and lower bounds for these ratios.

3.1. The ratio Pµ+1/Pµ

Theorem 3. The following bound holds

Pµ+1(x, y)/Pµ(x, y) < cµ+1(x, y). (34)

Proof. Using the series (14) we have

Pµ+1(x, y)

Pµ(x, y)
= cµ+1(x, y)

1 +

∞∑

j=1

(
j∏

i=1

cµ+i+1

)

1 +

∞∑

j=1

(
j∏

i=1

cµ+i

) , (35)

but cν > cν+1 for ν ≥ 0 (Lemma 2) and then Eq. (35) proves the result.

Because Pµ+1(x, y) < Pµ(x, y) (see (9)) we also have that

Corollary 3.
Pµ+1(x, y)

Pµ(x, y)
< min{1, cµ+1(x, y)}. (36)
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Remark 2. The bound Pµ+1(x, y)/Pµ(x, y) < cµ+1(x, y) is sharp as x → +∞,
y → 0 and as µ → +∞. Indeed, Eq. (35) shows (considering the limiting forms
10.30.4, 10.30.1, 10.41.1 of [10]) that hµ(x, y) = Pµ+1(x, y)/Pµ(x, y) is such
that

lim
x→+∞

1

cµ+1(x, y)
hµ(x, y) = lim

y→0

1

cµ+1(x, y)
hµ(x, y) = lim

µ→+∞

1

cµ+1(x, y)
hµ(x, y) = 1.

The trivial bound Pµ+1(x, y)/Pµ(x, y) < 1 is sharp as y → +∞.

Theorem 4. The function hµ(x, y) = Pµ+1(x, y)/Pµ(x, y) is increasing as a
function of y and decreasing as a function of x and µ.

Proof. Considering Eqs. (10) and (15) for the P function we obtain

∂hµ

∂y
=

1

cµ
(hµ − 1)(hµ − cµ), (37)

and Corollary 3 proves that ∂hµ(x, y)/∂y > 0 because hµ < 1 and hµ < cµ+1 <
cµ.

Proceeding similarly with respect to x, we have, using (10) and (16),

∂hµ

∂x
= −(hµ − 1)(hµ − cµ+1) < 0,

which implies that ∂hµ/∂x < 0.
With regard to the monotonicity with respect to µ, the proof is similar to the

proof of the monotonicity of cµ with respect to µ (Lemma 2, see in particular
the footnote). Indeed, because for small y we have hµ(x, y) ≈ cµ+1(x, y) then
hµ(x, 0) < hµ′(x, 0) if µ > µ′ and in addition, for fixed hµ and taking the
derivative of (37), we have

∂

∂µ
h′

µ = hµ(hµ − 1)
∂

∂µ
c−1
µ < 0

(because 0 < hµ < 1 and ∂cµ/∂µ < 0). These two facts are enough to prove
that hµ is monotonically decreasing with respect to µ.

An immediate consequence of the monotonicity property with respect to µ
is the following Turán-type inequality

Corollary 4.

Pµ+1(x, y)
2 − Pµ(x, y)Pµ+2(x, y) > 0. (38)

The same inequality will hold for the Q-function and for the same reason.
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3.1.1. Convergent bounds for Pµ+1(x, y)/Pµ(x, y)

We observe that the argument used in the proof of Theorem 3 can be used
to obtain sharper bounds, as we next show.

Theorem 5.
n∑

k=0

Fµ+k+1

n+1∑

k=0

Fµ+k

= l(n)µ (x, y) <
Pµ+1(x, y)

Pµ(x, y)
< u(n)

µ (x, y) =

n∑

k=0

Fµ+k+1

n∑

k=0

Fµ+k

, (39)

for any n ≥ 0.

These are bounds converging to
Pµ+1(x, y)
Pµ(x, y)

as n → +∞. The bounds are

sharp as x → +∞, y → 0 and µ → +∞.

Proof. Considering (35) we have

Pµ+1(x, y)

Pµ(x, y)
= cµ+1(x, y)

An + 1 +
n∑

j=1

(
j∏

i=1

cµ+i+1

)

Bn + 1 +

n∑

j=1

(
j∏

i=1

cµ+i

) ,

where

An =

∞∑

j=n+1

(
j∏

i=1

cµ+i+1

)
< Bn =

∞∑

j=n+1

(
j∏

i=1

cµ+i

)

because cν is decreasing as a function of ν. Therefore

Pµ+1(x, y)

Pµ(x, y)
< cµ+1(x, y)

1 +

n∑

j=1

(
j∏

i=1

cµ+i+1

)

1 +

n∑

j=1

(
j∏

i=1

cµ+i

)

which gives the upper bound u
(n)
µ (x, y).

On the other hand, from (12) we have, denoting S =

∞∑

k=n+1

Fµ+k+1,

Pµ+1(x, y)

Pµ(x, y)
=

S +

n∑

k=0

Fµ+k+1

S +

n+1∑

k=0

Fµ+k

>

n∑

k=0

Fµ+k+1

n+1∑

k=0

Fµ+k

.

The convergence is immediate due to Eq. (35) and the sharpness is also
straightforward to verify.
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3.2. The ratio Qµ+1/Qµ

For the Q function, the equations for the derivatives and the monotonicity
properties remain the same. But the bounds are different; we obtain these
bounds as a consequence of monotonicity properties.

Theorem 6. The function Hµ(x, y) = Qµ+1(x, y)/Qµ(x, y) is increasing as a
function of y and decreasing as a function of x and µ. In addition

Hµ(x, y) > max{1, cµ(x, y)}. (40)

Proof. We prove the monotonicity with respect to y and the bounds; the rest
of properties are proved in the same way as we did for the P -function (theorem
4).

Same as for the P function, the ratio Hµ(x, y) = Qµ+1(x, y)/Qµ(x, y) satis-
fies the Riccati equation

∂Hµ(x, y)

∂y
=

1

cµ
(Hµ − 1)(Hµ − cµ) (41)

and we would have H ′

µ = 0, for Hµ equal to the characteristic roots 1 and
cµ(x, y). Because cµ(x, 0) = 0 and cµ(x,+∞) = +∞ and cµ is increasing as
a function of y (Lemma 2) there exists a value y0 such that cµ(x, y0) = 1 and
the curves Hµ = 1 and Hµ = cµ(x, y) divide the (y,Hµ)-plane in four different
zones. We prove now that the function of y Hµ(x, y) = Qµ(x, y)/Qµ−1(x, y) lies
in the region Hµ(x, y) > max{1, cµ(x, y)}.

From (9) we have that Hµ(x, y) > 1. For y > y0 (where cµ(x, y) > 1) two
different situations may occur: either Hµ(x, y) > cµ(x, y) for all y > y0 or there
exists y1 > y0 such that Hµ(x, y1) = cµ(x, y1). But this last situation can not
occur, as we next prove, which shows that Hµ(x, y) = cµ(x, y) for all y > y0
and then the bound (40) holds.

Observe that if such a value y1 existed, because cµ is increasing as a function
of y, for y > y0 the graph ofHµ would enter the region 1 < Hµ(x, y) < cµ(x, y1),
where ∂Hµ(x, y)/∂y < 0; but then we would have 1 < Hµ(x, y) < cµ(x, y1) for
all y > y1. But this is not the case, because Hµ(x, y) = Qµ+1(x, y)/Qµ(x, y) is
unbounded as y → +∞. Indeed, with the definition (1) and using L’Hôpital’s
rule (recall that Qµ(x,+∞) = 0) we have

lim
y→+∞

Qµ+1(x, y)

Qµ(x, y)
= lim

y→+∞

cµ(x, y) = +∞.

We observe that the inequality Hµ(x, y) > max{1, cµ(x, y)} together with
(41) proves that Hµ(x, y) is increasing as a function of y.

Remark 3. The bound Hµ(x, y) > cµ(x, y) is sharp for large y because using
asymptotic information [18] it is possible to check that

lim
y→+∞

Hµ(x, y)

cµ(x, y)
= 1. (42)

On the other hand, the bound Hµ(x, y) > 1 is sharp as µ → +∞ (see (11)).
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3.2.1. Bounds from the continued fraction

From the recurrence relation (10) we can write

Pµ+1(x, y)

Pµ(x, y)
=

cµ+1

1 + cµ+1 −
Pµ+2(x, y)

Pµ+1(x, y)

(43)

and because Pµ is a minimal solution of the three-term recurrence relation,
iterating (43) we obtain a convergent continued fraction. The successive ap-
proximants form a convergent sequence of lower bounds and

Pµ+1(x, y)

Pµ(x, y)
>

cµ+1

1 + cµ+1 −
cµ+2

1 + cµ+2 −
. . .

cµ+k+1

1 + cµ+k+1
, (44)

which is the same as the lower bound in Theorem 5. In particular, with the first
approximant we get

Pµ+1(x, y)

Pµ(x, y)
>

cµ+1

1 + cµ+1
. (45)

If the tail of the CF is substituted by an upper bound we obtain an upper
bound. Using Theorem 3, we get

Pµ+1(x, y)

Pµ(x, y)
<

cµ+1

1 + cµ+1 −
cµ+2

1 + cµ+2 −
. . .

cµ+k+1

1 + cµ+k+1 − cµ+k+2
, (46)

and in particular
Pµ+1(x, y)

Pµ(x, y)
<

cµ+1

1 + cµ+1 − cµ+2
. (47)

For Qµ, because it is dominant, the application of the recurrence in the forward
direction gives better bounds. We write

Qµ+1

Qµ
= 1 + cµ − cµ

1
Qµ

Qµ−1

. (48)

From this we see that, because cµQµ−1/Qµ > 0 if µ ≥ 1

Qµ+1

Qµ
< 1 + cµ, µ ≥ 1. (49)

We don’t consider further iterations.
The inequality (49) is valid for µ ≥ 0 if xy ≥ 1 (see Corollary 2).

3.3. Bounds for the functions Pµ and Qµ

Considering the inhomogeneous recurrence relations (9), the previous bounds
on ratios can be translated into bounds for the functions themselves.
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3.3.1. The P -function

We start with the function Pµ, and we consider a bound rµ such that

Pµ+1

Pµ
< rµ. (50)

For a lower bound all the subsequent inequalities will be reversed. In both cases,
we assume that rµ < 1.

Writing the recurrence relation (9) as Pµ+1 = Pµ − Fµ, we have Pµ − Fµ <
rµPµ and then

Pµ <
1

1− rµ
Fµ = b(1)µ , (51)

where Fµ given by (13). On the other hand Pµ+1 = Pµ − Fµ > Pµ+1/rµ − Fµ

and therefore
Pµ < rµ−1b

(1)
µ−1 = b(2)µ . (52)

Considering rµ = cµ+1 (Theorem 3) we have b
(2)
µ /b

(1)
µ = (1− cµ+1)(1 − cµ) > 1

and the second bound is worse. The first bound gives

Pµ <
1

1− cµ+1
Fµ, (53)

valid when cµ+1 < 1.
Considering now the lower bound with rµ = cµ+1/(1 + cµ+1) (Eq. (46)) we

have b
(2)
µ /b

(1)
µ = (1+cµ+1)

−1 < 1 and because we are dealing with lower bounds,
the first bound is preferable, which is

Pµ > (1 + cµ+1)Fµ. (54)

3.3.2. The Q-function

We consider
Qµ+1

Qµ
> rµ

and write the recurrence as Qµ+1 = Qµ + Fµ. Then Qµ + Fµ > rµQµ and

Qµ <
1

rµ − 1
Fµ = B(1)

µ , (55)

provided rµ > 1. On the other hand Qµ+1 < Qµ+1/rµ + Fµ and therefore

Qµ < rµ−1B
(1)
µ−1 = B(2)

µ (56)

Taking rµ = cµ,

B(2)

B(1)
=

1− c−1
µ

1− c−1
µ−1

< 1.
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Therefore the first bound is superior when it holds. This gives

Qµ <
1

1− c−1
µ−1

Fµ−1, µ ≥ 1, (57)

valid if cµ−1 > 1. The second bound, valid if cµ > 1, is

Qµ <
1

cµ − 1
Fµ, µ ≥ 0. (58)

Lower bounds can be obtained from (49). In this case

B(2)
µ

B(1)
µ

= 1 + c−1
µ > 1

and then the second bound will be sharper although the validity will be more
restricted. The first bound is

Qµ > c−1
µ Fµ = Fµ−1, µ ≥ 1 (59)

and the second
Qµ > (1 + c−1

µ−1)Fµ−1, µ ≥ 2 (60)

If xy ≥ 1 the validity of the last two inequalities can be extended by consid-
ering Corollary 2. Indeed, using the recurrence (9), Qµ(x, y) = Fµ−1(x, y) +
Qµ−1(x, y) > Fµ−1(x, y) (which is Eq. (59)) if µ ≥ −1 and Qµ(x, y) =
Fµ−1(x, y) + Fµ−2(x, y) + Qµ−2(x, y) > Fµ−1(x, y) + Fµ−2(x, y) (Eq. (60)) if
µ ≥ 0.

3.3.3. Combining the bounds

Some of the previous bounds had a limited range of validity, depending on
the value of cµ (smaller or larger than 1); an explicit region of validity in terms
of x, y and µ can be given using Lemma 2. Combining the results for the P
and Q functions we can write the following theorem summarizing such bounds.

Theorem 7. Let Fµ(x, y) be the probability density function such that Qµ+1(x, y) =∫ +∞

y
Fµ(x, t)dt and cµ(x, y) = Fµ(x, y)/Fµ−1(x, y) then the following bounds

hold:

1. Qµ > 1− Fµ

1− cµ+1
, µ > 0, y < x+ µ+ 1/2. (61)

2. Qµ <
Fµ

cµ − 1
, µ ≥ 0, y > x+ µ. (62)

3. Qµ <
Fµ−1

1− c−1
µ−1

, µ ≥ 1, y > x+ µ− 1. (63)

4. Qµ(x, y) < 1− (1 + cµ+1(x, y))Fµ(x, y), µ > 0. (64)
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5. Qµ(x, y) > Fµ−1, µ ≥ 1. (65)

6. Qµ(x, y) > (1 + c−1
µ−1)Fµ−1, µ ≥ 2. (66)

The bound (63) is superior to (62) when it holds.
The bound (66) is superior to (65) when it holds. If xy ≥ 1 (65) also holds

for µ ≥ −1 and (66) for µ ≥ 0.

As we will see, (61) and (64) become sharp as we move away from the
transition line y = x+ µ with y < x+ µ (when P is smaller than Q), while the
rest of bounds become sharper away from the transition line y = x+µ but with
y > x+ µ (when Q is smaller than P ).

We have only considered the most simple bounds involving two Bessel func-
tions at most (or a Bessel function and a ratio of Bessel functions, which is easy
to compute with a continued fraction), but improvements can be obtained par-
ticularly in the case of the P -function, for which convergent sequences of bounds
are available. For instance, considering Eq. (47) we obtain the following bound

Pµ(x, y) <

(
1 +

cµ+1

1− cµ+2

)
Fµ(x, y), y < x+ µ+ 3/2, (67)

and it is easy to show that it is sharper than the first bound of Theorem 7.2

In the next section we briefly describe some other types of convergent bounds
for the P -function.

3.3.4. Convergent sequences of bounds

Considering (12), sequences of bounds can be obtained as follows.

Proposition 2. If Bµ(x, y) is an upper (lower) bound for Pµ(x, y) then the
following are upper (lower) bounds for any n

B(n)
µ (x, y) = Bµ+n+1(x, y) + e−x−y

n∑

k=0

( y
x

)µ+k
2

Iµ+k(2
√
xy). (68)

If the bound Bµ(x, y) is such that Bµ(x, y) → 0 as µ → +∞ then {B(n)
µ (x, y)}

is a sequence of upper (lower) bounds converging to Pµ(x, y) as n → ∞.

We observe that the bounds (61) and (64) of Theorem 7 will give convergent
sequences when Proposition 2 is considered.

On the other hand, we already gave convergent sequences of upper bounds

for Pµ+1/Pµ and taking rµ = B
(n)
µ in (51) with B

(n)
µ given by u

(n)
µ of Theorem

5 we have:

2Although three Bessel functions appear in this bound, it is possible to write down the
bound in terms of two functions by using the three-term recurrence relation for Bessel functions
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Proposition 3. For n = 0, 1, . . . we have

Pµ(x, y) < U (n)
µ (x, y) =

n∑

k=0

Fµ+k

Fµ − Fµ+n+1
Fµ

if Fµ(x, y) > Fµ+n+1(x, y). The sequence of bounds is convergent as n → +∞.

Using the bound of Theorem 3 and applying Theorem (2) for this bound
and for Bµ+n+1(x, y) = 0 we have the following result:

Proposition 4.

n∑

k=0

Fµ+k < Pµ(x, y) <

n∑

k=0

Fµ+k + U
(q)
µ+n+1(x, y),

where the upper bound is valid provided that Fµ+n+1(x, y) > Fµ+n+q+2(x, y).

The lower bound of this theorem can also be obtained taking rµ = B
(n)
µ in

(51) with B
(n)
µ given by l

(n)
µ of Theorem 5.

Other sequences of convergent bounds can be obtained from the expression
of Marcum functions in series of incomplete gamma functions (see, for instance,
Eq. (7) of [5]). Truncating the series we have

e−x
n∑

k=0

xk

k!
Pµ+k(y) < Pµ(x, y) < 1− e−x

n∑

k=0

xk

k!
Qµ+k(y) (69)

and these bounds also converge to Pµ(x, y) as n → +∞. In [12], the bounds
for the particular case n = 2 are analyzed. After using the first order non-
homogeneous recurrence satisfied by the incomplete gamma function ratios (Eq.
(9) in the limit x → 0)

4. Central distributions

Taking the limit x → 0 we obtain as a consequence properties for the
incomplete gamma function ratios. Considering that cµ(0

+, y) = y/µ and
Fµ(0

+, y) = yµe−y/Γ(µ + 1) a number of particular results for the incomplete
gamma functions follow from the results for the noncentral distribution.

For instance, from the monotonicity properties with respect to µ of Theorems
4 and 6 we have, taking a = µ and x = 0:

Corollary 5. The ratios 1
a− 1

γ(a, y)
γ(a− 1, y)

and 1
a− 1

Γ(a, y)
Γ(a− 1, y)

are decreasing

as a function of a > 1.

We next find related functions with are increasing as a function of a. This
will lead to Turán-type inequalities which can be used for obtaining further
bounds.
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Theorem 8. The function

pa(y) =
a

a− 1

γ(a, y)

γ(a− 1, y)
(70)

is increasing as a function of a for a > 1, y > 0.

Proof Considering (37) we obtain the following Riccati equation for pa(y),
where the derivative is taken with respect to y

p′a(y) = a−
(
1 +

a− 1

y

)
pa(y) +

1

y

(
1− 1

a

)
p2a(y). (71)

Using the power series [11, Eq. 8.7.1] we have that

pa(y) = y − 1

a(a+ 1)
y2 +O(y3), (72)

therefore we have pa+ǫ(y) > pa(y) for y sufficiently close to y = 0; but then it
is easy to see that this must hold for any y > 0. Too see this, let us assume
pa+ǫ(ye) = pa(ye) and pa+ǫ(y) > pa(y) for y ∈ (0, ye) and we will arrive at a
contradiction. Indeed, this immediately implies that p′a+ǫ(ye) < p′a(ye) and with
pa+ǫ(ye) = pa(ye) but this is in contradiction with the equation (71), because
for a same value of pa (fixed) the derivative p′a increases with a. This can be
checked by taking the partial derivative of p′a with respect to a with y and pa
fixed:

∂p′a
∂a

= 1− 1

y
pa +

1

ya2
p2a > 1− 1

y
pa > 0,

where the last inequality is true because

γ(a, y)

γ(a− 1, y)
<

(
a− 1

a

)
y, a > 1, y > 0, (73)

which is a consequence of Theorem 3 (taking x → 0).

Remark 4. In [13] it was proved that γ(a, y)/γ(a − 1, y) is increasing as a
function of a. The result of Theorem 8 is an improvement.

This monotonicity property can be used to obtain a Turán type inequality.
We combine this with the inequality of Corollary 4 and we get:

Corollary 6.

1− 1

a
<

γ(a, y)2

γ(a+ 1, y)γ(a− 1, y)
< 1− 1

a2
, a > 1. (74)

The inequalities in Corollary 6 are not new, see [9]. The right inequality
can be used to get an upper bound, as was done in [9]. We do this in a slightly
different way and get an improvement; similar analysis for the lower bound gives
Theorem 3 for x = 0.
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We consider the upper bound in Corollary 6 and eliminate γ(a + 1, y) by
using the recurrence [11, Eq. 8.8.2]

γ(a+ 1, y)− (a+ y)γ(a, y) + (a− 1)yγ(a− 1, y) = 0. (75)

This gives
ha(y)

2 − ba(a+ y)ha(y) + ba(a− 1)y < 0 (76)

where

ha(y) = γ(a, y)/γ(a− 1, y), ba = 1− 1

a2
. (77)

Two bounds are obtained from this inequality:

ha(y) <
ba
2
(y + a+

√
(y − a)2 + 4ay/(a+ 1)) (78)

and

ha(y) >
2(a− 1)y

y + a+
√
(y − a)2 + 4ay/(a+ 1)

= Lh(a, y). (79)

We proceed with the last inequality. Using

γ(a+ 1, y) = aγ(a, y)− yae−y (80)

and using that γ(a+ 1, y) > Lh(a, y)γ(a, y) for a > 0 we get

γ(a, y) > b2(a) =
1

2raa
yae−y

[
2ra + La +

√
L2
a + 4ray

]
,

r = (a+ 1)/(a+ 2), L = y − a− 1, a > 0.

(81)

Using the first order inhomogeneous relation, Merkle [9, Eq. (28)] obtained
a related bound, which can be written as

γ(a, y) > b1(a) =
1

2ra−1
ya−1e−y

[
La−1 +

√
L2
a−1 + 4ra−1y

]
, a > 1. (82)

Both bounds are related by b2(a) = (yae−y + b1(a + 1))/a; in other words
the bound (81) can be obtained considering Merkle’s bound together with the
relation

γ(a, y) =
1

a

[
yae−y + γ(a+ 1, y)

]
, (83)

b2 turns out to be a sharper bound that Merkle’s bound.
It is clear that if in (83) γ(a+1, y) is substituted by a lower (upper) bound,

this gives a lower (upper) bound for γ(a, y). We can consider additional itera-
tions with this inhomogeneous recurrence. After n applications of the backward
recurrence we arrive to a result corresponding to Theorem 2 in the limit x → 0.

Regarding Ha(y), it is known that this ratio is monotonically increasing as
a function of a > 1, as was proved in [13]; it is also monotonic as a function of y
(see Theorem 6, which also proves that Ha(y)/(a− 1) is decreasing as function
of a > 1). We give an alternative (and elementary) proof of the fact that Ha(y)
is increasing and that it is in fact increasing for all real a and not only for a > 1.
First we prove the following:
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Proposition 5.
Γ(a, y)

Γ(a− 1, y)
> y for all a ∈ R and y > 0.

Proof. Let G(y) = Γ(a, y) − yΓ(a − 1, y), then G′(y) = −Γ(a − 1, y) < 0 and
using the asymptotic expansion [11, Eq. 8.11.2] we see that, for large y, G(y) =
ya−2e−y(1+O(y−1)). Therefore G(y) > 0 for sufficiently large y and G′(y) < 0
for all y > 0, which proves that G(y) > 0 for all y > 0.

Theorem 9. Ha(y) = Γ(a, y)/Γ(a− 1, y) is increasing as a function of a ∈ R.

Proof. First we notice that for large enough y, Ha+ǫ(y) > Ha(y); indeed, using
the asymptotic expansion [11, Eq. 8.11.2] we see that

∂Ha(y)

∂a
=

1

y
(1 +O(y−1)).

Considering the Riccati equation satisfied by Ha(y)

H ′

a(y) = (a− 1)−
(
1 +

a− 1

y

)
Ha(y) +

1

y
H2

a(y) (84)

where the derivative is taken with respect to y. Then, for a fixed value of Ha(y)
(not depending on a)

∂H ′

a(y)

∂a
= 1− 1

y
Ha(y) < 0, (85)

where in the last inequality we have used that Ha(y) > y (see Theorem (9)).
Now, becauseHa+ǫ(y+) > Ha(y+) for large enough y+, using a similar reasoning
as in the proof of Theorem 8 if follows that Ha+ǫ(y) > Ha(y) for all positive y,
which completes the proof.

Corollary 7.

Γ(a, y)2

Γ(a+ 1, y)Γ(a− 1, y)
< 1, a ∈ R,

a− 1
a <

Γ(a, y)2

Γ(a+ 1, y)Γ(a− 1, y)
, a > 1.

(86)

Proof. The upper bound is a consequence of the fact that Ha(y) is increasing as
a function of a (Theorem 9) while the lower bound is true because Ha(y)/(a−1)
is decreasing as a function of a.

From the upper bound in Corollary 7, we get, using this inequality together
with the three term recurrence relation, similarly as we did for the ratio ha(y) =
γ(a, y)/γ(a− 1, y), a bound for Ha(y) which leads to a lower bound for Γ(a, y):

Corollary 8. For real a and positive y the following holds:

Ha(y) <
1

2

[
y + a+

√
(y − a)2 + 4y

]
, (87)

Γ(a, y) >
2yae−y

y + 1− a+
√
(y − a− 1)2 + 4y

. (88)
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From the lower bound of Corollary 7 we would obtain a bound slightly weaker
than that of Theorem 6.

Summarizing and considering also some bounds obtained from Theorem 7,
we have:

Theorem 10. The following bounds hold for y > 0:

1. γ(a, y) > l1(a, y) =
1
a

(
1 +

y
a+ 1

)
yae−y, a > 0.

2. γ(a, y) > l2(a, y) = 1
2ara

yae−y
[
2ra + La +

√
L2
a + 4ray

]
, a > 0, with

ra = (a+ 1)/(a+ 2), La = y − a− 1.

3. γ(a, y) < u1(a, y) =
a+ 1

a(a+ 1− y)
yae−y, y < a+ 1, a > 0.

4. Γ(a, y) > L1(a, y) =
(
1 +Aa− 1

y

)
ya−1e−y, a ≥ 1, with A = 0 if a < 2

and A = 1 otherwise.

5. Γ(a, y) > L2(a, y) =
[
y + 1− a+

√
(y − a− 1)2 + 4y

]
−1

2yae−y, a ∈ R.

6. Γ(a, y) < U1(a, y) =
1

y + 1− ay
ae−y, y > a− 1, a ≥ 1.

The first inequality in this theorem corresponds to Eq. (64), the second to
(81), the third to (61), the fourth to (65) and (66), the fifth to (88) and the last
one to (63).

5. Comparison with previous bounds

Next we compare our bounds with previous bounds. As we will see, our
bounds for the non-central distribution are superior to previous bounds in a
wide region of parameters, particularly the upper bounds for Qµ(x, y). For
the central distributions we observe that our combined bounds give sharper
approximations than previous bounds for all the range of parameters where
they apply.

5.1. Noncentral case

We compare our bounds against recent bounds by Paris [12], Baricz [2] and
Baricz & Sun [1]. In tables 1 and 2, we label the different bounds for the
Marcum-Q function as follows.

1. Bounds by Baricz & Sun: upper bounds BU1 [2, Eq. (15)]; lower bounds
LB1 [1, Eq. (8)] and LB2 [1, Eq. (17)]. These are bounds in terms of a
Bessel function and two or three error functions.

2. Bounds by Paris: upper bounds UP1 [12, Eq. (3.2)] and UP2 [12, Eq.
(3.4)]; lower bounds LP1 [12, Eq. (3.1)] and LP2 [12, Eq. (3.3)]. These
are bounds depending on one incomplete gamma function, and which are
sharp for values of x and/or y not much larger than 1/2.
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3. Our bounds: upper bounds US1A (Eq. (63)), US1B (Eq. (62)) and
US2 (Eq. (64)); lower bounds LS1 (Eq. (66)) and LS2 (Eq. (61)).
These are bounds depending on a Bessel function and a ratio of Bessel
function (which is easy to compute with a continued fration and for which
sharp bounds exist [16]).

In tables 1 and 2 we compare all the previous bounds for several values of
the parameters. We compare the bounds with the actual values of functions.
The column labelled with L1 contains the best lower bound and the column U1
the best upper bound (with respect to Q); the columns L2 and U2 contain the
second best lower and upper bounds respectively.

Inside parenthesis, an estimation of the relative error with one significant
digit is given. When P is smaller that Q we give the relative error for P instead
of Q, because this is more significant. When Q is smaller than P the value of y
in the table is written in bold font. Also, our bounds are given in bold font.

As we observe from the results of the tables, the bounds given in Theorem
7 of this paper are superior to previous bounds for certain combinations of
parameters, particularly not close to the transition line y = x+µ; they are not,
however, superior in all case but tend to improve for larger µ. Particularly, the
upper bounds are a considerable improvement since they are usually sharper
than previous bounds.

x=1 L1 U1 L2 U2
y
1 LP2 (0.02) US2 (0.1) LS2 (0.1) UP2 (0.3)
4 LB1 (0.07) US1A (0.09) LS1 (0.1) UP1 (0.2)
16 LB1 (0.02) US1A (0.05) LS1 (0.01) US1B (0.06)

x= 4
y
1 LS2 (0.04) US2 (0.08) LB2 (0.1) UB1 (0.7)
4 LB1 (0.1) UB1 (0.7) LB2 (0.2) US2 (0.8)
16 LB1 (0.03) US1A (0.04) LS1 (0.3) US1B (0.1)

x= 16
y
1 LS2 (0.007) US2 (0.04) LB2 (0.08) UB1 (0.8)
4 LS2 (0.04) US2 (0.2) LB2 (0.05) UB1 (0.9)
16 LB1 (0.07) UB1 (0.8) LB2 (0.08) US2 (2)
32 LB1 (0.02) US1A (0.1) LS1 (0.8) US1B (0.2)

Table 1: Best bounds for µ = 1 and several values of x and y
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x=1 L1 U1 L2 U2
y
1 LS2 (0.0002) US2 (0.003) LP2 (0.0006) UP2 (0.4)
16 LP2 (0.02) US2 (1.5) LS1 (0.8) UP2 (3)
32 LP2 (0.2) US1A (0.05) LS1 (0.3) US1B (0.1)
64 LS1 (0.08) US1A (0.007) LB1 (0.2) US1B (0.03)

x= 16
y
1 LS2 (0.0002) US2 (0.03) LB2 (4) UP2 (0.3)
16 LS2 (0.05) US2 (0.5) LB2 (4) UB1 (6)
32 LB1 (2) US2 (0.9) LS1 (3) UP2 (1)
64 LB1 (0.3) US1A (0.04) LS1 (0.6) US1B (0.07)

x= 32
y
1 LS2 (0.0002) US2 (0.003) LB2 (3) UP2 (1)
16 LS2 (0.02) US2 (0.3) LB2 (1) UB1 (10)
32 LS2 (0.1) US2 (1) LB2 (2) UB1 (9)
64 LB1 (0.6) US1A (0.2) LS1 (2) US1B (0.2)

Table 2: Best bounds for µ = 16 and several values of x and y

We could consider some of our additional bounds, like for instance (67)
which is an improvement for some parameter values and, needless to say, further
improvement is possible using the convergent bounds.

5.2. Central case
First we compare the several bounds in Theorem 10 between them and then

we compare it with other bounds available in the literature. A numerical com-
parison in this case is easier to consider than in the noncentral case, and 3D
plots (not shown) are enough to get the desired information.

The second bound in Theorem 10, l2, is sharper that the first bound l1.
Notice that l1 is given by the first two terms in the series for γ(a, y) in powers of
y [11, 8.7.1] and that better bounds can be obtained by considering additional
terms (see also the discussion after Eq. (83)); however l2 is better for sufficiently
large y and a even if more terms in l1 are considered.

The fifth bound, L2, is generally better than the fourth, L1, but for small y
(larger as a is larger) the situation is the opposite (for A = 1). For instance, for
a = 5 L1 is better when y < 5 and for a = 100 when y < 10. For A = 0 L1 is
worse and only if y < 1 (approximately) or a is close to 1 it is better than L2.

Comparing the bound u1(a, y) with the Qi and Mei bound [11, 8.10.2] (but
for a > 1 with the inequality reversed), which is

γ(a, y) ≤ UQ(a, y) =
ya−1

a
(1− e−y), (89)

we easily obtain that u1 is superior to this inequality (see also [14]) when

a > (y − 1 + e−y)/(1− (y + 1)e−y) (90)
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which approximately gives a > y− 1 for not too small y. Another upper bound
for γ(a, y) can be obtained considering u2(a, y) = Γ(a) − L2(a, y). Numerical
experiments show that that u2(a, y) has positive values and smaller than UQ

(and therefore superior) in a region containing y > a. Combining both bounds
in a single bound yields a bound better than UQ for any values of a and y.
Because u2(a, y) turns out to be always positive, a simple way to do this is
by taking u3(a, x) = [max{u1(a, y)

−1, u2(a, y)
−1}]−1; u3(a, y) turns out to be

superior to UQ for any a and y, and with relative errors with respect to γ(a, y)
always smaller that 1 (in contrast to UQ) and tending to zero rapidly as we
move away for y = a.

The fourth bound for A = 0 is the bound [11, 8.10.2] (but for a > 1, with
the inequality reversed). The case A = 1 is an improvement for a > 2 and for
the previous discussion it also follows that the fifth bound is generally superior
to [11, 8.10.2] (except for y or a small).

Finally, we compare our bounds against [11, 8.10.11] for the case a > 1,
which we write as:

γ(a, x) ≥ lH(a, x) = Γ(a)(1− e−day)a, da = (Γ(1 + a))−1/a,
Γ(a, x) ≥ LH(a, x) = Γ(a)(1− (1− e−y)a).

(91)

We compare the lower bound lH for γ(a, x) with the lower bounds l1, l2 and
l3 = Θ(U1)(Γ(a)−U1) from Theorem 10 and the bound LH for Γ(a, x) with L1,
L2 and L3 = Θ(u1)(Γ(a) − u1); here Θ stands for the step function such that
Θ(x) = 1 if x > 0 and Θ(x) = 0 if x ≤ 0.

Numerical computations show that l1 and l2 are larger than lH (and then
superior to lH) for y < a, but also for y > a with y− a moderate. On the other
hand, as commented before, l2 is generally preferable. With respect to l3, it
appears to be superior to lH for y > a. Combining the bounds l2 and l3 taking
l = max{l2, l3} the resulting bound l turns out to be better that lH except for
a small region around y = a for y < 6.5. This region can be eliminated if the
bound l1 is also used, but considering additional terms in the series [11, 8.7.1]
six terms are enough).

Finally, L1 and L2 are larger than LH in a region containing y > a while
L3 is larger than LH for y < a. As commented before L2 is generally better,
and taking L = max{L2, L3} we obtain a bound which is better than LH in the
whole range.
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