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Abstract

Gaussianity tests have being widely studied in the literature. Regarding the
study of Gaussianity tests for stationary processes, these only verify the Gaus-
sianity of a marginal at a fixed finite order, generally order one. Therefore,
they do not reject stationary non-Gaussian processes with the one-dimensional
Gaussian marginal. Thus, a consistent test is proposed for Gaussianity of sta-
tionary processes when a finite sample path of the process is observed. Using
random projections, decision rules are applied to the whole distribution of the
process and not only on its marginal distribution at a fixed order, as in previous
tests. The main idea is to test the Gaussianity of the one-dimensional marginal
distribution of some random linear transformations of the process. Note that
testing the one-dimensional marginal distribution can be done with previous
tests of Gaussianity for stationary processes. It is shown by both theoretical
and empirical studies that the proposed test procedure has good properties for
a wide range of alternatives.

Keywords: Normality Test, Strictly Stationary Random Process, Random
Projection, Consistent Test

1. Introduction

Very often, observed data are a finite path of real temporal phenomena mod-
eled as a second order stationary process. Adding the Gaussianity assumption,
the process possesses a lot of beneficial properties as regards their statistics or
prediction and, in particular, it becomes strictly stationary. This means that
the law of the process is invariant if the time is shifted.

IThe Matlab codes, to obtain the figure and tables of the paper, appear as an annex in
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In this paper, the processes are assumed to be integrable and stationary
stands for strictly stationary. We consider tests for Gaussianity of stationary
processes. Let X := (Xt)t∈Z be a stationary process of real-valued random
variables (r.v.’s). Our aim is to test:

H0 : X is Gaussian versus Ha : X is not Gaussian. (1)

Conventional goodness-of-fit tests such as Kolmogorov-Smirnov or Cramér
von Mises (D’Agostino and Stephens, 1986) cannot be used here, since their
asymptotic distributions are not clear in the context of stationary processes and
they are in general not distribution free under the null hypothesis. Other re-
cent tests as in Liu and Maharaj (2013); Ghoudi and Rémillard (2013) do not
apply here either since they are intended for particular types of dynamic data
generating schemes. The problem has attracted attention over the last three
decades. Researchers have proposed tests based on the analysis of the empir-
ical characteristic function (ch.f.) (Epps, 1987), of the skewness and kurtosis
(Lobato and Velasco, 2004, the so-called Jarque-Bera test), of both the em-
pirical ch.f. and the skewness and kurtosis (Moulines and Choukri, 1996) and
the bispectral density function (Rao and Gabr, 1980). An important drawback
of these tests is that they only consider a finite order marginal of the process
(generally order one). Obviously, this provides tests at the right level for the in-
tended problem; but these are at the nominal power against some non-Gaussian
alternatives, such as stationary non-Gaussian processes having one-dimensional
Gaussian marginal.

This paper is inspired by the work on random projections of Cuesta-Albertos
et al. (2007), particularly in Theorem 1.1 below. It is well known that a dis-
tribution is Gaussian if and only if all of its one-dimensional projections are
Gaussian. The existence of non-Gaussian distributions with some Gaussian
one-dimensional projections is also well known. However, Theorem 1.1 shows
that the Gaussian projections of a non-Gaussian distribution, if any, are very
scarce. To be more precise, if we take at random a one-dimensional projection
of a non-Gaussian distribution, then, with probability one, this projection will
be non-Gaussian.

The following theorem uses the notion of dissipative distribution (Definition
2.1). H denotes a separable Hilbert space.

Theorem 1.1 (Cuesta-Albertos et al., 2007). If η is a dissipative distribution
on H and D is an H-valued random element, then, D is Gaussian if and only
if η(E) > 0, where

E = {h ∈ H : the distribution of 〈D,h〉 is Gaussian }.

The importance of this result lies in the fact that if η is dissipative then the
following 0− 1 law holds

η({h ∈ H : the distribution of 〈D,h〉 is Gaussian}) ∈ {0, 1}.

Moreover, D is not Gaussian if, and only if,

η({h ∈ H : the distribution of 〈D,h〉 is Gaussian}) = 0.
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Additionally, D is Gaussian if, and only if,

η({h ∈ H : the distribution of 〈D,h〉 is Gaussian}) = 1.

In other words, if we are interested in whether the distribution of D is
Gaussian, then the only thing we have to do is to select at random a point
h ∈ H using a dissipative distribution and check if the real-valued random
variable 〈D,h〉 is Gaussian. We will obtain the right answer with probability
one.

From this result, we have that a test at the level α for the Gaussianity
of a randomly chosen (one-dimensional) projection, is also a test at the same
level to test the Gaussianity of the process X. We also have that a consistent
Gaussianity test applied to the projection, is, in fact, a consistent test for the
Gaussianity of the full process X. This property was used in Cuesta-Albertos et
al. (2007) to construct a Gaussianity test when a random sample of trajectories
is available. Let us explain these aspects in greater detail with the help of an
example.

Example 1.2. Let us begin by a question: Is it worth considering that the
text you have read in this paper so far has been produced by a random letter
generator? I.e., is it worth to consider the assumption that the text in the
previous paragraphs have been produced by a mechanism which chooses with
equal probability every key in a computer keyboard, with probability a half to
press the “capital” key? Obviously, the answer is no, because a text like the
one in the previous paragraphs has not been written by chance, despite the fact
that the probability of obtaining such a text just by chance is not zero: it is
extremely small but strictly positive.

Moving back to the Gaussianity problem, let X be a process and let us
select randomly a one-dimensional projection. According to Theorem 1.1, if the
partner distribution is not Gaussian, the probability for the chosen projection
to be Gaussian is zero. Let us stress this point: this probability is zero; it is
not extremely small, like in the previous example, but zero. Therefore, if the
partner distribution is not Gaussian, we will not obtain a Gaussian projection;
and if we obtain a Gaussian projection, we will conclude that X is Gaussian.

Returning to the Gaussianity test of stationary processes; in this setting,
we do not have a random sample of trajectories but a sequence of observations
taken on a fixed trajectory. Thus, the theory developed in Cuesta-Albertos
et al. (2007) can not be applied directly. The good news is that, similarly
as in Example 1.2, Theorem 1.1 transforms the analysis of the Gaussianity of
the process X in the analysis of the Gaussianity of a randomly chosen one-
dimensional projection as follows.

Assume that we have the stationary process X = (Xt)t∈Z. Then, randomly
select a vector h := (ht)t∈N (technical details on its construction are given in
Section 3) and construct the new process Yh = (Y ht )t∈Z where

Y ht :=

∞∑
i=0

hiXt−i, t∈Z.
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Theorem 1.1 implies that if X is not Gaussian, then, with probability one, the h
we have chosen makes Y ht non-Gaussian. In other words, if X is not Gaussian,
then the one-dimensional marginal of Yh is not Gaussian for almost every h.

Once h has been fixed, the process Yh is also stationary and we can employ
one of the above mentioned tests to test the Gaussianity of the marginals of
Yh as those tests were designed, precisely, to test the Gaussianity of a given
one-dimensional marginal. With this, according to the preceding reasoning, in
fact, we are testing the full Gaussianity of the X.

The particular procedure used to test the Gaussianity of the marginal dis-
tribution of Yh is left to the practitioner. Here, we use improved versions of
the tests proposed in Epps (1987) and Lobato and Velasco (2004), obtaining
a test consistent against every stationary alternative satisfying some regularity
conditions (see Section 4.3 the explanation on how we have applied the test).

However, an important fact to be taken into account is that, under the
alternative, it may happen that we we are dealing with a projection in which
the non-Gaussianity is not too easy to be ascertained. To tackle this problem,
we follow the proposal made in Cuesta-Albertos et al. (2007) consisting in taking
more than one projection, carrying out the test on each projection and then,
mixing the p-values using the False Discovery Rate, as suggested in Benjamini
and Yekutieli (2001).

The paper is structured as follows. Section 2 contains the notation, some
results concerning the random projection method and previous Gaussianity tests
for stationary processes. The new test is proposed in Section 3, followed by
details on its practical application. Section 4 reports some simulation studies
and includes a section to learn to apply the proposed test without the need to
read the paper in detail. An study on real data sets is carried out in Section 5.
A discussion on the procedure appears in Section 6. All the proofs are deferred
to the Appendix. Computations were performed using MatLab (except where
otherwise stated).

2. Notation and preliminaries

We assume that all random elements (r.e.’s) are defined on the same suf-
ficiently rich probability space (Ω, σ, IP ). H denotes a separable Hilbert space
with inner product 〈·, ·〉 and norm ‖ · ‖. {vn}∞n=1 is a generic orthonormal basis
of H and Vn is the n-dimensional subspace spanned by {v1, . . . , vn}. For any
V ⊂ H, V ⊥ denotes its orthogonal complement. If D is an H-valued r.e., DV is
the projection of D on V.

The beta distribution with parameters α1, α2 will be denoted β(α1, α2);
N(ν, ρ) is the one-dimensional normal distribution with mean ν and variance ρ,
and Φν,ρ is its ch.f.

Let X be a stationary process and let µX := E[X0], µX,k := E[(X0 − µX)k]
k > 1, and γX(t) := E[(X0 − µX)(Xt − µX)], t ∈ Z. In this section we will
handle X1, X2, ..., Xn, n ∈ N a sample of equally spaced observations of X. We
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set µ̂X := n−1
∑n
i=1Xi, µ̂X,k := n−1

∑n
i=1(Xi − µ̂X)k k ∈ N and

γ̂X(t) := n−1
n−|t|∑
i=1

(Xi − µ̂X)(Xi+|t| − µ̂X), |t| ≤ n− 1.

When it is clear, we write µX,k as µk, γX(0) as γX and γ̂X(0) as γ̂X .
The dissipative distributions (see Definition 2.1) were introduced in Cuesta-

Albertos et al. (2007). In the finite dimensional case, the dissipative distribu-
tions and the absolutely continuous distributions with respect to the Lebesgue
measure coincide. Thus, the dissipative distributions can be considered as a gen-
eralization of the absolutely continuous distributions to the infinite dimensional
case in which there is no measure to play the role of the Lebesgue measure.

It should be noted that all non-degenerate Gaussian distributions are dissi-
pative. In Section 3 we introduce a non-Gaussian dissipative distribution well
suited for the problem at hand.

Definition 2.1. Let D be an H-valued r.e. We will say that its distribu-
tion is dissipative if there exists an orthonormal basis {vn}∞n=1 of H, such that
IP (DV ⊥n

= 0) = 0, for all n ≥ 2, and if the conditional distribution of DVn

given DV ⊥n
is absolutely continuous with respect to the n-dimensional Lebesgue

measure.

2.1. The Epps test

Let

ΛN := {λ := (λ1, . . . , λN )T ∈ R+
N : λi 6= λj , i 6= j, i, j = 1, ..., N},

and for λ ∈ ΛN , let

ĝ(λ) :=
1

n

n∑
i=1

(cos(λ1Xi), sin(λ1Xi), . . . , cos(λNXi), sin(λNXi))
T .

We set

gν,ρ(λ) := (Re(Φν,ρ(λ1)), Im(Φν,ρ(λ1)), . . . ,Re(Φν,ρ(λN )), Im(Φν,ρ(λN )))T .

The spectral density matrix of the process

(g(Xt, λ))t∈Z := ((cos(λ1Xt), sin(λ1Xt), . . . , cos(λNXt), sin(λNXt)))
T
t∈Z

at frequency 0 is denoted by fX(0, (µX , γX), λ) and is estimated by

f̂(0, λ) = (2πn)−1

 n∑
t=1

Ĝ(Xt,0, λ) + 2

bn2/5c∑
i=1

(1− i/bn2/5c)
n−i∑
t=1

Ĝ(Xt,i, λ)

 ,

where Ĝ(Xt,i, λ) = (g(Xt, λ) − ĝ(λ))(g(Xt+i, λ) − ĝ(λ))T and b·c denotes the
integer part.
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Let Θ ⊂ R×R+ be an open bounded set and let λ ∈ ΛN . Let G+
n (λ) be the

generalized inverse of 2πf̂(0, λ) and

Qn(ν, ρ, λ) := (ĝ(λ)− gν,ρ(λ))
T
G+
n (λ) (ĝ(λ)− gν,ρ(λ)) .

Given i = 1, . . . , N , using the modulus-argument form to write complex
numbers, it is obvious that there exist (νi, ρi) such that

{(ν, ρ) ∈ R× R+ : eiνλie−λ
2
iρ/2 = ΦX(λi)} = {(νi + 2kπ/λi, ρi) : k = 1, . . .}.

Thus, the set

Θ0(λ) := {(ν, ρ) ∈ Θ : Φν,ρ(λi) = ΦX(λi), i = 1, . . . , N}

is discrete. Notice that this set will contain at most one element unless the λj ’s
are rational multiple of λ1.

Next, we include an assumption on some regularity conditions of the involved
functions on the points in Θ0(λ). This assumption, taken from Epps (1987),
will be employed in the results related to the Epps test.

Assumption A. For each (ν, ρ) ∈ Θ0(λ) it happens that fX(0, (ν, ρ), λ) = fX
(0, (µX , γX), λ) and that

∂Φx,y(λi)

∂(x, y)

∣∣∣∣
(x,y)=(ν,ρ)

=
∂Φx,y(λi)

∂(x, y)

∣∣∣∣
(x,y)=(µX ,γX)

, i = 1, . . . , N.

The following theorem, proved in Epps (1987), shows the asymptotic distri-
bution of the statistic involved in the Epps test under the null hypothesis.

Theorem 2.2 (Epps, 1987). Let X be a stationary Gaussian process satisfying∑
t∈Z
|t|ζ |γX(t)| <∞, for some ζ > 0. (2)

Let Θ ⊂ R × R+ be open and bounded and let λ ∈ ΛN such that Assumption
A holds. Let (µn, γn) be the minimizer on Θ nearest to (µ̂X , γ̂X) of the map
(ν, ρ) → Qn(ν, ρ, λ). Assume moreover that fX(0, (µX , γX), λ) is positive defi-
nite. Then, nQn(µn, γn, λ) converges in distribution to χ2

2N−2.

Remark 2.2.1. Since the Epps test only checks whether the ch.f. of the
marginal of the involved process coincides with that of a Gaussian distribu-
tion on a finite number of points fixed in advance (see Theorem 2.2), this test
is non-consistent against alternatives with Gaussian marginals or, even, against
distributions with non-Gaussian marginals whose ch.f.s take the appropriate
values on the selected points.

Below, in Theorem 3.6, we show that this last problem is alleviated if the set
employed in the Epps test is selected at random, thus making this test consistent
against every alternative with non-Gaussian one-dimensional marginals.
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2.2. The Lobato and Velasco test

Theorem 2.3 shows the behavior of the Lobato and Velasco test. We use the
following functions.

Fk :=

∞∑
t=−∞

γX(t)k,

F̃k := 2

n−1∑
t=1

γ̂X(t)(γ̂X(t) + γ̂X(n− t))k−1 + γ̂kX and

G̃X := nµ̂2
X,3/(6F̃3) + n(µ̂X,4 − 3µ̂2

X,2)2/(24F̃4).

Theorem 2.3 (Lobato and Velasco, 2004). Let X be an ergodic stationary
process. If X is Gaussian and satisfies

∑∞
t=0 |γX(t)| < ∞, then G̃X −→ χ2

2 in
distribution.

G̃X diverges to infinity whenever µX,3 6= 0 or µX,4 6= 3µ2
X,2, if E[X16

t ] <∞
and

-
∑∞
t1=∞ · · ·

∑∞
tq−1=∞ |kq(t1, ..., tq−1)| <∞, for q=2,...,16, where

kq(t1, ..., tq−1) denotes the qth-order cumulant of X1, X1+t1 , ..., X1+tq−1 ,

-
∑∞
t=1[E|(E(X0−µ)k|F−t)−µk|2]1/2 <∞, for k = 3, 4, where F−t denotes

the σ-field generated by Xj, j ≤ −t, and

- E[(X0 − µ)k − µk]2 + 2
∑∞
t1=∞ E([(X0 − µ)k − µk][(Xt − µ)k − µk]) > 0,

k = 3, 4.

Remark 2.3.1. As shown in Theorem 2.3, the Lobato and Velasco test is not
consistent, since this test only checks whether the kurtosis and the skewness of
the marginal coincide with those of a Gaussian distribution.

3. Main results

In (1) the null hypothesis holds if, and only if, (X1, . . . , Xt)
T is a Gaussian

vector for all t ∈ N. Due to the stationarity of X, this is equivalent to (Xt)t≤0
being Gaussian and so, to the Gaussianity of the process X(t) := (Xj)j≤t for
any t ∈ Z. Given t ∈ Z, we want to use Theorem 1.1 to check whether X(t) is
Gaussian. Hence, we have to include X(t) in an appropriate Hilbert space, H,
and select at random a point h ∈ H using a dissipative distribution. Once this
is done, we will have that, with probability one, X(t) is Gaussian if, and only
if, the real-valued r.v. 〈X(t),h〉 is Gaussian.

Concerning H, let us consider the space of sequences

l2 =

{
(xn)n∈N :

∑
n∈N

x2nan <∞

}
,
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with a0 := 1 and an := n−2, n ≥ 1, endowed with the scalar product

〈x,y〉 =
∑
n∈N

xnynan, where x = (xn)n∈N and y = (yn)n∈N.

If the variance of Xt is finite, then E[
∑
n∈NX

2
t−nan] is also finite. This

implies that, almost surely, X(t) ∈ l2.
Now we need a dissipative distribution on l2 to be employed to select the di-

rection in which we will project the data. To do this, we use the so-called Dirich-
let distribution (Pitman, 2006) and build it using the stick-breaking method:
Let α1, α2 > 0 and consider the following distribution:

• l0 ∈ [0, 1] is drawn with the β(α1, α2) distribution and,

• for n ≥ 1, ln ∈ [0, 1 −
∑n−1
i=0 li] is drawn multiplying an independent

β(α1, α2) r.v. by 1−
∑n−1
i=0 li.

Define Hn = (ln/an)1/2 for n ≥ 0 and set H = (H0, H1, ...)
T . It can be easily

checked that the distribution of H is dissipative. The only point remaining is
to show that the elements generated from this distribution belong to l2. This is
discussed in what follows.

Proposition 3.1. Let H = (Hn)n≥0 be a stochastic process constructed as
described above. Then, ‖H‖ = 1, a.s.

Using this distribution, we obtain the random projections as follows. Let
h = (hi)i∈N be a fixed realization of the random element H. We assume that
H is independent of the process X. Let us consider the process Yh = (Y ht )t∈Z
given by the projections of (X(t))t∈Z on the one-dimensional subspace generated
by h, i.e.

Y ht =

∞∑
i=0

hiXt−iai, t ∈ Z. (3)

Henceforth, when no ambiguity arises, the superscript h is omitted to simplify
notation.

We will denote γY |h(t) := E[(Y0−µY |h)(Yt−µY |h)|h], where µY |h := E[Y0|h].
The following proposition shows that the projected process inherits the prop-

erties of the original one.

Proposition 3.2. Let (Xt)t∈Z be an ergodic and stationary process such that∑∞
t=0 t

ζ |γX(t)| <∞, with ζ ≥ 0. Then, conditionally on h, the process (Yt)t∈Z
defined in (3) is ergodic and stationary. Additionally, E[|Y0||h] and

∑∞
t=0 t

ζ

|γY |h(t)| are finite.

Therefore, the process Y is stationary. Thus, it is possible to assess the
Gaussianity of the one-dimensional marginal distribution of Y with the tests
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we mentioned in the introduction. In particular, it is possible to use the proce-
dures proposed in Epps (1987) or Lobato and Velasco (2004). We denote these
procedures, respectively, by E-test and LV-test. Thus, the only remaining task
is to find a suitable set of hypotheses which allow these procedures to be applied
to the process Y.

Theorem 3.6 shows that if the points involved in the E-test are selected at
random, then, the consistency of this test improves. For the sake of simplicity, in
this result we have not made explicit the dependence of Qn on h. To establish
the result, we need some preliminary results, that include a corollary which
shows that the E-test behaves properly when applied to the process Y.

We denote by klmno(q, r, q + r;λ) the fourth-order cumulant of Z0,l, Zq,m,
Zr,n, and Zq+r,o, where, for instance, Zq,m is the m-th component of the vector
g(Yq, λ)− gµY ,γY (λ).

Lemma 3.3. Let λ ∈ ΛN and let Y be a stationary process such that

sup
−∞<q<∞

∞∑
r=−∞

|klmno(q, r, q + r;λ)| <∞, for each l,m, n, o ∈ {1, ..., N}. (4)

Then, f̂(0, λ)→ fY(0, (µY , γY ), λ) almost surely.

Lemma 3.4. If λ = (λ1, . . . , λN )T ∈ ΛN (N > 1) is randomly drawn in such a
way that λ1 and λ2 are i.i.d. and have a density, then, Assumption A is fulfilled
a.s.

The following corollary follows trivially from Theorem 2.2 and the previous
lemma.

Corollary 3.5. Let (Yt)t∈Z be a stationary Gaussian process satisfying (2) and
λ as in Lemma 3.4. Let (µn, γn) be the minimizer on Θ nearest to (µ̂, γ̂) of the
map (ν, ρ)→ Qn(ν, ρ, λ). If fY(0, (µY , γY ), λ) is positive definite, then
nQn(µn, γn, λ) converges in distribution to χ2

2N−2.

The following result provides the conditions that allow the E-test to be
applied to the projected process. Here, we modify the E-test to select the
values of λ at random. This improves the consistency of the initial procedure
which is now able to detect (with a sufficiently large sample) every non-Gaussian
alternative which satisfies the assumptions.

Theorem 3.6. Let X be an stationary process satisfying (2). Draw λ as in
Lemma 3.4 and h independently of λ using PH. Assume that, conditionally on
h, Y defined in (3) satisfies (4). Assume further that the modulus of the ch.f. of
its one-dimensional marginal is analytic and that fY|h(0, (µY |h, γY |h), λ) exists
and is positive definite for almost every h.

Let Qn(·, ·, λ) be the quadratic form defined in Section 2.1 applied to Y and
(µn, γn) be the minimizer on Θ nearest to (µ̂Y |h, γ̂Y |h) of Qn(·, ·, λ). Let more-
over

B := {(λ, h) : nQn(µn, γn, λ)→d a non-degenerate distribution}.

Then, X is Gaussian if, and only if, (Pλ ⊗ PH)[B] > 0.

9



Remark 3.6.1. 1. The assumption that X is ergodic is required only to
prove the inverse part of Theorem 3.6. Indeed, any stationary Gaussian
process satisfying (2) is ergodic (Ibragimov and Rozanov, 1978).

2. A slightly more involved proof would allow Theorem 3.6 to be proved
under the assumption that the ch.f. is analytic.

The following corollary shows that the consistency of the Epps test improves
if the involved points are chosen at random. Then, we include Corollary 3.8,
where we state a kind of zero-one law to reinforce the statements of Theorem
3.6 and Corollary 3.7.

Corollary 3.7. Let X be an ergodic stationary process. Assume that the mod-
ulus of the ch.f. of its one-dimensional marginal is analytic. Assume further
that (2) holds. Take λ as in Lemma 3.4 and Qn(·, ·, λ) as in Section 2.1. Let
(µn, γn) be the minimizer on Θ nearest to (µ̂X , γ̂X) of Qn(·, ·, λ). Let

C := {λ : nQn(µn, γn, λ)→d a non-degenerate distribution}.

If we assume that fX(0, (µX , γX), λ) exists and is positive definite, then, X
is Gaussian if, and only if, Pλ(C) > 0.

Corollary 3.8. Under the assumptions of Theorem 3.6, (Pλ⊗PH)[B] ∈ {0, 1}
and X is Gaussian if, and only if, (Pλ ⊗ PH)[B] = 1.

Analogously, under the assumptions of Corollary 3.7, Pλ(C) ∈ {0, 1} and X
is Gaussian if, and only if, Pλ(C) = 1.

Remark 3.8.1. From Theorem 2.2, we have that Theorem 3.6 and Corollar-
ies 3.7 and 3.8 remain true if we substitute in the definition of sets B and C
“non-degenerate distribution” by “chi-squared distribution with 2(N − 1) de-
grees of freedom”; this allows a test to be constructed based on the asymptotic
distribution of nQn(µn, γn, λ).

We end this section with a result which shows the applicability of the LV-
test to the projected process under different assumptions than the ones used in
Lobato and Velasco (2004). To this end, we replace the statistics G̃Y by

GY = nµ̂2
3/(6|F̂3|) + n(µ̂4 − 3µ̂2

2)2/(24|F̂4|),

with

F̂k = 2

τn∑
t=1

γ̂(t)(γ̂(t) + γ̂(τn + 1− t))k−1 + γ̂k, τn < cnβ0 , 0 < β0 < .5 and c > 0.

(5)
Thus, the differences between GY and G̃Y are the absolute values in the

denominator and the number of terms involved in F̂k.

Theorem 3.9. Let X be an ergodic and stationary process which satisfies∑∞
t=0 |γX(t)| <∞. Then,

1. If X is a Gaussian process, then GY −→d χ
2
2.
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2. Assume that Xt−µX =
∑∞
i=1 k(i)εt−i with

∑∞
i=1 |k(i)| <∞,

∑∞
i=1 ik(i) <

∞, and (εt) are i.i.d. r.v.’s with E[εn] = 0, and E[X4
0 ] < ∞. Then,

conditionally on h, GY diverges a.s. to infinity whenever µ3 6= 0 or µ4 6=
3µ2

2.

Applying Theorem 3.9 directly to the process X, we obtain the following
corollary.

Corollary 3.10. Under the assumptions of Theorem 3.9, we have that if X is
a Gaussian process, then GX −→d χ

2
2. Moreover, if the assumptions in point

2 of this theorem hold, then, conditionally on h, GX diverges a.s. to infinity
whenever µX,3 6= 0 or µX,4 6= 3µ2

X,2.

3.1. Context of our test procedure

The Gaussian goodness of fit tests have a long and rich history. On one
hand, in the framework of i.i.d. data, this story began in the early days of
statistics. First, in the one dimensional case and when the parameters are
known, the classical generic procedures based on a distance between the em-
pirical distribution function and the Gaussian target distribution are a simple
old procedure. They have been widely used for a long time. In this context,
the tests based on Kolmogorov or Cramér von Mises statistics (D’Agostino and
Stephens, 1986) are among the most popular. Notice that when the parameters
of the Gaussian distribution are unknown, everything gets more complicated.
Indeed, the previous generic procedures may still be applied in a plug-in ap-
proach. Nevertheless, care should be taken in the way the unknown parameters
are estimated. We refer to Cabaña (1996) for these kind of plug-in procedures.
Smart procedures specially devoted to the one dimensional Gaussian case ap-
pear in Shapiro and Wilk (1965); D’Agostino (1971). The procedures therein
are based on some self-normalized L-statistics and rely on some statistical ap-
proximation of the Wasserstein distance W2 between the sample distribution
and the one dimensional Gaussian distribution family (Barrio et al., 1999, for
example). The multidimensional case is rather more complicated and requires
new tools. In Csorgo (1986), the author uses a version of the empirical charac-
teristic function to build general procedures. As a matter of fact, under the null
hypothesis (Gaussianity), this random process is asymptotically distribution-
free. This allows, for example, by sampling and whitening, to build a quadratic
form statistic having an asymptotic χ2 distribution (under the null hypothe-
sis). Notice that, here the dimension of the space is finite and greater than
1 but fixed. This pioneering work has subsequently been skillfully extended
in many directions for example to test the symmetry or isotropy of a multidi-
mensional distribution and using the cumulant generating function (Ghosh and
Ruymgaart, 1992; Fang and Liang, 1998; Liang and Ng, 2009, and references
therein). The infinite dimension case is tackled using random projections in
Cuesta-Albertos et al. (2007).

On the other hand, in the case of time series data, only the goodness of
fit test for Gaussianity of a fixed finite marginal has been studied (Epps, 1987;
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Lobato and Velasco, 2004; Moulines and Choukri, 1996, for example). Notice
that the regularity assumption has recently been weakened in Ghosh (2013)
in order to work with long range dependence processes. Our work appears
to be at the crossroad between all these works; that is, those on time series,
on i.i.d. data in infinite dimension or on finite dimension. As a matter of
fact, the random projection trick allows only a one dimensional marginal to be
considered. Nevertheless, as the sample is not i.i.d., tools similar to those used in
the multidimensional case appear. For example, we have to whiten empirically
the sample in order to obtain an asymptotic χ2 distribution (under the null
hypothesis). Furthermore, the procedure based on the empirical characteristic
function is a method related to the one developed in Csorgo (1986) although
the sampled frequencies are, in our work, chosen randomly.

3.2. The test in practice

Let X0, . . . , Xn be the available measurements. To compute h, let δ > 0 be
a fixed number (equal to 10−15 in the simulations that we carry out in Sections
4 and 5), and take h = (h0, . . . , hm)T with

m = 1 + min{min{t : ‖(h0, . . . , ht)T ‖ ≥ 1− δ}, n− 1},

where h0, . . . , hm−1 are drawn as follows and hm is such that ‖h‖ = 1. Then,
define

Yt =

min(m,t)∑
i=0

hiXt−iai, t = 0, . . . , n.

To draw h0, . . . , hm−1, let’s fix α1, α2 > 0. Then, we choose (βn)n∈N indepen-
dent and identically distributed with beta distribution of parameters α1 and α2.
Further, we consider the probability distribution which selects a random point
in l2 according to the following iterative procedure:

• l0 = β0 ∈ [0, 1].

• Given n ≥ 1, ln ∈ [0, 1−
∑n−1
i=0 li] equal to βn(1−

∑n−1
i=0 li).

Let us define Hn = (ln/an)1/2 for n ∈ N with a0 = 1 and an = n−2, n ≥ 1,
and take H = (Hn)n∈N. Thus, h = (hi)i∈N is a fixed realization of the random
element H.

Selecting α1, α2, leads to the following problem: if m is large, the r.v.’s Yt
are linear combinations of many r.v.’s from the first sample and, by the Central
Limit Theorem (CLT), its common distribution becomes closer to a normal
law, causing loss of power when the marginal of X is not Gaussian. To have a
small m, we take α2 = 1 and α1 � 1 (we take α1 = 100 in Sections 4 and 5).
However, in this case the samples Y0, . . . , Yn and X0, . . . , Xn are quite similar.
Thus, the test will not be able to detect properly non-Gaussian alternatives with
the Gaussian marginal. To overcome this drawback, the projections should mix
several r.v.’s from the initial sample. To do this, we take α2 > α1, with α2 not
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too big to avoid the effect of the CLT. Values such as α1 = 2 and α2 = 7 seem
appropriate, and this is our selection in Sections 4 and 5.

To avoid selecting α1 and α2 based on an assumed alternative, we use two
tests, one with each pair of parameters, and apply the false discovery rate for
dependent tests (Benjamini and Yekutieli, 2001, FDR) to mix the p-values.
Taking into account that the null hypotheses are the same in both cases, it
happens that the FDR coincides with the level of the whole procedure.

Furthermore, in the simulations, we discovered that the relative power per-
formance of both the E-test and the LV-test changes across the different alter-
natives. This led us to conclude that, rather than using either the improved
version of the E-test or that of the LV-test, we should use both tests and use,
again, the FDR to mix all the p-values.

Regarding the selection of the random points to be used in the improved E-
test, it happens that in the simulations in Epps (1987) and Lobato and Velasco
(2004), the authors take ξj/

√
γ̂, with ξj = j, j = 1, 2, where γ̂ denotes the

sample variance of the process. Here, we take ξj distributed as the absolute
value of a N(0, j), j = 1, 2.

Finally, even if X is not Gaussian, the chosen projections may, just by chance,
be close enough to Gaussianity as to lead to non-rejection. To alleviate this,
Cuesta-Albertos et al. (2007) suggests increasing the number of random pro-
jections. Following this idea, our full proposal is to choose k > 0 and select
independent random vectors h(i,j), i = 1, . . . , k, j = 1, . . . , 4, where h(i,1) and
h(i,2) are drawn with the β(100, 1) distribution and h(i,3) and h(i,4) with the
β(2, 7) distribution, i = 1, . . . , k. Then, for i = 1, . . . , k:

1. Draw h(i,1) with the β(100, 1) distribution and apply the E-test to the
projections to obtain the p-value p(i,1).

2. Draw h(i,2) (independently of h(i,1)) with the β(100, 1) distribution and
apply the L-V-test to the projections to obtain the p-value p(i,2).

3. Draw h(i,3) (independently of h(i,1) and h(i,2)) with the β(2, 7) distribution
and apply the E-test to the projections to obtain the p-value p(i,3).

4. Draw h(i,4) (independently of h(i,1), h(i,2) and h(i,3)) with the β(2, 7)
distribution and apply the L-V-test to the projections to obtain the p-
value p(i,4).

Finally, combine the p(i,j)’s with the FDR to obtain a p-value for the global
procedure.

The parameter k remains free and, to underline this, we call this procedure
the k random projection test (kRP-test). In Cuesta-Albertos and Nieto-Reyes
(2008), it is suggested that around 250 random projections are enough; in keep-
ing with this, here we take k = 64.

4. Simulation results

First, we study the behavior of the kRP-test against the distributions em-
ployed in Lobato and Velasco (2004). Then, we study a non-Gaussian process
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with the Gaussian marginal (Section 4.1) and pay some attention to the effect
of taking different numbers of projections (Section 4.2). We end the section
by giving a concise explanation of the test to those who want to use it while
skipping the details of the paper (Section 4.3).

In Lobato and Velasco (2004), the following AR(1) processes are used:

Xt = qXt−1 + εt, t ∈ Z, for q ∈ {0,±.5, .6, .7, .8,±.9}, (6)

where εt are i.i.d. r.v.’s with distribution Dε : N(0, 1), standard log-normal,
Student t with 10 degrees of freedom, chi-squared with 1 and 10 degrees of
freedom, uniform on [0, 1] and β(2, 1).

We simulate the process taking, X1 = ε1, and Xt = qXt−1+εt, t = 2, ...,M,
where the εt’s are i.i.d. with distribution Dε. To alleviate the non-stationarity of
the process if q 6= 0 (notice that, for instance, Var[Xt] = Var[ε1](1−q2t)/(1−q2)
which is non-constant), we discarded the first past = 1000 observations. As in
Lobato and Velasco (2004), we take sample sizes n = 100, 500, 1000, and so,
M = n+ past. Additionaly, here we also take n = 50.

We performed 5,000 simulations in each situation, computing the p-values
using the asymptotic distributions. A slow convergence to the asymptotic dis-
tribution might be the reason why the rejection rates at level .05 under the null
hypothesis are sometimes far from the nominal level (mostly when n = 50, 100)
and even decrease under some alternatives with n (mostly for high values of |q|),
(see Tables 2, 3, 4 and 5).

Table 1: Rejection rates for 5,000 simulations for different past, with the E-test n = 100, Dε

a β(2, 1) and q = .7.

past 0 1 2 10
rejections .0750 .1378 .1998 .2210

There are some differences between our rates and those in Lobato and Ve-
lasco (2004) which might be due to the fact that their past is not large enough.
For instance, if n = 100, q = .7 and Dε is β(2, 1), with the E-test, we obtain
a rejection rate of .2214 while they obtain .080, noticeably worse. In Table 1,
we see that .080 is appropriate for past =0 and that the rejection rates increase
with past, approaching the value obtained here. The same happens with the
LV-test, but here we obtain lower rejection rates than in Lobato and Velasco
(2004). Another difference with Lobato and Velasco (2004) is in the computa-
tion of F̂k (see (5)). Indeed, in our case, it is necessary to fix β0 and c. As β0
may be as close as desired to .5, we take β0 = .5 in the simulations. We have
studied the sensitivity to c by running the LV-test under the null hypothesis for
all q’s and τn < n, n = 100, 500, 1000. It seems that c has little influence on the
rejection rates (except, perhaps, in the case q = −.9 where the rejection rate
first appears to be constant and then sharply decreases); thus, we choose c = 1.
Cases q = 0 and q = .5 are shown in Figure 1, for n = 100, 500, 1000.
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Figure 1: Rejection rates under the null hypothesis for an AR(1) process with q = 0 (top
graph), and q = .5 (bottom graph), using the LV-test, for different values of c and sample
sizes.
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Now, we mention the tests used in Tables 2, 3, 4 and 5 and comment on the
results.
E-test We choose (ξ1, ξ2) = (1, 2) as in the simulations of Epps (1987) and
Lobato and Velasco (2004).

Under the null hypothesis, the rejection rates are above the level of the test,
except for q = 0 with n = 1000, and increase with |q| except for |q| = .5 with
n = 50. Under the alternatives, this test behaves poorly when Dε is t10 and its
power decreases when |q| increases (with very low powers when |q| = .9) and
also when the sample size increases if |q| = .9 and Dε is t10, χ

2
10, U(0, 1) or

β(2, 1) (even with q = .8 when Dε = t10).
LV-test We report the results obtained using GX instead of G̃X , but this is
not too important because the rejection rates are similar in both cases.

The rejections under the null hypothesis are above the level of the test only
in 5 cases out of 32 and, in contrast with the E-test, they generally decrease
when |q| increases. This test has very low powers when |q| is large (sometimes
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Table 2: Rejection rates at level .05 of a process defined by (6). Sample size n = 50.

q Test N(0,1) log N t10 χ2
1 χ2

10 U(0, 1) β(2, 1)
E .1652 .0956 .1740 .1210 .1676 .1868 .1886

-.9 LV .0288 .0750 .0290 .0532 .0350 .0236 .0280
ELV .1444 .1346 .1288 .1362 .1252 .1468 .1478

kRP .1706 .5920 .1888 .5404 .2650 .2598 .31662
E .0818 .2386 .0584 .2964 .1318 .3682 .3092

-.5 LV .0568 .9312 .1342 .9120 .2600 .0146 .0884
ELV .0940 .9084 .1256 .8760 .2676 .2852 .2602

kRP .0946 .9528 .1546 .9532 .3288 .4158 .5126
E .0854 .6980 .0620 .8330 .2942 .8778 .7940

0 LV .0420 .9964 .1778 .9986 .4414 .0006 .1256
ELV .0792 .9980 .1678 .9992 .5008 .7386 .6872

kRP .0888 .9934 .1490 .9968 .4676 .6686 .7326
E .0826 .4464 .0532 .5694 .1364 .3896 .3476

.5 LV .0312 .9080 .0996 .8958 .2036 .0004 .0434
ELV .0730 .9220 .1142 .9182 .2370 .2978 .2690

kRP .0860 .8134 .1128 .7746 .4230 .2572 .6490
E .0920 .2460 .0656 .3410 .1284 .2502 .2472

.6 LV .0262 .8084 .0720 .7546 .1366 .0018 .0286
ELV .0750 .7934 .0936 .7502 .1684 .1880 .1868

kRP .0898 .6630 .1036 .5694 .4788 .2542 .6852
E .0924 .1326 .0812 .1826 .1116 .1772 .1650

.7 LV .0220 .6116 .0472 .4946 .0786 .0030 .0182
ELV .0768 .5818 .0834 .4746 .1220 .1226 .1202

kRP .0896 .4786 .1076 .3416 .5548 .3250 .7506
E .1186 .1060 .1088 .1108 .1234 .1506 .1480

.8 LV .0164 .3142 .0256 .2108 .0346 .0054 .0134
ELV .0830 .3090 .0826 .2186 .0972 .0974 .089

kRP .1088 .2784 .1034 .1866 .6808 .4588 .8274
E .1876 .1372 .1778 .1328 .1662 .1812 .1806

.9 LV .0124 .0696 .0140 .0490 .0152 .0038 .0072
ELV .1150 .1192 .1090 .0904 .1040 .1088 .0938

kRP .1460 .3190 .1522 .2162 .8734 .7484 .9370

even lower than the E-test) and suffers from a lack of power when Dε is U(0, 1)
or β(2, 1).
ELV-test We take ξi as described in Section 3.2, to take advantage of Corollary
3.7.

This test combines the E and LV-tests using the FDR, thus, obtaining re-
jection rates between those of the E and LV-tests although closer to the highest
one. However, the fact that ξi is chosen at random improves the performance of
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Table 3: Rejection rates at level .05 of a process defined by (6). Sample size n = 100.

q Test N(0,1) log N t10 χ2
1 χ2

10 U(0, 1) β(2, 1)
E .1264 .0508 .1104 .0656 .1124 .1390 .1354

-.9 LV .0292 .1414 .0310 .0840 .0332 .0290 .0266
ELV .0942 .1422 .0908 .1072 .0920 .1020 .1010

kRP .1380 .8070 .1742 .7576 .3076 .2620 .3902
E .0724 .6780 .0556 .8514 .2058 .5408 .4914

-.5 LV .0504 .9986 .1692 .9986 .4602 .0102 .1696
ELV .0774 .9976 .1582 .9972 .4552 .4454 .4154

kRP .0752 .9998 .1980 1 .5824 .6404 .7460
E .0632 .9616 .0830 .9964 .5372 .9918 .9704

0 LV .0458 1 .2820 1 .7898 .5404 .7520
ELV .0732 1 .2402 1 .8074 .8596 .8706

kRP .0772 1 .2288 1 .7640 .8496 .9054
E .0682 .8594 .0608 .9582 .2610 .5618 .5562

.5 LV .0384 .9990 .1696 .9982 .4118 .0010 .1102
ELV .0642 .9990 .1444 .9988 .4700 .4680 .4882

kRP .0750 .9908 .1132 .9880 .5226 .3256 .7500
E .0710 .6118 .0582 .8106 .2006 .3462 .3650

.6 LV .0358 .9884 .1162 .9772 .2858 .0012 .0592
ELV .0640 .9882 .1144 .9832 .3218 .2800 .3086

kRP .0802 .9536 .1030 .9262 .5164 .2580 .7744
E .0838 .3250 .0626 .4640 .1492 .2032 .2214

.7 LV .0260 .9076 .0814 .8196 .1610 .0036 .0334
ELV .0714 .9042 .0866 .8448 .1998 .1634 .1802

kRP .0784 .8022 .0926 .7010 .5754 .2902 .8060
E .1034 .1552 .0810 .2004 .1324 .1620 .1596

.8 LV .0206 .6146 .0466 .4406 .0708 .0046 .0166
ELV .0726 .6118 .0796 .4488 .1122 .1154 .1136

kRP .0896 .4928 .0932 .3264 .6766 .3950 .8782
E .1752 .1264 .1618 .1368 .1612 .1870 .1680

.9 LV .0106 .1558 .0094 .0714 .0150 .0054 .0086
ELV .1074 .1844 .0968 .1190 .0980 .1182 .1072

kRP .1168 .1982 .1174 .1338 .8702 .6788 .9662

the E-test and this means that, sometimes, the ELV-test performs better than
the E and LV-tests.

kRP-test We apply this test following the steps described in Subsection 3.2.
However, here we take k = 1 to stress the usefulness of the test in its worst
circumstances.

Under the alternative, the 1RP-test has the highest rejection rates when
q < 0. The most striking behavior occurs for q = .9 and Dε = χ2

10 or β(2, 1),
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Table 4: Rejection rates at level .05 of a process defined by (6). Sample size n = 500.

q Test N(0,1) log N t10 χ2
1 χ2

10 U(0, 1) β(2, 1)
E .0744 .3720 .0584 .2162 .0712 .0918 .0850

-.9 LV .0708 .8838 .0840 .6202 .1142 .0462 .0754
ELV .0780 .8604 .0924 .5400 .1116 .0866 .0952

kRP .0810 .9990 .2260 .9928 .6924 .4630 .6918
E .0594 1 .1334 1 .7730 .9924 .9922

-.5 LV .0472 1 .4580 1 .9960 .9656 .9976
ELV .0476 1 .3784 1 .9912 .9514 .9914

kRP .0490 1 .5090 1 .9998 .9946 1
E .0566 1 .3292 1 .9982 1 1

0 LV .0480 1 .7428 1 1 1 1
ELV .0510 1 .6756 1 1 1 1

kRP .0554 1 .6188 1 1 1 1
E .0654 1 .1476 1 .8808 .9918 .9960

.5 LV .0454 1 .4340 1 .9972 .9704 .9988
ELV .0516 1 .3816 1 .9924 .9504 .9962

kRP .0618 1 .2656 1 .9610 .7440 .9634
E .0566 .9998 .1026 1 .7084 .8286 .9090

.6 LV .0470 1 .3336 1 .9582 .4678 .8858
ELV .0570 1 .2692 1 .9388 .6944 .8870

kRP .0610 1 .1794 1 .8604 .4730 .9006
E .0708 .9996 .0786 1 .4704 .4042 .5810

.7 LV .0474 1 .1970 1 .7592 .0644 .4040
ELV .0598 1 .1670 1 .7332 .3640 .5768

kRP .0702 1 .1282 1 .6986 .2616 .8786
E .0776 .9780 .0710 .9638 .2500 .1948 .2564

.8 LV .0744 .9998 .0976 .9980 .3908 .1524 .2628
ELV .0702 .9998 .1102 .9978 .3972 .1848 .2960

kRP .0710 .9986 .0910 .9908 .6834 .2484 .9208
E .1156 .5708 .0944 .4674 .1526 .1430 .1560

.9 LV .0232 .8356 .0370 .5404 .0764 .0138 .0336
ELV .0802 .8708 .0838 .6378 .1490 .1092 .1390

kRP .0860 .7996 .0770 .5510 .8430 .4818 .9772

as the rejection rates are larger than .8 while the second most successful test
remains below .25. The remaining rejection rates are among those obtained with
the E, G and ELV tests but closer to the highest, sometimes, even outperforming
the other tests.

The reason for the behavior of the 1RP-test when q = .9 is that when
computing the random projections, the structure of the process changes and
it happens that the new structure of the process makes it easier to detect the
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Table 5: Rejection rates at level .05 of a process defined by (6). Sample size n = 1000.

q Test N(0,1) log N t10 χ2
1 χ2

10 U(0, 1) β(2, 1)
E .0648 .7836 .0578 .4572 .0826 .0888 .0942

-.9 LV .0902 .9934 .1206 .8932 .2448 .0760 .1358
ELV .0880 .9856 .1002 .8560 .2190 .1004 .1450

kRP .0940 1 .3344 .9998 .8686 .5876 .8056
E .0530 1 .2574 1 .9764 1 1

-.5 LV .0436 1 .6778 1 1 1 1
ELV .0450 1 .6040 1 1 1 1

kRP .0378 1 .7498 1 1 1 1
E .0490 1 .5946 1 1 1 1

0 LV .0546 1 .9364 1 1 1 1
ELV .0486 1 .9162 1 1 1 1

kRP .0422 1 .8734 1 1 1 1
E .0550 1 .2534 1 .9966 1 1

.5 LV .0482 1 .6788 1 1 1 1
ELV .0424 1 .6016 1 1 1 1

kRP .0484 1 .4348 1 .9994 .9738 .9996
E .0566 1 .1718 1 .9580 .9800 .9974

.6 LV .0472 1 .5112 1 .9996 .9724 .9996
ELV .0464 1 .4234 1 .9996 .9550 .9986

kRP .0584 1 .2812 1 .9902 .7110 .9804
E .0594 1 .1162 1 .7720 .6338 .8632

.7 LV .0418 1 .3104 1 .9744 .3642 .8830
ELV .0558 1 .2380 1 .9672 .5642 .8724

kRP .0598 1 .1754 1 .8888 .3554 .9036
E .0690 .9998 .0720 1 .4342 .2288 .4108

.8 LV .0500 1 .1638 1 .6804 .0432 .3284
ELV .0670 1 .1294 1 .6708 .2216 .4450

kRP .0654 1 .0996 1 .7144 .1920 .9076
E .0902 .9152 .0880 .7690 .1836 .1170 .1686

.9 LV .0346 .9944 .0636 .9136 .1574 .0174 .0574
ELV .0690 .9926 .0798 .9206 .2178 .1040 .1596

kRP .0736 .9844 .0678 .8580 .8328 .3946 .9774

non-Gaussianity.

4.1. An alternative with the Gaussian marginal

To check the power of the kRP test against an alternative with the Gaussian
marginal, we use Example 2.3 of Cuesta-Albertos and Matrán (1991). For its
construction, let p > 2 be a prime number, and Y0, U and {Zm·p,m ∈ N}
be i.i.d. r.v.’s uniformly distributed on S := {0, 1, . . . , p − 1}. Let Zm·p+j be
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the sum modulus p of Zm·p and jY0, j ∈ S,m ∈ N. In Cuesta-Albertos and
Matrán (1991), it is proved that the sequence Wn = Zn+U is stationary and
composed of pairwise independent r.v.’s, which are not mutually independent
as Wn−U , . . . ,Wn−U+p−2 determine Wn−U+p−1 because, for every m ∈ N,

p(p− 1)/2 =
∑p−1
i=0 Wmp−U+i if Y0 6= 0 and

Wmp−U = . . . = Wmp−U+p−1 if Y0 = 0.
(7)

Given k ∈ S, let qj be the j/p-th quantile of the N(0, 1). If Wn = j,
let W ∗n be a N(0, 1) conditioned to (qj , qj+1), independent of all the other
r.v.’s. Since Wn is uniformly distributed on S, W ∗n is N(0, 1), and {W ∗n} is
a stationary sequence of pairwise independent Gaussian r.v.’s. However, if
n > p − 1 and we know the values W ∗n−U , . . . ,W

∗
n−U+p−2, we can recover the

values Wn−U , . . . ,Wn−U+p−2 and, by (7), deduce the value Wn−U+p−1, know-
ing the interval in which W ∗n−U+p−1 lies. Thus, the process is not Gaussian as
{W ∗n} are not mutually i.r.v.’s.

We have simulated the previous process 5000 times for different values of p
and sample sizes n = 100, 500, 1000 and applied the 1RP test at level α = .05,
with the results shown in Table 6.

Table 6: Rejection rates of the process W∗ tested with kRP at level α = .05.

Sample sizes p = 3 p = 5 p = 7 p = 11 p = 13 p = 17
n = 100 .1268 .1676 .1516 .1602 .1380 .1146
n = 500 .3654 .4938 .5154 .5822 .5590 .5588
n = 1000 .6386 .6814 .7250 .7802 .7608 .7700

For the sake of comparison, Table 7 shows the rejection rates of the E, LV and
ELV tests for p = 5. Those tests are intended to detect non-Gaussian marginals
and since this process has the Gaussian marginal, these tests should give powers
at the nominal level. Surprisingly, we see that the obtained rates decrease with
n and are well below the intended level, except for the ELV test with n = 100.

The reason for this is that the process is not conditionally stationary given
Y0: for instance, we have that given Y0 = 0, IP [Wmp−U = Wmp−U+1] = 1 6=
IP [Wmp−U−1 = Wmp−U ]. In fact, what happens is that, in some sense, the
observed trajectories of the process W∗ are closer to Gaussianity than those
produced by a Gaussian process, because when we generate observations of
a Gaussian process, approximately a proportion of 1/p of observations are in
the interval (qk, qk+1), with k ∈ {0, . . . , p − 1}. However, when Y0 6= 0 (which
happens with probability 1−p−1) the process W∗ generates exactly a proportion
of 1/p of observations in each interval (qk, qk+1). Thus, it has a “more Gaussian”
behavior than expected. Consequently, the rejection rates are lower than .05
(Table 7) and this fact becomes more apparent when n increases.
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Table 7: Rejection rates of W∗ with p = 5 using E, LV, EVL and kRP, α = .05.

Sample kRP-test.
size E-test LV-test EVL-test k = 1 k = 2 k = 8 k = 64
n = 100 .0338 .0372 .0520 .1676 .1906 .2288 .2674
n = 500 .0266 .0336 .0336 .4938 .5772 .6988 .8064
n = 1000 .0186 .0326 .0206 .6814 .7688 .8498 .8628

4.2. Taking more random projections

Although the rejection rates in Table 6 are above the nominal levels, they
are not high, especially when the sample size is 100. To improve them, we can
increase the number of random projections. That is, we take a higher k. Table 7
shows how an increase in the number of random projections noticeably improves
the rejection rates.

4.3. Proposed test for practitioners

This subsection is mainly devoted to readers whose aim is to understand how
to apply the proposed test, and possibly use the provided code, while skipping
the details of the paper. Thus, here we detail comprehensively how the test
should be applied from start to finish on a given dataset.

Simulation of the dataset

Let us simulate a dataset from an AR(1) process Xt = .5Xt−1 + εt, t ∈ Z,
where εt are i.i.d. r.v.’s with distribution, say, chi-squared with 10 degrees of
freedom. We simulate the process taking X1 = ε1, and Xt = .5Xt−1 + εt, t =
2, ...,M. To get a process of size n, for instance n = 100, M = n+ 1000 in order
to alleviate the non-stationarity of the process. Thus, we get a realization of
the process we can denote by x = (x1, . . . , xn).

What follows is done k times, with for example k = 64.

The vectors in which to project

For each i ∈ {1, . . . , k} the dataset, x, is projected in four different vectors
h(i,j), j = 1, . . . , 4, that are drawn using the following procedure. For each (i, j),
let β0, . . . , βn−1 be fixed realizations of independent and identically distributed
beta distributions with parameters (100, 1) for j = 1, 2 and (2, 7) for j = 3, 4.
Thus,

h = (
√
l0,
√
l1, 2

√
l2, . . . ,m

√
lm)T ,

with m = 1 + min{min{t : ‖h‖ ≥ 1− 10−15}, n− 1}, l0 = β0 and lt = βt · (1−∑t−1
s=0 ls) for t = 1, . . .m. Note the abuse of notation w.r.t. Subsection 3.2.
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The projected process

For each i ∈ {1, . . . , k} there are four projections of x, they are y(i,j) =

(y
(i,j)
1 , . . . , y

(i,j)
n ), j = 1, . . . , 4, where

y
(i,j)
t =

min(m,t)∑
s=0

h(i,j)s xt−sas, with t = 1, . . . , n,

with a0 := 1 and at = t−2, t ≥ 1. Then, let us apply:

1. The E-test to y(i,1) to obtain the p-value p(i,1).
2. The L-V-test to y(i,2) to obtain the p-value p(i,2).
3. The E-test to y(i,3) to obtain the p-value p(i,3).
4. The L-V-test to y(i,4) to obtain the p-value p(i,4).

Note that for the E-test and the L-V-test we mean the improved versions of
Epps (1987) and Lobato and Velasco (2004) developed in this paper.

The E-test

Using the notation in Section 2, the statistic nQn(µn, γn, (ξ1/
√
γ̂, ξ2/

√
γ̂))

follows a chi-squared with 2 degrees of freedom, where, with slight abuse of
notation, ξj is the realization of the absolute value of a N(0, j), j = 1, 2.

The L-V-test

Taking into account the notation in Section 2, the statistics is nµ̂2
3/(6|F̂3|)+

n(µ̂4 − 3µ̂2
2)2/(24|F̂4|), with F̂k = 2

∑b√nc
t=1 γ̂(t)(γ̂(t) + γ̂(b

√
nc + 1 − t))k−1 +

γ̂k. This statistics follows a chi-squared with 2 degrees of freedom. Thus, the
computation of this test is quite straightforward.

The p-value

Finally, we have p(i,j), i = 1, . . . , k, j = 1, . . . , 4 that we combine using the
FDR to obtain a p-value for the global procedure, p0. For that we first order
the p-values increasingly p(1) ≤ . . . ≤ p(4k). Thus,

p0 = 4k

4k∑
i=1

i−1 min
i=1,...,4k

p(i)/i.

5. An empirical study

We analyze two real data sets: the Canadian lynx and the Wolfer sunspot,
which were previously found to be non-Gaussian (Rao and Gabr, 1980; Epps,
1987).

The Canadian lynx data consists in the annual record of the number of
lynxes trapped in the Mackenzie River district of the North-West Canada for
the period from 1821 to 1934 while the Wolfer sunspot data consists in the
annual record of the sunspot activity in the period from 1700 to 1960. We have
applied the 1RP-test to both, with the p-values displayed in Table 8 together
with those obtained in previous studies. The similarity between all of them is
quite clear.
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Table 8: p-values for the kRP-test, E-test and RG-test Rao and Gabr (1980) tests.

Data set 1RP-test E-test RG-test
lynx 1.029× 10−4 1.402× 10−5 1.084× 10−4

sunspot 1.314× 10−6 7.356× 10−6 2.818× 10−4

6. Discussion

In this paper, we introduce the kRP-test, intended to check the Gaussianity
of stationary processes. Given a sample, this test is based on a three-step
procedure. First, a vector h must be drawn at random in a suitable Hilbert
space. Then, the sample is sequentially projected on the one-dimensional space
spanned by h. Finally, we take advantage of the fact that, with probability one,
if the marginal of the projected process is Gaussian, then the initial process
is Gaussian. Therefore, all that is needed is to use a test that can check the
Gaussianity of the marginal of a stationary process, such us, for instance the
E-test or LV-test or a combination of these.

From a theoretical point of view, just one random projection is enough to
carry out the test. However, a way to improve the power is to consider a larger
number of projections. These projections are computed using two different beta
distributions. The obtained p-values are mixed together using the FDR, which,
in spite of being slightly conservative, gives reasonable results.

The comparison of the kRP-test with the E and LV-tests (as well as with a
combination of these) in situations where the marginal is not Gaussian is accept-
able and there are even cases in which the kRP-test is clearly better. Moreover,
the kRP-test is able to detect alternatives with the Gaussian marginal, while
the other tests are not designed to perform this task.
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Appendix

Proof of Proposition 3.1. Let α = α1/(α1 +α2) be the mean of the β(α1, α2)
distribution. Let us begin by proving that

E[ln] = α(1− α)n, for every n ∈ N∗. (8)

23



This, obviously holds for n = 0. Let us assume that it is satisfied for n ∈ N∗
and let us show that it holds for n + 1. By construction, if B is a r.v. with
distribution β(α1, α2), then

E[ln+1] = E[B](1−
n∑
i=0

E[li]) = α(1−
n∑
i=0

α(1− α)i) = α(1− α)n+1,

where the last equality comes from the application of the formula giving the
sum of n numbers in a geometric progression.

We have that ‖H‖ =
∑∞
i=0H

2
i ai =

∑∞
i=0 li ≤ 1 by construction; and the

proposition follows from here because (8) gives that E [‖H‖] =
∑∞
i=0 α(1−α)i =

1.

Lemma A.1. Let X be an ergodic and stationary process such that
∑∞
t=0 |γX(t)| <

∞. If we select H as in Section 3. Then,

1.
∑∞
i=0Hiai <∞ almost surely.

2. L :=
∑∞
i,j=0HiHjaiaj |X−i − µX ||Xt−j − µX | is integrable conditionally

to H a.s.

Proof. Item 1 is straightforward since the Cauchy-Schwartz inequality gives

∞∑
i=0

Hiai ≤

( ∞∑
i=0

li

)1/2(
1 +

∞∑
i=1

1/i2

)1/2

=

(
1 +

∞∑
i=1

1/i2

)1/2

<∞ a. s.,

where the last equality comes from Proposition 3.1.
To prove 2, let h = (h0, h1, . . .) be a fixed realization of H. We have

E[L|h] =

∞∑
i,j=0

hihjaiajE[|X−i − µX ||Xt−j − µX |]

≤
∞∑

i,j=0

hihjaiaj(E[(X−i − µX)2])1/2(E[(Xt−j − µX)2])1/2

= γX

( ∞∑
i

hiai

)2

and so, L is conditionally integrable due to 1 and that γX ≤
∑∞
t=0 |γX(t)| <

∞.
Proof of Proposition 3.2. (Xt)t∈Z is a stationary ergodic process. Thus,

conditionally on h, (Yt)t∈Z is also a stationary ergodic process (Doob, 1953, p.
458). From the definition of the process Y we have

E[|Y0| |h] ≤ E

[ ∞∑
i=0

hiai|X−i|

∣∣∣∣∣h
]

= E[|X0|]
∞∑
i=0

hiai <∞, a.s.
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because of 1 in Lemma A.1. From 2 in Lemma A.1, we may deduce that

γY |h(t) = E[

∞∑
i,j=0

hihjaiaj(X−i − µX)(Xt−j − µX) |h]

exists. Thus, using the dominated convergence theorem, we obtain that

γY |h(t) =

∞∑
i,j=0

hihjaiajγX(t− j + i),

and
∞∑
t=0

tζ |γY |h(t)| ≤
∞∑

i,j=0

hihjaiaj

∞∑
t=0

tζ |γX(t− j + i)|.

Obviously,

∞∑
i,j=0

hihjaiaj

∞∑
t=0

tζ |γX(t− j + i)| =: T1 + T2 + T3,

where

T1 =

∞∑
j=0

hjaj

∞∑
i=j

hiai

∞∑
t=0

tζ |γX(t− j + i)|,

T2 =

∞∑
j=0

hjaj

j−1∑
i=0

hiai

∞∑
t=2j+1

tζ |γX(t− j + i)| and

T3 =

∞∑
j=0

hjaj

j−1∑
i=0

hiai

2j∑
t=0

tζ |γX(t− j + i)|.

If i ≥ j, as t ∈ N∗ and ζ ≥ 0, we have tζ ≤ (t− j + i)ζ . Thus,

T1 ≤
∞∑
j=0

hjaj

∞∑
i=j

hiai

∞∑
t=0

(t−j+i)ζ |γX(t−j+i)| ≤
∞∑
j=0

hjaj

∞∑
i=j

hiai

∞∑
t=0

tζ |γX(t)|,

because t − j + i ≥ t. Then,
∑∞
t=0 t

ζ |γX(t)| < ∞ and so, 1 in Lemma A.1
implies T1 < ∞. Concerning T2, as j > i and t − j + i > 0, we can apply the
cζ−inequality (Loève, 1977, p. 157) to t = (t − j + i) + (j − i) to obtain that
there exists cζ > 0 such that tζ ≤ cζ(t − j + i)ζ + cζ(j − i)ζ ≤ 2cζ(t − j + i)ζ .
Thus,

T2 ≤ 2cζ

∞∑
j=0

hjaj

j−1∑
i=0

hiai

∞∑
t=2j+1

(t− j + i)ζ |γX(t− j + i)|

≤ 2cζ

∞∑
j=0

hjaj

j−1∑
i=0

hiai

∞∑
t=0

tζ |γX(t)|.
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Using the same tricks as for T1, we obtain that T2 < ∞. For T3, the fact
that

∑∞
t=0 t

ζ |γX(t)| <∞ implies that there exists R > 0 such that |γX(t)| ≤ R
for all t ∈ Z. Therefore,

T3 ≤ R(

∞∑
i=0

hiai)

∞∑
j=0

hjaj(2j)
ζ(2j + 1) =: R(

∞∑
i=0

hiai)T
∗
3 .

By 1 in Lemma A.1, in order to show that T3 <∞, we only need to prove that
T ∗3 < ∞. Furthermore, applying Jensen’s inequality and 8 in Proposition 3.1,
we have that

E[T ∗3 ] ≤
∞∑
j=0

a
1/2
j (2j)ζ(2j + 1)α1/2(1− α)j/2.

This series converges because α ∈ (0, 1); so that, T ∗3 is almost surely finite and
the proof ends.

Proof of Lemma 3.3. It is straightforward from the proof of Lemma 4.1 in
Epps (1987) but substituting (2) and Gebelein’s inequality for Gaussian pro-
cesses by (4).

Proof of Lemma 3.4. Proceeding as in Epps (1987) we have that Θ0(λ) is
contained or equal to

{(ν, γY ) : νλ1 = µY λ1 + 2πk and νλ2 = µY λ2 + 2πk∗, with k, k∗ ∈ Z}.

In order to get that the cardinal of Θ0(λ) is larger than one, we need λ2 to be
equal to a rational number times λ1. However, this happens with probability
zero and so, with probability one Θ0(λ) ⊆ {(µY , γY )}. Thus, the lemma follows
directly.

In the next lemma, we use analytic ch.f.’s. A precise definition and some
properties appear in Laha and Rohatgi (1979).

Lemma A.2. Let P be a Borel probability measure defined on R. Assume that
P is absolutely continuous with respect to the Lebesgue measure. Let Y be a r.v.
such that the modulus of its ch.f. |ΦY | is analytic. Then, Y is Gaussian if, and
only if,

∃m ∈ R, ∃s ∈ R+ s.t. P ({y ∈ R : |ΦY (y)| = |Φm,s(y)|}) > 0. (9)

Proof. The necessary part is obvious. Let us prove the sufficiency. As
Y satisfies (9), and P is absolutely continuous, we have that C := {y ∈ R :
|ΦY (y)| = |Φm,s(y)|} is infinite and not denumerable and so, it has at least one
accumulation point.

Furthermore, the function y → |ΦY (y) − Φm,s(y)| is analytic, and vanishes
on C. Thus, this function has one non-isolated zero but the only analytical
function with at least one non-isolated zero is the null function (Rudin, 1966).
The proof ends because a distribution is Gaussian if and only if the modulus of
the ch.f. coincides with the modulus of a Gaussian ch.f.
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Proof of Theorem 3.6. If X is Gaussian, then Y is Gaussian and Proposition
3.2 gives that Y satisfies the assumptions of Corollary 3.5. This fulfills the
necessary part.

Let us prove the sufficient part. As (Pλ ⊗ PH)[B] > 0, there exist h and λ
with λ1 6= 0 and λ2 6= 0 such that nQn(µn, γn, λ) converges in law to a non-
degenerate distribution. We assume without loss of generality that ΦY0

(λ1) 6= 0
and ΦY0(λ2) 6= 0. As ΦY0 is an analytic ch.f., it has only isolated zeros. Thus

Qn(µn, γn, λ) converges in probability to zero. By Lemma 3.3, f̂(0, λ) converges
to fY|h(0, (µY |h, γY |h), λ). Thus, limnG

+
n is positive definite as it is the inverse

of 2πfY|h(0, (µY |h, γY |h), λ). This and the definition of Qn(·, ·, ·) (see Section
2.1) gives

ĝ(λ)− gµn,γn(λ)→c.p. 0. (10)

Since X is an ergodic stationary process, we have that (g(Yt, λ))t∈Z is also an
ergodic stationary process (Doob, 1953, p. 458). Thus, as E| cos(λiY0)| < ∞
and E| sin(λiY0)| < ∞ for all i = 1, ..., N, we may conclude by Theorem 2 in
Hannan (1970, chap IV) that ĝ(λ) →c.p. E[g(Y0, λ)]. This and (10) gives that
Φµn,γn(λi) converges in probability to ΦY0(λi), i = 1, ..., N .

Now we show that this implies that the sequence {γn}n∈N converges. We
have that

lim
n→∞

|Φµn,γn(λ1)| = lim
n→∞

exp(−λ21γn/2) = |ΦY0(λ1)|,

in probability. Now, since λ1 6= 0 and ΦY0
(λ1) 6= 0, this implies that there exists

s ∈ R such that s = limn→∞ γn in probability.
Analogously,

|ΦY0
(λ2)| = lim

n→∞
exp(−λ22γn/2) = exp(−λ22s/2).

As λ2 was drawn independently of λ1 with an absolute continuous distribu-
tion and as |ΦY0 | is analytic, Lemma A.2 gives that Y0 is Gaussian. Then, by
Theorem 1.1, the process X is Gaussian.

Proof of Theorem 3.9. Using Proposition 3.2 for ζ = 0 we get that (Yt)t∈Z is
an ergodic and stationary process with

∑∞
t=0 |γ(t)| <∞. If (Xt)t∈Z is Gaussian,

the process (Yt)t∈Z is also Gaussian. Thus, the assumptions of the first part of
Theorem 2.3 hold for the process (Yt)t∈Z and so G̃Y −→d χ

2
2.

As Y is Gaussian, we have that Fk > 0 for k = 3, 4 (Gasser, 1975, p. 568).
Repeating the proof of Lemma 1 in Lobato and Velasco (2004), we have that
limn→∞ F̂k = Fk and so, we may conclude that limn→∞GY = limn→∞ G̃Y .
This shows 1.

Let us now prove statement 2. First, let us show that E[|Y |k|h] <∞, almost
surely, for k = 1, ..., 4. By Hölder’s inequality, we have

|Y0| ≤

( ∞∑
i=0

ai

)1/2( ∞∑
i=0

h2i aiX
2
−i

)1/2
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and, as by Proposition 3.1
∑∞
i=0 h

2
i ai = 1, almost surely, we can apply Jensen’s

inequality. We obtain that

Y 4
0 ≤

( ∞∑
i=0

ai

)2( ∞∑
i=0

h2i aiX
4
−i

)
, almost surely.

Thus, E[|Y0|k|h] <∞, almost surely, for k = 1, ..., 4. By Doob (1953, p. 458), we
have that

(
Y kt
)
t∈Z is stationary and ergodic, for all k = 1, ..., 4. Thus, Theorem

2 in Hannan (1970, chap IV) implies

lim
n→∞

µ̂k = µk, for almost every h and k = 2, 3, 4. (11)

Further, let us prove that limn→∞ |F̂k| <∞ for almost every h and k = 3, 4.
As

F̂k = γ̂kY + 2

τn∑
t=1

k−1∑
j=0

(
k − 1

j

)
γ̂Y (t)k−j γ̂Y (τn + 1− t)j

and |ak−jbj | ≤ |a|k + |b|k, with k ∈ N, j ∈ N and j < k, we have

|F̂k| ≤ |γ̂Y |k + 2k
τn∑
t=1

(|γ̂Y (t)|k + |γ̂Y (τn + 1− t)|k)

and so, |F̂k| ≤ 2k+1(
∑τn
t=0 |γ̂Y (t)|)k. Let us prove that limn→∞

∑τn
t=0 |γ̂Y (t)| <

∞. Note that as E[X4
0 ] <∞, we also have∞ > E[(X0−µX)4] which is equal to

∞∑
j1,...,j4=1

4∏
r=1

k(jr)E

[
4∏
r=1

εn−jr

]
= E[ε41]

∞∑
j=1

k(j)4 + E[ε21]2
∞∑

i,j=1,i6=j

k(i)2k(j)2.

Indeed, (εn) are i.i.d. r.v.’s with E[ε1] = 0. Thus E[ε41] < ∞. By Kavalieris
(2008), we obtain

|
τn∑
t=0

(|γ̂X(t)| − |γX(t)|) | ≤ (τn + 1)o(n2/α−1) = o(1).

Therefore, limn→∞
∑τn
t=0 |γ̂X(t)| < ∞. Proceeding similarly as in the proof of

Proposition 3.2, we get limn→∞
∑τn
t=0 |γ̂Y (t)| < ∞ and so, limn→∞ |F̂k| < ∞

for k = 3, 4 a.s. Using (11) we conclude that 2 holds.
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