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Abstract

Gaussianity tests have being widely studied in the literature. Regarding the
study of Gaussianity tests for stationary processes, these only verify the Gaus-
sianity of a marginal at a fixed finite order, generally order one. Therefore,
they do not reject stationary non-Gaussian processes with the one-dimensional
Gaussian marginal. Thus, a consistent test is proposed for Gaussianity of sta-
tionary processes when a finite sample path of the process is observed. Using
random projections, decision rules are applied to the whole distribution of the
process and not only on its marginal distribution at a fixed order, as in previous
tests. The main idea is to test the Gaussianity of the one-dimensional marginal
distribution of some random linear transformations of the process. Note that
testing the one-dimensional marginal distribution can be done with previous
tests of Gaussianity for stationary processes. It is shown by both theoretical
and empirical studies that the proposed test procedure has good properties for
a wide range of alternatives.

Keywords: Normality Test, Strictly Stationary Random Process, Random
Projection, Consistent Test

1. Introduction

Very often, observed data are a finite path of real temporal phenomena mod-
eled as a second order stationary process. Adding the Gaussianity assumption,
the process possesses a lot of beneficial properties as regards their statistics or
prediction and, in particular, it becomes strictly stationary. This means that
the law of the process is invariant if the time is shifted.
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In this paper, the processes are assumed to be integrable and stationary
stands for strictly stationary. We consider tests for Gaussianity of stationary
processes. Let X := (X;)iez be a stationary process of real-valued random
variables (r.v.’s). Our aim is to test:

Hp : X is Gaussian  versus H, : X is not Gaussian. (1)

Conventional goodness-of-fit tests such as Kolmogorov-Smirnov or Cramér
von Mises (D’Agostino and Stephens, 1986) cannot be used here, since their
asymptotic distributions are not clear in the context of stationary processes and
they are in general not distribution free under the null hypothesis. Other re-
cent tests as in Liu and Maharaj (2013); Ghoudi and Rémillard (2013) do not
apply here either since they are intended for particular types of dynamic data
generating schemes. The problem has attracted attention over the last three
decades. Researchers have proposed tests based on the analysis of the empir-
ical characteristic function (ch.f.) (Epps, 1987), of the skewness and kurtosis
(Lobato and Velasco, 2004, the so-called Jarque-Bera test), of both the em-
pirical ch.f. and the skewness and kurtosis (Moulines and Choukri, 1996) and
the bispectral density function (Rao and Gabr, 1980). An important drawback
of these tests is that they only consider a finite order marginal of the process
(generally order one). Obviously, this provides tests at the right level for the in-
tended problem; but these are at the nominal power against some non-Gaussian
alternatives, such as stationary non-Gaussian processes having one-dimensional
Gaussian marginal.

This paper is inspired by the work on random projections of Cuesta-Albertos
et al. (2007), particularly in Theorem 1.1 below. It is well known that a dis-
tribution is Gaussian if and only if all of its one-dimensional projections are
Gaussian. The existence of non-Gaussian distributions with some Gaussian
one-dimensional projections is also well known. However, Theorem 1.1 shows
that the Gaussian projections of a non-Gaussian distribution, if any, are very
scarce. To be more precise, if we take at random a one-dimensional projection
of a non-Gaussian distribution, then, with probability one, this projection will
be non-Gaussian.

The following theorem uses the notion of dissipative distribution (Definition
2.1). H denotes a separable Hilbert space.

Theorem 1.1 (Cuesta-Albertos et al., 2007). If n is a dissipative distribution
on H and D is an H-valued random element, then, D is Gaussian if and only
if n(E) > 0, where

E={hcH: the distribution of (D, h) is Gaussian }.

The importance of this result lies in the fact that if n is dissipative then the
following 0 — 1 law holds

n({h € H: the distribution of (D,h) is Gaussian}) € {0, 1}.
Moreover, D is not Gaussian if, and only if,

n({h € H: the distribution of (D,h) is Gaussian}) = 0.



Additionally, D is Gaussian if, and only if,
n({h € H: the distribution of (D,h) is Gaussian}) = 1.

In other words, if we are interested in whether the distribution of D is
Gaussian, then the only thing we have to do is to select at random a point
h € H using a dissipative distribution and check if the real-valued random
variable (D, h) is Gaussian. We will obtain the right answer with probability
one.

From this result, we have that a test at the level a for the Gaussianity
of a randomly chosen (one-dimensional) projection, is also a test at the same
level to test the Gaussianity of the process X. We also have that a consistent
Gaussianity test applied to the projection, is, in fact, a consistent test for the
Gaussianity of the full process X. This property was used in Cuesta-Albertos et
al. (2007) to construct a Gaussianity test when a random sample of trajectories
is available. Let us explain these aspects in greater detail with the help of an
example.

Example 1.2. Let us begin by a question: Is it worth considering that the
text you have read in this paper so far has been produced by a random letter
generator? l.e., is it worth to consider the assumption that the text in the
previous paragraphs have been produced by a mechanism which chooses with
equal probability every key in a computer keyboard, with probability a half to
press the “capital” key? Obviously, the answer is no, because a text like the
one in the previous paragraphs has not been written by chance, despite the fact
that the probability of obtaining such a text just by chance is not zero: it is
extremely small but strictly positive.

Moving back to the Gaussianity problem, let X be a process and let us
select randomly a one-dimensional projection. According to Theorem 1.1, if the
partner distribution is not Gaussian, the probability for the chosen projection
to be Gaussian is zero. Let us stress this point: this probability is zero; it is
not extremely small, like in the previous example, but zero. Therefore, if the
partner distribution is not Gaussian, we will not obtain a Gaussian projection;
and if we obtain a Gaussian projection, we will conclude that X is Gaussian.

Returning to the Gaussianity test of stationary processes; in this setting,
we do not have a random sample of trajectories but a sequence of observations
taken on a fixed trajectory. Thus, the theory developed in Cuesta-Albertos
et al. (2007) can not be applied directly. The good news is that, similarly
as in Example 1.2, Theorem 1.1 transforms the analysis of the Gaussianity of
the process X in the analysis of the Gaussianity of a randomly chosen one-
dimensional projection as follows.

Assume that we have the stationary process X = (X¢);ez. Then, randomly
select a vector h := (hy)ten (technical details on its construction are given in
Section 3) and construct the new process Y" = (V;*),cz where

oo
h
Yt = E hithi, teZ:
i=0



Theorem 1.1 implies that if X is not Gaussian, then, with probability one, the h
we have chosen makes Y;* non-Gaussian. In other words, if X is not Gaussian,
then the one-dimensional marginal of Y" is not Gaussian for almost every h.

Once h has been fixed, the process Y™ is also stationary and we can employ
one of the above mentioned tests to test the Gaussianity of the marginals of
Y" as those tests were designed, precisely, to test the Gaussianity of a given
one-dimensional marginal. With this, according to the preceding reasoning, in
fact, we are testing the full Gaussianity of the X.

The particular procedure used to test the Gaussianity of the marginal dis-
tribution of Y" is left to the practitioner. Here, we use improved versions of
the tests proposed in Epps (1987) and Lobato and Velasco (2004), obtaining
a test consistent against every stationary alternative satisfying some regularity
conditions (see Section 4.3 the explanation on how we have applied the test).

However, an important fact to be taken into account is that, under the
alternative, it may happen that we we are dealing with a projection in which
the non-Gaussianity is not too easy to be ascertained. To tackle this problem,
we follow the proposal made in Cuesta-Albertos et al. (2007) consisting in taking
more than one projection, carrying out the test on each projection and then,
mixing the p-values using the False Discovery Rate, as suggested in Benjamini
and Yekutieli (2001).

The paper is structured as follows. Section 2 contains the notation, some
results concerning the random projection method and previous Gaussianity tests
for stationary processes. The new test is proposed in Section 3, followed by
details on its practical application. Section 4 reports some simulation studies
and includes a section to learn to apply the proposed test without the need to
read the paper in detail. An study on real data sets is carried out in Section 5.
A discussion on the procedure appears in Section 6. All the proofs are deferred
to the Appendix. Computations were performed using MatLab (except where
otherwise stated).

2. Notation and preliminaries

We assume that all random elements (r.e.’s) are defined on the same suf-
ficiently rich probability space (2,0, IP). H denotes a separable Hilbert space
with inner product (-, -) and norm || - ||. {v,}22, is a generic orthonormal basis
of H and V,, is the n-dimensional subspace spanned by {vi,...,v,}. For any
V C H, V* denotes its orthogonal complement. If D is an H-valued r.e., Dy is
the projection of D on V.

The beta distribution with parameters «;, s will be denoted B(a1,as);
N(v, p) is the one-dimensional normal distribution with mean v and variance p,
and @, , is its ch.f.

Let X be a stationary process and let px := E[Xo], px i = E[(Xo — px)¥]
E > 1, and vx(t) := E[(Xo — ux)(Xt — px)], t € Z. In this section we will
handle X1, Xo, ..., X;,, n € N a sample of equally spaced observations of X. We



set fix ==n" Y0 Xi, fixgki=nt Y0 (X — fix)® k € Nand

n—|t|

Ax(t) =n"" Z (Xi — fix)(Xigpe) — fix)s [t Sn— L.

When it is clear, we write px , as i, vx(0) as vx and 4x(0) as Yx.

The dissipative distributions (see Definition 2.1) were introduced in Cuesta-
Albertos et al. (2007). In the finite dimensional case, the dissipative distribu-
tions and the absolutely continuous distributions with respect to the Lebesgue
measure coincide. Thus, the dissipative distributions can be considered as a gen-
eralization of the absolutely continuous distributions to the infinite dimensional
case in which there is no measure to play the role of the Lebesgue measure.

It should be noted that all non-degenerate Gaussian distributions are dissi-
pative. In Section 3 we introduce a non-Gaussian dissipative distribution well
suited for the problem at hand.

Definition 2.1. Let D be an H-valued r.e. We will say that its distribu-
tion is dissipative if there exists an orthonormal basis {v,}52, of H, such that
IP(Dy. = 0) =0, for all n > 2, and if the conditional distribution of Dy,
gien Dy . is absolutely continuous with respect to the n-dimensional Lebesgue
measure.

2.1. The Epps test
Let

Ay ==, AT ERL N £ N i # G, 4,5 =1,..., N},
and for A € Ay, let

1 n
*Z cos(\1X;),sin(A X;), ..., cos(AnX;),sin(AyX;)) 7.

3

We set
G.p(N) = (Re(@y,p (A1), Im(Dy,p (M), - -, Re(@up(An)), Im(@s,p(An)) -
The spectral density matrix of the process
(9(Xt, \)tez = ((cos(M Xp),sin(A Xy), . . ., cos(An Xy), sin( AN X¢)))ier
at frequency 0 is denoted by fx(0, (ux,vx),A) and is estimated by

[n%/%]

F(0,)) = (2mn)~ ZGX“J, AN +2 > (1—if[n??)) Z (Xe, M) |
=1 t=1

where G(X.i,\) = (9(X1,A) — () (9(Xiq4,A) — §(A)T and |-] denotes the
integer part.



Let © C R x R" be an open bounded set and let A € Ax. Let G;F()\) be the
generalized inverse of 27 f(0, \) and

Qn (v, A) = (G(N) = guy (W) G (G(N) = gup(N)) -

Given ¢ = 1,..., N, using the modulus-argument form to write complex
numbers, it is obvious that there exist (v;, p;) such that

{(v,p) E R x R 1 eXie=P/2 = o (A} = {(v; + 2k /Nispi) 1k =1,...}.
Thus, the set
@0()\) = {(V, p) €06: éu,p(Ai) = q)X()\Z),Z =1,.. 7N}

is discrete. Notice that this set will contain at most one element unless the \;’s
are rational multiple of \;.

Next, we include an assumption on some regularity conditions of the involved
functions on the points in Og(\). This assumption, taken from Epps (1987),
will be employed in the results related to the Epps test.

Assumption A. For each (v, p) € Og(\) it happens that fx (0, (v,p),\) = fx
(0, (ux,7vx),A) and that

0P, ,(\)
(x,y)

_ a@z,y ()‘2)

- d=1,... N
@=wp)  OEY) @y =(ux )

The following theorem, proved in Epps (1987), shows the asymptotic distri-
bution of the statistic involved in the Epps test under the null hypothesis.

Theorem 2.2 (Epps, 1987). Let X be a stationary Gaussian process satisfying

Z t|¢|vx ()| < oo, for some ¢ > 0. (2)
tez

Let © C R x R be open and bounded and let A € Ay such that Assumption
A holds. Let (pn,yn) be the minimizer on © nearest to (fix,%x) of the map
(v,p) = Qn(v,p,N). Assume moreover that fx(0,(ux,vx),\) is positive defi-
nite. Then, nQn(fn, Yn, A) converges in distribution to X3 -

Remark 2.2.1. Since the Epps test only checks whether the ch.f. of the
marginal of the involved process coincides with that of a Gaussian distribu-
tion on a finite number of points fixed in advance (see Theorem 2.2), this test
is non-consistent against alternatives with Gaussian marginals or, even, against
distributions with non-Gaussian marginals whose ch.f.s take the appropriate
values on the selected points.

Below, in Theorem 3.6, we show that this last problem is alleviated if the set
employed in the Epps test is selected at random, thus making this test consistent
against every alternative with non-Gaussian one-dimensional marginals.



2.2. The Lobato and Velasco test

Theorem 2.3 shows the behavior of the Lobato and Velasco test. We use the
following functions.

Fk = Z ’yx(t)k,

t=—00

n—1

B = 23 Ax()(x(0) + 4x(n = )" + 4% and
t=1

Gx = npk/(6Fs) +n(jixa —30% 2)/(24F)).

Theorem 2.3 (Lobato and Velasco, 2004). Let X be an ergodic stationary
process. If X is Gaussian and satisfies S 7o, |vx ()| < oo, then Gx — X3 in
distribution.

Gx diverges to infinity whenever uxs # 0 or x4 7 3;@(72, if E[X}%] < o0
and

- Do 2t gm0 Rg(tr, s tg—1)] < 00, for q=2,...,16, where
kq(t1,....,tq—1) denotes the qth-order cumulant of X1, X144, -, X1+t

q—17

- R EIE(Xo — w)*| Ft) — pux|2]H/? < oo, for k = 3,4, where F_, denotes
the o-field generated by X;, 7 < —t, and

- IE[(XO —p)* = ] + 2307 CE([(Xo — )k — p] [(Xe — ) — pi]) > 0,
= 3,4.

Remark 2.3.1. As shown in Theorem 2.3, the Lobato and Velasco test is not
consistent, since this test only checks whether the kurtosis and the skewness of
the marginal coincide with those of a Gaussian distribution.

3. Main results

In (1) the null hypothesis holds if, and only if, (X,...,X;)T is a Gaussian
vector for all t € N. Due to the stationarity of X, this is equivalent to (X;)¢<o
being Gaussian and so, to the Gaussianity of the process X := (X;),<¢ for
any t € Z. Given t € Z, we want to use Theorem 1.1 to check whether X® is
Gaussian. Hence, we have to include X®) in an appropriate Hilbert space, H,
and select at random a point h € H using a dissipative distribution. Once this
is done, we will have that, with probability one, X®) is Gaussian if, and only
if, the real-valued r.v. (X® h) is Gaussian.

Concerning H, let us consider the space of sequences

P = {(xn)neN : inan < OO} )

neN



with ag := 1 and a,, := n~2,n > 1, endowed with the scalar product

(x,y) = Z TnYnQn, Where X = (Zp)neny and ¥y = (Yn)nen-
neN

If the variance of X, is finite, then E[); _N X? ,ay,] is also finite. This
implies that, almost surely, X () ¢ [2.

Now we need a dissipative distribution on {2 to be employed to select the di-
rection in which we will project the data. To do this, we use the so-called Dirich-
let distribution (Pitman, 2006) and build it using the stick-breaking method:
Let ay, a2 > 0 and consider the following distribution:

e [y €0,1] is drawn with the 8(aq, as) distribution and,

e forn>110, € [0,1 - Z?;ol l;] is drawn multiplying an independent
Blar, az) r.v. by 1= Y170 ;.

Define H,, = (I,/an)"/? for n > 0 and set H = (Hy, Hy,...)”. It can be easily
checked that the distribution of H is dissipative. The only point remaining is
to show that the elements generated from this distribution belong to I2. This is
discussed in what follows.

Proposition 3.1. Let H = (H,)n>0 be a stochastic process constructed as
described above. Then, |H| =1, a.s.

Using this distribution, we obtain the random projections as follows. Let
h = (h;);en be a fixed realization of the random element H. We assume that
H is independent of the process X. Let us consider the process Y" = (Y")ez
given by the projections of (X()),cz on the one-dimensional subspace generated
by h, i.e.

)
}/th = Z hiXt_iai,t € Z. (3)
1=0

Henceforth, when no ambiguity arises, the superscript * is omitted to simplify
notation.
We will denote vy n(t) := E[(Yo—py ) (Ye— iy ) [h], where pyy, := E[Yo|h].
The following proposition shows that the projected process inherits the prop-
erties of the original one.

Proposition 3.2. Let (X¢)iez be an ergodic and stationary process such that
Yoo tS |vx ()| < oo, with ¢ > 0. Then, conditionally on h, the process (Y;)iez
defined in (3) is ergodic and stationary. Additionally, E[|Yy||h] and Y ;2 t°
Yy n(t)| are finite.

Therefore, the process Y is stationary. Thus, it is possible to assess the
Gaussianity of the one-dimensional marginal distribution of Y with the tests



we mentioned in the introduction. In particular, it is possible to use the proce-
dures proposed in Epps (1987) or Lobato and Velasco (2004). We denote these
procedures, respectively, by E-test and LV-test. Thus, the only remaining task
is to find a suitable set of hypotheses which allow these procedures to be applied
to the process Y.

Theorem 3.6 shows that if the points involved in the E-test are selected at
random, then, the consistency of this test improves. For the sake of simplicity, in
this result we have not made explicit the dependence of (),, on h. To establish
the result, we need some preliminary results, that include a corollary which
shows that the E-test behaves properly when applied to the process Y.

We denote by kimno(q,7, g + r; ) the fourth-order cumulant of Zy;, Zg m,
Zrm, and Zgyr o, where, for instance, Z, ,,, is the m-th component of the vector
9(Yq, A) = Gy vy (A)-

Lemma 3.3. Let A € Ay and let Y be a stationary process such that

su Kimno(q,m,q + 13 \)| < 00, for each l,m,n,0o€ {1,....N}. (4
p > q,7,4q

—oo<g< oo re— o0

Then, f(0,A) = fy (0, (uy,vy),\) almost surely.

Lemma 3.4. If A\ = (\1,..., An)T € Ax (N > 1) is randomly drawn in such a
way that A1 and \g are i.i.d. and have a density, then, Assumption A is fulfilled
a.s.

The following corollary follows trivially from Theorem 2.2 and the previous
lemma.

Corollary 3.5. Let (Y;)iez be a stationary Gaussian process satisfying (2) and
A as in Lemma 3.4. Let (fin,vn) be the minimizer on © nearest to (ji,%) of the
map (v,p) = Qu(v. p, N). If f (0, (v, 7). A) s positive definite, then
nQn(tn, Yn, \) converges in distribution to X3y _o-

The following result provides the conditions that allow the E-test to be
applied to the projected process. Here, we modify the E-test to select the
values of A\ at random. This improves the consistency of the initial procedure
which is now able to detect (with a sufficiently large sample) every non-Gaussian
alternative which satisfies the assumptions.

Theorem 3.6. Let X be an stationary process satisfying (2). Draw X\ as in
Lemma 3.4 and h independently of \ using Pg. Assume that, conditionally on
h, Y defined in (3) satisfies (4). Assume further that the modulus of the ch.f. of
its one-dimensional marginal is analytic and that fvu(0, (y|n; Yy |n), A) exists
and is positive definite for almost every h.

Let Qn(+, -, \) be the quadratic form defined in Section 2.1 applied to Y and
(HnsYn) be the minimizer on © nearest to (fiy|n, Yy|n) of @n(-, - A). Let more-
over

B :={(\h) : nQn(tin, Yn, A) —a a non-degenerate distribution}.
Then, X is Gaussian if, and only if, (P ® Pu)[B] > 0.



Remark 3.6.1. 1. The assumption that X is ergodic is required only to
prove the inverse part of Theorem 3.6. Indeed, any stationary Gaussian
process satisfying (2) is ergodic (Ibragimov and Rozanov, 1978).

2. A slightly more involved proof would allow Theorem 3.6 to be proved
under the assumption that the ch.f. is analytic.

The following corollary shows that the consistency of the Epps test improves
if the involved points are chosen at random. Then, we include Corollary 3.8,
where we state a kind of zero-one law to reinforce the statements of Theorem
3.6 and Corollary 3.7.

Corollary 3.7. Let X be an ergodic stationary process. Assume that the mod-
ulus of the ch.f. of its one-dimensional marginal is analytic. Assume further
that (2) holds. Take X as in Lemma 3.4 and Qn(-,-,\) as in Section 2.1. Let
(ttn, n) be the minimizer on © nearest to (fix,5x) of Qun(-,-, ). Let

C :={X:nQn(ttn;Yn, A) =a a non-degenerate distribution}.

If we assume that fx (0, (ux,vx),A) exists and is positive definite, then, X
is Gaussian if, and only if, Py(C) > 0.

Corollary 3.8. Under the assumptions of Theorem 3.6, (P) ® Pu)[B] € {0,1}
and X is Gaussian if, and only if, (P) ® Pu)[B] = 1.

Analogously, under the assumptions of Corollary 3.7, Py (C) € {0,1} and X
is Gaussian if, and only if, Py(C) = 1.

Remark 3.8.1. From Theorem 2.2, we have that Theorem 3.6 and Corollar-
ies 3.7 and 3.8 remain true if we substitute in the definition of sets B and C
“non-degenerate distribution” by “chi-squared distribution with 2(N — 1) de-
grees of freedom”; this allows a test to be constructed based on the asymptotic
distribution of nQy (thn, Yn, A)-

We end this section with a result which shows the applicability of the LV-
test to the projected process under different assumptions than the ones used in
Lobato and Velasco (2004). To this end, we replace the statistics Gy by

Gy = nfi3/(6|E]) + njuu — 33)%/(24/ ),

with

Frp =2 "4)(A) + 4 + 1= )1 + 4%, 7 < en,0 < By < .5 and ¢ > 0.
t=1

(5)
Thus, the differences between Gy and Gy are the absolute values in the
denominator and the number of terms involved in F}.

Theorem 3.9. Let X be an ergodic and stationary process which satisfies
Yoo lix(t)| < co. Then,

1. If X is a Gaussian process, then Gy —q X3.

10



2. Assume that Xy —pux = > ooy k(i)er—; with Y= [k(i)] < 00, Y oo, k(i) <
0o, and (&) are i.i.d. r.v.’s with Ele,] = 0, and E[X§] < oo. Then,
conditionally on h, Gy diverges a.s. to infinity whenever us # 0 or py #
3u3.

Applying Theorem 3.9 directly to the process X, we obtain the following
corollary.

Corollary 3.10. Under the assumptions of Theorem 3.9, we have that if X is
a Gaussian process, then Gx —q x3. Moreover, if the assumptions in point
2 of this theorem hold, then, conditionally on h, Gx diverges a.s. to infinity
whenever px 3 # 0 or pix 4 # 3/%2)(,2-

3.1. Context of our test procedure

The Gaussian goodness of fit tests have a long and rich history. On one
hand, in the framework of i.i.d. data, this story began in the early days of
statistics. First, in the one dimensional case and when the parameters are
known, the classical generic procedures based on a distance between the em-
pirical distribution function and the Gaussian target distribution are a simple
old procedure. They have been widely used for a long time. In this context,
the tests based on Kolmogorov or Cramér von Mises statistics (D’Agostino and
Stephens, 1986) are among the most popular. Notice that when the parameters
of the Gaussian distribution are unknown, everything gets more complicated.
Indeed, the previous generic procedures may still be applied in a plug-in ap-
proach. Nevertheless, care should be taken in the way the unknown parameters
are estimated. We refer to Cabana (1996) for these kind of plug-in procedures.
Smart procedures specially devoted to the one dimensional Gaussian case ap-
pear in Shapiro and Wilk (1965); D’Agostino (1971). The procedures therein
are based on some self-normalized L-statistics and rely on some statistical ap-
proximation of the Wasserstein distance W5 between the sample distribution
and the one dimensional Gaussian distribution family (Barrio et al., 1999, for
example). The multidimensional case is rather more complicated and requires
new tools. In Csorgo (1986), the author uses a version of the empirical charac-
teristic function to build general procedures. As a matter of fact, under the null
hypothesis (Gaussianity), this random process is asymptotically distribution-
free. This allows, for example, by sampling and whitening, to build a quadratic
form statistic having an asymptotic x? distribution (under the null hypothe-
sis). Notice that, here the dimension of the space is finite and greater than
1 but fixed. This pioneering work has subsequently been skillfully extended
in many directions for example to test the symmetry or isotropy of a multidi-
mensional distribution and using the cumulant generating function (Ghosh and
Ruymgaart, 1992; Fang and Liang, 1998; Liang and Ng, 2009, and references
therein). The infinite dimension case is tackled using random projections in
Cuesta-Albertos et al. (2007).

On the other hand, in the case of time series data, only the goodness of
fit test for Gaussianity of a fixed finite marginal has been studied (Epps, 1987;
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Lobato and Velasco, 2004; Moulines and Choukri, 1996, for example). Notice
that the regularity assumption has recently been weakened in Ghosh (2013)
in order to work with long range dependence processes. Our work appears
to be at the crossroad between all these works; that is, those on time series,
on i.i.d. data in infinite dimension or on finite dimension. As a matter of
fact, the random projection trick allows only a one dimensional marginal to be
considered. Nevertheless, as the sample is not i.i.d., tools similar to those used in
the multidimensional case appear. For example, we have to whiten empirically
the sample in order to obtain an asymptotic x? distribution (under the null
hypothesis). Furthermore, the procedure based on the empirical characteristic
function is a method related to the one developed in Csorgo (1986) although
the sampled frequencies are, in our work, chosen randomly.

3.2. The test in practice

Let Xo,..., X, be the available measurements. To compute h, let § > 0 be
a fixed number (equal to 1071° in the simulations that we carry out in Sections
4 and 5), and take h = (hg, ..., hy;,)T with

m =1+ min{min{¢ : ||(h0,...,ht)T|| >1-46},n—1},

where hg, ..., hy—1 are drawn as follows and h,, is such that ||h| = 1. Then,
define
min(m,t)
}/t = Z hiXt_iai,t:O,...,n.
i=0
To draw hg, ..., hm—1, let’s fix ay, as > 0. Then, we choose (8, )nen indepen-

dent and identically distributed with beta distribution of parameters a; and .
Further, we consider the probability distribution which selects a random point
in {2 according to the following iterative procedure:

o lo = 60 S [0, 1].
o Givenn>1,1, €[0,1 - """ li] equal to B,(1 — X0 1))

Let us define H,, = (ln/an)l/2 for n € N with a9 = 1 and a, = n"2,n > 1,
and take H = (H,)nen. Thus, h = (h;);en is a fixed realization of the random
element H.

Selecting a1, as, leads to the following problem: if m is large, the r.v.’s Y}
are linear combinations of many r.v.’s from the first sample and, by the Central
Limit Theorem (CLT), its common distribution becomes closer to a normal
law, causing loss of power when the marginal of X is not Gaussian. To have a
small m, we take as = 1 and ay > 1 (we take a3 = 100 in Sections 4 and 5).
However, in this case the samples Yy, ...,Y, and Xj,..., X, are quite similar.
Thus, the test will not be able to detect properly non-Gaussian alternatives with
the Gaussian marginal. To overcome this drawback, the projections should mix
several r.v.’s from the initial sample. To do this, we take as > a7, with as not
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too big to avoid the effect of the CLT. Values such as a; = 2 and as = 7 seem
appropriate, and this is our selection in Sections 4 and 5.

To avoid selecting a; and as based on an assumed alternative, we use two
tests, one with each pair of parameters, and apply the false discovery rate for
dependent tests (Benjamini and Yekutieli, 2001, FDR) to mix the p-values.
Taking into account that the null hypotheses are the same in both cases, it
happens that the FDR coincides with the level of the whole procedure.

Furthermore, in the simulations, we discovered that the relative power per-
formance of both the E-test and the LV-test changes across the different alter-
natives. This led us to conclude that, rather than using either the improved
version of the E-test or that of the LV-test, we should use both tests and use,
again, the FDR to mix all the p-values.

Regarding the selection of the random points to be used in the improved E-
test, it happens that in the simulations in Epps (1987) and Lobato and Velasco
(2004), the authors take &;/v/4, with & = j, j = 1,2, where 4 denotes the
sample variance of the process. Here, we take {; distributed as the absolute
value of a N(0,75), j=1,2.

Finally, even if X is not Gaussian, the chosen projections may, just by chance,
be close enough to Gaussianity as to lead to non-rejection. To alleviate this,
Cuesta-Albertos et al. (2007) suggests increasing the number of random pro-
jections. Following this idea, our full proposal is to choose & > 0 and select
independent random vectors h(i’j)7 i=1,...,k, 7=1,...,4, where h" and
h? are drawn with the 8(100,1) distribution and h®® and h®* with the
B(2,7) distribution, i = 1,...,k. Then, for i =1,... k:

1. Draw h®Y with the £(100,1) distribution and apply the E-test to the
projections to obtain the p-value p(*1).

2. Draw h? (independently of h*!) with the 3(100,1) distribution and
apply the L-V-test to the projections to obtain the p-value p(*2).

3. Draw h*® (independently of h"" and h*?) with the 3(2, 7) distribution
and apply the E-test to the projections to obtain the p-value p(i+3).

4. Draw h(% (independently of hY h(2 and h(i’3)) with the 8(2,7)
distribution and apply the L-V-test to the projections to obtain the p-
value p(i4),

Finally, combine the p(*7)’s with the FDR to obtain a p-value for the global
procedure.

The parameter k remains free and, to underline this, we call this procedure
the k random projection test (xRP-test). In Cuesta-Albertos and Nieto-Reyes
(2008), it is suggested that around 250 random projections are enough; in keep-
ing with this, here we take k = 64.

4. Simulation results

First, we study the behavior of the yRP-test against the distributions em-
ployed in Lobato and Velasco (2004). Then, we study a non-Gaussian process
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with the Gaussian marginal (Section 4.1) and pay some attention to the effect
of taking different numbers of projections (Section 4.2). We end the section
by giving a concise explanation of the test to those who want to use it while
skipping the details of the paper (Section 4.3).

In Lobato and Velasco (2004), the following AR(1) processes are used:

Xt =qX¢1+et, t€Z, for ge {0,£5,.6,.7,.8,£.9}, (6)

where &; are i.i.d. r.v.’s with distribution D, : N(0,1), standard log-normal,
Student ¢ with 10 degrees of freedom, chi-squared with 1 and 10 degrees of
freedom, uniform on [0,1] and 5(2,1).

We simulate the process taking, X; = ¢1, and X; = ¢Xy—1+¢¢, t =2,..., M,
where the €,’s are i.i.d. with distribution D.. To alleviate the non-stationarity of
the process if ¢ # 0 (notice that, for instance, Var[X;] = Var[e1](1—¢*')/(1—¢?)
which is non-constant), we discarded the first past = 1000 observations. As in
Lobato and Velasco (2004), we take sample sizes n = 100, 500, 1000, and so,
M = n + past. Additionaly, here we also take n = 50.

We performed 5,000 simulations in each situation, computing the p-values
using the asymptotic distributions. A slow convergence to the asymptotic dis-
tribution might be the reason why the rejection rates at level .05 under the null
hypothesis are sometimes far from the nominal level (mostly when n = 50, 100)
and even decrease under some alternatives with n (mostly for high values of |g|),
(see Tables 2, 3, 4 and 5).

Table 1: Rejection rates for 5,000 simulations for different past, with the E-test n = 100, D,
a f((2,1) and ¢ = .7.

past 0 1 2 10
rejections .0750 .1378 .1998 .2210

There are some differences between our rates and those in Lobato and Ve-
lasco (2004) which might be due to the fact that their past is not large enough.
For instance, if n = 100, ¢ = .7 and D, is §(2,1), with the E-test, we obtain
a rejection rate of .2214 while they obtain .080, noticeably worse. In Table 1,
we see that .080 is appropriate for past =0 and that the rejection rates increase
with past, approaching the value obtained here. The same happens with the
LV-test, but here we obtain lower rejection rates than in Lobato and Velasco
(2004). Another difference with Lobato and Velasco (2004) is in the computa-
tion of F, (see (5)). Indeed, in our case, it is necessary to fix 8y and ¢. As Sy
may be as close as desired to .5, we take Sy = .5 in the simulations. We have
studied the sensitivity to ¢ by running the LV-test under the null hypothesis for
all ¢’s and 7,, < n, n = 100,500, 1000. It seems that c¢ has little influence on the
rejection rates (except, perhaps, in the case ¢ = —.9 where the rejection rate
first appears to be constant and then sharply decreases); thus, we choose ¢ = 1.
Cases ¢ = 0 and g = .5 are shown in Figure 1, for n = 100, 500, 1000.
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Figure 1: Rejection rates under the null hypothesis for an AR(1) process with ¢ = 0 (top
graph), and ¢ = .5 (bottom graph), using the LV-test, for different values of ¢ and sample
sizes.
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Now, we mention the tests used in Tables 2, 3, 4 and 5 and comment on the
results.

E-test We choose (£1,&2) = (1,2) as in the simulations of Epps (1987) and
Lobato and Velasco (2004).

Under the null hypothesis, the rejection rates are above the level of the test,
except for ¢ = 0 with n = 1000, and increase with |g| except for |¢| = .5 with
n = 50. Under the alternatives, this test behaves poorly when D, is t19 and its
power decreases when |g| increases (with very low powers when |g| = .9) and
also when the sample size increases if |¢| = .9 and D. is t10, X3, U(0,1) or
B(2,1) (even with ¢ = .8 when D, = t19).

LV-test We report the results obtained using Gx instead of Gx, but this is
not too important because the rejection rates are similar in both cases.

The rejections under the null hypothesis are above the level of the test only
in 5 cases out of 32 and, in contrast with the E-test, they generally decrease
when |g| increases. This test has very low powers when |g| is large (sometimes
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Table 2: Rejection rates at level .05 of a process defined by (6). Sample size n = 50.

g Test NO1) logN  to 3 3 U0, A1)
E 1652 .0956 .1740 .1210 .1676 1868 .1886
-9 LV .0288 0750 .0290 .0532 .0350 .0236 .0280
ELV .1444 1346 (1288 1362 .1252 .1468 1478
sRP  .1706  .5920 .1888 .5404 .2650 .2598 .31662
E 0818  .2386 .0584 .2964 .1318 .3682 .3092
-5 LV .0568 9312 1342 9120 .2600 .0146 .0884
ELV  .0940 9084 .1256 .8760 .2676 2852 .2602
sRP  .0946  .9528 .1546 .9532 .3288 4158 .5126
E .0854 6980 .0620 .8330 .2942 8778 .7940
0 LV .0420 9964 1778 9986  .4414 .0006 .1256
ELV  .0792 9980  .1678  .9992  .5008 7386 .6872
RP  .0888 .9934 .1490 .9968 .4676 .6686 7326
E .0826 4464 .0532 .5694 .1364 .3896 .3476
b LV .0312 9080 .0996 .8958 .2036 .0004 .0434
ELV  .0730 9220 1142 9182 .2370 2978 .2690
LRP .0860 8134 1128 .7746  .4230 2572 .6490
E .0920 2460 .0656 .3410 .1284 .2502 2472
6 LV .0262 8084 .0720 .7546 .1366 .0018 .0286
ELV 0750 .7934 .0936 .7502 .1684 1880 .1868
rRP  .0898 .6630 .1036 .5694 .4788 .2542 .6852
E .0924 1326 0812 .1826 .1116 1772 .1650
7 LV 0220 .6116 .0472 .4946 .0786 .0030 0182
ELV  .0768 B8I8  .0834 4746 .1220 1226 1202
RP  .0896  .4786 .1076 .3416 .5548 .3250 .7506
E .1186 1060 L1088 L1108 .1234 .1506 .1480
8 LV .0164 3142 .0256  .2108 .0346 .0054 .0134
ELV  .0830 .3090 .0826 .2186 .0972 .0974 .089
+RP  .1088  .2784 .1034 .1866 .6808 4588 .8274
E 1876 1372 1778 1328 .1662 1812 .1806
9 LV 0124  .0696 .0140 .0490 .0152 .0038 .0072
ELV 1150 .1192 .1090 .0904 .1040 .1088 .0938
LRP .1460 3190 1522 .2162 .8734 7484 .9370

even lower than the E-test) and suffers from a lack of power when D, is U(0, 1)
or (2,1).
ELV-test We take &; as described in Section 3.2, to take advantage of Corollary
3.7.

This test combines the E and LV-tests using the FDR, thus, obtaining re-
jection rates between those of the E and LV-tests although closer to the highest
one. However, the fact that &; is chosen at random improves the performance of
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Table 3: Rejection rates at level .05 of a process defined by (6). Sample size n = 100.

g Test NO1) logN  to 3 3 U0 A1)
E .1264 0508 .1104 .0656 .1124 .1390 .1354
-9 LV .0292 1414 .0310 .0840 .0332 .0290 .0266
ELV .0942 1422 .0908 .1072  .0920 .1020 .1010
sRP  .1380 .8070 .1742 .7576 .3076 .2620 .3902
E 0724  .6780 .0556 .8514 .2058 .5408 14914
-5 LV .0504 9986 .1692 9986  .4602 .0102 .1696
ELV 0774 9976 .1582  .9972  .4552 4454 4154
sRP  .0752  .9998 .1980 1 .5824 .6404 .7460
E .0632 9616 .0830 .9964 .5372 9918 .9704
0 LV .0458 1 2820 1 7898 .5404 .7520
ELV 0732 1 .2402 1 .8074 .8596 .8706
RP  .0772 1 2288 1 .7640 .8496 .9054
E .0682 8594 .0608 .9582 .2610 .5618 .5H62
b LV .0384 9990 .1696 9982 4118 .0010 1102
ELV 0642 .9990 .1444 9988 .4700 .4680 4882
+RP  .0750 .9908 .1132 .9880 .5226 .3256 .7500
E .0710 6118 .0582 .8106 .2006 .3462 .3650
6 LV .0358 9884 1162 9772 .2858 .0012 .0592
ELV  .0640 9882 1144 9832 .3218 .2800 .3086
+RP  .0802 .9536 .1030 .9262 .5164 .2580 7744
E .0838 3250  .0626 .4640 .1492 .2032 2214
7 LV 0260 .9076 .0814 .8196 .1610 .0036 .0334
ELV  .0714 9042  .0866 .8448 .1998 .1634 .1802
RP  .0784 .8022 .0926 .7010 .5754 .2902 .8060
E .1034 1552 .0810 .2004 .1324 .1620 .1596
8 LV 0206 .6146 .0466 .4406 .0708 .0046 .0166
ELV  .0726 6118  .0796  .4488 .1122 1154 1136
+RP  .0896  .4928 .0932 .3264 .6766 .3950 .8782
E 1752 1264 .1618  .1368  .1612 1870 .1680
9 LV 0106  .1558 .0094 .0714 .0150 .0054 .0086
ELV  .1074 1844 .0968  .1190 .0980 1182 1072
LRP 1168 1982 (1174 1338 .8702 .6788 .9662

the E-test and this means that, sometimes, the ELV-test performs better than
the E and LV-tests.
rRP-test We apply this test following the steps described in Subsection 3.2.
However, here we take k = 1 to stress the usefulness of the test in its worst
circumstances.

Under the alternative, the ;RP-test has the highest rejection rates when
q < 0. The most striking behavior occurs for ¢ = .9 and D. = x?, or 8(2,1),
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Table 4: Rejection rates at level .05 of a process defined by (6). Sample size n = 500.

g Test NO1) logN  to 3 3 U0 A1)
E 0744  .3720 .0584 .2162 .0712 .0918 .0850
-9 LV .0708 8838 .0840 .6202 .1142 .0462 .0754
ELV  .0780 8604 .0924 .5400 .1116 .0866 .0952
sRP  .0810 .9990 .2260 .9928 .6924 14630 .6918

E .0594 1 1334 1 773019924 9922
-5 LV .0472 1 4580 1 9960  .9656 9976
ELV  .0476 1 3784 1 9912 9514 9914
RP  .0490 1 .5090 1 9998 19946 1
E .0566 1 .3292 1 .9982 1 1
0 LV .0480 1 7428 1 1 1 1
ELV  .0510 1 .6756 1 1 1 1
RP  .0554 1 .6188 1 1 1 1
E .0654 1 1476 1 .8808  .9918 .9960
b LV .0454 1 4340 1 9972 9704 .9988
ELV  .0516 1 .3816 1 9924 9504 .9962
xRP  .0618 1 .2656 1 9610  .7440 9634
E .0566  .9998  .1026 1 .7084  .8286 .9090
6 LV .0470 1 .3336 1 9582 4678 .8858
ELV 0570 1 .2692 1 9388 .6944 .8870
rRP  .0610 1 1794 1 8604 4730 .9006
E .0708  .9996 .0786 1 4704 4042 .5810
7LV .0474 1 1970 1 7592 .0644 .4040
ELV ~ .0598 1 1670 1 7332 .3640 5768
rRP  .0702 1 1282 1 .6986  .2616 .8786

E 0776 9780 .0710 .9638 .2500  .1948 .2564
8 LV 0744 9998 .0976 .9980 .3908  .1524 .2628
ELV 0702 .9998 .1102 .9978 .3972  .1848 .2960
(RP .0710 .9986 .0910 .9908 .6834  .2484 .9208
E 1156 5708  .0944 4674 1526  .1430 .1560
9 LV 0232 .8356 .0370 .5404 .0764  .0138 .0336
ELV ~ .0802 .8708 .0838 .6378 .1490  .1092 1390
(RP .0860 .7996 .0770 .5510 .8430  .4818 9772

as the rejection rates are larger than .8 while the second most successful test
remains below .25. The remaining rejection rates are among those obtained with
the E, G and ELV tests but closer to the highest, sometimes, even outperforming
the other tests.

The reason for the behavior of the jRP-test when ¢ = .9 is that when
computing the random projections, the structure of the process changes and
it happens that the new structure of the process makes it easier to detect the
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Table 5: Rejection rates at level .05 of a process defined by (6). Sample size n = 1000.

g Test NO1) logN  to 3 o U0, A1)
E 0648 7836 .0578 .4572 .0826 .0888 .0942
-9 LV .0902 9934 1206 .8932 .2448 .0760 .1358
ELV  .08R80 9856  .1002 .8560 .2190 .1004 .1450
sRP  .0940 1 3344 9998  .8686 .b876 .8056

E .0530 1 .2574 1 9764 1 1
-5 LV .0436 1 6778 1 1 1 1
ELV  .0450 1 .6040 1 1 1 1
RP  .0378 1 .7498 1 1 1 1
E .0490 1 .5946 1 1 1 1
0 LV .0546 1 .9364 1 1 1 1
ELV  .0486 1 9162 1 1 1 1
rRP  .0422 1 .8734 1 1 1 1
E .0550 1 .2534 1 .9966 1 1
S LV .0482 1 6788 1 1 1 1
ELV  .0424 1 .6016 1 1 1 1
(RP  .0484 1 4348 1 9994 9738 9996
E .0566 1 1718 1 9580  .9800 9974
6 LV .0472 1 5112 1 9996 9724 .9996
ELV  .0464 1 4234 1 9996 9550 .9986
rRP  .0584 1 2812 1 9902 7110 9804
E .0594 1 1162 1 7720 .6338 .8632
7LV .0418 1 3104 1 9744 3642 .8830
ELV ~ .0558 1 .2380 1 9672 5642 .8724
xRP  .0598 1 1754 1 .8888  .3554 .9036
E .0690  .9998 .0720 1 4342 2288 4108
8 LV .0500 1 .1638 1 6804  .0432 .3284
ELV  .0670 1 .1294 1 .6708  .2216 .4450
xRP  .0654 1 .0996 1 7144 1920 9076

E .0902 9152 .0880 .7690 .1836  .1170 .1686
9 LV 0346  .9944 .0636 9136 .1574 .0174 0574
ELV 0690 .9926 .0798 .9206 .2178  .1040 .1596
(RP  .0736  .9844 .0678 .8580 .8328  .3946 9774

non-Gaussianity.

4.1. An alternative with the Gaussian marginal

To check the power of the  RP test against an alternative with the Gaussian
marginal, we use Example 2.3 of Cuesta-Albertos and Matran (1991). For its
construction, let p > 2 be a prime number, and Yy, U and {Z,,.,,m € N}
be ii.d. r.v.’s uniformly distributed on S := {0,1,...,p — 1}. Let Z,,,1; be
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the sum modulus p of Z,,., and jYy, 7 € S,m € N. In Cuesta-Albertos and
Matran (1991), it is proved that the sequence W,, = Z, v is stationary and
composed of pairwise independent r.v.’s; which are not mutually independent
as Wy—vu,...,Wyp_u4p—2 determine W,,_yy1,—1 because, for every m € N,

plp—1)/2= Zf:_ol Winp—v+i  if Yo # 0 and (7)
Wohp—v=... = Wpp_v4p—1 if Yo =0

Given k € S, let ¢; be the j/p-th quantile of the N(0,1). If W, = j,
let W be a N(0,1) conditioned to (g;,gj+1), independent of all the other
r.v.’s. Since W,, is uniformly distributed on S, W} is N(0,1), and {W}} is
a stationary sequence of pairwise independent Gaussian r.v.’s. However, if
n > p — 1 and we know the values W)_.,..., W:_U+p_2, we can recover the
values W, _u, ..., Wp_u4p—2 and, by (7), deduce the value W,,_y74p—1, know-
ing the interval in which Wy _,,, ; lies. Thus, the process is not Gaussian as
{W3} are not mutually i.r.v.’s.

We have simulated the previous process 5000 times for different values of p
and sample sizes n = 100, 500, 1000 and applied the ;RP test at level a = .05,
with the results shown in Table 6.

Table 6: Rejection rates of the process W* tested with RP at level a = .05.

Sample sizes p=3 p=5 p=7 p=11 p=13 p=17
n= 100 .1268 .1676 .1516 .1602 .1380 1146
n= 500 .3654 .4938 5154  .5822 .5590 .5588
n =1000 .6386 .6814 .7250  .7802 .7608 7700

For the sake of comparison, Table 7 shows the rejection rates of the E, LV and
ELV tests for p = 5. Those tests are intended to detect non-Gaussian marginals
and since this process has the Gaussian marginal, these tests should give powers
at the nominal level. Surprisingly, we see that the obtained rates decrease with
n and are well below the intended level, except for the ELV test with n = 100.

The reason for this is that the process is not conditionally stationary given
Yy: for instance, we have that given Yy = 0, P[Wyp—v = Wyp—v41] = 1 #
PWhp—v-1 = Wpp—v]. In fact, what happens is that, in some sense, the
observed trajectories of the process W* are closer to Gaussianity than those
produced by a Gaussian process, because when we generate observations of
a Gaussian process, approzimately a proportion of 1/p of observations are in
the interval (g, qr+1), with k € {0,...,p — 1}. However, when Yy # 0 (which
happens with probability 1—p~1!) the process W* generates ezactly a proportion
of 1/p of observations in each interval (g, gx+1). Thus, it has a “more Gaussian”
behavior than expected. Consequently, the rejection rates are lower than .05
(Table 7) and this fact becomes more apparent when n increases.
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Table 7: Rejection rates of W* with p = 5 using E, LV, EVL and RP, a = .05.

Sample rRP-test.

size E-test LV-test EVL-test k=1 k=2 k=8 k=064
n= 100 .0338 .0372 .0520 1676 1906 .2288 2674
n= 500 .0266 .0336 .0336 4938 5772 6988  .8064
n =1000 .0186 .0326 .0206 .6814 .7688 .8498  .8628

4.2. Taking more random projections

Although the rejection rates in Table 6 are above the nominal levels, they
are not high, especially when the sample size is 100. To improve them, we can
increase the number of random projections. That is, we take a higher k. Table 7
shows how an increase in the number of random projections noticeably improves
the rejection rates.

4.8. Proposed test for practitioners

This subsection is mainly devoted to readers whose aim is to understand how
to apply the proposed test, and possibly use the provided code, while skipping
the details of the paper. Thus, here we detail comprehensively how the test
should be applied from start to finish on a given dataset.

Sitmulation of the dataset

Let us simulate a dataset from an AR(1) process X; = .5X;_1 + ¢, t € Z,
where €, are i.i.d. r.v.’s with distribution, say, chi-squared with 10 degrees of
freedom. We simulate the process taking X; = e1, and Xy = .5X; 1 + &4, t =
2, ..., M. To get a process of size n, for instance n = 100, M = n+ 1000 in order
to alleviate the non-stationarity of the process. Thus, we get a realization of
the process we can denote by = = (x1,...,x,).

What follows is done k times, with for example k = 64.

The vectors in which to project

For each ¢ € {1,...,k} the dataset, x, is projected in four different vectors
h(-3) | j =1,... 4, that are drawn using the following procedure. For each (4, 7),
let Bo, ..., Bn_1 be fixed realizations of independent and identically distributed
beta distributions with parameters (100, 1) for j = 1,2 and (2,7) for j = 3,4.

Thus,

h:(\/g7\/g72 l27"'7m\/l’m)T7
with m = 1+ min{min{t : [|h]| > 1 -10"°},n -1}, lp = Bo and I, = B; - (1 —
Zt_l ls) for t =1,...m. Note the abuse of notation w.r.t. Subsection 3.2.

s=0"s

21



The projected process

For each i € {1,...,k} there are four projections of x, they are y(*/) =
(ygi’j), . ,yﬁf’j)), j=1,...,4, where
min(m,t)
ygivj) - Z Dz, _sas, with t =1,...,n,
s=0

with ag := 1 and a; = t~2,¢ > 1. Then, let us apply:

1. The E-test to y(Y to obtain the p-value p(:1),

2. The L-V-test to 2 to obtain the p-value p(»2).

3. The E-test to y(“®) to obtain the p-value p(+3).

4. The L-V-test to y* to obtain the p-value p(*%¥.

Note that for the E-test and the L-V-test we mean the improved versions of
Epps (1987) and Lobato and Velasco (2004) developed in this paper.

The E-test

Using the notation in Section 2, the statistic nQy, (ten, Yn, (£1/V3, €2/VF))
follows a chi-squared with 2 degrees of freedom, where, with slight abuse of
notation, §; is the realization of the absolute value of a N(0,j), j =1,2.

The L-V-test

Taking into account the notation in Section 2, the statistics is nfi3/(6|F3|) +
n(jia — 33)2/ (24 Fu)), with B, = 2520207 5(0)(0() + 4(Lv/n) +1 - 1)1 +
4%, This statistics follows a chi-squared with 2 degrees of freedom. Thus, the
computation of this test is quite straightforward.

The p-value

Finally, we have p(/), 4 =1,...k, j = 1,...,4 that we combine using the
FDR to obtain a p-value for the global procedure, pg. For that we first order
the p-values increasingly p(1) < ... < p(4r). Thus,

4k
=4k i7' mi /i
o Z;z min, P /i
1=

5. An empirical study

We analyze two real data sets: the Canadian lynx and the Wolfer sunspot,
which were previously found to be non-Gaussian (Rao and Gabr, 1980; Epps,
1987).

The Canadian lynx data consists in the annual record of the number of
lynxes trapped in the Mackenzie River district of the North-West Canada for
the period from 1821 to 1934 while the Wolfer sunspot data consists in the
annual record of the sunspot activity in the period from 1700 to 1960. We have
applied the {RP-test to both, with the p-values displayed in Table 8 together
with those obtained in previous studies. The similarity between all of them is
quite clear.
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Table 8: p-values for the yRP-test, E-test and RG-test Rao and Gabr (1980) tests.

Data set 1RP-test E-test RG-test
lynx 1.029 x 10~%  1.402 x 107> 1.084 x 10~*
sunspot  1.314 x 1076 7.356 x 10~¢ 2.818 x 10~*

6. Discussion

In this paper, we introduce the  RP-test, intended to check the Gaussianity
of stationary processes. Given a sample, this test is based on a three-step
procedure. First, a vector h must be drawn at random in a suitable Hilbert
space. Then, the sample is sequentially projected on the one-dimensional space
spanned by h. Finally, we take advantage of the fact that, with probability one,
if the marginal of the projected process is Gaussian, then the initial process
is Gaussian. Therefore, all that is needed is to use a test that can check the
Gaussianity of the marginal of a stationary process, such us, for instance the
E-test or LV-test or a combination of these.

From a theoretical point of view, just one random projection is enough to
carry out the test. However, a way to improve the power is to consider a larger
number of projections. These projections are computed using two different beta
distributions. The obtained p-values are mixed together using the FDR, which,
in spite of being slightly conservative, gives reasonable results.

The comparison of the yRP-test with the E and LV-tests (as well as with a
combination of these) in situations where the marginal is not Gaussian is accept-
able and there are even cases in which the RP-test is clearly better. Moreover,
the yRP-test is able to detect alternatives with the Gaussian marginal, while
the other tests are not designed to perform this task.
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Appendix

Proof of Proposition 8.1. Let o = a1 /(a1 + cv2) be the mean of the 8(aq, az)
distribution. Let us begin by proving that

E[l,] = a(l — )", for every n € N*. (8)
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This, obviously holds for n = 0. Let us assume that it is satisfied for n € N*
and let us show that it holds for n 4+ 1. By construction, if B is a r.v. with
distribution 3(aq, @s), then

n

Ell,+1] = E[B)(1 - S E[l)) = a(l - Y a(l - a)) = a(l — )",
1=0

=0

where the last equality comes from the application of the formula giving the
sum of n numbers in a geometric progression.

We have that |[H| = > ;0  H?a; = Y ;o0li < 1 by construction; and the
proposition follows from here because (8) gives that E[||[H||] = >°7°  a(l—a)" =
1. O

Lemma A.1. Let X be an ergodic and stationary process such that y_,~  |vx (t)| <
oo. If we select H as in Section 3. Then,

1. >0, Hia; < 0o almost surely.

2. L:= Y0 HiHja;a;|X_; — px||Xi—; — px| is integrable conditionally

1,7=0
to H a.s.

Proof. Ttem 1 is straightforward since the Cauchy-Schwartz inequality gives

oo ) 1/2 0o 1/2 . 1/2
> Hia; < (Zz) (1—1—21/1‘2) = <1+Zl/i2> < o0 a. s,
=0 =0 =1 =1

where the last equality comes from Proposition 3.1.
To prove 2, let h = (hg, hy,...) be a fixed realization of H. We have

E[Lh] = Y hhjaiaE[X ;- px|| X — px]]
i,j=0

> hihjaia;(E(X—i — px)*]) 2 (Bl(Xi—; — px) )
i,7=0

- 2
= Ix (Z hi%’)

and so, L is conditionally integrable due to 1 and that vx < > =, |vx(¢)] <
00.

Proof of Proposition 3.2. (Xi)iez is a stationary ergodic process. Thus,
conditionally on h, (Y;):ez is also a stationary ergodic process (Doob, 1953, p.
458). From the definition of the process Y we have

IN

=E[Xol] Y hia; < 00, aus.
=0

E[[Yo| [h] <E [ZhiGiX—i| h

=0
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because of 7 in Lemma A.1. From 2 in Lemma A.1, we may deduce that

Yn(t) =B hibjaia;(X—; — px)(Xij — px) |b]
4,j=0

exists. Thus, using the dominated convergence theorem, we obtain that

Yyn(t) = Z hihjaia;vx(t —j+1),

i,7=0
and
o0 (o] (o]
Zt<|7Y|h(t)| < Z hihjaia; ZtCWX(t —Jj+1)l
t=0 i,5=0 t=0
Obviously,
oo o
S hihjaiay Y tChx(t—j+ i) = Ti+ T + T,
i,5=0 t=0
where
oo o oo
T, = Zhjathiaith'yX(t—j+i)|,
j=0 i=j t=0
o Jj—1 o
T2 = Zhjathiai Z tc|’}/X(t*]+’L)| and
j=0 i=0 t=2j41

oo j—1 27
Ts = > hja;y hiai » tlyx(t—j+1i)l.
=0 i=0 t=0

If i > j,as t € N* and ¢ > 0, we have ¢ < (t — j 4 4)¢. Thus,

Ty <> hjag Y hiar Y (t—j+i) fyx (=i <D hja; Y hiaiy t]yx (B)],
j=0 i=j t=0 j=0 i=j t=0

because ¢t — j +i > t. Then, Y,°t¢|yx(t)] < oo and so, I in Lemma A.1
implies 77 < co. Concerning T5, as j > ¢ and t — j + ¢ > 0, we can apply the
cc—inequality (Loeve, 1977, p. 157) to t = (t — j + i) + (j — @) to obtain that
there exists ¢ > 0 such that t¢ < cc(t — j +14)° + cc(j — )¢ < 2¢e(t — j +14)C.
Thus,

oo j—1 o)
Ty, < 2 Y hja;» hia; Y (t—j+0) |yx(t—j+1)
j=0 i=0 t=2j+1

o j—1 o
S 20@‘ Z hjaj Z hiai Z tch/X(t”.
7=0 =0 t=0
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Using the same tricks as for 77, we obtain that 75 < oo. For T3, the fact
that >_i2 t%|yx (t)| < oo implies that there exists R > 0 such that |yx ()] < R
for all t € Z. Therefore,

T3<RZhaZZha]2j) (2j+1) = Zhang

=0 7=0

By 1 in Lemma A.1, in order to show that T3 < oo, we only need to prove that
T3 < oo. Furthermore, applying Jensen’s inequality and § in Proposition 3.1,
we have that

oo
E[T3] <> a)?(25)6 (25 + Da'/2(1 — )i/,
7=0

This series converges because o € (0, 1); so that, T5 is almost surely finite and
the proof ends. O
Proof of Lemma 3.3. 1t is straightforward from the proof of Lemma 4.1 in
Epps (1987) but substituting (2) and Gebelein’s inequality for Gaussian pro-
cesses by (4). O
Proof of Lemma 3.4. Proceeding as in Epps (1987) we have that Og(\) is
contained or equal to

{(v,7y) : VA1 = py A + 27k and vy = py Ao + 27k™, with k, k" € Z}.

In order to get that the cardinal of ©g(\) is larger than one, we need A2 to be
equal to a rational number times A;. However, this happens with probability
zero and so, with probability one ©y(A) C {(py7 vy )}. Thus, the lemma follows
directly. O

In the next lemma, we use analytic ch.f.’s. A precise definition and some
properties appear in Laha and Rohatgi (1979).

Lemma A.2. Let P be a Borel probability measure defined on R. Assume that
P is absolutely continuous with respect to the Lebesque measure. Let' Y be a r.v.
such that the modulus of its ch.f. |®y| is analytic. Then, Y is Gaussian if, and

only if,
IJmeR, Ise R s.t. P{y e R: |y (y)| = |Pm.s(y)|}) > 0. (9)

Proof. The necessary part is obvious. Let us prove the sufficiency. As
Y satisfies (9), and P is absolutely continuous, we have that C' := {y € R :
[y (y)| = |®Pm,s(y)|} is infinite and not denumerable and so, it has at least one
accumulation point.

Furthermore, the function y — |®y (y) — ®,, s(y)| is analytic, and vanishes
on C. Thus, this function has one non-isolated zero but the only analytical
function with at least one non-isolated zero is the null function (Rudin, 1966).
The proof ends because a distribution is Gaussian if and only if the modulus of
the ch.f. coincides with the modulus of a Gaussian ch.f. O
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Proof of Theorem 3.6. If X is Gaussian, then Y is Gaussian and Proposition
3.2 gives that Y satisfies the assumptions of Corollary 3.5. This fulfills the
necessary part.

Let us prove the sufficient part. As (Py ® Pg)[B] > 0, there exist h and A
with A1 # 0 and Ay # 0 such that nQ, (tn,yn, A) converges in law to a non-
degenerate distribution. We assume without loss of generality that ®y, (A1) # 0
and ®y,(A2) # 0. As Py, is an analytic ch.f., it has only isolated zeros. Thus
Qn(tbn, Yn, A) converges in probability to zero. By Lemma 3.3, f(O, A) converges
to fym(0, (y|n; Yy n)s A). Thus, lim, G} is positive definite as it is the inverse
of 27 fyn(0, (4y'|n; Vy|n), A). This and the definition of Qy(-,-,-) (see Section
2.1) gives

g()‘) - gun,'yn(/\) —cC.p. 0. (10)

Since X is an ergodic stationary process, we have that (g(Y:,\)),., is also an
ergodic stationary process (Doob, 1953, p. 458). Thus, as E|cos(A\;Yp)| < oo
and E|sin(\;Yp)| < oo for all ¢ = 1,..., N, we may conclude by Theorem 2 in
Hannan (1970, chap IV) that g(\) —¢.p. E[g(Yo,A)]. This and (10) gives that
®,,, ~, (X)) converges in probability to ®y,(X;), ¢ =1,..., N.

Now we show that this implies that the sequence {7, }nen converges. We
have that

Tim [, 5, (A)] = limexp(=A{y,/2) = |y, (M),

in probability. Now, since Ay # 0 and Py, (A1) # 0, this implies that there exists
s € R such that s = lim,,_, o 7, in probability.
Analogously,

|y, (A2)| = lim_exp(=A37n/2) = exp(—A3s/2).

As Ay was drawn independently of A\; with an absolute continuous distribu-
tion and as |®y,| is analytic, Lemma A.2 gives that Yy is Gaussian. Then, by
Theorem 1.1, the process X is Gaussian. O

Proof of Theorem 3.9. Using Proposition 3.2 for ( = 0 we get that (Y;);ez is
an ergodic and stationary process with Y ° 0 [y(¢)| < oo. If (X;)sez is Gaussian,
the process (Y;)iez is also Gaussian. Thus, the assumptions of the first part of
Theorem 2.3 hold for the process (Y;)tez and so Gy —>yq 3.

As Y is Gaussian, we have that Fj, > 0 for k = 3,4 (Gasser, 1975, p. 568).
Repeating the proof of Lemma 1 in Lobato and Velasco (2004), we have that
lim,, oo ﬁ‘k = F} and so, we may conclude that lim, _ ., Gy = lim,_ . G’y.
This shows 1.

Let us now prove statement 2. First, let us show that E[|Y|*|h] < oo, almost
surely, for £ = 1,...,4. By Holder’s inequality, we have

- 12, 1/2
[Yo| < (Z ai) (Z h?aiX2i>
i=0 i=0
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and, as by Proposition 3.1 Z?io h2a; = 1, almost surely, we can apply Jensen’s
inequality. We obtain that

o0 2 oo
Y04 < <Z ai) (Z hfaiX‘*i) , almost surely.
i=0 i=0

Thus, E[|Y|*|h] < co, almost surely, for k = 1, ...,4. By Doob (1953, p. 458), we
have that (Ytk)tez is stationary and ergodic, for all £k = 1,...,4. Thus, Theorem
2 in Hannan (1970, chap IV) implies

lim jix = pg, for almost every h and k = 2,3, 4. (11)
n—oo

Further, let us prove that lim,, |F’ k| < oo for almost every h and k = 3, 4.
As

T k—1
. . - k—1)\. o .
fimag+23° 5 (7 a0 v 10y
i=1j=0 \ J
and |a*=9b7| < |a|* + |b|*, with k € N, j € N and j < k, we have

Tn

) < Py * 425 Ay (01 + Ay (r + 1= 0)]%)
t=1

and so, |Fy| < 2541(3277, |3y (£)])*. Let us prove that lim, o 277 [4y (£)] <
oo. Note that as E[X{] < oo, we also have co > E[(Xo — ux)*] which is equal to

o} 4

> II*6nE

Jise-ja=1r=1

11 6n—a;] =E[] Y kO +EE ) k@)E(G).
r=1 j

J=1 i,j=1,i#j

Indeed, (e,) are i.i.d. r.v.’s with E[e;] = 0. Thus E[e}] < oo. By Kavalieris
(2008), we obtain

S (B (®)] = O | < (7 + Do) = o(1).

Therefore, lim, 00 Y,"( |¥x(t)| < oo. Proceeding similarly as in the proof of
Tn

Proposition 3.2, we get lim, 0o Y170 |9y (t)] < 00 and so, lim, e [Fy| < o0
for k = 3,4 a.s. Using (11) we conclude that 2 holds. O
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