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to analyze the properties of sequences generated by a large class of permu-
tations of Fp, with the advantage that our bounds for the discrepancy and
linear complexity depend on the Carlitz rank, not on the degree. Hence, the
problem of the degree growth under iterations, which is the main drawback
in all previous approaches, can be avoided.
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1. Introduction and Preliminaries1

Let Fq be the finite field with q = ps elements for a prime p and s ≥ 1.2

As usual, F∗q denotes the set of nonzero elements. It is well known that any3

self map f of Fq can be represented uniquely by a polynomial f ∈ Fq[X] of4

degree less than q.5

A polynomial f ∈ Fq[X] is called a permutation polynomial of Fq if it6

induces a bijection from Fq to Fq, that is, if all elements f(a), a ∈ Fq, are7

distinct. See [17] for a detailed exposition of permutation polynomials of Fq.8

Carlitz [5] proved the following classical result:9

Lemma 1. For q > 2, all permutation polynomials over Fq can be generated
by the following two classes of permutation polynomials,

aX + b, a, b ∈ Fq, a 6= 0, and Xq−2.

Thus, by Lemma 1, every permutation polynomial of Fq can be repre-
sented by

Pk(X) =
(
. . .
(
(a0X + a1)

q−2 + a2
)q−2

+ . . .+ ak

)q−2
+ ak+1, k ≥ 0,

where a1, ak+1 ∈ Fq, ai ∈ F∗q, i = 0, 2, . . . , k. See [7] for more details. We10

denote by deg f the degree of a permutation f seen as a polynomial over Fq.11

The authors of [1] define the Carlitz rank of a permutation polynomial12

f over Fq to be the smallest positive integer k satisfying f = Pk for a per-13

mutation Pk of the above form, and denote it by Crk(f). In other words,14

Crk(f) = k if f is a composition of at least k inversions Xq−2 and k (or15

k + 1) linear polynomials.16

Various problems concerning this complexity measure are tackled in [1, 7,17

8]. For instance, the cycle structure of polynomials of a given Carlitz rank,18

the enumeration of polynomials with small Carlitz rank and of particular19

cycle structure, or of permutations of a fixed Carlitz rank are studied.20

The relation between invariants of a polynomial f and Crk(f) are of21

interest. A lower bound for Crk(f) in terms of the degree of f , deg f , can22

be found in [1], which shows that polynomials of small degree have large23

Carlitz rank. Here we give a similar bound in terms of the weight of f , i.e.,24

the number of nonzero coefficients, which we denote by ω(f). Our bound is25

better than the one concerning deg f , when deg f ≥ q − q/(ω(f) + 2).26
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The classification of permutations with respect to their Carlitz ranks has27

already found applications, see [8] for instance. A potential utilization in28

symmetric cryptography is mentioned in Section 2.29

In this work we shall focus on another application, namely on studying30

the distribution of elements in orbits of permutation polynomials, and in31

particular on the analysis of pseudorandom sequences. Let f be a permuta-32

tion of Fp, and consider the sequence {un}n≥0 generated by the recurrence33

relation34

un+1 = f(un), n = 0, 1, . . . , (1)

where u0 ∈ Fp is a random value, called the seed. Equivalently, one can
define {un} by un+l = f (l)(un), where

f (l+1)(X) = f (l)(f(X)), f (0)(X) = X, l = 0, 1, . . . .

In the special case of linear polynomials over a residue ring or a finite35

field, such iterations have been in use for decades.36

When deg f ≥ 2, one talks about nonlinear generators. We refer the37

reader to the monograph [20], and recent surveys [24, 28, 29] for a detailed38

analysis of randomness of widely-used sequences in the context of pseudo-39

random number generators.40

We note that sequences generated by permutations with Carlitz rank zero41

are well-known to be unfavorable for many applications, in particular for use42

in cryptography, see for example [9, 15, 16]. We therefore assume Crk(f) ≥ 143

(deg f ≥ 2) for f in (1).44

One should note that nonlinear generators are also vulnerable against45

attacks [3, 4, 11, 12] but these attacks are not strong enough to rule out their46

use for cryptographic purposes (provided reasonable precautions are made).47

Here we focus on two important measures: the distribution of the se-48

quences (1) and their predictability. The first is particularly relevant for49

applications in simulations and the latter in cryptography. The tools we use,50

namely discrepancy and linear complexity (profile) have been widely studied51

for pseudorandom sequences, see [21, 24, 25, 28], and references therein.52

Although “good” upper bounds are available for the discrepancy of se-53

quences defined by some special classes of polynomials, results concerning54

sequences using arbitrary nonlinear f in (1) are not only weak, but also55

nontrivial only when the sequences have extremely large periods, a property56

difficult to achieve in practice. This is because, under iterations, the degree57

of nonlinear polynomials or rational functions grows exponentially in the58
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number of iterates, and thus, the saving over the trivial discrepancy bound59

has been only logarithmic.60

One can avoid this problem for large classes of permutations, since a per-61

mutation can essentially be approximated by a fractional linear transforma-62

tion in case its Carlitz rank is small relative to the field size. Indeed, our new63

approach of using the Carlitz rank enables us to obtain nontrivial estimates64

with a saving of a power of the field size. Moreover, methods of constructing65

polynomials of any Carlitz rank, yielding sequences with maximum possible66

period p are available, see Remark 2 below.67

We note that the use of sequences generated by permutation polynomials68

of a given Carlitz rank k as pseudorandom sequences is particularly interest-69

ing for certain choices of k. For fixed k and sufficiently large p, the trajectory70

is obtained by gluing at most k trajectories of inversive generators, hence71

one can obtain randomness properties from those of the inversive generator,72

see [23]. For k = pε for some ε > 0, generating such sequences does not seem73

to be possible in polynomial time, thus these generators are not feasible for74

such applications. However, if k = (log p)c, for some c > 0, then one can75

generate the sequence in polynomial time and the result of Theorem 8 will76

give a stronger bound for the discrepancy than the one obtained by gluing77

trajectories of inversive generators together.78

We remark that our study of sequences generated by permutations of a79

given Carlitz rank yields a large class of permutations with uniformly dis-80

tributed orbits, which are described in a natural way. Hence, most of this81

work is of independent interest also, regardless of its applications concerning82

pseudorandom sequences.83

The following lemma is the main tool of our approach and results.84

Lemma 2. Let f be a permutation of Fq, represented as

f(X) = Pk(X) =
(
. . .
(
(a0X + a1)

q−2 + a2
)q−2

+ . . .+ ak

)q−2
+ ak+1,

for some k ≥ 0. Put85

Rk(X) =
αk+1X + βk+1

αkX + βk
, (2)

where86

αn = anαn−1 + αn−2 and βn = anβn−1 + βn−2, (3)

for n ≥ 2 and α0 = 0, α1 = a0, β0 = 1, β1 = a1.87
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Then f(u) = Rk(u) for all u ∈ K, where K is a subset of Fq of cardinality88

at least q − k.89

The proof of Lemma 2 can be found in [7].90

Remark 1. For any representation Pk of a permutation f , the elements91

αn, αn+1 , βn, βn+1 in the above lemma satisfy αn+1βn − αnβn+1 6= 0. The92

string Ok = {Xi : Xi = −βi
αi
, i = 1, . . . , k} ⊂ P1(Fq) = Fq ∪ {∞} is naturally93

called the string of poles. With this notation, K = Fq \ Ok. Note that Rk94

is linear when the pole Xk is at infinity or αk = 0. Any three consecutive95

elements of Ok are distinct, and if Crk(f) = 1 or 2, the corresponding96

fractional transformations R1, R2 are not linear. For further details we refer97

to [7, 27].98

The rest of the paper is structured as follows. Section 2 gives a new bound99

for the Carlitz rank of a permutation polynomial in terms of its weight, and100

briefly discusses the range of applicability of this result. In Section 3 we101

study the distribution of sequences defined by (1) by estimating exponential102

sums and thus obtaining an upper bound for the discrepancy, based on the103

Carlitz rank of f . We conclude the paper with lower bounds for the linear104

complexity profile of sequences (1).105

2. Carlitz rank and weight of a polynomial106

In this section we give a lower bound for the Carlitz rank of a permutation107

polynomial f , which depends on ω(f), the number of its nonzero coefficients.108

Before presenting our bound, we start by stating a result relating ω(f) to the109

number of zeros of f . This lemma and its proof can be found in [26, Lemma110

2.5].111

Lemma 3. Let f ∈ Fq[X] be a nonzero polynomial of degree at most q − 2
with N zeros in F∗q. Then, we have

ω(f) ≥ q − 1

q − 1−N
.

We recall that if f is a permutation polynomial, then deg f ≤ q−2, see [2,112

Theorem 11]. Now, we present the main result of this section.113
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Theorem 4. Let f ∈ Fq[X] be a permutation polynomial, deg f ≥ 2,

f(X) =

ω(f)∑
i=1

aiX
ei , and f(X) 6= c1 + c2X

q−2,

for c1, c2 ∈ Fq, c2 6= 0. Then,

Crk(f) >
q

ω(f) + 2
− 1.

Proof. Put Crk(f) = k. By Lemma 2 there exists a non-constant rational114

function Rk defined by (2), satisfying f(u) = Rk(u) for u ∈ K, where K is a115

subset of Fq of cardinality at least q − k.116

We first assume that Rk(X) is not a linear polynomial, hence there exist
b1, b2, b3, b4 ∈ Fq, b3 6= 0 such that

f(u) = b1 +
b2

b3u+ b4
, u ∈ K.

We divide the proof of this case into two parts depending on b4 being zero
or not. If b4 6= 0, for αu ∈ K, b3αu+ b4 6= 0, we have

ω(f)∑
i=1

ai(αu)ei =

ω(f)∑
i=1

aiα
eiuei = b1 +

b2
αb3u+ b4

,

where for the rest of the proof we put ω = ω(f). We can now select ω + 1
different values α1, . . . , αω+1 ∈ Fq such that

a1α
e1
i u

e1 + · · ·+ aωα
eω
i u

eω = b1 +
b2

αib3u+ b4
, i = 1, . . . , ω + 1,

for at least q− k(ω+ 1) different values of u. Let the vectors ~v1, . . . , ~vω+1 be
defined by

~vi = (a1α
e1
i , . . . , aωα

eω
i ), i = 1, . . . , ω + 1.

Since these ω+ 1 vectors are in Fωq , they are linearly dependent, hence there
are c1, . . . , cω+1 in Fq, not all zero, satisfying

c1

(
b1 +

b2
α1b3u+ b4

)
+ . . .+ cω+1

(
b1 +

b2
αω+1b3u+ b4

)
= 0.
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Equivalently, the polynomial

F (X) = b1(c1 + . . .+ cω+1)
ω+1∏
i=1

(αib3X + b4) + b2

ω+1∑
i=1

ci

ω+1∏
j=1,j 6=i

(αjb3X + b4)

has at least q − k(ω + 1) zeros. On the other hand, if w. l. o. g. α1c1 6= 0,

F (−b4(α1b3)
−1) = c1b2

ω+1∏
j=2

(b4(1− αjα−11 )) 6= 0,

hence F is not the zero polynomial. Note that we can suppose that α1c1 6= 0117

because the values α1, . . . , αω+1 are distinct and at least two of c1, . . . , cω+1118

must be nonzero.119

Summing up, we get

ω + 1 ≥ degF ≥ q − k(ω + 1),

which implies the desired result.120

If b4 = 0, we have

ω∑
i=1

aiu
ei − b1 − b2bq−23 uq−2 = 0, for u ∈ K.

Note that the number of nonzero coefficients of f(X)− b1− b2bq−23 Xq−2 is at121

most ω + 2, it is not the zero polynomial and the number of elements in K122

is at least q − k. Now, we study two different cases:123

• If 0 6∈ K, then using Lemma 3, we get the result.124

• If 0 ∈ K, then f(0) = b1, so f(X) − b1 is a permutation polynomial125

of weight ω − 1 and its Carlitz rank is the same as the Carlitz rank of126

f(X). Applying Lemma 3, we get the result.127

The case f(u) = au+ b, u ∈ K, follows by the same argument.128

This bound shows that the complexity of permutations with respect to129

weight and Carlitz rank do not match, i. e. permutations with low weight130

have large Carlitz rank and those with small Carlitz rank have large weight.131

Our result is particularly interesting for permutations f such that Crk(f) = k132
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is small and the corresponding Rk is linear. Such polynomials are linear133

except for very few elements in Fq, but have many nonzero coefficients.134

We remark that the bound is tight for permutations of the form P1(X) =135

(a0X + a1)
q−2 − aq−21 ,with a0, a1 ∈ F∗q. Then we obtain Crk(P1) = 1 > 0.136

We also note that a lower bound for the Carlitz rank in terms of the137

degree of f was given in [1, Theorem 4]: Crk(f) ≥ q−deg f − 1. Our bound138

is better when q ≤ q/(ω(f) + 2) + deg f .139

A recent result in [8] shows that permutations with small Carlitz rank140

have low differential uniformity. Hence, such permutations can have potential141

use in symmetric cryptography, since they are easy to implement, although142

they have large degree and many nonzero coefficients.143

3. Exponential sums and discrepancy144

In this and next sections we analyze pseudorandom sequences {un}, n ≥145

1, generated by (1), where f ∈ Fp[X] is a permutation polynomial with146

deg f ≥ 2, and of Carlitz rank k ≥ 1. For simplicity we restrict ourselves147

to sequences over the prime field Fp. As usual, we identify Fp by the set148

{0, . . . , p − 1}. Obviously the sequence {un} is eventually periodic, and we149

assume it to be purely periodic.150

This section focuses on finding an upper bound for the discrepancy of the151

sequence152 {(
un+1

p
, . . . ,

un+m
p

)
∈ [0, 1)m, n = 0, . . . , N − 1

}
. (4)

Before presenting the main results of this section, we introduce some notation153

and terminology. We will extensively use the symbols A = O(B) and A� B,154

which are equivalent to |A| ≤ c|B| for some positive constant c. Unless it is155

explicitly specified, this constant is absolute.156

Let Γ be a sequence of N points157

Γ =
{

(γn,1, . . . , γn,m)N−1n=0

}
(5)

in the m-dimensional unit cube [0, 1)m. The discrepancy ∆N(Γ) is defined as

∆N(Γ) = sup
B⊆[0,1)m

∣∣∣∣A(Γ;B)

N
− |B|

∣∣∣∣ ,
8



where A(Γ;B) is the number of points of Γ inside the box

B = [α1, β1)× . . .× [αm, βm) ⊆ [0, 1)m,

|B| represents the volume of the box B, and the supremum is taken over all158

such boxes, see [10].159

The law of the iterated logarithm asserts that the order of magnitude of160

the discrepancy of N independent and uniformly distributed random points161

in [0, 1)m should be around N−1/2, up to some power of logN . Accordingly,162

for a given sequence in [0, 1), one investigates the discrepancy of m-tuples of163

its consecutive terms, see [20].164

Typically, the bounds for the discrepancy of sequences are derived from
bounds of exponential sums. The relation is made explicit in the celebrated
Koksma–Szüsz inequality , see [20, Corollary 3.11], which we present in the
following form. Before stating the lemma, we introduce the following nota-
tion,

e(z) = exp(2πiz/p).

Lemma 5. Suppose that the sequence (5) consists of points with rational
coordinates, which have common denominator p, and that there is a real
number B such that ∣∣∣∣∣

N−1∑
n=0

e

(
m∑
j=1

ajγn,j

)∣∣∣∣∣ ≤ B,

for any nonzero vector (a1, . . . , am) ∈ Zm with −p/2 < aj ≤ p/2, j =
1, . . . ,m. Then, the discrepancy ∆(Γ) of the sequence (5) satisfies

∆N(Γ)� 1

p
+
B(log p)m

N
,

where the implied constant depends only on m.165

We now study exponential sums involving the sequence {un} defined166

by (1), assuming it is purely periodic with an arbitrary period T . For a167

positive integer N ≤ T and a vector ~a = (a1, . . . , am) ∈ Zm, we introduce168

the exponential sum169

S~a(N) =
N−1∑
n=0

e

(
m∑
i=1

aiun+i

)
. (6)

Our second tool is the Bombieri-Weil bound for exponential sums involving170

rational functions, which we present in the improved form given in [18].171
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Lemma 6. Let F/G be a non-constant univariate rational function over Fp
and let v be the number of distinct roots of the polynomial G in the algebraic
closure of Fp. Then∣∣∣∣∣∣

∑
x∈Fp

∗
e

(
F (x)

G(x)

)∣∣∣∣∣∣ ≤ (max(degF, degG) + v∗ − 2) p1/2 + ρ,

where Σ∗ indicates that the poles of F/G are excluded from the summation,172

v∗ = v and ρ = 1 if degF ≤ degG, otherwise v∗ = v + 1 and ρ = 0.173

Now, we are ready to estimate the exponential sum defined in (6).174

Theorem 7. Let {un} be the sequence defined by (1) with Crk(f) = k. Sup-
pose that {un} is purely periodic with period T and that f has a representation
Pk such that αk in (2) is not zero. Then, for any ~a = (a1, . . . , am) ∈ Zm,
with gcd(a1, . . . , am, p) = 1, and any integers ν ≥ 1 and 1 ≤ N ≤ T , we have

S~a(N)�
(
k1/2(ν+1)p1/2ν(ν+1) + p1/4ν

)
N1−1/2ν ,

The implied constant depends on m and ν.175

Proof. Since Crk(f) = k, Lemma 2 implies that there exists a rational func-
tion Rk defined by (2), satisfying f(u) = Rk(u) for u ∈ K, where K is a subset
of Fp of cardinality at least p−k. Since αk 6= 0, the rational function Rk is not
a linear polynomial. Then there exist b1, b2, b3, b4 ∈ Fp, b2b3−b1b4 6= 0, b3 6= 0
such that

f(u) =
b1u+ b2
b3u+ b4

, u ∈ K.

Moreover, at the l-th iteration we have,176

f (l)(u) =
`1,l(u)

`2,l(u)
, (7)

where `1,l, `2,l are linear polynomials with u ∈ Kl and Kl a subset of Fp of177

cardinality at least p− lk.178

We may also define a sequence of rational functions R(l), as follows

R(1)(X) =
b1X + b2
b3X + b4

, R(l+1)(X) = R(l)(R(1)(X)),
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for l = 1, . . .. Hence the equation (7) can be rewritten as,179

f (l)(u) = R(l)(u), for u ∈ Kl. (8)

From this point, the proof is similar to the one in [23, Theorem 1] so we omit180

some details. For a sufficiently large integer T ≥ L ≥ 1, we have181

S~a(N)� WL−1 + L, (9)

where

W =
N−1∑
n=0

∣∣∣∣∣
L∑
l=0

e

(
m∑
i=1

aiun+l+i

)∣∣∣∣∣ =
N−1∑
n=0

∣∣∣∣∣
L∑
l=0

e

(
m∑
i=1

aif
(l+i)(un)

)∣∣∣∣∣ .
By the Hölder inequality we obtain,

W 2ν ≤ N2ν−1
N−1∑
n=0

∣∣∣∣∣
L∑
l=0

e

(
m∑
i=1

aif
(l+i)(un)

)∣∣∣∣∣
2ν

≤ N2ν−1
∑
x∈Fp

L∑
l1,...,l2ν=0

e

(
m∑
i=1

ai
(
fl1,...,l2ν (f

(i)(x))
))

,

where

fl1,...,l2ν (X) = f (l1)(X) + . . .+ f (lν)(X)− f (lν+1)(X)− . . .− f (l2ν)(X).

If {l1, . . . , lν} = {lν+1, . . . , l2ν} as multisets, then fl1,...,l2ν is constant and182

the inner sum is trivially equal to p.183

Since (8) holds for all but O(kL) elements x ∈ Fp, we get

W 2ν

N2ν−1 � Lνp + kL2ν+1 +
L∑

l1,...,l2ν=0

∑
x∈Fp

∗
e

(
m∑
i=1

ai
(
Rl1,...,l2ν (R

(i)(x))
))

,

where Σ∗ indicates that the poles are excluded from the summation,184

Rl1,...,l2ν (X) = R(l1)(X) + . . .+R(lν)(X)−R(lν+1)(X)− . . .−R(l2ν)(X), (10)

with l1, . . . , l2ν ranging over all {l1, . . . , lν} 6= {lν+1, . . . , l2ν}. We note that,185

by [22, Lemma 2], R(t) has different poles for 1 ≤ t ≤ T , and thus Rl1,...,l2ν186
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is a nonconstant rational function. Indeed, if Rl1,...,l2ν (X) = c ∈ Fq, then187

eliminating the linear denominators in (10) and applying the obtained poly-188

nomial equation in one of the poles of any of Rli for some i = 1, . . . , 2ν, we189

immediately get a contradiction with the fact that R(t) has different poles for190

1 ≤ t ≤ T .191

Now, applying Lemma 6, we get

W 2ν � (kL2ν+1 + L2νp1/2 + Lνp)N2ν−1,

which implies

S~a(N)� (k1/2νL1/2ν + p1/4ν + L−1/2p1/2ν)N1−1/2ν + L.

Finally, selecting L = dk−1/(ν+1)p1/(ν+1)e, we obtain,

S~a(N) �
(
k1/2(ν+1)p1/2ν(ν+1) + p1/4ν

)
N1−1/2ν + k−1/(ν+1)p1/(ν+1).

Assuming that

k−1/(ν+1)p1/(ν+1) < k1/2(ν+1)p1/2ν(ν+1)N1−1/2ν ,

as otherwise the estimate is trivial, we get the desired result.192

Now we can apply Lemma 5 to obtain the following bound for the dis-193

crepancy.194

Corollary 8. Let {un} be the sequence defined by (1), where Crk(f) = k195

and f has a representation Pk such that αk in (2) is not zero. Suppose {un}196

is purely periodic with an arbitrary period T and Γ is the sequence defined197

by (4). Then, for any fixed integer ν ≥ 1, and any positive integer N ≤ T ,198

the discrepancy of the sequence Γ with N ≤ T satisfies199

∆N(Γ) = O
((
k1/2(ν+1)p1/2ν(ν+1) + p1/4ν

)
N−1/2ν(log p)m

)
, (11)

when f has a representation Pk such that αk in (2) is not zero. The implied200

constant depends only on m and ν.201

The bound (11) is nontrivial in a rather wide range (provided that k <202

p(log p)−2(ν+1)m−ε ),203

p ≥ T ≥ N � max
(
p1/(ν+1)kν/(ν+1), p1/2

)
(log p)2νm+ε (12)
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for a fixed ε > 0.204

We remark that for k ≤ p1/2−ε, taking a sufficiently large ν in (12), we205

get a nontrivial bound on the discrepancy provided that N � p1/2(log p)c,206

where c depends only on ε. We also note that in [1, Theorem 5] a formula207

for the number of such permutations is given.208

When Rk is linear the proof above is not valid, as one would expect. In209

case m = 1, one can use the estimates from [19, Theorem 9.1] to obtain210

a similar bound. When m > 1, the distribution of the sequence {un} de-211

pends on the element αk+1/βk in (2) since techniques for linear congruential212

generators apply, see [19] or [20, Theorem 7.3].213

When f = aXp−2 + b with Crk(f) = 1, the sequence generated by (1) is214

the so-called inversive pseudorandom sequence. In this case, the discrepancy215

bound for Γ defined by (4) has been obtained in [13]:216

∆N(Γ) = O(N−1/2p1/4(log p)m), (13)

for p ≥ T ≥ N .217

Our result generalizes (13) and improves the previously known estimate218

for the discrepancy of (4) generated by an arbitrary nonlinear polynomial f ,219

which is220

∆N(Γ) = O

((
log(2p/N)

log p

)1/2(
log

log p

log(2p/N)

)m)
, (14)

where the implied constant depends on m, and the degree of the polynomial221

f in (1), see [25, Theorem 2]. It is interesting to compare the range (12)222

with the considerably shorter range corresponding to (14), see [25, Corollary223

2].224

Remark 2. Methods of construction of permutations Pk of Fp for any k ≥ 1,
consisting of one full cycle of length p are given in [7]. When k = 2l, it is
shown in [6] that any permutation which has a representation of the form

Pk(X) = (. . . (X + a1)
p−2 + a2)

p−2 + . . .+ al+1)
p−2− al)p−2− . . .− a2)p−2− a1

is a full cycle. For permutations with Carlitz rank 1, 2 and 3, conditions225

for them to have full cycles are also known, see [7]. Therefore, one can226

construct sequences {un} as in (1), with largest possible period p, generated227

by f = Pk. For such sequences one has Crk(f) ≤ k, and the upper bound228

13



in (11) applies, if the corresponding αk is non-zero. For practical purposes229

one would of course choose small k so that the generation of {un} is not slow,230

which in this case can be done in polynomial time in k. Note that for any231

small k > 1 we obtain very good alternatives to the inversive generator.232

Theorem 7, together with Remark 2, enables the construction of many233

new pseudorandom sequences with full period and good distribution behav-234

ior. These sequences can be chosen to have large linear complexity also as235

we show in the next section.236

4. Linear Complexity Profile237

The linear complexity profile is a widely used measure for predictability
of a sequence of elements of Fp. We recall that the linear complexity profile
of a sequence {un}, n = 0, . . . , N − 1, is the order L of the shortest linear
recurrence which generates the first N elements of the sequence, i. e.

un+L = cL−1un+L−1 + · · ·+ c1un+1 + c0un, n = 0, . . . , N − L− 1.

We denote this quantity by L(un, N). Here, we give a lower bound for238

L(un, N) defined by a permutation f with Carlitz rank k. The proof fol-239

lows the same ideas as in [14, Theorem 1].240

Theorem 9. Let f be a permutation with Crk(f) = k, which has a repre-
sentation Pk such that αk in (2) is not zero. Suppose the sequence {un} is
defined by (1) and has period T . Then the linear complexity profile L(un, N)
satisfies

L(un, N) ≥ min

{
N − 2

k + 2
,
T − 2

k + 2

}
.

Proof. Suppose {un} satisfies a linear recurrence relation of length L,

un+L = cL−1un+L−1 + · · ·+ c1un+1 + c0un, n = 0, . . . , N − L− 1,

with c0, . . . , cL−1 ∈ Fp. We may assume L ≤ p− 1.241

Recall that f(u) = Rk(u) for u ∈ K, where Rk is defined by (2) and K is242

a subset of Fp of cardinality at least p − k. Also, Kl is the set of elements243

u ∈ Fp such that244

f (l)(u) =
`1,l(u)

`2,l(u)
, (15)

14



where `i,l, i = 1, 2, are linear polynomials, and the cardinality of Kl is at least245

p− kl. The bound for the cardinality of Kl comes from two simple facts: if246

u, f(u), . . . , f (l)(u) ∈ K, then u ∈ Kl, and f is a permutation.247

As the rational function Rk in (2) is not linear since αk 6= 0, we note that248

`2,l is a nonconstant linear polynomial for every ` ≥ 1.249

Putting cL = −1, we define the following rational function

cL
`1,L(X)

`2,L(X)
+ cL−1

`1,L−1(X)

`2,L−1(X)
+ . . .+ c1

`1,1(X)

`2,1(X)
+ c0X,

and getting rid of the denominators, which are all distinct, we arrive at a
nonconstant polynomial F of degree at most L+ 1 defined by

F (X) = c0X
L∏
i=1

`2,i(X) +
L∑
j=1

cj`1,j(X)
L∏

i=1,i 6=j

`2,i(X),

which has at least N − Lk − L zeros corresponding to u0, . . . , uN−L−1 for250

which (15) holds for l = 0, . . . , L. Since all, but at most kL elements u of Fp251

satisfy u, f(u), . . . , f (L)(u) ∈ K, the polynomial F has at least N − Lk − L252

zeros.253

The degree of F gives an upper bound on the number of roots, so

L+ 1 ≥ degF ≥ min{N − Lk, T − Lk} − L

and the result follows.254
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