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Abstract— This paper presents a monovision-based system for on-road vehicle detection and 

computation of distance and relative speed in urban traffic. Many works have dealt with 

monovision vehicle detection, but only a few of them provide the distance to the vehicle which is 

essential for the control of an Intelligent Transportation System (ITS). The system proposed 

integrates a single camera reducing the monetary cost of stereovision and RADAR-based 

technologies. The algorithm is divided in three major stages. For vehicle detection we use a 

combination of two features: the shadow underneath the vehicle and horizontal edges. We 

propose a new method for shadow thresholding based on the grayscale histogram assessment of 

a region of interest on the road. In the second and third stages, the vehicle hypothesis verification 

and the distance are obtained by means of its number plate whose dimensions and shape are 

standardized in each country. The analysis of consecutive frames is employed to calculate the 

relative speed of the vehicle detected. Experimental results showed excellent performance in both 

vehicle and number plate detections and in the distance measurement, in terms of accuracy and 

robustness in complex traffic scenarios and under different lighting conditions. 

 

Index Terms— Driving assistance systems, Intelligent transportation, Monocular vision, Vehicle 

detection, License plate detection, Distance measurement. 
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1 Introduction 

The automotive industry is constantly evolving as there is a growing interest in the field of safety. 

Among active safety elements, special mention must be made of Advanced Driving Assistance 

Systems (ADAS) which alert the driver of a risky situation as soon as possible. If there is no 

reaction from the driver, these systems, as a last resort, assist in an active way in order to prevent 

accidents. The work presented in this paper is framed within Forward Collision Avoidance 

Systems. The goal of them is to aid drivers to maintain a safe stopping distance related to the 

vehicle in front in order to avoid or at least reduce the number and severity of traffic accidents [1]. 

Unfortunately, either due to negligence or distraction, the safety distance is not maintained in 

many cases, especially in cities where most accidents are rear-end collisions. We propose a 

vision-based system to detect the vehicle ahead in the target path and measure the gap distance 

and relative speed by means of one single camera. To date, the lack of works dealing with the 

issue of monovision-based vehicle distance estimation makes this task very challenging [2]. The 

system proposed is specifically designed to work in urban traffic where the speed limit is 50Km/h 

and most of the front-to-rear collisions take place at low speeds. An important issue to take into 

account in the development of an active safety system is the economical aspect. Currently, 

RADAR-based systems are a very popular solution for FCAS, however, due to the sensors’ high 

price, most of them are exclusively aimed at high class vehicles. One of the main targets of the 

approach proposed here is the development of a low-cost active safety system for a standard 

road vehicle. Unlike the aforementioned expensive technologies, computer vision is a cheaper 

technology. The use of a single camera makes the system proposed a low-cost solution suitable 

for low and medium class vehicles. 

The remainder of this paper is organized as follows. Section II reviews the related research. 

Section III presents an overview of the proposed method, the region of interest establishment, the 

vehicle detection procedure, the distance-size relationship, the license plate location and the 

distance and relative speed measurement. Experimental results of measurement accuracy and 
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detection reliability are given in Section IV. Finally, Section V summarizes and discusses future 

work. 

 

2 Related Work 

Many approaches to assist drivers in avoiding collisions have been developed based on different 

technologies such as RADAR [3], LASER scanner [4], ultrasounds [5], or vision systems [6-8]. 

They have benefits and drawbacks. Regarding the latter, RADAR has a narrow field of view and 

as they are active sensors, they may interfere with other RADAR emitting sources including 

vehicles with the same technology on board; LASERS are affected by fog and heavy rain; 

ultrasounds easily fail due to lateral wind; and vision systems can be affected by the changing 

lighting of outdoor applications and the image processing involves a large computational load 

which can compromise the real-time performance. Due to these facts, some approaches have 

focused on a combination of some of the above in order to achieve more reliability [9-11]. 

However, visual information makes computer vision a versatile technology, able to extract scene 

information such as road lane, traffic signs and detailed object shape.  

The existing vision systems for vehicle detection are based on both mono and stereovision, but 

regarding the target of vehicle distance measurement, stereovision is currently the only one that 

can provide accurate depth information [12-14]. The main drawback of stereovision is that it 

involves finding correspondence between images, which is a complex task that demands a lot of 

processing time. Monovision has the advantage of a lower image processing time. However, it 

does not provide depth information, so it is difficult to accurately determine the vehicle’s distance. 

Distance and relative speed parameters are essential for the control of a Forward Collision 

Avoidance System. 

Many monovision-based approaches in the literature deal with vehicle detection but only a few of 

them estimate the distance. They are very dependent on the assumptions imposed or specific 

training scenarios that strongly limit the performance. In [15], scene depth is deduced from texture 
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gradients, defocus, colour, and haze using a multi-scale Markov Random Field. Images and 

ground-truth depth maps are used to train the MRF model. The disadvantage is that the use of a 

finite set of training images implies that the system may not work properly in scenarios that differ 

from the training set. In [16], the vehicle’s distance measurement is based on the contact between 

the vehicle’s tyres and the road. This method could easily overestimate the measure due to the 

difficulty of getting the exact tire-asphalt contact point which in addition does not correspond to the 

real back of the vehicle. [17] uses known information about the vehicle appearance (the vehicle’s 

underside) and the distance is determined using the inverse perspective transform assuming flat 

earth. Finally, [18] assumes an ideal vehicle width for all vehicles and uses the camera pinhole 

model to determine the distance of the vehicle.  

The distance measurement approach proposed in this paper takes advantage of the vehicle’s rear 

number plate. The size and shape of the plate’s characters are fixed in each country so the 

vehicle’s distance measurement procedure is simplified to the number plate characters’ distance 

and it can be calculated in a direct and accurate way, free of assumptions. The procedure 

presented is made up of three separate steps: vehicle detection, number plate localization and 

finally, distance and relative speed measurement.    

Regarding the vehicle detection, most of the monovision approaches developed are based on the 

search for specific patterns using information about the vehicles’ features such as symmetry [19], 

texture [20], color [21], edges [22], corners [23] and motion features [24]. These approaches have 

been demonstrated to be effective under a specific environment, but they are very dependent on 

illumination. 

The vehicle detection procedure proposed is based on two features: the shadow underneath the 

vehicle and horizontal edges. Shadows have already been employed as an indication pattern in 

[8, 25-27]. The area underneath the vehicle is darker than any other, regardless of lighting 

conditions. The shadow’s intensity depends on the illumination so the threshold is not fixed. We 

propose a systematic way to establish an appropriate adaptive threshold that uses the histogram 
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associated with only a region of interest on the road corresponding to a safety area of our 

vehicle’s trajectory. 

Finally, there are also many approaches to address license plate detection. Most of them work 

only under restricted conditions such as fixed illumination and stationary backgrounds. They are 

focused on motionless vehicle applications such as parking management, automatic highway toll 

collection, etc. The most common approaches are based on filtering strategies and feature 

matching methods. There are methods based on projective invariance [28], Hough transform [29], 

color or texture features [30-31], morphology [32], artificial neural networks [33], SVM classifiers 

to model character appearance variations [34], and methods based on top-hat transform [35-37]. 

The number plate location approach proposed adapts the widely employed morphological top-hat 

method to vehicles in motion where the position of the vehicle is unknown and therefore the 

dimensions of the number plate in the image are, in principle, unknown. 

 

3 System Description 

3.1  Method Overview 

In order to measure the distance of an object from a single image it is necessary to have a frontal 

view and to know the true magnitude of the object. Unfortunately, the dimensions of vehicles are 

different depending on the make and model, so they cannot be used as a reference. However, a 

common element on the back of all vehicles is the license plate. It must be approved and its 

shape and dimensions are fixed in each country. Localizing the front vehicle’s number plate and 

having previously established a relationship between the number plate’s size in the image and the 

distance to the camera, the vehicle’s distance can be obtained directly. 

After capturing a grayscale frame, the first step consists of establishing of a region of interest on 

the road corresponding to the safety area in front of our vehicle. Any vehicle circulating inside this 

safety area is susceptible to a possible rear-end collision. Next, the vehicle detection step begins 

and a first distance estimation is performed based on the vehicle’s bounding box location. Then 
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the search of the vehicle’s number plate is used for two purposes: to validate the vehicle’s 

detection and to obtain the vehicle’s distance. Remember that the relationship between the 

dimensions of the number plate in the image and the distance to the camera has already been 

established. Finally, the analysis of consecutive images is employed to obtain the vehicle’s 

relative speed. 

 

3.2 Region of Interest 

The camera is placed beside the rear-view mirror to capture the scene in front of the vehicle. In 

addition to the road and vehicles travelling ahead, many other objects can appear in a vehicle’s 

frontal image. A region of interest of the road (ROI) is very important because it simplifies the 

scene, focusing only on the area risk of a rear-end collision and avoiding the analysis of the part 

of the road without influence in our trajectory (Fig. 1). In this way, the possibility of errors, false 

positive detections and computational load are reduced, and the vehicle detection reliability is 

increased.  

The ROI is considered to be comprised of the safety area, that is, the stretch of the road of 10m in 

front of our vehicle with a width equal to our vehicle’s width. Only the vehicles within the safety 

area influence our vehicle’s trajectory, therefore only these vehicles are detected by the system, 

ignoring the useless image portion. The approach proposed is specifically for urban traffic, 

detecting vehicles ahead in a range up to 10m at speeds up to the urban speed limit of 50Km/h.  

 

3.3 Vehicle Detection 

The vehicle detection procedure is based on two features: the shadow underneath the vehicle and 

the lower horizontal edge of this shadow. A distinctive feature of vehicles is the shadow 

underneath them. Its intensity depends on the illumination, which in turn depends on the weather, 

but it is always present on the road. Due to the vehicles’ morphology the space between the 

vehicle’s underside and the road is small so the road area under the vehicle is not exposed to  
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direct sunlight and it is only affected by a little quantity of lateral diffuse light. This lack of light 

makes this road area very dark and free of brightness, regardless of lighting conditions, texture 

and color of the asphalt. Even if the road is shaded, the vehicles’ underside is darker than its 

surroundings. This phenomenon is mathematically explained in [25]. On the other hand, any other 

element of the road (lateral shadows, potholes, manhole covers, etc) is exposed to both direct 

and diffuse light which makes it clearer and brighter. Although these elements can be dark they 

do not exceed the darkness intensity of the shadow under the vehicle [25]. 

On cloudy days, vehicles are only lit by diffuse light which comes from all directions so it creates 

little or no lateral shadows making the shadow underneath easily distinguished. Sunny scenes are 

lit by both sunlight and diffuse light casting lateral shadows. The shadow under the vehicle is 

noticeably darker than the lateral one because the latter is illuminated only by diffuse light. On a 

cloudy/rainy day, the street lighting could easily cause reflections from wet objects and asphalt, 

but the road under the vehicle is not affected, remaining dark and without brightness. In a tunnel 

the vehicle underneath is even darker than in other situations because artificial lighting is more 

direct and there is a low level of diffuse light, making the shadow practically black.  

Fig. 1. Vehicle’s search area (ROI) corresponding to the safety area. 
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The method most used to identify the shadow underneath the vehicle was proposed in [26]. A 

road area is extracted by defining the lowest central homogeneous region in the image “free 

driving space” delimited by edges. Then, a shadowed region is defined as a region that has lower 

intensity than a threshold value m - 3σ, where m and σ are the mean and variance of the road 

pixels’ frequency distribution. This method has two important drawbacks. Firstly, the illumination 

conditions make the road’s intensity vary non-uniformly. Even a well asphalted road can show 

zones where the pixels’ intensity is significantly different. Secondly, not always the lowest central 

homogeneous region in the image matches with the road. In urban traffic, pedestrian crossings 

and sign markings, lateral shadows and patches of different asphalt are constantly appearing on 

the road and their edges are detected. The region delimited by edges may not belong to the road 

which can significantly mislead the vehicle detection procedure. 

In order to overcome these drawbacks, we propose a thresholding method based on the 

histogram of only the ROI. A distinctive feature of the ROI image (Fig. 2a) is that its gray level 

histogram displays two characteristic peaks. The lower peak (nearest to 0) corresponds to the 

shadow underneath the vehicle and the higher one to the road. Intensity values due to lateral 

shadows, potholes, manhole covers, etc. can occur between the two peaks. As road markings are 

brighter (white, yellow) than the road, their intensity attains high values located on the histogram’s 

right. Depending on the lighting, both peaks undergo gray level variation but the peak 

corresponding to the shadow does not attain values higher than 50 units in the histogram. The 

shadow’s intensity values can vary between 0 (dark day) and 50 (clear day). This fact was 

throughout the system development and was confirmed in all tests. The pixel values obtained are 

specific to the sensor camera employed and depend on parameters such as pixel depth, dynamic 

range and exposure time. The thresholding criteria for the shadow’s segmentation is to 

automatically choose the higher gray scale value (value on the right) of the lower intensity peak, 

as long as the latter is lower than 50. In the cases where there is a vehicle in the ROI, the 

shadow’s gray level peak is always present in the histogram and the shadow is easily segmented.  
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In the absence of vehicles, the lower peak is not present and the intensity values are higher than 

50 so the threshold is not established. In the case of a false shadow detection, the error is 

suppressed in the number plate detection stage, as the system does not detect any license plate. 

Fig. 2b shows the shadowed regions of the whole scene whose values are below the threshold. 

After shadow thresholding, horizontal edges that correspond to the transitions from non-shadow 

region (bottom) to shadow regions (up) are extracted as in [26] and candidates are determined 

based on the location of those horizontal edges within the ROI (Fig. 2c). Only horizontal edges 

detected within the ROI, either in whole or in part, are considered while all those outside the ROI 

are discarded. 

Fig. 2. Road scene. The region of interest ROI (a), the thresholded image 
(b), horizontal edges (c) and ROI’s vehicle candidate (d). 

a b 

c d 
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Next, the bounding box containing the vehicles’ back is obtained. As the dimensions of the 

vehicles’ back are different for each make and model, a standard aspect ratio of vehicles’ backs is 

assumed as in [26]. In this approach we consider that the length of the shadow’s horizontal edge 

detected is the vehicle’s width, and in order to encompass all kinds of vehicles and vans, the 

height of the box is equal to 130% of its width (Fig. 2d).  

Finally, as the shadow is on the road plane and assuming flat earth as in [17], a first rough 

estimation of the vehicle’s distance is obtained based on the location of the lower edge of the 

vehicle’s bounding box (the shadow’s lower edge) in the image. This approximate distance is very 

useful because it in turn provides values of the vehicle number plate dimensions at this distance 

which are exploited in the number plate detection algorithm (section 3.5). The procedure is based 

on the relationship between the vertical location of the shadow in the image (in pixels) and the 

real vehicle’s distance (meters). This relationship was established before the system was put into 

use and it also relates the vehicle’s distance with the dimensions of the vehicle number plate 

characters (in pixels). This relationship is specific to the image resolution adopted, to the camera 

elevation in the ego-vehicle and to the camera tilt. To carry out this operation our vehicles were 

placed behind one another at a known distance (Dist), an image was taken and the shadow’s 

vertical location (SVP) and the number plate’s dimensions in the image were checked (Table 1). 

This process was done for different distances in a range from 1 to 10m on different days to take 

into account different lighting conditions.   

As can be observed in Table 1, for a similar vehicle distance (Dist), the vertical position of the 

shadow in the image (SVP) varies depending on the lighting conditions. This is basically due to 

two factors: firstly, the shadow underneath does not perfectly match with the vehicle’s vertical 

projection onto the road. This factor is emphasized depending on the perspective which varies 

with the distance (the point of view is at a higher angle as the vehicle ahead becomes closer to 

the camera). Secondly, in sunny scenes there is a shadow around the vehicle (lateral shadow). 

There is not a clear intensity limit between the shadow underneath the vehicle and the 
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surrounding shadow because the intensity values between both vary smoothly. In these cases it is 

very difficult to establish an automatic threshold which perfectly separates both shadows and 

inevitably some pixels belonging to the surrounding shadow are included as part of the shadow 

underneath. Taking these factors into account, the distance provided by the vehicle’s shadow is 

not accurate enough, particularly for a close range and in sunny scenes. However, this 

approximate distance provides indicative values of the vehicle’s number plate dimensions at this 

distance, making the next number plate detection method adaptive to the range (section 3.5).  

 

 

3.4 Number Plate Features and Distance-Size Relationship 

The aim of the next license plate detection is to calculate vehicle distance to the camera and 

therefore the vehicle’s distance. License plates have several constant parameters that can be 

checked in order to obtain the distance. The longer the dimensions, the more accurate the 

measurement. The ideal dimension to be checked would be the plate’s width. Nevertheless, 

experience indicated that with light colored vehicles the result of the image processing is not 

satisfactory when the aim is to obtain the plate’s contour. However, the plate’s characters can be 

easily localized and isolated by means of morphological methods. The system proposed was 

Table 1         Vehicle’s distance-Shadow’s vertical location-Number plate character’s dimensions 

Dist (m) 
SVP (pixel) NPW 

(pixel) 

CH 

(pixel) CH
NPW  CS 

(pixel) 

CT 

(pixel) Sunny Cloudy Rainy 

1 65 86 92 188 38 4.94 29 5 

2 119 137 142 138 27 5.11 21 4 

3 216 231 235 109 22 4.95 17 4 

4 282 294 297 91 19 4.78 15 3 

5 332 341 343 78 16 4.87 13 3 

6 371 378 380 69 14 4.92 11 2 

7 400 404 405 61 12 5.1 10 2 

8 426 428 428 55 11 5 9 2 

9 445 445 445 50 10 5 8 1 

10 465 465 465 45 9 5 7 1 

  

Dist = Real vehicle’s distance, SVP = Vertical position of the lower edge of the vehicle’s bounding 
box (shadow) in the image, NPW =Number plate joint width, CH = Character height, CS = 
Separation between numbers and letters, CT= Character thickness trace. 

 

 



12 

designed to work with Spanish plates but it can be adapted to plates of other countries. Spanish 

plates are made up of a four numbers and three letters, and their dimensions are fixed (Fig. 3). 

In order to calculate the vehicle’s distance, two dimensions of its number plate are considered by 

the algorithm: the width of the number plate (NPW) and the height of the characters (CH). The 

consideration of one or the other depends on the skew angle of the vehicle ahead. When the back 

of the vehicle ahead is in the frontal view, the parameter considered to estimate the distance is 

the NPW. In this case both parameters could be employed in the measurement but as the NPW is 

longer than the CH, the accuracy provided in the distance measurement is greater.  

However, when the vehicle ahead is on a curve, the image is not a perfect frontal view of the 

vehicle’s rear so the NPW in the image is shorter than it should be, which generates a distance 

measuring error. In these cases, the number plate parameter considered to establish the vehicle’s 

distance is the height (CH) of the nearest character (the highest). In a skewed situation the 

characters of the plate do not have the same size. If a rotation of the plate were performed in 

order to place the plate in a frontal view, the axis of this rotation would be the highest side of the 

highest character of the skewed plate. Furthermore, after this rotation the height of the number 

plate in a frontal view would be the same as the height of the highest character of the skewed 

number plate, so this rotation is unnecessary.  

Fig. 3.  Number plate parameters. NPW = Number plate width, CH = 
Character height, CT = Character thickness trace, CS = Characters 
separation. 

NPW 

CH 

CT CS 
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In order to know if the rear of the vehicle ahead is in a frontal view, the algorithm makes use of the 

aspect constant relationship between the two parameters in a frontal view:  

cte
CH

NPW
=5  ≈                                                          (1) 

The relationships between the NPW, CH, aspect constant and the distance to the camera were 

established in Table 1. Fig. 4 is the graphical representation of NPW, CH and the distance.  

 

From Fig. 4, two mathematical relationships were obtained: 

( ) )-0.01231(-0.03954 10.18+24.8= NPWNPW

NPW eeD                                  (2) 

    
( ) )-0.07613(-0.3508 16.32+42.59= CHCH

CH eeD                               (3) 

where DNPW (m) is the vehicle distance provided by the width of the number plate and DCH (m) is 

the vehicle distance provided by the character’s height. Fig. 4 shows how NPW and CH do not 

vary linearly, but decrease exponentially with the distance.  

Table 1 shows how the aspect relationship of the NPW and the CH in frontal view remains 

practically constant and equal to 5. Moreover, Table 1 shows the different accuracy provided by 

NPW and CH. For instance, from 5 to 6m the use of the NPW provides a measurement precision 

of 0.11m (1m/9pix), while the CH provides a precision of 0.33m (1m/3pix). 

 

3.5 Number Plate Detection 

The number plate detection procedure proposed is based on the well-known morphological 

operator, Top-Hat. This method is widely employed in number plate localization under restricted 

conditions where some information related to the number plate’s dimensions in the image is 

available. We make this method adaptive to vehicles in motion at any distance within the range. 

The number plate detection is restricted to the vehicle’s bounding box, thereby significantly 

simplifying the background region. The Top-Hat operator is described as: 

),(),(),( jiCjiIjiD                                                            (4) 



14 

Firstly, the morphological closing C of the image I with a circular structuring element (SE) 

eliminates all the dark on light background elements smaller than SE (Fig. 5b). Then, subtracting  

 

the resulting image from the initial one, we get an image D where non filtering sensitive elements 

are removed and the high frequency areas (including the plate’s characters) remain enhanced 

(see Fig. 5c).  

The size of the structuring element used is crucial and should be estimated according to the 

plate’s font size (i.e. to the characters’ thickness) in the image. Since the number plate characters’ 

thickness in the image varies significantly depending on the distance to the camera, a constant 

SE cannot be considered as in [35-37]. In order to make this method adaptive to the range, we 

take advantage of the lower edge location of the vehicle’s bounding box (section 3.3). Table 1 

establishes a relationship between this lower edge location in the image (SVP), the real vehicle’s 

distance (Dist) and the character’s thickness (CT). In Table 1, the structuring element SE 

Fig. 4. Character’s height vs. distance and its fitting curve. Number plate 

width vs. distance and its fitting curve. 
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considered by the algorithm is the value of the CT corresponding to the minimum Dist nearest to 

the SVP value provided by the vehicle detection procedure. In this way, the SE is slightly higher 

than the character’s trace at the real vehicle distance what ensures an adequate performance of 

the morphological method. 

After the operator Top-Hat is applied, the binarization threshold of the still gray image is 

established by means of the Otsu method [38] as in [32, 35]. Fig. 5d is the binary image obtained, 

and, apart from the number plate, other noisy elements whose trace is smaller than the SE 

diameter inevitably appear. In order to eliminate them and isolate the number plate characters, 

the algorithm is based on a morphologic filter, making use of the knowledge regarding the number 

plate dimensions expected at each approximate distance. Table 1 also establishes the 

relationship between the parameters previously mentioned and the character’s height (CH), the 

number plate width (NPW) and the separation between the number and letters (CS). As stated 

above, the parameters’ values provided by the SVP are slightly higher than the parameters’ 

values at the real vehicle’s distance, which ensures a correct performance of the morphological 

filter.  

Firstly, all the elements are horizontally joined by means of a ‘closing’ operation with a horizontal 

linear SE of value CS which is the maximum separation between the plate’s characters (see Fig. 

3). Thus, all elements whose horizontal separation is less than or equal to the SE are joined 

horizontally (Fig. 6a). Next, object size discrimination is performed as in [35]. Elements taller than 

CH and wider than NPW are eliminated by means of an ‘opening’ operation followed by the 

subtraction of the resulting ‘opening’ image from the former one. This operation is applied two 

times, firstly with a vertical linear SE of value CH and secondly with a horizontal linear SE of value 

NPW (Fig. 6b). Note that the two size restrictions are always satisfied by both frontal view and 

skewed number plates as the latter’s parameters are always smaller (CH can be equal) than the 

former’s ones. Next, small element discrimination is performed by means of an ‘opening’ 

operation. There is not reference values slightly lower neither than CH nor NPW so a safety 
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percentage is considered as the lower limit for both dimensions. This operation is applied two 

times, firstly with a vertical linear SE of value 0.7CH and secondly with a horizontal linear SE of  

 

value 0.6NPW (see Fig. 6c). As can be observed in Fig.6c, number plate candidates are 

contained in rectangular regions which satisfy the conditions of height, width and maximum 

separation among elements. 

Finally, the number plate hypothesis verification is based on three new restrictions. Firstly, 

number plates are made up of seven characters (four numbers and three letters). Secondly, the 

height of all of them is the same (in skewed number plates the characters’ height is not equal but 

approximate) and thirdly, the separation between the numbers and the letters (CS) is greater than 

Fig. 5. Vehicle candidate (a), morphological closing with SE (b), 

resulting image of the top hat method (c), the resulting binary image (d). 

a b 

c d 
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the separation between individual numbers and letters. In order to evaluate these restrictions an 

‘AND’ operation is performed between the candidate regions and their corresponding coordinates 

of the initial binary image. The result is the elements contained in the rectangular candidates (Fig. 

6d). A four-connected-component algorithm is used in each region obtaining as a result all the 

elements labeled. Finally, after obtaining the number of elements, their separation and their 

height, the candidate which satisfies the restrictions imposed is verified as the number plate. 

                                             
3.6 Distance Measurement 

The penultimate stage of the system consists of extracting the width of the seven characters of 

the number plate (real NPW) and the tallest character height (real CH). The aspect ratio between 

the two parameters is obtained from equation (1) and the result is compared with the aspect ratio 

parameter given by the SVP in Table 1. If the difference between them is les than 5%, the scene 

is considered a perfect frontal view so the vehicle’s distance is obtained in a straightforward 

manner from equation (2) by means of the real NPW. In any other case, the scene is skewed so 

the vehicle’s distance is directly obtained from equation (3) by means of the real CH. 

 

 

3.7 Relative Speed Measurement 

In order to calculate the front vehicle’s relative speed, the system considers successive images. 

Knowing the vehicle distance variation in two consecutive images and the time elapsed between 

each image acquisition, the vehicle’s relative speed is calculated as:         

                              
T

DD
Vrelative Δ

=
12

                                                             (5) 

where D1 is the vehicle distance in the first frame, D2 is the vehicle distance in the second frame 

and ∆T is the time between the two frames. 
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4. EXPERIMENTAL RESULTS 

The system was installed on a vehicle and it was subjected to a set of tests under different traffic 

and lighting situations in Santander, Spain. The camera used was a Trust Widescreen HD 

WebCam, 8 bit pixel depth, auto white balance and automatic exposure time which provided 

grayscale 1280x720 frames. The images were acquired and processed in Matlab®, on an Intel 

Pentium IV 3.06 GHz with 480 MB RAM. 

 

Fig. 6.  Elements horizontally joined (a), image without bigger noisy 
elements (b), image without smaller noisy elements (number plate 

candidates) (c), elements contained in the rectangular candidate (d). 

a b 

c d 
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4.1     Distance Accuracy 

In order to check the distance measurement accuracy, a comparison between the measurements 

provided by the vision system and a laser was performed. The laser was a Leica Disto Pro A 

distance meter with a range up to 100m. Tests consisted of placing our vehicle behind a target 

vehicle in a range from 0.5 to 10m at intervals of 0.5m. Both vehicles were at rest and the 

measurements were taken by both the monocular system and the laser. The measurement 

provided by the laser was considered the real distance. At each point, the mean of 10 measures 

was calculated. The algorithm correctly estimated that the scene was a frontal view so the 

distance was provided by the width of the number plate (NPW Dist) over the whole range. In order 

to check the accuracy that the character’s height (CH Dist) would provide in a curve, the 

               Table 2      Monocular Vision System-Laser 

 Cloudy Sunny Rainy 

    Laser Dist NPW Dist CH Dist NPW Dist CH Dist NPW Dist CH Dist 

0.5 0.500 0.51 0.494 0.51 0.506 0.51 

1 1.020 0.97 1.033 0.97 1.007 0.97 

1.5 1.484 1.46 1.503 1.46 1.464 1.46 

2 1.967 2.09 1.995 2.09 1.941 2.09 

2.5 2.466 2.63 2.502 2.63 2.431 2.63 

3 2.994 3.07 3.040 3.07 2.948 3.07 

3.5 3.504 3.32 3.561 3.32 3.448 3.32 

4 3.999 3.89 3.999 3.89 3.932 3.89 

4.5 4.515 4.58 4.515 4.58 4.436 4.58 

5 5.032 4.98 5.032 4.98 4.940 4.98 

5.5 5.527 5.43 5.527 5.43 5.423 5.43 

6 5.974 5.93 5.974 5.93 5.857 5.93 

6.5 6.471 6.51 6.471 6.51 6.471 6.51 

7 7.027 7.17 7.027 7.17 7.027 7.17 

7.5 7.488 7.17 7.488 7.17 7.488 7.17 

8 7.990 7.96 7.990 7.96 7.990 7.96 

8.5 8.540 7.96 8.540 7.96 8.540 7.96 

9 8.935 8.89 8.935 8.89 8.935 8.89 

9.5 9.574 8.89 9.574 8.89 9.574 8.89 

10 10.035 10.03 10.035 10.03 10.035 10.03 

Laser Dist= Distance provided by the Laser, NPW Dist= Distance provided by the width of the number plate, 
CH Dist= Distance provided by the character’s height. 
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character’s height in the recorded images was analyzed in the laboratory. The results for tests in 

sunny, cloudy and rainy days were in agreement (Table 2). 

 

Table 2 shows that the Laser Dist and the NPW Dist remained practically the same regardless of 

lighting, the results varying slightly closer than 5.5m. However, as expected, the accuracy 

provided by the character’s height was lower. The absolute and relative errors were calculated for 

each distance in sunny, cloudy and rainy conditions from Table 2. As an example, Fig. 7 shows 

the graphical representation of the measurements provided by the laser and the monovision 

system in a cloudy day. Fig. 7a shows that the measurement difference (absolute error) between 

the real and the NPW Dist is small for the whole range, providing very accurate measurements. In 

Fig. 7b the absolute error of the CH Dist is greater the longer the range and it can be appreciated 

that the relative error gets higher as the distance becomes longer.  

Table 3 shows the absolute and relative errors of the NPW and CH distances in cloudy conditions. 

As can be observed, the maximum relative error of the NPW Dist is 2.00% at 1m where the 

absolute error is only 0.020m. For 10m the absolute error is 0.035m which implies 0.35% relative 

error. Regarding CH Dist, Table 3 shows that from 0.5m to 7m CH provides an absolute error 

lower than 0.02m, however from 7m to 10m the CH distance accuracy decreases significantly in 

comparison to NPW distance. The accuracy would improve for both parameters with a higher 

image resolution although processing time would be longer. Tests showed that as expected, the 

accuracy provided by NPW Dist is higher than the CH Dist’s and they also showed that the 

algorithm performs correctly regardless of lighting conditions and estimates correctly whether the 

scene is a frontal view.  

 

4.2       Vehicle and Number Plate Detection   

The second test was the evaluation of vehicle and number plate detection processes. Tests were 

carried out in real urban traffic on cloudy, sunny, rainy days and in a tunnel. Due to the incorrect 
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performance in motion of the laser distance meter, the distance measurement comparison could 

not be carried out. 1000 images in 5 sets of 200 images were acquired and recorded for each  

 

 

weather situation and 400 in 4 sets of 100 in a tunnel. The results of the vehicle and number plate 

detection are presented in Table 4-5 respectively. 

Vehicle detection results showed the effectiveness and excellent performance of the algorithm 

proposed, with a high percentage in the Vehicle Detection Rates (VDR) achieving 98.35%, 

99.20%, 98.64% and 97.38% for cloudy, sunny, rainy days and tunnel respectively. Moreover, 

False Detection Rates (FVDR) were very low making the system very reliable.  

. 7. Distance measures by monocular system – laser and relative error. 
NPW Vs. Laser (a). CH Vs. Laser (b). 
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    Regarding license plate detection (Table 5), the detection rates (LPLR) were over 99%. It was 

very high in tunnels (99.40%) because the plate’s background is made of reflective material, 

providing high contrast with the characters when it is lit by headlights. Moreover, there was no any  

 

False License Plate Localization (NFLPL), which makes the algorithm very robust. The excellent 

reliability of the license plate localization is because the algorithm only focuses on the bounding 

box image which only contains the rear of the vehicle ahead.  

Finally, it must be said that the processing time of the system was not constant. It depends on the 

distance from the vehicle to the camera and the number of plate candidates. The closer to the 

camera, the bigger vehicle’s rear image size, and so the longer the processing time. The average 

processing time achieved was 248.4768 ms, which implies 4 fps. It is due to the limitations 

imposed by the processing unit employed, a common laptop. However, it must be said that the 

image processing algorithm developed, employs methods and techniques that are much faster 

than processes such as image corresponding of stereovision, which is usually employed in 

                 Table 3        Analysis of Errors under Cloudy Conditions 

Laser Dist (m) NPW Absolute Error (m) NPW Relative Error (%) CH Absolute Error (m) CH Relative Error (%) 

0.5 0.000 0.00 0.011 2.22 

1 0.020 2.00 0.024 2.40 

1.5 0.016 1.06 0.040 2.66 

2 0.032 1.60 0.092 4.63 

2.5 0.033 1.33 0.134 5.39 

3 0.006 0.19 0.076 2.54 

3.5 0.004 0.11 0.173 4.97 

4 0.000 0.00 0.104 2.59 

4.5 0.015 0.33 0.083 1.84 

5 0.032 0.64 0.017 0.34 

5.5 0.027 0.50 0.069 1.27 

6 0.026 0.43 0.065 1.08 

6.5 0.028 0.44 0.011 0.17 

7 0.027 0.39 0.178 2.54 

7.5 0.011 0.15 0.321 4.28 

8 0.009 0.11 0.038 0.47 

8.5 0.040 0.47 0.538 6.32 

9 0.064 0.71 0.101 1.13 

9.5 0.074 0.78 0.601 6.33 

10 0.035 0.35 0.037 0.37 

         DistLaserDist=ror(m)AbsoluteEr - ;   100•
LaserDist

DistLaserDist
=ror(%)RelativeEr  
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    Table 5                Analysis of License Plate Detection 

 

Total 

Number of 
Test Frames 

Number of Frames 

with  Vehicle in the 
Safety Area (NFV) 

Number of 
Vehicles 

Detected 
(NVD) 

Number of LP 

Localizations 
(NLPL) 

Number of False  

LP Localizations 
(NFLPL) 

License 
Plate 

Localization 
Rate (LPLR) 

False License 
Plate 

Localization 
Rate (FLPLR) 

Cloudy 1000 486 478 475 0 99.37% 0% 

Sunny 1000 502 498 494 0 99.19% 0% 

Rainy 1000 515 508 504 0 99.21% 0% 

Tunnel 400 344 335 334 0 99.40% 0% 

 
NFV=Number of Frames with Vehicle in the Safety Area, NVD=Number of Vehicles Detected, NLPL=Number of License Plate 
Localizations, NFLPL= Number of False License Plate Localizations, LPLR= License Plate Localization Rate, FLPLR = False 
License Plate Localization Rate. 

 100
NVD

NLPL
=LPLR(%)         100

NFD

NFLPL
=FLPLR(%)  

 

 

        Table  4        Analysis of Vehicle Detection  

 
Total 

Number of 

Test Frames 

Number of Frames 
with  Vehicle in the 
Safety Area (NFV) 

Number of Frames 
with no Vehicle in 
the Safety Area 

(NFNV) 

Number of 
Vehicles 
Detected 

(NVD) 

Number of 
False 

Detections 
(NFD) 

Vehicle 
Detection 

Rate (VDR) 

False Vehicle 
Detection Rate 

(FVDR) 

Cloudy 1000 486 514 478 8 98.35% 1.55% 

Sunny 1000 502 498 498 4 99.20% 0.80% 

Rainy 1000 515 485 508 7 98.64% 1.44% 

Tunnel 400 344 56 335 2 97.38% 3.57% 

 
VDR=Vehicle Detection Rate, FVDR=False Vehicle Detection Rate, NFV=Number of Frames with Vehicle in the Safety Area,   
NFNV=Number of Frames with No Vehicle in the Safety Area, NVD=Number of Vehicles Detected, NFD=Number of False 
Detections.  

100
NFV

NVD
=VDR(%)      100

NFNV

NFD
=FVDR(%)  

 

 

 

 

approaches that satisfy the timing condition. The algorithm is expected to be able to achieve a 

higher number of fps running on a suitable processing unit [39].  

 

5. CONCLUSION 

A novel monovision-based system able to detect a vehicle ahead and measure the distance and 

relative speed has been presented. The use of a single common camera makes the system 

cheaper than stereovision systems and other technologies such as RADAR-based approaches. 

Besides, monocular vision significantly reduces the computational complexity and the processing 

time of stereovision. The distance measurement method proposed is based on the vehicle’s 

number plate whose dimensions and shape are standardized in each country. The algorithm 

simplifies the complex traffic scene focusing only on a ROI of the road corresponding to the safety 

area in front of our vehicle. The ROI reduces the possibility of errors improving the system’s 
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reliability. The vehicle detection procedure successfully utilizes the shadow underneath the target 

vehicle and horizontal edges regardless of weather conditions. An adaptive shadow segmentation 

threshold is proposed based on the characteristic ROI image histogram. The number plate 

localization algorithm proposed adapts the Top-Hat operator to vehicles in motion over the range. 

In-vehicle tests carried out in real urban traffic showed excellent robustness and reliability in 

vehicle and number plate detection and very good accuracy in distance measurement. 
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