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Abstract 

The aim of this work is to develop statistical estimation models of some EU regulated heavy metal 
levels (Pb, Ni) and some non-regulated heavy metal levels (Mn, V and Cr) in the ambient air of the 
city of Dunkerque (Northern France) so that they might be used for air quality assessment as an 
alternative to experimental measurements, since these levels are relatively low compared to the EU 
limit/target values and other air quality guidelines. Three different approaches were considered: 
Partial Least Squares Regression (PLSR), Artificial Neural Networks (ANN) and Principal 
Component Analysis (PCA) coupled with ANN. External validation results evidence that PLSR and 
ANN-based statistical models for regulated metals and for Mn and V provide adequate mean values 
estimations while fulfill the EU uncertainty requirements. 

Keywords: Partial least squares regression; PLSR, artificial neural networks; ANN, statistical models; particulate 
matter; PM10, heavy metals. 

 

1. Introduction 

Particulate Matter (PM) still remains a concerning environmental problem in urban 
areas, which is due not only to its physical properties such as mass distribution, particle size 
and shape, but also to its chemical composition. With respect to the metal content in PM, 
the European Union (EU) throughout the Air Quality Framework Directive (EC, 2008) and 
the 4th Daughter Directive (EC, 2004) has established limit/target values for some metals, 
as shown on Table 1. The air quality assessment criteria depend on the pollutant 

ProScience 1 (2014) 100-105

Available at www.scientevents.com/proscience/



 
 
 
 
 
 
 
 
 

 

*Corresponding Author: santosg@unican.es 
ISSN: 2283-5954 © 2014 The Authors. Published by Digilabs 
Selection and peer-review under responsibility of DUST2014 Scientific Committee 
DOI:10.14644/dust.2014.016 

PLSR and ANN estimation models for PM10-bound 
heavy metals in Dunkerque (Northern France) 

Germán Santos1*, Ignacio Fernández-Olmo1, Ángel Irabien1, 
Frédéric Ledoux2, Dominique Courcot2 

1Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, 
Santander, 39005, Spain 

2Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492,  
Université du Littoral Côte d’Opale, Dunkerque, 59140, France 

 

Abstract 

The aim of this work is to develop statistical estimation models of some EU regulated heavy metal 
levels (Pb, Ni) and some non-regulated heavy metal levels (Mn, V and Cr) in the ambient air of the 
city of Dunkerque (Northern France) so that they might be used for air quality assessment as an 
alternative to experimental measurements, since these levels are relatively low compared to the EU 
limit/target values and other air quality guidelines. Three different approaches were considered: 
Partial Least Squares Regression (PLSR), Artificial Neural Networks (ANN) and Principal 
Component Analysis (PCA) coupled with ANN. External validation results evidence that PLSR and 
ANN-based statistical models for regulated metals and for Mn and V provide adequate mean values 
estimations while fulfill the EU uncertainty requirements. 

Keywords: Partial least squares regression; PLSR, artificial neural networks; ANN, statistical models; particulate 
matter; PM10, heavy metals. 

 

1. Introduction 

Particulate Matter (PM) still remains a concerning environmental problem in urban 
areas, which is due not only to its physical properties such as mass distribution, particle size 
and shape, but also to its chemical composition. With respect to the metal content in PM, 
the European Union (EU) throughout the Air Quality Framework Directive (EC, 2008) and 
the 4th Daughter Directive (EC, 2004) has established limit/target values for some metals, 
as shown on Table 1. The air quality assessment criteria depend on the pollutant 

 

 

concentration. Thus, when the levels of pollutants are bellow the Lower Assessment 
Threshold (LAT), modelling and objective estimation techniques are allowed to be used as 
air quality assessment methods (EC, 2008). Since the analytical determination of the levels 
of these metals is rather expensive and time consuming, it might be interesting to try to find 
new alternatives for air quality assessment in relation to heavy metals so that less 
experimental measurements are required. In this respect, the main objective of this work is 
to estimate the levels of some EU regulated and non-regulated metals in airborne PM10 in 
an urban area. For this purpose, statistical models based on Partial Least Squares 
Regression (PLSR) and Artificial Neural Networks (ANN) have been developed as 
objective estimation techniques. It should be mentioned that since this work is conceived as 
an air quality assessment tool at a later stage it is not about forecasting but estimation.  

Table 1. EU quality objectives and evaluation thresholds for regulated metals. 
Pollutant  TV/LVa  (ng m-3)  UATb  LATb  Directive  
Pb  500  60  40  2008/50/EC  
As  6  60  40  

2004/107/EC  Cd  5  60  40  
Ni  20  70  50  
 TV: Target Value; LV: Limit Value; UAT: Upper Assessment Threshold; LAT: Lower Assessment Threshold 
a For the total content in the PM10 fraction averaged over a calendar year 
b Percent of the target value 

2. Methodology 

2.1 Area of study and input database 

The database consists of dependent (response) variables, metal concentration in PM10 at 
Les Darses site in Dunkerque (Northern France) corresponding to an intensive sampling 
campaign performed from February to May 2008 (Hleis, 2010), and independent (predictor) 
variables (listed on Table 2). Meteorological data were obtained at the Meteorological station. 

Table 2. Input variables. 
Notation Descriptiona Type Units 
SE Season (1: Winter; 2: Spring; 3: Summer; 4: Fall) Nominal - 
WE Weekend (0: No weekend; 1: Weekend) Nominal - 
LnPM10 Average natural logarithm of PM10 concentration (µg m-3) Continuous (Major air pollutant) - 
SO2 Average concentration of sulphur dioxide Continuous (Major air pollutant) µg m-3 
O3 Average concentration of ozone Continuous (Major air pollutant) µg m-3 
NOx Average concentration of nitrogen oxides Continuous (Major air pollutant) µg m-3 
T Average temperature Continuous (Meteorological) ºC 
RH Average relative humidity Continuous (Meteorological) % 
WD Prevailing wind direction Continuous (Meteorological) º 
WS Prevailing wind speed Continuous (Meteorological) ms-1 
P Average pressure Continuous (Meteorological) mbar 
PP Cumulative precipitation Continuous (Meteorological) L m-2 
a Average values were calculated according to the corresponding duration of the PM10 sampling periods 

in Dunkerque Harbor, and major pollutant data were measured at St. Pol sur Mer 
monitoring station. 

A total number of 78 samples were analyzed for different trace metals. Among the EU 
regulated metals, Pb and Ni were determined. Additionally, three non-regulated metals 
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were also considered: Mn, V and Cr. These metals were tracers of some industrial activities 
found in Dunkerque and Santander Bay (Spain), where previous studies on trace metal 
levels have been developed: Mn, for ferromanganese alloys manufacturing; V, for marine 
traffic and liquid fuel combustion; and Cr, for non-integral steel manufacturing and coal 
combustion. Since these metals are not regulated by the EU, they do not have a limit/target 
or LAT value. So, in order to normalize the metal concentration and to calculate the EU 
uncertainty indexes, the following values were considered as LAT for non-regulated 
metals: the annual air quality guideline for Mn (150 ng/m3) proposed by the World Health 
Organization (WHO); and the maximum observed concentration for V and Cr, in absence 
of a standard value for a period of duration comparable to that of the period of study.  

As shown in Table 3 Pb and Ni mean values are below their respective LAT. Therefore, 
according to the EU Air Quality Directives, objective estimation techniques can be applied 
for the air quality assessment in relation to Pb and Ni. 

Table 3. Levels of Pb, Ni, Mn, V and Cr for the period of study. Table adapted from Hleis (2010). 
Pollutant LATa (ng m-3) Mean value (ng m-3) Max. value (ng m-3) Min. value (ng m-3) Stand. deviation (ng m-3) 
Pb 200 14.3 79.1 0.35 15.4 
Ni 10 9.2 104.0 0.17 14.7 
Mn 150 74.4 872.8 0.03 141.0 
V 49.0 7.8 49.0 0.17 7.9 
Cr 190.7 9.6 190.7 0.17 28.5 
a LAT-equivalent value for Mn, V and Cr 

Having been removed five identified outliers, the resulting complete database was 
divided into three subsets: 60% for models development, 20% for verification to avoid 
overfitting and 20% for external validation. In order to avoid scale effects, the dependent 
variables were normalized dividing the metal concentration by their respective LAT. 

2.2 Partial Least Squares Regression and Artificial Neural Network statistical models 

Partial Least Squares Regression and Artificial Neural Networks have been proposed in 
this study to estimate PM10-bound heavy metals due to the fact that both of them have been 
used in the literature as mathematical techniques to forecast the air concentration of a 
number of pollutants. Pires et al. (2008), Polat & Durduran (2012), Singh et al. (2012) 
applied PLSR to predict PM concentrations; and numerous authors over the years have 
investigated on developing ANN models to predict PM concentrations as well as gaseous 
pollutants (Gardner & Dorling 1999; Kukkonen et al., 2003; Perez & Reyes 2002), to cite 
but a few. Chelani et al. (2002) even included prediction of ambient air metal levels. Since 
the number of independent input variables is relatively high with respect to the number of 
samples, an alternative approach based on applying Principal Component Analysis (PCA) 
prior to ANN was considered as reported in the literature to be an effective strategy to 
improve the models. 
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2.3 Model performance criteria 

In this study the evaluation criteria to determine whether a model is suitable for air 
quality assessment purposes is principally based on: (i) the fulfilment of the European 
Union uncertainty requirements for objective estimation techniques, and (ii) the accuracy of 
estimated mean values, since the metal limit/target values correspond to annual mean 
concentrations. Two indexes of uncertainty were calculated: the relative maximum error 
without timing (RME) and the relative directive error (RDE). The former is the largest 
concentration difference of all percentile (p) differences normalized by the respective 
measured value. The latter is the difference between the closest observed concentration to 
the limit/target value and the correspondingly ranked modelled concentration normalized 
by the limit/target value. Additionally, a number of statistical parameters were considered 
to evaluate the model performance and are shown in Table 4:  

Table 4. Statistical parameters to evaluate the model performance. 
Statistic Equationa 
Relative maximum error without timing 

 

Relative directive error 
 

Fractional bias 

 

Correlation coefficient 

 

Root mean square error 

 

Fractional variance 
 

a O: Observed; E: Estimated 

3. Results and discussion 

3.1. Regulated metals: Pb and Ni 

Table 5 presents the results obtained for the best developed models for the two 
considered EU regulated metals (Pb and Ni) using the three different contemplated 
approaches: PLSR, ANN and PCA-ANN. Results relating to training (T) and external 
validation (V) subsets are displayed for each model. As shown, both RME and RDE 
indexes are well below the uncertainty requirements for objective estimation techniques, 
which are 100% for both of them. PLSR shows more accuracy for the training stage, 
however the best pair of training and external validation FB is found when using ANN, 
which indicates a better generalization ability for this technique. Table 5 also shows that 
using PCA before ANN increases uncertainty and produces a decrease in r.  

With regard to the performance indexes, the models show difficulties in estimating 
accurately the individual sample concentrations leading to an underestimation of the highest 
concentrations. However, PLSR and ANN capture the underlying trend during training 
although there is a better fitting when using ANN with lower values of RMSE, and  

FB =
CO    - CE    

0.5  CO    + CE     
 

RME = max  CO,p-CE,p  CO,p  
RDE =  CO,LV-CE,LV LV  

r =  
  CO,i - CO      CE,i - CE     n

i=1

 σOσE
  

FV = 2 
σO-σE

σO + σE
 

RMSE = 1
N
  CO,i-CE,i  

2
N

i=1
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Table 5. Uncertainty, mean concentration and performance statistics for the best models developed for Pb and Ni. 

Metal Model Subseta EU Uncertainty Mean Concentrationb Performance 
RME (%) RDE (%) CO 102 CE 102 FB 102 r RMSE 102 FV 10 

Pb 

PLSR T 28.1 1.44 6.52 6.52 3.7 10-08 0.823 3.94 1.95 
V 31.9 0.31 7.46 8.88 -17.4 0.837 4.48 -2.78 

                   
ANN T 18.3 2.10 6.38 6.84 -7.0 0.932 2.72 -0.85 

V 54.0 0.54 7.46 8.31 -10.8 0.861 4.90 -4.12 
                   
PCA-ANN T 40.1 2.22 6.57 6.78 -3.2 0.663 3.90 5.82 

V 90.4 1.38 3.69 7.95 -73.1 0.266 5.64 -2.56 

Ni 

PLSR T 65.9 12.87 68.5 68.5 -7.510-11 0.560 80.5 5.64 
V 83.6 11.70 156.6 98.2 45.8 0.556 241.3 14.62 

               0.0   
ANN T 29.2 18.55 73.4 73.8 -0.5 0.873 54.2 1.44 

V 50.0 17.60 156.6 115.8 30.0 0.702 186.6 4.77 
               0.0   
PCA-ANN T 64.9 24.86 95.9 95.8 0.1 0.470 161.1 7.20 

V 42.6 2.50 68.6 94.9 -32.2 0.443 63.2 -3.04 
a T: Training; V: Validation 
b O: Observed; E: Estimated 

FV. With respect to the external validation, there is a RMSE and FV increase as a result of 
an accuracy decrease. Still, they can be considered satisfactory estimations.  

3.2. Non-regulated metals: Mn, V and Cr 

The results of the best developed models for these three metals are shown on Table 6. As 
can be observed, the uncertainty requirements are fulfilled with a RME and RED lower than 
100% in all cases, except for the RME index of the Cr PCA-ANN external validation model. 
With respect to the mean concentration, low values of FB for Mn and V indicate acceptable 
training and external validation estimations. Nevertheless, correlation coefficient values 
lower than 0.66 for external validation evidence an unsatisfactory fitting of the individual 
sample concentrations. ANN models correlation coefficients are greater than those obtained  

Table 6. Uncertainty, mean value and performance statistics for the best models developed for Mn, V and Cr. 

a T: Training; V: Validation 
b O: Observed; E: Estimated 
 

Metal Model Subseta EU Uncertainty Mean Concentrationb Performance 
RME (%) RDEeq (%) CO 102 CE 102 FB 102 r RMSE 102 FV 10 

Mn 

PLSR T 53.9 4.71 32.55 33.43 -2.7 0.580 41.49 3.57 
V 53.1 50.23 64.95 58.24 10.9 0.184 92.80 6.99 

                   
ANN T 52.6 60.51 33.61 21.38 44.5 0.704 39.20 3.42 

V 48.2 68.86 64.95 63.77 1.8 0.457 81.56 4.64 
                   
PCA-ANN T 66.4 78.51 46.05 46.05 0.0 0.463 64.77 7.34 

V 35.3 11.62 29.49 30.33 -2.8 0.431 42.72 1.74 

V 

PLSR T 42.7 1.20 13.12 13.42 -2.3 0.694 8.17 2.33 
V 31.5 4.74 18.07 18.48 -2.2 0.590 11.21 3.16 

                   
ANN T 41.6 4.28 14.27 14.00 1.9 0.806 7.19 1.78 

V 30.7 5.45 18.07 18.45 -2.1 0.663 10.43 2.11 
                   
PCA-ANN T 42.9 1.60 13.14 13.20 -0.5 0.747 5.91 2.93 

V 12.5 15.60 12.79 16.50 -25.4 0.366 13.97 0.56 

Cr 

PLSR T 88.8 1.01 4.58 3.96 14.6 -0.031 15.28 11.34 
V 78.5 25.74 6.97 5.78 18.7 0.077 18.09 12.78 

           0       
ANN T 50.0 39.17 5.59 3.25 53.1 -0.040 19.24 6.53 

V 83.6 27.89 6.97 3.55 65.0 -0.240 19.06 14.76 
                   
PCA-ANN T 79.2 0.43 7.15 7.90 -10.0 0.331 18.33 9.70 

V 489.9 0.43 1.45 9.31 -146.3 0.275 10.04 -13.57 
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for PLSR and PCA-ANN models. This, together with the fact that ANN provide the lowest 
FB and adequate RME and RDE, places ANN as the most suitable approach out of the three 
studied. 

4. Conclusions 

Models based on PLSR and ANN to estimate the levels of some EU regulated metals 
(Pb and Ni) and some non-regulated metals (Mn, V, Cr) were developed for an intensive 
PM10 sampling campaign carried out at Les Darses site in Dunkerque (Northern France) 
from February to May 2008. An alternative approach consisting in performing PCA prior to 
ANN was also considered.  

PLSR and ANN techniques provide acceptable mean concentration estimations. 
Moreover, uncertainty requirements for objective estimations (RME and RDE lower than 
100%) are fulfilled when estimating regulated metals. Consequently, according to EU Air 
Quality Directives, PLSR and ANN represent valid approaches as tools for air quality 
assessment in relation to regulated heavy metals in the studied area. The results obtained for 
the studied non-regulated metals are slightly worse, mainly for Cr. 

With respect to the applied techniques, ANN showed a slight better performance than 
PLSR. However, PCA did not improve the ANN model performance. 
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