

Facultad
de

Ciencias

 GENETICS STUDY, INTERACTIONS

MODELING, DEVELOPMENT AND
INTEGRATION OF BIOINFORMATICS

MODULES FOR THE GENETYSIS ®
GENETICS SOFTWARE

(Estudio de base genética, modelado de
interacciones y desarrollo e integración de
módulos bioinformáticos para el Software

genético Genetysis ®)

Trabajo de Fin de Grado
para acceder al

GRADO EN INGENIERÍA INFORMÁTICA

Autor: Raúl Nozal González

Director: Domingo Gómez Pérez

Co-Director: Jose Mª Aznar Oviedo

Septiembre - 2015

Raúl Nozal

Contents

List of Tables iii

List of Figures iii

Listings iv

License v

Acknowledgments ix

Abstract / Resumen xi

1. Introduction 1
1.1. Motivation . 1
1.2. Objective . 2
1.3. Internship planning . 3
1.4. Report structure . 4

2. State of the art 7
2.1. Matrix of combinations . 7
2.2. Building system and web development . 7
2.3. Phenotype Indicator . 8

3. Methods, Materials and used Technologies 9
3.1. Genetics theoretical bases and applications . 9
3.2. Software methodologies . 10
3.3. General software technologies . 10
3.4. Languages and Environments . 11
3.5. Building system . 12
3.6. Graphical User Interfaces . 14
3.7. Web components . 14

4. Contents & Results 16
4.1. Matrix of combinations to rules . 16
4.2. Werft-projects (building system) . 19
4.3. m-forms (Genetysis® GUI) . 27

4.3.1. i18n-components (internationalization) 32
4.3.2. Helpers . 35

4.4. Phenotype Indicator . 36
4.5. Foreign Function Interface (FFI) . 39

i

Master Thesis

5. Conclusions and future work 42
5.1. Conclusions . 42
5.2. Future work . 43

6. Bibliography 45

7. Appendices 49
7.1. Renders . 49

7.1.1. GUI (m-forms) . 49
7.2. UML . 54

7.2.1. GUI (m-forms) . 54
7.2.2. Internationalization . 56

7.3. Code . 57
7.3.1. Matrix of combinations to rules . 57
7.3.2. GUI independent packages . 63
7.3.3. i18n-components . 74
7.3.4. Helpers . 80
7.3.5. Phenotype Indicator . 86
7.3.6. Optimizations and Foreign Function Interface 98

ii

Raúl Nozal

List of Tables

1. Werft tasks, order and dependencies. 21
2. Comparison between client and refinery development types (using the

optimized version). 26

List of Figures

1. Internships, projects distribution and planning. 3
2. Contents relationships. 6
3. Schemes of polymorphisms combinations (matrices to rules). 16
4. Tree of dependencies and levels of abstraction. 17
5. Portion of web interface (m-forms) showing the rules visualization and its

values. 18
6. Flowchart showing the stream processes in the babel task. 22
7. Flowchart showing the stream processes and its subtasks in the refinery

task (under Refinery mode). 23
8. Comparative of tasks and its optimized loading (100 executions, build tasks). 25
9. Comparative of development modes and its optimized loading (100 execu-

tions, build tasks). 26
10. Some mockups designed and accepted in the first meetings. 27
11. Overview of the m-forms components system. 28
12. Overview of content components (m-forms nested level of components). 29
13. Genetics data administration GUI architecture overview. 30
14. formCombinator in a demonstration of two complex views (Polymor-

phisms and Combinations) and with mixed support of i18n-components. 31
15. HelpComponent connected with a set of three different components (m-forms,

field). 32
16. Types of translation mappings (portion of a schema definition). 33
17. i18n-components Activity diagram (translation). 34
18. GUI application (overm-forms:field:file-input, but interacting also

withm-tooltip independent component and theremove form component). 35
19. Helpers in Emacs. Left side in Stylus-mode modified. Right side in JavaScript

using nav-blocks (from top to bottom with just one key shortcut). 36
20. Phenotype Indicator screen, using the internal template-phenotype

module. 37
21. template-phenotype on-the-fly error detection, connected to a screen

component to show the messages and with syntax transformation. 38
22. template-phenotype special mode and hinting system. Autocomple-

tion features and automatic keyword guessing. 38
23. Comparatives between loop algorithms (imperative and functional). 40
24. Jeff’s Greenberg Duff’s Device and Nozal’s Loop implementation, respectively. 41

iii

Master Thesis

25. m-toastr rendering process during a Refinery session. 49
26. m-formsduring a Refinery session, showingformComponentfield (demon-

stration purposes). 50
27. m-forms showing formComponent field, panel and container’s

title (demonstration purposes). 51
28. HelpBlock showing its capture (static rendering of the component, testing

purposes). 52
29. HelpBlock showing its dynamic rendering (testing purposes). 53
30. m-forms independent components and pluggable modules. 54
31. m-forms system, formComponent components (containers and contents). 55
32. i18n-components Activity diagram (usage overview). 56

Listings

1. Polymorphism Rules (polymorphism-rules.js). 57
2. CStr (cstr.js). 63
3. i18n-components (i18n-components.js). 74
4. remove button component i18n schema definition (remove-lang.js). . 78
5. remove button component i18n schema definition (remove-lang.js). . 79
6. i18n-components schema bootstrap with yasnippet (lang.snipppet). 79
7. nav-blocks extension (nav-blocks.el). 80
8. stylus-mode modification (stylus.el). 85
9. template-phenotype Interpreter (interpreter.js). 86
10. template-phenotypehinting extension (template-phenotype-hint

.js). 95
11. template-phenotypemode adapter for CodeMirror (template-phenotype

-mode.js). 96
12. Rust “where is” program to locate dependencies (demonstration purposes

whereis.rs). 99
13. JavaScript Jeff Greenberg’s Duff’s Device (duffs-device.js). 101
14. JavaScript Nozal’s Loop implementation (nozals-device.js). 102

iv

Raúl Nozal

License

The report itself:

GENETICS STUDY, INTERACTIONS MODELING, DEVELOPMENT AND INTEGRATION OF BIOINFOR-

MATICS MODULES FOR THE GENETYSIS ® GENETICS SOFTWARE (Estudio de base genética, mo-

delado de interacciones y desarrollo e integración de módulos bioinformáticos para el Software genético

Genetysis®) by Raúl Nozal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

Source codes shown along the report:

GENETICS STUDY, INTERACTIONS MODELING, DEVELOPMENT AND INTEGRATION OF BIOINFOR-

MATICS MODULES FOR THE GENETYSIS ® GENETICS SOFTWARE (Estudio de base genética, mo-

delado de interacciones y desarrollo e integración de módulos bioinformáticos para el Software genético

Genetysis ®)

Copyright (C) 2015 Raúl Nozal

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation, either version 3 of the License, or (at your

option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,

see <http://www.gnu.org/licenses/>.

Figures, tables and source code snippets are originally made by the author of this report.
All the diagrams, designs and images are under the same licensing as the report itself.

v

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.gnu.org/licenses/

Master Thesis

Note: the diagrams and images in most cases are in high-resolution and embedded in the
document, being not really prepared for printing purposes due to the limitations of fixed
size units (dots). The reader is encouraged to view them with PDF readers that support
zoom and pan tools (like Okular), to be able to see properly all the details.

The comparatives and graphs are based on the loads, benchmarks and analysis done
over the same workstation (computer), although its specifications are not relevant for this
Master Thesis’ purposes and its conclusions.

vi

https://okular.kde.org/

Raúl Nozal

“ El hombre que se prepara, tiene media batalla
ganada.

. (The man who is prepared, it has half the battle won.)

Miguel de Cervantes, 1547 - 1616 ”

vii

Master Thesis

viii

Raúl Nozal

Acknowledgments

I would like to thank the people who helped me along the process of making this re-
port, taught me new Science fields like Nutrigenomics and Genetics and complied with
reviewing the work I have been involved in for the last year.

I would like to remember the Baigene Bioinformatics staff that led my internship, which
provided enough help and information during the most difficult tasks and shared almost
every possible knot of knowledge since the very first time I was between them.

Thanks to the whole Baigene enterprise, especially Adrian, Jose and David, adressed
all my needs, gave me a comfortable place to work, were flexible about work-hours and
deadlines and most importantly, allowed me to work from my home after the second
month. A start-up but with great people and really good internal policies.

Special thanks to my director Dr. Domingo Gómez Pérez and my co-director Dr. José Mª
Aznar Oviedo, who formally inspected the entire report, were always there to support my
duties, carefully reviewed my week work and allowed me to contribute with even more per-
sonal solutions for every study we were doing in the bioinformatics and software develop-
ment departments.

Along the Computer Engineering studies I have been quite happy with everything, not
only materials and disciplines, but also with the professors. Thanks to every professor
that taught me any lesson. Special thanks go to the professors that were pushing forward,
who were learning and updating their knowledge, and taught the best they could. I would
like to express my gratitude to Jose Luis Bosque, Mario Aldea Rivas, Michael González
Harbour, Pablo Sánchez Barreiro, J. Javier Gutiérrez, Angel Vegas and J. Angel Gregorio
Monasterio. Each one with its distinctive features.

Special thanks to my German brother, Peter Külbs, and to my friend María.

Finally, all the efforts, headaches and more than a thousand hours of energy spent in
the whole internship that made it possible to fulfill these projects would not have been
feasible without my relatives. The recipe for the success is my family, the conditions and
environment that they provided me and the understanding of the requirements, variety of
fields and amount of complex cognitive tasks.

ix

Master Thesis

x

Raúl Nozal

Abstract

Nowadays, start-ups and big corporations are involved in complex business processes
with a wide variety necessities and more often with urge of digital applications to satisfy
their clients, suppliers and other companies. These needs and other fields with a de-
manding R&D component, like Genetics, are present in many businesses combined with
specific and competitive tasks. These tasks and the software which is used to fulfill them
require World-Wide availability and maximum flexibility to deal with the market and
leading research.

The access to genetic computation processes has revolutionized the commercial possibili-
ties of well defined sectors like Sports Nutrition, Nutrigenomics or Population Genetics.
There is a long road ahead and several factors to define the whole development infrastruc-
ture, the workflow and even the architecture where all the scientific processes lay down.
For several times, it has been necessary to redefine the genetic processing algorithms
because of the low computational efficiency or even distributing the tasks being aware of
the business model and providing an easy application and good usability.

The cross-disciplinary work in different research fields and the advantages of every Com-
puter Engineering discipline contribute to the development of high technology business
in a rapid changing market. Because of all that has been mentioned before, this Master
Thesis contains several different contributions: analysis and improvement of the current
polymorphisms processing, a building system for web projects and business-model-aware
support system, software architecture for the client-side genetics-management web appli-
cation (front-end) highlighting the Graphical User Interface (GUI), a specific module where a
language is defined (and its interpreter) to set the phenotype indicator based on templates,
and finally, the study of tools to connect modules (Foreign Function Interface, FFI) between
divergent languages and platforms aimed to improve the performance and reutilization
of previous modules.

Keywords: Genetic Computation, Nutrigenomics, Population Genetics, web development
building system, Graphical User Interface (GUI) architecture, Foreign Function Interface
(FFI)

xi

Master Thesis

Resumen

Hoy en día desde las empresas más pequeñas hasta las corporaciones más grandes se ven
envueltas en complejos procesos de negocio, con diversas necesidades y cada vez con una
mayor necesidad de aplicativos digitales con los que satisfacer a clientes, proveedores u
otras empresas. Si a estas empresas del sector tecnológico les unimos campos de la ciencia
donde hay un fuerte componente de I+D+i, tales como la genética, se consigue un área
de mercado con necesidades muy específicas y cambiantes, tales como: disponibilidad
a nivel mundial y máxima flexibilidad puesto que existe una relación directa entre el
mercado, la investigación y el software utilizado.

El acceso a procesos de computación genéticos, observados y entendidos desde el punto
de vista comercial, y aplicado sobre sectores tan concretos como la Nutrición Deportiva,
la Nutrigenómica o la Genética de Poblaciones hacen que sea necesario definir una nueva
infraestructura de desarrollo y una arquitectura más acorde con esta nueva forma de tra-
bajar. En muchas ocasiones es necesario redefinir algoritmos de procesamiento genético
por su bajo rendimiento a nivel computacional o incluso distribuyendo los problemas
teniendo en cuenta el modelo de negocio y facilitando su aplicación y utilización.

El trabajo multidisciplinar y la combinación de distintas áreas del conocimiento, unido
a una necesidad comercial cambiante y sacándole el máximo partido a las distintas dis-
ciplinas de la Ingeniería Informática, contribuye en muchos sectores y se materializa en
este trabajo de las siguientes maneras: un análisis y mejora del procesamiento actual de
polimorfismos, un sistema de construcción de proyectos web y soporte al desarrollo según
el modelo de negocio, una arquitectura software para el aplicativo web de administración
de contenidos genéticos desde lado cliente (front-end) haciendo hincapié en la interfaz de
usuario GUI y en un módulo concreto debido a la definición de un lenguaje (y su in-
térprete) para establecer el indicador de fenotipo basado en plantillas y por último, el
estudio de herramientas para la conexión de módulos (Foreign Function Interface, FFI) en-
tre lenguajes y plataformas de diversa índole con el objetivo de mejorar el rendimiento y
la reutilización de código.

Palabras clave: Computación Genética, Nutrigenómica, Genética de Poblaciones, sis-
tema de construcción para desarrollo web, arquitectura de interfaces gráficos (GUI),
Foreign Function Interface (FFI)

xii

Raúl Nozal

xiii

Master Thesis

xiv

Raúl Nozal

1. Introduction

In this chapter it is described a brief introduction to the tasks and objectives presented
during the internship in Baigene, S.L. and gathered by this Master Thesis report. Also,
it is described the internship planning to understand the report inside a long-term set of
projects, and the structure of the document to put in context the work done in this thesis.

1.1. Motivation

Since the appearance of the 90’s dot-com companies and the first years of The Internet, the
number of business enterprises that do most of their commercial operations inside the Net
has been increasing year by year. The technologies and methodologies have been evolving
constantly, and languages that were in the early stages, are now in the seventh revision,
stables, fully featured and ready for production. One of these examples is JavaScript, the
most used language along the World-Wide-Web, running in almost 90% of all the websites
(w3techs-js) and in the eighth position in the global spectrum ranking (ieee-spectrum).

Scientific teams from fields like bio-sciences, applying their theoretical research into a
commercial product, have been growing around the world. Start-ups like Baigene are
slowly flourishing, being aware of the power that the Technologies of Information and
Communication, and specifically The Internet has to offer, and creating the perfect mix-
ture of versatile groups: experts of areas like Genomics, Sport, Nutrition or Medicine and
DNA applications, with knowledge and market management qualified consultants and
technological groups with computer engineers.

The importance of cross-disciplinary work and collaboration in new tasks outside of
Computer Engineers’ usual knowledge areas, from a purely practical perspective, are
starting to provide new tools, methodologies and workflows that increase the application
of fields like Genetics. At the same time, being involved in this combination of Sciences,
are not only changing the way of thinking and communication between both sides, but
also transforming our own working procedures, being more flexible for a so changeable
environment. Finally, when all of the technology is at a production stage, it adds big
improvements and more variability to the mixture, and the whole company need to
dot their i’s and cross their t’s, being completely open to change the way of thinking and
aware of the market niche opportunities and necessities. The internship, and therefore
this Master Thesis, is centered in being part of the growing process of a start-up and
its own developing processes. It is focused on understanding some Genetic theoretical
bases and applications, the market necessities and how to adapt to them, but also to
improve the current methodologies and software modules, implement genetic algorithms
and optimize some genetic applications. Finally, understand the process as a whole, and
facilitate the work to other company developers and prepare and design a whole system
to produce usable software for The Internet with legacy support for previous modules,
and design and implement an architecture to improve the development methodologies of

1.1. Introduction [Motivation] continue. . . Page 1 of 104

http://w3techs.com/technologies/details/cp-javascript/all/all
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages

Master Thesis

the Genetics data administration.

1.2. Objective

There are two main groups of objectives relative to this project, the first one focused on
the Genetics, the second on the computer engineering application.

Genetics is a broad science and a meaningful understanding requires a Master Degree. A
practical approach is to narrow the path and study only the relevant parts related with its
applications, but supported by experts and their theoretical bases’ lessons. In this thesis,
it is focused the following:

Understanding the core concepts of Genomics and Population Genetics to be able to
evaluate specific tasks.

General overview of the company processes relative to the Genetics application.

Participate in a specific task of Genetics application, understand context and provide
tools and new methodologies that improve the workflow from a TIC point of view.

Studying the application of values per population, the matrix interconnections and
the variability and usage of polymorphisms.

Being involved in the commercial process, from the bioinformatics department ideas,
going through the TIC department until the product consolidation, by studying the
main parts and improving the procedures and techniques.

On the other side, the Computer Engineering application has more specific objectives, all
taking part or with a direct relationship to the Genetysis® Genetics Software:

Understand the core of Genetysis®, review some pieces and learn how the modules
work and how could be connected from the new software to be created.

Analyze the current web development processes, define the key points and improve
the workflow based on the requests from the software development department.

Study the Genetics data administration software, compact and design the GUI and
define a whole set of mockups.

Define an architecture for the Genetics data administration software based on the pre-
vious analysis, present the advantages to the bioinformatics and software develop-
ment group and implement it.

Improve the module relative to matrix application from two point of views: commer-
cial and computational.

Design and implement the process of phenotype indicator definition, with the key
point of improving the usability for the bioinformatics group.

Page 2 of 104

Raúl Nozal

1.3. Internship planning

To fully understand the magnitude of the work and the difficulties to pick only some parts
and still try to establish them inside a whole, the below figure will help. It shows the
relations between every stage of the internships, when started and finished every project
and task, and the main points of this Master Thesis.

Those projects and learning periods have been divided along three internships, two of
them being completed under the supervision of the Universidad de Cantabria (Employment
Orientation and Information Center, COIE, Unican). Also, the last internships have been
driven by the self-taught learning period since the Master Thesis proposal was offered by
the same company. Almost every project have gone even further because of the previous
work.

Fig. 1: Internships, projects distribution and planning.

The big blocks are Werft-projects and m-forms, that are created in a long process
of understanding, learning and developing since June 2014. Smaller projects but still
connected are Phenotype Indicator, Matrix of combinations to rules and FFI. Also, because

1.3. Introduction [Internship planning] continue. . . Page 3 of 104

http://coie.unican.es

Master Thesis

some parts are mentioned in this report, those sections have been localized in the diagram
to know when were they created and how much they took.

1.4. Report structure

The thesis is an overview of the main contributions to the most important projects and a
summary of the master lines developed in other projects. It has been necessary to remove
projects, tasks and sections that were done during the internships, because of the Master
Thesis’ length restriction. Most of the code is now copyrighted by Baigene, some of the
part which has been released license-free for this Master Thesis is so large that only a tiny
fraction of it is included here. As a little example, there are more than fifteen thousand
lines of JavaScript in just m-forms and its former designs, via cloc.

As it was mentioned in the initial notes but it is important to remark, multiple diagrams
and figures have been created along the report to easily review it and facilitate the connec-
tion between each part. Because this report is going to be checked digitally, they are
embedded with high resolution to be able to zoom to the details and view them properly.

Some of the UML diagrams (and flowcharts) shown are directly taken from the company
because they were made to present some processes, document them or define complex
sections in a visible and understandable way. They have been modified and adapted to
serve the purpose of this report. They are not completely standards-compliant due to the
development and prototyping speeds and because of the tools and languages used that
extends the limitations of a fully formal UML design (other paradigms, concept approxi-
mation).

The Master Thesis report it is structured in seven chapters, all focused on the parts that
are presented in the report, and not the whole process, tools or software created during
these months. It follows the next structure:

1. Introduction, where the motivation, objectives, internship planning and the report
structure is defined.

2. State of the art, it is mentioned, as a general overview, what Baigene uses at the
beginning.

3. Then, Methods, Materials and used Technologies, were are listed and explained
many tools and techniques used along the projects. Here are mentioned multiple
softwares created during the internships and used in the Contents & Results.

4. The Contents & Results, divided in another five parts, each serve a really well defined
task, but are all connected as we can see in the below figure. Those parts are:

4.1. Matrix of combinations to rules, the first genetic content, showing the problem,
transforming the previous processing algorithm in Baigene, improving it and
defining a modular connection to Werft-projects and Foreign Function Interface.

1.4. Introduction [Report structure] continue. . . Page 4 of 104

http://cloc.sourceforge.net/

Raúl Nozal 1.4. Introduction [Report structure] (continued)

4.2. Werft-projects, the fourth and final building system, consolidated and tested
with every piece of software shown in the Contents & Results.

4.3. m-forms, part of the architecture, web components and mockups made to port
Genetysis® and create the genetic content administration software. It describes
the help system and briefly some captures of other web components.

4.3.1. The internationalization module, i18n-components, one of the independent
packages used in m-forms. It is enough simple to be explained and easily
understandable.

4.3.2. Helpers, some support software created during the development of m-
forms that has been widely used between the developers of the company.
One focused on extending an editor, another to provide an easy transfor-
mation between web component views and the last one, to improve the
navigation and coding speed in languages like JavaScript.

4.4. Phenotype Indicator, also with genetic content, and focused on facilitate the
task to the bioinformatics department when defining the Phenotype Indicator.
A templating language is defined and implemented using one of the screens of
m-forms, using other module named template-phenotype.

4.5. Foreign Function Interface, the study that allows the connection between Werft-
projects, Matrix of combinations to rules and the previous software modules. It
explains the ways to connect the new system to languages like C/C++ or Rust.

5. Closing the previous contents, the Conclusions and future work, giving the last notes
about the whole Master Thesis, the projects involved in, and future applications.

6. It is included a Bibliography where the most representative references of every
section are cited.

7. And finally, the Appendices where are placed the snippets and source codes that are
too long to appear inside the document. Also some complementary diagrams to the
most important shown along the report.

In the next figure are represented the sections of Contents & Results, which topics and
fields are studied and used, the amount of Genetics needed (and communication with
bioinformatics department), how related to each other, and an approximation to the
Computer Engineering knowledge areas based on the tasks and departments involved
with during the previous months.

1.4. Introduction [Report structure] continue. . . Page 5 of 104

Master Thesis

Fig. 2: Contents relationships.

Page 6 of 104

Raúl Nozal

2. State of the art

Under this section are covered the methodologies and technologies that Baigene is using
before the Master Thesis’ projects started. To be centered in a well defined domain, it is
going to be presented per content exposed. The only omitted module in this section is the
FFI, because there was neither study nor application by itself and it appeared from the
Matrix of combinations application.

2.1. Matrix of combinations

The score matrix, where all the polymorphisms are valued and combined with a wide
range of processing algorithms, is doing by using a C/C++ module with thousands of
matrices, all being stored and recalculated in case of change. The processing of matrices is
doing by querying a MySQL database (in another branch the query is established against
a PostGreSQL instance), obtaining multiple data-sets and then combining its values in
unlimited ways, due to the dynamic nature of the combinations.

The definition of new combinations and rules is done using a web interface that commu-
nicates directly to the database to set new types of operations, rules and even cloning and
modifying matrices. The loading of matrices to the system is doing by using other module
that sets multi-dimension arrays and matrices.

The processing speed is fast due to the nature of C/C++ matrices operations, but the ease of
use, adaptation to changes, application of matrix inheritance, and combination of complex
multi-domain values are not so good and the server responses are notably delayed.

2.2. Building system and web development

Because there were two main fields inside the web development, client-side (front-end)
and server-side (back-end), the building tools were completely different.

Because the back-end was composed of three languages (C/C++, PHP and JavaScript), there
were two building systems and multiple tools to facilitate the management of the database,
the libraries used and tracked resources. One were focused on building FastCGI appli-
cations, C/C++ modules (like the matrices above exposed), and PHP scripts to generate
the web interfaces. On the other side, the JavaScript environment is full of packages using
tools like Grunt.js, but also mixing them with Makefiles and Shell scripts to satisfy all the
dependencies, manage the unit testing and even the deployment to the web server. The
building speeds depends completely in the amount of resources used, but they were not
optimized. Some of its tools processed its tasks by dumping the intermediate files to the
hard disk and reading after that, slowing the building time. The unit testing was applied
to every project, as a whole (with tools like gtest and jasmine), instead of splitting in minor
parts. In some cases, because of the nature of the libraries and layers of software, even

2.2. State of the art [Building system] continue. . . Page 7 of 104

http://www.mysql.com
https://www.postgresql.org/
http://php.net
https://developer.mozilla.org/en-US/docs/Web/javascript
http://www.fastcgi.com/drupal/
http://gruntjs.com
https://code.google.com/p/googletest/
http://jasmine.github.io/1.3/introduction.html

Master Thesis

mixing unit and acceptance tests. Also, there were complexities when filtering the tests and
coverage reports ([15], [16]) from the debugging logs.

Relative to the front-end there were tools like the previously mentioned (Grunt and Shell
scripts), but also dependency management software like Require.js, Bower or whole sets
of libraries like Foundation, Bootstrap or jQuery. The amount of resources needed in
client-side development extends the hundreds, with complex building rules to satisfy all
the necessities of the different departments.

The Genetysis ® software is a software composed of multiple modules, most of them in
C/C++, but with some interfaces to operate from PHP. The main problem is the complex
interface to operate with, and how the bioinformatics department need to apply their
researches, transform the databases and dump new information every day. The Genetics
data administration software is under its early stage of development, with just ideas,
sketches and some small implementations using PHP and JavaScript.

The software development department defined an style guide of programming to follow
conventions between the developers, and they used tools like jscs, jshint and cpplint to
check and do static analysis to every source code.

The mix of libraries, environments and languages induces to the confusion and complexity,
needs lot of maintenance to keep up to date with the latest bugfixes, features and inter-
connection adapters, and many times, promotes the replication of code (the same library
created in different languages due to the nature of the its application).

Some reasons of using this set is due to the legacy code, speed convenience of C/C++

modules, well own tested software and fear of change [17], [18].

2.3. Phenotype Indicator

The Phenotype Indicator is a set of descriptions and values dynamically applied to every
sample, the nature of its values depends completely on the used genes and phenotype.

The descriptions and values are set using multiple rows specifying the amount of possi-
bilities, and connecting them with a table of descriptions. It was designed with the only
purpose of implementing it quickly, because the bioinformatics department need to repli-
cate those descriptions for every new phenotype.

Every description differs from the others in just small portions that have been changed or
concatenate strings of results with simple logic operations.

Page 8 of 104

http://www.requirejs.org
http://bower.io
http://foundation.zurb.com/
http://getbootstrap.com/
http://jquery.com
http://jscs.info
http://jshint.com/
http://google-styleguide.googlecode.com/svn/trunk/cppguide.html

Raúl Nozal

3. Methods, Materials and used Technologies

This chapter describes methodologies, development methods and strategies used to pro-
duce or create the software exposed in the Contents & Results. Also, because have
been used large amounts of tool-sets and technologies, only the most important are men-
tioned, although they are grouped in topics to clarify their functions and simplify complex
combination of tools. Because most of them are shared between the different projects here
exposed, they are not presented per content.

Between all the methods and technologies used in the projects are highlighted those that
appear in the Master Thesis report, with the only purpose to be centered in defined tasks
and be able to understand its relationships.

3.1. Genetics theoretical bases and applications

To solve the problems exposed in the Matrix of combinations to rules and Phenotype In-
dicator sections was necessary to understand the core concepts of Genetics Science. With
this aim, reviews of scientific and technical books of Genetics ([12], [13]), meetings and
talks with the bioinformatics department and a couple of interventions with the Genetysis
® Lead Manager were made for solving the specific questions.

Obtaining the genetic data that were necessary to process in the above applications was
done by going through the application of specific Baigene´s procedures. In this sense, the
DNA genotyping was made in The Sequencing and Genotyping Unit of the University
of the Basque Country UPV / EHU by using allele-specific SNPtype assays. The analysis
were run using two different ways: 48.48 and 96.96 and Dynamic Arrays™ IFC, in order
to address the different possibilities of analysis that Baigene works with. All of them
were run using the TaqMan OpenArray and Fluidigim ® Biomark HD System platform
(Fluidigm Corp., South San Francisco, CA, USA) [14]. The allele-specific SNPtype probes
used were designed by Fluidigm platform. Each array was loaded with 94 samples and
96 SNPtype assays or 46 samples and 48 SNPtype assays depending on the type of array
used in each case. Samples and assays were mixed and amplified following the default
Fluidigm protocol. Fluorescent signals were detected to obtain genotype calls. Finally,
resulting data were analyzed using the Fluidigm SNP Genotyping Analysis software.
The result output was a thousand lines spreadsheet in a proprietary file format. After
the bioinformatics group applied filtering processes the file was ready to be analyzed and
processed.

The identification of the necessities of the Genetics data administration software was done
by collecting multiple use cases in meetings between the software development and bioin-
formatics departments. The importance of having a picture of the whole process was as
important as understanding the connections between Genetysis® and the software that
was going to be created.

3.1. Methods and Technologies [Genetics] continue. . . Page 9 of 104

https://www.fluidigim.com

Master Thesis

Understanding how the Genetics work allow a new set of possibilities when developing,
testing or producing new code focused on optimized those processes, even when a high
level language was used [5].

3.2. Software methodologies

The software department had implanted some important software methodologies and
they were followed in a quite strict way.

Everybody had to follow the programming style guide conventions to be consistent bet-
ween the different versions of software and people that were in the company during the
development stages [2].

Test-Drive-Development (TDD) and a small variant Behavior-Driven-Development (BDD)
were the roots of building software, techniques that promotes the secure coding be-
cause every piece of software should be preceded by its test [3], [4]. There were only
specific cases where programming without following TDD was allowed: while studying,
researching or prototyping.

The hardest pieces of engineering software were under continuous integration, instru-
mentalized and under high percentages of code coverage, to be sure that every line of
code makes sense and there is a unit test that satisfies it.

It has been necessary to study and learn software design patterns, not only in web re-
sources but also under language-specific books [11], being aware of the differences and
applying higher layers of software development techniques.

Finally, the development process and software life-cycle was following Agile Techniques
[3], specifically Scrum, where every three weeks to one month there was a meeting with
its revisions, demonstrations and reorganizing the team based on how the software was
evolving. Support talks and the assistance to conferences were done from time to time to
be adapted to this methodologies appropriately.

3.3. General software technologies

Independent of the building software there were some tools that helped during the
development processes and was necessary to be comfortable with its technical concepts.

Git and Subversion where the main version control systems used. Git had more popularity
and was easy to combine, merge and track remote distributed repositories from the
community [4]. In some cases was necessary to clone open source libraries, repair known
bugs or add some needed feature for the project in the company and pull request to the

3.3. Methods and Technologies [Software technologies] continue. . . Page 10 of 104

http://scrummethodology.com/

Raúl Nozal

owner of the repository [19]. Subversion was only used for legacy C/C++ modules and
third-party open source libraries.

Based on the previous internship, with even more features and customized, the issue
and project tracking software was Jira, and the documentation platform was Confluence.
Although many of the tracked Genetysis®modules and development repositories were
under their own private intranet with Redmine. These systems facilitate the assignment
of tasks, their tracking and resolution.

There were two main editors in the software department, Emacs and WebStorm. Although
there are not strict guidelines, the software determined the environment, and developers
that were comfortable with Emacs needed to move to WebStorm in some cases. Some im-
provements shown in the Helpers section were done to assist and add even more features
to the web development process inside the Emacs editor [21], [20].

Chapters like Foreign Function Interface were possible with the assistance of
tools like Makefile and CMake. Also, was determinant to understand the installation and
configuration processes from technologies and libraries like OpenMP, OpenMPI and the
usage of the compiler intrinsics, allowing to use parallel processing and multi-threading
[23], [5], [22].

3.4. Languages and Environments

Due to the amount of languages and environment that were used along the projects here
exposed, only the most used are referred.

The dominant language presented in this report and during the previous internships is
JavaScript, a high level, dynamic, untyped and interpreted programming language stan-
dardized in the ECMAScript specification [24]. One of the three essential technologies of
the World Wide Web alongside HTML and CSS, also widely used during the web develop-
ment. The client-side is vanilla JavaScript, but the back-end is wrapped around Node.js,
a JavaScript software built over Chrome’s V8 engine with a non-blocking I/O model and
event-driven runtime.

Jade and Stylus template languages where used as a high level abstraction of its counter-
parts HTML and CSS, due to the expressiveness, dynamic and robust features like mixins
(functions and procedures), inheritance and extension capabilities. There were also ports
and usage of styling languages Less and Sass, because some third-party libraries used
them and was a convenience to modify small parts instead of rewriting everything. In
Werft-projects there are some procedures that uses the Twig template language to be able
to process portions of files logically.

Small portions of SQL code were necessary to facilitate the task of administering the

3.4. Methods and Technologies [Languages] continue. . . Page 11 of 104

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/confluence
http://www.redmine.org
https://www.gnu.org/software/emacs/
http://www.jetbrains.com/webstorm/
http://www.cmake.org
http://openmp.org/wp
http://www.open-mpi.org
https://nodejs.org/en/
http://jade-lang.com/
http://stylus-lang.com/
http://lesscss.org/
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://twig.sensiolabs.org/documentation

Master Thesis

db-adapter of Werft-projects, along with Bash/Shell scripts to be able to connect with
tools and platforms like Vagrant and Docker and establish proper environments for the
development of projects and its dependencies.

Emacs-Lisp, a dynamic, byte-compiled and functional language, a variant of Lisp and
created to be the main language of the Emacs editor has been used widely to improve the
development efficiency and provide more customized features to the day-to-day working
process. Sections like Helpers show a couple of examples, but during the creation of
Werft-projects and during the whole creation of M-forms and its previous stages more
tools and improved modes were built.

C/C++ was used during the evaluation process of Matrix of combinations to rules and
Phenotype Indicator, and when Werft-projects needed to be tested against the new Foreign
Function Interface connector module. The latter section had the most of its usage while
combining and configuring the previously explained libraries.

Finally, relative to the FFI section, a new systems programming language called Rust was
tested due to its performance, because of its easy adaptation as a Node.js module and due
to its efficient C bindings that will allow the usage of C/C++ libraries.

3.5. Building system

Every week new tools and plugins appear in the Node.js’ NPM Package Manager and,
therefore, more time is consumed while learning and studying new useful (in some cases)
softwares. The evolution of the npm packages have been increasing up to the 180000
packages that it stores nowadays. Don’t confuse it with the npm-packages library built
during this Master Thesis, that was called like this because it contains multiple npm ports
(transformed or adapted to a local repository) and own libraries used by Werft-projects
and the other projects.

Because the building system, Werft-projects, needs more than fifty different direct depen-
dencies (libraries) to be used in its full featured and complete way, the explanations are
divided per groups of libraries and its summarized purposes. During the construction of
the building system there were necessary another three previous building systems, and
previous tools and softwares that achieve their task but have been deprecated or over-
whelmed by new plugins and tools are completely discarded from any explanation nor
comparison.

Gulp.js is used as the main streaming and building tool, along some Bash/Shell scripts and
Makefiles to support and help more conflicting tasks (like installing npm local packages or
the font-factorymanagement, another library built to help the designers and front-end
developers to assist their font styles easily and provide a better GUI). The main advantage
of this JavaScript automation tool is that is based on data streams by buffering contents

3.5. Methods and Technologies [Building system] continue. . . Page 12 of 104

https://www.rust-lang.org/
https://www.npmjs.com/
http://gulpjs.com/

Raúl Nozal 3.5. Methods and Technologies [Building system] (continued)

from one side to another, and achieving faster buildings because of piping (transforming
and pushing forward) one task to another.

It has been provided a set of plugins to the stream automation system to add headers
(warning developers of avoid editing, setting licenses), linting the source codes and do-
ing static analysis (connection with tools like Tern.js and Eslint, and its importance [2]),
providing unit testing helpers (splitting processes to help the developers when do TDD
by sending the debugs to a shell, and the unit tests logs to another), source-mapping (de-
bugging) and TDD/BDD global features (Mocha.js, its assertion library Chai.js and mocks
and adjustable spies from Sinon.js).

Also, because of the web servers’ static resources and HTTP caching [1] [7], complete sets
of plugins and configurations to be benefit from automated revision of assets, templating
languages and source codes.

Other plugins like gulp-plumber, merge2, gulp-util or throught2 are used for
multiple purposes: providing error catching of tasks inside the streams, going through
reading environment variables to transform completely the whole system based on de-
ployment types, towards the mixing of streams to boost the building speeds.

Relative to the JavaScript inside of the building system, it has been built with the last lan-
guage features in mind. Although the ES2015 spec is defined and the ES7 is under draft
[24], most of the browsers and runtimes do not implemented it yet [28] (Firefox the most
advanced with its 71%). By using “transpiling” tools like Babel.js every JavaScript can be
coded in ES2015 (and some ES7 features) and be transformed to valid ES5). Also, Sweet.js,
a macro template language (to extend the JavaScript features), and a set of “minification”
tools have been added (clean-css, uglify or imagemin), to reduce the final pack for
production deployments.

The chosen web server that support the whole building process, serve the assets, manage
the routing and imitate production-type deployments is Express.js. It has been adapted
with multiple packages to support features like connection to databases (using another
created library db-adapter [9]), debugging and logging, a dynamic-paths helper, modi-
fied rendering views and facilities to test under security-aware development states (Secure
Sockets Layer, SSL and CORS, [27]), [1], [7]).

The creation of library containers like Stylus-plugins centered all the web components style
definitions, and also define a set of plugins to be attached to the Stylus engine, allowing to
be usable from the whole system. Also, the most common CSS libraries have been ported
and modified the connection points to be more intuitive (in usage and for debugging pur-
poses) for the developers. Also, adapting engines like Jade and caching views allows the
usage of development and design patterns like Lorem Ipsum, and helping the developers
with its stages.

3.5. Methods and Technologies [Building system] continue. . . Page 13 of 104

http://ternjs.net/
http://eslint.org/
http://mochajs.org/
http://chaijs.com/
http://sinonjs.org/
https://babeljs.io/
http://sweetjs.org/
http://expressjs.com/
http://lipsum.com/

Master Thesis

Instead of writing front-end JavaScript with old and multiple dependency systems, the new
tool supports Commonjs, allowing the developers to write browser code like in Node.js,
facilitating its application and being able to use the whole npm package system. Also, tools
like Bower (client-side libraries) are still usable because of the embedded configuration,
but a local library container npm-packages was also made to fetch AMD.js-compliant
libraries and port easily to the new system (Commonjs, taking advantage of its coding
features). The chosen module bundler is Webpack, but restricting its usage to only “post-
processed” JavaScript (ES5 compliant, after the “transpiling” but before the “minification”)
because better tools have been created to support the development and building process
(CSS, HTML, images and fonts). The modification of the adapter has allowed the definition
of dynamic grouping of bundles and new debugging features to help the developers
(following the same conventions as in Stylus-plugins).

3.6. Graphical User Interfaces

The Graphical Interfaces are one of the key points when manipulating multiple factors
and complex systems. The usability and User Experience (UX) have been between the
learning fields during the development of M-forms and Phenotype Indicator, not only
because of the requirements and ease of use for the bioinformatics group, but also because
some parts are focused on a commercial product [6], [25].

All the web development process have started with previous analysis of every idea, mul-
tiple mockups and wire-framing of designs and surveys to know the users’ voice (in most
cases other developers and technical users).

Those analysis defined the web design and the target to achieve when the web compo-
nents architecture was in its early stage and how the development was going to be with
centered in the usability, responsive web documents and promoting the user efficiency
when working in scientific tasks.

Most of the time there were multiple ways to achieve one task, but in a easy-to-follow path,
and showing the alternatives at any time. As risk measures, in case of failure is possible
the degradation of features (fallbacking) to support the needed operation (stability and
availability centered) [2], [7].

3.7. Web components

M-forms is built based on the concept of software reutilization, modularity, usability (final
users and developers) and flexibility.

It is designed over the concept of Component-based Software Programming, where every
piece is a solid unit with a clear and manipulable interface to the outside system following

3.7. Methods and Technologies [Web components] continue. . . Page 14 of 104

http://www.commonjs.org/
http://requirejs.org/docs/whyamd.html
https://webpack.github.io/

Raúl Nozal

a set of specifications, has facilities to operate with it (actions and events, data manipu-
lation and easy adaptation), it works by itself (encapsulated) and it is part of the whole
system (components) being reusable.

The connected pieces in the design and implementation of the architecture are the HTML,
CSS and JavaScript, usually manipulated through the user interaction, defined with
Browser-defined events (set in the Document Object Model, DOM), responses and ren-
derings.

Every component is a conjunction of optional and mandatory parts (not every component
has to be visible, therefore could not be defined with a set of CSS rules and HTML tags),
that acts in favor of a greater system and works in predefined ways, usually modeled by
the whole architecture (m-forms) and its workflow.

The views are orchestrated by a “low-level” rendering JavaScript framework called Mithril.js,
due to its light-weight and robust features, and the most important: the Virtual DOM
strategies and intelligent auto-redrawing system. It creates a intermediate layer before
writing to the DOM, being the fastest framework so far [26], and being necessary be-
cause the Genetics data administration software needs dozens of layers of abstraction
(GUI components), complex business logic and data manipulation, and the rendering of
thousands of data-sets directly in the browser.

Although all these features increased the website speed and was easy to use in simple
applications, a small library Mithril-Modules was built over Mithril.js as a schema
for the web components, with its submodules, models, controllers, view-models, views and
modules to facilitate its use. Also, when adapting some designed web components, the
applicability was not straightforward, and the Mithril.js’ rendering strategies needed to
be manipulated due to the complexity of some modules like m-toastr, m-tooltip and
Draggable.

Page 15 of 104

https://lhorie.github.io/mithril/

Master Thesis

4. Contents & Results

4.1. Matrix of combinations to rules

During this section are highlighted the advantages and how the new developed process
works. To understand the differences between the old system and the new one, the below
figure will help.

Fig. 3: Schemes of polymorphisms combinations (matrices to rules).

4.1. Contents & Results [Matrix to rules] continue. . . Page 16 of 104

Raúl Nozal 4.1. Contents & Results [Matrix to rules] (continued)

The old system worked by needing the whole set of matrices, its own interactions and
combinations to be able to determine a set of results. Also, it worked using the “double
data-binding” between the process that fetches matrices and the databases, being multi-
ple fetching-and-processing operations of matrices until the final value is obtained (due
to C/C++ processing logic instead being part of the Database Management System, it is
needed an undefined number of queries because of the dynamic nature of the interactions).

The matrices were created by a combination of complex inheritance (saving space) and
redundancy data-sets (multi-dimensional arrays per sample with a fixed value, obtaining
faster readings). The complexity comes from the necessity of applying the same genes to
hundreds of phenotypes, each of one has its own combination of polymorphisms. The
inheritance tried to combine polymorphisms from different phenotypes, while the ma-
trices redundancy stored every combination in a different matrix (mapping every set of
combinations, increasing the calculating speeds when a sample is requested).

In the general picture, taking into account the whole system and not only the application
of phenotypes and polymorphisms, the computation complexity and processing times
were not satisfactory, due to the tree of dependencies.

Fig. 4: Tree of dependencies and levels of abstraction.

Each item represents a one or many of the next item (nested calculations), but the last one
has an unknown number of possibilities because the R&D bioinformatics department is
always working on more complex models. Every phenotype is composed of genes, that
itself is composed of one or many polymorphisms (Single Nucleotide Polimorphisms, SNP)
that, at the same time it is not necessary to be diallelic (2-variant). Some seen values inside
the polymorphism level have been between a 3-cell matrix up to more than a million-cell
matrix. These so huge differences come from non-linear increasing factors, like number
of combinations based on formulas like the genotypes (n) per alleles in the SNP: n×(n+1)/2.

The solution provided is a combination of task reorganization, software redesign and
modification of the workflow process.

4.1. Contents & Results [Matrix to rules] continue. . . Page 17 of 104

Master Thesis 4.1. Contents & Results [Matrix to rules] (continued)

First, the input data has been divided in two paths (figure 3): base values and rules
definition (combinations of polymorphisms). The base values support three type of
inputs:

Common operations and algorithms. Some of the previous matrix definitions were
based on Genetics known processes or Baigene’s algorithms.

Complex associations and almost impossible-to-implement algorithms. Values that
are not represented by known functions, random values or modifiable associations
based on the research.

A shared common value. In some cases the matrices defined were really simple and
were bloating the databases with unnecessary data.

The first two types need the output files created by Genetysis® and processed and filtered
by the bioinformatics department. While the first one generates all the vectors, the second
one only passes them to the databases. The third one has the advantage of saving space
and time.

The variation of associations will only modify its own base value (it does not matter the
type). On the other side, the way to provide the variability to the system (new experiments
and research) and the configuration of polymorphisms and its combinations is by using
the new rules system.

Every rule has a data to operate with (polymorphisms and its genotypes), values to set
(text and a numeric value), and the applicability (which values are applied). Also, rules
are chained to form combinations of polymorphisms itself. It can be understood as a table:
every polymorphism and its defined genotypes is a column (the logical operator AND),
and every set of polymorphisms is a row (OR). When there is a match between (at least
one row match with all its columns being matched) it is said that the rule is applied over
the sample. If a row does not have all the polymorphisms and/or genotypes defined in
the phenotype, it is also matched (AND TRUE).

Fig. 5: Portion of web interface (m-forms) showing the rules visualization and its values.

4.1. Contents & Results [Matrix to rules] continue. . . Page 18 of 104

Raúl Nozal

By setting this system, all the possible variations that the bioinformatics department are
doing constantly to the databases can be modified easily, reprocessing every possible
combinations smoothly and fast.

Second, it has been implemented using the Chain of Responsibility (CoR, [29]) software
design pattern, due to the loose coupling, adaptability to new changes (modifiable and
extensible handlers) and how it fits to this solution.

The CoR pattern have been implemented in JavaScript and wrapped to be usable for this
use case. Also, it has been modified to support extended features like passing messages
in the chain or escaping from the chain on different conditions. The extension has been
appended to the appendix with the listing 1 containing a example of application and its
results.

With this implementation it is possible to share exactly the same code in the server and in
the browser. The first one will determine the application of combinations and what are the
final values for the sample. The second allows testing multiple values and interacting in
a simulation process (a provided canvas of combinations, how many genotypes are used
and which rules are applied) while the bioinformatics department is filling the data-sets
and establishing the relations.

The storage problems have almost disappear because the only matrices that are now in-
side the databases are those from complex associations (second type of input), the rest are
just rows of rules, base values and formulas that can be generated at runtime. Also, it has
been provided a solution to increase the performance by pre-building the matrices and
storing its cells in the databases just for the sake of speeding up the processing of analysis
with the new system. The new mode is not only flexible, but memory and performance
aware.

Finally, the new distribution of data and how this process has been organized, combined
with new tools and studies like the Foreign Function Interface section, allows the reuti-
lization of previous modules (C/C++) and fast processing algorithms from the own web
interface, even connecting them to the simulation process, not only with the rules, but
also with the MatrixBuilder and its own generators.

4.2. Werft-projects (building system)

Werft-projects (an analogy to a shipyard where boats are built) the fourth trial of generating
a building system for the web development and with connections to a multiple tools and
platforms like the those studied in previous internships.

It is aimed to help the developers in its process of creating web applications, both client and
server-side. The whole compendium of environment configurations, plugins utilization

4.2. Contents & Results [Werft-projects] continue. . . Page 19 of 104

Master Thesis 4.2. Contents & Results [Werft-projects] (continued)

and development settings have been thought while working on many small and medium
projects and after learning the main features of all them (Genetysis ® but also specific
modules). The prior development of other building systems like Orchestrator, analyzing
its caveats and most problematic tasks helped to reduce the development complexities
(lot of assistance, really difficult to use and some maintainers were needed). This new
building system provides the following features:

Ease of use. The inner directories, intermediate files and established conventions
are transparent to the developer. Special directories (omit, trash, shared and
partial) defined by a new convention of development improve the whole process.

Task centered. Multiple combinations of directories, files and data streams are
connected to logical tasks.

Development type modes. Each type of development has its own rules. Providing
helpers and task groups allows to focus on the development instead on the building
process.

Emulate production use. Since the very first moment, it has been designed with
a shared environment, thinking on a production usage, and just reverting some
features (or being transparent) that are not applicable in development mode. This
design allows a drastic reduction of deployment problems.

Convenience in mixed environments. By analyzing multiple projects and its ne-
cessities it has been created a whole processes to assist the installation and appli-
cation of libraries, automatic connection to databases and dependency fetching
(dependency-tree).

Pluggable interface (Werft-modules). Instead of having a huge building system that
“does almost everything”, a pluggable interface to other modules has been attached.
Libraries like font-factory are completely independent but are connectable to
the dependency manager of Werft-projects.

Speed buildings. Instead of increasing the developer load (by using other command-
line tools or manual methodologies), the building system itself has all the complexi-
ties and the slowest tasks has been optimized.

Although the tasks have an established order of execution, they have been modified af-
terwards to be even more convenient for the developers, by changing themselves and
normalizing the order of execution in case some failed (but the first run will not be so fast
as if it is executed in order). These type of design rules have been implemented in many
ways, with the only purpose in mind to help during the development process.

4.2. Contents & Results [Werft-projects] continue. . . Page 20 of 104

Raúl Nozal 4.2. Contents & Results [Werft-projects] (continued)

Table 1: Werft tasks, order and dependencies.

task name server client client (temp) dependencies (only in npm-packages)
werft/config † 1 † 1 † 1 font-factory, db-adapter
werft/deps † 2 † 2 † 2 dependency-tree
babel † 3 † 3 * 3
server † 4 † 6
bs 5 7
jade † 3 jade-lorem, jade2mithril
styl ‡ 3 stylus-plugins
assets 3 ‡ 3
wp ‡ 4
rev † 5
refinery † 4 jade-lorem, jade2mithril, stylus-plugins
lint ** ** **
test ** ** **
clean ** ** **

* (if external dependencies) ** (independent) † (mandatory) ‡ (mandatory if css, assets and/or js)

Also, a full set of libraries and modules have been created with the only purpose to satisfy
the whole system. There are modules that help during the definition of a werft project,
modification of templating engines to produce multi-purpose views (jade2mithril),
dependency fetcher, modifications to help the debugging and testing process and even
connectors to platforms like Vagrant and assist the initialization of DNS servers and
databases that the development department usually need.

The advantage of having all previous tools and languages unified multiple. Not only
because of the shared code between both sides, like in Matrix of combinatiors to rules
or Phenotype Indicator, but also because the building system it is almost entirely built
in JavaScript, and the expressiveness and flexibility of this environment can be adjusted
easily to new requirements. Also, it is shown in the Foreign Function Interface section,
Werft-projects allows the usage of other modules built in Rust or C/C++, although it can
only be connected if it is a server-side Werft-Modules project. External dependencies (and
other package management systems [30]), third-party modules or version control reposi-
tories can be nested and transparently exist inside a Werft-Modules project, because it was
designed to be self-contained and easily transferable.

It is formed by single units, each of one is a Werft project. Just a directory with an inner
werft directory that has a config.js implementing a Werft-Modules interface. They
can be composed of other units, but those units does not need to be inside the parent one.
This design allows the reutilization of projects of any size, easy debugging and testing
and create hierarchies of abstraction layers based on projects, modules and tools, but all
being the same thing, a Werft-Module.

4.2. Contents & Results [Werft-projects] continue. . . Page 21 of 104

Master Thesis 4.2. Contents & Results [Werft-projects] (continued)

The main tasks are shown in the table 1, but to be in a specific domain and understand
what a task is, babel is taken.

Fig. 6: Flowchart showing the stream processes in the babel task.

A task starts with its execution, and it accepts a list of environment variables and shell
parameters (Gulp is executed from the command-line), being all of them documented
to assist the developer in its needs. With the loading, configuring and initialization of
dependencies (usually from dozens to hundreds of nested dependencies), the task is
started, and two processes start: the watcher and the builder.

4.2. Contents & Results [Werft-projects] continue. . . Page 22 of 104

Raúl Nozal 4.2. Contents & Results [Werft-projects] (continued)

Fig. 7: Flowchart showing the stream processes and its subtasks in the refinery task
(under Refinery mode).

The watcher is doing polling to a set of resources that can vary per project, but usually are
hundreds of assets, layouts and libraries. Every time the watcher releases a notification of
changing, the builder starts (there are some measures to be sure the execution is neither
paralyzed nor under recursive execution due to the communication latencies between the
file system and the process).

4.2. Contents & Results [Werft-projects] continue. . . Page 23 of 104

Master Thesis 4.2. Contents & Results [Werft-projects] (continued)

The builder read the sources, being usually a subset of the watcher files (but not nece-
ssarily), and push them directly to the initiated stream. The stream has internal processes
and triggers to new subtasks, but the global picture includes tasks to control the streaming
process, optimize the building of resources that have not changed (but accepting envi-
ronment parameters to change it behavior dynamically), include debugging information,
transforming Sweet macros to pure JavaScript, transforming internationalization special
files to valid JavaScript modules to be used by Werft, “transpilation” of ES2015 JavaScript
to be able to use the latest features, change the streaming paths varying of a production
building (“minifying” the final builds to save space and execute the code faster) and fi-
nally, sending the built resources to paths accordingly of its nature (deployment type).

There are tasks for every purpose a web developer needs, but after working with them
while building other projects (like M-forms), it has been designed and implemented a
special task that optimizes completely the client-side building process, called refinery.
It is not only a task, but also a special development mode (Refinery), an easily configurable
from its Werft-Modules interface (just a flag).

All the Werft-projects have been revised and modified to support multiple entries (execu-
tors), coming from the common tasks, but also from external processes (merging streams
and controlling its execution steps). The creation of this mode has decreased the execution
times and helped during temporal web development stages, although its limitation is not
matter of time but complexity. The more pieces a project has, the less suited is for the
Refinery. This mode aims to work in client-side with just three tasks (instead of the usual
nine) and much faster. Real-world examples include moving Werft projects to the Refinery,
working for some time and solve all the issues easily and with speed boosts, and returning
it to the previous location and, therefore, working again under Client mode.

The last and most important modification of Werft-projects is the global optimization for
every mode. The refactoring and modularization of all the tasks, local dependencies
and global Werft configurations has promoted the development of a new conjunction of
addons, switchable from a new environment flag (now activated by default), that allows
the optimum loading of dependencies.

4.2. Contents & Results [Werft-projects] continue. . . Page 24 of 104

Raúl Nozal 4.2. Contents & Results [Werft-projects] (continued)

Fig. 8: Comparative of tasks and its optimized loading (100 executions, build tasks).

A dynamic tree of dependencies has been created, and due to the modularization of code,
only dependencies of a task are loaded if its tasks are requested. Also, it determines which
subtasks are needed so it pre-loads them, instead of loading when the tasks have started
(gaining performance, another important issue in every building system).

Every task decreases its execution times and its memory footprint. The Speedups are up
to 2.20 and 1.59, respectively. The Refinery mode and its task are the slowest and most
RAM consuming, but being analyzed as a single unit (seldom a developer uses only inde-
pendent tasks), and the development modes shows even better performance rates (Speedups
of 2.31 and 1.65 in average, per type).

The differences between working in Client and Refinery mode can be appreciated in the
next table. Both development modes were using the optimized loader, and still there are
average speedups of 2.40 times (time and memory).

4.2. Contents & Results [Werft-projects] continue. . . Page 25 of 104

Master Thesis 4.2. Contents & Results [Werft-projects] (continued)

Fig. 9: Comparative of development modes and its optimized loading (100 executions,
build tasks).

Table 2: Comparison between client and refinery development types (using the optimized
version).

Development type avg. time (ms) avg. memory (MiB) geometric mean
client 10850 751 2855.03
refinery 4961 285 1189.03
Speedup (ref/cli) 2.19 2.64 2.40

With the creation of Werft-projects every previous project has been ported to the new
system, increasing not only the success rate (less problems while creating the web appli-
cations) but also the system loading and development cycles (less building time, more
time coding and thinking in the real problem).

The next project have been developed entirely inside Werft.

4.2. Contents & Results [Werft-projects] continue. . . Page 26 of 104

Raúl Nozal

4.3. m-forms (Genetysis® GUI)

The resulting web component architecture, m-forms, started in a process of analyzing the
previous Genetysis ® software and the expectations for the new Genetics data adminis-
tration software. After understanding every stage that the application needed, it was
thought (wireframming) and designed through a set of mockups with the only objective
to promote the bioinformatics department usability and the unification Graphical User
Interface (GUI).

Fig. 10: Some mockups designed and accepted in the first meetings.

As can be seen in the previous mockups, most of them are made of defined structures and
nested and reutilizable designs. While thinking the whole architecture, this is one of the
targets to achieve: a solid, easy to use and flexible GUI.

M-forms was achieved after building some other projects that involved GUI development
combined with complex business logic. Those experiences changed the way of building
web applications, and other two previous web components projects were canceled in
favor of m-forms.

The architecture is based on reusable components, composed of two types of Decorators (a
design pattern that attach additional responsibilities to an object dynamically, allows the
mutability of components and its flexible adaptation [31]), but modified from a JavaScript
perspective due to its dynamic bindings. In the top layers have been used Builder and
Abstract Factories, design patterns that helps during the configuration and creation of com-

4.3. Contents & Results [m-forms] continue. . . Page 27 of 104

Master Thesis 4.3. Contents & Results [m-forms] (continued)

plex objects, and provides levels of abstraction of families of related or dependent objects
without specifying in its early stages the final defined component [32], [33].

Fig. 11: Overview of the m-forms components system.

The abstraction layers, types of components and containers to build the whole m-forms
system has so many pieces that only some parts are represented and the larger diagrams
sent to the appendices, like the figures 30 and 31.

Most of the web components does not use the interface Mithril-Modules (thin wrapper
to operate with Mithril.js) but are dependent of inner interfaces m-forms, notifier,
formComponent that define the whole system. The components that have been pre-
pared to be used everywhere (not only in m-forms) use the Mithril-Modules.

The components have been divided in main constructors (factories and builders), indepen-
dent components (attachable to multiple parts of the system and other components, using
the Mithril-Modules interface), independent packages (usually embedded in other
softwares, contained in npm-packages and with a thin layer over them to be used in
multiple projects without the necessity to be used with m-forms.

4.3. Contents & Results [m-forms] continue. . . Page 28 of 104

Raúl Nozal 4.3. Contents & Results [m-forms] (continued)

Fig. 12: Overview of content components (m-forms nested level of components).

The main constructor is the form, which creates and manipulates a set of minor compo-
nents to provide an easy interface to the screens, which are the top level of forms
construction (every mockup can be materialized as a screen). The minor components
are usually formComponent and formCombinator, being the combinator a mix of
formComponents, inner modules and external components (independent or package,
figure 11). The formComponents have two main types: the containers and the
contents. The first ones usually defines abstract blocks, contexts and in some cases,
GUI separators and groups of minor components joined logically. The second group is
formed by interactuable components, that usually came in another two ways: panels
(information purposes) and fields (every content that an user needs to operate with).

The architecture, its components definitions and how the events are processed are schema-
tized in the next diagram. The GUI itself is part of a sum of strategies, combination of
technologies and methodologies that establish by itself, an own creational and behavioral
framework that is supported by the Mithril.js rendering framework.

4.3. Contents & Results [m-forms] continue. . . Page 29 of 104

Master Thesis 4.3. Contents & Results [m-forms] (continued)

Fig. 13: Genetics data administration GUI architecture overview.

It defines multiple abstractions to help development efforts focus on the business logic
(one of the problems present in previous architectures), and by providing an easy interface
to manipulate every component, send the data in a simple way, render it transparently
and capture the possible events directly in the top-level layer [6], [34].

Libraries that have been used in some components can be shared across the software,
as it happens with the CStr string buffer module or the internationalization one (ex-
plained below). It provides multiple parsing features used in other specific components
as the OrgInterpreter o formCombinator views like the below (interpretation of
Org features as a extension to plain descriptions to facilitate the researches to do their job
appropriately). It has been appended as the listing 2 in the appendices.

4.3. Contents & Results [m-forms] continue. . . Page 30 of 104

Raúl Nozal 4.3. Contents & Results [m-forms] (continued)

Fig. 14: formCombinator in a demonstration of two complex views (Polymorphisms
and Combinations) and with mixed support of i18n-components.

There are multiple new features, but one of them is highlighted: the Help system, which
have been designed with great adaptability to changes and by supporting direct mani-
pulation of views. This special component is connected with the whole system and its
screens, and from the development process, its early definition until the implementation
over specific components has been designed to be pluggable and easily testable. The final
users (bioinformatics department and new researches) use it, and in case any documenta-
tion needs to be changed, even a non-technical person can modify it. Then, the developers
can see the differences easily and render it statically in an easy way (this follows the pro-
cess of static creation, dynamic interaction in a static view and finally, the dynamic view),
can be seen in the figure 28 of the appendices.

The pluggable system is attached with simple patterns to other components, and automa-
tically a set of features are activated per form element, like the button and m-tooltip

system to indicate, show or hide (like the user wants) the documentation of every field.

4.3. Contents & Results [m-forms] continue. . . Page 31 of 104

Master Thesis 4.3.1. m-forms [i18n-components]

Fig. 15: HelpComponent connected with a set of three different components (m-forms,
field).

4.3.1. i18n-components (internationalization)

One of the main independent components created along m-forms is the internationaliza-
tion one, by providing an easy but flexible interface to operate with, and a basic schema
definition per component (also known as translation mappings) with a convention of
-lang appended to the web component filename (without extension) under the same
directory.

After working with other languages (PHP, C++) and its translation tools (gettext [35],
mo/po files, poeditor), it served to be aware of difficulties like dependency on third-party
tools and procedures, environment agnostic and really focused on the translators. One of
the most determinant decisions was to establish a new schema definition for our interna-
tionalization. The main points are the necessity to provide language independent features

4.3.1. m-forms [i18n-components] continue. . . Page 32 of 104

Raúl Nozal 4.3.1. m-forms [i18n-components] (continued)

(eg: plural form depends on the language and modifies different words and/or parts of
the word), dynamic and complex rules of translation (business logic, ordinal-dependent
translation, etc) and an understandable, modifiable and exchangeable schema (avoiding
binary files, allowing custom editors and vocabulary checkers). Also, the adaptation from
plain systems (lists of sentences) to this system is trivial, and non technical people under-
stand it just by seeing the English schema definition.

Fig. 16: Types of translation mappings (portion of a schema definition).

It is wrapped as an independent package, and connected to Werft-projects to support op-
tional building-time features, but designed with the flexibility and server-side efficiency
in mind: Webpack packs it along with the component so it is attached to every piece of
the system, and can be used (if the final developer wants) to allow language switching
from client-side, avoiding new requests to the server. Also, it has been connected with
jade2mitrhil to understand the special functions _i and generate wrappers to support
the views’ configuration with this module, establishing automatically the contexts and
following the conventions defined in this package.

This component is designed to allow the maximum flexibility of utilization for every type
of component (m-forms, m-tooltip, m-toastr, Mithril Component Views), usage in
three steps (initialization, context setting and the translation itself), supports a simple but
efficient pattern of filtering locales and provides three types of translation mappings.

The diagram of usage overview is appended in the appendices with the figure 32.

Also, the keys can be wrapped inside literal objects, and are not limited by nesting levels
to define translation groups and organize more complex definitions. The implementation
of i18n-components is appended to the appendices in the listing 3.

4.3.1. m-forms [i18n-components] continue. . . Page 33 of 104

Master Thesis 4.3.1. m-forms [i18n-components] (continued)

Fig. 17: i18n-components Activity diagram (translation).

4.3.1. m-forms [i18n-components] continue. . . Page 34 of 104

Raúl Nozal

The combination of some Werft-projects tasks (versatile template languages) with the de-
sign of this module is able to build specific bundles of languages saving approximately the
ratio between the bundled languages and the available languages defined of space/me-
mory and parsing time (bigger the schema definition, bigger the saving). Those results are
measured comparing the activation of this new feature with its previous limited version
in some screens used in production.

Fig. 18: GUI application (over m-forms:field:file-input, but interacting also with
m-tooltip independent component and the remove form component).

Finally, one example of an i18n-components application over some web components
(m-forms and m-tooltip) showing multiple UI states, and with literal (tooltip, title) and
more complex dynamic (loaded files, file list) mappings. The appendix with the listing 4
has a full featured example (literal, dictionary and function mappings), its application in
the listing 5 (parts of the script that uses it) and a yasnippet (listing 6) code created to start
new schema definitions easily.

The translation module applied over the previous system and its HelpComponent can
be seen in the figure 29 in the appendices and how it can be used and tested directly in
different languages.

4.3.2. Helpers

Some created software to assist the web development process has been added to the
listings 7 and 8, in the appendices. Both are source codes to be used with Emacs.

The first one is an extension to move and navigate through languages like JavaScript, C
or Java, being the unique requirement to have curly braces, brackets or parenthesis in the
code. It easily jumps to its pair, and helps during the development of files with high
density of code or while configuring JSON files. The main advantages are that it does
not matter that the code is broken in other parts, it works from the its own “level” (like
closures) and starts searching in both ways.

4.3.2. m-forms [Helpers] continue. . . Page 35 of 104

http://json.org/

Master Thesis

Other part of this extension is the possibility to jump to JavaScript keywords, blocks
and most important sentences. It provides a customizable interface to modify the Regu-
lar Expressions in case other developers wanted to extend the program for other languages.

The second one is a modification of the Stylus mode to help the designers when choosing
and modifying layouts and colors in web applications. The editor will interpret sequences
of hexadecimal colors and apply font decorations over them, avoiding to build and test
the CSS with every change.

Fig. 19: Helpers in Emacs. Left side in Stylus-mode modified. Right side in JavaScript using
nav-blocks (from top to bottom with just one key shortcut).

4.4. Phenotype Indicator

The phenotype has a description value that needs to be presented to the final user after
being processed some Genetics data-sets (sample of the user) and transformed to be read-
able as natural language.

The solution provided is a new language completely focused on templating the results
description and providing some features like special variables and functions that have
been thought to be necessary after understanding a large number of specific results (more
than 50 different real-world samples).

The advantages of the new system reduces the amount of text that the bioinformatics
department need to write, and provides some help when creating the results to avoid
serious commercial issues (customizing results). The redundancy of descriptions and
possible paths per sample and phenotype have been drastically reduced, due to the usage
of this new pattern and language.

4.4. Contents & Results [Phenotype Indicator] continue. . . Page 36 of 104

Raúl Nozal 4.4. Contents & Results [Phenotype Indicator] (continued)

The language have been designed with the flexibility in mind (multiple types of resulting
values and combinations, more in the future), but also by providing a set of features for
non-technical employees and with the usability as main factor.

Fig. 20: Phenotype Indicator screen, using the internal template-phenotypemodule.

4.4. Contents & Results [Phenotype Indicator] continue. . . Page 37 of 104

Master Thesis

Some of the usability advantages are: almost plain English variables and one-parameter
functions (at least nowadays), function callings via nested operators (just levels) and
neither space nor special ASCII character problems (users does not understand these
problems).

It has been implemented using the Interpreter design pattern, because it is suited when
parsing and representing a custom grammar in a hierarchical manner and due to its flexi-
bility with simple languages [38]. This module has been ported to both server and client
side, as refactorized as a module with services (figure 9 in the appendices). The above
figure shows the simulation of the phenotype indicator under m-forms and being packed
as a screen.

Fig. 21: template-phenotype on-the-fly error detection, connected to a screen com-
ponent to show the messages and with syntax transformation.

Also, to improve even more the usability of this module and being used as a web compo-
nent by itself, it has been created two independent modules after analyzing the CodeMirror
library. In the appendices can be found the listings 10 and 11. Those provide syntax high-
lighting and grammar recognition, usage of the services (error notifications and warnings)
and smart autocompletion support.

Fig. 22: template-phenotype special mode and hinting system. Autocompletion
features and automatic keyword guessing.

Page 38 of 104

Raúl Nozal

4.5. Foreign Function Interface (FFI)

The usage of previously built modules and libraries in languages like C/C++ has been po-
ssible because of wrappers (bindings) and connectors between those libraries and Node.js
[37].

There are some complexities when writing libraries for Node.js, because it is using Chrome’s
V8 and it needs its own stack of compiling tools and development procedures. It is built
in C++, but own structures, macros and intrinsic difficulties related with the usage of the
high performance evented I/O library [43].

The combination of high level language speed developments with the performance of
low level languages can be achieved due to the connection between both libraries. The
wrappers are thin layer to established with the low level language, that accesses complex
compiler features like OpenMP, OpenMPI or SIMD operations (parallel-vector operations).

There are solutions like Native Abstractions for Node.js (NaN) that assist and creates a thin
layer of abstraction when developing C++ for Node.js [39]. Although in some cases, when
the task is getting complex (mixture of modes, events and external libraries like the above
mentioned), it is better to return to pure V8’s C++.

On the other side, small modules can be found to establish a quick connection with dy-
namic libraries using pure JavaScript, like Foreign Function Interface [40]. There are small
overheads due its flexibility (dynamic function calls), and data that is passed and the
execution code must be really optimized (the more data that needs to be processed in an
independent way, the less overhead).

One of the advantages of having the Chrome’s V8 in the backside, is due to the support for
complete different tool-sets and profiling softwares, like Intel’s VTune Amplifier [42]. To be
able to analyze the JavaScript code (JIT executor, [41]) from a C++ application (and also
when building Node.js native modules like above) is necessary to optimize and configure
appropriately the node-gyp building software, but the Node.js modified binary allows to
inspect the internal JavaScript and optimize the most critic functions.

Related to the optimization, its techniques and applications it has been necessary to
analyze multiple snippets and how the previous modules work (Genetysis®). Depending
on the module, the load and utilization sometimes was not necessary to call other libraries
or create native modules, but only optimize the JavaScript code. This procedures were
complex, and determining how a high level language works, having a JIT compiler inside
the engine (V8) is almost impossible, but with effort and resources can be improvements
depending on the source code [11], [10].

4.5. Contents & Results [FFI] continue. . . Page 39 of 104

Master Thesis 4.5. Contents & Results [FFI] (continued)

One of the most interesting tiny portions of code created during this research is the opti-
mization of loops based on caching techniques and procedures like Duff’s Device, applied
to JavaScript as has been shown in many places like Jeff Greenberg Duff’s Device and
[10]. Having studied this techniques even more and after a whole set of ideas have been
applied over those algorithms, the final creation was even better than the publicly avail-
able fast algorithms, as demonstrated the benchmarks. Also, it was adapted to be usable by
dynamic functions, like the battle-tested Lodash (former Underscore) library, but improving
its performance as can be seen in the next figure.

Fig. 23: Comparatives between loop algorithms (imperative and functional).

4.5. Contents & Results [FFI] continue. . . Page 40 of 104

http://home.earthlink.net/~kendrasg/info/js_opt/jsOptMain.html
https://lodash.com/docs

Raúl Nozal

The Duff’s Device implementation (and its adaptation to functional programming created
just to compare it in benchmarks), and the Nozal’s Loop algorithms have been added to the
appendices in the listings 13 and 14, but here are shown its functional versions inside
Emacs:

Fig. 24: Jeff’s Greenberg Duff’s Device and Nozal’s Loop implementation, respectively.

Finally, and to show the flexibility of FFI, it has been created an experimental dynamic
library in Rust (demonstration purposes), used successfully from Node.js. These adapta-
tions and calls in most cases outperform the JavaScript analogue [44]. The written and
tested code is in the listing 12 in the appendices.

These improvements have given more tools to the software department since so many
new techniques and connections are possible. They can choose if do high-load processing
in C/C++ or Rust, optimize the matrices processing with the new Nozal’s Loop or extend
the previous web architecture and views’ composition with the functional version (used
intensively) or definitely choose a combination of optimizations after profiling the hot-
spots and getting the best of each procedure by a balance of stability, maintainability and
performance.

Page 41 of 104

Master Thesis

5. Conclusions and future work

In this section are described the conclusions obtained after describing the results of the
Master Thesis and the future work that can be done after stuyding these advances.

5.1. Conclusions

The importance of getting involved in the processes of a company and its scientific know-
ledge areas is that it allows the understanding of how they work, what are the most con-
flicting points and what should be improved in favor of the process itself or the employees.

These improvements were not possible without the study of the Genetics Theoretical
bases and getting involved with the bioinformatics department and its meetings. Also,
the commercial point of view and how the software department analyzes every step in
the Biosciences processing changed completely the way of work, from the very beginning
of the idea, going through the mockups and accepted designs, towards the final imple-
mentation and its quality tests, with the end users.

Relative to the Genetysis® processing, its is important to mark how changing the process-
ing workflow, its stages and the organization of the data-sets and optimizing its storage
improved the whole system. Databases reduced their load, and the data were divided and
redefined. Understanding its paths and how it can be shared between many applications
can promote the simulations, reusability of code and avoid failures in the system.

The building systems, usually seen as a side-needed tool and not really focusing on its
development, serves not only for helping the success rates when creating new applica-
tions, but also reducing its costs (time, complexity, maintenance). Software departments
can improve its development speeds, follow conventions easily and be completely cen-
tered in the application itself but with a boost of last technologies and methodologies, all
being self-assisted in the background by the whole system.

Changing workflows and tools are not always painless, but when the performance-
enhancing low-level code and its previous libraries can be reused in new high-level
systems with just a small overhead, promotes the usage of these patterns and the im-
provements that can be achieved after profiling applications. Sharing code between client
and server-side, and being able to increase the performance in web servers is one of the
keys to follow this methodologies and use this advantages.

One of the advantages of having an iteration process of learning and inspecting the ne-
cessities, developing and designing the ideas, reviewing them by experts and finally,
implementing them in a gradual way, allows the creation of architectures like the Genetics
data administration software. Being in contact with the different departments and having
in mind key features (usability, reutilization, flexibility) during the whole process are the

5.1. Conclusions [Conclusions] continue. . . Page 42 of 104

Raúl Nozal

most importance lessons from these contributions.

Finally, having experiences in other Science fields, learning dozens of hundreds of new
tools and libraries, feeling like a single explorer in front of more than a dozen of different
languages and workflows, and working with professionals for more than one thousand
hours is the happiest and most difficult challenge environment that anyone could be in-
volved in.

Definitely the company has changed the workflows, tools and systems, but both bioin-
formatics and software departments have improved its activity and production quality
from the very first time of establishment. The initial internship objectives have been com-
pletely achieved and even more studies, libraries and applications have been given to the
employees than the initial requests.

5.2. Future work

Some of the improvements and future work that can be applied over its different projects
depend completely on the company rhythms but, as an overview, these are some of its
next works.

The building system is under continuous testing by the software department, and the
developers (system’s end users) will contribute to adapt new tasks to the system or add
new Werft modules. A task for automatic formatting of code mixing the linting process
will help to correct almost automatically every source code and follow the department
conventions. Also, Werft-projects can be extended to support a command-line small appli-
cation to manage its own Werft modules and projects, and being connected with tools like
git, even modifying its pre-commit hooks and connect them to Werft tasks like linting and
testing, to be sure that the repositories have only tested and reviewed code.

The GUI architecture and its design can be extended to support more components and
features like abstract groups of events that trigger multiple components at the same time,
develop an extension to debug appropriately Mithril-Modules components when using
its observers from a component perspective, generate more layers of abstraction over
the forms, allowing to adapt the architecture to new bigger containers like navigators,
side-bars or even media types (videos, audios, maps). Also, profiling the architecture
can promote the optimization of its parts and how the engine creates the component,
from the model to the rendered element. By refactoring and extended its core feature,
it could be adapted to support other low-level frameworks that render to the virtual DOM.

Related to the Genetics data administration software and two of its applications here ex-
posed: matrix of polymorphisms combinations and phenotype indicator, both are under
continuous improvement due to the R&D department, but the algorithms to build matri-
ces were not studied and probably can be analyzed and apply parallel computation. Also,

5.2. Conclusions [Future work] continue. . . Page 43 of 104

Master Thesis

the base values calculation from matrix operations can be extended easily with the inter-
face provided, and the advantages of saving data storage can be benchmarked against
pure storing, determining which technique is better.

The evolution of external interfaces and module adaption from different languages de-
termines the way a project can extend its performance. By studying and being up to
date with new FFIs and libraries that expose parallel computing can provide new speed
boosts to the system. Connection to languages like erlang and its concurrent structures can
improve the current web servers while reusing previous libraries and its shared modules.

Page 44 of 104

Raúl Nozal

6. Bibliography

[1] James F. Kurose and Keith W. Ross. Computer Networking. A Top-Down Approach (Sixth
Edition, Pearson, 2013).The Web and HTTP (caching, cookies). Pages 124-142.

[2] Steve McConnell. Code Complete. A practical handbook of software construction (Second
Edition, Microsoft Press, 2012).Code Improvements, System Considerations and Soft-
ware Craftmanship. Pages 463-853.

[3] Robert C. Martin. Clean Code. A Handbook of Agile Software Craftmanship (Prentice Hall,
2013). Meaningful Names, Functions, Comments, Objects and Data Structures and
Unit Tests. Pages 17-73, 93-101, 121-133.

[4] Robert C. Martin. The Clean Coder. A Code of Conduct for Professional Programmers
(Prentice Hall, 2013).Chapters 1-14. Pages 7-204.

[5] Jon Bentley. Programming Pearls (Second Edition, Addison-Wesley, 2012).Preliminaries
and Performance (Data Structures Programs and Squeezing the space) Pages 1-29, 99-
108.

[6] Steve Krug. Don’t make me think (Second Edition, New Riders, 2006).Pages 10-179.

[7] Charles P. Pleeger. Security in Computing. Fourth Edition (Fourth Edition, Prentice Hall,
2006).Program Security, Elementary Cryptography, Security in Networks

[8] Michael K. Glass, Yann Le Scouarnec, Elizabeth Naramore, Gary Mailer, Jeremy Stolz
and Jason Gerner. Beginning PHP, Apache, MySQL Web Development (Fourth Edition,
Wrox, 2004).Validating User Input. User Logins, Profiles and Personalization. Building
a Content Management System. Pages 213-235, 335-433.

[9] Carlos Álvarez Martín y Pablo González Pérez. Hardening de servidores GNU/Linux
(0xWORD, 2013).Fortificación de un entorno LAMP, Logging. Pages 211-232, 261-271.

[10] Nicholas C. Zakas. High Performance JavaScript (Build Faster Web Application Interfaces)
(O’Reilly Media, 2010). Data Access, Algorithms and Flow Control and Strings and
Regular Expressions. Pages 15-33, 61-106.

[11] Addy Osmani. JavaScript Design Patters (A JavaScript and JQuery Developer’s Guide)
(O’Reilly Media, 2012). JavaScript Patterns, MV* Patterns and Modern Modular
JavaScript Design Patterns Pages 21-64,79-120,141-143,148-151.

[12] Benjamin Lewin. Genes IX (Jones & Bartlett Learning, Ninth Edition, 2007). Genes
Are DNA, Genome Sequences and Gene Numbers. Pages 1-21, 76-95.

[13] Robert L. Nussbaum, Roderick R. McInnes and Huntignton F. Willard. Thompson &
Thompson Genetics in Medicine (Saunders, Sixth Edition, 2012). Human Genetic Diver-
sity: Mutation and Polymorphism, Genetic Variation in Populations.

Page 45 of 104

Master Thesis

[14] Wang J, Lin M, Crenshaw A et al. High-throughput single nucleotide polymorphism
genotyping using nanofluidic dynamic arrays (BMC Genomics, 2008).10:561

[15] Andrew Glober. In pursuit of code quality: Don’t be fooled by the coverage report
(IBM).
http://www.ibm.com/developerworks/library/j-cq01316/

[16] Ben Lewis. Measuring Client-Side JavaScript Test Coverage With Istanbul.
https://blog.engineyard.com/2015/measuring-clientside-

javascript-test-coverage-with-istanbul

[17] Carlos Oliveira. Why C++ will not die.
http://coliveira.net/software/why-c-will-not-die/

[18] Lauren Orsini. Why do some old programming languages never die?.
http://readwrite.com/2014/09/01/programming-language-coding-

lifetime

[19] Git Foundation. Git Manual.
http://www.git-scm.com

[20] Emacs Wiki Community. Emacs Wiki Organization.
http://www.emacs-wiki.org

[21] Xah Lee. ErgoEmacs - Emacs-Lisp Documentation.
http://www.ergoemacs.org

[22] Intel. Intel Instrinsics Guide (reference tool).
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

[23] Vivek N. Waghmare, Sandip V. Kendre and Sanket G. Chordiya. Performance Analysis
of Matrix-Vector Multiplication in Hybrid (MPI + OpenMP) (Sandip Institute of Tech. &
Research Centre, Nashik, India, 2011).International Journal of Computer Applications.
Vol. 22 No. 5

[24] ECMA Committee. ECMAScript Specifications (Editions) - MDN Language Re-
sources.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Language Resources

[25] Shari Thurow. 4 Things Online Marketers Should Know About User Experience
(UX).
http://marketingland.com/4-things-seos-know-user-experience-

ux-73200

[26] Leo Horie. Mithril.js Benchmarks.
https://lhorie.github.io/mithril/benchmarks.html

Page 46 of 104

http://www.ibm.com/developerworks/library/j-cq01316/
https://blog.engineyard.com/2015/measuring-clientside-javascript-test-coverage-with-istanbul
https://blog.engineyard.com/2015/measuring-clientside-javascript-test-coverage-with-istanbul
http://coliveira.net/software/why-c-will-not-die/
http://readwrite.com/2014/09/01/programming-language-coding-lifetime
http://readwrite.com/2014/09/01/programming-language-coding-lifetime
http://www.git-scm.com
http://www.emacs-wiki.org
http://www.ergoemacs.org
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
http://marketingland.com/4-things-seos-know-user-experience-ux-73200
http://marketingland.com/4-things-seos-know-user-experience-ux-73200
https://lhorie.github.io/mithril/benchmarks.html

Raúl Nozal

[27] W3C (MIT, ERCIM, Keio, Beihang). Cross-Origin Resource Sharing.
http://www.w3.org/TR/cors/

[28] “kangax”. ECMAScript ES6 Compatibility Table.
https://kangax.github.io/compat-table/es6/

[29] Alexander Shvets, Gerhard Frey and Marina Pavlova.. Chain of Responsibility (Be-
havioral Design Pattern).
https://sourcemaking.com/design patterns/chain of responsibility

[30] Biicode Community. Biicode: C++ dependency manager.
https://www.biicode.com/

[31] Alexander Shvets, Gerhard Frey and Marina Pavlova.. Decorator (Structural Design
Pattern).
https://sourcemaking.com/design patterns/decorator

[32] Alexander Shvets, Gerhard Frey and Marina Pavlova.. Builder (Creational Design
Pattern).
https://sourcemaking.com/design patterns/builder

[33] Alexander Shvets, Gerhard Frey and Marina Pavlova.. Abstract Factory (Creational
Design Pattern).
https://sourcemaking.com/design patterns/builder

[34] Heinrich Apfelmus. FRP - Three principles for GUI elements with bidirectional data
flow.
http://apfelmus.nfshost.com/blog/2012/03/29-frp-three-

principles-bidirectional-gui.html

[35] Daiki Ueno (Free Software Foundation). GNU Gettext.
https://www.gnu.org/software/gettext/gettext.html

[36] Sensio Labs Documentation Team. Twig. The flexible, fast and secure template engine
for PHP (documentation).
http://twig.sensiolabs.org/documentation

[37] Redis Development Group. hiredis-node (C bindings).
https://github.com/redis/hiredis-node/blob/master/src/reader.cc

[38] Alexander Shvets, Gerhard Frey and Marina Pavlova.. Interpreter (Behavioral Design
Pattern).
https://sourcemaking.com/design patterns/interpreter

[39] io.js Addon API Working Group. Native Abstractions for Node.js.
https://github.com/nodejs/nan

Page 47 of 104

http://www.w3.org/TR/cors/
https://kangax.github.io/compat-table/es6/
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://www.biicode.com/
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/builder
https://sourcemaking.com/design_patterns/builder
http://apfelmus.nfshost.com/blog/2012/03/29-frp-three-principles-bidirectional-gui.html
http://apfelmus.nfshost.com/blog/2012/03/29-frp-three-principles-bidirectional-gui.html
https://www.gnu.org/software/gettext/gettext.html
http://twig.sensiolabs.org/documentation
https://github.com/redis/hiredis-node/blob/master/src/reader.cc
https://sourcemaking.com/design_patterns/interpreter
https://github.com/nodejs/nan

Master Thesis

[40] Nathan Rajlich. Node.js Foreign Function Interface.
https://github.com/node-ffi/node-ffi

[41] Google. V8 JavaScript Engine.
https://code.google.com/p/v8/

[42] Intel. Intel VTune Amplifier 2016.
https://software.intel.com/en-us/intel-vtune-amplifier-xe/try-

buy

[43] Nikhil Marathe. An Introduction to libuv.
https://nikhilm.github.io/uvbook/introduction.html

[44] Gergely Nemeth. How to Use Rust with Node.js When Performance Matters
(micro).
https://blog.risingstack.com/how-to-use-rust-with-node-when-

performance-matters/

Page 48 of 104

https://github.com/node-ffi/node-ffi
https://code.google.com/p/v8/
https://software.intel.com/en-us/intel-vtune-amplifier-xe/try-buy
https://software.intel.com/en-us/intel-vtune-amplifier-xe/try-buy
https://nikhilm.github.io/uvbook/introduction.html
https://blog.risingstack.com/how-to-use-rust-with-node-when-performance-matters/
https://blog.risingstack.com/how-to-use-rust-with-node-when-performance-matters/

Raúl Nozal

7. Appendices

In this chapter are shown some of the contents recorded in the CD-ROM that is given
as attachment with the report. They are appended to the document to be easily viewed
(hyperlinks, syntax highlighting) when those contents are mentioned, improving the na-
vigation and the review.

The CD has multiple source codes, images (rendered elements and diagrams), and the
whole report building system with its Org files (in case anyone wants to extract and reuse
texts easily) and the report itself in PDF.

7.1. Renders

7.1.1. GUI (m-forms)

Fig. 25: m-toastr rendering process during a Refinery session.

7.1.1. Renders [GUI (m-forms)] continue. . . Page 49 of 104

Master Thesis 7.1.1. Renders [GUI (m-forms)] (continued)

Fig. 26: m-forms during a Refinery session, showing formComponent field

(demonstration purposes).

7.1.1. Renders [GUI (m-forms)] continue. . . Page 50 of 104

Raúl Nozal 7.1.1. Renders [GUI (m-forms)] (continued)

Fig. 27: m-forms showing formComponent field, panel and container’s title
(demonstration purposes).

7.1.1. Renders [GUI (m-forms)] continue. . . Page 51 of 104

Master Thesis 7.1.1. Renders [GUI (m-forms)] (continued)

Fig. 28: HelpBlock showing its capture (static rendering of the component, testing
purposes).

7.1.1. Renders [GUI (m-forms)] continue. . . Page 52 of 104

Raúl Nozal 7.1.1. Renders [GUI (m-forms)] (continued)

Fig. 29: HelpBlock showing its dynamic rendering (testing purposes).

7.1.1. Renders [GUI (m-forms)] continue. . . Page 53 of 104

Master Thesis

7.2. UML

7.2.1. GUI (m-forms)

Fig. 30: m-forms independent components and pluggable modules.

7.2.1. UML [GUI (m-forms)] continue. . . Page 54 of 104

Raúl Nozal 7.2.1. UML [GUI (m-forms)] (continued)

Fig. 31: m-forms system, formComponent components (containers and contents).

7.2.1. UML [GUI (m-forms)] continue. . . Page 55 of 104

Master Thesis

7.2.2. Internationalization

Fig. 32: i18n-components Activity diagram (usage overview).

7.2.2. UML [Internationalization] continue. . . Page 56 of 104

Raúl Nozal

7.3. Code

7.3.1. Matrix of combinations to rules

Listing 1: Polymorphism Rules (polymorphism-rules.js).

0 /∗∗
1 ∗ Behavioral Design Pattern Chain of Responsibility (loose coupling)
2 ∗ default opts {
3 ∗ passAlways : true (to go through every handler)
4 ∗ }
5 ∗ @param {function} handler : handler function to call every `handle`
6 ∗ @param {function} config : Handler configurator function
7 ∗ @param {object} opts : default options
8 ∗/
9 function Handler(handler, config, opts){

10 if (config){
11 config.bind(this)();
12 }
13 this.handler = handler || function(){};
14 this.opts = {
15 passAlways: opts && opts.passAlways ? opts.passAlways : true
16 };
17 }
18 Handler.prototype.setOpts = function(opts){
19 this.opts = {
20 passAlways: opts && typeof opts.passAlways === 'boolean' ? ⤦

Çopts.passAlways : true
21 };
22 };
23 /∗∗
24 ∗ Dynamic handle function (any arguments are processed by the ⤦

ÇHandlerInstance.handler)
25 ∗ Problem agnostic
26 ∗ It will stop going through the handlers when passAlways is false and the ⤦

Çcurrent value too.
27 ∗ @returns {object} with current and any properties.
28 ∗/
29 Handler.prototype.handle = function(){
30 var handledObj = {
31 current: false,
32 any: false
33 };
34
35 handledObj.current = this.handler.apply(this, arguments);
36 handledObj.any = (typeof handledObj.current === 'boolean') ? ⤦

ÇhandledObj.current || handledObj.any : false;
37 var next = this.next;
38 if (next){
39 if (!handledObj.current || this.opts.passAlways){
40 var handledObjRcv = next.handle.apply(next, arguments);

7.3.1. Code [Matrix of combinations to rules] continue. . . Page 57 of 104

Master Thesis 7.3.1. Code [Matrix of combinations to rules] (continued)

41 handledObj.current = handledObjRcv.current;
42 handledObj.any = handledObjRcv.any || handledObj.any;
43 }
44 }
45
46 return {
47 current: (typeof handledObj.current === 'boolean') ? ⤦

ÇhandledObj.current : false,
48 any: (typeof handledObj.any === 'boolean') ? handledObj.any : false
49 };
50
51 };
52 /∗∗
53 ∗ Establish the next handler of the chain
54 ∗ @param {function} handler
55 ∗/
56 Handler.prototype.setNext = function(handler){
57 this.next = handler;
58 };
59
60
61 /∗ Example of usage ∗/
62
63 var mutationsInPhenotype = ["BG_0021", "BG_0040"];
64
65 /∗∗
66 ∗ Wrapper around the responses of the Handler
67 ∗ to match the requested behavior for the Polymorphisms Rules
68 ∗ @param {object} data : text and value properties (rule content)
69 ∗ @param {array} rows : rows with objects, each of one with the ⤦

ÇINTERNAL_CODE/CODIGO_INTERNO (SNP) as a property and its applied ⤦
Çgenotypes as values.

70 ∗ @param {object} genotypes : genotypes to be tested against (sample to ⤦
Çprocess the rules)

71 ∗ @param {object} resolution : the applied results (combinations), with its ⤦
Çweights and values

72 ∗ @returns true if the current rule has been applied with this sample
73 ∗/
74 function processRule (data, rows, genotypes, resolution /∗ rw ∗/){
75 var done = false;
76
77 for(var ri in rows){
78 var row = rows[ri];
79 var ruleWeight = 0;
80
81 var ANDmatches = true;
82 for(var mi in mutationsInPhenotype){
83 var mutationName = mutationsInPhenotype[mi];
84 var reqGenotypeName = genotypes[mutationName];
85 var mutation = row[mutationName];
86 if (reqGenotypeName && mutation){

7.3.1. Code [Matrix of combinations to rules] continue. . . Page 58 of 104

Raúl Nozal 7.3.1. Code [Matrix of combinations to rules] (continued)

87 ruleWeight++;
88 ANDmatches = ANDmatches && mutation[reqGenotypeName];
89 }
90 }
91
92 if (ANDmatches){
93 if (ruleWeight > 0){
94 done = true;
95 for(var el in data){
96 var eldata = data[el];
97 var resdata = resolution[el];
98 if (eldata.active && ruleWeight >= resdata.weight){
99 resdata.value = eldata.value;

100 resdata.weight = ruleWeight;
101 }
102 }
103 }
104 }
105 }
106
107 return done;
108
109 }
110
111 /∗ Defined Rules ∗/
112
113 var r1 = new Handler(function(genotypes, resolution){
114
115 var done = false;
116 var rows = [
117 {
118 BG_0021: { "CT": true, "CC": true}, // each prop in ⤦

Ç(INTERNAL_CODE/CODIGO_INTERNO) is OR
119 BG_0040: { "GG": true } // each prop in ROW is AND
120 },
121 {
122 BG_0021: { "TT": true }
123 // if has no prop in ROW, means TRUE
124 }
125];
126
127 var data = {
128 text: {
129 active: false,
130 value: ""
131 },
132 value: {
133 active: true,
134 value: 6.0
135 }
136 };

7.3.1. Code [Matrix of combinations to rules] continue. . . Page 59 of 104

Master Thesis 7.3.1. Code [Matrix of combinations to rules] (continued)

137
138 return processRule(data, rows, genotypes, resolution);
139
140 });
141
142 var r2 = new Handler(function(genotypes, resolution){
143
144 var done = false;
145 var rows = [
146 {
147 BG_0021: { "CC": true },
148 BG_0040: { "GT": true }
149 }
150];
151
152 var data = {
153 text: {
154 active: true,
155 value: "This rule has a text. It is specific for the CC/GT."
156 },
157 value: {
158 active: true,
159 value: 3.3
160 }
161 };
162
163 return processRule(data, rows, genotypes, resolution);
164
165 });
166
167
168 var r3 = new Handler(function(genotypes, resolution){
169
170 var done = false;
171 var rows = [
172 {
173 BG_0021: { "TT": true },
174 BG_0040: { "GG": true }
175 }
176];
177
178 var data = {
179 text: {
180 active: true,
181 value: "Text to be shown before the genes section (TT/GG)."
182 },
183 value: {
184 active: false,
185 value: 2.5
186 }
187 };

7.3.1. Code [Matrix of combinations to rules] continue. . . Page 60 of 104

Raúl Nozal 7.3.1. Code [Matrix of combinations to rules] (continued)

188
189 return processRule(data, rows, genotypes, resolution);
190
191 });
192
193 var r4 = new Handler(function(genotypes, resolution){
194
195 var done = false;
196 var rows = [
197 {
198 BG_0021: { "CC": true },
199 BG_0040: { "GT": true }
200 }
201];
202
203 var data = {
204 text: {
205 active: false,
206 value: "Another text, this for CC/GT."
207 },
208 value: {
209 active: true,
210 value: 4.4
211 }
212 };
213
214 return processRule(data, rows, genotypes, resolution);
215
216 });
217
218
219
220 /∗ the orchestrator ∗/
221
222 var phenotypeProcessor = {
223
224 processRequest: function(genotypes){
225 var ruleChain = phenotypeProcessor.buildRules([r1, r2, r3, r4]);
226
227 var resolution = {
228 text: {
229 value: null,
230 weight: 0
231 },
232 value: {
233 value: null,
234 weight: 0
235 }
236 };
237
238 var handled = ruleChain.handle(genotypes, resolution);

7.3.1. Code [Matrix of combinations to rules] continue. . . Page 61 of 104

Master Thesis 7.3.1. Code [Matrix of combinations to rules] (continued)

239 // if passAlways, the last handle send the returned boolean from the ⤦
Çlast rule.

240
241 return resolution;
242 },
243 buildRules: function(rules){
244 var ruleChain = rules[0];
245 var lastRule = rules.length - 1;
246 for(var i = 0; i < lastRule; i++) {
247 rules[i].setNext(rules[i+1]);
248 }
249
250 return ruleChain;
251 }
252
253 };
254
255
256 /∗ example main executor ∗/
257
258 var executor = function(){
259 var genotypes, resolution;
260
261 genotypes = {
262 "BG_0021": "CC",
263 "BG_0040": "GT"
264 };
265
266 resolution = phenotypeProcessor.processRequest(genotypes);
267 console.log(resolution);
268
269 genotypes = {
270 "BG_0021": "TT",
271 "BG_0040": "GT"
272 };
273
274 resolution = phenotypeProcessor.processRequest(genotypes);
275 console.log(resolution);
276 };
277
278 executor();
279
280 /∗
281 {
282 text: { value: 'This rule has a text. It is specific for the CC/GT.', ⤦

Çweight: 2 },
283 value: { value: 4.4, weight: 2 }
284 }
285 {
286 text: { value: null, weight: 0 },
287 value: { value: 6, weight: 1 }

7.3.1. Code [Matrix of combinations to rules] continue. . . Page 62 of 104

Raúl Nozal

288 }
289 ∗/

7.3.2. GUI independent packages

Listing 2: CStr (cstr.js).

0 function CStrPortion(portion){
1 if (typeof portion !== 'object'){
2 portion = {text: portion};
3 }
4 this.portion = portion;
5 // this.type
6 }
7 CStrPortion.prototype.isAnyOf = function(types){
8 var t = this.recognize();
9 if (typeof types !== 'object'){

10 types = [types];
11 }
12 return types.indexOf(t) !== -1;
13 };
14 CStrPortion.prototype.accessor = function(param){
15 this.recognize();
16 var ret;
17 if (param === 'self'){
18 ret = this;
19 }else if (param === 'type'){
20 ret = this.type;
21 }else{
22 ret = this.portion[param];
23 }
24 return ret;
25 };
26 CStrPortion.prototype.recognize = function(){
27 var type = this.type;
28 if (type == null){
29 var p = this.portion;
30 if (p.text != null){
31 type = 'text';
32 }else if (p.newline != null){
33 type = 'newline';
34 }else if (p.header != null){
35 type = 'header';
36 }else if (p.style != null){
37 type = 'textstyle';
38 }else if (p.comment != null){
39 type = 'comment';
40 }else if (p.url != null){ // p.name not mandatory

7.3.2. Code [GUI independent packages] continue. . . Page 63 of 104

Master Thesis 7.3.2. Code [GUI independent packages] (continued)

41 type = 'link';
42 }else{
43 throw new Error(`CStrPortion has an invalid type: ${p}`);
44 }
45 this.type = type;
46 }
47 return type;
48 };
49 CStrPortion.prototype.toString = function(){
50 var ret;
51 var p = this.portion;
52 var t = this.recognize();
53 var opt;
54 switch(this.type){
55 case 'text':
56 ret = p.text;
57 break;
58 case 'newline':
59 ret = '\n';
60 break;
61 case 'header':
62 ret = p.header + ' ' + p.value;
63 break;
64 case 'comment':
65 ret = p.comment + ' ' + p.value;
66 break;
67 case 'textstyle':
68 var char = CStrPortion.prototype.textstyle.recognize(p.style);
69 if (char){
70 ret = char + p.value + char;
71 }else{
72 ret = p.value;
73 }
74 break;
75 case 'link':
76 opt = p.name;
77 if (opt != null){
78 opt = '[' + opt + ']]';
79 }else{
80 opt = ']';
81 }
82 ret = '[[' + p.url + ']' + opt;
83 break;
84 }
85 return ret;
86 };
87
88
89 /∗ CStrPortionProcesses (begin) ∗/
90 CStrPortion.prototype.newline = function(cParts){
91 var v;

7.3.2. Code [GUI independent packages] continue. . . Page 64 of 104

Raúl Nozal 7.3.2. Code [GUI independent packages] (continued)

92 if (this.isAnyOf('text')){
93 v = this.portion.text;
94 }
95
96 if (v && v.indexOf('\n') !== -1){
97 var parts = v.split('\n');
98 var i, leni = parts.length,
99 ei;

100
101 var hasContent;
102 for (i=0; i<leni; i++){
103 ei = parts[i];
104
105 if (hasContent){
106 cParts.push({'newline': true});
107 }else{
108 hasContent = true;
109 }
110 var notEmpty = ei.length;
111 if (notEmpty){
112 cParts.push({text: ei});
113 }
114 }
115 }
116 };
117
118 var reStyle = {
119 code: /^[\s\(\[\{]=([^=]+)=$/,
120 codeG: /[\s\(\[\{]=([^=]+)=/g,
121 bold: /^[\s\(\[\{]\∗([^\∗]+)\∗$/,
122 boldG: /[\s\(\[\{]\∗([^\∗]+)\∗/g,
123 underline: /^[\s\(\[\{]_([^_]+)_$/,
124 underlineG: /[\s\(\[\{]_([^_]+)_/g,
125 italic: /^[\s\(\[\{]\/([^\/]+)\/$/,
126 italicG: /[\s\(\[\{]\/([^\/]+)\//g,
127 };
128 CStrPortion.prototype.textstyle = function(cParts, subtype){ // code, italic, ⤦

Çbold, underline
129 var v;
130 if (this.isAnyOf('text')){
131 v = this.portion.text;
132 }
133
134 var char = CStrPortion.prototype.textstyle.recognize(subtype);
135
136 if (v && char && v.indexOf(char) !== -1){ // faster
137
138 re = reStyle[subtype];
139 reG = reStyle[subtype + 'G'];
140
141 if (re && reG){

7.3.2. Code [GUI independent packages] continue. . . Page 65 of 104

Master Thesis 7.3.2. Code [GUI independent packages] (continued)

142 var matches = v.match(reG);
143 var re, reG;
144 if (matches){
145
146 var styles = [];
147 var m;
148 var i, leni, ei;
149 for (i=0, leni=matches.length; i<leni; i++){
150 ei = matches[i];
151 m = ei.match(re);
152 if (m){
153 var all = m[0];
154 v = v.replace(all.substr(1), '\0');
155 var text = m[1];
156 var stPart = {style: subtype, value: text};
157 styles.push(stPart);
158 }
159 }
160
161 var texts = v.split('\0');
162 var i, leni, ei;
163 for (i=0, leni=texts.length; i<leni; i++){
164 ei = texts[i];
165 var notEmpty = ei.length;
166 if (notEmpty){
167 cParts.push({text: ei});
168 }
169 var style = styles[i];
170 if (style){
171 cParts.push(style);
172 }
173 }
174 }
175 }
176 }
177 };
178 CStrPortion.prototype.textstyle.recognize = function(style){
179 var char;
180 switch(style){
181 case "code": char = '='; break;
182 case "italic": char = '/'; break;
183 case "bold": char = '∗'; break;
184 case "underline": char = '_'; break;
185 }
186 return char;
187 };
188
189 var reOrgHeader = /^(\∗+)\s+(.+)$/;
190 CStrPortion.prototype.header = function(cParts){
191 var v;
192 if (this.isAnyOf('text')){

7.3.2. Code [GUI independent packages] continue. . . Page 66 of 104

Raúl Nozal 7.3.2. Code [GUI independent packages] (continued)

193 v = this.portion.text;
194 }
195
196 if (v && v.indexOf('∗') === 0){ // first char should be ∗
197 var m = v.match(reOrgHeader);
198 if (m){
199
200 var header = m[1];
201 var value = m[2];
202 cParts.push({header: header, value: value});
203 }
204 }
205 };
206
207 var reOrgComment = /(?:(#\+[^]+)|(#)) ?(.+)$/;
208 CStrPortion.prototype.comment = function(cParts){
209 var v;
210 if (this.isAnyOf('text')){
211 v = this.portion.text;
212 }
213
214 if (v && v.indexOf('#') !== -1){
215 var m = v.match(reOrgComment);
216 if (m){
217 var comment = m[1] || m[2]; // 1 special, 2 normal
218 var value = m[3];
219 cParts.push({text: v.substr(0, m.index)});
220 cParts.push({comment: comment, value: value});
221 }
222 }
223 };
224
225
226 var reOrgLink = /^\[\[([^\]]∗)(?:\]\[([^\]]∗)\]|\])\]$/;
227 var reOrgLinkG = /\[\[([^\]]∗)(?:\]\[([^\]]∗)\]|\])\]/g;
228 CStrPortion.prototype.link = function(cParts){
229 var v;
230 if (this.isAnyOf('text')){
231 v = this.portion.text;
232 }
233
234 if (v && v.indexOf('[[') !== -1){
235 var matches = v.match(reOrgLinkG);
236 if (matches){
237
238 var urls = [];
239 var m;
240 var i, leni, ei;
241 for (i=0, leni=matches.length; i<leni; i++){
242 ei = matches[i];
243 m = ei.match(reOrgLink);

7.3.2. Code [GUI independent packages] continue. . . Page 67 of 104

Master Thesis 7.3.2. Code [GUI independent packages] (continued)

244 if (m){
245 v = v.replace(m[0], '\0');
246 var url = m[1];
247 var name = m[2] || url;
248 var urlPart = {url: url};
249 if (url !== name){
250 urlPart.name = name;
251 }
252 urls.push(urlPart);
253 }
254 }
255
256 var texts = v.split('\0');
257 var i, leni, ei;
258 for (i=0, leni=texts.length; i<leni; i++){
259 ei = texts[i];
260 var notEmpty = ei.length;
261 if (notEmpty){
262 cParts.push({text: ei});
263 }
264 var url = urls[i];
265 if (url){
266 cParts.push(url);
267 }
268 }
269
270 }
271 }
272 };
273
274 CStrPortion.prototype.trim = function(cParts, subtype){
275 var v;
276 if (this.isAnyOf('text')){
277 v = this.portion.text;
278 }
279
280 if (v){
281 var befLen = v.length;
282 switch (subtype) {
283 case "left":
284 v = v.replace(/^ ∗/,'');
285 break;
286 case "right":
287 v = v.replace(/ ∗$/,'');
288 break;
289 default:
290 v = v.replace(/ ∗$/,'').replace(/^ ∗/,'');
291 }
292 if (befLen !== v.length){ // changed
293 cParts.push({text: v});
294 }

7.3.2. Code [GUI independent packages] continue. . . Page 68 of 104

Raúl Nozal 7.3.2. Code [GUI independent packages] (continued)

295 }
296 };
297
298 CStrPortion.prototype.transform = function(cParts, subtype){
299 var v;
300 if (this.isAnyOf('text')){
301 v = this.portion.text;
302 }
303
304 if (v){
305 var befLen = v.length;
306 if (v.indexOf(' ') !== -1){ // changed
307
308 switch (subtype) {
309 case "entity-spaces":
310 v = v.replace(/ /g, '\u00a0');
311 break;
312 }
313
314 cParts.push({text: v});
315 }
316 }
317 };
318 /∗ CStrPortionProcesses (end) ∗/
319
320
321
322 function CStrBuffer(value){
323 this.value = [{text: value}];
324 this.i = 0;
325 }
326 CStrBuffer.prototype.filter = function(type){
327 var f;
328 if (type === 'clean-comments-newlines'){
329 var cStrPs = []; // saved
330 var saved;
331 var withComment;
332 f = function(acc, strs){
333 var type = acc('type');
334 var ret;
335 var save;
336 var dump;
337 if ((type === 'newline' ||
338 (type === 'text' && acc('text').length === 0))){
339 save = true;
340 }else if (type === 'comment'){
341 withComment = true;
342 }else{
343 ret = true;
344 dump = true;
345 }

7.3.2. Code [GUI independent packages] continue. . . Page 69 of 104

Master Thesis 7.3.2. Code [GUI independent packages] (continued)

346
347 if (save){
348 cStrPs.push(acc('self'));
349 saved = true;
350 }
351 if (dump && saved){
352 f.dump(strs);
353 cStrPs = [];
354 saved = false;
355 withComment = false;
356 }
357 return ret;
358 };
359 f.dump = function(strs){
360 if (withComment){
361 if (withComment){
362 var rep = new CStrPortion({newline: true});
363 strs.push(rep.toString());
364 }else{
365 cStrPs.forEach(function(el){ // insert the saved ones
366 strs.push(el.toString());
367 });
368 }
369 }
370 };
371
372 }
373 return f;
374 };
375 CStrBuffer.prototype.toString = function(filter){
376 var v = this.value;
377 var strs = [];
378 filter = CStrBuffer.prototype.filter(filter);
379 var f;
380 var fres;
381 var i, leni, ei;
382 for (i=0, leni=v.length; i<leni; i++){
383 ei = v[i];
384 var cStrP = new CStrPortion(ei);
385 if (!filter){
386 strs.push(cStrP.toString());
387 }else{
388 fres = filter((param) => cStrP.accessor(param),
389 strs);
390 if (fres){
391 strs.push(cStrP.toString());
392 }
393 }
394 }
395 if (filter){ // last checking of filters
396 filter.dump(strs);

7.3.2. Code [GUI independent packages] continue. . . Page 70 of 104

Raúl Nozal 7.3.2. Code [GUI independent packages] (continued)

397 }
398 return strs.join('');
399 };
400 CStrBuffer.prototype.insert = function(val, pos, rep){
401 if (!pos){ pos = 0; }
402 if (!rep){ rep = 0; }
403 var l = val.length;
404 var v = this.value,
405 i = this.i;
406 if (l){ // only arrays
407 var first;
408 for (var j=0; j<l; j++){
409 if (first){
410 rep = 0;
411 }else{
412 first = true; // we just remove the parent
413 }
414 var CStrP = new CStrPortion(val[j]); // convert it
415 v.splice(i + pos, rep, CStrP.portion);
416 pos++;
417 }
418 }
419 };
420 CStrBuffer.prototype.prepend = function(val){
421 this.insert(val, 0, 0);
422 };
423 CStrBuffer.prototype.replace = function(val){
424 this.insert(val, 0, 1);
425 };
426 CStrBuffer.prototype.append = function(val){
427 this.insert(val, 1, 0);
428 };
429 CStrBuffer.prototype.checkBounds = function(from, to){
430 var vl = this.value.length;
431 if ((from < 0 || from > vl) && (to < from || to > vl)){
432 throw new Error(`CStrBuffer checkBounds error (from - to): ${from} - ⤦

Ç${to}`);
433 }
434 };
435 CStrBuffer.prototype.run = function(from, to, op){
436 var v = this.value,
437 vlen = v.length;
438 if (from != null){
439 if (to != null){
440 to = vlen;
441 }
442 this.checkBounds(from, to);
443 }else{
444 from = 0;
445 to = vlen;
446 }

7.3.2. Code [GUI independent packages] continue. . . Page 71 of 104

Master Thesis 7.3.2. Code [GUI independent packages] (continued)

447 var i, leni, e;
448 for (i=from, leni=to; i<leni; i++){
449 e = v[i];
450 this.i = i;
451 var displaced = op.call(this, e);
452 if (displaced){ // != 0
453 leni += displaced;
454 i += displaced;
455 }
456 }
457 };
458 CStrBuffer.prototype.replacer = function(type, subtype, from, to){
459 switch(type){
460 case "newline":
461 case "link":
462 case "header":
463 case "comment":
464 case "textstyle":
465 case "trim":
466 case "transform":
467 break;
468 default:
469 throw new Error(`CStrBuffer replacer does not support the type: ⤦

Ç${type}`);
470 }
471 this.run(from, to, function(e){ // this
472 var disp = 0;
473 var cStrP = new CStrPortion(e);
474 var cParts = [];
475 cStrP[type](cParts, subtype);
476 var len = cParts.length;
477 if (len){ // 3 to add
478 this.changed = true;
479 this.replace(cParts); // determinant
480 disp = len - 1; // 2 displaced
481 }
482 return disp;
483 });
484
485 };
486
487 function CStr(value){
488 var value,
489 withFilter;
490
491 var b = this.buf = new CStrBuffer(value);
492
493 this.toString = function(filter){
494 if (b.changed || filter !== withFilter){
495 if (filter){
496 value = b.toString(filter);

7.3.2. Code [GUI independent packages] continue. . . Page 72 of 104

Raúl Nozal 7.3.2. Code [GUI independent packages] (continued)

497 withFilter = filter;
498 }else{
499 value = b.toString();
500 withFilter = null;
501 }
502 b.changed = false;
503 }
504 return value;
505 };
506 }
507 CStr.prototype.push = function(str, type){
508 if (typeof str !== 'object'){
509 str = [str];
510 }
511 var b = this.buf;
512 if (type === 'right'){
513 b.i = b.value.length - 1;
514 b.append(str);
515 }else{
516 b.i = 0;
517 b.prepend(str);
518 }
519 b.changed = true;
520 };
521 CStr.prototype.prepend = function(str){
522 this.push(str, 'left');
523 };
524 CStr.prototype.append = function(str){
525 this.push(str, 'right');
526 };
527 CStr.prototype.buffer = function(type, subtype){
528 var b = this.buf;
529
530 var op;
531 switch(type){
532 case '\n':
533 case 'newline':
534 case 'newlines':
535 b.replacer('newline');
536 break;
537 case 'links':
538 case 'link':
539 case 'URI':
540 b.replacer('link');
541 break;
542 case 'header':
543 case 'head':
544 case '∗':
545 b.replacer('newline'); // triggers
546 b.replacer('header');
547 break;

7.3.2. Code [GUI independent packages] continue. . . Page 73 of 104

Master Thesis

548 case 'comment':
549 case '#':
550 b.replacer('newline'); // triggers
551 b.replacer('comment');
552 break;
553 case 'textstyle':
554 case 'style':
555 b.replacer('textstyle', subtype);
556 break;
557 case 'trim':
558 b.replacer('trim', subtype);
559 break;
560 case 'transform':
561 b.replacer('transform', subtype);
562 break;
563 }
564
565 };
566
567 CStr.prototype.map = function(fn){
568 if (typeof fn !== 'function'){
569 throw new Error('CStr map expects a mapper function');
570 }
571 var buf = this.buf;
572 buf = buf.value;
573 var mapped;
574 if (buf && buf.length){
575 mapped = [];
576 var i, leni, ei;
577 for (i=0, leni=buf.length; i<leni; i++){
578 ei = buf[i];
579
580 var cStrP = new CStrPortion(ei);
581 var el = fn((param) => cStrP.accessor(param));
582 if (el != null){
583 mapped.push(el);
584 }
585 }
586 }
587 return mapped;
588 };
589 module.exports = CStr;

7.3.3. i18n-components

Listing 3: i18n-components (i18n-components.js).

0 var lang = 'en',

7.3.3. Code [i18n-components] continue. . . Page 74 of 104

Raúl Nozal 7.3.3. Code [i18n-components] (continued)

1 fallback = 'en',
2 strict = true; // check in every context if fallback exists
3
4 const available = ['en', 'es'];
5
6 const ctxs = {
7
8 };
9

10 /∗∗
11 ∗ Translate using the context name, with a
12 ∗
13 ∗ @param {} ctxkey : context name
14 ∗ @param {} key : key of translation (dot notation string)
15 ∗ @param {} rest : any other parameter to pass (function|dictionary mappings ⤦

Çonly)
16 ∗ @returns {} the string translate
17 ∗ @throws {} Error when the context does not exist, the key does not exist, ⤦

Çdoes not have fallback, is not in the availables
18 ∗/
19 function _i(ctxkey, key, ...rest){
20 var ctx = ctxs[ctxkey];
21 if (!ctx){
22 throw new Error(`'${ctxkey}' is not a loaded context.`);
23 }
24 var lmap = ctx[lang];
25 var msg;
26 var err;
27
28 function index(obj, i){ return obj[i]; }
29 function dotpick(obj, dotstr){ return dotstr.split('.').reduce(index, ⤦

Çobj); }
30 if (lmap){
31 msg = dotpick(lmap, key);
32 }
33 if ((!lmap || !msg) && lang !== fallback){
34 if (fallback == false){
35 throw new Error(`'${key}' is not in the '${ctx.name}' context. ⤦

ÇLanguage not provided: '${lang}'.`);
36 }
37 lmap = ctx[fallback];
38 if (lmap){
39 msg = dotpick(lmap, key);
40 }
41 }
42 if (!lmap || !msg){
43 throw new Error(`'${key}' is not in the '${ctx.name}' context. ⤦

ÇLanguages not provided: nor '${lang}' neither '${fallback}' ⤦
Çfallback.`);

44 }
45

7.3.3. Code [i18n-components] continue. . . Page 75 of 104

Master Thesis 7.3.3. Code [i18n-components] (continued)

46 if (typeof msg === 'function'){
47 msg = msg(...rest);
48 }
49
50 if (typeof msg === 'object'){
51 var tempkey = rest[0];
52
53 var template = msg[tempkey];
54 if (!template){
55 template = msg.default;
56 }
57 if (template){
58
59 var vars = rest[1];
60 for(var k in vars){
61 var re = new RegExp('{{ ∗' + k + ' ∗}}', 'g');
62 template = template.replace(re, vars[k]);
63 }
64 msg = template;
65 }
66 }
67
68 return msg;
69 }
70
71 /∗∗
72 ∗ Check if the keys provided in the schema definition are valid
73 ∗ @param {} a | {key1: '', key2: '', ...}
74 ∗ @throws {} Error when a key is not valid
75 ∗/
76 function checkI18nKeys(a){
77 for(var k in a){
78 if (a.hasOwnProperty(k) && k.indexOf('.') !== -1){
79 throw new Error(`${k} is an invalid i18n dictionary key ('.' is ⤦

Çnot supported)`);
80 }
81 var v = a[k];
82 if (typeof v === 'object'){
83 checkI18nKeys(v);
84 }
85 }
86 }
87
88 /∗∗
89 ∗ Set a new context for the web component
90 ∗ @param {} context | {name: 'unique', en: {}, es: {}, ...}
91 ∗ @throws {} Error when context has no name, when it exists or when it does ⤦

Çnot have fallback
92 ∗/
93 function setContext(context){
94 var name = context.name;

7.3.3. Code [i18n-components] continue. . . Page 76 of 104

Raúl Nozal 7.3.3. Code [i18n-components] (continued)

95 if (typeof name !== 'string'){
96 throw new Error(`Context needs a valid string 'name' property to be ⤦

Çidentified.`);
97 }
98 if (strict && fallback !== false && context[fallback] == null){
99 throw new Error(`Context needs at least the '${fallback}' fallback ⤦

Çdefinitions.`);
100 }
101 var ctx = ctxs[name];
102 if (ctx){
103 throw new Error(`'${name}' is a previously loaded context. Choose ⤦

Çanother context name.`);
104 }
105
106 checkI18nKeys(context);
107
108 ctxs[name] = context;
109 }
110
111 /∗∗
112 ∗ Set the initialization configuration
113 ∗ @param {} data | {lang: 'es', fallback: true, strict: false}
114 ∗/
115 function setConfig(data){
116
117 var l = data.lang;
118 if (l && available.indexOf(l) !== -1){
119 lang = l;
120 }
121
122 var fall = data.fallback;
123 if (fall != null){
124 fallback = fall;
125 }
126
127 var str = data.strict;
128 if (str != null){
129 strict = str;
130 }
131 }
132
133 module.exports = {
134 _i,
135 setConfig,
136 setContext
137 };

7.3.3. Code [i18n-components] continue. . . Page 77 of 104

Master Thesis 7.3.3. Code [i18n-components] (continued)

Listing 4: remove button component i18n schema definition (remove-lang.js).

0 module.exports = {
1 name: 'remove',
2 /∗ {% if en %} ∗/
3 en: {
4 message: {
5 '1': 'Do you like to remove the loaded file?',
6 'default': 'Do you like to remove the {{number}} loaded files?'
7 },
8 messagef: function(num){
9 var number,

10 s;
11 if (num > 1){
12 number = ' ' + num;
13 s = 's';
14 }else{
15 number = '';
16 s = '';
17 }
18 var msg = `Do you like to remove the${number} loaded file${s}?`;
19 return msg;
20 },
21 title: 'File Uploader',
22 remove: 'Remove',
23 cancel: 'Cancel',
24 tooltip: 'remove loaded files and clean field'
25 },
26 /∗ {% endif %} ∗/
27 /∗ {% if es %} ∗/
28 es: {
29 message: {
30 '1': '¿Desea eliminar el fichero cargado?',
31 'default': '¿Desea eliminar los {{number}} ficheros cargados?'
32 },
33 messagef: function(num){
34 var msg = '¿Desea eliminar ';
35 if (num === 1){
36 msg += 'el fichero cargado?';
37 }else{
38 msg += `los ${num} ficheros cargados?`;
39 }
40 return msg;
41 },
42 title: 'Cargador de ficheros',
43 remove: 'Borrar',
44 cancel: 'Cancelar',
45 tooltip: 'borrar ficheros cargados y limpiar campo'
46 }
47 /∗ {% endif %} ∗/
48 };

7.3.3. Code [i18n-components] continue. . . Page 78 of 104

Raúl Nozal 7.3.3. Code [i18n-components] (continued)

Listing 5: remove button component i18n schema definition (remove-lang.js).

0 const i18n_CONTEXT = 'remove';
1 // ...
2 fn: () => {
3 var num = fS.getFilenames().length;
4 toastr({
5 name: dataModel.name,
6 //messagef: _i(i18n_CONTEXT, 'message', num), // function
7 message: _i(i18n_CONTEXT, 'message', num, {number: num}), // dictionary
8 title: _i(i18n_CONTEXT, 'title'), // literal
9 type: 'warning',

10 menu: [
11 {
12 text: _i(i18n_CONTEXT, 'remove'),
13 fn: () => fS.clean()
14 },{
15 text: _i(i18n_CONTEXT, 'cancel')
16 }
17]
18 });
19 }
20 // ...
21 attr['data-original-title'] = _i(i18n_CONTEXT, 'tooltip');

Listing 6: i18n-components schema bootstrap with yasnippet (lang.snipppet).

0 # -∗- mode: snippet -∗-
1 # name: lang
2 # key: lang
3 # contributor: Raúl Nozal <nozalr@baigene.com>
4 # expand-env: ((yas-indent-line 'fixed))
5 # --
6 module.exports = {
7 name: '${1:unique-name}',
8 /∗ {% if en %} ∗/
9 en: {

10 $0
11 },
12 /∗ {% endif %} ∗/
13 /∗ {% if es %} ∗/
14 es: {
15
16 }
17 /∗ {% endif %} ∗/
18 };

7.3.3. Code [i18n-components] continue. . . Page 79 of 104

Master Thesis

7.3.4. Helpers

Listing 7: nav-blocks extension (nav-blocks.el).

0 ;;; nav-blocks.el --- Navigation through blocks of source code and pairs, fast⤦
Ç movements

1
2 ;; Copyright (C) 2015 Raúl Nozal
3
4 ;; Author: Raúl Nozal
5 ;; Maintainer: not-yet
6 ;; URL: not-yet
7 ;; Version: 0.1.0
8 ;; Keywords: nav-blocks, navigation, blocks, movement, move, jump, goto, ⤦

Çjavascript, js
9 ;; Package-Requires: ((emacs "24.1") (dash "2.10") (s "1.9"))

10
11 ;; This program is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation, either version 3 of the License, or
14 ;; (at your option) any later version.
15
16 ;; This program is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with this program. If not, see <http://www.gnu.org/licenses/>.
23
24 ;;; Example of configuration
25
26 ;;;; Nozal
27 ;; (load-file-sure-append "nav-blocks.elc" "config/modes/js")
28 ;; (require 'nav-blocks)
29
30 ;;;; alternative
31 ;; (add-hook 'js2-mode-hook
32 ;; (lambda ()
33 ;; (flycheck-mode t)))
34
35 ;;;;; movement
36 ;; (define-key js2-mode-map (kbd "M-f") 'nav-block-goto-pair)
37 ;; (define-key json-mode-map (kbd "M-f") 'nav-block-goto-pair)
38
39 ;; (define-key js2-mode-map (kbd "M-p") 'nav-block-goto-backward)
40 ;; (define-key js2-mode-map (kbd "M-n") 'nav-block-goto-forward)
41

7.3.4. Code [Helpers] continue. . . Page 80 of 104

Raúl Nozal 7.3.4. Code [Helpers] (continued)

42 ;;; Code
43
44 (require 'dash)
45 (require 's)
46
47
48 (defgroup nav-block nil
49 "Navigation through blocks (JavaScript-focused)."
50 :group 'nav-block)
51
52 (defvar nav-block--re-keywords-js "\\(function\\|if\\|else\\|for\\|do\\|while⤦

Ç\\|switch\\|case\\|default\\|try\\|catch\\|finally\\)")
53
54
55
56 ;;; custom vars
57
58 (defcustom nav-block-re-keywords nav-block--re-keywords-js
59 "Keywords to match when using `nav--block-find-' or its wrappers
60 `nav-block-goto-backward' and `nav-block-goto-forward'. By default JavaScript ⤦

Ç'keywords'."
61 :type '(choice (const :tag "JavaScript" nav-block--re-keywords-js)
62 (const :tag "Implement more..." nav-block--re-keywords-js))
63 :package-version '(nav-blocks . "0.1.0"))
64
65
66
67
68
69 ;;; interactive
70
71 (defun nav-block-goto-backward (point)
72 "Dependent on `font-lock-keyword-face' to match the keywords.
73 Search backward from the current cursor point."
74 (interactive
75 (list (point)))
76 (nav--block-find- point 'backward))
77
78
79 (defun nav-block-goto-forward (point)
80 "Dependent on `font-lock-keyword-face' to match the keywords.
81 Search forward from the current cursor point."
82 (interactive
83 (list (point)))
84 (nav--block-find- point 'forward))
85
86
87 (defun nav-block-goto-pair (point &optional affinity)
88 "nav-block function to jump between pair blocks
89 like [], {} or (). Useful for languages like Emacs-Lisp, JavaScript,
90 C/C++, Java, etc.

7.3.4. Code [Helpers] continue. . . Page 81 of 104

Master Thesis 7.3.4. Code [Helpers] (continued)

91
92 Note: even if your code is not a valid JavaScript it will work because
93 it searches like in 'rings' from the nested one to the outer one.
94 Be careful with comments that content odd open/close pairs in between
95 your 'ring' of search.
96
97 Under `interactive' mode the default length to find a open/close pair
98 from the cursor point is 5 chars. In case of conflict (same length),
99 prevaleces the left one (searching forward)."

100 (interactive
101 (list (point) 5)) ;; 5 chars before/after to find a { or }
102
103 (let∗ ((chars-open '(?\{ ?\[?\())
104 (chars-close '(?\} ?\] ?\)))
105 (save-pt point)
106 (init-pt point)
107 (down-dir t)
108 (from-char (let∗ ((min-p (- save-pt (if affinity affinity 5)))
109 (max-p (+ save-pt (if affinity affinity 5)))
110 (all-pairs (-concat chars-open chars-close))
111 (f-bw (+ save-pt 1))
112 (f-fw (progn
113 (setq max-p (1+ max-p)) ;; search-forward needs one more
114 (1- save-pt)))
115 (bw-pt-pre (save-excursion
116 (cadr (--min-by (let∗ ((off (car it))
117 (offo (car other))
118 (voff (if off off 16))
119 (voffo (if offo offo 16)))
120 (> voff voffo))
121 (-map (lambda(char) (progn (goto-char f-bw)
122 (let∗ ((ps (search-backward (string⤦

Ç char) min-p t))
123 (ps-offset (if ps
124 (- init-pt ps)
125 nil)))
126 (list ps-offset ps char))))
127 all-pairs)))))
128 (bw-pt bw-pt-pre)
129 (fw-pt-pre (save-excursion
130 (cadr (--min-by (let∗ ((off (car it))
131 (offo (car other))
132 (voff (if off off 16))
133 (voffo (if offo offo 16)))
134 (> voff voffo))
135 (-map (lambda(char) (progn (goto-char f-fw)
136 (let∗ ((ps (search-forward (string ⤦

Çchar) max-p t))
137 (ps-offset (if ps
138 (- ps init-pt)
139 nil)))

7.3.4. Code [Helpers] continue. . . Page 82 of 104

Raúl Nozal 7.3.4. Code [Helpers] (continued)

140 (list ps-offset ps char))))
141 all-pairs)))))
142 (fw-pt (and fw-pt-pre
143 (1- fw-pt-pre)))
144 (char-pt (cond ((and bw-pt fw-pt) (if (< (abs (- init-pt bw-pt)⤦

Ç) (abs (- fw-pt init-pt))) bw-pt fw-pt)) ;; on conflict, ⤦
Çgo forward

145 (bw-pt bw-pt)
146 (fw-pt fw-pt)
147 (t nil)))
148
149 (char (if char-pt
150 (progn
151 (setq init-pt char-pt)
152 (char-after char-pt))
153 nil)))
154 char)))
155 (if from-char
156 (let∗ ((msg nil)
157 (to-char (or (let∗ ((i (-elem-index from-char chars-open))
158 (ch (when i
159 (nth i chars-close))))
160 (if ch
161 (progn
162 (setq down-dir t)
163 ch)
164 nil))
165 (let∗ ((i (-elem-index from-char chars-close))
166 (ch (when i
167 (nth i chars-open))))
168 (if ch
169 (progn
170 (setq down-dir nil)
171 ch)
172 nil))
173 (setq msg (concat "Only supported '" (s-join "', '" (-map '⤦

Çstring '(40 41))) "'."))))
174 (not-found t)
175 (pt-max (if down-dir
176 (point-max)
177 (point-min)))
178 (open-num 1)
179 (place (unless msg
180 (goto-char save-pt) ;; in case it reaches the top/bottom of ⤦

Çbuffer
181 (save-excursion
182 (goto-char init-pt)
183 (while not-found
184 (if down-dir
185 (forward-char)
186 (backward-char))

7.3.4. Code [Helpers] continue. . . Page 83 of 104

Master Thesis 7.3.4. Code [Helpers] (continued)

187 (let ((pt-n (char-after (point))))
188 (cond ((eq pt-n to-char) (setq open-num (1- open-num)))
189 ((eq pt-n from-char) (setq open-num (1+ open-num))))
190 (cond ((eq open-num 0) (setq not-found nil))
191 ((eq pt-n pt-max) (setq not-found nil)))))
192 (point)))))
193 ;; it is not possible to have { as first char (only json)
194 (cond (msg (error msg))
195 ((eq open-num 0) (goto-char place))))
196 (goto-char save-pt))))
197
198
199
200 ;;; private
201
202 (defun nav--block-find- (point &optional direction)
203 "Jump to the next (or previous) special keyword block. Fast navigation ⤦

Çthrough
204 the source code. JavaScript centered, but works for C/C++, C#, Java or even ⤦

ÇPython.
205
206 Dependent on `font-lock-keyword-face' to match the keywords (`js2-mode')"
207 (let∗ ((save-pt point)
208 (not-found t)
209 (fn-search (if (eq direction 'forward)
210 #'search-forward-regexp
211 #'search-backward-regexp))
212 (fn-mv (if (eq direction 'forward)
213 #'forward-char
214 #'backward-char))
215 (re-keywords nav-block-re-keywords)
216 (pt-found (save-excursion
217 (let ((place nil))
218 (while not-found
219 (let∗ ((pt-pre (funcall fn-search re-keywords nil t))
220 (pt-offset (when pt-pre
221 (if (eq direction 'forward)
222 (- (length (match-string 1)))
223 0)))
224 (pt-beg (and pt-pre
225 (+ pt-pre pt-offset)))
226 (next (if (eq save-pt pt-beg)
227 t
228 nil))
229 (pt-font (and pt-beg
230 (get-text-property pt-beg 'font-lock-face))))
231 (unless next
232 (if pt-pre
233 (when (and pt-font
234 (eq pt-font 'font-lock-keyword-face))
235 (progn

7.3.4. Code [Helpers] continue. . . Page 84 of 104

Raúl Nozal 7.3.4. Code [Helpers] (continued)

236 (setq not-found nil)
237 (setq place pt-beg)))
238 (progn
239 (setq not-found nil)
240 (setq place nil))))))
241 place))))
242 (if pt-found
243 (goto-char pt-found)
244 (goto-char save-pt))))
245
246
247 (provide 'nav-blocks)

Listing 8: stylus-mode modification (stylus.el).

0 ;; Copyright (C) 2015 Raúl Nozal
1
2 ;; Author: Raúl Nozal
3 ;; (not a package
4
5 ;; This program is free software; you can redistribute it and/or modify
6 ;; it under the terms of the GNU General Public License as published by
7 ;; the Free Software Foundation, either version 3 of the License, or
8 ;; (at your option) any later version.
9

10 ;; This program is distributed in the hope that it will be useful,
11 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ;; GNU General Public License for more details.
14
15 ;; You should have received a copy of the GNU General Public License
16 ;; along with this program. If not, see <http://www.gnu.org/licenses/>.
17
18 ;;; Code
19
20 (require 'stylus-mode)
21
22 ;; redefinition of stylus-mode' `font-lock-keywords' to support colors
23 ;; adapted to understand #XYZ and #XXYYZZ hexa units
24 (setq stylus-font-lock-keywords
25 `(
26 (,"^[{2,}]+[a-z0-9_:\\-]+[]" 0 font-lock-variable-name-face)
27 (,"\\(::?\\(root\\|nth-child\\|nth-last-child\\|nth-of-type\\|nth-last-of-⤦

Çtype\\|first-child\\|last-child\\|first-of-type\\|last-of-type\\|only⤦
Ç-child\\|only-of-type\\|empty\\|link\\|visited\\|active\\|hover\\|⤦
Çfocus\\|target\\|lang\\|enabled\\|disabled\\|checked\\|not\\)\\)∗" . ⤦
Çfont-lock-type-face) ;; pseudoSelectors

28 (,(concat "[^_$]?\\<\\(" stylus-colours "\\)\\>[^_]?")
29 0 font-lock-constant-face)

7.3.4. Code [Helpers] continue. . . Page 85 of 104

Master Thesis

30 (,(concat "[^_$]?\\<\\(" stylus-keywords "\\)\\>[^_]?")
31 0 font-lock-keyword-face)
32 ("\\(#[abcdef[:digit:]]\\{6\\}\\)" .
33 (0 (put-text-property
34 (match-beginning 0)
35 (match-end 0)
36 'face (list :background (match-string-no-properties 0)))))
37 ("\\(#[abcdef[:digit:]]\\{3\\}\\)[^abcdef[:digit:]]" .
38 (0 (put-text-property
39 (match-beginning 1) ;;1
40 (match-end 1) ;;1
41 'face (list :background (match-string-no-properties 1)))));;1
42
43 (,"\\([.0-9]+:?\\(em\\|ex\\|px\\|mm\\|cm\\|in\\|pt\\|pc\\|deg\\|rad\\|grad⤦

Ç\\|ms\\|s\\|Hz\\|kHz\\|rem\\|%\\)\\b\\)" 0 font-lock-constant-face)
44 (,"\\b[0-9]+\\b" 0 font-lock-constant-face)
45 (,"\\.\\w[a-zA-Z0-9\\-]+" 0 font-lock-type-face) ; class names
46 (,"$\\w+" 0 font-lock-variable-name-face)
47 (,"@\\w[a-zA-Z0-9\\-]+" 0 font-lock-preprocessor-face) ; directives and ⤦

Çbackreferences
48))

7.3.5. Phenotype Indicator

Listing 9: template-phenotype Interpreter (interpreter.js).

0
1 module.exports = function(config){
2 var i18n = config.i18n,
3 _i = i18n._i,
4 i18n_CONTEXT = 'interpreter';
5
6 i18n.setContenxt(require('./interpreter-lang'));
7
8 var PhenotypeData = function(values, options){
9 this.population = (typeof values.population === 'number') ? ⤦

Çvalues.population : 0;
10 this.min = (typeof values.min === 'number') ? values.min : 0;
11 this.max = (typeof values.max === 'number') ? values.max : 0;
12 this.phenotype = (typeof values.phenotype === 'string') ? ⤦

Çvalues.phenotype : '';
13 this.options = options || {};
14
15 var langCache = {
16 inferior: _i(i18n_CONTEXT, 'inferior'),
17 equal: _i(i18n_CONTEXT, 'equal'),
18 superior: _i(i18n_CONTEXT, 'superior'),
19 less: _i(i18n_CONTEXT, 'less'),

7.3.5. Code [Phenotype Indicator] continue. . . Page 86 of 104

Raúl Nozal 7.3.5. Code [Phenotype Indicator] (continued)

20 "equal to": _i(i18n_CONTEXT, "equal to"),
21 more: _i(i18n_CONTEXT, 'more'),
22 };
23 if (!this.options.diff){
24 this.options.diff = function(diff){
25 return diff.toFixed(2);
26 };
27 }
28 if (!this.options['diff-%']){
29 this.options['diff-%'] = function(diff){
30 return diff.toFixed(2) + '%';
31 };
32 }
33 if (!this.options.comp){
34 this.options.comp = function(diff){
35 var comp = langCache.inferior;
36 if (diff === 0){
37 comp = langCache.equal;
38 }else if (diff > 0){
39 comp = langCache.superior;
40 }
41 return comp;
42 };
43 };
44 if (!this.options['comp-alt']){
45 this.options['comp-alt'] = function(diff){ // we know it uses ⤦

Ç"favorable"
46 var comp = langCache.less;
47 if (diff === 0){
48 comp = langCache['equal to'];
49 }else if (diff > 0){
50 comp = langCache.more;
51 }
52 return comp;
53 };
54 };
55 };
56
57 var UserData = function(phenotypeData, userValue){
58 this.phenotypeData = phenotypeData;
59 this.user = (typeof userValue === 'number') ? userValue : 0;
60 };
61 UserData.prototype.setUserValue = function(userValue){
62 this.user = (typeof userValue === 'number') ? userValue : this.user;
63 };
64 UserData.prototype.precalc = function(){
65 var diff = (this.user - this.phenotypeData.population);
66 this.diff = (typeof diff === 'number') ? diff : null;
67 };
68
69

7.3.5. Code [Phenotype Indicator] continue. . . Page 87 of 104

Master Thesis 7.3.5. Code [Phenotype Indicator] (continued)

70 var templatePhenotypeCommands = {
71 var: {
72 PHENOTYPE: function(data){
73 var phenotype;
74 if (typeof data.phenotypeData.phenotype === 'string'){
75 phenotype = data.phenotypeData.phenotype;
76 }else{
77 phenotype = '';
78 }
79 return phenotype;
80 },
81 DIFF: function(data){
82 var diff;
83 if (typeof data.diff === 'number'){
84 diff = data.diff;
85 }else{
86 diff = data.user - data.population;
87 }
88 diff = Math.abs(diff) || 0;
89 return data.phenotypeData.options.diff(diff);
90 },
91 'DIFF-%': function(data){
92 var diff;
93 if (typeof data.diff === 'number'){
94 diff = data.diff;
95 }else{
96 diff = data.user - data.population;
97 }
98 diff = Math.abs(diff) || 0;
99 return data.phenotypeData.options['diff-%'](diff);

100 },
101 COMP: function(data){
102 var diff;
103 if (typeof data.diff === 'number'){
104 diff = data.diff;
105 }else{
106 diff = data.user - data.phenotypeData.population;
107 diff = (typeof diff === 'number') ? diff : 0;
108 }
109 return data.phenotypeData.options.comp(diff);
110 },
111 'COMP-ALT': function(data){
112 var diff;
113 if (typeof data.diff === 'number'){
114 diff = data.diff;
115 }else{
116 diff = data.user - data.phenotypeData.population;
117 diff = (typeof diff === 'number') ? diff : 0;
118 }
119 return data.phenotypeData.options['comp-alt'](diff);
120 },

7.3.5. Code [Phenotype Indicator] continue. . . Page 88 of 104

Raúl Nozal 7.3.5. Code [Phenotype Indicator] (continued)

121 VALUE: function(data){
122 return data.user || 0;
123 }
124 },
125 fn: {
126 'IF-DIFF': function(data){
127 return data.diff !== 0;
128 },
129 'IF-EQUAL': function(data){
130 return data.diff === 0;
131 }
132 }
133 };
134
135
136 /∗
137 ∗ Type: behavioral
138 ∗ Pattern: interpreter
139 ∗ Use cases:
140 ∗ - loose coupling a bit between objects/classes (each a different ⤦

Çexpression)
141 ∗ - simple grammar
142 ∗ - interprets expressions based on a context
143 ∗ - not efficient but easily modifiable/extensible
144 ∗/
145 var templatePhenotype = {};
146 (function(templatePhenotype){
147
148 var utils = {
149 trimSpaces: function(string){
150 return (typeof string === 'string') ? ⤦

Çstring.replace(/^\s∗/,'').replace(/\s∗$/,'') : null;
151 // support spaces before and after the command
152 }
153 };
154
155
156 function InterpreterContext (input){
157 this.err = null;
158
159 this.complete = {
160 input: input,
161 parts: []
162 };
163 this.partial = {
164 input: input,
165 parts: this.complete.parts
166 };
167 }
168
169 function CommandExpression(cmds){

7.3.5. Code [Phenotype Indicator] continue. . . Page 89 of 104

Master Thesis 7.3.5. Code [Phenotype Indicator] (continued)

170
171 if (!cmds){
172 cmds = {};
173 for (var type in templatePhenotypeCommands){
174 for (var name in templatePhenotypeCommands[type]){
175 cmds[name] = type;
176 }
177 }
178 }
179 this.cmds = cmds;
180 }
181 CommandExpression.prototype.interpret = function(ctx){
182 var matched = false;
183 if (ctx && typeof ctx.partial.input === 'string'){ //null or undefined
184
185 var s = ctx.partial.input;
186 var sLen = s.length;
187
188 var open = 1, // 0 is '{'
189 close = -1,
190 balance = 0;
191
192 var ctx_partials = [];
193
194 var guessed = 'v';
195
196 // maybe function
197 var parOpen = s.indexOf('(');
198 var parClose = s.lastIndexOf(')');
199 var cmdname;
200
201 var part = { type: 'cmd' };
202 var isSubtype = 'fn';
203
204 if (parOpen && parOpen !== -1 && parClose !== -1 && parOpen < parClose){
205 cmdname = utils.trimSpaces(s.substring(1, parOpen));
206 if (this.cmds[cmdname] === isSubtype){
207
208 var innerStr = s.substring(parOpen + 1, parClose);
209 var innerExp = new DecomposerExpression();
210 // process
211 part.subtype = isSubtype;
212 part.value = cmdname;
213 part.parts = [];
214 part.lengths = [s.substring(0, parOpen + 1).length,
215 s.substring(parClose, sLen).length];
216
217 var currentParts = ctx.partial.parts;
218
219 ctx.partial.parts.push(part);
220

7.3.5. Code [Phenotype Indicator] continue. . . Page 90 of 104

Raúl Nozal 7.3.5. Code [Phenotype Indicator] (continued)

221 ctx.partial.parts = part.parts;
222
223 ctx.partial.input = innerStr;
224 innerExp.interpret(ctx);
225
226 ctx.partial.parts = currentParts;
227
228 matched = true;
229 }
230 }else{
231 isSubtype = 'var';
232 cmdname = utils.trimSpaces(s.substring(1, sLen - 1));
233 if (this.cmds[cmdname] === isSubtype){
234 // process
235 part.subtype = isSubtype;
236 part.value = cmdname;
237 part.lengths = [s.substring(0, sLen).length];
238
239 ctx.partial.parts.push(part);
240 matched = true;
241 }
242 }
243
244 }
245 return matched;
246 };
247
248 function PlaintextExpression(){
249 }
250 PlaintextExpression.prototype.interpret = function(ctx){
251 var matched = false;
252 if (ctx && typeof ctx.partial.input === 'string' && ctx.partial.input ⤦

Ç!== ''){ //null or undefined
253 var part = { type: 'plain',
254 value: ctx.partial.input,
255 lengths: [ctx.partial.input.length] };
256
257 ctx.partial.parts.push(part);
258 matched = true;
259 }
260 return matched;
261 };
262
263 function DecomposerExpression(){
264 this.exps = [// order matters, first match "exists"
265 new CommandExpression(),
266 new PlaintextExpression()
267];
268 }
269 DecomposerExpression.prototype.interpret = function(ctx){
270 var matched = false;

7.3.5. Code [Phenotype Indicator] continue. . . Page 91 of 104

Master Thesis 7.3.5. Code [Phenotype Indicator] (continued)

271 if (ctx && typeof ctx.partial.input === 'string' && ctx.partial.input ⤦
Ç!== ''){

272 var s = ctx.partial.input;
273 var sLen = s.length;
274
275 var open = 0,
276 close = -1,
277 balance = 0;
278
279 var ctx_partials = [];
280
281 for (var i=0; i<sLen; i++){
282 var char = s[i],
283 from, to;
284 switch (char){
285 case '{':
286 if (balance === 0){
287 open = i;
288 from = close + 1;
289 if (from < open){
290 ctx_partials.push(s.substring(from, open));
291 }
292 }
293 balance++;
294 break;
295 case '}':
296 balance--;
297 if (balance === 0){
298 close = i;
299 to = close + 1;
300 ctx_partials.push(s.substring(open, to));
301 }
302 break;
303 }
304 }
305 from = close + 1;
306 if (sLen > from){
307 ctx_partials.push(s.substring(from));
308 }
309 if (balance !== 0){
310 ctx.err = "Unbalanced command separators (open - closed): '{' - ⤦

Ç'}': " + balance;
311 }else{
312 var l = ctx_partials.length;
313 for (var i = 0; i < l; i++){
314 var part = ctx_partials[i];
315 if (part){ // && part.length){
316 var done = false;
317
318 var exps = this.exps,
319 nExps = exps.length;

7.3.5. Code [Phenotype Indicator] continue. . . Page 92 of 104

Raúl Nozal 7.3.5. Code [Phenotype Indicator] (continued)

320
321 ctx.partial.input = part;
322
323 for (var j=0; j<nExps; j++){
324 done = done || this.exps[j].interpret(ctx);
325 }
326
327 }
328 }
329 matched = true; // is a string not empty (at minimum divided in ⤦

Çone part)
330 }
331 }
332 return matched;
333 };
334
335
336 function buildExpression(object, data){
337
338 function spacePunctuation(string){
339 if (typeof string === 'string'){
340 string = string.replace(/([^\d][,.])([^\d])/g, '$1 $2'); // not ⤦

Çin a number '2.3', '13,22'
341 }
342 return string;
343 }
344
345 var o = "";
346 if (object && object.parts){
347 var len = object.parts.length;
348 for (var i=0; i<len; i++){
349
350 var part = object.parts[i];
351 var spacer;
352 switch (part.type){
353 case 'plain':
354 o += spacePunctuation(part.value) + ' ';
355 break;
356 case 'cmd':
357 var response = ⤦

ÇtemplatePhenotypeCommands[part.subtype][part.value](data);
358 if (typeof response === 'boolean'){
359 if (response){
360 var currentParts = object.parts;
361 object.parts = part.parts;
362 o += spacePunctuation(buildExpression(object, data)) + ' ';
363 object.parts = currentParts;
364 }
365 }else{
366 o += spacePunctuation(response) + ' ';
367 }

7.3.5. Code [Phenotype Indicator] continue. . . Page 93 of 104

Master Thesis 7.3.5. Code [Phenotype Indicator] (continued)

368 }
369
370 }
371
372 }
373 return o;
374 }
375
376 templatePhenotype.exp = {
377 build: function(object, data){
378 var built = buildExpression(object, data);
379 var matchSpaces = built.match(/\s{2,}/g),
380 nSpaces = (matchSpaces) ? matchSpaces.length : 0;
381 for (var i=0; i<nSpaces; i++){
382 if (matchSpaces[i].indexOf('\n') !== -1){ // we remove \t
383 built = built.replace(matchSpaces[i], '\n');
384 }else if (matchSpaces[i].indexOf('\t') !== -1){
385 built = built.replace(matchSpaces[i], '\t');
386 }else{ // just spaces
387 built = built.replace(matchSpaces[i], ' ');
388 }
389 }
390 // Spanish grammar: ' ,' -> ','; ' .' -> '.'
391 built = built.replace(/ +,/g, ','); // not \s
392 built = built.replace(/ +\./g, '.'); // not \s (\t, \n)
393 return built.trim(); // first and last char.
394 },
395 parse: function(string){
396 var ctx = new InterpreterContext(string);
397 var exp = new DecomposerExpression();
398 exp.interpret(ctx);
399 if (ctx.err){
400 throw new Error(ctx.err);
401 }
402 return ctx.complete;
403 }
404 };
405
406 })(templatePhenotype);
407
408
409 module.exports = exports = {
410 PhenotypeData: PhenotypeData,
411 UserData: UserData,
412 templatePhenotypeCommands: templatePhenotypeCommands,
413 templatePhenotype: templatePhenotype
414 };
415
416 };

7.3.5. Code [Phenotype Indicator] continue. . . Page 94 of 104

Raúl Nozal 7.3.5. Code [Phenotype Indicator] (continued)

Listing 10: template-phenotype hinting extension (template-phenotype-hint .js).

0 var CodeMirror = require('codemirror');
1 var interpreter = require('./interpreter');
2
3 var RANGE = 20;
4
5 var availableCommands = [];
6
7 for (var type in interpreter.templatePhenotypeCommands){
8 for (var name in interpreter.templatePhenotypeCommands[type]){
9 availableCommands.push(name + ((type === 'fn') ? '()' : ''));

10 }
11 }
12
13 CodeMirror.registerHelper("hint", "phenotype-template", function(editor, ⤦

Çoptions) {
14 var cur = editor.getCursor(), curLine = editor.getLine(cur.line);
15
16 var line = cur.line;
17
18 var start = cur.ch,
19 end = cur.ch;
20
21 var matchKeyword = curLine.substring(0, end).match(/.∗{\s∗([^{]∗)$/);
22 var ret;
23 if (matchKeyword){
24 var mK = matchKeyword[1].replace('(', '\\(').replace(')','\\)');
25
26 var re = new RegExp("\\s∗" + mK + "(.∗)");
27
28 var map = availableCommands.map(function(keyword){
29 var m = keyword.match(re);
30 return m ? m[1] : undefined;
31 }).filter(function(el){
32 return el != null; // null or undefined
33 // https://dorey.github.io/JavaScript-Equality-Table/
34 }).slice(0, RANGE);
35
36 var posStart = CodeMirror.Pos(line, start);
37 var posEnd = CodeMirror.Pos(line, end);
38
39 ret = {list: map, from: posStart, to: posEnd};
40 }
41 return ret;
42 });
43
44 module.exports = exports = CodeMirror;

7.3.5. Code [Phenotype Indicator] continue. . . Page 95 of 104

Master Thesis 7.3.5. Code [Phenotype Indicator] (continued)

Listing 11: template-phenotype mode adapter for CodeMirror (template-phenotype
-mode.js).

0 var CodeMirror = require('codemirror');
1 var interpreter = require('./interpreter');
2
3 CodeMirror.defineMode("phenotype-template", function(config) {
4
5 var flushedPosition = 0;
6 var flushed = true;
7
8 // pos means number of chars up to the char to be analyzed
9 function getStyleOfPartAtPos(parts, pos){

10 var left = pos;
11 for (var pi in parts){
12 var part = parts[pi];
13
14 var fnSearchable = true;
15 for (var si in part.lengths){
16 var len = part.lengths[si]; // length
17
18 left -= len;
19 if (left <= 0){ // is inside this
20 if (part.subtype === 'fn'){
21 return 'fn';
22 }else if(part.subtype === 'var'){
23 return 'var';
24 }else{
25 return 'plain';
26 }
27 }else if (part.subtype === 'fn' && fnSearchable){ // can be nested
28 var inner = getStyleOfPartAtPos(part.parts, left); // recursive
29 switch (typeof inner){
30 case 'string':
31 return inner;
32 break;
33 case 'number':
34 left = inner;
35 break;
36 }
37 fnSearchable = false;
38 }
39 }
40 }
41 return left;
42 }
43
44 var stored = {
45 string: null,
46 obj: null,
47 firstChar: null
48 };

7.3.5. Code [Phenotype Indicator] continue. . . Page 96 of 104

Raúl Nozal 7.3.5. Code [Phenotype Indicator] (continued)

49
50 var instance = {
51 editor: null,
52 logger: config.logger
53 };
54 instance.fetch = function(){
55 if (!instance.editor || !instance.editor.getValue){
56 var editor = (config && config.getInstance) ? config.getInstance() : ⤦

Çnull;
57 if (editor){
58 instance.editor = editor.self;
59 }
60 }
61 };
62
63 return {
64 token: function(stream, state) {
65 var reparse = false,
66 currentContent;
67 if (instance.editor && instance.editor.getValue){
68 currentContent = instance.editor.getValue();
69 if (currentContent !== stored.string){
70 reparse = true;
71 }
72 }else{
73 instance.fetch();
74 }
75
76 if (!instance.logger){
77 instance.logger = config.logger;
78 }
79
80 var logger = instance.logger;
81
82 try{
83 if (reparse){ // cached
84 stored.obj = interpreter.templatePhenotype.exp.parse(⤦

ÇcurrentContent);
85 stored.string = currentContent;
86 }
87
88 logger && logger.flush();
89
90 }catch(e){
91 logger && logger.write(e.message);
92 stored.obj = null;
93 }
94
95 var token_name,
96 char = stream.peek();
97

7.3.5. Code [Phenotype Indicator] continue. . . Page 97 of 104

Master Thesis

98 if (stored.obj && char){
99 var OFFSET_TO_CHAR = 1;

100 flushedPosition = stream.pos + OFFSET_TO_CHAR; // 1 -> 0; 2 -> 1
101
102 var streamOffset = currentContent.indexOf(stream.string);
103
104 var braces = {'{':true, '}':true};
105 var parens = {'(':true, ')':true};
106 if (char in braces){
107 braces = true;
108 }else{
109 braces = false;
110 }
111 if (char in parens){
112 parens = true;
113 }else{
114 parens = false;
115 }
116
117 switch(getStyleOfPartAtPos(stored.obj.parts, flushedPosition + ⤦

ÇstreamOffset)){
118 case 'fn':
119 token_name = (braces || parens) ? 'fn-b' : 'fn';
120 break;
121 case 'var':
122 token_name = (braces || parens) ? 'var-b' : 'var';
123 break;
124 case 'plain':
125 token_name = (braces) ? 'cmd' : undefined;
126 break;
127 default:
128 token_name = undefined;
129
130 }
131
132 stream.next();
133 return token_name;
134 }
135
136 token_name = stream.skipToEnd();
137 return token_name;
138 }
139 };
140 });
141
142 module.exports = exports = CodeMirror;

7.3.6. Optimizations and Foreign Function Interface

7.3.6. Code [Optimizations and Foreign Function Interface] continue. . . Page 98 of 104

Raúl Nozal 7.3.6. Code [Optimizations and Foreign Function Interface] (continued)

Listing 12: Rust “where is” program to locate dependencies (demonstration purposes whereis.rs).

0 // @author Raúl Nozal
1 // @license GNU GPLv3
2
3 // The idea it is to implement this behavior, but being BROWSER and ⤦

ÇBROWSER_RUNNER
4 // dynamically obtained.
5
6 // #!/usr/bin/env bash
7 // [[-z "$WEBBROWSER"]] && WEBBROWSER=conkeror
8 // [[-z "$WEBBROWSER_RUNNER"]] && WEBBROWSER_RUNNER=xulrunner
9

10 // for cmd in zenity cgrep wmctrl $WEBBROWSER $WEBBROWSER_RUNNER;
11 // do
12 // which $cmd &> /dev/null
13 // [[$? -ne 0]] && echo "Needs: $cmd" && exit 1
14 // done
15
16 #![feature(process)]
17 #![feature(env)]
18 #![allow(unused_variables)]
19 #![feature(old_io,io)]
20 #![feature(core, collections)]
21
22 use std::process::Command;
23
24 const GUESSER: &'static str = "which";
25
26 pub extern fn check_dependency(st: &str) -> bool {
27
28 let status = Command::new(GUESSER).
29 arg(st).
30 stdout(std::process::Stdio::null()).
31 stderr(std::process::Stdio::null()).
32 status().
33 unwrap_or_else(|e| {
34 panic!("Error executing `{}`: {}", GUESSER, e);
35 });
36
37 status.success()
38
39 }
40
41
42 use std::old_io;
43 use std::env;
44
45 // http://doc.rust-lang.org/1.0.0-beta/
46 // https://doc.rust-lang.org/book/
47 // https://doc.rust-lang.org/reference.html

7.3.6. Code [Optimizations and Foreign Function Interface] continue. . . Page 99 of 104

Master Thesis 7.3.6. Code [Optimizations and Foreign Function Interface] (continued)

48 #[allow(deprecated)]
49 pub extern fn main() {
50
51 let env_keys = ["WEBBROWSER","WEBBROWSER_RUNNER"];
52 let default_values = ["conkeror","xulrunner"];
53
54 let mut programs_user: Vec<String> = Vec::new();
55 // the order is important between this line and the next one
56 let mut programs: Vec<&str> = Vec::new();
57
58
59
60 for i in 0..2 {
61
62 let var = env::var(env_keys[i]);
63 match var {
64 Ok(val) => {
65 programs_user.push(val)
66 // needed to create this vec of String
67 },
68 Err(e) => programs.push(default_values[i])
69 }
70 }
71
72 for progr in programs_user.iter() {
73 programs.push(progr);
74 }
75
76 programs.push_all(&["zenity", "cgrep", "wmctrl"]);
77
78 let mut heading_shown = false;
79 let mut serr = old_io::stderr();
80
81 for program in programs {
82
83 if ! check_dependency(&program) {
84
85 if ! heading_shown {
86 heading_shown = true;
87
88 let bytes_w = serr.write(String::from_str("Programs needed: ⤦

Ç").into_bytes().as_slice());
89
90 bytes_w.ok().expect("failed to write to STDERR (0).");
91
92 }
93 let mut prog = String::from_str(program);
94 prog.push_str(" ");
95 serr.write_all(prog.into_bytes().as_slice()).
96 ok().expect("failed to write to STDERR (1)");
97

7.3.6. Code [Optimizations and Foreign Function Interface] continue. . . Page 100 of 104

Raúl Nozal 7.3.6. Code [Optimizations and Foreign Function Interface] (continued)

98 }
99 }

100
101 if heading_shown {
102 serr.write_all(String::from_str("\n").into_bytes().as_slice()).
103 ok().expect("failed to write to STDERR (2)");
104 }
105
106 drop(serr);
107
108 std::env::set_exit_status(if heading_shown { 1i32 } else { 0 })
109 }

Listing 13: JavaScript Jeff Greenberg’s Duff’s Device (duffs-device.js).

0 /∗
1 ∗ Credits to Jeff Greenberg, Tom Duff,
2 ∗ Functions exposed independently,
3 ∗ just to be shown. Benchmarks and tests apart.
4 ∗ arr as parameter to be in one func, but not
5 ∗ a real case.
6 ∗/
7 function duffsDevice(arr){
8 var sum = 0;
9 var a = arr;

10 var l = a.length;
11 var i = l % 8;
12 while(i){
13 sum+=a[--i].index;
14 }
15 i = Math.floor(l / 8);
16 while(i--){
17 sum+=a[--l].index;
18 sum+=a[--l].index;
19 sum+=a[--l].index;
20 sum+=a[--l].index;
21 sum+=a[--l].index;
22 sum+=a[--l].index;
23 sum+=a[--l].index;
24 sum+=a[--l].index;
25 }
26 return sum;
27 }
28
29 /∗
30 ∗ Adaptation to its functional form
31 ∗ @author Jeff Greenberg (imperative)
32 ∗/
33 function duffsDeviceFn(arr, fn){

7.3.6. Code [Optimizations and Foreign Function Interface] continue. . . Page 101 of 104

Master Thesis 7.3.6. Code [Optimizations and Foreign Function Interface] (continued)

34 var sum = 0;
35 var a = arr;
36 var l = a.length;
37 var i = l % 8;
38 while(i){
39 fn(a[--i]);
40 }
41 i = Math.floor(l / 8);
42 while(i--){
43 fn(a[--l]);
44 fn(a[--l]);
45 fn(a[--l]);
46 fn(a[--l]);
47 fn(a[--l]);
48 fn(a[--l]);
49 fn(a[--l]);
50 fn(a[--l]);
51 }
52 return sum;
53 }

Listing 14: JavaScript Nozal’s Loop implementation (nozals-device.js).

0 /∗
1 ∗ @author Raúl Nozal
2 ∗ Functions exposed independently,
3 ∗ just to be shown. Benchmarks and tests apart.
4 ∗ Imperative, to be used inside the code
5 ∗ used with /yasnippet/ as a scheme
6 ∗ arr as parameter to be in one func, but
7 ∗ not a real case (imperative)
8 ∗ Speedup (S) of 1.19
9 ∗/

10 function nozalsLoop(arr){
11 var sum = 0;
12 var a = arr;
13 var l = a.length;
14 var lmod = l >> 2;
15 var li = lmod << 2;
16 var i, k;
17 for (i=0, k=0; i<lmod; i++) {
18 var a0 = a[k++],
19 a1 = a[k++],
20 a2 = a[k++],
21 a3 = a[k++];
22 sum += a0.index + a1.index + a2.index + a3.index;
23 }
24 var rest = l - li ;
25 switch(rest){

7.3.6. Code [Optimizations and Foreign Function Interface] continue. . . Page 102 of 104

Raúl Nozal

26 case 3: sum += a[li++].index;
27 case 2: sum += a[li++].index;
28 case 1: sum += a[li++].index;
29 }
30 return sum;
31 }
32
33 /∗
34 ∗ Functional form. Speedup (S) of 1.95
35 ∗ @author Raúl Nozal
36 ∗/
37 function nozalsLoopFn(arr, fn){
38 var a = arr;
39 var l = a.length;
40 var lmod = l >> 2;
41 var li = lmod << 2;
42 var i, k;
43 for (i=0, k=0; i<lmod; i++) {
44 var a0 = a[k++],
45 a1 = a[k++],
46 a2 = a[k++],
47 a3 = a[k++];
48 fn(a0); fn(a1); fn(a2); fn(a3);
49 }
50 var rest = l - li;
51 switch(rest){
52 case 3: fn(a[li++]);
53 case 2: fn(a[li++]);
54 case 1: fn(a[li++]);
55 }
56 }

Page 103 of 104

	List of Tables
	List of Figures
	Listings
	License
	Acknowledgments
	Abstract / Resumen
	Introduction
	Motivation
	Objective
	Internship planning
	Report structure

	State of the art
	Matrix of combinations
	Building system and web development
	Phenotype Indicator

	Methods, Materials and used Technologies
	Genetics theoretical bases and applications
	Software methodologies
	General software technologies
	Languages and Environments
	Building system
	Graphical User Interfaces
	Web components

	Contents & Results
	Matrix of combinations to rules
	Werft-projects (building system)
	m-forms (Genetysis ® GUI)
	i18n-components (internationalization)
	Helpers

	Phenotype Indicator
	Foreign Function Interface (FFI)

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Appendices
	Renders
	GUI (m-forms)

	UML
	GUI (m-forms)
	Internationalization

	Code
	Matrix of combinations to rules
	GUI independent packages
	i18n-components
	Helpers
	Phenotype Indicator
	Optimizations and Foreign Function Interface

