Institutionen for systemteknik
Department of Electrical Engineering

Examensarbete

Design and Development of a Versatile Hardware Test
Platform

Examensarbete utfort i Computer Engineering
vid Tekniska hdgskolan vid Link&pings universitet
av

Eneas Puertas Kreusch

LiTH-ISY-EX--2012/XXXX--SE
Linkoping 2012

Linkdpings universitet

TEKNISKA HOGSKOLAN

Department of Electrical Engineering Linkdpings tekniskmskola
Linkdpings universitet Linkdpings universitet
SE-581 83 Linkdping, Sweden 581 83 Linkdping

Design and Development of a Versatile Hardware Test
Platform

Examensarbete utfort i Computer Engineering

vid Tekniska hogskolan vid Linkdpings universitet
av

Eneas Puertas Kreusch

LiTH-ISY-EX--2012/XXXX--SE

Handledare: Per Karlstrom
ISY, Linkdpings universitet

Examinator: Per Karlstrom
ISY, Link6pings universitet

Linkdping, 23 augusti 2012

4@05 UNI% Avdelning, Institution Datum
O CN Division, Department Date
.
-

’ Q Computer Engineering
JL Department of Electrical Engineering 2012-08-23
N SE-581 83 Linkoping

5
5
-

2 3
@,
(F
Ystcq rrpes®
Sprak Rapporttyp ISBN
Language Report category _
[0 Svenska/Swedish [Licentiatavhandling ISRN
X Engelska/English X Examensarbete LiTH-ISY-EX--2012/XXXX--SE
[J C-uppsats — -
Serietitel och serienummer ISSN
U D-uppsats Title of series, numbering o
O [Ovrig rapport
O
URL for elektronisk version

Titel
Title Design and Development of a Versatile Hardware Test Platform

Forfattare Eneas Puertas Kreusch
Author

Sammanfattning
Abstract

Nowadays in the whole process around the design of an integrated cieifi;ation and testing are
the most time consuming tasks. Verify simple ICs is not a very coxntalgk, but as the complexity
increases, this critical task takes more and more time allowing for easés thr four times design
time.

Test platforms plays an important role in the whole process. Vergatiljirobably the most important
feature of all. If the test platform can be re-used to test different ICs, the effdwt anitial investment
on its development in the cost of the verification process can be reduced.

This project will be focused on the design and development of a versegiiplatform.

Nyckelord
Keywords versatile test platform, hardware, SoC design, test

Abstract

Nowadays in the whole process around the design of an irtegbcircuit, verification and
testing are the most time consuming tasks. Verify simpleisG®t a very complex task,
but as the complexity increases, this critical task takeserand more time allowing for
easily three or four times design time.

Test platforms plays an important role in the whole procagssatility is probably the
most important feature of all. If the test platform can beised to test different ICs, the
effect of the initial investment on its development in thestcof the verification process
can be reduced.

This project will be focused on the design and developmera wérsatile test platform.

Acknowledgments

| would like to thank first to Per Karlstrém for given me the oba of doing my last year
project with him. Second, and not for that less importantpuld like to thank my family.
Even though they did not understand any of the things | wéisgethem, they listened
patiently and offered me words of support and motivation.d Ainally, |1 would like to
thank my friends, for all the coffees shared explaining awbpems and frustrations and
the good times we spent together.

Linképing, August 2012
Eneas Puertas

Contents

List of Figures

List of Tables

Abbreviations

1

Introduction

1.1 WhyTesting. i
1.2 TypesofTestsand Platforms
1.3 The Need of Versatile Test Platforms

Background

21 HDLLanguages o i it
211 HDLiInICDesign
2.1.2 HDLiInIC Simulation
213 MostPopularHDLs

22 IPBlocks

2.3 Novel Generator of Accelerators and ProcesstusHap)

24 FPGA . . e

2.5 Simulation, Synthesis and FPGA Programming Tools

Related Work

The System

4.1 Choosingthe TestPlatform
4.2 SpecificationsoftheSoC L.
43 TargetFPGABoard,
4.4 Final SoC Specifications

Available Resources

51 SDRAMMemMoOry e
52 SRAMMEMOIY
53 FlashMemory

Vii

~No @0 g

~

11

13
31
15
16
18

21
21
23
24

viii CONTENTS
5.4 InterconnectionBus e 24
5.4.1 TheWishboneBusStandard 25
6 The SoC and its elements 27
6.1 TheCPU e 29
6.1.1 OpenRISC 1000 Specifications. 29
6.1.2 OpenRISCOR1200, 30
6.1.3 TheIlmplemented OR1200 30
6.2 WishboneBus e 33
6.2.1 TheArbiter 33
6.2.2 TheDecoder 33
6.23 TheBuUuS. e 34
6.3 SDRAMControllero 35
6.4 SRAMController 39
6.4.1 Control&I/OBlock 40
6.4.2 Acknowledge ControlBlock 40
6.5 Flashcontroller 43
6.5.1 Control&l/OBlock 44
6.5.2 Acknowledge ControlBlock 44
6.6 AVBUS e 47
6.6.1 AvBusiInterface. 47
6.7 UART e 51
6.8 BootMonitor e 53
6.9 ClockManager 53
7 Tests 55
7.1 SimulationTests. e e 55
711 SingleTests 56
7.1.2 GroupTests i e 56
7.2 Hardware TeSts o e e 57
8 Results 61
9 Conclusions 63
10 Future Work 65
10.1 SystemImprovements. 65
10.2 FutureGoals e e 66
Bibliography 67

List of Figures

2.1

4.1
4.2
4.3
4.4
4.5
4.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2

FPGA basicstructure

Basictestflow
Testplatform
SoCstructure

I/0 modules interconnection to AvBus I/O connector
Memory modules interconnection to AvBus memory conmrect. . . .
Final SoC specifications

Global structure oftheSoC
Implemented OR1200 structure
Arbiter algorithm
SDRAMtri-state
Wishbone addressdecode
SDRAM memory controller structure
SRAM controller structure,
SRAM acknowledge controlflow
Flash controller structure
6.10 Flash acknowledge control flow
6.11 AvBus interface structure

Testbench basic structure
Hardware test structure,

List of Tables

5.1 SDRAM controllercommands
5.2 Masterdevicesignals
5.3 Slavedevicesignals

6.1 Device addressrange fordecoding
6.2 SDRAMaddressrange
6.3 SDRAMinput/outputsignals
6.4 SDRAM configurationsignals
6.5 SRAMaddressrange
6.6 SRAMinput/outputsignals
6.7 SRAM delay registers defaultvalues
6.8 Flashaddressrange
6.9 Flashinput/outputsignals
6.10 Flash delay registers defaultvalues
6.11 AvBus I/F board input/outputsignals,

8.1 FPGAlogic utilization
8.2 FPGAlogicdistribution. L

22
25
26

35
63
37
39

. 43

62

Abbreviations

ASIC = Application Specific Integrated Circuit
ASIP = Application Specific Instruction-set Processor
CLB = Configurable Logic Block
DCM = Digital Clock Manager
DSP = Digital Signal Processor
FPGA = Field Programmable Gate Array
HDL = Hardware Description Language
IC = Integrated Circuit
IP = Intellectual Property
MMU = Memory Management Unit
MNoGap = Novel Generator of Accelerators and Processors
RAM = Random Access Memory
RISC = Reduced Instruction Set Computer
SMP = Symmetric Multi-Processing
SMT = Surface Mount Technology
SoC = System on a Chip

TLB = Translation Lookaside Buffer

Xi

Xii 0 Abbreviations

Introduction

1.1 Why Testing

Despite all the improvements that design environments kaffered, designers can not
rely blindly in the results of the software tools they usesémptions, optimizations and
other considerations that software tools made can resudmetimes little and some-
times big, differences between the original design and élalt that the software brings
to the designer.

With simulation tools, the designer can get an initial estion to how his design will
behave, but some situations, such as the behavior of latclbe real implementation,
can not be predicted. Finding a non desired behavior in tinelsition phase is an easy
thing to solve, but once the design is turned into silicorstatrts to be a little bit more
complicated. Finding an error after the design has beentsghe manufacturer costs a
company lots of money, finding it once the product is in thekatcosts money and the
loss of costumers. That is why testing is so important in #aetbpment of ICs.

All companies are aware of this fact and spend huge amoutite@fand money to detect
and solve errors in all the phases of the design. To reducenbtability of finding
error in the last stages of the design (when they could caatsesttophic consequences)
companies make big efforts to plan and develop testingegfies in the early stages of
the design, when errors can be solved easily. The amounnefgpend in testing can be
nearly 3 or 4 times the time spent designing the IC. That caags a overall view of how
important testing is.

2 1 Introduction

1.2 Types of Tests and Platforms

All designs are unique. They can have parts shared with atbsigns (e.g. buses or
interfaces) but at the end they are still diferent. Despiie huge variety we can find, the
tests used to verify their behavior can be separated in fain wategories.

All ICs are unique, they might have elements from other 1@.(¢ cores or basic struc-
tures) but in the end it is always different from the rest. esthis huge variety we can
find on IC, tests can be separated in four main categories.

Low level test. This test focus on controlling the behavior of the IC bit by. birhis
technique offers good results when small details are inaportspecially in low
complexity ICs. When the complexity of the IC to test increagke time this tests
need to be accomplished, and their complexity, increases to

High level tests. To test very complex ICs, to focus on small details is not a \edfi-
cient way of doing it. All the small components that make up 8 have been
tested separately and its singular behavior has been pyatercked. In this cases,
what needs to be test is the global behavior of all the smatipmments connected
together. Instead of having to focus on separated bitsetegheers have to check
busses, registers, memories, etc.. Using C/C++, .NET ardtigh level languages
can provide an easy, or at least less complicated, way tompeidomplex tests.

Integrated testing features. Testing resources can be integrated in the IC, for example
JTAG protocols or BIST, and they provide the testing engitiee capability to test
directly from the board. Sometimes the tests are predefinddraegrated in the
system as "self tests", this usually happens when the ICsair®o complex and
only a few number of tests are needed. When the test are biggenare complex,
they are introduced externally into the test platform andeothey are done, the
results are extracted and interpreted.

External testing features. Sometimes, due to the high density of the ICs or because of
area issues, testing platforms can not be included in theolthsy need to be
external. One example of this situation is the self calleed"bf nails" used to test
ICs or PCBs by making contact with some kind of nails (cone@td the extern test
platform) into certain points of the system and reading ocifgy values in those
points. That relieves the designer to include the testiatfqm in the design, but
at the same time needs a complete external platform to petttoe tests.

1.3 The Need of Versatile Test Platforms

As the reader might have noticed, the selection of the te&t &nd platform is a big limit-
ing factor for the target ICs capable of being tested. Cnggdi specific test platform for
each possibility is not a very wise decision. Despite haampt very high development
time, its non-reusable nature is its most limiting factoy. @eating versatile testing plat-
form we can ensure a re-usability of the resources investéd development. It is going
to be more complicated to develop and probably will need rtiore to be completed, but

1.3 The Need of Versatile Test Platforms 3

once is done it can be used to test any IC, which at the end w#ima save of time and
money.

Background

This chapter shows the different elements the reader must lor at least be familiar
with, basic knowledge and useful tools and environmentswliabe mentioned along
the different chapters and that have been used in the deweluof the project.

2.1 HDL Languages

Hardware Description Language (HDL) [19] refers to any laage used for description
and design of electronic circuits, most commonly digitateits. HDLs can be used to
describe the behavior of circuits and to create tests tdyw#rém.

When describing the behavior or internal structure of a diraesigners generally use
algorithms, flow charts or mathematical expressions. HDesused to transform those
abstract elements into something real.

2.1.1 HDL inIC Design

Despite they are also used to design analog circuits, the fiedd of application of HDLs
is the design of digital integrated circuits.

The advantage that HDLs have against other traditionalraroghing languages, like C
or C++ when designing a digital circuit, is that they haverbereated specifically for this
task. It does not mean that traditional languages can nosée to design a digital circuit,
indeed they can be used, but some special libraries need addex, which makes the
whole process a little bit more complicated than by using DL

During the process of designing an IC, designing tools angt@mments are another im-
portant elements designers can use. Modern tools autatiptibeck for grammar errors,
error prone structures or potentially dangerous eleméats tould end in unexpected be-

5

6 2 Background

haviors. With the increase of the level of elements integtan an IC, optimization and
timing constraint checking tasks are becoming more and imgpertant. Modern design
tools can perform this tasks automatically, allowing theige engineer to focus in other
tasks. At the same time, the information this tools show todhgineer allows him/her
to know even before prototyping very important informatiéor example the maximum
speed of the design, area consumption or critical paths.

2.1.2 HDL in IC Simulation

Another important feature HDLs have is the capability of lsedito simulate HDL de-
signs. To be able to do that, engineers only have to add aa lexter of HDL code called
testbench. A testbench is basically and extra module wéleht procedures added to the
main design. It is written in HDL as the design, but not neaghsin the same language.
At least, testbenches have the instantiation of the desjouit$/output, some logic to per-
form the tests and control elements to verify the resultse Gfithe key features of HDLs
in this situations is that they have a certain number of irtdions or elements that can
not be synthesized but can be used in simulation.

Modern simulation environments provide design engindesiecessary tools to perform
deep level tests to their designs. Simulations can be stbapé resume any time, break-
points can be inserted without having to modify the HDL codd the behavior of the
design can be controlled on any layer. Results can be olotaimmatically with the use
of assertions or other comparative functions, but when gging a deeper view of the
design is more desirable. For this purpose, simulatiorstofier graphical environments
to display the values and transitions of any signal in thegiedacilitating the tasks of
error detection.

2.1.3 Most Popular HDLs

The most used and supported HDLs today &estemVerilog Verilog and VHDL (VH-
SIC HDL or very-high-speed integrated circuits HDL).

SystemVerilog

SystemVerilog[3] is a combination of hardware description language andware ver-
ification language. It is a major extension of therilog language so they share most of
the structures.

The latest IEEE standard was adopted in 2009 whgstermVerilogvas merged with the
existing Verilog standard, crating the IEEE 1800-2009 standard [10].

Verilog

Verilog [17] designs are based in the use of modules as design entiMedules have
input, output and bidirectional ports as well as procedbtatks. If another module
needs to be used, Its instantiation is also present. Unliikia-€ Verilog use begin/end
instead of curly brackets to delimit procedural blocks.

The latestverilog standard is Verilog 2005, also known as IEEE 1364-2005 [9].

2.2 |IP Blocks 7

VHDL

VHDL [18] designs are divided in entities and architectures. drtey defines the in/out
ports of the design and the architecture defines the innexvietof the design. There are
different ways to describe the behavior of the designs, setban be several architectures
for the same entityWHDL designs use libraries to increase the resources the desigre
available.

The latestvHDL standard is/HDL 4.0 also known as IEEE 1076-2008 [8].

2.2 |IP Blocks

IP block is the acronym of Intellectual Property block. ArbllBck is a reusable electronic
element, for example a logic unit, cell or chip layout dedigat has been developed by a
company or institution and can be licensed to third parti2gspending on the copyright
of the IP core, licenses can be free or not.

2.3 NoBGap

NoBGap is a design automation tool for ASIP and accelerator dewzldpy Per Karl-
strom [6] form the Department of Electrical Engineering @fikdping’s University.

In todays design of ASIPs, the designer have to choose onleedfito main ways to
approach the development of a new ASIP.

With HDL languages, the designer has a strong control overegister transfer level,
having the possibility of building a full custom system, bat the same time, he or she
has to deal with all the small details of hardware multiphgxiinterconnections and buses,
control signals and other elements that makes the wholeepso®ally tedious and error
prone.

Choosing EDA tools, the designer can focus only in the aatasign of the system with-
out having to worry about the small details. But this abstoaxcfrom the deepest details
only leaves to the designer the ability to work with partiatbnfigurable grey boxes pro-
vided by the EDA tool.

NoGap fills the space between the two solutions. The designer camlbar level control
over the register transfer level while at the same time dogéfose the high level perspec-
tive of a high level complex system. That means that the desigan focus on what he
or she does best: being creative, while the computer takesoéthe boring, tedious and
repetitive tasks which does better, quicker and with lesxrgthan humans.

2.4 FPGA

FPGA. It is a device which its behavior can be programed bygimg the connections
between its inner components.

8 2 Background

The basic structure of an FPGA consists of I/O cells to contiecFPGA to any external
device, programable logic blocks and interconnectionuesss to connect the logic block
and the 1/O cells (see 2.1). In addition to the basic stregtan FPGA can include also
RAM blocks, digital clock managers, dedicated multipljelxSP blocks, etc.. Every
manufacturer of FPGAs follows the basic structure but by ifiyorj it and adding extra

features tries to made a differentiation of his product ag#iie competitors.

[] 1/0 cells
B Logic blocks

| Interconnection
resources

Figure 2.1: FPGA basic structure

FPGAs are configured using bit files that can be generated Fdh files. Before re-

ceiving the specifications of the IC to be implemented andrigathe parameters of the
target FPGA model, the synthesizer converts the behavsarited in HDL (usually Ver-

ilog or VHDL) into the internal configuration of the logic htks and the interconnection
resources.

FPGAs are used in early prototyping, aerospace applicgtibio-medicine, computer
aided vision systems and voice recognition among many sthBlowadays its use is
increasing in applications with high needs of parallelism.

2.5 Simulation, Synthesis and FPGA Programming
Tools

Modelsimhas been the tool used for simulatidbeveloped by Mentor Graphicis used
for simulation and debugging dferilog, SystemVerilog VHDL , andSystemC

Precision(also developed bWentor Graphicy has been usedPrecisionis a vendor

independent synthesis tool which brings the designer tpalihity of developing code
without having to focus on a concrete FPGA architecture teld of using the graphi-
cal environment, synthesis commands have been includedviakafile to make all the

process accessible trough a single command over the tdrmina

2.5 Simulation, Synthesis and FPGA Programming Tools 9

The tool used to program the FPGA)s3sprog This tool uses the JTAG connector to
program Xilinx's FPGASs.

Related Work

A similar system was developed by Olle Seger and Per Kanstitis named Dafk and
is being used in the course code TSEA44 Computer hardwarey/st&rs on a chip [1].

This system has been used to verify the contents of the memonice read by this project
memory controllers.

Another CPU that has been used in the development of SoCsGdLENd its revisions
LEON2, LEON3 and LEON4). It is a 32-bit CPU microprocessorecdbased on the
SPARC-V8 RISC architecture and instruction set. It wasioatly designed by the Eu-
ropean Space Research and Technology Centre (ESTEC), fpidue &uropean Space
Agency (ESA), and after that by Gaisler Research [2].

11

The System

As the reader will have noticed reading previous chapthesneed of providing a versatile
test platform is a very important aspect of todays IC desiglustry. In this case, the target
of the versatile test platform is tHBo®ap platform. In this chapter, the reader will find
the specifications of the test platform as well as the FPGAdtet is going to be used

for its development.

4.1 Choosing the Test Platform

The task of testing accelerators and processors is not dessamp. Due to their complexity,
low level testing techniques are too complicated: theresaremany situations that need
to be tested and doing that bit by bit can be a tedious and prooe work. That is why
high level techniques are more suitable in this concrete.cas

The9toGap platform has been written in C++ and that brings the posgihiif develop
high level tests using C++ that can be easily processed bttitEap core.

13

14 4 The System

Design Test

(nogap language) (C++)

! l

v

'Verilog generator|

v
FPGA

Figure 4.1: Basic test flow

As the reader can se in Figure 4.1, the flow of the testing phaes is not very compli-
cated. Having the test and the design itself as inputs)th@&ap platform will process
them and generate and output that will be translated into Bipthe Verilog generator
and then synthesized into a FPGA to perform the tests destiibthe input test file.

Creating an individual hardware for testing purposes isjids, but not very practical. A
better way to perform the test without having to create aifipd@rdware for each design
is to have a predefined hardware with the possibility of cianthe way it works to meet
the requirements of the input test file. This means that dveagh the hardware will be
static, the way it works will be dynamic. At the same time ibshd be able to send and
receive data to and from the design to test, process thisat@aend it in a clear way to
the user. With all this features on mind, the choice of an So&lmost obvious.

The use of a SoC provides a powerful solution. In additiorhhasic structure of CPU
+ memory, the user can add any module that can be useful tashs tt will perform:

standard I/O modules such as UART or Ethernet, quick anddarvolatile memories
such as SDRAM and Flash, external device controllers, &ttat means almost infinite
possibilities of configuration and as the objective is: asaéle test platform.

4.2 Specifications of the SoC 15

CPU UART
g g

Bus

& &
Memory| |Wrapper

it
Design

Figure 4.2: Test platform

The basic structure of the SoC will include a CPU, an UART, anmoey module, an
interconnection bus and a wrapper (as sown in Figure 4.2 9Td®ap core will translate
the contents of the input test file into instructions thatloaexecuted by the CPU and then,
store them into the memory module so they can be reached byRkk The instruction
will be loaded trough the interconnection bus, and once ded@nd trough the wrapper,
the CPU will perform the tests directly over the design. Otieeresults data are obtained,
the CPU will process and send them to the user trough the I/@Quieo

4.2 Specifications of the SoC

As the wrapper specifications will be exclusive of each desige specifications of the
SoC will be focused on the CPU, memory, I/0 and interconoedtis. In order to expand
the possibilities, the system will include 3 kinds of mem@iRAM, SDRAM and Flash.
One possible configuration is:

- Tests stored in the SDRAM, the largest memory availabléénstystem.
- Results stored in the SRAM.
- Firmware stored in the Flash.

A UART is going to be in charge of the I/O operations, sending eeceiving data over
the RS232 protocol.

The resulting system will consist of a CPU, 3 memory conémsli(one for each memory),
a UART and an interconnection bus (as sown in Figure 4.3).

16

4 The System

4.3

SRAM
SDRAW
FLASK

(PU-

UART =

Figure 4.3: SoC structure

sng
UOoI1DDUUODID]U|

SREIREY

Target FPGA Board

The testing platform will be developed for tWnet Virtex Il Development Board14]
along with theAvnet Communications/memory Modul&5]. It has aVirtex II (model
XC2V4000) FPGA manufactured by Xilinx.

The specifications of the XC2V4000 shown on its data she¢tz0

4M System Gates

80 by 72 array of CLB, 23,040 slices and a maximum of 720 kiteb of distributed
RAM

120 multiplier blocks
120 18 kbit SelectRAM blocks with a maximum of 2,160 KbitsFoAM
12 DCM’s

A maximum of 912 user I/O pads

The Avnet Virtex || Development Boar@nd theAvnet Communications/memory
Module have the following features:

Development Board

Xilinx Virtex II model XC2V4000 FPGA

System ACE Multi-Package Module (MPMyolution addresses the need for a
space-efficient, pre-engineered, high-density configumatolution in multiple FPGA
systems

128 MB DIMM module of DDR SDRAM over a 64Bit wide data bus rimgat a
maximum speed of 133 Mhz

16 MB of Flash memory in a 16 bit configuration over a 16Bit vithta bus

4.3 Target FPGA Board 17

- JTAG

- RS232 connector

- AvBus expansion module bus and connectors
Communications/Memory Module

- Two AvBus connectors

- 64Mbytes of SDRAM organized as 16Mbits x 32

1Mbyte of SRAM organized as 256K x 32
- 16 Mbytes of Flash memory organized as 4M x 32

Gigabit Ethernet
- USB 2.0

- IrDA
PCMCIA/PCCard

IrDA | Ethemet| PCMCIA U?B
I /Y S S

Y

/
\
Buffer || Buffer

A 1

Y Y Y Y Y
AvBus Connector

Figure 4.4: 1/0 modules interconnection to AvBus I/O connector

!

The AvBus connector is a standard interconnection bus defigeAvnet for their prod-
ucts.

The different modules of thdvnet Communications/memory Moduége connected in
the following way. The four I/O modules (Ethernet, USB, Irl&d PCMCIA) are con-
nected to one AvBus connector, the 3 memory modules (SRAMRAD and Flash) are
connected to the other AvBus connector. All the 1/O modutesi@rectly connected to the
AvBuUs connector except the PCMCIA, which has two bufferse(éor data and one for
addresses) in between. The same happens with the memonjerpthe SDRAM is di-
rectly connected to the AvBus connector and the Flash and\EBt#fare two buffers (one
for data and one for addresses) in between. The overalltsteuts sown in Figure 4.4
and Figure 4.5.

18 4 The System

— = FLASH
— = SRAM

\/ v
Buffer || Buffer
A

1 - =/SDRAM

AvBus Connector

Figure 4.5: Memory modules interconnection to AvBus memory connector

4.4 Final SoC Specifications

Once the specifications of the target FPGA have been lidtetk ts a little change that has

to be done in the SoC initial specification in order to be cotibppmwith the Avnet Virtex

Il Development BoardThe three memory modules share the same AvBus connector, so
the SoC will need an interface to control the common signats the buffers that the
SRAM and Flash module share.

The final SoC specification will include then a CPU, an intereection bus, a UART,
SRAM, Flash and SDRAM memories and an interface to the AvRBumector (as sown
in Figure 4.6) .

4.4 Final SoC Specifications 19

R
e R
UARTLS) Skl

Figure 4.6: Final SoC specifications

S o e a=uaj
Il R PaS o

sNng
UuoiIlpD22uuo>DuaS]3Uu]

At this point, the reader might find many similarities wittetbafk system [1]. Itis also a
SoC and initialy it can be used for the same purpose as thersytkis project is focused.
But there are some elements and objectives that only canhevad by a new system.

This system will have an updated version of B81200CPU used in the Dafk system
that has been proved to be able to run Linux. Instead of hawibigg memory controller
for the three memory modules, separated controllers arggoibe implemented and the
SDRAM controller will now support burst from the beginning.

Available Resources

In this chapter, the available resources present irAtheet Virtex || Development Board
and theAvnet Communications/memory Moduéee going to be listed and explained.

5.1

SDRAM Memory

The SDRAM memory modules present in tAeNet communications/memory Module
are two Micron MT48LC16M16A2 [16]. The basic size of thisghis 16Mb x 16 (4 Mb
x 16 x 4 banks), but using two of them (sharing the addressdtir bhips) allows the user
to have a total of 64MB (2MB x 32 configuration). The module treesfollowing control
signals and buses:

13 bits wide address bus

32 bits wide data bus (2 x 16)

active high Clock (CLK)

active low Chip Enable@E)

active low Write Enablel{/ E)

active low Output Enable(qE)

active low RAS RAS)

active low CAS C'AS)

active high Clock Enable (CKE)

active high 2 bit wide Bank selection (BA)

21

22 5 Available Resources

- active high 4 bit wide (2 x 2) Byte selection (DQM)

The memory module also have many timing constrains in oerdark properly. These
are the most important ones:

- Input setup time (min 1.5 ns)

Input hold time (min 0.8 ns)

ACTIVE to PRECHARGE commmany 45 (37 to 120 ns)
ACTIVE to ACTIVE command period’zc (min 60 ns)
ACTIVE to READ/WRITE delayT'rcp (min 15 ns)
Refresh period (8102 rowd)r g (64 MS)

AUTO REFRESH period's ¢ (min 66 ns)

WRITE recovery timelyy g (min 1 CLK + 7 ns)

A parameter that defines most of the values showed in thequrelist is the CAS(READ)
latency, the delay between the registration of a READ conthveard the availability of
the first piece of output data in clock cycles (from now on nefé as CL). This value is
related with the frequency of the input clock. For frequesaip to 133 Mhz the value of
CL is 2 and for frequencies from 133 Mhz to 143 Mhz the value bfi€3. The system
clock runs at 40 Mhz, so even if its doubled to feed the SDRAMnmy modules, CL =
2 is the correct choice.

The memory chip works with commands rather than with singdaas. A command is
a combination of values of the signals CS, RAS, CAS and WE. Tiereht commands
are sown in Table 5.1

Table 5.1: SDRAM controller commands
Name (function) | CS| RAS [CAS | WE |

Command inhibit H
No operation
ACTIVE

READ

WRITE

BURST TERMINATE
PRECHARGE
AUTO REFRESH or SELF REFRESH
LOAD MODE REGISTER

I I e e i s Y s i 1D ¢
||| x| X

X
H
H
H
L
L
L
H
L

[t 1 1 Il I

5.2 SRAM Memory 23

5.2 SRAM Memory

The SRAM memory modules present in theNet communications/memory Moduége
two Cypress CY7C1041V33 [16]. The basic size of this chifbiBk x 16, but using two
of them (sharing the address for both chips) allows the uskave a total of 1Mb (256k
x 32 configuration).
The module has the following signals:

- 18 bits wide address bus

- 32 (2 x 16) bits wide data bus

- active low Chip EnableE)

- active low Write Enablel{/ F)

- active low Output Enable(E)

- active low Byte High Enablef H E)

- active low Byte Low EnableRB L F)

- 20 ns. reading and writing cycle

The chip can perform two tasks: read and write. For readingréam position of the
memory, the address must be placed in the address bus an@Ehand OE must be set
to low level while WE is set to high. To write something into ateé memory address,
the data must be placed in the data bus and the address tdmwifite address bus, then
CE and WE must be set to low while OE is set to high. Setting BLEBRHE to high or
low level the user can control which bytes are read or writies there are two memory
chips, BLE and BHE of the first one will control byte 0 and 1 and®Band BHE of the
second chip will control bytes 2 and 3. All these four sigreaks merged in the controller
in a 4 bit wide signal called EL.

24 5 Available Resources

5.3 Flash Memory

The Flash memory modules present in #aéNet communications/memory Modubae
two Intel E28F640J3 [11]. The basic size of this chips is 1B8ML6, but using two of
them (sharing the address for both chips) allows the useae h total of 16 MB (128Mb
x 32 configuration).
The module has the following signals:

- 23 bits wide address bus

- 32 bits wide data bus
active high Chip Enable (CE)
active low Write Enablel{/ E)
active low Output Enable(E)

120 ns. read and write cycle

The internal behavior of this chip is a little bit complex ah@ explained in detail in its
data sheet.

5.4 Interconnection Bus

Like the main goal of the system, the interconnection bustres/ersatile but without
losing a strong, well defined structure. According with treCSrersatile characteristics,
any new module should be able to be added to the system witlawirig to make major
changes in the interconnection bus structure. At the same, tihe structure in the bus
must be powerful enough to support any kind of master andcestevices. With this
features on mind, th&Vishbonestandard was a very good choice.

5.4 Interconnection Bus 25

5.4.1 The Wishbone Bus Standard

The Wishbone Bus is an open source hardware computer budedey Silicore Corpo-
ration [13]. The standard does not specify any electridalrimation neither the structure
of the bus, instead of that, it specifies the in/out signdtg;kceycles, high and low logic
levels.

The specifications of the wishbone bus implemented are flewiog:
- 32 bit data bus
- 32 bit address bus
- No TAG (user defined) signals
- Shared bus topology for point-to-point module connedion
- Separated arbiter and decoder from the main bus impleremta

The in/out signals a master and a slave have are predefinée bishbonestandard. By
having strict control over the interfaces, compatibilititmwnew modules can be ensured
as long as they have the predefined interface.

The signals both master and slave wishbone devices havewreis Table 5.2 and Ta-
ble 5.3.

Table 5.2: Master device signals
Name | Type | Width [Description
CLK_I input | 1 bit Input clock
RST | input | 1 bit Input reset
ADR_O | output | 32 bits | Output address
DAT_O | output | 32 bits | Output data
DAT | input | 32 bits | Input data
WE_O | output | 1 bit Write enable
SEL_O | output| 4 bits | Byte sel
STB_O | output| 1 bit Valid data transfer cycle
ACK_l | input | 1 bit Acknowledge signal

In addition to this signals, some modules can haveGfié | or CT/_O signal. This 3
bits wide signal is in charge of the control of the burst cgcle

For further information about the Wishbone B3 standard ggezheck the Wishbone B3
standard documentation [13].

26

5 Available Resources

Table 5.3: Slave device signals

Name | Type | Width [Description

CLK_I | input | 1 bit Input clock

RST_I | input | 1 bit Input reset

ADR_I | input | 32 bits | Output address

DAT_O | output | 32 bits | Output data

DAT | input | 32 bits | Input data

WE_]I input | 1 bit Write enable

SEL_| input | 4 bits | Byte sel

STB_| | input | 1 bit Valid data transfer cycle
ACK_O | output | 1 bit Acknowledge signal

The SoC and its elements

In this chapter, all the elements that conforms the SoC velkekplained in detall, its
connections and how they are expected to behave. Some ofdlet® cores, so more
detailed explanations about them is available at theiraetsge documentation.

As sown in Figure 6.1, all the modules are connected using erttity. This entity has all
the inner connections between the modules as well as thetaand input pins connected
to the FPGA and the memory/communication peripherals.

| Top entity

L H HsramH F
SORAMH
L HFLASHH |
UART K

4/1 SngAy

NdoO

3UOGUSIM

Figure 6.1: Global structure of the SoC

27

6.1 The CPU 29

6.1 The CPU

The CPU used is th®penRISC OR120{B] , an implementation of th®penRISC 1000
[12] architecture specifications for 32/64 bits RISC/DSBagaissors. The architecture
specifications and the CPU have been developed by Open Qomesgpencores.org).

6.1.1 OpenRISC 1000 Specifications

The OpenRISC 100@rchitecture is a completely open architecture. It defihesarchi-
tecture of a family of open source, RISC microprocessor sorhe OpenRISC 1000
architecture allows for a spectrum of chip and system implaetations at a variety of
price/performance points for a range of applications. & 8/64-bit load and store RISC
architecture designed with emphasis on performance, &ityplow power requirements,
and scalability.OpenRISC 100@argets medium and high performance networking and
embedded computer environments. Performance featurkalea full 32/64-bit archi-
tecture; vector, DSP and floating-point instructions; pdulevirtual memory support;
cache coherency; optional SMP and SMT support, and suppofast context switch-
ing. The architecture defines several features for netwmgriind embedded computer
environments. Most notable are several instruction exd@ss a configurable number
of general-purpose registers, configurable cache and Tt&ssdynamic power manage-
ment support, and space for user-provided instructions.

The principal features of th@penRISC 100@rchitecture specifications are:

- A completely free and open architecture.

- Alinear, 32-bit or 64-bit logical address space with impentation-specific physi-
cal address space.

- Simple and uniform-length instruction formats featuridifferent instruction set
extensions:

- OpenRISC Basic Instruction Set (ORBIS32/64) with 32-hdevinstructions
aligned on 32-bit boundaries in memory and operating on 88-6-bit data

- OpenRISC Vector/DSP eXtension (ORVDX64) with 32-bit widstructions
aligned on 32-bit boundaries in memory and operating on 8-, 32- and
64-bit data

- OpenRISC Floating-Point eXtension (ORFPX32/64) withiwide instruc-
tions aligned on 32-bit boundaries in memory and operatm82 and 64-bit
data

- Two simple memory addressing modes, whereby memory aslifeslculated by:
- Addition of a register operand and a signed 16-bit immedvatiue

- Addition of a register operand and a signed 16-bit immexhatiue followed
by update of the register operand with the calculated effeetddress

- Two register operands (or one register and a constant) st imstructions who
then place the result in a third register

30 6 The SoC and its elements

- Shadowed or single 32-entry or narrow 16-entry genergbpse register file
- Branch delay slot for keeping the pipeline as full as pdssib

- Support for separate instruction and data caches/MMUsv@id architecture) or
for unified instruction and data caches/MMUs (Stanford éecture)

- Aflexible architecture definition that allows certain ftion's to be performed either
in hardware or with the assistance of implementation-djpesftware

- Number of different, separated exceptions simplifyingeption model

- Fast context switch support in register set, caches, andJsIM

6.1.2 OpenRISC OR1200
The OR1200is a 32-bit scalar RISC with Harvard micro-architecture,t&gge integer
pipeline, virtual memory support and basic DSP capalsliti# has been successfully
tested and implemented in various FPGA models and ASIC desig
The main characteristics of th@R1200are:

- Central CPU/DSP block

- IEEE 754 compliant single precision FPU

- Direct mapped data cache

- Direct mapped instruction cache

- Data MMU based on hash-based DTLB

- Instruction MMU based on hash-based ITLB

- Power management unit and power management interface

- Tick timer

- Debug unit and development interface

- Interrupt controller and interrupt interface

- Instruction and Data WISHBONE B3 compliant interfaces

All of this modules can be enabled or disabled for synthasithe defines filedr1200 _definves)
Along with the modules, the list of available instructiorande modified enabling a spe-
cific instruction meeting the concrete requirements of digdt system.

6.1.3 The Implemented OR1200

Due to the versatility this processor has, it can be confidjtioehave only the features
needed and no other unuseful ones which will only consuma anel power without
providing any performance improvement.

This are the implemented features of B&1200

6.1 The CPU 31

Data and Instructions cache and MMU'’s. As the main goal of the system is to perform
high levels hardware tests, and primarily because@Rd 200is supported by the
LINUX kernel, it is very feasible that at the end it might being a UNIX operative
system. That is why caches and MMUs are needed.

Interrupt controller and I/F. Some of the modules present in the system (communica-
tion modules for example) needs an interrupt I/F to commatgiwvith the processor
when they have new data available, when they wait for a trégsssom, etc.

Instruction and Data WISHBONE I/F. To include aWishbonellF is a basic requisite
of any module implemented in the system as it is the intercamoation stander
chosen for the communication between all the modules.

Finally this are the features that will not be implementeti€ast in the first version of
the system).

Power management unit. Power consumption is not one of the primary goals of the
system. It is going to be implemented on a FPGA, so energyuropton are
assumed small.

Tick Timer. This module has not been implemented for the only reasonvirigarea.
If later there is a real need of precise time measure this heathn be implemented
without any problem.

Debug unit and development interface.The processor is supposed to be 100% func-
tional, so there are, in principle, no reasons to include it.

MMU | |Inst. cache| | Wb I/F J:>

Fetch S5 %
Decode fflgr =
Execute _Er S
Memory o) 0

. - e,
Writeback n| ©

MMU |Data cache| | Wb I/F Tj>

Figure 6.2: Implemented OR1200 structure

For further Information about th@penRISC 100@rchitecture specifications or tiidR1200
processor, please check the data sheets.

6.2 Wishbone Bus 33

6.2 Wishbone Bus

The structure of théVishbone busmplemented is very simple, but is this simplicity what
gives its enormous versatility. There are three modules:ativiter, the decoder and the
bus itself.

6.2.1 The Arbiter

The arbiter is in charge of giving the control of the bus to thaster which wants to

perform an operation (reading or writing). It has as inpet87B signals from the masters
and as output it has a signal callethst selith contains the 2 bit wide code of the
masters which owns the control of the bus.

cpu_i stb=1
mast_sel = 10

cpu i stb=0
mast_sel = 00

cpu d stb=0
mast_sel = 0

cpu d stb=1
mast_sel = 01

Figure 6.3: Arbiter algorithm

Each clock cycle, the arbiter checks if any of the input sigimaat a high level. If it is,
then a certain code is assigned to the output signal, if hogritinues checking another
input signal. The codes are "01" for the instructions cath@; for the data cache and
"00" for no master selected (see fig Figure 6.3).

6.2.2 The Decoder

The decoder has as inputs both output addresses from thadithsh and data caches
and themast_sekignal from the arbiter. Depending on the value of that lgpta, the
decoder selects the slave requested by the master which thertsus operation. The
selection is done by decoding the 4 MSB of the owners outpdtesd. The address
ranges which correspond to each slave are sown in Table 6.1.

Once the decoding is done, the arbiter assigns a value tothgtput signal calledlv_sel
with contains a 3 bits wide code of the slave selected by th&enalhe codes are "001"

34 6 The SoC and its elements

Table 6.1: Device address range for decoding

| Device | Start address | End address |
SRAM 0x2000_0000| 0x2001_0000
FLASH 0xFO00_0000| 0xf100_0000
SDRAM 0x0000_0000| 0xO0off ffff
UART 0x9000_0000| 0x9000_ffff
Boot monitor | 0x4000_0000| 0x4000_ffff

for the SRAM, "010" for the FLASH, "100" for the SDRAM, "011b6f the UART, "111"
for the boot monitor and "000" for no slave selected.

6.2.3 The Bus

The bus can be seen as a big switch. It receivesithst sehndslv_selfrom the arbiter
and the decoder, and depending on the values the signalghawis connects the correct
master with the slave it has requested. Whenever a slaveeisted) thewvb_stbsignals
of the rest of them are disabled (set to zero).

6.3 SDRAM Controller 35

6.3 SDRAM Controller

The SDRAM memory controller is an IP core developed by Dingshayya and hosted
by OpenCores The controller is distributed under the GNU Lesser GenBrablic Li-
cense.

Table 6.2: SDRAM address range
| Base address| Length | Offset \
[0x00000000 | 0x03ffe000] 0x00000000]

The main features of the controller are:
- 8/16/32 Configurable SDRAM data width
- Support asynchronous application layer and SDRAM layer
- Wishbone compatible application layer
- Programmable column address
- Support for industry-standard SDRAM devices and modules
- Supports all standard SDRAM functions
- Fully Synchronous; All signals registered on positive @@ system clock
- One chip-select signals
- Support SDRAM with four bank
- Programmable CAS latency
- Data mask signals for partial write operations
- Bank management architecture, which minimizes latency
- Automatic controlled refresh
- Static synchronous design
The SDRAM controller top filegdrc_top.Y inputs/outpus are sown in Table 6.3

The last 3 signals are connected into a tri-state bufferdas $n Figure Figure 6.4). Since
there is a common interface for the three memory controlleis the AvBus connector
and all of them share the data bus, the tri-state buffer has beanged into two signals,
one for input data and one for output data, as in the other tmtrallers. The new signals
are calledsir_dq_inandsir_dq_out

36 6 The SoC and its elements

Table 6.3: SDRAM input/output signals

| Name | Type | Width [Description
whb_clk_i input 1 bit clock (from the wishbone bus)
wb_rst i input 1 bit reset (from the wishbone bus)
wb_dat i input 32 bits | data (from the wishbone bus)

wb_dat o output | 32 bits | data (to the wishbone bus)
wb_ack o | output | 1 bit acknowledge (to the wishbone bus)

wb_addr_i | input 32 bits | address (from the wishbone bus)

wb_we i input 1 bit write enable (from the wishbone bus)
wb_cyc i input 1 bit cycle (from the wishbone bus)

wb_stb i input 1 bit strobe (from the wishbone bus)

wb_cti i input 1 bit cycle type identifier (from the wishbone bus)
sdr_cke output | 1 bit clock enable (to memory module)

sdr_cs n output | 1 bit chip select (to memory module)
sdr_ras n | output | 1 bit ras (to memory module)

sdr_cas _n | output | 1 bit cas (to memory module)

sdr_we_n output | 1 bit write enable (to memory module)
sd_dgm output | 4 bits | data bus mask (to memory module)
sdr_ba output | 2 bits | bank address (to memory module)
sdr_addr output | 32 bits | address (to memory module)
pad_sdr_din| input 32 bits | data (from memory module)
sdr_dout output | 32 bits | data (to memory module)
sdr_den_n | internal | 1 bit (tri-state buffer control signal)

pad_sdr_din

sdr_dout DQ

sdr en_n

Figure 6.4: SDRAM tri-state

The standard address was 12 bits wide. To be able to use tHe memory, the structure
of the controller has been modified to use 13 bits wide addee@®eded to access all the

6.3 SDRAM Controller 37

Table 6.4: SDRAM configuration signals
| Name Parameter \

cfg_sdr_tras_d SDRAM active to precharge delay, specified in clocks
cfg_sdr_trp_d SDRAM precharge command perio@ifp), in clocks

cfg_colbits SDRAM column bit
cfg_sdr_trcd_d SDRAM active to read or write delayf.q), in clocks
cfg_sdr_en SDRAM Controller Enable

cfg_req_depth Maximum Request accepted by SDRAM controller
cfg_sdr_mode_reg SDRAM Mode Register

cfg_sdr_cas SDRAM CAS latency, in clocks

cfg_sdr_trcar_d SDRAM active to active/auto-refresh command peridg.),
in clocks

cfg_sdr_twr_d SDRAM write recovery timeTw), in clocks

cfg_sdr_rfsh Period between auto-refresh commands issued by the clentrpl
in clocks

cfg_sdr_rfmax Maximum number of rows to be refreshed at a time

rows available). The way the controller decodes the 25 LSB®fvishbone address into
the row, bank and column to be accessed is showed in Figure 6.5

25 1312 1110 21 0
Row Bank|Column|Byte

Figure 6.5: Wishbone address decode

In addition to the memory/wishbone inputs and outputs, th& &M controller has an-
other set of inputs: the configuration inputs. This inputsthe different timing parame-
ters that need to be set in order to make the controller woskkpscted. Having them as
an external file connected to the controller confers to the aa easy way to modify any
of the parameters without having to dig deep into the coletr@rchitecture. This inputs
are are sown in Table 6.4.

In addition to all the inputs/outpus described before, tb&BM controller has another
one calledsir_init_doneand as it's name indicated, is used to tell when the contrbls
been initialized.

The structure of the SDRAM memory controller is divided irteo main blocks, the
wishbone bus handler and the SDRAM controller itself (asrsowFigure 6.6).

38 6 The SoC and its elements

Wishbone I/Ff?
| [wishbone Bus Handler

Wishbone Bus Handsake

I L0

Command Write| |Read
Data

FIFO FiFo| |FIFO

Interface Bus Width

Request K——

Generator Translator

Il [

SDRAM SDRAM State Machine
ControlK—— +
Bank Transfer Control

SDRAM controller I/F7|
SDRAM I/FJL

Figure 6.6: SDRAM memory controller structure

The Wishbone bus handler controls the Protocol handshatkeeba wish bone master
and custom SDRAM controller. This block also takes care afessary clock domain
change over. This block includes the Command Async FIFO,a\Dita Async FIFO

and Read Data Async FIFO.

The SDRAM controller is divided in 4 sub-blocks: SDRAM Buswertor, SDRAM re-
quest generator, SDRAM Bank controller and SDRAM transtetller. The SDRAM
bus convertor converts and re-aligns the the system sidet3@td equivalent 8/16/32
SDR format. The SDRAM request generator controls the icteya between the request
and the application layer. The SDRAM bank controller talexuests from SDRAM re-
quest generator, checks for page hit/miss and issues pgezhativate commands and
then passes the request to SDRAM Transfer Controller. THR/AW transfer controller
takes requests from SDRAM Bank controller, runs the tranafel controls data flow
to/from the app. At the end of the transfer it issues a burstiteate if not at the end of a
burst and another command to this bank is not available.

For further and more detailed information about the cotegrpplease check de controller
specifications file [4].

6.4 SRAM Controller

39

6.4 SRAM Controller

Table 6.5: SRAM address range

| Base address| Length

| Offset \

] 0x00000000 \ 0X00100000\ OXZOOOOOOO‘

The SRAM controller §ram__ctrl.yy inputs/outputs are sown in Table 6.6.

Table 6.6: SRAM input/output signals

| Name Type | Width [Description
addr_o optut | 18 bits | address (to the memory chip)
data i input | 32 bits | data (from the memory chip)
data_o output | 32 bits | data (to the memory chip)
byte_sel_o| output | 4 bits | byte selection (to the memory chip)
ce o output | 1 bit chip enable (to the memory chip)
we_o output | 1 bit write enable (to the memory chip)
oe_o output | 1 bit output enable (to the memory chip)
wh_clk_i input | 1 bit clock (from the wishbone bus)
wb_rst_i input | 1 bit reset (from the wishbone bus)
wb_dat i | input | 32 bits | data (from the wishbone bus)
wb_dat_o | output| 32 bits | data (to the wishbone bus)
wb_ack o | output| 1 bit acknowledge (to the wishbone bus)
wb_addr_i| input | 32 bits | address (from the wishbone bus)
wb_we_i | input | 1bit write enable (from the wishbone bus)
wb_sel i | input | 4bits | byte selection (from the wishbone bus)
wb_cyc i | input | 1bit cycle (from the wishbone bus)
wb_stb i | input | 1 bit strobe (from the wishbone bus)
busy input | 1 bit busy signal (from the SDRAM controller
Control| 1 |
< Wishbone & Memoy Chip >
A /0

o >>oe gm

_Jippe gm

1TaepTam

Y

Anovnge

Figure 6.7: SRAM controller structure

40 6 The SoC and its elements

The SRAM controller is divided in two main blocks: control &1 and Acknowledge
control (as sown in Figure 6.7).

6.4.1 Control & I/0O Block

The control & 1/0 block is in charge of the control signals bétchip itself V £, CE,
OF, SEL) and the inputs/outputsiéta _in, data_out, addrgss

To generate all the signals, this block receives the commémin the Wishbone bus
interface. Before activating any of the signals, the bloe&aks the address for a writing
on the Acknowledge delay register.

The Acknowledge delay registeontains the number of cycles the controller should wait
untill activating the acknowledge signal for any writingreading signalb_ack 9. If

the address in a write operation points to this register,ctiv@roller will overwrite the
value of the register and none of the control signals to thenarg chip will be activated
(as it is included in the controller architecture). When tddrass points to a valid mem-
ory position (not the acknowledge delay register), the et translate the input signals
from the wishbone bus into signal that will be sent to the mgraontroller (inverting con-
trol signals, creating@) E from wb_we etc). The signals will be static until the controller
is deselected, when they will be set into their inactive galu

As the three memory controller share the same memory irterthat could be the case
when an AUTO REFRESH command from the SDRAM occurs at the sangethat a
SRAM reading/writing cycle. To prevent non desired behgilte busysignal is asserted
every time an AUTO REFRESH command happened. This signale$othe SRAM
controller to stop the current cycle while the refreshingeens and to restart it when it's
finished.

6.4.2 Acknowledge Control Block

The acknowledge control block (as its name indicates) ikarge of the control of the ac-
knowledge signal and register. When a write/read cyclesstartounter starts to decrease
the value stored in the acknowledge delay register. Onagaithres zero, the controller
asserts thevb_ack _ato high level.

6.4 SRAM Controller 41

Read input @

f

Write Ack re

Decrease ack reg

FE

Figure 6.8: SRAM acknowledge control flow

When the address sent by the master is the one that pointsackhewledge delay regis-
ter (address 0x20100000), the block copies the 8 LSB fornd#te to theack _delay def

(default value for the acknowledge delay) and immediatsbeds the acknowledge sig-
nal to high level. When the controller is unselected or a rhappens, the acknowledge

register is written with its default value, all the contrigisal are set to inactive and the
acknowledge signal is set to zero.

Table 6.7: SRAM delay registers default values
| Register | Default value |
| ack_delay_def 00001010 |

6.5 Flash controller

6.5 Flash controller

Table 6.8: Flash address range
| Base address| Length | Offset \

] 0x00000000 \ 0X01000000\ OXfOOOOOOO\

The Flash controller inputs/outpus are sown in Table 6.9.

Table 6.9: Flash input/output signals

| Name | Type [Width | Description
addr_o optut | 23 bits | address (to the memory chip)
data_i input | 32 bits | data (from the memaory chip)
data_o output | 32 bits | data (to the memory chip)
ce_o output | 1 bit chip enable (to the memory chip)
we_o output | 1 bit write enable (to the memory chip)
oe_o output | 1 bit output enable (to the memory chip)
wb_clk i | input | 1 bit clock (from the wishbone bus)
whb_rst i input | 1 bit reset (from the wishbone bus)

wb_dat i | input | 32 bits| data (from the wishbone bus)
wb_dat_o | output | 32 bits | data (to the wishbone bus)
wb_ack_o | output | 1 bit acknowledge (to the wishbone bus)
wb_addr_i| input | 32 bits | address (from the wishbone bus)

wb_we_i | input | 1 bit write enable (from the wishbone bus)
wb_cyc i | input | 1 hit cycle (from the wishbone bus)
wb_stb i | input | 1 bit strobe (from the wishbone bus)
busy input | 1 bit busy signal (from the SDRAM controller
Control
Wishbone & Memoy Chip

/0

Arinovnge

Figure 6.9: Flash controller structure

44 6 The SoC and its elements

The Flash controller is divided in two main blocks: controll& and Acknowledge
control (as sown in Figure 6.9).

6.5.1 Control & I/0O Block

The control & 1/O block is in charge of the control signals bétchip itself {V £, CE,
OF) and the inputs/outputsigta in, data_out, addrgss

To generate all the signals, this block receives the commémin the Wishbone bus
interface. Before activating any of the signals, the bldokaks the address for a write on
any of the two Acknowledge delay registers (one for read aredfor write operations).

The Acknowledge delay registersontains the number of cycles the controller should
wait till activating the acknowledge signal for any writeread operationwb_ack_9. If

a write on any of this registers happened (they share the saaess but not the same
byte position in the data bus), the controller will ovengrihe values of the registers and
none of the control signals to the memory chip will be actdafas they are included in
the controller architecture). When an address points toid waémory position (not the
acknowledge delay registers), the controller translagdriput signals from the wishbone
bus into signals that will be sent to the memory controllavérting control signals, cre-
ating OF from wh_we etc). The signals will be static until the controller is diested,
when they will be set into their inactive values.

As the three memory controller share the same memory irterthat could be the case
when an AUTO REFRESH command from the SDRAM occurs at the daneethat a
Flash read/write cycle. To prevent non desired behavierbtisysignal is asserted every
time an AUTO REFRESH command happened. This signal, foheeBlash controller to
stop the current cycle while the refreshing happens andstantst when it’s finished.

6.5.2 Acknowledge Control Block

The acknowledge control block (as its name indicates) idharge of the control of the
acknowledge signal and registers. When a write/read cyelssta counter starts to
decrease the value stored in the acknowledge delay re@ister delay wfor write oper-
ations andack _delay_ffor read operations). Once it reaches zero, the controfiserds
thewb_ack_oto high level.

6.5 Flash controller 45

e

IDecrease r_ack_reg

\Write Ack regs| |Decrease w_ack reg

Figure 6.10: Flash acknowledge control flow

When the address sent by the master is the one that points wckmewledge delay
registers (address 0xf1000000, same address for both wf)thibe block copies the 8
LSB form the data to thack delay def ¢default value for the read acknowledge delay)
and the 16-9 LSB form the data to tlaek delay def wdefault value for the writing
acknowledge delay) and immediately asserts the acknowlsimal to high level. This
means that whenever a register is written, the other onddhbeuoo. When the controller
is unselected or a reset happens, the acknowledge regaséevgitten with their default
value, all the control signals are set to inactive and thaaalkedge signal is set to zero.

Table 6.10: Flash delay registers default values
| Register | Default value |

ack_delay_def w 01000000
ack_delay_def r| 00011101

6.6 AvBus 47

6.6 AvBus

As the three memory modules share many of the signals thgpasathe AvBus connec-
tor an interface is needed to avoid unexpected behaviois.arl the shared signals:

- Address bus

- Data bus

- Write enable
- Output enable
- Byte selection

To efficiently control the way the output signals are assigwe need to establish some
kind of hierarchy between the memory controllers. The SDRédtroller has to be at
the top, the AUTO REFRESH command can not be postponed orattaestbored in the
SDRAM might be corrupted or even lost.

Between the other two controllers (SRAM and Flash), thimgswaore or less at the same
level, but always below the SDRAM controller. Any time the BBM controller needs
to access the memory modules it needs to have access to tiee signals even if they
are used by any of the other two controllers. That is posdiplehe use of the busy
signal (sdr_ckesignal from the SDRAM). Any time the SDRAM controller accesgo
the AvBus connector shared signals, the busy signal is skigto level and the other
controllers (in case they were reading or writing the memmaigdules) will stop their
current action and restart it once the busy signal is settddwgel (once the SDRAM had
finished its actions). That gave us the confidence that evemwah SDRAM action is
taken at the middle of another controller actions, its datenet be lost.

6.6.1 AvBus Interface

This is the most critical section of the whole design. As ipiaced between the mem-
ory controllers and the memory modules, the slightiestydetn turn into a non desired
memory behavior.

To ensure all the signals are assigned as quick as posdlibike @elections have been
distributed in small case statements (for the shared syoalstraight assignations. The
control signals for the case elements are both SRAM and Elaigtselect signals and the
SDRAM cke signal. With this three signals we can ensure th#te possible situations
regarding the three controllers are covered:

- SRAM memory access
- Flash memory access

- SDRAM memory access

SDRAM and SRAM memory access

SDRAM and Flash memory access

48 6 The SoC and its elements

The last two situation can occur when an AUTO REFRESH comniempbened in the
middle of a SRAM or Flash memory access. In this two casessdheckesignal (used
as busy signal) ensures the integrity of the SDRAM stored.dat

The avbus_addr_aignal, when connected to the memory modules, skips the 2 LEB
the SRAM an Flash cases, it does not affect the behavior ofrtimory modules, the
Flash memory controller always reads and writes 2 byte wardswith theavbus_bs o
signal the SRAM and SDRAM memory controllers can control akhibytes are written
or read.

In addition to he interface itself, a small control must befeecontrolling the two buffers
between the AvBus connector and the SRAM and Flash memoryieedsown in Fig-
ure 4.5). The address buffer must be only enabled by setisngointrol value to zero
(MABUF_OE_o0, because its direction if always the same (from the corumeot the

memory modules) and its direction control value if fixed.

The data buffer must be enabled by setting its control vausto(MDBUF _OE_9g and
depending on the action that will be performed, the directifthe buffer must be changed
from the module to the connector (reading operatidABUF _DIR_osetto zero) to from
the connector to the module (writing operatidlABUF_DIR_o set to one).

Apart form the input/signals from the three memory conterdl(which are connected to

the AvBus I/F), the board input/output signals of the AvBuoteiface are sown in Ta-
ble 6.11.

Table 6.11: AvBus I/F board input/output signals

| Name | Type | Width | Description \
avbus_addr_o output | 32 bits | Address output signal
avbus_data_io inout | 32 bits | inout signal

avbus_sdram_cs_q output | 1 bit SDRAM chip select output signal
avbus_sram_cs_o | output| 1 bit SRAM chip select output signal
avbus_flash_cs_o | output| 1 bit Flash chip select output signal

avbus_oe o output | 1 hit Output enable output signal
avbus_we_o output | 1 bit Write enable output signal
avbus _cas o output | 1 bit CAS output signal
avbus_ras_o output | 1 bit RAS output signal
avbus_clken_o output | 1 bit Clock enable output signal

avbus_sdram_clk_i| input | 1 bit SDRAM clk input signal
avbus_sdram_clk_o output | 1 bit SDRAM clk output signal

avbus_bs o output | 4 bit Byte select output signal
MDBUF_OE_o output | 1 bit Data buffer output enable output signal
MDBUF_DIR_o output | 1 bit Data buffer direction output signal
MABUF_OE_o output | 1 bit Address buffer output enable output signal

The assignment of the output data to the memory controkadlsme by direct assignation
from theavbus _data_itri-state.

6.6 AvBus

49

FLASH

o

9 Byte

£ Buffer

8

= - >

= We

n Address o

2 @ /l\,::l/,\
g Oe ; AvBus
5)

S Data] o

> Tri-state ®

[e]

5

Z < Ras, Cas, Cke, Cs >

Figure 6.11: AvBus interface structure

6.7 UART 51

6.7

UART

The board has a RS232 DB9 connector with allows us to useat (0ART. The UART IP
core which has been implemented, has been developed byGacban and it is available
in Open Cores (www.opencores.org). The IP core is free harehand it is distributed
under the terms of the GNU Lesser General Public License.

The main features of the UART core are:

WISHBONE interface in 32-bit or 8-bit data bus modes (selblet)
FIFO only operation
Register level and functionality compatibility with NSAB0A (but not 16450).

Debug Interface in 32-bit data bus mode.

To configure the UART to work with the parameters we need, waukhperform the
following tasks in order:

Set the Line Control Register to the desired line contrabpeeters. Set bit 7 to 1
to allow access to the Divisor Latches.

Set the Divisor Latches, MSB first, LSB next.

Set bit 7 of LCR to 0 to disable access to Divisor Latches hist time the transmis-
sion engine starts working and data can be sent and received.

Set the FIFO trigger level. Generally, higher trigger levaues produce less inter-
rupt to the system, so setting it to 14 bytes is recommendie ifystem responds
fast enough.

Enable desired interrupts by setting appropriate bithénlhterrupt Enable register.

It is important to point that the value of the Divisor Lachspends to Equation 6.1.

Input Clock Frequency
16 - Divisor Latch Value

Baud rate= (6.1)

Every time there is a reset applied to the core the followictipas are performed:

The receiver and transmitter FIFOs are cleared.
The receiver and transmitter shift registers are cleared
The Divisor Latch register is set to 0.

The Line Control Register is set to communication of 8 bitglata, no parity, 1
stop bit.

All interrupts are disabled in the Interrupt Enable Regyist

That means that every time a reset is applied to the corenifi@ization procedure mast
be done again in order to behave as expected.

52 6 The SoC and its elements

For further information about the UART module please chéekdata sheet [7].

6.8 Boot Monitor 53

6.8 Boot Monitor

The boot monitor is a special firmware stored in the FPGAsRAMs which provides
the initialization of devices (the UART) and a basic GUI ttoal the user to do basic
memory manipulation and serving as boot platform for othggrative systems stored in
the FLASH memory or other storage devices.

The boot monitor was developed for the Dafk system [1] by Ghger, and as it has the
same CPU and UART, it can be reused in this system.

The address of the boot monitor is stored in the defines filke@PU 6r1200 defines)v

6.9 Clock Manager

A small clock manager, created using a DCM, is used to gemdat system clock and
the SDRAM clock, which is a 180 degrees shifted version ofststem clock.

Tests

To verify the SoC, several test have been made. The iniséd tgere made on the simula-
tor in order to check if the system behave as expected. Fivsiule by module and then
several of them conforming a more complex system that inabetést was the SoC itself.
The hardware tests have been done the same way. First ssparatiules, and then, step
by step, more complex elements that ended with the SoC.

7.1 Simulation Tests

The structure of the test (without considering the numbenotiules tested) has always
been the same. All the modules receive the data coming frenetitbench have a wish-
bone interface. The testetbench has been made as a fakeongshbs master (excepting
the case when the whole SoC was tested, were no testbencree@esdy only clock and
reset signals) which sends write and read commands. Thedash structure, sown in
7.1, was implemented using a FSM. Triggered by the resetwtiwe test process was
automated. Loading thealo files, the waveforms of the most important signals can be
seen before the test was finished. In case there were morenieesiave to be tested, the
basic structure of the testbench (from Write slvl to the setDirE) can be duplicated
changing the target addresses to point to another slave.

55

56 7 Tests

Figure 7.1: Testbench basic structure

7.1.1 Single Tests

SRAM

The SRAM memory controller was tested to check the acknaydesignal delay and the
translation from the wishbone input signals into the sratpousignals.

SDRAM

The SDRAM memory controller was tested to check the traiwsiaif the wishbone sig-
nals into the SDRAM output signals. Also all the control sitnand the AUTO RE-
FRESH period were tested.

Flash

The Flash memory controller was tested to check the two aglatlye signals delay and
the translation from the wishbone input signals into thetflastput signals.

Wishbone Bus

The wishbone bus was tested to check the arbiter and decagabitity to decode the
selected master and slave depending on the input addresaldition, the scenario of
both masters requesting a bus cycle was also tested.

UART

Initialization sequence and character sending were tested

7.1.2 Group Tests

In order to test write and read operations without havingytatisesize the memory con-
trollers, some models of the memory modules present idttmet Communications/Memory
modulewere used.

7.2 Hardware Tests 57

Memory models

The SRAM memory model used is contained in the ffeam 1mb.vand128Kx8.v The
SDRAM memory model was contained in the fi$dram.vandmt48ic16m16a2.v

SRAM + SRAM Model
Read and write operations were tested.
SDRAM + SDRAM Model

Read and write operations were tested, also the AUTO-REFRE8iod and other com-
mands.

SRAM + AvBus I/F + SRAM Model

Faking the input signals from the SDRAM and Flash contrpliee AvBUS I/F output
signals assignments were tested.

Wishbone bus + SRAM +AvBus I/F + SRAM Model

Using one of the Master’s wishbone inputs, read and writeaifmns were tested as well
as the correct signal assignments in the wishbone bus.

Wishbone bus + SRAM + SDRAM +AvBus I/F + SRAM Model + SDRAM Model
In this test, several situations were tested.
- SRAM read and write
- SDRAM read and write
- SDRAM AUTO-REFRESH command in the middle of a SRAM write gi@on
- SRAM and SDRAM operation request form different masterthatsame time
SoC

Including the memory content files of the boot monitor to tastrof the modules of the
system, the start sequence was tested.

7.2 Hardware Tests

The structure of the hardware tests resembles the testegnfkhe simulation tests. Both
of them have a fake wishbone master that feeds the slave exydult instead of having
the whole test process automated, its done in steps trigdpgréhe keys available on the
FPGA board (add-on board made by the department of ElecEigineering).

The reason of not having the whole process automated is bed¢awshow the read data
(32 bits) there are only 8 LEDs available on the board. To sttmventire data length,
once is read from the memory, the test switches into disghktg swhere, controlled by 4
of the 6 keys, the user can select which byte of the 4 will bpldised on the LEDs. Once
the results have been checked, with other key, the user chadoto the IDLE state.

58 7 Tests

Reset —~|Write @1

~ Write @2

| | i

IDLEA =— L{Read @1]~{Display
- Read @2[—~{DisplayH

Figure 7.2: Hardware test structure

In order to control when the reads and writes ends, the aclkauge signal is also sown in
the read and write states. Once the acknowledge signalestedsthe user can continue
to the IDLE state (write operations) or to the display stadéad operations).

SRAM tests

First, the SRAM memory controller was synthesized and teskene. Next the AvBus I/F
was added and finally the Wishbone Bus. In all the test, reddnaite operations were
tested in two different addresses to ensure that neithdrufiers or the internal registers
of the AvBus I/F stored the data sent, faking the reads wittvipusly sent and stored
data.

SDRAM tests

The SDRAM memory controller was synthesized with all theredats present in the
SRAM hardware test. In this test, the only element tested; tha capability of the
AvBus interface to deal with two controllers at the same tirfi¢hile the operations of
the SRAM were being executed, the SDRAM controller was nakibTO REFRESH

commands, which forced the SRAM controller and the AvBusriiaice to deal with the
memory controllers hierarchy.

Due to the complexity of the SDRAM memory controller, thetrekthe test were per-
formed once the whole SoC was implemented. The use of a tattoimisplay the data
loaded from the SDRAM memory modules was the best way to firmeand unexpected
behaviors.

SoC tests

In this test, the functionality of the SDRAM memory conteslland whole system were
tested. As there was a CPU and the essential peripheralsrfoasa real system, test
were no longer made of HDL elements or fake wishbone bus msashe this case, the
test were performed by the use of terminal commands or pragjraritten in C.

7.2 Hardware Tests 59

The use of the UART allows the use of a text based user inegaavided by the Boot
Monitor, which makes the basic operations (read, write apyenemory contents) much
easier for the user and brings out the possibility of more glemtest.

The SDRAM memory controller was tested at first with basic mgnmanipulation com-
mands. The same was done with the SRAM and Flash controlengUderminal com-
mands, several positions of the different memory module® weitten, read and copied.

The possibility of loading C programs, allows testing theoleghSoC as a real system.
Arithmetical operations can be used along with pointeiisithtoops, counters and almost
any possibility supported by C language.

As the CPU is not a regular X86 architecture, some speciddrigs need to be added to
the C files along with some memory positions specificatiorngoiat the addresses where
the code and its related elements are going to be placed.

The file is loaded into the system as an hexadecimal file. Tgpderands transform the
standard C file into the .hex file that can be interpreted bysylstem there is a makefile
placed in the foldesimpleprog This makefile takes as input the fisgmpleprog.cthat
contains the test and generates $itapreprog.hefile that can be loaded into the system.
The basic structure of the SoC tests written in C is the faithgw

1. Take 3 numbers, store them in three memory positions Gr5fRAM or SDRAM)

2. Load the three numbers, make some operations betweerathestore the results
in three different memory positions (not necessarily inghme memory module)

3. Load the results, combine them into one final number aralist using the return
command

4. Atthe same time, display a message using the printf fancti

This basic structure can be modified to support more comppexations and therefore
more complex tests.

Results

All the simulation tests were successful, the modules behawexpected and no big errors
were found.

In the hardware tests, all the modules worked as expectegbtrg the Flash memory
controller and the AvBus I/F.

The AvBus interface had showed as the critical element ofddegn. When only the

SDRAM and the SRAM modules were working together, the resuktre as expected.
But when the Flash memory controller was added, both the SRAdthe Flash memory
controllers did not work as expected. The problem is someteteted with the use or not

of the Flash chip select signal. When is not used, the SRAM svardd| (the Flash does

not as the memory chip is not enabled), but when is used, lmttrallers behave in an

unexpected way. This issue has to be studied in detail, bedhere is a problem that is
not shown in the simulation tests and can be related withgbed of the AvBus I/F mod-

ule. This problem is probably related with the hierarchyle memories. The SDRAM

actions can not be stopped, but at the same time, some Flasdtiops can not be stopped
too, so that might be the problem behind the non desired li@hdevertheless, it should

be studied in detail in future revisions of the platform.

When only the SDRAM and the SRAM memory controllers where usieel SoC test

were successful. Data was written in the correct positiors the results and the text
displayed at the terminal were correct. This happened dbgss of the memory module
where the programs were loaded.

Synthesizing the SoC and the different modules separdtigiis of the maximum clock
frequencies were obtained.

- SRAM memory controllerf,, .. = 226 Mhz.

61

62

8 Results

Flash memory controllef,, .. = 204 Mhz.
SDRAM memory controllerf,, ... = 47 Mh
CPU fp4z = 71 Mhz.

UART f0: = 135 Mhz.

Wishbonef,,,,.. = 518 Mhz.

Systemf, ... = 35/71 Mhz. (depending o

Z.

AvBus I/F f,,... = none (there is no clock signal).

n the synthesizer used)

Those values were obtained without seting any timing cairgtrAs there were no desired

working frequencies set, the synthesizer did
frequency. Nevertheless, this frequencies are

not push taiokihe maximum possible
a ballpgukefiof the real frequencies.

Regarding to the FPGA utilization, the result obtainedrafie place and route operations

are sown in Table 8.1 and Table 8.2.

Table 8.1: FPGA logic utilization

Number of Slice Flip Flopg 2,4

16 out of 46,080 (5%)

7,1

Number of 4 input LUTs

26 out of 46,080 (15%

Table 8.2: FPGA logic distribution

Number of occupied Slices

4,072 out of 23,040 (17%)

Number of Slices containing only related log

ic4,072 out of 4,072 (100%)

Number of Slices containing unrelated logic

0 out of 4,072 (0%)

Total Number of 4 input LUTs

7,209 out of 46,080 (15%)

Number used as logic 6,890

Number used as a route-thru 83

Number used for Dual Port RAMs 236 (Two LUTs used per Dual Port RAM)
Number of bonded IOBs 154 out of 824 (18%)

IOB Flip Flops 134

Number of RAMB16s 36 out of 120 (30%)

Number of MULT18X18s 4 out of 120 (3%)

Number of BUFGMUXs 2 out of 16 (12%)

Number of DCMs 1 out of 12 (8%)

As the reader can notice, even having a full
resources is not very high.

system syntbdsithe use of the FPGA

Conclusions

Looking again at the primary goal this project has been grymaccomplish, | think it is
fare to say that it has been accomplished.

| have developed the basic system to be used in the future ersatie test platform and,
despite it can be improved in many ways, the base platforroned

It has the most updated version of t#&1200CPU and will be able to run Linux in the
future. The memory controllers are now separated and theAIDRiemory controller
now supports burst.

The system, once integrated in the®ap platform, will be able to perform any kind of
test that can be described using C or C++ programming lareguiafjt the same time, it
will not depend on external computational elements to petie results of the performed
tests. And with the use of the Wishbone interconnectiondgtethit ensures that if in the
future, new features are required, they can be added in aneas

As the objective was, this features are the ones that defiresatile platform, and that at
the end was the reason of this project.

63

10

Future Work

The possible ways of continuing with this project can bed#d in two. On one side the
improvements to the main system, that can increase thetiigysaf the system, and in
the other side, the future goals related with the integratibthe system in th&8toGap
platform.

10.1 System Improvements

One good way of improving the performance of the system withwaving to add any
extra module is to modify the SRAM and Flash controllers tppsart burst mode. It can
be easily done by adding a FIFO in the controllers and somie togcheck thewb_cti
signal for burst start and burst end.

A good way to improve the SDRAM memory controller can be taestbe configuration
parameters in the SRAM or Flash memory, being able to modiy twhile running the
system and loading them any time a reset is applied.

Another aspect that needs to be studied in detail is the mhafthe Flash memory
controller. Probably a readjustment of the AUTO REFRESH icand periods of the
SDRAM memory controller and a better AvBus I/F are going tonkeded.

There is also some modules that can be added in order to s&tha available features
and give the system more versatility.

- An Ethernet module can offer quicker communications based very common
protocol (IP) and the possibility of using resources stanegn FTP server, remote
control, internet access, etc..

- ADDR SDRAM memory controller can boost the performancenefprimary mem-

65

66 10 Future Work

ory of the system

- A SD card module (using the add-on board) can provide theesy®sf a flexible
and portable storage solution for tests, results, OS hpstic..

- A PCMCIA controller can be used to add multiple peripherals

10.2 Future Goals

The primary goal of the system is, of course, to be integratate Dto®Bap platform to
provide a flexible hardware platform for testing ASIPs andederators. To accomplish
that goal, it is necessary to add a wrapper generator tditt&ap platform, to be able to
establish a communication between the test platform anddhign to be tested.

Another goal that can improve the system capabilities dfrtgss the support of a UNIX
operating system. Th&®R1200CPU is supported in the latest versions of the Linux
kernel, so only the slaves modules might need to be testéddompatibilities. By doing
this, the range of possibilities will be increased widely.

Bibliography

[1] TSEA44 web page,. URKhtt p: // www. da. i sy. i u. se/ courses/tseadd/.

[2] Gaisler LEONweb page..URhtt p://ww. gai sl er. conf cns/ i ndex. php?opti or
[3] Accelera. SystemVerilog. URht t p: / / w. syst enveril og. org/.

[4] Dinesh Annayya.SDRAM controller specificatigr=ebruary 2012.

[5] Julius Baxter and Damjan Lampret. OpenRISC 1200 IP CpezRication. Septem-
ber 2011.

[6] Per A. Carlstrom.NOGAP: Novel Generator of Accelerators and ProcessBhd
thesis, Link6ping University, 2010.

[7] Jacob Gorban. UART IP Core Specification. August 2002.

[8] lee. 1076-2008 IEEE Standard VHDL Language Referencaudh Technical
report, 2009.

[9] leee. 1364-2005 IEEE Standard for Verilog Hardware Dipsion Language. Tech-
nical report, 2006.

[10] leee. 1800-2009 IEEE Standard for SystemVerilog—\ddifiardware Design, Spec-
ification, and Verification Language. Technical report, 200

[11] Intel. Intel StrataFlash Memory data sheet. March 2005

[12] Damjan Lampret, Rohit Mathur, Jeanne Wiegelmann, aaddIMlinar. OpenRISC
1000 Architecture Manual. April 2006.

[13] Opencores.WISHBONE System-on-Chip (SoC) Interconnection Architeettor
Portable IP CoresSeptember 2002.

[14] Avnet D. ServicesXilinx Virtex-11 Development Kit November 2002.

[15] Avnet D. ServicesCommunications/Memory Modul&lovember 2002.

[16] Micron Technology.MT48LC16M16A2 SDRAM data shedilarch 2002.

[17] Wikipedia. Verilog. . URLht t p: // en. wi ki pedi a. or g/ wi ki / Veri | og.

67

http://www.da.isy.liu.se/courses/tsea44/
http://www.gaisler.com/cms/index.php?option=com_content&task=section&id=4&Itemid=33
http://www.systemverilog.org/
http://en.wikipedia.org/wiki/Verilog

68 Bibliography

[18] Wikipedia. Vhdl. . URLht t p: // en. wi ki pedi a. or g/ wi ki / Vhdl .

[19] Wikipedia. Hadware Description Languages. . URL
http://en.w ki pedi a. org/w ki /Hardwar e_descri pti on_I| anguage.

[20] Xilinx. Virtex Il family documentation2007.

http://en.wikipedia.org/wiki/Vhdl
http://en.wikipedia.org/wiki/Hardware_description_language

5

- PRy -

Linkdpings universitet

Upphovsratt

Detta dokument halls tillgangligt pa Internet — eller dassiftida ersattare — under 25 ar
fran publiceringsdatum under forutsattning att inga extlinéra omstandigheter uppstar.

Tillgang till dokumentet innebar tillstdnd for var och en kisa, ladda ner, skriva ut
enstaka kopior for enskilt bruk och att anvénda det oforanfdir ickekommersiell forsk-
ning och fér undervisning. Overféring av upphovsratten eidsenare tidpunkt kan inte
upphéava detta tillstdnd. All annan anvandning av dokunteataver upphovsmannens
medgivande. For att garantera aktheten, sakerheten tgmtjligheten finns det [6sning-
ar av teknisk och administrativ art.

Upphovsmannens ideella réatt innefattar ratt att bli nanord apphovsman i den om-
fattning som god sed kraver vid anvandning av dokumentetvpé beskrivna satt samt
skydd mot att dokumentet andras eller presenteras i sddarefter i sdidant sammanhang
som &r krankande for upphovsmannens litteréra eller kénlga anseende eller egenart.

For ytterligare information om Linkdping University Eleonic Press se forlagets
hemsideht t p: / / www. ep. | i u. se/

Copyright

The publishers will keep this document online on the Interreor its possible replace-
ment — for a period of 25 years from the date of publicatiorribgrexceptional circum-
stances.

The online availability of the document implies a permarpgsrmission for anyone to
read, to download, to print out single copies for his/her asa and to use it unchanged
for any non-commercial research and educational purpagese®juent transfers of copy-
right cannot revoke this permission. All other uses of thewtoent are conditional on
the consent of the copyright owner. The publisher has tageimtical and administrative
measures to assure authenticity, security and accessibili

According to intellectual property law the author has tlghtito be mentioned when
his/her work is accessed as described above and to be ma@gainst infringement.

For additional information about the Linkdping Universilectronic Press and its
procedures for publication and for assurance of documergiity, please refer to its
www home pageht t p: // www. ep. | i u. se/

(© Eneas Puertas Kreusch

http://www.ep.liu.se/
http://www.ep.liu.se/

	Front Page
	Title Page
	Library Page
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Why Testing
	1.2 Types of Tests and Platforms
	1.3 The Need of Versatile Test Platforms

	2 Background
	2.1 HDL Languages
	2.1.1 HDL in IC Design
	2.1.2 HDL in IC Simulation
	2.1.3 Most Popular HDLs

	2.2 IP Blocks
	2.3 NoGap
	2.4 FPGA
	2.5 Simulation, Synthesis and FPGA Programming Tools

	3 Related Work
	4 The System
	4.1 Choosing the Test Platform
	4.2 Specifications of the SoC
	4.3 Target FPGA Board
	4.4 Final SoC Specifications

	5 Available Resources
	5.1 SDRAM Memory
	5.2 SRAM Memory
	5.3 Flash Memory
	5.4 Interconnection Bus
	5.4.1 The Wishbone Bus Standard

	6 The SoC and its elements
	6.1 The CPU
	6.1.1 OpenRISC 1000 Specifications
	6.1.2 OpenRISC OR1200
	6.1.3 The Implemented OR1200

	6.2 Wishbone Bus
	6.2.1 The Arbiter
	6.2.2 The Decoder
	6.2.3 The Bus

	6.3 SDRAM Controller
	6.4 SRAM Controller
	6.4.1 Control & I/O Block
	6.4.2 Acknowledge Control Block

	6.5 Flash controller
	6.5.1 Control & I/O Block
	6.5.2 Acknowledge Control Block

	6.6 AvBus
	6.6.1 AvBus Interface

	6.7 UART
	6.8 Boot Monitor
	6.9 Clock Manager

	7 Tests
	7.1 Simulation Tests
	7.1.1 Single Tests
	7.1.2 Group Tests

	7.2 Hardware Tests

	8 Results
	9 Conclusions
	10 Future Work
	10.1 System Improvements
	10.2 Future Goals

	Bibliography
	Copyright

