
Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Design and Development of a Versatile Hardware Test
Platform

Examensarbete utfört i Computer Engineering
vid Tekniska högskolan vid Linköpings universitet

av

Eneas Puertas Kreusch

LiTH-ISY-EX--2012/XXXX--SE

Linköping 2012

Department of Electrical Engineering Linköpings tekniskahögskola
Linköpings universitet Linköpings universitet
SE-581 83 Linköping, Sweden 581 83 Linköping

Design and Development of a Versatile Hardware Test
Platform

Examensarbete utfört i Computer Engineering
vid Tekniska högskolan vid Linköpings universitet

av

Eneas Puertas Kreusch

LiTH-ISY-EX--2012/XXXX--SE

Handledare: Per Karlström
ISY, Linköpings universitet

Examinator: Per Karlström
ISY, Linköpings universitet

Linköping, 23 augusti 2012

Avdelning, Institution
Division, Department

Computer Engineering
Department of Electrical Engineering
SE-581 83 Linköping

Datum
Date

2012-08-23

Språk
Language

� Svenska/Swedish

� Engelska/English

�

⊠

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

⊠

URL för elektronisk version

ISBN

—

ISRN

LiTH-ISY-EX--2012/XXXX--SE

Serietitel och serienummer
Title of series, numbering

ISSN

—

Titel
Title Design and Development of a Versatile Hardware Test Platform

Författare
Author

Eneas Puertas Kreusch

Sammanfattning
Abstract

Nowadays in the whole process around the design of an integrated circuit,verification and testing are
the most time consuming tasks. Verify simple ICs is not a very complex task, but as the complexity
increases, this critical task takes more and more time allowing for easily three or four times design
time.

Test platforms plays an important role in the whole process. Versatility is probably the most important
feature of all. If the test platform can be re-used to test different ICs, the effect of the initial investment
on its development in the cost of the verification process can be reduced.

This project will be focused on the design and development of a versatile test platform.

Nyckelord
Keywords versatile test platform, hardware, SoC design, test

Abstract

Nowadays in the whole process around the design of an integrated circuit, verification and
testing are the most time consuming tasks. Verify simple ICsis not a very complex task,
but as the complexity increases, this critical task takes more and more time allowing for
easily three or four times design time.

Test platforms plays an important role in the whole process.Versatility is probably the
most important feature of all. If the test platform can be re-used to test different ICs, the
effect of the initial investment on its development in the cost of the verification process
can be reduced.

This project will be focused on the design and development ofa versatile test platform.

iii

Acknowledgments

I would like to thank first to Per Karlström for given me the chance of doing my last year
project with him. Second, and not for that less important, I would like to thank my family.
Even though they did not understand any of the things I was telling them, they listened
patiently and offered me words of support and motivation. And finally, I would like to
thank my friends, for all the coffees shared explaining our problems and frustrations and
the good times we spent together.

Linköping, August 2012
Eneas Puertas

v

Contents

List of Figures ix

List of Tables x

Abbreviations xi

1 Introduction 1
1.1 Why Testing . 1
1.2 Types of Tests and Platforms . 2
1.3 The Need of Versatile Test Platforms 2

2 Background 5
2.1 HDL Languages . 5

2.1.1 HDL in IC Design . 5
2.1.2 HDL in IC Simulation . 6
2.1.3 Most Popular HDLs . 6

2.2 IP Blocks . 7
2.3 Novel Generator of Accelerators and Processors (NoGap) 7
2.4 FPGA . 7
2.5 Simulation, Synthesis and FPGA Programming Tools 8

3 Related Work 11

4 The System 13
4.1 Choosing the Test Platform . 13
4.2 Specifications of the SoC . 15
4.3 Target FPGA Board . 16
4.4 Final SoC Specifications . 18

5 Available Resources 21
5.1 SDRAM Memory . 21
5.2 SRAM Memory . 23
5.3 Flash Memory . 24

vii

viii CONTENTS

5.4 Interconnection Bus . 24
5.4.1 The Wishbone Bus Standard 25

6 The SoC and its elements 27
6.1 The CPU . 29

6.1.1 OpenRISC 1000 Specifications 29
6.1.2 OpenRISC OR1200 . 30
6.1.3 The Implemented OR1200 . 30

6.2 Wishbone Bus . 33
6.2.1 The Arbiter . 33
6.2.2 The Decoder . 33
6.2.3 The Bus . 34

6.3 SDRAM Controller . 35
6.4 SRAM Controller . 39

6.4.1 Control & I/O Block . 40
6.4.2 Acknowledge Control Block 40

6.5 Flash controller . 43
6.5.1 Control & I/O Block . 44
6.5.2 Acknowledge Control Block 44

6.6 AvBus . 47
6.6.1 AvBus Interface . 47

6.7 UART . 51
6.8 Boot Monitor . 53
6.9 Clock Manager . 53

7 Tests 55
7.1 Simulation Tests . 55

7.1.1 Single Tests . 56
7.1.2 Group Tests . 56

7.2 Hardware Tests . 57

8 Results 61

9 Conclusions 63

10 Future Work 65
10.1 System Improvements . 65
10.2 Future Goals . 66

Bibliography 67

List of Figures

2.1 FPGA basic structure . 8

4.1 Basic test flow . 14
4.2 Test platform . 15
4.3 SoC structure . 16
4.4 I/O modules interconnection to AvBus I/O connector 17
4.5 Memory modules interconnection to AvBus memory connector 18
4.6 Final SoC specifications . 19

6.1 Global structure of the SoC . 27
6.2 Implemented OR1200 structure .31
6.3 Arbiter algorithm . 33
6.4 SDRAM tri-state . 36
6.5 Wishbone address decode . 37
6.6 SDRAM memory controller structure 38
6.7 SRAM controller structure . 39
6.8 SRAM acknowledge control flow . 41
6.9 Flash controller structure .. 43
6.10 Flash acknowledge control flow .45
6.11 AvBus interface structure .. 49

7.1 Testbench basic structure .56
7.2 Hardware test structure . 58

ix

List of Tables

5.1 SDRAM controller commands . 22
5.2 Master device signals . 25
5.3 Slave device signals . 26

6.1 Device address range for decoding 34
6.2 SDRAM address range . 35
6.3 SDRAM input/output signals . 36
6.4 SDRAM configuration signals . 37
6.5 SRAM address range . 39
6.6 SRAM input/output signals . 39
6.7 SRAM delay registers default values 41
6.8 Flash address range . 43
6.9 Flash input/output signals .. 43
6.10 Flash delay registers default values 45
6.11 AvBus I/F board input/output signals 48

8.1 FPGA logic utilization . 62
8.2 FPGA logic distribution . 62

x

Abbreviations

ASIC = Application Specific Integrated Circuit

ASIP = Application Specific Instruction-set Processor

CLB = Configurable Logic Block

DCM = Digital Clock Manager

DSP = Digital Signal Processor

FPGA = Field Programmable Gate Array

HDL = Hardware Description Language

IC = Integrated Circuit

IP = Intellectual Property

MMU = Memory Management Unit

NoGap = Novel Generator of Accelerators and Processors

RAM = Random Access Memory

RISC = Reduced Instruction Set Computer

SMP = Symmetric Multi-Processing

SMT = Surface Mount Technology

SoC = System on a Chip

TLB = Translation Lookaside Buffer

xi

xii 0 Abbreviations

1
Introduction

1.1 Why Testing

Despite all the improvements that design environments havesuffered, designers can not
rely blindly in the results of the software tools they use. Assumptions, optimizations and
other considerations that software tools made can result in, sometimes little and some-
times big, differences between the original design and the result that the software brings
to the designer.

With simulation tools, the designer can get an initial estimation to how his design will
behave, but some situations, such as the behavior of latchesin the real implementation,
can not be predicted. Finding a non desired behavior in the simulation phase is an easy
thing to solve, but once the design is turned into silicon, itstarts to be a little bit more
complicated. Finding an error after the design has been sentto the manufacturer costs a
company lots of money, finding it once the product is in the market costs money and the
loss of costumers. That is why testing is so important in the development of ICs.

All companies are aware of this fact and spend huge amounts oftime and money to detect
and solve errors in all the phases of the design. To reduce theprobability of finding
error in the last stages of the design (when they could cause catastrophic consequences)
companies make big efforts to plan and develop testing strategies in the early stages of
the design, when errors can be solved easily. The amount of time spend in testing can be
nearly 3 or 4 times the time spent designing the IC. That can give us a overall view of how
important testing is.

1

2 1 Introduction

1.2 Types of Tests and Platforms

All designs are unique. They can have parts shared with otherdesigns (e.g. buses or
interfaces) but at the end they are still diferent. Despite this huge variety we can find, the
tests used to verify their behavior can be separated in four main categories.

All ICs are unique, they might have elements from other IC (e.g. IP cores or basic struc-
tures) but in the end it is always different from the rest. Despite this huge variety we can
find on IC, tests can be separated in four main categories.

Low level test. This test focus on controlling the behavior of the IC bit by bit. This
technique offers good results when small details are important, specially in low
complexity ICs. When the complexity of the IC to test increases, the time this tests
need to be accomplished, and their complexity, increases too.

High level tests. To test very complex ICs, to focus on small details is not a very effi-
cient way of doing it. All the small components that make up the IC have been
tested separately and its singular behavior has been properly checked. In this cases,
what needs to be test is the global behavior of all the small components connected
together. Instead of having to focus on separated bits, testengineers have to check
busses, registers, memories, etc.. Using C/C++, .NET or other high level languages
can provide an easy, or at least less complicated, way to perform complex tests.

Integrated testing features. Testing resources can be integrated in the IC, for example
JTAG protocols or BIST, and they provide the testing engineer the capability to test
directly from the board. Sometimes the tests are predefined and integrated in the
system as "self tests", this usually happens when the ICs arenot too complex and
only a few number of tests are needed. When the test are bigger and more complex,
they are introduced externally into the test platform and once they are done, the
results are extracted and interpreted.

External testing features. Sometimes, due to the high density of the ICs or because of
area issues, testing platforms can not be included in the IC so they need to be
external. One example of this situation is the self called "bed of nails" used to test
ICs or PCBs by making contact with some kind of nails (connected to the extern test
platform) into certain points of the system and reading or forcing values in those
points. That relieves the designer to include the testing platform in the design, but
at the same time needs a complete external platform to perform the tests.

1.3 The Need of Versatile Test Platforms

As the reader might have noticed, the selection of the test type and platform is a big limit-
ing factor for the target ICs capable of being tested. Creating a specific test platform for
each possibility is not a very wise decision. Despite havinga not very high development
time, its non-reusable nature is its most limiting factor. By creating versatile testing plat-
form we can ensure a re-usability of the resources invested in its development. It is going
to be more complicated to develop and probably will need moretime to be completed, but

1.3 The Need of Versatile Test Platforms 3

once is done it can be used to test any IC, which at the end will mean a save of time and
money.

2
Background

This chapter shows the different elements the reader must know or at least be familiar
with, basic knowledge and useful tools and environments that will be mentioned along
the different chapters and that have been used in the development of the project.

2.1 HDL Languages

Hardware Description Language (HDL) [19] refers to any language used for description
and design of electronic circuits, most commonly digital circuits. HDLs can be used to
describe the behavior of circuits and to create tests to verify them.

When describing the behavior or internal structure of a circuit, designers generally use
algorithms, flow charts or mathematical expressions. HDLs are used to transform those
abstract elements into something real.

2.1.1 HDL in IC Design

Despite they are also used to design analog circuits, the main field of application of HDLs
is the design of digital integrated circuits.

The advantage that HDLs have against other traditional programming languages, like C
or C++ when designing a digital circuit, is that they have been created specifically for this
task. It does not mean that traditional languages can not be used to design a digital circuit,
indeed they can be used, but some special libraries need to beadded, which makes the
whole process a little bit more complicated than by using HDLs.

During the process of designing an IC, designing tools and environments are another im-
portant elements designers can use. Modern tools automatically check for grammar errors,
error prone structures or potentially dangerous elements than could end in unexpected be-

5

6 2 Background

haviors. With the increase of the level of elements integrated in an IC, optimization and
timing constraint checking tasks are becoming more and moreimportant. Modern design
tools can perform this tasks automatically, allowing the design engineer to focus in other
tasks. At the same time, the information this tools show to the engineer allows him/her
to know even before prototyping very important information, for example the maximum
speed of the design, area consumption or critical paths.

2.1.2 HDL in IC Simulation

Another important feature HDLs have is the capability of be used to simulate HDL de-
signs. To be able to do that, engineers only have to add an extra layer of HDL code called
testbench. A testbench is basically and extra module with the test procedures added to the
main design. It is written in HDL as the design, but not necessarily in the same language.
At least, testbenches have the instantiation of the design inputs/output, some logic to per-
form the tests and control elements to verify the results. One of the key features of HDLs
in this situations is that they have a certain number of instructions or elements that can
not be synthesized but can be used in simulation.

Modern simulation environments provide design engineers the necessary tools to perform
deep level tests to their designs. Simulations can be stopped and resume any time, break-
points can be inserted without having to modify the HDL code and the behavior of the
design can be controlled on any layer. Results can be obtained automatically with the use
of assertions or other comparative functions, but when debugging a deeper view of the
design is more desirable. For this purpose, simulation tools offer graphical environments
to display the values and transitions of any signal in the design, facilitating the tasks of
error detection.

2.1.3 Most Popular HDLs

The most used and supported HDLs today are,SystemVerilog, Verilog andVHDL (VH-
SIC HDL or very-high-speed integrated circuits HDL).

SystemVerilog

SystemVerilog[3] is a combination of hardware description language and hardware ver-
ification language. It is a major extension of theVerilog language so they share most of
the structures.

The latest IEEE standard was adopted in 2009 whenSystemVerilogwas merged with the
existingVerilog standard, crating the IEEE 1800-2009 standard [10].

Verilog

Verilog [17] designs are based in the use of modules as design entities. Modules have
input, output and bidirectional ports as well as proceduralblocks. If another module
needs to be used, Its instantiation is also present. Unlike C/C++, Verilog use begin/end
instead of curly brackets to delimit procedural blocks.

The latestVerilog standard is Verilog 2005, also known as IEEE 1364-2005 [9].

2.2 IP Blocks 7

VHDL

VHDL [18] designs are divided in entities and architectures. Theentity defines the in/out
ports of the design and the architecture defines the inner behavior of the design. There are
different ways to describe the behavior of the designs, so there can be several architectures
for the same entity.VHDL designs use libraries to increase the resources the designer has
available.

The latestVHDL standard isVHDL 4.0 also known as IEEE 1076-2008 [8].

2.2 IP Blocks

IP block is the acronym of Intellectual Property block. An IPblock is a reusable electronic
element, for example a logic unit, cell or chip layout designthat has been developed by a
company or institution and can be licensed to third parties.Depending on the copyright
of the IP core, licenses can be free or not.

2.3 NoGap

NoGap is a design automation tool for ASIP and accelerator developed by Per Karl-
ström [6] form the Department of Electrical Engineering of Linköping’s University.

In todays design of ASIPs, the designer have to choose one of the two main ways to
approach the development of a new ASIP.

With HDL languages, the designer has a strong control over the register transfer level,
having the possibility of building a full custom system, but, at the same time, he or she
has to deal with all the small details of hardware multiplexing, interconnections and buses,
control signals and other elements that makes the whole process really tedious and error
prone.

Choosing EDA tools, the designer can focus only in the actualdesign of the system with-
out having to worry about the small details. But this abstraction from the deepest details
only leaves to the designer the ability to work with partially-configurable grey boxes pro-
vided by the EDA tool.

NoGap fills the space between the two solutions. The designer can have low level control
over the register transfer level while at the same time does not lose the high level perspec-
tive of a high level complex system. That means that the designer can focus on what he
or she does best: being creative, while the computer takes care of the boring, tedious and
repetitive tasks which does better, quicker and with less errors than humans.

2.4 FPGA

FPGA. It is a device which its behavior can be programed by changing the connections
between its inner components.

8 2 Background

The basic structure of an FPGA consists of I/O cells to connect the FPGA to any external
device, programable logic blocks and interconnection resources to connect the logic block
and the I/O cells (see 2.1). In addition to the basic structure, an FPGA can include also
RAM blocks, digital clock managers, dedicated multipliers, DSP blocks, etc.. Every
manufacturer of FPGAs follows the basic structure but by modifying it and adding extra
features tries to made a differentiation of his product agains the competitors.

Figure 2.1: FPGA basic structure

FPGAs are configured using bit files that can be generated fromHDL files. Before re-
ceiving the specifications of the IC to be implemented and having the parameters of the
target FPGA model, the synthesizer converts the behavior described in HDL (usually Ver-
ilog or VHDL) into the internal configuration of the logic blocks and the interconnection
resources.

FPGAs are used in early prototyping, aerospace applications, bio-medicine, computer
aided vision systems and voice recognition among many others. Nowadays its use is
increasing in applications with high needs of parallelism.

2.5 Simulation, Synthesis and FPGA Programming
Tools

Modelsimhas been the tool used for simulation.Developed by Mentor Graphics, is used
for simulation and debugging ofVerilog, SystemVerilog, VHDL , andSystemC.

Precision(also developed byMentor Graphics) has been used.Precision is a vendor
independent synthesis tool which brings the designer the capability of developing code
without having to focus on a concrete FPGA architecture. Instead of using the graphi-
cal environment, synthesis commands have been included in aMakefile to make all the
process accessible trough a single command over the terminal.

2.5 Simulation, Synthesis and FPGA Programming Tools 9

The tool used to program the FPGA isxc3sprog. This tool uses the JTAG connector to
program Xilinx’s FPGA’s.

3
Related Work

A similar system was developed by Olle Seger and Per Karlström. It is named Dafk and
is being used in the course code TSEA44 Computer hardware - A system on a chip [1].

This system has been used to verify the contents of the memories once read by this project
memory controllers.

Another CPU that has been used in the development of SoCs is LEON (and its revisions
LEON2, LEON3 and LEON4). It is a 32-bit CPU microprocessor core, based on the
SPARC-V8 RISC architecture and instruction set. It was originally designed by the Eu-
ropean Space Research and Technology Centre (ESTEC), part of the European Space
Agency (ESA), and after that by Gaisler Research [2].

11

4
The System

As the reader will have noticed reading previous chapters, the need of providing a versatile
test platform is a very important aspect of todays IC design industry. In this case, the target
of the versatile test platform is theNoGap platform. In this chapter, the reader will find
the specifications of the test platform as well as the FPGA board that is going to be used
for its development.

4.1 Choosing the Test Platform

The task of testing accelerators and processors is not a simple one. Due to their complexity,
low level testing techniques are too complicated: there areso many situations that need
to be tested and doing that bit by bit can be a tedious and errorprone work. That is why
high level techniques are more suitable in this concrete case.

TheNoGap platform has been written in C++ and that brings the possibility of develop
high level tests using C++ that can be easily processed by theNoGap core.

13

14 4 The System

Figure 4.1: Basic test flow

As the reader can se in Figure 4.1, the flow of the testing procedures is not very compli-
cated. Having the test and the design itself as inputs, theNoGap platform will process
them and generate and output that will be translated into HDLby the Verilog generator
and then synthesized into a FPGA to perform the tests described in the input test file.

Creating an individual hardware for testing purposes is possible, but not very practical. A
better way to perform the test without having to create a specific hardware for each design
is to have a predefined hardware with the possibility of changing the way it works to meet
the requirements of the input test file. This means that even though the hardware will be
static, the way it works will be dynamic. At the same time it should be able to send and
receive data to and from the design to test, process this dataand send it in a clear way to
the user. With all this features on mind, the choice of an SoC is almost obvious.

The use of a SoC provides a powerful solution. In addition to the basic structure of CPU
+ memory, the user can add any module that can be useful to the tasks it will perform:
standard I/O modules such as UART or Ethernet, quick and/or non volatile memories
such as SDRAM and Flash, external device controllers, etc..That means almost infinite
possibilities of configuration and as the objective is: a versatile test platform.

4.2 Specifications of the SoC 15

Figure 4.2: Test platform

The basic structure of the SoC will include a CPU, an UART, a memory module, an
interconnection bus and a wrapper (as sown in Figure 4.2). TheNoGap core will translate
the contents of the input test file into instructions that canbe executed by the CPU and then,
store them into the memory module so they can be reached by theCPU. The instruction
will be loaded trough the interconnection bus, and once decoded and trough the wrapper,
the CPU will perform the tests directly over the design. Oncethe results data are obtained,
the CPU will process and send them to the user trough the I/O module.

4.2 Specifications of the SoC

As the wrapper specifications will be exclusive of each design, the specifications of the
SoC will be focused on the CPU, memory, I/O and interconnection bus. In order to expand
the possibilities, the system will include 3 kinds of memory, SRAM, SDRAM and Flash.
One possible configuration is:

- Tests stored in the SDRAM, the largest memory available in the system.

- Results stored in the SRAM.

- Firmware stored in the Flash.

A UART is going to be in charge of the I/O operations, sending and receiving data over
the RS232 protocol.

The resulting system will consist of a CPU, 3 memory controllers (one for each memory),
a UART and an interconnection bus (as sown in Figure 4.3).

16 4 The System

Figure 4.3: SoC structure

4.3 Target FPGA Board

The testing platform will be developed for theAvnet Virtex II Development Board[14]
along with theAvnet Communications/memory Module[15]. It has aVirtex II (model
XC2V4000) FPGA manufactured by Xilinx.

The specifications of the XC2V4000 shown on its data sheet [20] are:

- 4M System Gates

- 80 by 72 array of CLB, 23,040 slices and a maximum of 720 kilobytes of distributed
RAM

- 120 multiplier blocks

- 120 18 kbit SelectRAM blocks with a maximum of 2,160 Kbits ofRAM

- 12 DCM’s

- A maximum of 912 user I/O pads

TheAvnet Virtex II Development Boardand theAvnet Communications/memory
Module have the following features:

Development Board

- Xilinx Virtex II model XC2V4000 FPGA

- System ACE Multi-Package Module (MPM)solution addresses the need for a
space-efficient, pre-engineered, high-density configuration solution in multiple FPGA
systems

- 128 MB DIMM module of DDR SDRAM over a 64Bit wide data bus running at a
maximum speed of 133 Mhz

- 16 MB of Flash memory in a 16 bit configuration over a 16Bit wide data bus

4.3 Target FPGA Board 17

- JTAG

- RS232 connector

- AvBus expansion module bus and connectors

Communications/Memory Module

- Two AvBus connectors

- 64Mbytes of SDRAM organized as 16Mbits x 32

- 1Mbyte of SRAM organized as 256K x 32

- 16 Mbytes of Flash memory organized as 4M x 32

- Gigabit Ethernet

- USB 2.0

- IrDA

- PCMCIA/PCCard

Figure 4.4: I/O modules interconnection to AvBus I/O connector

The AvBus connector is a standard interconnection bus defined by Avnet for their prod-
ucts.

The different modules of theAvnet Communications/memory Moduleare connected in
the following way. The four I/O modules (Ethernet, USB, IrDAand PCMCIA) are con-
nected to one AvBus connector, the 3 memory modules (SRAM, SDRAM and Flash) are
connected to the other AvBus connector. All the I/O modules are directly connected to the
AvBus connector except the PCMCIA, which has two buffers (one for data and one for
addresses) in between. The same happens with the memory modules, the SDRAM is di-
rectly connected to the AvBus connector and the Flash and SRAM share two buffers (one
for data and one for addresses) in between. The overall structure is sown in Figure 4.4
and Figure 4.5.

18 4 The System

Figure 4.5: Memory modules interconnection to AvBus memory connector

4.4 Final SoC Specifications

Once the specifications of the target FPGA have been listed, there is a little change that has
to be done in the SoC initial specification in order to be compatible with theAvnet Virtex
II Development Board. The three memory modules share the same AvBus connector, so
the SoC will need an interface to control the common signals and the buffers that the
SRAM and Flash module share.

The final SoC specification will include then a CPU, an interconnection bus, a UART,
SRAM, Flash and SDRAM memories and an interface to the AvBus connector (as sown
in Figure 4.6) .

4.4 Final SoC Specifications 19

Figure 4.6: Final SoC specifications

At this point, the reader might find many similarities with the Dafk system [1]. It is also a
SoC and initialy it can be used for the same purpose as the system this project is focused.
But there are some elements and objectives that only can be achieved by a new system.

This system will have an updated version of theOR1200CPU used in the Dafk system
that has been proved to be able to run Linux. Instead of havinga big memory controller
for the three memory modules, separated controllers are going to be implemented and the
SDRAM controller will now support burst from the beginning.

5
Available Resources

In this chapter, the available resources present in theAvnet Virtex II Development Board
and theAvnet Communications/memory Moduleare going to be listed and explained.

5.1 SDRAM Memory

The SDRAM memory modules present in theAvNet communications/memory Module
are two Micron MT48LC16M16A2 [16]. The basic size of this chips is 16Mb x 16 (4 Mb
x 16 x 4 banks), but using two of them (sharing the address for both chips) allows the user
to have a total of 64MB (2MB x 32 configuration). The module hasthe following control
signals and buses:

- 13 bits wide address bus

- 32 bits wide data bus (2 x 16)

- active high Clock (CLK)

- active low Chip Enable (CE)

- active low Write Enable (WE)

- active low Output Enable (OE)

- active low RAS (RAS)

- active low CAS (CAS)

- active high Clock Enable (CKE)

- active high 2 bit wide Bank selection (BA)

21

22 5 Available Resources

- active high 4 bit wide (2 x 2) Byte selection (DQM)

The memory module also have many timing constrains in order to work properly. These
are the most important ones:

- Input setup time (min 1.5 ns)

- Input hold time (min 0.8 ns)

- ACTIVE to PRECHARGE commmandTRAS (37 to 120 ns)

- ACTIVE to ACTIVE command periodTRC (min 60 ns)

- ACTIVE to READ/WRITE delayTRCD (min 15 ns)

- Refresh period (8102 rows)TREF (64 ms)

- AUTO REFRESH periodTRFC (min 66 ns)

- WRITE recovery timeTWR (min 1 CLK + 7 ns)

A parameter that defines most of the values showed in the previous list is the CAS(READ)
latency, the delay between the registration of a READ command and the availability of
the first piece of output data in clock cycles (from now on referred as CL). This value is
related with the frequency of the input clock. For frequencies up to 133 Mhz the value of
CL is 2 and for frequencies from 133 Mhz to 143 Mhz the value of CL is 3. The system
clock runs at 40 Mhz, so even if its doubled to feed the SDRAM memory modules, CL =
2 is the correct choice.

The memory chip works with commands rather than with single signals. A command is
a combination of values of the signals CS, RAS, CAS and WE. The different commands
are sown in Table 5.1

Table 5.1: SDRAM controller commands
Name (function) CS RAS CAS WE

Command inhibit H X X X
No operation L H H H
ACTIVE L L H H
READ L H L H
WRITE L H L L
BURST TERMINATE L H H L
PRECHARGE L L H L
AUTO REFRESH or SELF REFRESH L L L H
LOAD MODE REGISTER L L L L

5.2 SRAM Memory 23

5.2 SRAM Memory

The SRAM memory modules present in theAvNet communications/memory Moduleare
two Cypress CY7C1041V33 [16]. The basic size of this chips is256k x 16, but using two
of them (sharing the address for both chips) allows the user to have a total of 1Mb (256k
x 32 configuration).

The module has the following signals:

- 18 bits wide address bus

- 32 (2 x 16) bits wide data bus

- active low Chip Enable (CE)

- active low Write Enable (WE)

- active low Output Enable (OE)

- active low Byte High Enable (BHE)

- active low Byte Low Enable (BLE)

- 20 ns. reading and writing cycle

The chip can perform two tasks: read and write. For reading a certain position of the
memory, the address must be placed in the address bus and thenCE and OE must be set
to low level while WE is set to high. To write something into a certain memory address,
the data must be placed in the data bus and the address to writein the address bus, then
CE and WE must be set to low while OE is set to high. Setting BLE and BHE to high or
low level the user can control which bytes are read or written. As there are two memory
chips, BLE and BHE of the first one will control byte 0 and 1 and BLE and BHE of the
second chip will control bytes 2 and 3. All these four signalsare merged in the controller
in a 4 bit wide signal calledSEL.

24 5 Available Resources

5.3 Flash Memory

The Flash memory modules present in theAvNet communications/memory Moduleare
two Intel E28F640J3 [11]. The basic size of this chips is 128Mb x 16, but using two of
them (sharing the address for both chips) allows the user to have a total of 16MB (128Mb
x 32 configuration).

The module has the following signals:

- 23 bits wide address bus

- 32 bits wide data bus

- active high Chip Enable (CE)

- active low Write Enable (WE)

- active low Output Enable (OE)

- 120 ns. read and write cycle

The internal behavior of this chip is a little bit complex andit is explained in detail in its
data sheet.

5.4 Interconnection Bus

Like the main goal of the system, the interconnection bus must be versatile but without
losing a strong, well defined structure. According with the SoC versatile characteristics,
any new module should be able to be added to the system withouthaving to make major
changes in the interconnection bus structure. At the same time, the structure in the bus
must be powerful enough to support any kind of master and slave devices. With this
features on mind, theWishbonestandard was a very good choice.

5.4 Interconnection Bus 25

5.4.1 The Wishbone Bus Standard

The Wishbone Bus is an open source hardware computer bus developed by Silicore Corpo-
ration [13]. The standard does not specify any electrical information neither the structure
of the bus, instead of that, it specifies the in/out signals, clock cycles, high and low logic
levels.

The specifications of the wishbone bus implemented are the following:

- 32 bit data bus

- 32 bit address bus

- No TAG (user defined) signals

- Shared bus topology for point-to-point module connections

- Separated arbiter and decoder from the main bus implementation

The in/out signals a master and a slave have are predefined by theWishbonestandard. By
having strict control over the interfaces, compatibility with new modules can be ensured
as long as they have the predefined interface.

The signals both master and slave wishbone devices have are sown in Table 5.2 and Ta-
ble 5.3.

Table 5.2: Master device signals
Name Type Width Description

CLK_I input 1 bit Input clock
RST_I input 1 bit Input reset
ADR_O output 32 bits Output address
DAT_O output 32 bits Output data
DAT_I input 32 bits Input data
WE_O output 1 bit Write enable
SEL_O output 4 bits Byte sel
STB_O output 1 bit Valid data transfer cycle
ACK_I input 1 bit Acknowledge signal

In addition to this signals, some modules can have theCTI_I or CTI_O signal. This 3
bits wide signal is in charge of the control of the burst cycles.

For further information about the Wishbone B3 standard please check the Wishbone B3
standard documentation [13].

26 5 Available Resources

Table 5.3: Slave device signals
Name Type Width Description

CLK_I input 1 bit Input clock
RST_I input 1 bit Input reset
ADR_I input 32 bits Output address
DAT_O output 32 bits Output data
DAT_I input 32 bits Input data
WE_I input 1 bit Write enable
SEL_I input 4 bits Byte sel
STB_I input 1 bit Valid data transfer cycle
ACK_O output 1 bit Acknowledge signal

6
The SoC and its elements

In this chapter, all the elements that conforms the SoC will be explained in detail, its
connections and how they are expected to behave. Some of themare IP cores, so more
detailed explanations about them is available at their respective documentation.

As sown in Figure 6.1, all the modules are connected using a top entity. This entity has all
the inner connections between the modules as well as the output and input pins connected
to the FPGA and the memory/communication peripherals.

Figure 6.1: Global structure of the SoC

27

6.1 The CPU 29

6.1 The CPU

The CPU used is theOpenRISC OR1200[5] , an implementation of theOpenRISC 1000
[12] architecture specifications for 32/64 bits RISC/DSP processors. The architecture
specifications and the CPU have been developed by Open Cores (www.opencores.org).

6.1.1 OpenRISC 1000 Specifications

TheOpenRISC 1000architecture is a completely open architecture. It defines the archi-
tecture of a family of open source, RISC microprocessor cores. TheOpenRISC 1000
architecture allows for a spectrum of chip and system implementations at a variety of
price/performance points for a range of applications. It isa 32/64-bit load and store RISC
architecture designed with emphasis on performance, simplicity, low power requirements,
and scalability.OpenRISC 1000targets medium and high performance networking and
embedded computer environments. Performance features include a full 32/64-bit archi-
tecture; vector, DSP and floating-point instructions; powerful virtual memory support;
cache coherency; optional SMP and SMT support, and support for fast context switch-
ing. The architecture defines several features for networking and embedded computer
environments. Most notable are several instruction extensions, a configurable number
of general-purpose registers, configurable cache and TLB sizes, dynamic power manage-
ment support, and space for user-provided instructions.

The principal features of theOpenRISC 1000architecture specifications are:

- A completely free and open architecture.

- A linear, 32-bit or 64-bit logical address space with implementation-specific physi-
cal address space.

- Simple and uniform-length instruction formats featuringdifferent instruction set
extensions:

- OpenRISC Basic Instruction Set (ORBIS32/64) with 32-bit wide instructions
aligned on 32-bit boundaries in memory and operating on 32- and 64-bit data

- OpenRISC Vector/DSP eXtension (ORVDX64) with 32-bit wideinstructions
aligned on 32-bit boundaries in memory and operating on 8-, 16-, 32- and
64-bit data

- OpenRISC Floating-Point eXtension (ORFPX32/64) with 32-bit wide instruc-
tions aligned on 32-bit boundaries in memory and operating on 32- and 64-bit
data

- Two simple memory addressing modes, whereby memory address is calculated by:

- Addition of a register operand and a signed 16-bit immediate value

- Addition of a register operand and a signed 16-bit immediate value followed
by update of the register operand with the calculated effective address

- Two register operands (or one register and a constant) for most instructions who
then place the result in a third register

30 6 The SoC and its elements

- Shadowed or single 32-entry or narrow 16-entry general purpose register file

- Branch delay slot for keeping the pipeline as full as possible

- Support for separate instruction and data caches/MMUs (Harvard architecture) or
for unified instruction and data caches/MMUs (Stanford architecture)

- A flexible architecture definition that allows certain functions to be performed either
in hardware or with the assistance of implementation-specific software

- Number of different, separated exceptions simplifying exception model

- Fast context switch support in register set, caches, and MMUs

6.1.2 OpenRISC OR1200

The OR1200 is a 32-bit scalar RISC with Harvard micro-architecture, 5 stage integer
pipeline, virtual memory support and basic DSP capabilities. It has been successfully
tested and implemented in various FPGA models and ASIC designs.

The main characteristics of theOR1200are:

- Central CPU/DSP block

- IEEE 754 compliant single precision FPU

- Direct mapped data cache

- Direct mapped instruction cache

- Data MMU based on hash-based DTLB

- Instruction MMU based on hash-based ITLB

- Power management unit and power management interface

- Tick timer

- Debug unit and development interface

- Interrupt controller and interrupt interface

- Instruction and Data WISHBONE B3 compliant interfaces

All of this modules can be enabled or disabled for synthesis via the defines file (or1200_definves.v).
Along with the modules, the list of available instructions can be modified enabling a spe-
cific instruction meeting the concrete requirements of the target system.

6.1.3 The Implemented OR1200

Due to the versatility this processor has, it can be configured to have only the features
needed and no other unuseful ones which will only consume area and power without
providing any performance improvement.

This are the implemented features of theOR1200

6.1 The CPU 31

Data and Instructions cache and MMU’s. As the main goal of the system is to perform
high levels hardware tests, and primarily because theOR1200is supported by the
LINUX kernel, it is very feasible that at the end it might be runing a UNIX operative
system. That is why caches and MMUs are needed.

Interrupt controller and I/F. Some of the modules present in the system (communica-
tion modules for example) needs an interrupt I/F to communicate with the processor
when they have new data available, when they wait for a transmission, etc.

Instruction and Data WISHBONE I/F. To include aWishboneI/F is a basic requisite
of any module implemented in the system as it is the intercommunication stander
chosen for the communication between all the modules.

Finally this are the features that will not be implemented (at least in the first version of
the system).

Power management unit.Power consumption is not one of the primary goals of the
system. It is going to be implemented on a FPGA, so energy consumption are
assumed small.

Tick Timer. This module has not been implemented for the only reason of saving area.
If later there is a real need of precise time measure this module can be implemented
without any problem.

Debug unit and development interface.The processor is supposed to be 100% func-
tional, so there are, in principle, no reasons to include it.

Figure 6.2: Implemented OR1200 structure

For further Information about theOpenRISC 1000architecture specifications or theOR1200
processor, please check the data sheets.

6.2 Wishbone Bus 33

6.2 Wishbone Bus

The structure of theWishbone busimplemented is very simple, but is this simplicity what
gives its enormous versatility. There are three modules: the arbiter, the decoder and the
bus itself.

6.2.1 The Arbiter

The arbiter is in charge of giving the control of the bus to themaster which wants to
perform an operation (reading or writing). It has as input the STB signals from the masters
and as output it has a signal calledmast_selwith contains the 2 bit wide code of the
masters which owns the control of the bus.

Figure 6.3: Arbiter algorithm

Each clock cycle, the arbiter checks if any of the input signals is at a high level. If it is,
then a certain code is assigned to the output signal, if not, it continues checking another
input signal. The codes are "01" for the instructions cache,"10" for the data cache and
"00" for no master selected (see fig Figure 6.3).

6.2.2 The Decoder

The decoder has as inputs both output addresses from the instruction and data caches
and themast_selsignal from the arbiter. Depending on the value of that last signal, the
decoder selects the slave requested by the master which ownsthe bus operation. The
selection is done by decoding the 4 MSB of the owners output address. The address
ranges which correspond to each slave are sown in Table 6.1.

Once the decoding is done, the arbiter assigns a value to the an output signal calledslv_sel
with contains a 3 bits wide code of the slave selected by the master. The codes are "001"

34 6 The SoC and its elements

Table 6.1: Device address range for decoding
Device Start address End address

SRAM 0x2000_0000 0x2001_0000
FLASH 0xF000_0000 0xf100_0000
SDRAM 0x0000_0000 0x00ff_ffff
UART 0x9000_0000 0x9000_ffff
Boot monitor 0x4000_0000 0x4000_ffff

for the SRAM, "010" for the FLASH, "100" for the SDRAM, "011" for the UART, "111"
for the boot monitor and "000" for no slave selected.

6.2.3 The Bus

The bus can be seen as a big switch. It receives themast_selandslv_sel from the arbiter
and the decoder, and depending on the values the signals have, the bus connects the correct
master with the slave it has requested. Whenever a slave is selected, thewb_stbsignals
of the rest of them are disabled (set to zero).

6.3 SDRAM Controller 35

6.3 SDRAM Controller

The SDRAM memory controller is an IP core developed by DineshAnnayya and hosted
by OpenCores. The controller is distributed under the GNU Lesser GeneralPublic Li-
cense.

Table 6.2: SDRAM address range
Base address Length Offset

0x00000000 0x03ffe000 0x00000000

The main features of the controller are:

- 8/16/32 Configurable SDRAM data width

- Support asynchronous application layer and SDRAM layer

- Wishbone compatible application layer

- Programmable column address

- Support for industry-standard SDRAM devices and modules

- Supports all standard SDRAM functions

- Fully Synchronous; All signals registered on positive edge of system clock

- One chip-select signals

- Support SDRAM with four bank

- Programmable CAS latency

- Data mask signals for partial write operations

- Bank management architecture, which minimizes latency

- Automatic controlled refresh

- Static synchronous design

The SDRAM controller top file (sdrc_top.v) inputs/outpus are sown in Table 6.3

The last 3 signals are connected into a tri-state buffer (as sown in Figure Figure 6.4). Since
there is a common interface for the three memory controllersinto theAvBus connector
and all of them share the data bus, the tri-state buffer has been changed into two signals,
one for input data and one for output data, as in the other two controllers. The new signals
are calledsir_dq_inandsir_dq_out.

36 6 The SoC and its elements

Table 6.3: SDRAM input/output signals
Name Type Width Description

wb_clk_i input 1 bit clock (from the wishbone bus)
wb_rst_i input 1 bit reset (from the wishbone bus)
wb_dat_i input 32 bits data (from the wishbone bus)
wb_dat_o output 32 bits data (to the wishbone bus)
wb_ack_o output 1 bit acknowledge (to the wishbone bus)
wb_addr_i input 32 bits address (from the wishbone bus)
wb_we_i input 1 bit write enable (from the wishbone bus)
wb_cyc_i input 1 bit cycle (from the wishbone bus)
wb_stb_i input 1 bit strobe (from the wishbone bus)
wb_cti_i input 1 bit cycle type identifier (from the wishbone bus)
sdr_cke output 1 bit clock enable (to memory module)
sdr_cs_n output 1 bit chip select (to memory module)
sdr_ras_n output 1 bit ras (to memory module)
sdr_cas_n output 1 bit cas (to memory module)
sdr_we_n output 1 bit write enable (to memory module)
sd_dqm output 4 bits data bus mask (to memory module)
sdr_ba output 2 bits bank address (to memory module)
sdr_addr output 32 bits address (to memory module)
pad_sdr_din input 32 bits data (from memory module)
sdr_dout output 32 bits data (to memory module)
sdr_den_n internal 1 bit (tri-state buffer control signal)

Figure 6.4: SDRAM tri-state

The standard address was 12 bits wide. To be able to use the whole memory, the structure
of the controller has been modified to use 13 bits wide addresses (needed to access all the

6.3 SDRAM Controller 37

Table 6.4: SDRAM configuration signals
Name Parameter

cfg_sdr_tras_d SDRAM active to precharge delay, specified in clocks
cfg_sdr_trp_d SDRAM precharge command period (TRP), in clocks
cfg_colbits SDRAM column bit
cfg_sdr_trcd_d SDRAM active to read or write delay (TRcd), in clocks
cfg_sdr_en SDRAM Controller Enable
cfg_req_depth Maximum Request accepted by SDRAM controller
cfg_sdr_mode_reg SDRAM Mode Register
cfg_sdr_cas SDRAM CAS latency, in clocks
cfg_sdr_trcar_d SDRAM active to active/auto-refresh command period (TRc),

in clocks
cfg_sdr_twr_d SDRAM write recovery time (TWR), in clocks
cfg_sdr_rfsh Period between auto-refresh commands issued by the controller,

in clocks
cfg_sdr_rfmax Maximum number of rows to be refreshed at a time

rows available). The way the controller decodes the 25 LSB ofthe wishbone address into
the row, bank and column to be accessed is showed in Figure 6.5.

Figure 6.5: Wishbone address decode

In addition to the memory/wishbone inputs and outputs, the SDRAM controller has an-
other set of inputs: the configuration inputs. This inputs are the different timing parame-
ters that need to be set in order to make the controller work asexpected. Having them as
an external file connected to the controller confers to the user an easy way to modify any
of the parameters without having to dig deep into the controller architecture. This inputs
are are sown in Table 6.4.

In addition to all the inputs/outpus described before, the SDRAM controller has another
one calledsir_init_doneand as it’s name indicated, is used to tell when the controller has
been initialized.

The structure of the SDRAM memory controller is divided intotwo main blocks, the
wishbone bus handler and the SDRAM controller itself (as sown in Figure 6.6).

38 6 The SoC and its elements

Figure 6.6: SDRAM memory controller structure

The Wishbone bus handler controls the Protocol handshake between wish bone master
and custom SDRAM controller. This block also takes care of necessary clock domain
change over. This block includes the Command Async FIFO, Write Data Async FIFO
and Read Data Async FIFO.

The SDRAM controller is divided in 4 sub-blocks: SDRAM Bus convertor, SDRAM re-
quest generator, SDRAM Bank controller and SDRAM transfer controller. The SDRAM
bus convertor converts and re-aligns the the system side 32 bit into equivalent 8/16/32
SDR format. The SDRAM request generator controls the interaction between the request
and the application layer. The SDRAM bank controller takes requests from SDRAM re-
quest generator, checks for page hit/miss and issues precharge/activate commands and
then passes the request to SDRAM Transfer Controller. The SDRAM transfer controller
takes requests from SDRAM Bank controller, runs the transfer and controls data flow
to/from the app. At the end of the transfer it issues a burst terminate if not at the end of a
burst and another command to this bank is not available.

For further and more detailed information about the controller, please check de controller
specifications file [4].

6.4 SRAM Controller 39

6.4 SRAM Controller

Table 6.5: SRAM address range
Base address Length Offset

0x00000000 0x00100000 0x20000000

The SRAM controller (sram_ctrl.v) inputs/outputs are sown in Table 6.6.

Table 6.6: SRAM input/output signals
Name Type Width Description

addr_o optut 18 bits address (to the memory chip)
data_i input 32 bits data (from the memory chip)
data_o output 32 bits data (to the memory chip)
byte_sel_o output 4 bits byte selection (to the memory chip)
ce_o output 1 bit chip enable (to the memory chip)
we_o output 1 bit write enable (to the memory chip)
oe_o output 1 bit output enable (to the memory chip)
wb_clk_i input 1 bit clock (from the wishbone bus)
wb_rst_i input 1 bit reset (from the wishbone bus)
wb_dat_i input 32 bits data (from the wishbone bus)
wb_dat_o output 32 bits data (to the wishbone bus)
wb_ack_o output 1 bit acknowledge (to the wishbone bus)
wb_addr_i input 32 bits address (from the wishbone bus)
wb_we_i input 1 bit write enable (from the wishbone bus)
wb_sel_i input 4 bits byte selection (from the wishbone bus)
wb_cyc_i input 1 bit cycle (from the wishbone bus)
wb_stb_i input 1 bit strobe (from the wishbone bus)
busy input 1 bit busy signal (from the SDRAM controller)

Figure 6.7: SRAM controller structure

40 6 The SoC and its elements

The SRAM controller is divided in two main blocks: control & I/O and Acknowledge
control (as sown in Figure 6.7).

6.4.1 Control & I/O Block

The control & I/O block is in charge of the control signals of the chip itself (WE, CE,
OE, SEL) and the inputs/outputs (data_in, data_out, address).

To generate all the signals, this block receives the commands from theWishbone bus
interface. Before activating any of the signals, the block checks the address for a writing
on the Acknowledge delay register.

TheAcknowledge delay registercontains the number of cycles the controller should wait
untill activating the acknowledge signal for any writing orreading signal (wb_ack_o). If
the address in a write operation points to this register, thecontroller will overwrite the
value of the register and none of the control signals to the memory chip will be activated
(as it is included in the controller architecture). When the address points to a valid mem-
ory position (not the acknowledge delay register), the controller translate the input signals
from the wishbone bus into signal that will be sent to the memory controller (inverting con-
trol signals, creatingOE from wb_we, etc). The signals will be static until the controller
is deselected, when they will be set into their inactive values.

As the three memory controller share the same memory interface, that could be the case
when an AUTO REFRESH command from the SDRAM occurs at the sametime that a
SRAM reading/writing cycle. To prevent non desired behavior, thebusysignal is asserted
every time an AUTO REFRESH command happened. This signal, forces the SRAM
controller to stop the current cycle while the refreshing happens and to restart it when it’s
finished.

6.4.2 Acknowledge Control Block

The acknowledge control block (as its name indicates) is in charge of the control of the ac-
knowledge signal and register. When a write/read cycle starts, a counter starts to decrease
the value stored in the acknowledge delay register. Once it reaches zero, the controller
asserts thewb_ack_oto high level.

6.4 SRAM Controller 41

Figure 6.8: SRAM acknowledge control flow

When the address sent by the master is the one that points to theacknowledge delay regis-
ter (address 0x20100000), the block copies the 8 LSB form thedata to theack_delay_def
(default value for the acknowledge delay) and immediately asserts the acknowledge sig-
nal to high level. When the controller is unselected or a resethappens, the acknowledge
register is written with its default value, all the control signal are set to inactive and the
acknowledge signal is set to zero.

Table 6.7: SRAM delay registers default values
Register Default value

ack_delay_def 00001010

6.5 Flash controller 43

6.5 Flash controller

Table 6.8: Flash address range
Base address Length Offset

0x00000000 0x01000000 0xf0000000

The Flash controller inputs/outpus are sown in Table 6.9.

Table 6.9: Flash input/output signals
Name Type Width Description

addr_o optut 23 bits address (to the memory chip)
data_i input 32 bits data (from the memory chip)
data_o output 32 bits data (to the memory chip)
ce_o output 1 bit chip enable (to the memory chip)
we_o output 1 bit write enable (to the memory chip)
oe_o output 1 bit output enable (to the memory chip)
wb_clk_i input 1 bit clock (from the wishbone bus)
wb_rst_i input 1 bit reset (from the wishbone bus)
wb_dat_i input 32 bits data (from the wishbone bus)
wb_dat_o output 32 bits data (to the wishbone bus)
wb_ack_o output 1 bit acknowledge (to the wishbone bus)
wb_addr_i input 32 bits address (from the wishbone bus)
wb_we_i input 1 bit write enable (from the wishbone bus)
wb_cyc_i input 1 bit cycle (from the wishbone bus)
wb_stb_i input 1 bit strobe (from the wishbone bus)
busy input 1 bit busy signal (from the SDRAM controller)

Figure 6.9: Flash controller structure

44 6 The SoC and its elements

The Flash controller is divided in two main blocks: control &I/O and Acknowledge
control (as sown in Figure 6.9).

6.5.1 Control & I/O Block

The control & I/O block is in charge of the control signals of the chip itself (WE, CE,
OE) and the inputs/outputs (data_in, data_out, address).

To generate all the signals, this block receives the commands from theWishbone bus
interface. Before activating any of the signals, the block checks the address for a write on
any of the two Acknowledge delay registers (one for read and one for write operations).

The Acknowledge delay registerscontains the number of cycles the controller should
wait till activating the acknowledge signal for any write orread operation (wb_ack_o). If
a write on any of this registers happened (they share the sameaddress but not the same
byte position in the data bus), the controller will overwrite the values of the registers and
none of the control signals to the memory chip will be activated (as they are included in
the controller architecture). When an address points to a valid memory position (not the
acknowledge delay registers), the controller translate the input signals from the wishbone
bus into signals that will be sent to the memory controller (inverting control signals, cre-
atingOE from wb_we, etc). The signals will be static until the controller is deselected,
when they will be set into their inactive values.

As the three memory controller share the same memory interface, that could be the case
when an AUTO REFRESH command from the SDRAM occurs at the sametime that a
Flash read/write cycle. To prevent non desired behavior, the busysignal is asserted every
time an AUTO REFRESH command happened. This signal, forces the Flash controller to
stop the current cycle while the refreshing happens and to restart it when it’s finished.

6.5.2 Acknowledge Control Block

The acknowledge control block (as its name indicates) is in charge of the control of the
acknowledge signal and registers. When a write/read cycle starts, a counter starts to
decrease the value stored in the acknowledge delay register(ack_delay_wfor write oper-
ations andack_delay_rfor read operations). Once it reaches zero, the controller asserts
thewb_ack_oto high level.

6.5 Flash controller 45

Figure 6.10: Flash acknowledge control flow

When the address sent by the master is the one that points to theacknowledge delay
registers (address 0xf1000000, same address for both of them), the block copies the 8
LSB form the data to theack_delay_def_r(default value for the read acknowledge delay)
and the 16-9 LSB form the data to theack_delay_def_w(default value for the writing
acknowledge delay) and immediately asserts the acknowledge signal to high level. This
means that whenever a register is written, the other one should be too. When the controller
is unselected or a reset happens, the acknowledge registersare written with their default
value, all the control signals are set to inactive and the acknowledge signal is set to zero.

Table 6.10:Flash delay registers default values
Register Default value

ack_delay_def_w 01000000
ack_delay_def_r 00011101

6.6 AvBus 47

6.6 AvBus

As the three memory modules share many of the signals that compose the AvBus connec-
tor an interface is needed to avoid unexpected behaviors. This are the shared signals:

- Address bus

- Data bus

- Write enable

- Output enable

- Byte selection

To efficiently control the way the output signals are assigned we need to establish some
kind of hierarchy between the memory controllers. The SDRAMcontroller has to be at
the top, the AUTO REFRESH command can not be postponed or the data stored in the
SDRAM might be corrupted or even lost.

Between the other two controllers (SRAM and Flash), things are more or less at the same
level, but always below the SDRAM controller. Any time the SDRAM controller needs
to access the memory modules it needs to have access to the shared signals even if they
are used by any of the other two controllers. That is possibleby the use of the busy
signal (sdr_ckesignal from the SDRAM). Any time the SDRAM controller accesses to
the AvBus connector shared signals, the busy signal is set tohigh level and the other
controllers (in case they were reading or writing the memorymodules) will stop their
current action and restart it once the busy signal is set to low level (once the SDRAM had
finished its actions). That gave us the confidence that even when an SDRAM action is
taken at the middle of another controller actions, its data will not be lost.

6.6.1 AvBus Interface

This is the most critical section of the whole design. As it isplaced between the mem-
ory controllers and the memory modules, the slightiest delay can turn into a non desired
memory behavior.

To ensure all the signals are assigned as quick as possible, all the selections have been
distributed in small case statements (for the shared signals) or straight assignations. The
control signals for the case elements are both SRAM and Flashchip select signals and the
SDRAM cke signal. With this three signals we can ensure that all the possible situations
regarding the three controllers are covered:

- SRAM memory access

- Flash memory access

- SDRAM memory access

- SDRAM and SRAM memory access

- SDRAM and Flash memory access

48 6 The SoC and its elements

The last two situation can occur when an AUTO REFRESH commandhappened in the
middle of a SRAM or Flash memory access. In this two cases, thesdr_ckesignal (used
as busy signal) ensures the integrity of the SDRAM stored data.

Theavbus_addr_osignal, when connected to the memory modules, skips the 2 LSB. In
the SRAM an Flash cases, it does not affect the behavior of thememory modules, the
Flash memory controller always reads and writes 2 byte wordsand with theavbus_bs_o
signal the SRAM and SDRAM memory controllers can control which bytes are written
or read.

In addition to he interface itself, a small control must be set for controlling the two buffers
between the AvBus connector and the SRAM and Flash memory modules (sown in Fig-
ure 4.5). The address buffer must be only enabled by setting its control value to zero
(MABUF_OE_o), because its direction if always the same (from the connector to the
memory modules) and its direction control value if fixed.

The data buffer must be enabled by setting its control value to zero(MDBUF_OE_o) and
depending on the action that will be performed, the direction of the buffer must be changed
from the module to the connector (reading operation,MABUF_DIR_o set to zero) to from
the connector to the module (writing operation,MABUF_DIR_o set to one).

Apart form the input/signals from the three memory controllers (which are connected to
the AvBus I/F), the board input/output signals of the AvBus interface are sown in Ta-
ble 6.11.

Table 6.11:AvBus I/F board input/output signals
Name Type Width Description

avbus_addr_o output 32 bits Address output signal
avbus_data_io inout 32 bits inout signal
avbus_sdram_cs_o output 1 bit SDRAM chip select output signal
avbus_sram_cs_o output 1 bit SRAM chip select output signal
avbus_flash_cs_o output 1 bit Flash chip select output signal
avbus_oe_o output 1 bit Output enable output signal
avbus_we_o output 1 bit Write enable output signal
avbus_cas_o output 1 bit CAS output signal
avbus_ras_o output 1 bit RAS output signal
avbus_clken_o output 1 bit Clock enable output signal
avbus_sdram_clk_i input 1 bit SDRAM clk input signal
avbus_sdram_clk_o output 1 bit SDRAM clk output signal
avbus_bs_o output 4 bit Byte select output signal
MDBUF_OE_o output 1 bit Data buffer output enable output signal
MDBUF_DIR_o output 1 bit Data buffer direction output signal
MABUF_OE_o output 1 bit Address buffer output enable output signal

The assignment of the output data to the memory controllers is done by direct assignation
from theavbus_data_iotri-state.

6.6 AvBus 49

Figure 6.11: AvBus interface structure

6.7 UART 51

6.7 UART

The board has a RS232 DB9 connector with allows us to use it fora UART. The UART IP
core which has been implemented, has been developed by JacobGorban and it is available
in Open Cores (www.opencores.org). The IP core is free hardware and it is distributed
under the terms of the GNU Lesser General Public License.

The main features of the UART core are:

- WISHBONE interface in 32-bit or 8-bit data bus modes (selectable)

- FIFO only operation

- Register level and functionality compatibility with NS16550A (but not 16450).

- Debug Interface in 32-bit data bus mode.

To configure the UART to work with the parameters we need, we should perform the
following tasks in order:

- Set the Line Control Register to the desired line control parameters. Set bit 7 to 1
to allow access to the Divisor Latches.

- Set the Divisor Latches, MSB first, LSB next.

- Set bit 7 of LCR to 0 to disable access to Divisor Latches. At this time the transmis-
sion engine starts working and data can be sent and received.

- Set the FIFO trigger level. Generally, higher trigger level values produce less inter-
rupt to the system, so setting it to 14 bytes is recommended ifthe system responds
fast enough.

- Enable desired interrupts by setting appropriate bits in the Interrupt Enable register.

It is important to point that the value of the Divisor Lacht responds to Equation 6.1.

Baud rate=
Input Clock Frequency
16 ·Divisor Latch Value

(6.1)

Every time there is a reset applied to the core the following actions are performed:

- The receiver and transmitter FIFOs are cleared.

- The receiver and transmitter shift registers are cleared

- The Divisor Latch register is set to 0.

- The Line Control Register is set to communication of 8 bits of data, no parity, 1
stop bit.

- All interrupts are disabled in the Interrupt Enable Register.

That means that every time a reset is applied to the core, the initialization procedure mast
be done again in order to behave as expected.

52 6 The SoC and its elements

For further information about the UART module please check the data sheet [7].

6.8 Boot Monitor 53

6.8 Boot Monitor

The boot monitor is a special firmware stored in the FPGAs block RAMs which provides
the initialization of devices (the UART) and a basic GUI to allow the user to do basic
memory manipulation and serving as boot platform for other operative systems stored in
the FLASH memory or other storage devices.

The boot monitor was developed for the Dafk system [1] by OlleSeger, and as it has the
same CPU and UART, it can be reused in this system.

The address of the boot monitor is stored in the defines file of the CPU (or1200_defines.v)

6.9 Clock Manager

A small clock manager, created using a DCM, is used to generate the system clock and
the SDRAM clock, which is a 180 degrees shifted version of thesystem clock.

7
Tests

To verify the SoC, several test have been made. The initial tests were made on the simula-
tor in order to check if the system behave as expected. First module by module and then
several of them conforming a more complex system that in the last test was the SoC itself.
The hardware tests have been done the same way. First separated modules, and then, step
by step, more complex elements that ended with the SoC.

7.1 Simulation Tests

The structure of the test (without considering the number ofmodules tested) has always
been the same. All the modules receive the data coming from the testbench have a wish-
bone interface. The testetbench has been made as a fake wishbone bus master (excepting
the case when the whole SoC was tested, were no testbench was needed, only clock and
reset signals) which sends write and read commands. The testbench structure, sown in
7.1, was implemented using a FSM. Triggered by the reset, thewhole test process was
automated. Loading the.do files, the waveforms of the most important signals can be
seen before the test was finished. In case there were more thanone slave to be tested, the
basic structure of the testbench (from Write slv1 to the sec onIDLE) can be duplicated
changing the target addresses to point to another slave.

55

56 7 Tests

Figure 7.1: Testbench basic structure

7.1.1 Single Tests

SRAM

The SRAM memory controller was tested to check the acknowledge signal delay and the
translation from the wishbone input signals into the sram output signals.

SDRAM

The SDRAM memory controller was tested to check the translation of the wishbone sig-
nals into the SDRAM output signals. Also all the control signals and the AUTO RE-
FRESH period were tested.

Flash

The Flash memory controller was tested to check the two acknowledge signals delay and
the translation from the wishbone input signals into the flash output signals.

Wishbone Bus

The wishbone bus was tested to check the arbiter and decoder capability to decode the
selected master and slave depending on the input address. Inaddition, the scenario of
both masters requesting a bus cycle was also tested.

UART

Initialization sequence and character sending were tested.

7.1.2 Group Tests

In order to test write and read operations without having to synthesize the memory con-
trollers, some models of the memory modules present in theAvnet Communications/Memory
modulewere used.

7.2 Hardware Tests 57

Memory models

The SRAM memory model used is contained in the filesSram_1mb.vand128Kx8.v. The
SDRAM memory model was contained in the filessdram.vandmt48lc16m16a2.v.

SRAM + SRAM Model

Read and write operations were tested.

SDRAM + SDRAM Model

Read and write operations were tested, also the AUTO-REFRESH period and other com-
mands.

SRAM + AvBus I/F + SRAM Model

Faking the input signals from the SDRAM and Flash controller, the AvBUS I/F output
signals assignments were tested.

Wishbone bus + SRAM +AvBus I/F + SRAM Model

Using one of the Master’s wishbone inputs, read and write operations were tested as well
as the correct signal assignments in the wishbone bus.

Wishbone bus + SRAM + SDRAM +AvBus I/F + SRAM Model + SDRAM Model

In this test, several situations were tested.

- SRAM read and write

- SDRAM read and write

- SDRAM AUTO-REFRESH command in the middle of a SRAM write operation

- SRAM and SDRAM operation request form different masters atthe same time

SoC

Including the memory content files of the boot monitor to the rest of the modules of the
system, the start sequence was tested.

7.2 Hardware Tests

The structure of the hardware tests resembles the testbenches of the simulation tests. Both
of them have a fake wishbone master that feeds the slave modules, but instead of having
the whole test process automated, its done in steps triggered by the keys available on the
FPGA board (add-on board made by the department of Electrical Engineering).

The reason of not having the whole process automated is because to show the read data
(32 bits) there are only 8 LEDs available on the board. To showthe entire data length,
once is read from the memory, the test switches into display state, where, controlled by 4
of the 6 keys, the user can select which byte of the 4 will be displayed on the LEDs. Once
the results have been checked, with other key, the user can goback to the IDLE state.

58 7 Tests

Figure 7.2: Hardware test structure

In order to control when the reads and writes ends, the acknowledge signal is also sown in
the read and write states. Once the acknowledge signal is asserted, the user can continue
to the IDLE state (write operations) or to the display state (read operations).

SRAM tests

First, the SRAM memory controller was synthesized and tested alone. Next the AvBus I/F
was added and finally the Wishbone Bus. In all the test, read and write operations were
tested in two different addresses to ensure that neither thebuffers or the internal registers
of the AvBus I/F stored the data sent, faking the reads with previously sent and stored
data.

SDRAM tests

The SDRAM memory controller was synthesized with all the elements present in the
SRAM hardware test. In this test, the only element tested, was the capability of the
AvBus interface to deal with two controllers at the same time. While the operations of
the SRAM were being executed, the SDRAM controller was making AUTO REFRESH
commands, which forced the SRAM controller and the AvBus interface to deal with the
memory controllers hierarchy.

Due to the complexity of the SDRAM memory controller, the rest of the test were per-
formed once the whole SoC was implemented. The use of a terminal to display the data
loaded from the SDRAM memory modules was the best way to find errors and unexpected
behaviors.

SoC tests

In this test, the functionality of the SDRAM memory controller and whole system were
tested. As there was a CPU and the essential peripherals to work as a real system, test
were no longer made of HDL elements or fake wishbone bus masters. In this case, the
test were performed by the use of terminal commands or programs written in C.

7.2 Hardware Tests 59

The use of the UART allows the use of a text based user interface provided by the Boot
Monitor, which makes the basic operations (read, write and copy memory contents) much
easier for the user and brings out the possibility of more complex test.

The SDRAM memory controller was tested at first with basic memory manipulation com-
mands. The same was done with the SRAM and Flash controller. Using terminal com-
mands, several positions of the different memory modules were written, read and copied.

The possibility of loading C programs, allows testing the whole SoC as a real system.
Arithmetical operations can be used along with pointers, printf, loops, counters and almost
any possibility supported by C language.

As the CPU is not a regular X86 architecture, some special libraries need to be added to
the C files along with some memory positions specifications topoint the addresses where
the code and its related elements are going to be placed.

The file is loaded into the system as an hexadecimal file. To compile ands transform the
standard C file into the .hex file that can be interpreted by thesystem there is a makefile
placed in the foldersimpleprog. This makefile takes as input the filesimpleprog.cthat
contains the test and generates thesimpreprog.hexfile that can be loaded into the system.

The basic structure of the SoC tests written in C is the following:

1. Take 3 numbers, store them in three memory positions (in the SRAM or SDRAM)

2. Load the three numbers, make some operations between themand store the results
in three different memory positions (not necessarily in thesame memory module)

3. Load the results, combine them into one final number and display it using the return
command

4. At the same time, display a message using the printf function

This basic structure can be modified to support more complex operations and therefore
more complex tests.

8
Results

All the simulation tests were successful, the modules behave as expected and no big errors
were found.

In the hardware tests, all the modules worked as expected excepting the Flash memory
controller and the AvBus I/F.

The AvBus interface had showed as the critical element of thedesign. When only the
SDRAM and the SRAM modules were working together, the results were as expected.
But when the Flash memory controller was added, both the SRAMand the Flash memory
controllers did not work as expected. The problem is somehowrelated with the use or not
of the Flash chip select signal. When is not used, the SRAM works well (the Flash does
not as the memory chip is not enabled), but when is used, both controllers behave in an
unexpected way. This issue has to be studied in detail, because there is a problem that is
not shown in the simulation tests and can be related with the speed of the AvBus I/F mod-
ule. This problem is probably related with the hierarchy of the memories. The SDRAM
actions can not be stopped, but at the same time, some Flash operations can not be stopped
too, so that might be the problem behind the non desired behavior. Nevertheless, it should
be studied in detail in future revisions of the platform.

When only the SDRAM and the SRAM memory controllers where used, the SoC test
were successful. Data was written in the correct positions and the results and the text
displayed at the terminal were correct. This happened regardless of the memory module
where the programs were loaded.

Synthesizing the SoC and the different modules separately,hints of the maximum clock
frequencies were obtained.

- SRAM memory controllerfmax = 226 Mhz.

61

62 8 Results

- Flash memory controllerfmax = 204 Mhz.

- SDRAM memory controllerfmax = 47 Mhz.

- CPUfmax = 71 Mhz.

- UART fmax = 135 Mhz.

- Wishbonefmax = 518 Mhz.

- AvBus I/Ffmax = none (there is no clock signal).

- Systemfmax = 35/71 Mhz. (depending on the synthesizer used)

Those values were obtained without seting any timing constraint. As there were no desired
working frequencies set, the synthesizer did not push to obtain the maximum possible
frequency. Nevertheless, this frequencies are a ballpark figure of the real frequencies.

Regarding to the FPGA utilization, the result obtained after the place and route operations
are sown in Table 8.1 and Table 8.2.

Table 8.1: FPGA logic utilization
Number of Slice Flip Flops 2,416 out of 46,080 (5%)
Number of 4 input LUTs 7,126 out of 46,080 (15%)

Table 8.2: FPGA logic distribution
Number of occupied Slices 4,072 out of 23,040 (17%)
Number of Slices containing only related logic4,072 out of 4,072 (100%)
Number of Slices containing unrelated logic 0 out of 4,072 (0%)
Total Number of 4 input LUTs 7,209 out of 46,080 (15%)
Number used as logic 6,890
Number used as a route-thru 83
Number used for Dual Port RAMs 236 (Two LUTs used per Dual Port RAM)
Number of bonded IOBs 154 out of 824 (18%)
IOB Flip Flops 134
Number of RAMB16s 36 out of 120 (30%)
Number of MULT18X18s 4 out of 120 (3%)
Number of BUFGMUXs 2 out of 16 (12%)
Number of DCMs 1 out of 12 (8%)

As the reader can notice, even having a full system synthesized, the use of the FPGA
resources is not very high.

9
Conclusions

Looking again at the primary goal this project has been trying to accomplish, I think it is
fare to say that it has been accomplished.

I have developed the basic system to be used in the future as a versatile test platform and,
despite it can be improved in many ways, the base platform is done.

It has the most updated version of theOR1200CPU and will be able to run Linux in the
future. The memory controllers are now separated and the SDRAM memory controller
now supports burst.

The system, once integrated in theNoGap platform, will be able to perform any kind of
test that can be described using C or C++ programming languages. At the same time, it
will not depend on external computational elements to process the results of the performed
tests. And with the use of the Wishbone interconnection standard it ensures that if in the
future, new features are required, they can be added in an easy way.

As the objective was, this features are the ones that define a versatile platform, and that at
the end was the reason of this project.

63

10
Future Work

The possible ways of continuing with this project can be divided in two. On one side the
improvements to the main system, that can increase the versatility of the system, and in
the other side, the future goals related with the integration of the system in theNoGap

platform.

10.1 System Improvements

One good way of improving the performance of the system without having to add any
extra module is to modify the SRAM and Flash controllers to support burst mode. It can
be easily done by adding a FIFO in the controllers and some logic to check thewb_cti
signal for burst start and burst end.

A good way to improve the SDRAM memory controller can be to store the configuration
parameters in the SRAM or Flash memory, being able to modify then while running the
system and loading them any time a reset is applied.

Another aspect that needs to be studied in detail is the behavior of the Flash memory
controller. Probably a readjustment of the AUTO REFRESH command periods of the
SDRAM memory controller and a better AvBus I/F are going to beneeded.

There is also some modules that can be added in order to increase the available features
and give the system more versatility.

- An Ethernet module can offer quicker communications basedon a very common
protocol (IP) and the possibility of using resources storedin an FTP server, remote
control, internet access, etc..

- A DDR SDRAM memory controller can boost the performance of the primary mem-

65

66 10 Future Work

ory of the system

- A SD card module (using the add-on board) can provide the system of a flexible
and portable storage solution for tests, results, OS hosting, etc..

- A PCMCIA controller can be used to add multiple peripherals

10.2 Future Goals

The primary goal of the system is, of course, to be integratedin theNoGap platform to
provide a flexible hardware platform for testing ASIPs and accelerators. To accomplish
that goal, it is necessary to add a wrapper generator to theNoGap platform, to be able to
establish a communication between the test platform and thedesign to be tested.

Another goal that can improve the system capabilities of testing is the support of a UNIX
operating system. TheOR1200 CPU is supported in the latest versions of the Linux
kernel, so only the slaves modules might need to be tested forincompatibilities. By doing
this, the range of possibilities will be increased widely.

Bibliography

[1] TSEA44 web page, . URLhttp://www.da.isy.liu.se/courses/tsea44/.

[2] Gaisler LEON web page. . URLhttp://www.gaisler.com/cms/index.php?option=com_content&task=se

[3] Accelera. SystemVerilog. URLhttp://www.systemverilog.org/.

[4] Dinesh Annayya.SDRAM controller specification, February 2012.

[5] Julius Baxter and Damjan Lampret. OpenRISC 1200 IP Core Specification. Septem-
ber 2011.

[6] Per A. Carlström.NOGAP: Novel Generator of Accelerators and Processors. PhD
thesis, Linköping University, 2010.

[7] Jacob Gorban. UART IP Core Specification. August 2002.

[8] Iee. 1076-2008 IEEE Standard VHDL Language Reference Manual. Technical
report, 2009.

[9] Ieee. 1364-2005 IEEE Standard for Verilog Hardware Description Language. Tech-
nical report, 2006.

[10] Ieee. 1800-2009 IEEE Standard for SystemVerilog–Unified Hardware Design, Spec-
ification, and Verification Language. Technical report, 2009.

[11] Intel. Intel StrataFlash Memory data sheet. March 2005.

[12] Damjan Lampret, Rohit Mathur, Jeanne Wiegelmann, and Marko Mlinar. OpenRISC
1000 Architecture Manual. April 2006.

[13] Opencores.WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores, September 2002.

[14] Avnet D. Services.Xilinx Virtex-II Development Kit, November 2002.

[15] Avnet D. Services.Communications/Memory Module, November 2002.

[16] Micron Technology.MT48LC16M16A2 SDRAM data sheet, March 2002.

[17] Wikipedia. Verilog. . URLhttp://en.wikipedia.org/wiki/Verilog.

67

http://www.da.isy.liu.se/courses/tsea44/
http://www.gaisler.com/cms/index.php?option=com_content&task=section&id=4&Itemid=33
http://www.systemverilog.org/
http://en.wikipedia.org/wiki/Verilog

68 Bibliography

[18] Wikipedia. Vhdl. . URLhttp://en.wikipedia.org/wiki/Vhdl.

[19] Wikipedia. Hadware Description Languages. . URL
http://en.wikipedia.org/wiki/Hardware_description_language.

[20] Xilinx. Virtex II family documentation, 2007.

http://en.wikipedia.org/wiki/Vhdl
http://en.wikipedia.org/wiki/Hardware_description_language

Upphovsrätt

Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare — under 25 år
från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut
enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forsk-
ning och för undervisning. Överföring av upphovsrätten viden senare tidpunkt kan inte
upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens
medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösning-
ar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den om-
fattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt
skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang
som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets
hemsidahttp://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet — or its possible replace-
ment — for a period of 25 years from the date of publication barring exceptional circum-
stances.

The online availability of the document implies a permanentpermission for anyone to
read, to download, to print out single copies for his/her ownuse and to use it unchanged
for any non-commercial research and educational purpose. Subsequent transfers of copy-
right cannot revoke this permission. All other uses of the document are conditional on
the consent of the copyright owner. The publisher has taken technical and administrative
measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linköping UniversityElectronic Press and its
procedures for publication and for assurance of document integrity, please refer to its
www home page:http://www.ep.liu.se/

c© Eneas Puertas Kreusch

http://www.ep.liu.se/
http://www.ep.liu.se/

	Front Page
	Title Page
	Library Page
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Why Testing
	1.2 Types of Tests and Platforms
	1.3 The Need of Versatile Test Platforms

	2 Background
	2.1 HDL Languages
	2.1.1 HDL in IC Design
	2.1.2 HDL in IC Simulation
	2.1.3 Most Popular HDLs

	2.2 IP Blocks
	2.3 NoGap
	2.4 FPGA
	2.5 Simulation, Synthesis and FPGA Programming Tools

	3 Related Work
	4 The System
	4.1 Choosing the Test Platform
	4.2 Specifications of the SoC
	4.3 Target FPGA Board
	4.4 Final SoC Specifications

	5 Available Resources
	5.1 SDRAM Memory
	5.2 SRAM Memory
	5.3 Flash Memory
	5.4 Interconnection Bus
	5.4.1 The Wishbone Bus Standard

	6 The SoC and its elements
	6.1 The CPU
	6.1.1 OpenRISC 1000 Specifications
	6.1.2 OpenRISC OR1200
	6.1.3 The Implemented OR1200

	6.2 Wishbone Bus
	6.2.1 The Arbiter
	6.2.2 The Decoder
	6.2.3 The Bus

	6.3 SDRAM Controller
	6.4 SRAM Controller
	6.4.1 Control & I/O Block
	6.4.2 Acknowledge Control Block

	6.5 Flash controller
	6.5.1 Control & I/O Block
	6.5.2 Acknowledge Control Block

	6.6 AvBus
	6.6.1 AvBus Interface

	6.7 UART
	6.8 Boot Monitor
	6.9 Clock Manager

	7 Tests
	7.1 Simulation Tests
	7.1.1 Single Tests
	7.1.2 Group Tests

	7.2 Hardware Tests

	8 Results
	9 Conclusions
	10 Future Work
	10.1 System Improvements
	10.2 Future Goals

	Bibliography
	Copyright

