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Abstract GeoGebra is an open-source educational mathematics software
tool, with millions of users worldwide. It has a number of features (integration
of computer algebra, dynamic geometry, spreadsheet, etc.), primarily focused
on facilitating student experiments, and not on formal reasoning. Since includ-
ing automated deduction tools in GeoGebra could bring a whole new range
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of teaching and learning scenarios, and since automated theorem proving and
discovery in geometry has reached a rather mature stage, we embarked on a
project of incorporating and testing a number of di�erent automated provers
for geometry in GeoGebra. In this paper, we present the current achievements
and status of this project, and discuss various relevant challenges that this
project raises in the educational, mathematical and software contexts. We will
describe, �rst, the recent and forthcoming changes demanded by our project,
regarding the implementation and the user interface of GeoGebra. Then we
present our vision of the educational scenarios that could be supported by
automated reasoning features, and how teachers and students could bene�t
from the present work. In fact, current performance of GeoGebra, extended
with automated deduction tools, is already very promising�many complex
theorems can be proved in less than 1 second. Thus, we believe that many
new and exciting ways of using GeoGebra in the classroom are on their way.

Keywords secondary education · interactive learning environments ·
intelligent tutoring systems · automatic theorem proving

1 Introduction

Proofs in mathematical education play an important role in understanding
mathematics and developing student skills in problem solving and discovering
facts in real life and science. One traditional way for using proofs in developing
mathematical skills is to teach Euclidean geometry as a mainstream topic,
since it is an �empirical theory� and one of the most well-established theories
of all ([Hanna & Jahnke, 1996, p. 896]). For instance, by measuring the angles
of triangles by a protractor we always get a sum near 180 degrees, and these
empirical results yield a simple theorem.

Modern ways of teaching geometry include using dynamic geometry tools,
even among teachers who stick to traditional methods. With dynamic geome-
try tools, the user can create and manipulate geometric constructions. Thus,
the user can start a construction with several points, build new objects depend-
ing on the existing ones, and then move the starting points to explore how the
whole construction changes, while keeping the established interrelations among
its di�erent components. In this way, the user can test a given or conjectured
thesis, for instance, that some three points are always (for whatever positions
of the initially given points) collinear, or that some two constructed lines are
always (for every placement of the starting points) parallel etc. However, this
is only thesis testing and not proving. Even if a thesis is a�rmatively tested
for hundreds of di�erent starting points, it still does not mean that the thesis
will be always true. The only way to show that the thesis is always true (i.e.,
that it is a geometry theorem) is to prove it. There are several methods for
automated theorem proving (ATP) in geometry, but the way humans prove
theorems is still very di�cult to get automated.

In this paper we present our initial e�orts in integrating ATP features in
GeoGebra ([Hohenwarter, 2001]). GeoGebra is an open-source mathematics
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software application for learning and teaching, with millions of users world-
wide, and hence an excellent choice for showing and promoting the bene�ts
of ATP educational scenarios. We will brie�y present several theorem provers
already integrated in GeoGebra, some challenges, some examples and some
possible applications in education. At the current stage, we do not aim at
obtaining readable proofs from the provers. Instead, we will focus on using
the new ATP features for guiding the user exploration process, since ATP
would allow GeoGebra to automatically provide information on whether some
user-conjectured thesis is valid or not.

In Section 2 we brie�y overview the state of the art concerning the merging
of dynamic geometry programs and ATP. Section 3 describes our main con-
tribution concerning the inclusion of ATP in GeoGebra. Section 4 discusses
in some detail two examples and provides performance data on a collection
of examples. Section 5 focuses on educational questions. Finally, Section 6
summarizes our results and future plans.

2 Dynamic geometry software and theorem proving

Although Sketchpad ([Sutherland, 1963]) is commonly considered as the
generic ancestor of current computer graphic software, the �rst computer
program able to construct and manipulate geometric constructions in micro-
computers, the Geometric Supposer ([Schwartz & Yerushalmy, 1983]), can be
traced back to 1981. Over a decade after, a new generation of personal com-
puters supported the global spread of dynamic geometry in education, ex-
empli�ed by The Geometer's Sketchpad ([Jackiw, 1995]) and Cabri Geometry
([Baulac & al., 1994]). The accuracy of constructions and the visual evidence
for properties provided by this piece of software were sometimes used as a re-
placement of proof ([Hanna, 1997,Tall, 1995]). Automatic checking abilities�
through the numerically approximate veri�cation of a conjectured property
in a large number of cases, yielding a highly probable claim�introduced in
newer versions (of Cabri, for instance) reinforced lessening the role of proving
when using these learning environments. Reacting to these techniques and ex-
ploiting theoretical developments mainly coming from academia, automated
deduction techniques have recently started to enrich the �eld of dynamic ge-
ometry. We brie�y review some dynamic geometry software (DGS) equipped
with automated proving and other related features.

ATP in geometry has a history of
more than �fty years ([Chou & Gao, 2001]). Initial attempts to implement
automatized theorem proving in geometry appear, in the realm of Arti�cial
Intelligence (AI), in the 50's, when Gelernter created a theorem prover that
could �nd solutions to a number of problems taken from high-school textbooks
in plane geometry ([Gelernter, 1959]). The impact of Gelernter's geometry ma-
chine led to a line of work within the AI context, on systems able to automat-
ically build geometry proofs. An early example (from the late 70's) is Geom, a
Prolog-based geometry theorem-prover ([Coelho & al., 1986]). Other systems



4 Botana, Hohenwarter, Jani£i¢, Kovács, Petrovi¢, Recio and Weitzhofer

worth mentioning are Chypre ([Bernat, 1996]), Cabri-Euclide ([Luengo, 1997])
or Geometrix ([Gressier, 2013]).

On one hand, the greatest accomplishments (i.e., in terms of the complex-
ity of the theorems to be proven) of ATP in geometry have been achieved
by algebraic methods, in which the geometric statement is �rst translated to
an algebraic counterpart and then is subject to some computer algebra ma-
nipulation. In this category we can mention the non-probabilistic, multiple
checking, approach which is behind the �exact check� method we will refer to
in the next section ([Zhang & al., 1990]), but the two most important meth-
ods in this group are Wu's method ([Chou, 1988,Wu, 1978]) and the Gröbner
bases method ([Buchberger, 1987,Kapur, 1986]). Both of them can e�ciently
prove (or disprove) complicated geometry assertions; however, they output
only a yes/no answer and do not provide human readable, traditional geom-
etry proofs. Other algebraic approaches, such as the coordinate-free methods
known as the area method ([Chou & al., 1993,Jani£i¢ & al., 2012]) and the full
angle method ([Chou & al., 1994,Chou & al., 1996a]), also deal with complex
expressions involving certain geometry quantities, but the proofs they produce
are, sometimes, short and readable. There are methods, such as the deductive
database method ([Chou & al., 1994]), that can generate readable proofs (e.g.,
in terms of higher-order lemmas), but they still have a smaller scope than the
algebraic provers.

On the other hand, recent interest on formal provers has led to the design
of systems where proofs are veri�ed by proof assistants such as Coq. For in-
stance, GeoView1 is a tool that combines a dynamic geometry drawing tool
GeoplanJ with PCoq, a user interface for the general purpose proof assistant
Coq ([Bertot & al., 2004]). The statements of plane geometry theorems and
their proofs are manually constructed and then veri�ed within Coq proof as-
sistant. Dynamic geometry �gures can be automatically generated from PCoq
theorem statements. A related program is GeoProof 2, an interactive geometry
tool that can communicate with the Coq proof assistant to perform interac-
tive proofs of geometry theorems ([Narboux, 2007a,Narboux, 2007b]). Other
formal systems like E ([Avigad & al., 2009]) focus on diagrammatic reasoning
by translating Euclid's Elements to a faithful axiomatic system which can be
handled algorithmically.

Concerning al-
gebraic provers, we can mention Discover ([Botana & Valcarce, 2002]), that
combines a standard DGS with calls to some computer algebra systems (Co-
CoA: [CoCoATeam, 2012], and Mathematica: [Wolfram, 1996]) for automated
discovery in Euclidean geometry. For a user-de�ned construction, conditions
for some property to hold can be automatically discovered and then formally
checked, using the Gröbner basis method. Another example of this kind is
GCLC, a DGS with custom speci�cation language for representing geometry
constructions and geometry theorems. The program has three theorem provers

1 http://www-sop.inria.fr/lemme/geoview/geoview.html
2 http://home.gna.org/geoproof/

http://www-sop.inria.fr/lemme/geoview/geoview.html
http://home.gna.org/geoproof/
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built-in: provers based on the area method, Wu's method and the Gröbner
bases method ([Jani£i¢, 2010]).

Let us mention a few other examples in this direction, such as Geometry
Expert3 (GEX, [Chou & al., 1996b]), a DGS focused on ATP, that implements
Wu's, the Gröbner basis, vector, full angle, and the area method. Another
example is Java Geometry Expert4 (JGEX, [Ye & al., 2011,Ye & al., 2010]),
under development from 2004, a new, Java version of GEX. JGEX combines
dynamic geometry, automated geometry theorem proving, and, as its most
distinctive part, visual dynamic presentation of proofs. It provides a series of
visual e�ects for presentation of proofs which can be visualized either manually
or automatically. Within the program distribution, there are more than six
hundred examples of proofs.

GEOTHER5 ([Wang, 2004a]) is an environment that combines drawing
routines and interface written in Java with �ve algebraic theorem provers
implemented in Maple. On the bases of the textual description of a con-
jecture, GEOTHER automatically produces dynamic diagrams, i.e., assigns
coordinates to the involved points in an appropriate manner. Geometry Ex-
plorer ([Wilson & Fleuriot, 2005]) is a dynamic geometry tool that produces
human-readable proofs of properties of constructed objects, using the full-
angle method. It can produce diagrammatic proof visualizations that aim to
be more intuitive than textual proofs. MMP/Geometer6 automates geometric
diagram generation, geometry theorem proving, and geometry theorem dis-
covering ([Gao & Lin, 2004]). MMP/Geometer implements Wu's method, the
area method, and the geometry deductive database method. Conjectures are
given in a restricted pseudo-natural language or in a point-and-click manner.

As a �nal example, but of a di�erent approach to proving properties, we
can refer
to Cinderella ([Kortenkamp, 1999,Kortenkamp & Richter-Gebert, 2004]), an
interactive geometry system that uses randomized theorem checking for ana-
lyzing constructions. It is not a symbolic, deductive theorem proving method,
but a probabilistic method for checking whether a conjecture is likely a theo-
rem.

The above systems with ATP features can e�ciently prove many complex
geometry theorems, but these ATP features are not primarily designed for ap-
plications in education, i.e., as a helping tool in a wider process of exploring and
discovering conjectures by the students. They are, in many aspects, still only
academic tools, in the prototype phase, not yet well distributed, maintained
or not fully operative. This is why we would like to �ll the gap by introducing
a di�erent solution to be much more useful for the school community.

3 http://www.mmrc.iss.ac.cn/gex/
4 http://woody.cs.wichita.edu/
5 http://www-salsa.lip6.fr//~wang/GEOTHER/
6 http://www.mmrc.iss.ac.cn/~xgao/software.html

http://www.mmrc.iss.ac.cn/gex/
http://woody.cs.wichita.edu/
http://www-salsa.lip6.fr//~wang/GEOTHER/
http://www.mmrc.iss.ac.cn/~xgao/software.html
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3 Proving capabilities in GeoGebra

GeoGebra is already a well-developed framework with a wide range of func-
tionalities and with a stable interface familiar to millions of users. On the other
hand, state of the art theorem provers also have features that are di�cult to
change (e.g., the precise way to introduce the conjectures to be proved, or
the sort of output results, etc.). Hence, adding proving capabilities to GeoGe-
bra, via several theorem provers integrated (see section 3.4), poses a series of
challenges, at di�erent levels (e.g., user interface, internal representation and
communication, etc.), sometimes confronted with our main goals.

3.1 Goals

We have the following goals in adding proving capabilities to GeoGebra:

1. Intuitive interface: The user interface should remain as intuitive as pos-
sible. GeoGebra is primarily not for (deductive) proving but for experi-
menting, and we want to provide a simple interface for both teachers and
students. Integration of proving capabilities should follow the de facto stan-
dards of the user community.

2. Simpli�ed output: Details of a proof should not be shown to the user
at this stage. In fact, as mentioned above, the most e�cient proving meth-
ods do not produce readable proofs, but only a yes/no answer, follow-
ing often very long internal algebraic computations, such as sequences
of elimination steps. Also, even �degeneracy conditions� ([Chou, 1988,
Recio & Vélez, 1999]) should be hidden for most users.

3. Small size and e�ciency: Code size of the implementation matters:
after introducing ATP features, GeoGebra should start not much slower
than before. Also, the execution speed is important: we expect a yes/no
answer for most classroom problems within a second.

4. Usability in di�erent GeoGebra subsystems: Re-use of a yes/no an-
swer may be useful for other subsystems. For example, since GeoGebra
could be used for computer aided assessment (CAA) for open ended tests,
a proving subsystem could enable a quick evaluation whether the student
created a solution that is di�erent from the one provided by the teacher,
but is still mathematically equivalent to it.

5. Modular architecture: The architecture of the system should be mod-
ular in order to allow adding and using multiple methods for theorem
proving. Since di�erent methods may have di�erent e�ciency, it would be
useful to provide an automatic way to select the most promising method
for the given statement.

3.2 New GeoGebra commands

The usual way for the user to de�ne a statement in GeoGebra is to create
a Boolean query, e.g. asking if lines a and b are parallel (�a‖b�) or certain
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quantities are equal (�x2 + y2 == z2�). Normally, GeoGebra decides whether
a Boolean expression is true or not by using numerical computations. However,
the new Prove command, that returns true/false/unde�ned for the given user
input, uses symbolic (deductive) methods to determine whether a statement
is generically true (i.e., a theorem) or not. If GeoGebra cannot determine the
answer, the result is unde�ned.

We also created the ProveDetails command to get more details exactly
when the statement is true. There may usually be some minor relations which
must not hold to ensure the statement to be true: for example, many Euclidean
theorems for triangles are not valid if the triangle is degenerate, i.e., its third
vertex lies on the opposite side (i.e., the triangle has an area of zero). For
most students these �ne details are usually not interesting since the teacher
silently assumes some small extra conditions during the construction steps.
But for a computer these details are not negligible: an automated proof in the
background will classify the statement if it is always true or true only under
certain conditions.

The output of the ProveDetails command is an empty list {} if GeoGebra
cannot determine the answer, a list with one element: {false} if the statement
is not a theorem (i.e., if it is not generically true), a list with one element:
{true} if the statement is always true, or a list with the Boolean value true
and another list for the degeneracy conditions, if the statement is valid in
general but under certain conditions. In this last case, if all conditions in the
additional list are false, then the statement is true. This means that the list
of these degeneracy conditions is just a su�cient but not necessary list of
assumptions, and also it cannot be guaranteed that the list is the simplest
possible one.

In some cases, the ProveDetails command cannot translate the degener-
acy conditions to human readable form. In such cases {true,{"..."}} will be
returned.

Both new GeoGebra commands accept a wide variety of Boolean expres-
sions as input. On one hand, these expressions can represent a certain geomet-
ric correlation: equality, parallelism, orthogonality, collinearity, concurrency or

concyclicity. Here are some examples of providing these properties: A
?
= B (or

A==B or AreEqual[A,B]), c||d (or AreParallel[c,d]), e ⊥ f (or ArePer-
pendicular[e,f ]), AreCollinear[g,h], AreConcurrent[C,D,E], AreCon-
cyclic[P,Q,R,S]. On the other hand, the user can type a relation given by
an equation (e.g. �a+ b == c�). Logical operators and functions like ∨, ∧ and
negation are not supported at the moment.

It is also possible to use some speci�c quantities or even complicated expres-
sions inside the input formula, like the sum of the square of distances between
some given points. For classroom use, the preferred way may still be to de�ne
these quantities as previous steps in the construction itself. For example, in
Fig. 1 the student proves the Pythagorean theorem by constructing the right
triangle BAC and typing the proper input for the Prove command by simply
referencing the segments of the triangle. The same result could be done by
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Fig. 1 Construction protocol for stating Pythagoras' theorem

de�ning lengths x=Segment[A,B], y=Segment[A,C], z=Segment[B,C]
and use Prove[x2 + y2 == z2]. Even in this simple case, it is not straightfor-
ward to decide which approach is better for the classroom use, but the teacher
has the freedom to choose the better formulation for the educational situation.

In our opinion, this design is already rich enough to cover many theorems in
Euclidean geometry. Also it is simple enough to help the student distinguishing
between the hypotheses of the theorem (appearing as construction steps) and
the thesis (the input of the Prove and ProveDetails commands).

3.3 Examples

Let us suppose that we have de�ned three free points, A=(1,2), B=(3,4),
C=(5,6). The command AreCollinear[A,B,C] yields true, since a numeri-
cal check is used on the current coordinates of the points. On the other hand,
Prove[AreCollinear[A,B,C]] will return false as an answer, since the three
free points are not collinear in general, i.e., considering they are just con-
strained to be �free�.

Second, let us de�ne a triangle with vertices A, B and C, and de�ne
D=MidPoint[B,C], E=MidPoint[A,C], p=Line[A,B], q=Line[D,E].
Now both p‖q and Prove[p‖q] return true, since a midline of a triangle
will always be parallel to the appropriate side (see Fig. 2)7. In addition, also
ProveDetails[p‖q] returns {true} because the statement is true without
any further condition for the points.8

7 The parallel sign must be inserted as a special character in GeoGebra by clicking �rst
the α icon on the right side of the Input Bar which opens a window, and then the correct
character can be chosen�it is the 8th element in the 4th row. Another method is to select
the correct Unicode character from a di�erent application and paste it into the Input Bar
in GeoGebra.
8 In the future the output of ProveDetails command may include other pieces of infor-

mation about the computation, for example, the calculation time and methods used.
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Fig. 2 p ‖ q when D and E are midpoints of BC and AC

Third, as a more complex example let us consider Pappus's hexagon the-
orem. Let A, B, C and D be free points and let us put points E on AB,
F on AC, and G on AD. Now let H, I and J be the intersection points of
CD and FG, BD and EG, BC and EF , respectively. Pappus claims that
the points H, I and J will be collinear. This statement is true, however, only
when a set of conditions is already met: for example if AD and CE are parallel,
the intersection point H cannot even be de�ned in the Euclidean plane (but
still may be meaningful in the projective plane). GeoGebra can give a quite
detailed answer on what conditions should be assumed. Namely, ProveDe-
tails[AreCollinear[H,I,J]] will return {true, {"AreCollinear[D,E,A],
AreEqual[DE,BC], AreEqual[EA,BC], AreEqual[F,A], AreParal-
lel[DB,EF], AreParallel[FA,BC]"}}. This means that if

� D, E and A are not collinear, and
� lines DE and BC are di�erent, and
� lines EA and BC are di�erent, and
� points F and A are di�erent, and
� lines DB and EF are not parallel, and
� lines FA and BC are not parallel

then H, I and J will be collinear. This set of conditions is strict in the sense
that by omitting any element of it the theorem may be no longer valid.

For educational use this result (which is obtained by OpenGeoProver by
using Wu's method9) is too long and unnecessarily complicated.10 Luckily,
there is another technique (described in [Recio & Vélez, 1999] and now fully

9 GeoGebra must be started to achieve this output by adding
--prover=engine:OpenGeoProver,method:Wu to the command line
[The GeoGebra Team, 2015].
10 It is well known that there are several mathematical and computational di�culties when
de�ning and obtaining degeneracy conditions, such as those described by [Wang, 2004b] in
the GEOTHER system.
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Fig. 3 Pappus's hexagon theorem realized in a good-looking con�guration

implemented in GeoGebra) which usually obtains a smaller list for degeneracy
conditions. For Pappus's hexagon theorem the smallest possible lists are:

1. � A, B and F are not collinear, and
� BC is not perpendicular to AC.

2. � A, B and C are not collinear, and
� A, B and F are not collinear.

3. � A, B and C are not collinear, and
� A, C and D are not collinear.

For a student user, of course, it would be important that GeoGebra selects
the �easiest� or �most beautiful� one of the possible set of conditions. In this
third example the third set is the best: it contains only free variables and
it is visually straightforward. From the perspective of automated proofs and
programming, however, it can be di�cult to make such a decision. It is easy to
draw the case of the theorem shown in Fig. 3 when AB||CD and AB 6= CD.
Clearly, these assumptions imply both the second and the third list of the
conditions above, but to �nd this geometrically good-looking con�guration,
the background work of the teacher is still required. (Even in the very special
case AB = BE = 2CF = 2FD, shown in the �gure, it can still be a challenge
for many students to �nd the arguments why the theorem holds.) On the
other hand, the problem with AD||CE is still not handled even in this case
since the applied technique computes results in projective geometry and the
non-Euclidean interpretation cannot be excluded.
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Fig. 4 GeoGebra can choose from several prover subsystems to answer questions

3.4 Methods supported

The new GeoGebra commands proceed by launching the prover subsystem11,
which uses the following engines (cf. the provided references to learn about
how the engines work) to decide whether a statement is true:

1. Exact checks in a bounded number of test cases (�Engine 1�,
[Kovács & al., 2012a], [Weitzhofer, 2013], [Botana & al., 2012a]).12 13

2. Algebraization of the given statement and then attempting to �nd its proof
by using Gröbner bases computation (�Engine 2�, [Botana & al., 2012b]).
This engine14 uses outsourced computations by the computer algebra sys-
tem Singular (so the computation is very fast, [Decker & al., 2012]) running
on a remote web server.

3. Outsourcing the decision to OpenGeoProver15, a stand-alone open
source prover. OpenGeoProver currently supports Wu's method (�En-
gine 3a�, [Mari¢ & al., 2011]) and the area method (�Engine 3b�,
[Desfontaines, 2012]), but will be extended by additional methods in the
future.

11 See http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/

common/util/Prover.java for the detailed Java source code of the prover subsystem in
GeoGebra.
12 This method has a monitoring helper method called �Pure symbolic� prover which can
be used for GeoGebra development purposes, but is too slow for regular use.
13 The Java source code of this engine can be found at http://dev.geogebra.

org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/

AbstractProverReciosMethod.java.
14 The Java source code of this engine can be obtained from http://dev.geogebra.

org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/

ProverBotanasMethod.java.
15 The Java source code of OpenGeoProver can be found at https://code.google.com/p/
open-geo-prover/source/browse/#svn/branches/geogebra_ogp/OpenGeoProver.

http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/util/Prover.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/util/Prover.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/AbstractProverReciosMethod.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/AbstractProverReciosMethod.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/AbstractProverReciosMethod.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/ProverBotanasMethod.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/ProverBotanasMethod.java
http://dev.geogebra.org/trac/browser/trunk/geogebra/common/src/geogebra/common/kernel/prover/ProverBotanasMethod.java
https://code.google.com/p/open-geo-prover/source/browse/#svn/branches/geogebra_ogp/OpenGeoProver
https://code.google.com/p/open-geo-prover/source/browse/#svn/branches/geogebra_ogp/OpenGeoProver
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There is a built-in heuristic that, for a given statement, tries to �nd the most
suitable engine (and the most applicable method within each engine, if it
supports several ones) among the available ones. Currently we use a dummy
�heuristic� which calls the provers in the order above. This is based on the
expected time of calculation from our current benchmark examples. We are
planning to develop more sophisticated portfolio solvers, successfully used in
other automated reasoning domains ([Xu & al., 2008,Nikoli¢ & al., 2009]).

3.5 Programming challenges

GeoGebra is complex software, written mostly in Java, by around 70 devel-
opers from several countries. The source code consists of about 7000 Java
�les representing more than 1,200,000 lines of code. OpenGeoProver was also
a complex system already with more than 200 Java �les. Enhancement of
GeoGebra and OpenGeoProver required programmers with skills in program-
ming, mathematics and community based development.

We had to improve both systems for building up an e�cient intercommu-
nication when creating the construction data structure inside GeoGebra and
sending it to an acceptable form to OpenGeoProver for computation. Also
for Engine 1 and 2 we had to create internal data structures for storing and
computing polynomials e�ciently enough. For Engine 2 we had to implement
a lightweight communication protocol between GeoGebra and a web server
which runs Singular remotely inside a Linux virtualization. We also had to
make some security improvements in Singular to prevent anonymously sent
unsandboxed system calls.

Since we use several independent provers and they do not share the same
representation of polynomials and other abstract objects, it is out of our scope
to describe the implementation details for each prover in this paper. The reader
can �nd all programming nuisances in the freely available source code of each
engine.

3.6 Achieved goals

Here we refer to goals described in Section 3.1.
The command line functionality for theorem proving tasks for GeoGebra

is in a �rst stage, but it seems as a suitable integration into the standard user
interface. Goal 1 would be further supported by adding a Prove tool with
a dialog window. Also the extension of the Relation Tool, that automatically
detects relations between geometry objects in the construction (numerically
at the moment), could be extended by using symbolic computations. Engine 1
can be used by both the desktop and web versions of GeoGebra, but the other
engines, however, are not prepared to be multiplatform yet16.

16 Engine 2 can already be utilized by using the embedded computer algebra system Giac
[Kovács & Parisse, 2013] with limited capabilities.
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Goal 2 seems to be a drawback for advanced users, but the ProveDetails
command can be a good compromise. Showing a small set of degeneracy condi-
tions and converting it into a visualized geometry content should be supported
in the future.

Goal 3 has been successfully achieved. Engine 1 often gives an answer
within 20 ms on a modern workstation. Engine 2 is usually between 50 and 100
ms17. Engine 3 gives the result between 100 and 250 ms. Since Engine 3 consists
of standalone implementations, it was required to attach it to GeoGebra as an
external package. Its binary size is below 75 kilobytes and thus quite small.

Goal 4 is work in progress.
Goal 5 has been accomplished by design.

4 Classroom examples and benchmarks

In this section we provide some detailed comments on the performance of the
GeoGebra prover engines over two elementary geometry problems. The �rst
one is about the concurrency of the bisectors of the sides of a triangle; the
second one is Simson's theorem. We will show some di�erent formulations
(i.e., construction steps for the hypotheses and thesis) of the same statements
could have a non negligible impact on the di�erent prover engines performance.
We think this is an important observation, since end users of GeoGebra are
students rather than researchers, and, thus, we have to take into consideration
that they could be describing a given statement in rather unexpected ways.

In the last part of this section we present some data on the performance
of our ATP implementation on a benchmark suite.

4.1 Concurrency of side bisectors of a triangle

Some test cases for the provers are de�ned in separate �les called circum-
centerN (N = 1, . . . , 6) in [Kovács & al., 2012b]. One can test the proving
methods by exploring di�erent formulations of the same geometry statement:

1. Triangle ABC is created as a polygon with free vertices. The perpendicular
bisectors (d, e) of two sides of the triangle are created, and their intersec-
tion point is D. A point E is the midpoint of the third side, a line f is
Line[D,E], and g is perpendicular bisector of the third side. The statement
to decide is whether f is parallel to g (Fig. 5).

2. This is similar to the �rst con�guration, but points A, B and C are created
as free objects, and lines through them will be used instead of segments.
For this reason the perpendicular bisector of the three point-pairs will be
used (instead of the three segments). This also means that the lines of the

17 Giac is about 3 times slower in the desktop version than Singular and there is another
factor of 10 for the web version. Its overall performance is still acceptable in many classroom
situations.
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Fig. 5 One of the six di�erent formulations of the same geometry statement

Table 1 Comparison of proving methods

Formulation Engine 1 Engine 2 Engine 3a Engine 3b

#1 10 57 187 100
#2 7 39 124 84
#3 8 38 126 94
#4 8 44 128 91
#5 n.a. 44 98 88
#6 13 104 118 87

sides are not used in the computation but for visualization only. (Internal
GeoGebra representation for a triangle and a set of three free points is
substantially di�erent, this is why we need to consider this as a di�erent
case.)

3. Free points A, B, C and lines through them are created and perpendicular
bisectors of all pairs of the free points are tested whether they are concur-
rent. By using the AreConcurrent command, this can be achieved in a
convenient way.

4. Same as the previous, but we use a polygon instead of lines. (Again, this
must be considered as a di�erent case because of GeoGebra internals.)

5. We create free points A, B and C and their circumcircle. Then two of the
bisectors of the pairs of free points are created and their intersection D
is constructed. Now we measure the distance of D to two free points. If
they are the same, it means D is the same distance from all three free
points, thus D is the center of the circumcircle. Finally, one shall obtain
from uniqueness that the perpendicular bisectors are concurrent.

6. Finally, another approach is to create point D as intersection of bisectors
of AB and AC, and create point E as intersection of bisectors of AC and
BC. Now we prove that D equals E.
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Fig. 6 Simson's theorem

All formulations can be proved by all our proving methods, except that
the 5th one cannot be computed by Engine 1 since it is not capable of dealing
with circles. Benchmarking results are approximately the same for the same
method for each con�guration: Engine 1 returns the result in 8�13 ms, Engine
2 in 38�104 ms, Engine 3 in 98�187 ms or 87�100 ms (depending on the applied
prover technique). Since GeoGebra selects Engine 1 as the preferred way for
computation, this problem can be solved by GeoGebra usually near 10 ms.

4.2 Simson's theorem

Here we consider two possible formulations of Simson's theorem.

1. Create a circle lying on the free points A, B, C. Put D on the circle and
de�ne the triangle ABC. Create perpendiculars on D to the side lines of
the triangle. Create the side lines, too. Create the intersection points of the
perpendiculars and the side lines. Prove that they are collinear (by using
the new AreCollinear command). (See Fig. 6.)

2. Similar to the �rst formulation, but do not create a triangle, just use side
lines.

One can see that the second construction has less complexity since there are
fewer objects to consider. Despite that, Engine 1 cannot handle this construc-
tion at the moment (because of the same reason mentioned in Section 4.1). By
contrast, Engine 2 can compute the result by using the algorithm described
in [Cox & al., 2008] (pp. 300�303) and sending the computation request to
Singular. The �nal result is returned in less than 80 ms for both formulations.

Also Engine 3 does a good job with both prover techniques. Wu's method
takes about 250 ms and the area method solves the problems in about 150 ms.
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4.3 Other tests

GeoGebra has an automated benchmarking suite to measure 60 di�erent
conjectures for measuring performance of all implemented prover methods
([Kovács, 2014]).

The prover subsystem in GeoGebra can still be considered as just a proto-
type, but in many cases it does a remarkable job. On a benchmark set of 60
conjectures, GeoGebra gives 53 correct answers since Engine 1 gives 30 results;
Engine 2, 47 results, and Engine 3 gives 47 and 42 correct results for the two
di�erent techniques, respectively (the remaining 7 tests return �unde�ned�)
[Kovács, 2014]. However, the test database is created for internal testing, and
a third-party database is planned to be used soon.

Making a thorough comparison between the presented provers and other
provers is quite a formidable task and it is not within the goals of our pa-
per. Even if we manage to make some automatic translation between input
formats�this will not lead to a fair comparison. Namely, it is not only an
input language issue what is at stake, but also deeper expressibility�some
provers natively support some geometric constructs, while for some one has
to deal with them in some less e�cient way. So, the benchmark set and the
translation used could be easily biased towards one or another system. On
the other hand, we do believe that the time has just arrived to start creating
wide and well-thought open databases with the opportunity to compare open
systems.

Still, the overall conclusion is that GeoGebra, endowed with the ATP fea-
tures we have introduced, could already be used for theorem proving in edu-
cation. (See also Fig. 7 for a visual comparison of its embedded provers.)

5 Educational relevance

In this section we discuss some basic aspects for teaching proofs in a classroom
and how ATP and DGS tools could improve the educational process.

5.1 Fundamental aspects

[DeVilliers, 1999] describes how proofs can support student understanding of
mathematical concepts. It outlines the following steps in problem solving to-
wards a proof:

1. Introduction, prerequisites
2. Discovery
3. Veri�cation (testing)
4. Intellectual challenge
5. Systematization (�the proof� itself)

Step 1 should make the students understand the problem by describing the
topic and the involved objects and by presenting a closer look to the applicable
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Fig. 7 Density estimate of benchmark time output visualized on the working tests

techniques. Step 2 should let students to use the related tools on their own, and
to make them comfortable enough with the topic as to allow the formulation
of conjectures and guesses. This may require much more time than teachers
usually have in classroom teaching. At Step 3 students (with or without the
help of the teacher) should make as many tests as required for being convinced
about the conjectured properties. Step 4 is for collecting and attempting to
assemble as many related pieces of information as possible, to prepare for Step
5, which is about constructing the actual solution of the given problem, and
about presenting a clear and rigorous reasoning explaining the truth or falsity
of the di�erent required steps.

Computers, namely DGS tools, can help students in Steps 1 and 2, in order
to get familiar with the involved mathematical objects and to visualize their
properties. At Step 1 it is not required to use an ATP-capable DGS in the
classroom. For example, to introduce Ceva's theorem (Fig. 8), it is enough
to use a system which can draw lines, create the corresponding intersection
points, to measure length of segments and to compute divisions and products.
On the other hand, Steps 2 and 3 could be greatly enhanced by computer
assistance. For example, a DGS/ATP system could systematically help the
user conjecturing in the correct direction. See Section 6 for our further plans
along these lines.

Of course, DGS tools using probabilistic methods for veri�cation can give
�almost sure� results very quickly, and they may be incorrect only in very rare
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Fig. 8 Ceva's theorem in GeoGebra: Given a triangle ABC, let the lines AD, BD and CD
be drawn from the vertices to a common point D to meet opposite sides at E, F and G
respectively. Then AG/GB ·BE/EC · CF/FA = 1.

cases. In spite of the possible practical demand to use it, we emphasize here
that there is a sharp dividing line in education use between �almost sure� and
�sure�. Unlike other disciplines, mathematics as science can indeed provide
�sure� results about relations of its abstract objects. This is a special property
of mathematics and logic, making mathematics a complete di�erent discipline
than others. From the educational point of view, students need to make a
di�erence between �2+2 equals always 4� and �2+2 equals most of the time
4�. Actually, in real life the every day rules have just a certain possibility:
physical laws (like gravity) mostly work in normal circumstances (at least,
they usually do), and machines controlled by physical laws (like a vacuum
cleaner) work in most cases without being repaired for a long time. On the
contrary, mathematical laws are essentially di�erent.

Existing ATP tools usually have a more precise conclusion, but using them
may be inadequate from the educational point of view: they may require using
special speci�cation languages, they could have a non-intuitive user interface,
and, in some cases, results may be given too slowly. Our improvements on
GeoGebra may be a bridge between DGS and ATP systems, since its intuitive
user interface could help the average student to describe the problem and to
ask questions to the underlying prover engines.

Nevertheless, Step 4 is not covered by our work at the moment. In this
step the student should collect minor facts of the geometrical construction
which will build up the complete sequence of reasons explaining how to solve
a given problem. GeoGebra already has a partial support for this by provid-
ing the Relation Tool, but a detailed investigation is not yet supported. An
interesting approach for collecting information about an existing construction
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is Z. Magajna's OK Geometry software ([Magajna, 2011]) which could be a
step forward in helping students to build up their own proofs.

Finally, Step 5 is still a question of automated �nding and verifying human
readable proofs, including the consideration of possible ways on how a student
could handle a point-and-click user interface to design and to describe the
whole proof of a geometric theorem.

As [Hanna & Jahnke, 1996, p. 905] emphasizes that �proofs which best pro-
mote understanding. . . much more likely to yield not only `knowledge that', but
also `knowledge why' �. In our vision GeoGebra could focus on this approach
in future enhancements of the proving subsystem.

5.2 Other uses and abuses

Step 3 only gives a yes/no answer (or �unknown�) for a statement like a black
box. While this seems to be just a small step if we are to consider the computer
a real tutor in learning mathematics, we must emphasize that generating full
proofs by an ATP may also be misleading. First of all, today's ATP systems
usually generate too long proofs which cannot show the beauty and elegance of
geometrical proofs. Moreover, many methods do not provide geometric proofs,
but algebraic computations. That is why we simply try to give a yes/no an-
swer at the moment. Of course, such an answer can also be dangerous if no
preparation was done in the previous classroom process, i.e., if Steps 1 and 2
were not fully elaborated in advance. This can lead to student responses like
�So what?� if the software simply tells whether a theorem is true or not.

An important possible use of a yes/no answer is automated checking of
open ended tests. For example, the teacher asks the student to create a right
triangle by using a DGS. When the teacher designs this question, he/she could
be thinking of one correct construction, where the third vertex is the output
and it depends on the �rst two vertices as inputs, by using Euclidean steps
only (i.e., only a compass and a ruler). During the test time the teacher's
construction steps will be hidden for the student, but a built-in ATP system
could check if the output vertex of the student coincides with the one of the
teacher's template�even if the student intermediate steps are di�erent form
those of the teacher. Here an ATP tool could give a �sure� yes/no answer,
and the computer would be able to decide whether the student has solved
the problem correctly or not. Since GeoGebra (powered with ATP features)
is already fast enough in such computations, we think it opens the door to
create computer aided open ended tests in geometry. This subject has also been
studied in [Isotani & Brandao, 2008], using a numerical comparison between
template constructions and those provided by users.

We can also think of open ended tests where �nding the intermediate steps
can also be crucial. For example, given a circle c with its center O and an
external point P , the student's task is to construct a tangent line t from P
to c. The teacher knows that the basic idea for the usual solution is to create
the midpoint M of OP . It helps drawing a second circle d with center M
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aligning on both O and P , and now the intersection points of c and d will
de�ne the tangent points (because of Thales' circle theorem). Here �nding the
importance of M is already an intellectual challenge and thus the teacher may
highlight �important intermediate points� in his/her template, not only the
possible �nal results t1 and t2. In case the student �nds M by constructing
it somehow the software tool could give encouragement by con�rming in the
good direction.

Ultimately, we also expect a dramatical change of the idea of mathematical
reasoning from the teacher's perspective as well. Proof is traditionally consid-
ered as a human act which requires intellectual work. But to utilize a computer
to obtain the conclusion is actually something purely mechanical. This may
change the teacher's role fundamentally, raising her to a higher level in the
education process.

6 Conclusions and future work

We released the theorem prover subsystem as a part of GeoGebra version 5,
in September 2014. In the next forthcoming GeoGebra versions we plan to
enhance the existing engines and to add implementations of other proving
methods to OpenGeoProver. Furthermore, in the future we want to make use
of the database of the GeoThms project ([Quaresma & Jani£i¢, 2007]) as a
benchmark, and possibly use Chou's [Chou, 1988] and Wang's [Wang, 2004a]
collections as well.

Integration of theorem proving features in GeoGebra is not an ad-hoc task,
but a complex process yielding an evolving system, meeting users' needs and
progress in theorem proving technology. After getting feedback about the cur-
rent features, the long term plans are careful GUI changes in GeoGebra, that
will turn using proving features more comfortable for the end user. From the
educational perspective, GeoGebra could then be used as an expert system
in elementary geometry which not only tells a yes/no answer but is capable
of showing a step-by-step explanation if a machine generated proof is consid-
ered human readable. Such e�orts have already been started by extending the
OpenGeoProver with the ability to generate more readable proofs, based on
the mass point method ([Zou & Zhang, 2011]).

When a construction is given, GeoGebra could also automatically identify
certain �interesting� properties on the construction. For example, when the
circumcenter, the centroid and the orthocenter of a triangle have already been
constructed, GeoGebra could �know� that these points are collinear and pro-
vide this information to the user when asked. Such an �auto-relation� feature
could extend the already existing Relation Tool.

GeoGebra could also give a counterexample when the checked statement
is not always true. For Engine 1 this could be achieved immediately by post-
processing its internal computations.

Despite the fact that these improvements should be intuitive enough
we still plan to involve a wider group of experts to help creating
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explanatory materials for teachers and students and share them with
the community. Some demonstrational examples are already available
to introduce the new GeoGebra commands (see, for instance http://

wiki.geogebra.org/en/ProveDetails_Command, http://tube.geogebra.

org/student/m55158, https://www.youtube.com/watch?v=7aDe0YMm-OE or
http://tube.geogebra.org/student/b104296).

The overall goal of all these improvements is to support the problem solving
process of students related to proving, in particular, in the geometry context.
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