

Facultad
de

Ciencias

Implementación de un sistema de WaaS

(Workflow as a Service) sobre la
infraestructura FedCloud de EGI

Implementation of a WaaS (Workflow as a
Service) system on the EGI infrastructure

FedCloud

Trabajo de Fin de Grado
para acceder al

GRADO EN INGENIERÍA INFORMATICA

Autor: Alberto Otero Márquez

Director: Jesús Marco De Lucas

Co-Director: Fernando Aguilar Gomez

Junio - 2015

Abstract

The objective of this project is to implement an example of a research application
workflow on a Cloud infrastructure as a first step towards the deployment of a
Workflow as a Service (WaaS) system.

In order to do so, relevant generic workflow solutions to support research ap-
plications, like Kepler and Taverna, have been considered.

After reviewing different examples of research applications requiring the use
of workflows, two of them with similar objectives, TRUFA and Galaxy, have been
analyzed in more detail, because of their relevance and similar objectives.

The case for TRUFA, developed by researchers at the Natural Science Mu-
seum in Madrid in collaboration with the team at IFCA, and currently supported
on high performance computing resources, has been selected to study in detail its
adaptation to a Workflow as a Service solution.

We propose a solution over the existing FedCloud IaaS (Infrastructure as a
Service) European platform of EGI.eu, using a PaaS (Platform as a Service) open
framework (OpenShift) using cartridge technology and scripts to provide develop-
ers with a simple but flexible approach.

A first implementation test including the installation in FedCloud resources
of the OpenShift framework and involving two TRUFA modules connected as an
example of basic workflow has been completed, showing the initial feasibility of
the solution proposed. .
Keywords: TRUFA, Workflow, Cloud, PaaS, OpenShift

ii

Resumen

El objetivo de este proyecto es implementar un ejemplo de un workflow de una
aplicación de investigación en una infraestructura Cloud, esto es un primer paso
hacia el despliegue de un sistema de Workflow as a Service (Waas).

Para realizarlo, se han considerado las soluciones más relevantes para aplica-
ciones de investigación, como Kepler y Taverna.

Después de analizar distintos ejemplos de estas aplicaciones que hacen uso
de workflows, dos de ellas con objetivos similares, TRUFA y Galaxy, han sido
estudiadas en mayor profundidad, dada su relevancia y similar contexto.

El caso de TRUFA, desarrollado por investigadores en el Museo Nacional de
Ciencias Naturales en Madrid en colaboración con el equipo del IFCA, y actual-
mente soportada en recursos de computación de alto rendimiento, ha sido selec-
cionado para estudiar en detalle su adaptación a una solución de Workflow as a
Service.

Proponemos una solución sobre la plataforma existente IaaS (Infrastructura
como servicio) FedCloud de EGI.eu, usando un framework abierto de PaaS (Plata-
forma como servicio) OpenShift, utilizando tecnología de cartuchos y scripts para
proporcionar a los desarrolladores una simple y a la vez flexible herramienta.

Se ha realizado una primera implementación, incluyendo la instalación en re-
cursos de FedCloud del framework de Openshift e involucrando dos módulos de
TRUFA conectados como un ejemplo de un workflow básico, mostrando la facti-
bilidad de la solución propuesta.

Palabras clave: TRUFA, Workflow, Cloud, PaaS, OpenShift

ii

Table of Contents

Abstract . ii

Resumen . ii

Table of Contents . iii

List of Figures . v

Acknowledgements . vii

1 Introduction . 1

2 State-of-the-art Workflow Solutions 2
2.1 Kepler . 2
2.2 Taverna . 3
2.3 myExperiment . 5
2.4 Galaxy . 8
2.5 TRUFA . 10
2.6 Lifewatch Marine VRE . 11
2.7 Chipster . 12
2.8 Summary and comparison of the different solutions 13

3 e-Infrastructure Context . 15
3.1 What is an e-Infrastructure? . 15
3.2 European Grid Infraestructure - EGI 15
3.3 INDIGO-Data Cloud . 20
3.4 OpenShift . 21

4 Application to the LifeWatch project: Galaxy & TRUFA 26
4.1 What is LifeWatch? . 26

iii

Table of Contents

4.2 Galaxy . 26
4.3 TRUFA . 29

5 Implementation of the solutions and comparative Analysis 35
5.1 Problem Description . 35
5.2 Solution proposed . 35

6 Conclusions . 49

Appendices

Appendix 1: List of acronyms . 51

Appendix 2: BIND DNS Server Installation 52

Appendix 3: Creation of the CUTADAPT cartridge 57

Appendix 4: Workflow script . 62

Appendix 5: Execution of the script . 64

Appendix 6: Errors . 69

Bibliography . 71

iv

List of Figures

2.1 Taverna Infrastructure. 4
2.2 myExperiment popular interfaces. 6
2.3 myExperiment architecture. 7
2.4 Elastic Computer Cloud Cluster platform. 9

3.1 Scientific applications which run on EGI. 16
3.2 EGI Core Infrastructure Platform. 16
3.3 EGI Cloud Infrastructure. 17
3.4 INDIGO Global architecture. 21
3.5 OpenShift Architecture. 23
3.6 Creating an application on Openshift. 24
3.7 Creation and deployment of a PHP app on Openshift. 25

4.1 Galaxy application architecture. 27
4.2 Overview of the TRUFA pipeline. 32
4.3 List of software available at TRUFA. 33
4.4 TRUFA web interface. 34

5.1 Overall representation of the infrastructure designed for TRUFA
Cloud. 37

5.2 Keys used to acces the virtual machines via ssh. 38
5.3 Specifications of the TRUFA Server Host. 39
5.4 Client perspective of Openshift. 40
5.5 OpenShift configuration on the server. 41
5.6 Overview of the node . 42
5.7 Details of the python application created in the node. 43
5.8 Pinging the node from the server. 43
5.9 Pinging the server from the node. 44
5.10 Detailed OpenShift Layer Components 44
5.11 OpenShift Layer of a Complete Deployment of TRUFA Cloud. . . 48

v

List of Figures

1 CUTADAPT Cartridge folder . 57
2 Contents of the bin folder . 57
3 Content of the metadata, version and cutadapt-1.3 folders, respec-

tively. 59
4 Web interface for uploading customized cartridges on OpenShift. . 60
5 Output after the deployment of the CUTADAPT cartridge on a node. 60
6 List of cartridges after the installation of the CUTADAPT cartridge. 61

7 Error encountered during the OpenShift installation 70
8 Hard drive configuration on the server 70

vi

Acknowledgements

I would like to thank my Director Jesus De Marco, for his work conducting this
project and for making time to work and supervise the whole project, and also for
providing me with the computational resources that I needed at IFCA. I know I
have not been easy to manage, but we made it.

I would also like to express my gratitude to my Co-Director, Fernando Aguilar,
for helping me through my constants questions, for his technical help in all the
work and for his helpful comments on my work.

I would not forget to thanks my friend Guzman, for his inestimable help during
the coding part of this project, this could not have been done without your help.
You even put my project before your exams. Thank you buddy.

In addition, I want to thank my brother, for helping me building this final docu-
ment and for listening and guiding me through the project, I know I can be tiresome
sometimes but you know you are too.

vii

1. Introduction

Scientific workflows are quickly becoming recognized as an important unifying
mechanism to combine scientific data management, analysis, simulation, and visu-
alization tasks [52]. They are used to help understanding and modeling complex
scientific experiments and applications, providing a high-level declarative way to
define the goals of a particular experiment modelled by a workflow, rather than
focusing on how it will be executed.

A more general definition of Workflow is the one given by the Workflow Man-
agement Coalition [53] regarding the business domain in 1996, which defines
workflow as “The automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for ac-
tion, according to a set of procedural rules.”

“The variety of the tasks that can be performed in a workflow can be imple-
mented using local services, web services, scripts and sub-workflows. Each of the
components is in charge for a small functionality, so many components need to be
put together in a pipeline in order to obtain a fully functional workflow that can
perform the task desired.” [3]

The process of linking components is known as workflow composition [4], the
production of a conceptual model for the described scientific analysis. Repre-
sentations of all required heterogeneous resources are integrated into this single
workflow, thus abstracting superfluous detail and concentrating on the goal of the
experiment.

The use of workflows enables the delegation of data processing to remote in-
frastructure and makes it possible to define and launch larger and more complex
workflows from personal desktops. [3]

Web services [5] is the technology usually chosen to delegate most of the core
computation in workflows, while local services and scripts are used to perform
data format conversion procedures and other auxiliary tasks. Another advantage of
workflows is the automatization of repetitive processing stages, whichcan stimulate
the pace of research and overall productivity of experimentation. It also simplify
the reproducibility and preservation of the analysis performed.

1

2. State-of-the-art Workflow
Solutions

In the following subsections some of the most interesting workflow solutions will
be described and analyzed: Kepler [6], Taverna [7] and Galaxy [8].

2.1 Kepler

2.1.1 Overview

Kepler [9] is oriented to help scientists, analysts and computer programmers to
design, execute and share models analyses in scientific and engineering fields. Ke-
pler offers a graphical user interface that allows users to create their own scientific
workflows [10]. The service also helps user to share, and reuse the workflows cre-
ated by other members of the scientific community, improving the usability and the
time needed to create certain workflows. Kepler is a java-based application that is
supported under Windows, OSX, and Linux operating systems.

2.1.2 Implementation

Kepler inherits modeling and design capabilities from Ptolemy II [11], a framework
developed at the University of California, Berkeley, including the Ptolemy graphic
user interface, workflow scheduling and execution patterns. Kepler also inherits
from Ptolemy the actor-oriented modeling paradigm, which separates workflow
components from the overall workflow orchestration, offering reusability. Kepler
also includes Ptolemy components aimed at scientific applications: remote data
and metadata access, data transformations, data analysis, interfacing with legacy
applications, Web service invocation and deployment and provenance tracking.

Kepler also offers web-based execution solutions, like Hydrant and Scien-
cePipes: Hydrant provides the means necessary for users to deploy their workflows

2

2.2. Taverna

on the web and SciencePipes allows users to connect to real biodiversity data and
create visualizations.

2.1.3 Scope of Applications

Kepler is being used in a wide range of fields, including chemistry, ecology, ge-
ology, molecular biology, oceanography and phylogeny. Kepler (and it’s suites
including Serpens) are used by several application from the field of Nuclear Fusion
and Astrophysics to manage the workflows runs on Grid. More information about
EGI-InSPIRE can be found at https://www.egi.eu/about/egi-inspire/.Be-
hind the scenes, Science Pipes is based on the Kepler scientific workflow software
which is used by professional researchers for analysis and modeling. More infor-
mation about Science Pipes can be found at http://sciencepipes.org .

2.1.4 Summary

Kepler is an open source workflow framework that has been adopted by scientists
that work in the fields of biology, ecoinformatics and geoinformatics. Kepler offers
a limited set of templates to easily create new workflows for this scientific fields,
however its level of complexity hinders when build new ones, and is also hard to
support the whole framework efficiently in the Cloud.

2.2 Taverna

2.2.1 Overview

Taverna [12] allows to automatize multi-step analysis that use several web services.
Taverna enables their users to create their models defining their final goals without
the need to detail how the services or the processes will be executed: Taverna will
automate the solution providing a pipeline model adequate to the user demand.

Taverna also offers data conversion between services which are not entirely
data compatible. Another feature of Taverna is the quick incorporation of new ser-
vices without the necessity of coding: Taverna currently offers more than 3500 ser-
vices, including access to local and remote resources and different analysis tools.

Taverna also covers thoroughly the result section of the experiments providing
detailed information about the execution, including the list of services that were
executed and when, which inputs were used by each service, and the outputs pro-
duced. Finally it also offers the possibility of sharing the workflows created in
Taverna on the myExperiment platform.

3

https://www.egi.eu/about/egi-inspire/.
http://sciencepipes.org

2.2. Taverna

2.2.2 Implementation

The Taverna suite is written in Java and includes the Taverna Engine that pow-
ers both Taverna Workbench (the desktop client application) and Taverna Server
(which executes remotely the workflows). Taverna is also available as a Command
Line Tool enabling the direct execution of workflows from a terminal without re-
quiring a GUI.

Figure 2.1: Taverna Infrastructure. Taken from [13]

2.2.3 Applications

Taverna has been used in the fields of bioinformatics, astronomy, chemistry, health
informatics and others. Many examples of Taverna use can be found in the bioin-
formatics field, although Taverna is actually domain independent. This means that
Taverna can be applied to a wide range of fields, for example it has been used for
the composition of music using Web services for synthesis.

4

2.3. myExperiment

2.2.4 Summary

Taverna enables a scientist who has a limited background in computing, limited
technical resources and support, to construct highly complex analyses over data
and computational resources that can be both public and private.

Taverna allows to perform the automatization of experimental methods and
the use of a number of different services from a diverse set of domains, biology,
chemistry and medicine including music, meteorology and social sciences.

Taverna, as Kepler, is a complex platform, that requires a non negligible sup-
port effort for an efficient exploitation.

2.3 myExperiment

2.3.1 Overview

myExperiment [14] is a platform oriented to the use of workflows and based in the
principle of reuse, that can be effective in multiple cases:

a) The reutilization of a workflow with different parameters and/or in-
put data, or the possibility of minor modifications to the workflow for
specific purposes.

b) Sharing of workflows among different scientists that work in similar
projects, so each one can help each other in matters of coding and
experience, sharing and spreading the practice on workflow design.

c) Workflows, including their components and workflow patterns, can be
re-used in fields that were not considered as the original target of their
design[14].

In summary, the main objective of myExperiment is to provide a platform for
scientists to share and work collaboratively re-using workflows, taking care of the
social and technical challenges.

5

2.3. myExperiment

Figure 2.2: myExperiment brings functionality to the user through friendly inter-
faces. Taken from [14].

2.3.2 Implementation

myExperiment was designed according to an interpretation of the Web 2.0 de-
sign principles in the context of the so called Virtual Research Environments. The
architecture of an instance of myExperiment is represented in Figure 2. All the
interfaces to myExperiment are accessed via HTTP protocol. The user access the
myExperiment platform via an HTML based Web interface, while external ap-
plications can be accessed through other interfaces. The HTML interface uses
JavaScript and AJAX to improve the interactive experience, while the RESTful
API makes possible the construction of Rich Web Applications and mashups [14].

6

2.3. myExperiment

Figure 2.3: Implementation architecture of a myExperiment server instance. Taken
from [15]

2.3.3 Applications

myExperiment can be used to share any kind of workflow, therefore ,its field of
application is not limited to a singular area, although it seems that myExperiment
is mostly used within the scientific community.

myExperiment hosts different types of workflows, including scientific work-
flows using Taverna, Kepler and Galaxy.

7

2.4. Galaxy

2.3.4 Summary

myExperiment is the largest public repository of scientific workflows, it offers a
service that none of the other workflows applications offer, the possibility to use an
existing workflow to adapt it for another purpose, changing the parameters and the
data used.

In the context of myExperiment, sharing and collaborating in the use of work-
flows the way how the user interacts has a lot of impact on the user experience, and
for that, the search engine, including a better way to show the results and providing
good filters for searches, as upgrading the interface of the web are necessary goods
for the success of myExperiment.

2.4 Galaxy

2.4.1 Overview

Galaxy [16] [17] is an open source, web-based platform for data intensive biomedi-
cal research, it allows users to organize and manipulate data from existing resources
in different ways. One of the import features of Galaxy is memory, every action
of the user is recorded and stored in the history system so any user can repeat and
understand a complete computational analysis.

Galaxy allows users to conduct independent queries on genomic data from dif-
ferent sources and then combine or refine them, perform calculations, or extract
and visualize corresponding sequences or alignments.

Galaxy differs from existing systems in its specificity for access to, and com-
parative analysis of, genomic sequences and alignments.

2.4.2 Implementation

Galaxy consists in several independent software components that work together
to perform tasks. The central core component orchestrates the action, executing
the queries and keeping track of user histories, while the user interface and the
operation, tool or output libraries are implemented separately. The communication
with other sites is handled by the core component. [18]

The user interface communicates with the core via HTTP requests, using the
GET or POST methods. The core provides an API consisting of the requests it is
prepared to handle, for example using a tool or retrieving a user’s query history for
a particular assembly of a genome.

The Galaxy core component and operation libraries are written in C, the initial
UI (called HUI for History User Interface) is written in Perl for convenient text

8

2.4. Galaxy

manipulation and CGI access, but one could use any language that can generate an
HTTP request.

The use of an HTTP API is justified by the great compatibility of user interfaces
that can be used, which do not have to be running on the same server. This allows
any site on the Web to be able to create its own user interface for Galaxy by crafting
the appropriate HTTP requests, and individual researches can use the API directly
for programmatic access to Galaxy’s features.

The benefits of this design are extensibility (easy of adding new tools and in-
terfaces) and convenient division of labor and expertise among programmers. The
design also gives Galaxy flexibility which makes possible different kinds of de-
ployments of Galaxy, In addition to using the public Galaxy server, a user can use
his own instance of Galaxy, or he can create a cloud-based instance of Galaxy.
Another option is to use one of the public Galaxies hosted by other organizations.

A good example of the flexibility mentioned before is the Elastic Compute
Cluster instance for Galaxy which has been designed by the Universitat Politec-
nica de Valencia (UPV) and Institut national de la recherche agronomique (INRA)
which combines Galaxy ,Infrastructure Management and Elastic Compute Cloud
Clusters, providing automatic elasticity based on the batch queue workload [19].

Figure 2.4: Elastic Computer Cloud Cluster platform. Taken from [19]

9

2.5. TRUFA

2.4.3 Applications

Galaxy offers a new set of interactive tools for large-scale genome analysis .The
application field of Galaxy is restricted to bioinformatics.

2.4.4 Summary

Galaxy allows large-scale analyses that previously required users to have some
programming experience and database management skills. The Galaxy history
page is simple to use, and is able to handle large genome annotation data sets. Users
have the ability to perform multiple types of analyses (e.g., query intersections,
subtractions, and proximity searches) and then display the results using existing
browsers (e.g., the UCSC Genome Browser or Ensembl). The only thing Galaxy’s
missing is compatibility with different areas not related to bioinformatics.

2.5 TRUFA

2.5.1 Overview

TRUFA [20] stands for TRanscriptome User-Friendly Analysis, an informatics
platform based on a web interface that generates the outputs commonly used in
de novo RNA-seq analysis and comparative transcriptomics.

TRUFA offer the next services, raw read cleaning executed, transcript assembly
and annotation, and expression quantification. TRUFA is highly parallelized and
benefits from the use of high performance computing resources. TRUFA gives the
user an easy, fast and valid analysis on RNA-seq data.

2.5.2 Implementation

TRUFA was developed at the Instituto de Fisica de Cantabria (IFCA,Spain), the
platform is written using JavaScript, Python and Bash and it is currently installed in
the ALTAMIRA supercomputer at IFCA.The platform is highly parallelized both
at the pipeline and program level, and can access up to 256 cores per execution
instance for certain components of the pipeline.

2.5.3 Applications

TRUFA is designed to exclusively perform tasks related to de novo RNA-seq anal-
ysis, for this reason, the most important fields of application are evolutionary biol-
ogy, ecology, biomedicine and computational biology.

10

2.6. Lifewatch Marine VRE

2.5.4 Summary

TRUFA provides a set of the most common tasks to perform a whole de novo
RNA-seq analysis. It allows scientists which does not have bioinformatics skills
or access to fast computing services. TRUFA works in an efficient, consistent
and user-friendly manner, based on a pipeline approach. TRUFA integrates some
widely used quality control programs in order to obtain optimization of the assem-
bly process in the RNA-seq analysis.

2.6 Lifewatch Marine VRE

2.6.1 Overview

The LifeWatch Marine Virtual Research Environment (VRE) [21] assembles sev-
eral marine resources, data bases, data systems, web services, tools, etc. into one
marine virtual research environment. The Marine VRE allows researchers to re-
trieve and access data resources holding marine biodiversity and ecosystem data, a
range of data systems on species names, traits, distribution and genes.

A set of online tools is available to facilitate data analysis of marine biodiver-
sity and ecosystem data, and analysis can be performed on data from known data
resources and/or data uploaded by the users themselves. Should a researcher need a
specifically adapted service, the Marine VRE gives the possibility to build his/her
own marine virtual lab, making use of the web services that access and process
data.

Service catalogues and ’how to’ manuals will guide the users during the de-
velopment of their own system. The Marine VRE is already looking to the future,
working to further increase the integration and interaction between its components.

2.6.2 Implementation

The Lifewatch Marine VRE is a web portal that contains in an organized way a set
of web services, applications and scientific workflows, but it does not execute or
perform any operation by itself, it merely hosts the references to BioVel (Biodiver-
sity Virtual e-Laboratory) or Taverna in the matter of workflows.

2.6.3 Applications

The Lifewatch Marine VRE brings together relevant resources for Web-based ma-
rine research: data systems, Web services, workflows, online tools, etc. in one
environment in the context of LifeWatch.

11

2.7. Chipster

2.6.4 Summary

LifeWatch marine VRE supports marine environmental research and enables scien-
tists to access resources and conduct analysis without having to install or configure
any additional software. With everything accessible in one place, scientists can
access data resources and tools and collaborate together. They can analyze their
data in conjunction with data from other sources.

2.7 Chipster

2.7.1 Overview

Chipster [22] is a versatile data analysis platform with interactive visualizations and
workflows. It offers a comprehensive collection of analysis tools for next genera-
tion sequencing (NGS), microarray and proteomics data. The NGS functionality
applies to analysis from quality control and alignment to downstream applications
such as pathway analysis and motif detection and more analysis tools are added
all the time. The built-in Chipster [23] genome browser allows users to visualize
reads and results in their genomic context. The microarray functionality covers
expression and allows users to integrate expression data with different data.

2.7.2 Implementation

Chipster’s platform is technically based on a desktop application user interface, a
flexible distributed architecture, and the ability to integrate many types of analysis
tools.

The Chipster client software is a full graphical Java desktop application, offer-
ing an intuitive user interface with highly interactive visualizations and an overall
smooth user experience. To make the client installation and updates as easy and
automatic as possible, Chipster uses the Java Web Start technology.

Chipster offers high compatibility that makes possible the integration of almost
any kind of tool, regardless of their implementation. As R/Bioconductor provides
a rich collection of analysis functionality for microarray and NGS data, Chipster
offers a strong support for R integration: Wrappers manage communication with
R processes and pool them for rapid responsiveness, and several R versions can
be run side-by-side. Integration of command line tools is also supported and can
be accomplished even automatically. The tool selection offered by the local server
can be augmented by external Web services (SOAP).

Chipster is a client-server system. Server architecture allows tasks to be per-
formed in optimal places: for example, interactive visualizations happen in the

12

2.8. Summary and comparison of the different solutions

client, whereas the actual analysis tasks are processed by computing services,
which can be run on server machines with ample CPU and memory resources.
This way the user can run several analysis tasks simultaneously without burdening
his computer power. In addition, there is no need to install any analysis tools or
libraries to the user’s computer as they are installed and maintained centrally in the
computing servers. To avoid transferring data multiple times between the client and
server, a caching mechanism is used. The caching extends to multi-user scenarios
thanks to Chipster’s cryptographically strong data identifiers: When a previously
saved analysis session is opened from a different computer, possibly by a different
user, the system still uses the original cached copy of the data and does not transfer
it again to the server side.

2.7.3 Applications

Chipster enables biologists to access a powerful collection of data analysis and
integration tools, and to visualize data interactively. Consequently we can conclude
that the most important fields of application for Chipster are evolutionary biology,
ecology, biomedicine and computational biology.

2.7.4 Summary

Taken together, Chipster is a user-friendly open source analysis software for mi-
croarray and other high throughput data. Its intuitive user interface brings a com-
prehensive collection of analysis methods within the reach of experimental biol-
ogists, enabling them to analyze and integrate different data types such as gene
expression, miRNA and aCGH. The analysis tool arsenal is complemented with
powerful interactive visualizations, allowing users to select datapoints and create
new gene lists based on these selections. Importantly, users can save the performed
analysis steps as reusable, automatic workflows. Chipster promotes collaboration
at several levels: While biologists can collaborate by sharing workflows and analy-
sis sessions, bioinformatics core facilities can also easily share their expertise with
research groups by providing ready-made workflows and new analysis tool scripts.
Finally, Chipster integration is an easy way for analysis method developers to pro-
vide their tool with a graphical user interface, thereby making it available for a
wider group of users.

2.8 Summary and comparison of the different solutions

After reviewing some of the most known workflow solutions we can state that there
is no final tool to suit everyone’s purposes.

13

2.8. Summary and comparison of the different solutions

In order to compare the different solutions we are going to label them into
different categories according to their application field.

First, Kepler and Taverna are both workflow solutions that target the execution
of general purposes jobs, such as those related to chemisty,ecology and bioinfor-
matics. In one hand, Kepler aims to be the best open source scientific workflow
system available, by enabling multiple groups from different scientific disciplines
to easily create, support and make available domain-specific Kepler extensions and
by developing new core features that will transform Kepler into a more compre-
hensive scientific workflow system offering full support for data, workflow, service
and project management. On the other hand, Taverna excels at the automatization
of pipelines, data conversion between services and a pretty solid analysis result
system.

In the next group are included Galaxy,TRUFA and Chipster, in this category
are included tools related to genome experiments, Next Generation Sequencing e.g
DNA and RNA-sequencing. Galaxy is especially powerful when coming to data
intensive biomedical research, and it includes a special feature, that records ev-
ery action made by the users in order to allow any user to repeat and understand
a complete computational analysis. TRUFA is a very specific solution that per-
forms RNA-sequence analysis in a pipeline, it has a complete set of tools and it’s
presented in a very attractive and user-friendly way. Hipster includes a genome
browser that allows users to visualize reads and results in their genomic context
and a microarray functionality that covers expression and the data expression.

The last of the solutions studied is Lifewatch Marine VRE, that is not actually
a workflow solution rather than a web portal that stores and displays in a proper
way different resources to oceanography studies.

myExperiment is a tool that allows users to share and work collaboratively in
scientific workflows, myExperiment has compatibility with workflows created on
Taverna, Kepler or Galaxy, and therefore has a good impact on the relevance of
these tools as it extends the functionality of these systems.

14

3. e-Infrastructure Context

In this section some of the existing and upcoming e-infrastructures to deploy work-
flow applications will be studied, such as the European initiative known as Fed-
Cloud(EGI Federated Cloud) and the INDIGO-Data Cloud solution.

3.1 What is an e-Infrastructure?

“e-Infrastructure refers to a combination and interworking of digitally-based tech-
nology (hardware and software), resources (data, services, digital libraries), com-
munications (protocols, access rights and networks), and the people and organiza-
tional structures needed to support modern, internationally leading collaborative
research be it in the arts and humanities or the sciences. “ [24].

3.2 European Grid Infraestructure - EGI

3.2.1 What is EGI?

The European Grid Infrastructure [25] is an e-infrastructure created to allow sci-
entists and researchers to help in their work by providing not only the computing
tools but the opportunity to share information securely, analyze data efficiently and
collaborate with other researchers worldwide.

Many of the researches conducted nowadays are too complex to be resolved
by a single scientist or a single research team, modern challenges rely on large
projects, cross-country collaborations and computing power to analyze huge amounts
of data, EGI was founded to make possible this kind of works and to help any sci-
entific group no matter they size.

15

3.2. European Grid Infraestructure - EGI

Figure 3.1: Some Scientific applications that run on EGI. Taken from [26]

3.2.2 EGI Infrastructure

EGI’s Core Infraestructure

The services that federate and integrate the functional services deployed in the
production infrastructure can be seen on the following Figure

Figure 3.2: EGI Core Infrastructure Platform. Taken from [30]

16

3.2. European Grid Infraestructure - EGI

EGI’s Cloud Infrastructure

The cloud infrastructure is composed by the EGI Collaboration Platform, that han-
dles the Image Metadata Marketplace and the Image repository, the EGI Core In-
frastructure Platform and the EGI Cloud Infrastructure Platform, that contains the
Virtual Machine Management, Storage Management and the Information, and sup-
ports OpenStack and OpenNebula as Infrastructure as a Service (IaaS).

Figure 3.3: EGI Cloud Infrastructure. Taken from [30]

3.2.3 EGI Services

What EGI offers to a scientist?

EGI differentiates from any other resource provider by providing scientist with the
exact tools that make much easier their computational tasks and their collaboration
work. Some of the unique features that EGI offers are:

• Total control over deployed applications

• Elastic resource consumption based on real needs

17

3.2. European Grid Infraestructure - EGI

• Immediately processed workloads , no more waiting time

• An extended e-Infrastructure across resource providers in Europe

• Service performance scaled with elastic resource consumption

• Single sign-on at multiple, independent providers

The EGI Federated cloud: cloud compute and cloud storage services [27]

The EGI Federated Cloud is a seemless grid of academic private clouds and virtu-
alised resources, built around open standards and focusing on the requirements of
the scientific community. Its core elements are:

• Operations Coordination is a set of management and coordinating activities
ensuring that operational activities across the federated infrastructure work
seamlessly, without fragmentation. The coordination binds the infrastructure
so that the services are delivered at the agreed service level.

• Technology Coordination ensures continuous technological innovation through
sourcing of software components from technology providers to meet the cur-
rent and emerging needs of both researchers and resource centers.

• Security Coordination ensures a secure and stable infrastructure to mitigate
threats, enhance services, and give users the protection and confidence they
demand from a service. A secure infrastructure federation is naturally a top
priority.

• Federated Operation Services brings together the operational tools, processes
and people necessary to guarantee standard operation of heterogeneous in-
frastructures from multiple independent providers, with lightweight central
coordination (monitoring, accounting, configuration and so on).

• Helpdesk Support provides professional, reliable and efficient technical sup-
port to guarantee a well-run infrastructure with improved productivity and
usability for the customers. It requires certification so it is only provided to
Resource Centers already federated within EGI.

• Specialized Consultancy offers tailored technical and management advice to
help partners and clients make the most out of e-Infrastructure technologies.

18

3.2. European Grid Infraestructure - EGI

High-throughput Data Analysis infrastructure: analyze your research data
[28]

EGI offers the “High-throughput Data Analysis” solution to enable users to:

• Access transparently distributed resources with uniform interfaces

• Be authenticated in a uniform way in different sites.

• Autonomously manage their communities structure and to regulate access to
services and data throughout the infrastructure.

• Access resources assigned through a central allocation process.

Users are able to access distributed resources through common standard interfaces
uniformly available in the different resource centers. The user can manage his data
and execute and control the computational tasks using common services and APIs.

Users’ identity is uniformly recognized in the whole infrastructure. This re-
duces workload, for example, by making it possible for a computational task run-
ning in one resource center to access data stored by the user in another center.

Community Driven: Innovation and Support [29]

EGI offers the Community-driven Innovation and Support solution for potential
and existing users to:

• Facilitate access to EGI technical resources by informing them of the admin-
istrative and technical requirements.

• Enable data- and computation-intensive research, by providing consulting
support to structure research datasets, enabling a user-friendly interface or
application.

• Increase the efficiency and effectiveness of the research process.

• Innovate the research approach and methodology, by providing expertise
about the digital research procedures from computation experts and like-
minded researchers already aware of the new high performance computation
research paradigm.

• The ultimate purpose is to create an environment where scientists, regardless
of their discipline, can make the most of the European Grid Infrastructure for
their research without having to become experts in the infrastructure itself.

19

3.3. INDIGO-Data Cloud

3.3 INDIGO-Data Cloud

INDIGO stands for INtegrating Distributed data Infrastructures for Global Ex-
plOitation, the INDIGO-Data Cloud project [31] targets the development of a
framework, usable on top of existing and evolving e-Infrastructures, capable of
supporting the growing needs of scientists to be able to store, manage, share and
process research data.

This objective will be achieved by implementing a PaaS component,oriented to
the connection of heterogeneous e-infrastructure resources and to build and support
the applications of the researchers.

3.3.1 PaaS architecture and implementation

The design and implementation of a PaaS layer will allow scientific communities
to exploit, in a powerful and high-level way, several heterogeneous computing and
data e-infrastructure such as: IaaS Cloud, Helix Nebula, EGI Grid, EGI Federated
Cloud, PRACE, HPC,EUDAT, etc.

It will be possible to process large amounts of data and to exploit the efficient
storage and preservation technologies and infrastructure already available in the
European e-infrastructure, with the appropriate mechanisms to ensure security and
privacy.

The PaaS Layer will provide the following features:

• Transparency: description of services or applications deployment must be
independent from execution infrastructures, so the request can eventually be
split into sub-requests and run on diverser resources.

• Error management: failure or errors of service/application execution should
be caught in order to decide if it is possible to deploy it exploiting different
solutions.

• Elasticity management: description of high-level auto scaling rules will be
considered.

It will implement a solution, Geo-deployment Service, to deploy in a transparent
and powerful way both services and applications in a distributed and heterogeneous
environment made by several different infrastructures(EGI Grid, EGI Fed Cloud,
Helix Nebula, etc).

The developed solution will provide access optimization and an abstraction
layer that will allow users and higher layers to access storage as they were interact-
ing with a unified, (while distributed and heterogeneous) federated data storage.

20

3.4. OpenShift

Figure 3.4: INDIGO Global architecture. Yellow nodes represent implementation
based on already available solutions; Orange newly implemented services. Taken
from [31]

3.4 OpenShift

OpenShift [32] is a Platform as a Service (PaaS) solution that can be deployed right
in top of the most existing Infrastructure as a Service (IaaS). OpenShift offers a
Multilanguage, auto scaling and elastic platform that allows deploying applications
using frameworks and its deployment is based on a Software as a Service (SaaS)
definition model.

OpenShift makes possible to administrators to serve in a fast way to the needs
of the developers by deploying a PaaS that simplifies the process of deploying an
application. OpenShift offers a multitenant cloud architecture and granular that
allows to deploy in a simple way applications under demand, according to the

21

3.4. OpenShift

choice of programming language, development environment and auxiliary tools.
OpenShift supports Java, Ruby, PHP, Python and Perl, and data bases like MySQL
and PostgreSQL, the continuous integration service Jenkins and many other.

OpenShift is based on the concept of “cartridge” that will be used to provide
services to the platform. The cartridges are extensible, which allow the user the
possibility of extending the functionality of their applications by adding his own
personalized services. The developers can access to OpenShift using a command
line interface (CLI), a web console or an API RESTful. OpenShift also offers
middleware systems for applications based on standards like JBoss, Tomcat and
Apache.

3.4.1 OpenShift Physical Model

OpenShift is composed by 2 main elements:

• Broker: is the orchestrate mechanism for all the activities of the application
management platform. The broken is charged with the following tasks:

– Manage the login of the users.

– To update the DNS dynamically.

– Provide information about the status of the application.

– Orchestrate the application.

– Services and operations.

OpenShift is composed by different components which help on performing the task
described before, MongoDB and ActiveMQ are worth mentioning. MongoDB
keeps information about the status of the applications for the environment. Ac-
tiveMQ is the message broker that provides communication between the broker
and the nodes. The messages are sent between the broker and the nodes using
MCollective. Each broker executes one client and each node hosts a server that
sends status messages and listen to incoming messages.

• Nodes: a node in OpenShift is a host that executes applications. There can be
many nodes managed by a same or different brokers. A node contains gears
that contain applications. One of the features of OpenShift is the separation
in multitenant environments, which provides resources and data separated in
every application.

22

3.4. OpenShift

Figure 3.5: OpenShift Architecture. Taken from [32]

Each node is defined according to a series of gears, which represent the por-
tions of CPU, memory RAM and storage space available for a single application.
An application can’t override these resources, except for the storage space, which
quota is extendable for the administrator.

The technologies used to isolate the gears and manage the resource quotas are
SELinux and cgroups. Additionally Docker can be used as application container.

23

3.4. OpenShift

Figure 3.6: Information required to create an application. Taken from [33]

• Domain: The domain is not directly related to DNS; instead it provides a
unique namespace for all the applications of a specific user. The domain
name is appended to the application name to form the final application URL.

• Application Name: Identifies the name of the application. The final URL to
access the application is of the form: https://[APPNAME]-[DOMAIN].rhcloud.com

• Aliases: Users can provide their own DNS names for the application by
registering an alias with the platform.

• Dependencies: Users specify the cartridges required to run their applications.

• git repository: Each application gets a git repository. Users can modify code
in the repository and then perform a git push to deploy their code.

The next flow describes the case of creating and deploying a simple PHP applica-
tion.

24

3.4. OpenShift

Figure 3.7: Flow describing the creation and deployment of a PHP application.
Taken from [33]

25

4. Application to the LifeWatch
project: Galaxy & TRUFA

4.1 What is LifeWatch?

LifeWatch is an European initiative that was included in the Roadmap of the Euro-
pean Strategy Forum on Research Infrastructures (ESFRI), the body that identifies
the new research infrastructures (RIs) of pan-European interest with the goal of
promoting the long-term competitiveness of European Research and Innovation.

“The mission of LifeWatch is to advance biodiversity research and provide
knowledge-based solutions to environmental managers for its preservation. This
mission is achieved by providing access through a single infrastructure to a set
of data, services and tools enabling the construction and operation of Virtual Re-
search Environments (VREs) linked to LifeWatch, and where specific issues related
with biodiversity research and preservation are addressed.” [34]

4.2 Galaxy

4.2.1 Implementation

The Galaxy Framework [35] is a set of reusable software components that can be
used to:

• Integrate tools into applications.

• Encapsulate functionality for describing generic interfaces to computational
tools.

• Build concrete interfaces for users to interact with tools.

• Invoke tools in various execution environments.

• Dealing with general and tool specific dataset formats and conversions.

26

4.2. Galaxy

• Work with metadata describing datasets, tools, and their relationships.

The GALAXY Application is an application built using this framework that pro-
vides access to tools through an interface (such as, a web-based interface). A
GALAXY Instance is a deployment of this application with a specific set of tools.

The core components of the GALAXY Framework are the toolbox, the job
manager, the model, and the web interface.

Figure 4.1: Galaxy application architecture. Taken from [36]

The toolbox

The toolbox manages all of the details of working with command-line and web-
based computational tools. It parses GALAXY tool configuration files, including
the parameters and input data it can take, their types and restrictions, to a tool and
the outputs it produces, in an abstract way that is not specific to any particular
user interface. This abstraction is critically important since it allows for changing
how tools are displayed without needing to change their configuration (for exam-
ple, to leverage new accessibility features as web browsers improve, or to provide
interfaces that are not web-based).

27

4.2. Galaxy

The toolbox provides support for validating inputs to a tool, and for transform-
ing a valid set of inputs into the commands necessary to invoke that tool. Addi-
tionally, the toolbox allows tool authors to provide tests for their tools (inputs and
corresponding outputs) and provides support for running those tests in the context
of a particular GALAXY instance.

The job manager

The job manager is in charge of dealing with the details of executing tools. It
manages dependencies between jobs to ensure that required datasets have been
produced without errors before a job is run. It provides support for job queuing,
to allow multiple users to each submit multiple jobs to a GALAXY instance and
receive a fair execution order. Currently jobs can be executed on the same machine
where the GALAXY instance is running, or dispatched to a computational cluster
using a standard queue manager.

The model

GALAXY Model provides an abstract interface for working with datasets. It pro-
vides an object-oriented interface for working with dataset content; stored as files
on disk and metadata; data about datasets, tools, and their relationships, stored in a
relational database. Beyond providing access to the data, this component deals with
support for different datatypes, datatype specific metadata, and type conversions.

The web interface

The web interface provides support for interacting with a GALAXY instance through
a web browser. It generates web-based interfaces to the toolbox, for browsing and
choosing tools, individual tools by building forms to accept and validate user input
to a tool, and the model, allowing the user to work with all of the datasets they have
produced.

The web interface is currently the primary way to interact with a GALAXY
instance, but the other underlying components do not need to know anything about
the web, all web specific aspects of GALAXY are encapsulated by the web inter-
face.

Implementation Details

The GALAXY framework is implemented in Python. Python has several advan-
tages that justify it’s choice. First, it is a lightweight dynamic language that allows
to rapidly implement new GALAXY features. However, while Python is concise

28

4.3. TRUFA

and easy to write, it is also a highly structured language that is generally easy to
read and understand. This is important since it makes customizing and extending
the GALAXY framework much easier for users. Additionally, Python has a very
powerful standard library, as well as an amazing variety of third party open source
components.

However, an important aspect of the GALAXY architecture is the abstraction
between the framework and the underlying tools. Because the GALAXY toolbox
interacts with tools through command-line and web-based interfaces, there is no
requirement that a tool author must use Python. While Python is a powerful lan-
guage for scientific computing, and many of the tools we provide for comparative
genomic analysis are implemented in Python, frequently another language may suit
a particular problem better, or simply be preferred by a tool author.

GALAXY includes its own web server and embedded relational database ,us-
ing SQLite, and a GALAXY download includes all dependencies: a user needs to
just edit the configuration file and run one command to start interacting with and
customizing their own GALAXY instance.

However, if a user’s GALAXY instance needs to support higher throughput,
they can customize the web server, the underlying relational database, and the job
execution mechanism.

For instance, the public GALAXY instance maintained by the GALAXY team
at Penn State (https://usegalaxy.org) is integrated with Apache as the web-
server, uses the enterprise class relational database PostgreSQL, and executes jobs
on a computational cluster with a queue managed by the Slurm scheduler.

4.3 TRUFA

4.3.1 Description

TRUFA [20] is an informatics platform based on a web interface that generates the
outputs commonly used in de novo RNA-seq analysis and comparative transcrip-
tomics. TRUFA relies on a pipeline to orchestrate the jobs. TRUFA gives the user
an easy, fast and valid analysis on RNA-seq data.

The first step of a de novo RNA-seq analysis consists in assessing data quality
and cleaning raw reads. The output of a next-generation sequencing (NGS) reac-
tion contains traces of polymerase chain reaction (PCR) primers and sequencing
adapters as well as poor-quality bases/reads. Hence, it is advised to perform read
trimming, which has been shown to have a positive effect on the rest of the RNA-
seq analysis, although parameter values for such trimming have to be optimized.

Once reads have been cleaned, they are assembled into transcripts, which are
subsequently categorized into functional classes in order to understand their bio-

29

https://usegalaxy.org

4.3. TRUFA

logical meaning. Finally, it is possible to perform expression quantification analy-
ses by estimating the amount of reads sequenced per assembled transcript and tak-
ing into account that the number of reads sequenced theoretically correlates with
the number of copies of the corresponding mRNA in vivo. All the above-mentioned
steps in the RNA-seq analysis pipeline are included in TRUFA and correspond to
distinct sections in the web-based user interface (see Figures 4.3.2 and 4.3.2).

The platform is mainly written in Javascript, Python, and Bash. The source
code is available at Github (https://github.com/TRUFA-rnaseq). The long-
term availability of the TRUFA web server (and further developed versions) is
ensured given that it is currently installed in the ALTAMIRA supercomputer, a
facility integrated in the Spanish Supercomputing Network (RES).

4.3.2 Implementation

The overall workflow of TRUFA is shown in Figure 4.3.2. The input, output, and
different components of the pipeline are the following:

Input

Currently, the input data accepted by TRUFA includes Illumina read files and/or
reads already assembled into contigs. Read files should be in FASTQ format and
can be uploaded as gzip compressed files (reducing uploading times). Reads from
the NCBI SRA databases can be used but should be first formatted into FASTQ
format using, e. g., the SRA toolkit. Already assembled contigs should be uploaded
as FASTA files. Other FASTA files and HMM profiles can be uploaded as well for
custom blast-like and protein profile-based transcript annotation steps, respectively.
Thus far, no data size limitation is set.

Pipeline

Several programs can be called during the cleaning step (see Figure 4.3.2). The
program FASTQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc)
has been implemented to assess the quality of raw reads and give the statistics nec-
essary to tune cleaning parameters (Fig. 4.3.2). After the quality of the data is
determined, CUTADAPT [37] and PRINSEQ [38] allow, among other function-
alities, the removal of adapters as well as low quality bases/reads. In particular,
PRINSEQ has been chosen for its ability to treat both single and paired-end reads
and to perform read quality trimming as well as duplicate removal. Using the
BLAT fast similarity search tool, reads can be compared against databases of po-
tential contaminants such as, eg, UniVec (which allows identifying sequences of

30

https://github.com/TRUFA-rnaseq
http://www. bioinformatics.bbsrc.ac.uk/projects/fastqc

4.3. TRUFA

vector origin; (http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html) or
user-specified databases. TRUFA’s scripts will automatically remove those reads,
giving hits with such queried databases.

Cleaned reads, after passing an optional second quality control with FASTQC
to verify the overall efficiency of the first cleaning step, are ready for assembly.
TRUFA implements the software Trinity [39] which is an extensively used de novo
assembler and has been shown to perform better than other single k-mer assemblers
[40]. After the assembly, an in-house script provides basic statistics describing
transcripts lengths distribution, total bases incorporated in the assembly, N50, and
GC content. In addition, to evaluate the complete-ness of the assembly, a Blast+
[41] similarity search is performed against the UniProtKB/Swiss-Prot database,
and a Trinity script evaluates whether those assembled transcripts with hits are
full-length or nearly full-length. Both the number of recovered genes from the
total of 248 and their completeness have been used for de novo assembly quality
assessments.

The newly assembled transcripts can be used as query for similarity searches
with BLAT [42] and Blast+ against gene databases such as NCBI nr and UniRef90
HMMER [43] searches applying hidden Markov models (HMMs) against the PFAM-
A database; other databases with user-specified models can also be used. Fur-
ther annotation and assignation of gene ontology (GO) terms can be obtained with
BLAST2GO28 for the transcripts with blast hits against the nr database.

For expression quantification, Bowtie2 [44] is used to produce alignments of
the reads against the assembled transcripts. Alignments are then properly for-
matted using SAMtools43 and Picard (http://picard.sourceforge.net)[45].
Using these alignments, eXpress [46] can be used to quantify the expression of
all isoforms. Additionally, the script “run_RSEM_align_n_estimate” of the Trin-
ity package implemented in TRUFA uses Bowtie [47] and RSEM [48] to provide
an alternative procedure for expression quantification of both genes and isoforms.
Moreover, the percentage of reads mapping back to the assembled transcripts (ob-
tained with Bowtie and Bowtie2) can be used as another indication of the assembly
quality.

31

http://www.ncbi.nlm. nih.gov/VecScreen/UniVec.html
http://picard.sourceforge.net

4.3. TRUFA

Figure 4.2: Overview of the TRUFA pipeline. Taken from [20]

Output

TRUFA generates a large amount of output information from the different pro-
grams used in the customized pipeline. Briefly, a user should be able to download
FastQC html reports, FASTQ files with cleaned reads (without duplicated reads
and/or trimmed), Trinity-assembled transcripts (FASTA), read alignments against
the transcripts (BAM files), GO annotations (.txt and.dat files which can be im-
ported into the Blast2GO java application), and read counts (text files providing
read counts and TPM). Various statistics are computed at each step and are re-
ported in text files, such as the percentage of duplicated/trimmed reads, CEGMA
completeness report, assembly sequence composition, percentage of mapped reads,
and read count distributions.

32

4.3. TRUFA

Figure 4.3: List of software available at TRUFA. Taken from [20].

33

4.3. TRUFA

Figure 4.4: TRUFA web interface for user input. Taken from [20].

34

5. Implementation of the solutions
and comparative Analysis

5.1 Problem Description

TRUFA is currently installed in the ALTAMIRA supercomputer at IFCA, it offers
a good performance and short wait times with a few users. Although, the numbers
of users who will rely on TRUFA to perform their RNA-seq jobs is expected to
increase, in order to be prepared for this event, the deployment of TRUFA in a cloud
environment could be very advantageous. Some of the benefits of TRUFA Cloud
could be overall better user experience, better exploitation of the computational
resources, scalability and elasticity, an increment in efficiency and extensibility.

5.2 Solution proposed

Some of the advantages of migrating TRUFA to a cloud environment would be:

First of all, the user experience would be better, because of shorter queue times to
deploy their jobs and fastest execution of these.

Secondly, if TRUFA were deployed on a cloud environment, there could be a
much better usage of the resources which are designated in a static way to
run TRUFA at the ALTAMIRA supercomputer.

Thirdly, another reason to consider in a cloud environment is scalability, which
can be defined as the ability of a system to handle a growing amount of
work in a capable manner. TRUFA would be scalable if it was deployed in
a cloud environment as new resources could be added on the fly to handle
the increasing workload and relocate those free resources when they are not
required.

35

5.2. Solution proposed

Fourthly , another advantage would be the extensibility, as we saw in the section
3.3, one of the achievements of the NDIGO-Data Cloud will be the possi-
bility of running EGI Federated cloud solutions in heterogeneous infrastruc-
tures, using different cloud providers and resources providers.

Lastly, there would be a huge increment in efficiency. In its current situation, there
are a lot of computer resources allocated to run TRUFA, that are constantly
powered on and locked so they can’t be used to anything else. This increment
in efficiency will be obtained deploying TRUFA in a cloud environment, in
that case, it will use only the exact machines required for the jobs received
by the users, and those machines will be shut down upon job completion and
could be relocated to perform any other task.

One of the main reasons to choose OpenShift as the Platform as a Service (PaaS)
used in the Cloud infrastructure is its great ability to scale. OpenShift allows a
single application to use up to 16 gears, depending on traffic demand. It is able to
monitor the incoming web traffic to the application and automatically adds or re-
moves copies of the application to serve requests as needed. Another great feature
is its ability to create cartridges with the different software needed to run jobs as
part of the TRUFA pipeline. This “containers” are called cartridges, which are the
way Openshift handles the deployment of applications.

Therefore, our choice of PaaS would be OpenShift, as it provides a wide range
of languages and services availables, which are deployed in applications through a
cartridge. Cartridges can contain several different components, ranging from web
frameworks, databases, monitoring services up to connectors to external backends.

The initial idea will be to create a cartridge for each single software required
by TRUFA. This will allow us to configure the instances needed to perform the
jobs based in the user input. Besides, another instance will be needed to act as a
server, and will be in charge of handling the Graphic User Interface (GUI) using a
web interface as well as the management of the users.

36

5.2. Solution proposed

Figure 5.1: Overall representation of the infrastructure designed for TRUFA Cloud.

OpenShift is the PaaS used for the Cloud infrastructure. On top of it there is
the Graphic User Interface that will allow the user through a very attractive way
to interact with the system via web. On the lower layers are the cloud hosted ma-
chines, one hosting the server and other hosting nodes, that will have the necessary
dependencies installed (e.g. Python,JRE,Perl) and will contain the cartridges with
the methods of TRUFA(e.g. CUTADAPT, FastQC) and the workflow script, the
one in charge of orchestrating the whole workflow)

We have focused on the work related to the OpenShift implementation as it is
the main concern for this project.

OpenShift has been deployed using virtual machines available at IFCA. These
machines were the same as the ones offered by the European Grid Infrastructure
(EGI) and they used OpenStack [49] as cloud computing software platform, so
using them was the closest realistic approach to implement the project.

37

5.2. Solution proposed

We have installed the free and open version of OpenShift, called “OpenShift
Origin”. The operative systems supported by it are both Red Hat Enterprise Linux
(RHEL) and CentOS. We have used CentOS 6.6 as it is a well-supported OS, free
and was also available at EGI machines.

5.2.1 Setting up the virtual machines

We have followed the following steps to create the virtual machines:
First of all the machines in order to access to the virtual machines used ssh and

the following .pem – (Privacy-enhanced Electronic Mail) Base64 encoded DER
certificate keys. trufa.pem and nodo.pem, which we generated using OpenStack
[49].

Figure 5.2: Keys used to acces the virtual machines via ssh.

After that, we specified the flavor of the machine, and finally we assigned a
public IP address to the machine. Then to access to the virtual machine we used
the following command:

1 s s h − i key . pem centos@PUBLIC_IP_ADDRESS

The specifications of the main virtual machine (VM), which acted as the main
server can be found on the following Figure 5.3. There were also other MVs which
were in charge of hosting nodes that allowed us to perform different tasks:

38

5.2. Solution proposed

Figure 5.3: Specifications of the TRUFA Server Host.

In order to be able to deploy OpenShift Origin, a wide knowleadge of the dif-
ferent components must be acquired, so that a techincal remind of them are listed
below (see section 3.4.1 for more details).

The installation has been done following a community provided comprehensive
guide [50].

Broker

The Broker role consists of the OpenShift Broker RPMs and a MCollective client.
The Broker serves as a central hub of the OpenShift deployment, and provides a
web interface where users can manage their hosted applications.

DBServer

This role consists of the MongoDB database that the Broker uses to track users and
applications.

MsgServer

The MsgServer role includes the ActiveMQ server plus an MCollective client.

Node

The Node role is assigned to any host that will actually be used to store and serve
OpenShift-hosted applications.

39

5.2. Solution proposed

Figure 5.4: Client perspective of Openshift. Image taken from [50].

5.2.2 Installing OpenShift in the server

The steps followed to get OpenShift up and running in our CentOS instance has
been the following:

1 −Yum u p d a t e
2 −Yum i n s t a l l ruby
3 −Change hostname on / e t c / s y s c o n f i g / ne twork
4 −R e d i r e c t t o t h e new hostname on / e t c / h o s t s
5 −Sh <(c u r l s h t t p s : / / i n s t a l l . o p e n s h i f t . com)
6 − I n s t a l l O p e n S h i f t O r i g i n
7 − I n s t a l l a new DNS s e r v e r f o r o p e n s h i f t −h o s t e d

a p p l i c a t i o n s named apps . example . com

40

5.2. Solution proposed

8 −R e g i s t e r DNS e n t r i e s f o r o p e n s h i f t h o s t s w i th t h e
O p e n S h i f t DNS s e r v i c e named o p e n s h i f t . example .
com

9 −E s t a b l i s h t h e FDQN of t h e hos tname : m a s t e r .
o p e n s h i f t . example . com

10 −E s t a b l i s h t h e IP a d d r e s s f o r SSH a c c e s s , l o c a l h o s t
11 −Confirm t h e IP a d d r e s s o f t h e d e t e c t e d ne twork

i n t e r f a c e .
12 −Bind t h e DNS s e r v e r i n s t a l l e d on t h e h o s t w i th t h e

IP a d d r e s s
13 −S e t t h e b r o k e r r o l e
14 −S e t t h e mgse rve r r o l e
15 −S e t t h e d b s e r v e r r o l e
16 −S e t t h e node r o l e
17 −Confirm t h e i n s t a l l a t i o n o f t h e p a c k a g e s BIND and

PUPPET .

This is the configuration that the deployment generates:

Figure 5.5: OpenShift configuration on the server.

41

5.2. Solution proposed

5.2.3 Installing a BIND DNS Server

After installing OpenShift in the server node, we needed a DNS Server in order to
enable the communication between the nodes and the server. The detailed process
of installing the BIND DNS server is shown on Appendix 2.

After setting up the DNS Bind service, we created the node and assigned it to
a district.

1 # oo−admin−c t l −d i s t r i c t −c add−node −n
s m a l l _ d i s t r i c t − i node . apps . example . com

Then we added the node to the DNS Bind by executing the following com-
mand:

1 # oo−r e g i s t e r −dns −h node −d apps . example . com −n
1 7 2 . 1 6 . 5 . 9 −k $ { k e y f i l e }

This is the overview of the node through the web interface, and the details of
the python application that was created:

Figure 5.6: Overview of the node

42

5.2. Solution proposed

Figure 5.7: Details of the python application created in the node.

In order to verify that we have successfully added our node to our DNS server
we executed a ping from the server to the node and vice versa.

Figure 5.8: Pinging the node from the server.

43

5.2. Solution proposed

Figure 5.9: Pinging the server from the node.

This is the design for deployment that has taken place in the OpenShift layer:

Figure 5.10: Detailed OpenShift Layer Components

The server is the main actor that contains the OpenShift instance which man-
ages the different OpenShift nodes. In the nodes the different cartridges containing
the operations ran by the RNA-seq have been installed. The life cycle of these
nodes will be dynamically modified depending on the status of the user’s job by
the broker.

44

5.2. Solution proposed

5.2.4 Creating the first cartridge (CUTADAPT)

The next step has been the creation of a first cartridge, which contains one of the
many operations of the RNA-seq analysis offered by TRUFA. Due to simplicity,
as it has a few dependencies and relatively small complexity, we have chosen to
implement CUTADAPT.

CUTADAPT removes adapter sequences from high-throughput sequencing data.
It can run using only Python, making it a light weight option so that it can fits our
resources. Therefore, we have created an OpenShift node with Python (specifi-
cally, 2.7.6) underneath. In this application we have implemented and deployed a
cartridge with CUTADAPT.

In the Appendix 3 are the step by step instructions to create the CUTADAPT
cartridge.

Now we proceeded to test CUTADAPT with some real data: reads_left.fq [52]
and reads_right.fq [53].

1 $ c u t a d a p t −a AACCGGTT r e a d s _ l e f t . f q > o u t p u t _ l e f t .
f q

2 c u t a d a p t v e r s i o n 1 . 3
3 Command l i n e p a r a m e t e r s : −a AACCGGTT r e a d s _ l e f t . f q
4 Maximum e r r o r r a t e : 10.00%
5 No . o f a d a p t e r s : 1
6 P r o c e s s e d r e a d s : 30575
7 P r o c e s s e d b a s e s : 2323700 bp (2 . 3 Mbp)
8 Trimmed r e a d s : 554 (1 .8%)
9 Trimmed b a s e s : 1801 bp (0 . 0 Mbp)

(0.08% of t o t a l)
10 Too s h o r t r e a d s : 0 (0.0% of p r o c e s s e d

r e a d s)
11 Too long r e a d s : 0 (0.0% of p r o c e s s e d

r e a d s)
12 T o t a l t ime : 0 . 7 2 s
13 Time p e r read : 0 . 023 ms
14
15 === Adap te r 1 ===
16
17 Adap te r ’AACCGGTT’ , l e n g t h 8 , was tr immed 554 t imes

.
18

45

5.2. Solution proposed

19 No . o f a l l o w e d e r r o r s :
20 0−8 bp : 0
21
22 Overview of removed s e q u e n c e s
23 l e n g t h c o u n t e x p e c t max . e r r e r r o r c o u n t s
24 3 437 477 .7 0 437
25 4 104 119 .4 0 104
26 5 9 2 9 . 9 0 9
27 6 3 7 . 5 0 3
28 11 1 0 . 5 0 1

So we confirmed that it worked as intended, it deployed and successfully in-
stalled the CUTADAPT 1.3 functionality.

After that we created the FastQC cartridge following the previous steps men-
tioned before. We also tested FastQC with some real data.

1 $ f a s t q c r e a d s _ r i g h t . fq
2 S t a r t e d a n a l y s i s o f r e a d s _ r i g h t . fq
3 Approx 5% complete f o r r e a d s _ r i g h t . fq
4 . . .
5 Approx 95% complete f o r r e a d s _ r i g h t . fq
6 A n a l y s i s complete f o r r e a d s _ r i g h t . fq

We confirmed that the FastQC cartridge also was functional.

5.2.5 Creating the workflow script

The next step we took was creating a script that allowed us to simulate the effect
of a workflow execution environment. We wanted the script to automatize the
creation of an application, the launch of the cartridges, the execution flow and after
that deleting the created application. We created this script using shell as it was the
most sutiable to the tasks at hand.

This is the execution sequence:

1. Create an application on a node.

2. Launch FastQC cartridge.

3. Execute FastQC with the input of the user.

46

5.2. Solution proposed

4. Launch CUTADAPT cartridge.

5. Execute CUTADAPT with the input of the user.

6. Execute FastQC with the output from the execution named on the step

7. Delete the application.

The mentioned script can be found at the Appendix 4.

5.2.6 Results

In this section we discussed the results obtained by executing the workflow script.
We have executed the script for both reads_left.qc and reads_right.qc taking into
account the time the execution has taken.

Appendix 5 contains the execution of the script.
The first execution took 11.35 s to execute and the second took 11.36 s, we

can appreciate that both the jobs are light processes and not excessively resource
consuming. So the use of the cartridges does not affect in a huge way in the time
needed to execute the whole sequence.

We can state that the script works as intended and that both FastQC and CU-
TADAPT are properly installed and working as desired. We can also affirm that
the complete implementation of TRUFA Cloud can be done by using cartridges
and workflow scripts.

5.2.7 Future Work: Final vision for TRUFA Cloud

We have seen that OpenShift works as expected, using cartridges as an efficient
way to deploy our operations. The work we explained before is merely proof of
concept to what could be the creation of TRUFA Cloud. The final TRUFA deploy-
ment would be as follows:

47

5.2. Solution proposed

Figure 5.11: OpenShift Layer of a Complete Deployment of TRUFA Cloud.

The final deployment for TRUFA Cloud using the solution that we proposed,
would be using different nodes hosting the dependencies (Python, Java, Linux)
needed for each program (CUTADAPT,FastQC,Trinity,..) , and the programs would
be deployed into these nodes using cartridges.

48

6. Conclusions

There are a number of different applications and tools that provides non IT experts
users with different features that allow them to perform very complex combined
processing steps. We have dedicated a certain amount of work in analyzing the
existing workflow solutions, which has allowed us to distinguish the good features
that we want to implement, and to discern those characteristics we believe are
superfluous and unnecessary. Some of them could only be applied to very specific
fields, whereas others may be too complicated to modify or to add new features.
Also, a few of them are not user-friendly.

We have also analyzed the existing Cloud and Platforrm as a Service solutions
and we have chosen one option, having in mind the resources that we could access
to. We have studied Galaxy and TRUFA thoroughly as examples of research appli-
cations implementing workflows, and we decided that TRUFA would be the best
option to implement for this project, as it is currently running and supported at the
Instituto de Fisica de Cantabria, has a high user demand (more than 60 users from
ten different countries), is Python-based, which is a popular programming language
with a huge community, easily used by OpenShift,it is designed in a modular way,
which allows layer substitution without comprommising the general performance,
and it is also open source.

A realistic and useful solution based on a PaaS open solution, OpenShift, using
cartridges as the basic unit in the workflow implementation, combined with script-
ing, has been proposed and a first relevant test has been implemented and deployed
on real infrastructure.

We have replaced the computational layer in the ALTAMIRA computer for
OpenShift cartridges. The batch system role has been substituted by OpenShift
and its broker, who acts as the orchestrator. In a final solution, both would manage
the deployment of the cartridges and, attending to the user input, would handle the
different resources required to deploy the whole infrastructure.

This solution takes advantage of all the benefits inherent to running on a Cloud
environment, which can be summarized as a better user experience and an effi-
ciency increase. Our solution can be used as a proof of concept to perform an

49

integral TRUFA migration to a cloud environment, which can be useful for differ-
ent ongoing projects, such as INDIGO and the european iniciative LifeWatch.

We have checked that the whole implementation of TRUFA Cloud is perfectly
doable. That is why we have given such a detailed implementation of the key com-
ponents to implement the solution. Besides, we have provided the whole design
to the complete TRUFA Cloud implementation in order to make the whole imple-
mentation as best as possible.

This is only the first example of a large number of workflow applications that
will be implemented along the next two years under the LifeWatch European ini-
tiative, and deployed in the EGI FedCloud.

This work has been a great challenge, where we have applied all the knowledge
acquired during our studies. Is it worth to mention the competences obtained in the
next courses : Operative Systems, Networks I and II and Informatic Systems. Also
the infrastructure used in the Fed Cloud environment with IFCA resources is real
and its designed to be used as real in future projects.

This project can be considered as the first realistic test of a Workflow as a
Service solution, that will be useful in the future in many other application areas.

Appendix 1: List of acronyms

WaaS - Workflow as a service
PaaS - Platform as a Service
IaaS-Infrastructure as a Service
SaaS-Software as a Service
EGI. European Grid Innitiative
TRUFA-TRanscriptome User-Friendly Analysis
JRE- Java Runtime Environment
RI-Research Infrastructure
VRE-Virtual Research Environment
GUI-Graphic User Interface
IFCA-Instituto de Fisica de Cantabria
UPV-Universitat Politecnica de Valencia
INRA-Institut National de la Recherche Agronomique
NGS-Next Generation Sequencing
API-Application Programming Interface
SSH-Secure Shell
OS- Operative System
VM- Virtual Machine

51

Appendix 2: BIND DNS Server
Installation

Here it is shown the detailed process to set up the DNS server, both in server and
node hosts. We installed the bind-utils package and set the domain to our actual
domain by

1 yum i n s t a l l −y bind bind−u t i l s
2
3 domain= apps . example . com

DNSSEC, which stands for DNS Security Extensions, is a method by which
DNS servers can verify that DNS data is coming from the correct place. We created
a private/public key pair to determine the authenticity of the source domain name
server. In order to implement DNSSEC on OpenShift, we needed to create a key
file, which will be stored in /var/named. For convenience, we set the "$keyfile"
variable to the location of this key file:

1 k e y f i l e = / v a r / named / ${ domain } . key

Then we created a DNSSEC key pair and stored the private key in a variable
named "$KEY" by using the following commands:

1 pushd / v a r / named
2 rm K${ domain }*
3 dnssec−keygen −a HMAC−MD5 −b 512 −n USER −r / dev /

urandom ${ domain }
4 KEY=" $ (g rep Key : K${ domain } * . p r i v a t e | c u t −d ’ ’ −f

2) "
5 popd

52

Appendix 2: BIND DNS Server Installation

We also created an rndc key, which will be used by the init script to query the
status of BIND when you run service named status:

1 rndc−confgen −a −r / dev / urandom

We also configured the ownership, permissions, and SELinux contexts for the
keys that we have created:

1 r e s t o r e c o n −v / e t c / rndc . * / e t c / named . *
2 chown −v r o o t : named / e t c / rndc . key
3 chmod −v 640 / e t c / rndc . key
4 echo " f o r w a r d e r s { 8 . 8 . 8 . 8 ; 8 . 8 . 4 . 4 ; } ; " >> / v a r /

named / f o r w a r d e r s . con f
5 r e s t o r e c o n −v / v a r / named / f o r w a r d e r s . con f
6 chmod −v 640 / v a r / named / f o r w a r d e r s . con f

To ensure that we were using a clean /var/named/dynamic directory, we re-
moved this directory:

1 rm −r v f / v a r / named / dynamic
2 mkdir −vp / v a r / named / dynamic

We used the following command to create the ${domain}.db file

1 c a t <<EOF > / v a r / named / dynamic / ${ domain } . db
2 \ $ORIGIN .
3 \ $TTL 1 ; 1 s e c o n d s (f o r t e s t i n g on ly)
4 ${ domain } IN SOA ns1 . ${ domain } . h o s t m a s t e r . $

{ domain } . (
5 2011112904 ; s e r i a l
6 60 ; r e f r e s h (1 minu te)
7 15 ; r e t r y (15 s e c o n d s)
8 1800 ; e x p i r e (30 m i n u t e s)
9 10 ; minimum (10 s e c o n d s)

10)
11 NS ns1 . ${ domain } .
12 MX 10 ma i l . ${ domain } .
13 \ $ORIGIN ${ domain } .

53

Appendix 2: BIND DNS Server Installation

14 ns1 A 1 2 7 . 0 . 0 . 1
15 EOF
16 We a l s o needed t o c r e a t e t h e named . con f f i l e .
17 c a t <<EOF > / e t c / named . con f
18 o p t i o n s {
19 l i s t e n −on p o r t 53 { any ; } ;
20 d i r e c t o r y " / v a r / named " ;
21 dump− f i l e " / v a r / named / d a t a / cache_dump . db " ;
22 s t a t i s t i c s − f i l e " / v a r / named / d a t a /

n a m e d _ s t a t s . t x t " ;
23 m e m s t a t i s t i c s − f i l e " / v a r / named / d a t a /

named_mem_stats . t x t " ;
24 a l low−query { any ; } ;
25 r e c u r s i o n yes ;
26 / * Pa th t o ISC DLV key * /
27 b indkeys− f i l e " / e t c / named . i s c d l v . key " ;
28
29 / / s e t f o r w a r d i n g t o t h e n e x t n e a r e s t s e r v e r (

from DHCP r e s p o n s e
30 f o r w a r d on ly ;
31 i n c l u d e " f o r w a r d e r s . con f " ;
32 } ;
33 l o g g i n g {
34 c h a n n e l d e f a u l t _ d e b u g {
35 f i l e " d a t a / named . run " ;
36 s e v e r i t y dynamic ;
37 } ;
38 } ;
39 / / use t h e d e f a u l t r ndc key
40 i n c l u d e " / e t c / rndc . key " ;
41
42 c o n t r o l s {
43 i n e t 1 2 7 . 0 . 0 . 1 p o r t 953
44 a l l o w { 1 2 7 . 0 . 0 . 1 ; } keys { " rndc−key " ; } ;
45 } ;
46 i n c l u d e " / e t c / named . r f c 1 9 1 2 . zones " ;
47 i n c l u d e " ${ domain } . key " ;
48 zone " ${ domain } " IN {

54

Appendix 2: BIND DNS Server Installation

49 type m a s t e r ;
50 f i l e " dynamic / ${ domain } . db " ;
51 a l low−u p d a t e { key ${ domain } ; } ;
52 } ;
53 EOF

Finally, we set the permissions for the new configuration file that we just cre-
ated:

1 chown −v r o o t : named / e t c / named . con f r e s t o r e c o n / e t c /
named . con f

Now we were ready to start up our new DNS server and add some updates.

1 s e r v i c e named s t a r t

Now we needed to update the resolv.conf file to use the local named service
that we installed and configured. We Added in /etc/resolv.conf file the following
entry as the first nameserver entry in the file:

1 n a m e s e r v e r 1 2 7 . 0 . 0 . 1

We also need to make sure that named starts on boot and that the firewall is
configured to pass through DNS traffic:

1 l o k k i t −−s e r v i c e =dns
2 c h k c o n f i g named on

We also modified the /etc/dhcp/dhclient-eth0.conf with the following informa-
tion:

1 p r e p r e n d domain−name−s e r v e r s 1 7 2 . 1 6 . 7 . 1 3 ;
2 s u p e r s e d e hos t−name m a s t e r . o p e n s h i f t . example . com ;
3 s u p e r s e d e domain name apps . example . com ;

We also modified the /etc/resolv.conf file in both the server and later in the
node.

In the server with the following configuration:

55

Appendix 2: BIND DNS Server Installation

1 s e a r c h apps . example . com
2 n a m e s e r v e r 1 2 7 . 0 . 0 . 1
3 n a m e s e r v e r 8 . 8 . 8 . 8

And in the node:

1 s e a r c h apps . example . com
2 n a m e s e r v e r 1 7 2 . 1 6 . 7 . 9
3 n a m e s e r v e r 8 . 8 . 8 . 8

We also modified the /etc/sysconfig/network to set the BIND DNS Server as
the gateway in the node:

1 GATEWAY= 1 7 2 . 1 6 . 7 . 1 3

We also modified the /etc/hosts file in the node.

1 1 7 2 . 1 6 . 7 . 1 3

We added a record for our broker node to BIND’s database:

1 # oo−r e g i s t e r −dns −h b r o k e r −d example . com −n
1 7 2 . 1 6 . 7 . 1 3 −k $ { k e y f i l e }

56

Appendix 3: Creation of the
CUTADAPT cartridge

In order to create an OpenShift cartridge there’s a mandatory set of directories and
files that should be present in the cartridge. More information can be consulted in
the OpenShift Origin Cartridge Developer’s Guide [51].

This is the actual CUTADAPT cartridge folder. Bin contains install and setup,
two scripts that handle the status of the application and its installation. Hooks
contains actions to be run during lifecycle changes. Metadata contains the mani-
fest.yml, a descriptor of the cartridge.Versions contains a folder called cutadapt1.3
which contains the source code of the application compressed in a .tar.gz.

Figure 1: CUTADAPT Cartridge
folder Figure 2: Contents of the bin folder

Control:

1 # ! / b i n / bash
2 v e r s i o n = c u t a d a p t
3 f u n c t i o n s t a t u s () {
4 c l i e n t _ r e s u l t $pwd
5 ps −C c u t a d a p t > / dev / n u l l
6 i f [" $? " −eq " 0 "] ;
7 then

57

Appendix 3: Creation of the CUTADAPT cartridge

8 c l i e n t _ r e s u l t " c u t a d a p t i s r u n n i n g " ;
9 e l s e

10 c l i e n t _ r e s u l t " c u t a d a p t i s n o t r u n n i n g " ;
11 f i
12 }
13 f u n c t i o n s t a r t () {
14 c l i e n t _ r e s u l t " s t a r t i n g c u t a d a p t "
15 ps −C c u t a d a p t > / dev / n u l l
16 i f [" $? " −eq " 0 "] ; then
17 c l i e n t _ r e s u l t " c u t a d a p t i s r u n n i n g

a l r e a d y . . . run s t o p f i r s t " ;
18 e l s e
19 c l i e n t _ r e s u l t " c u t a d a p t i s

n o t r u n n i n g . . . s t a r t i n g
i t now"

20 # E e x e c u t e c u t a d a p t i n background mode
21 # nohup c u t a d a p t / b i n / c u t a d a p t −a

AACCGGTT i n p u t . f a s t q > o u t p u t . f a s t q
&

22 f i
23 }
24 # Ensure argument s .
25 i f ! [$# −g t 0] ; t h e n
26 echo " Usage : $0 [s t a r t | s t a t u s] "
27 e x i t 1
28 f i
29 # Source u t i l i t y f u n c t i o n s .
30 source $OPENSHIFT_CARTRIDGE_SDK_BASH
31 # Handle commands .
32 case " $1 " in
33 s t a r t) s t a r t ; ;
34 s t a t u s) s t a t u s ; ;
35 *)
36 e sac

58

Appendix 3: Creation of the CUTADAPT cartridge

Install:

1 # ! / b i n / bash
2
3 source $OPENSHIFT_CARTRIDGE_SDK_BASH
4 c l i e n t _ r e s u l t " i n s t a l l i n g c u t a d a p t ‘ da t e ‘ "
5 # Unz ipp ing aqu i
6 t a r −xvz f v e r s i o n s / c u t a d a p t −*/ c u t a d a p t −*
7 mv c u t a d a p t −* c u t a d a p t − i n s t a l l
8 # Compi l ing c u t a d a p t
9 # Dependenc ie s needed python−d e v e l y l i b x s l t −d e v e l

10 py thon c u t a d a p t − i n s t a l l / s e t u p . py b u i l d > l o g . t x t
11 c l i e n t _ r e s u l t " i n s t a l l c o m p l e t e ‘ da t e ‘ "

The metadata folder contains the manifest.yml file, which acts as the descriptor
of the cartridge.

Figure 3: Content of the metadata, version and cutadapt-1.3 folders, respectively.

Manifest.yml:

1 Name : c u t a d a p t
2 C a r t r i d g e −Shor t−Name : CUTADAPT
3 Disp lay−Name : c u t a d a p t −1.3
4 D e s c r i p t i o n : CUTADAPT 1 . 3 (h t t p s : / / pyp i . py thon . o rg /

pyp i / c u t a d a p t / 1 . 3) .
5 V e r s i o n : " 1 . 3 "
6 C a r t r i d g e −V e r s i o n : 0 . 1 . 0
7 C a r t r i d g e −Vendor : 1 b e r t i l l o
8 C a t e g o r i e s :
9 − s e r v i c e

10 P r o v i d e s :

59

Appendix 3: Creation of the CUTADAPT cartridge

11 − c u t a d a p t −1.3
12 − c u t a d a p t
13 S c a l i n g :
14 Min : 1
15 Max : −1
16
17 Source−Url : h t t p s : / / g i t h u b . com / 1 b e r t i l l o / c u t a d a p t .

g i t

The versions folder contains the cutadapt-1.3 version folder, where inside is
the CUTADAPT source code. After creating these folders and files, the cartridge
was ready to be tested. To test it, we created a Python 2.7 application and deployed
the cartridge.

This is the interface for submitting customized cartridges to an application.

Figure 4: Web interface for uploading customized cartridges on OpenShift.

After it succeeded in the deployment:

Figure 5: Output after the deployment of the CUTADAPT cartridge on a node.

60

Appendix 3: Creation of the CUTADAPT cartridge

This is the cartridges that the application holds after the deployment:

Figure 6: List of cartridges after the installation of the CUTADAPT cartridge.

61

Appendix 4: Workflow script

1 # ! / b i n / bash
2
3 f u n c t i o n e x e f a s t q c () {
4 # E x e c u t i n g f a s t q c
5 echo " INITIATING FASTQC : "
6 f a s t q c −o . $1
7 # Decompress ing f i l e , c o p y i n g and removing

r e s u l t s
8 echo "PROCESSING STATISTICS : "
9 #We send t h e o u t p u t t o dev / n u l l because we

don ’ t want i t t o show i n t h e s h e l l
10 u n z i p $ 1 _ f a s t q c . z i p > / dev / n u l l
11 # f a s t q c _ d a t a . t x t i s g e n e r a t e d by t h e

e x e c u t i o n o f FastQC and i t c o n t a i n s t h e
s t a t i s t i c s o f t h e a n a l y s i s per fo rmed .

12 cp $ 1 _ f a s t q c / f a s t q c _ d a t a . t x t .
13 rm −R $ 1 _ f a s t q c
14 rm $ 1 _ f a s t q c . h tml $ 1 _ f a s t q c . z i p
15 #We show t h e r e s u l t o f t h e FastQC e x e c u t i o n

by g r e p p i n g t h e r e s u l t s
16 c a t f a s t q c _ d a t a . t x t | g r ep p a s s
17 c a t f a s t q c _ d a t a . t x t | g r ep f a i l
18 c a t f a s t q c _ d a t a . t x t | g r ep warn
19 echo "−−−−−−−−−−−−−−−−−−
20 }
21
22 f u n c t i o n e x e c u t a d a p t () {

62

Appendix 4: Workflow script

23 # E x e c u t i n g c u t a d a p t
24 echo " INITIATING CUTADAPT: "
25 c u t a d a p t −a $2 $1 > $1 . o u t p u t . fq
26 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
27 }
28
29 #Main
30 i f ! [$# −eq 1] ; t h e n
31 echo " Usage : $0 [i n p u t . fq] "
32 e x i t 1
33 f i
34 c h a i n ="AACCGGTT"
35 app−name=" python−node . apps . example . com"
36 r e p o c u t a d a p t =" h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com / 1

b e r t i l l o / c u t a d a p t / m a s t e r / m e t a d a t a / m a n i f e s t . yml "
37 r e p o f a s t q c =" h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com / 1

b e r t i l l o / f a s t q c / m a s t e r / m e t a d a t a / m a n i f e s t . yml "
38
39 # C r e a t i n g an a p p l i c a t i o n wi th python −2.7
40 r h c app−c r e a t e $app−name python −2.7
41 # Launching FastQC c a r t r i d g e
42 r h c c a r t r i d g e −add $ r e p o f a s t q c −a $app−name
43 e x e f a s t q c $1
44
45 # Launching CUTADAPT c a r t r i d g e
46 r h c c a r t r i d g e −add $ r e p o c u t a d a p t −a $app−name
47 e x e c u t a d a p t $1 $ c h a i n
48
49 # E x e c u t i n g FastQC wi th i n p u t a s t h e o u t p u t o f t h e

c u t a d a p t e x e c u t i o n
50 e x e f a s t q c $1 . o u t p u t . fq
51
52 #Removing t h e a p p l i c a t i o n a f t e r t h e e x e c u t i o n
53 r h c app−d e l e t e $app−name

63

Appendix 5: Execution of the
script

1 $. / s c r i p t r e a d s _ l e f t . f q
2 INITIATING FASTQC :
3 S t a r t e d a n a l y s i s o f r e a d s _ l e f t . f q
4 Approx 5% complete f o r r e a d s _ l e f t . f q
5 . . .
6 Approx 95% complete f o r r e a d s _ l e f t . f q
7 A n a l y s i s complete f o r r e a d s _ l e f t . f q
8 PROCESSING STATISTICS ESTADï¿œSTICAS :
9 >> B a s i c S t a t i s t i c s p a s s

10 >> Per base s e q u e n c e q u a l i t y p a s s
11 >> Per s e q u e n c e q u a l i t y s c o r e s p a s s
12 >> Per base N c o n t e n t p a s s
13 >>Sequence Length D i s t r i b u t i o n p a s s
14 >> Adap te r C o n t e n t p a s s
15 >> Per t i l e s e q u e n c e q u a l i t y f a i l
16 >> Per base s e q u e n c e c o n t e n t f a i l
17 >> Per s e q u e n c e GC c o n t e n t warn
18 >>Sequence D u p l i c a t i o n L e v e l s warn
19 >> O v e r r e p r e s e n t e d s e q u e n c e s warn
20 >>Kmer C o n t e n t warn
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 INITIATING CUTADAPT:
23 c u t a d a p t v e r s i o n 1 . 3
24 Command l i n e p a r a m e t e r s : −a AACCGGTT r e a d s _ l e f t . f q
25 Maximum e r r o r r a t e : 10.00%

64

Appendix 5: Execution of the script

26 No . o f a d a p t e r s : 1
27 P r o c e s s e d r e a d s : 30575
28 P r o c e s s e d b a s e s : 2323700 bp (2 . 3 Mbp)
29 Trimmed r e a d s : 554 (1 .8%)
30 Trimmed b a s e s : 1801 bp (0 . 0 Mbp)

(0.08% of t o t a l)
31 Too s h o r t r e a d s : 0 (0.0% of p r o c e s s e d

r e a d s)
32 Too long r e a d s : 0 (0.0% of p r o c e s s e d

r e a d s)
33 T o t a l t ime : 0 . 7 3 s
34 Time p e r read : 0 . 024 ms
35
36 === Adap te r 1 ===
37
38 Adap te r ’AACCGGTT’ , l e n g t h 8 , was tr immed 554 t imes

.
39
40 No . o f a l l o w e d e r r o r s :
41 0−8 bp : 0
42
43 Overview of removed s e q u e n c e s
44 l e n g t h c o u n t e x p e c t max . e r r e r r o r c o u n t s
45 3 437 477 .7 0 437
46 4 104 119 .4 0 104
47 5 9 2 9 . 9 0 9
48 6 3 7 . 5 0 3
49 11 1 0 . 5 0 1
50
51 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 INITIATING FASTQC :
53 S t a r t e d a n a l y s i s o f r e a d s _ l e f t . f q . o u t p u t . fq
54 Approx 5% complete f o r r e a d s _ l e f t . f q . o u t p u t . fq
55 . . .
56 Approx 95% complete f o r r e a d s _ l e f t . f q . o u t p u t . fq
57 A n a l y s i s complete f o r r e a d s _ l e f t . f q . o u t p u t . fq
58 PROCESSING STATISTICS :
59 >> B a s i c S t a t i s t i c s p a s s

65

Appendix 5: Execution of the script

60 >> Per base s e q u e n c e q u a l i t y p a s s
61 >> Per s e q u e n c e q u a l i t y s c o r e s p a s s
62 >> Per base N c o n t e n t p a s s
63 >> Adap te r C o n t e n t p a s s
64 >> Per t i l e s e q u e n c e q u a l i t y f a i l
65 >> Per base s e q u e n c e c o n t e n t f a i l
66 >> Per s e q u e n c e GC c o n t e n t warn
67 >>Sequence Length D i s t r i b u t i o n warn
68 >>Sequence D u p l i c a t i o n L e v e l s warn
69 >> O v e r r e p r e s e n t e d s e q u e n c e s warn
70 >>Kmer C o n t e n t warn
71 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72
73 r e a l 0 : 1 1 . 3 5 s
74 u s e r 13 .13 s
75 s y s 0 . 7 3 s
76 memory 158428KB
77
78
79 $. / s c r i p t r e a d s _ r i g h t . fq
80 INITIATING FASTQC :
81 S t a r t e d a n a l y s i s o f r e a d s _ r i g h t . fq
82 Approx 5% complete f o r r e a d s _ r i g h t . fq
83 . . .
84 Approx 95% complete f o r r e a d s _ r i g h t . fq
85 A n a l y s i s complete f o r r e a d s _ r i g h t . fq
86 PROCESSING STATISTICS :
87 >> B a s i c S t a t i s t i c s p a s s
88 >> Per base s e q u e n c e q u a l i t y p a s s
89 >> Per s e q u e n c e q u a l i t y s c o r e s p a s s
90 >> Per base N c o n t e n t p a s s
91 >>Sequence Length D i s t r i b u t i o n p a s s
92 >> Adap te r C o n t e n t p a s s
93 >>Kmer C o n t e n t p a s s
94 >> Per t i l e s e q u e n c e q u a l i t y f a i l
95 >> Per base s e q u e n c e c o n t e n t f a i l
96 >> Per s e q u e n c e GC c o n t e n t warn
97 >>Sequence D u p l i c a t i o n L e v e l s warn

66

Appendix 5: Execution of the script

98 >> O v e r r e p r e s e n t e d s e q u e n c e s warn
99 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

100 INITIATING CUTADAPT:
101 c u t a d a p t v e r s i o n 1 . 3
102 Command l i n e p a r a m e t e r s : −a AACCGGTT r e a d s _ r i g h t . fq
103 Maximum e r r o r r a t e : 10.00%
104 No . o f a d a p t e r s : 1
105 P r o c e s s e d r e a d s : 30575
106 P r o c e s s e d b a s e s : 2323700 bp (2 . 3 Mbp)
107 Trimmed r e a d s : 492 (1 .6%)
108 Trimmed b a s e s : 1660 bp (0 . 0 Mbp)

(0.07% of t o t a l)
109 Too s h o r t r e a d s : 0 (0.0% of p r o c e s s e d

r e a d s)
110 Too long r e a d s : 0 (0.0% of p r o c e s s e d

r e a d s)
111 T o t a l t ime : 0 . 7 4 s
112 Time p e r read : 0 . 024 ms
113
114 === Adap te r 1 ===
115
116 Adap te r ’AACCGGTT’ , l e n g t h 8 , was tr immed 492 t imes

.
117
118 No . o f a l l o w e d e r r o r s :
119 0−8 bp : 0
120
121 Overview of removed s e q u e n c e s
122 l e n g t h c o u n t e x p e c t max . e r r e r r o r c o u n t s
123 3 381 477 .7 0 381
124 4 101 119 .4 0 101
125 5 8 2 9 . 9 0 8
126 6 1 7 . 5 0 1
127 67 1 0 . 5 0 1
128
129 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
130 INITIATING FASTQC :
131 S t a r t e d a n a l y s i s o f r e a d s _ r i g h t . fq . o u t p u t . fq

67

Appendix 5: Execution of the script

132 Approx 5% complete f o r r e a d s _ r i g h t . fq . o u t p u t . fq
133 . . .
134 Approx 95% complete f o r r e a d s _ r i g h t . fq . o u t p u t . fq
135 A n a l y s i s complete f o r r e a d s _ r i g h t . fq . o u t p u t . fq
136 PROCESSING STATISTICS :
137 >> B a s i c S t a t i s t i c s p a s s
138 >> Per base s e q u e n c e q u a l i t y p a s s
139 >> Per s e q u e n c e q u a l i t y s c o r e s p a s s
140 >> Per base N c o n t e n t p a s s
141 >> Adap te r C o n t e n t p a s s
142 >>Kmer C o n t e n t p a s s
143 >> Per t i l e s e q u e n c e q u a l i t y f a i l
144 >> Per base s e q u e n c e c o n t e n t f a i l
145 >> Per s e q u e n c e GC c o n t e n t warn
146 >>Sequence Length D i s t r i b u t i o n warn
147 >>Sequence D u p l i c a t i o n L e v e l s warn
148 >> O v e r r e p r e s e n t e d s e q u e n c e s warn
149 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
150
151 r e a l 0 : 1 1 . 3 6 s
152 u s e r 12 .46 s
153 s y s 0 . 7 6 s
154 memory 155116KB

68

Appendix 6: Errors

We encountered an error when trying to deploy the CUTADAPT cartridge in the
application, it said:

1 " / b i n / sh : / v a r / l i b / o p e n s h i f t / 524 d8719e0b8cd61ef0001d4 /
c u t a d a p t / b i n / s e t u p : P e r m i s s i o n d e n i e d "

It was because the scripts at bin didn’t have executable permissions, I was
trying to fix this by executing

1 chmod +x / b i n / *

The problem was still there because I was doing it using Windows, there were
2 alternative solutions: Using a Linux system for the same chmod command or
using instead the next command in Windows

1 g i t upda te−i n d e x −−chmod=+x / b i n / *

We also had problems by installing OpenShift on the server host.This is the
information that showed during the installation. At the beginning we thought it was
because of wrong DNS conofiguration, but it was because the mongoDB service
couldn’t be installed because of not enough free space in disk.

69

Appendix 6: Errors

Figure 7: Error encountered during the OpenShift installation

After reviewing logs we realized it was a problem of hard drive bad configu-
ration. It seemed like we were using a bad CentOS image that didn’t attend to the
flavor of the virtual machine were it was hosted. It had a partition of 4 gb even
when the flavor assigned it 40gb.

Figure 8: Hard drive configuration on the server

The /dev/xvda1 filesystem had a pre-assigned size of 3,9GB so the only solu-
tion was using a clean image of CentOS.

70

Bibliography

[1] Bowers, Shawn et al. (2005). Actor Oriented Design for Scientific Workflows,
Lecture in Computer Science (Vol. 3716, pp. 369-384).

[2] Workflow Management Coalition: Terminology & Glossary. (1996). Work-
flow Management Coalition.

[3] Goble, C., & De Roure, D et al. (2009). The impact of workflow tools on data-
centric research. In The fourth paradigm: Data-intensive scientific discovery
(pp. 137-145). Microsoft Research.

[4] Curbera, Francisco et al. (2007). Workflow Composition for the Web (pp.
94-106). Service-Oriented Computing-ICSOC 2007.

[5] Perera, S., & Gannon, D et al. . Enabling Web Service Extensions of Scientific
Workflows. Computer Science department, Indiana University.

[6] The Kepler Project. . Retrieved April 4, 2015, from https://

kepler-project.org/

[7] Taverna - open source and domain independent Workflow Management Sys-
tem. . Retrieved April 7, 2015, from http://www.taverna.org.uk/

[8] The Galaxy Project: Online bioinformatics analysis for everyone. . Retrieved
April 12, 2015, from http://galaxyproject.org/

[9] Bertram, L et al. (2005). Scientific Workflow Management and the Kepler
System. Concurrency and Computation: Practice & Experience.

[10] Mandal, N. et al. . Integrating Existing Scientific Workflow Systems. USC
Information Sciences, Institute Marina Del Rey,CA.

[11] Goderis, A et al. (2007). Composing Different Models of Computation in
Kepler and Ptolemy (pp. 182-190). International Concerence on Computation
Science(ICCS)).

[12] Wolstencroft, K et al. (2013). The Taverna workflow suite: Designing and
executing workflows of Web Services on the desktop,web or in the cloud.

71

https://kepler-project.org/
https://kepler-project.org/
http://www.taverna.org.uk/
http://galaxyproject.org/

Bibliography

[13] Haines, R. (Director) (2014, June 3). Taverna. Workshop on Workflows. Lec-
ture conducted from Germany , Hamburg.

[14] De Roure, D et al. (2009). The Design and Realisation of the myExperiment
Virtual Research Environment for Social Sharing of Workflows (Vol. Future
Generation Computer Systems 25, pp. 561-567).

[15] De Roure, D et al . The myExperiment Open Repository for Scientific Work-
flows.

[16] Goecks, J et al. (2010). Galaxy: A comprehensive approach for supporting
accesible, reproducible and transparent computational research in the life sci-
ences.

[17] Blankenberg, D., Kuster, G. V., Coraor, N., Ananda, G., Lazarus, R., Mangan,
M., ... & Taylor, J. (2010). Galaxy: a web-based genome analysis tool for
experimentalists. Current protocols in molecular biology, 19-10.

[18] Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah,
P., ... & Nekrutenko, A. (2005). Galaxy: a platform for interactive large-scale
genome analysis. Genome research, 15(10), 1451-1455.

[19] Blanquer,I., Franc.A, Frigerio,J., Caballer,M. Elastic Compute Clusters on
EGI Federated Cloud for Computational Biodiversity.

[20] Kornobis, E., Cabellos, L., Aguilar, F., Frï¿œas-Lï¿œpez, C., Rozas, J.,
Marco, J., & Zardoya, R. (2015). TRUFA: A User-Friendly Web Server for
de novo RNA-seq Analysis Using Cluster Computing. Evolutionary bioinfor-
matics online, 11, 97.

[21] Lifewatch Marine VRE. Retrieved April 23, 2015, from http://marine.

lifewatch.eu/

[22] Kallio, M. A., Tuimala, J. T., Hupponen, T., Klemelï¿œ, P., Gentile, M.,
Scheinin, I., ... & Korpelainen, E. I. (2011). Chipster: user-friendly analy-
sis software for microarray and other high-throughput data. BMC genomics,
12(1), 507.

[23] Chipster Open source platform for data analysis. Retrieved May 4, 2015, from
http://chipster.csc.fi/

[24] ENVRI Common Operations of Environmental Research Infrastructure. Re-
trieved May 10,2015 from http://envri.eu/glossary

72

http://marine.lifewatch.eu/
http://marine.lifewatch.eu/
http://chipster.csc.fi/
http://envri.eu/glossary

Bibliography

[25] European Grid Infrastructure. . Retrieved May 17, 2015, from
http://www.egi.eu/

[26] Ferrari, T. 11 years of support to the European Research Area.

[27] EGI SOLUTIONS - FEDERATED - CLOUD. EGI.EU.

[28] EGI SOLUTIONS - HIGH-THROUGHPUT -DATA ANALYSIS. EGI.EU.

[29] EGI SOLUTIONS COMMUNITY DRIVEN -INNOVATION & SUPPORT.
EGI.EU.

[30] Wallom,D. EGI FedCloud; Connecting Researchers to Clouds.

[31] Donvito,G. (2015) INDIGO DataCloud.

[32] OpenShift Develop, Host, and Scale Your Apps in the Cloud. Retrieved May
17, 2015, from https://www.openshift.com/

[33] OpenShift Origin System Architecture Guide. . Retrieved May 17, 2015, from
http://docs.openshift.org/origin-m4/oo_system_architecture_

guide.html

[34] Scientific and Technical description of LifeWatch ESFRI. (2015). Lifewatch.

[35] GALAXY Architecture. Retrieved May 10, 2015, from
https://wiki.galaxyproject.org/Develop/Architecture

[36] Taylor, J., Coraor, N. (2013). Galaxy Code and Storage Architecture. Galaxy
Community Conference 2013.

[37] Martin, M. (2011). Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet. journal, 17(1), pp-10.

[38] Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of
metagenomic datasets. Bioinformatics, 27(6), 863-864.

[39] Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A.,
Amit, I., ... & Regev, A. (2011). Full-length transcriptome assembly from
RNA-Seq data without a reference genome. Nature biotechnology, 29(7),
644-652.

[40] Zhao, Q. Y., Wang, Y., Kong, Y. M., Luo, D., Li, X., & Hao, P. (2011).
Optimizing de novo transcriptome assembly from short-read RNA-Seq data:
a comparative study. BMC bioinformatics, 12(Suppl 14), S2.

73

https://www.openshift.com/
http://docs.openshift.org/origin-m4/oo_system_architecture_guide.html
http://docs.openshift.org/origin-m4/oo_system_architecture_guide.html

Bibliography

[41] Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer,
K., & Madden, T. L. (2009). BLAST+: architecture and applications. BMC
bioinformatics, 10(1), 421.

[42] Kent, W. J. (2002). BLAT—the BLAST-like alignment tool. Genome re-
search, 12(4), 656-664.

[43] Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: inter-
active sequence similarity searching. Nucleic acids research, gkr367.

[44] Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with
Bowtie 2. Nature methods, 9(4), 357-359.

[45] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ...
& Durbin, R. (2009). The sequence alignment/map format and SAMtools.
Bioinformatics, 25(16), 2078-2079.

[46] Roberts, A., & Pachter, L. (2013). Streaming fragment assignment for real-
time analysis of sequencing experiments. Nature methods, 10(1), 71-73.

[47] Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome biol, 10(3), R25.

[48] Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC bioinformatics,
12(1), 323.

[49] OpenStack. Retrieved May 17, 2015, from https://www.openstack.org/

[50] How To Install and Configure OpenShift Origin on Cen-
tOS 6.5 | DigitalOcean. Retrieved May 17, 2015, from
https://www.digitalocean.com/community/tutorials/

how-to-install-and-configure-openshift-origin-on-centos-6-5

[51] OpenShift Origin Cartridge Developer’s Guide. . Retrieved June 17,
2015, from http://docs.openshift.org/origin-m4/oo_cartridge_

developers_guide.html

[52] reads_left.fq .Retrieved June 17,2015 from https://trufa.ifca.es/web/

static/demo_files/reads_left.fq.tar.gz

[53] reads_right.fq .Retrieved June 17,2015 from https://trufa.ifca.es/

web/static/demo_files/reads_right.fq.tar.gz

74

https://www.openstack.org/
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-openshift-origin-on-centos-6-5
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-openshift-origin-on-centos-6-5
http://docs.openshift.org/origin-m4/oo_cartridge_developers_guide.html
http://docs.openshift.org/origin-m4/oo_cartridge_developers_guide.html
https://trufa.ifca.es/web/static/demo_files/reads_left.fq.tar.gz
https://trufa.ifca.es/web/static/demo_files/reads_left.fq.tar.gz
https://trufa.ifca.es/web/static/demo_files/reads_right.fq.tar.gz
https://trufa.ifca.es/web/static/demo_files/reads_right.fq.tar.gz

	Abstract
	Resumen
	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	State-of-the-art Workflow Solutions
	Kepler
	Taverna
	myExperiment
	Galaxy
	TRUFA
	Lifewatch Marine VRE
	Chipster
	Summary and comparison of the different solutions

	e-Infrastructure Context
	What is an e-Infrastructure?
	European Grid Infraestructure - EGI
	INDIGO-Data Cloud
	OpenShift

	Application to the LifeWatch project: Galaxy & TRUFA
	What is LifeWatch?
	Galaxy
	TRUFA

	Implementation of the solutions and comparative Analysis
	Problem Description
	Solution proposed

	Conclusions
	Appendix 1: List of acronyms
	Appendix 2: BIND DNS Server Installation
	Appendix 3: Creation of the CUTADAPT cartridge
	Appendix 4: Workflow script
	Appendix 5: Execution of the script
	Appendix 6: Errors
	Bibliography

