UC

UNIVERSIDAD
DE CANTABRIA

Facultad de Ciencias

The variance of the nucleator: a simulation

study
(Estudio de la varianza del nucleador
mediante simulaciones Monte Carlo)

Trabajo de Fin de Master
para acceder al

MASTER EN MATEMATICAS Y COMPUTACION

Autor: Javier Gonzalez Villa

Directores: Marcos Cruz Rodriguez
Domingo Gémez Pérez

Julio - 2015






Agradecimientos

Espero no dejarme a nadie en el tintero a la hora de nombrar a toda esa gente
que me ha ayudado durante estos anos, tras los cuales aqui me encuentro.

Primero he de agradecer a mi familia, pero en especial a mis padres Constantino
Gonzalez y Maria Teresa Villa los cuales siempre han respaldado mis decisiones
y me han impulsado a desarollar los conocimientos que mas me atraen. También
he de agradecer a mi tio y a mi abuela Triunfo Gonzéalez y Maria Luz Gonzélez
por prestarme su apoyo todos estos afios. A mi novia Estela Lépez por confiar
en mi y tener la paciencia suficiente para aguantarme en todo momento.

Por otro lado, agradecer a mis amigos, tanto los antiguos como los que he ido
haciendo a lo largo del master, los buenos momentos y las charlas distendidas
con las que tanto he aprendido.

Por 1ltimo y no por ello menos importante, he de agradecer a Marcos Cruz y a
Domingo Goémez, tutores de mi tesis, y a Luis Manuel Cruz la posibilidad que
me han brindado a la hora de realizarlo y por guiarme en todo momento.

A todos vosotros, muchas gracias.






Resumen

La estereologia es la rama de la ciencia que, a través de la interpretacién tri-
dimensional de secciones, provee técnicas practicas para extraer informacion
cuantitativa sobre objetos tridimensionales. Por lo tanto, conocer de manera
precisa el funcionamiento de esas técnicas, asi como su precision y comporta-
miento en diferentes situaciones es de gran interés.

En esta tesis analizamos el método nucleador, que proporciona una estima-
cién insesgada del volumen de un objeto. Por otro lado también analizamos
dos estimadores tedricos de la varianza de las estimaciones que genera el méto-
do nucleador. Realizamos el andlisis con diferentes objetos simulados, con el
propésito de concluir cuando el método es adecuado y cuando estos estimado-
res tedricos nos pueden ayudar a la hora de saber cuan fiable es la estimacion.

La estimacién de la varianza en muestreo sistematico es un problema complicado
porque los elementos de la muestra son dependientes y generalmente no existe
un estimador insesgado. Por tanto replicar el proceso un gran nimero de veces
en objetos simulados parece ser la tnica alternativa para comprobar la precisién
de los estimadores. Aqui simulamos tres objetos distintos y comprobamos que
uno de los estimadores analizados puede resultar de cierta utilidad aunque hay
un margen amplio de mejora.

Palabras Clave: Estereologia, Monte Carlo, estimaciéon de volumen, va-
rianza en muestreo sistematico, nucleador, geometria computacional.
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Abstract

Volume estimation is a classic stereological problem. There are several unbiased
estimators, such as Cavalieri test planes and slabs, fakir test lines, or the nucle-
ator, which is the one we analyse in this thesis. It is based on pseudosystematic
sampling on the sphere.

Error variance estimation in systematic or pseudosystematic sampling is non-
trivial problem since the observations are dependent in general. There are no
variance estimators which are always unbiased. We study two analytical vari-
ance estimators and check their performance through Monte Carlo replications
on simulated particles.

We simulate three different objects and conclude that one of the estimators can
be useful in some cases but it can be largely improved.

Keywords: Stereology, Monte Carlo, volume estimation, variance under
systematic sampling, nucleator, computational geometry.
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1 Introduction

Design unbiased estimators of geometrical parameters are widely available in
stereology for individual particles — for references see for instance Baddeley
and Jensen Baddeley and Vedel Jensen (2004). There are several stereological
estimators for number, length, area or volume of particles. We will focus on
volume estimation.

There are different stereological methods to estimate volume such as for instance
Cavalieri test planes and slabs, fakir test lines, or the nucleator, see Howard
and Reed (2004). Here we study in detail the nucleator method (Gundersen
(1988)).

The nucleator volume estimator is based on measuring distances between an
arbitrary fixed origin and the surface of the particle using pseudosystematic
sampling on the sphere. The estimator is unbiased and its variance has been
analytically estimated (Gual-Arnau and Cruz-Orive (2002)). The variance pre-
dictor is a mathematical approximation, but not an unbiased estimator. Its
performance depends on particle shape, and therefore no general statements
can be made about its statistical properties: Monte Carlo resampling seems to
be the only choice to check the statistical quality of the variance predictor.

Here we study the analytical variance estimators on three different simulated
particles. In order to check for consistency the first particle is a Gaussian-like
particle used in Gual-Arnau and Cruz-Orive (2002). The two other particles
are simulated asteroid-like particles.

2 Background

2.1 Spherical coordinate system

The spherical coordinate system (Arfken and George B (2013),Chapter 2) is
a coordinate system for three-dimensional space where a point is defined by a
tuple (r, ¢, 0) where r is the radial distance of that point from a fixed origin,
is the polar angle measured from a fixed zenith (point on the sphere vertically
above a given origin) direction and ¢ is the azimuth angle of its orthogonal
projection on a reference plane that passes through the origin and is orthogonal
to the zenith, measured from a fixed reference direction on that plane.

These angles ¢ and 6 are necessary restricted to obtain a unique set of spherical
coordinates for each point. These intervals are 0 < ¢ < 27r and 0 < 0 < 7.
Therefore, we denote a ray in the direction u = (¢, 0) as a set of all points for
any 0 < r < oo in the defined direction. Hence, the antipode of a ray u = (¢, 0)
is defined as (¢ + m,m — 6).



y

F (r’ 0, QD)

Figure 1: Representation of a point on the spherical coordinate system (Wikipedia
(2015)).

As we can see in the Fig. 1, the chosen zenith corresponds with the Z axis in the
Cartesian coordinate system and the reference plane that passes through the
origin and is orthogonal to the zenith refers to the plane XY. This convention
will be followed for the rest of the thesis.

2.2 Monte Carlo methods

Monte Carlo methods are a broad class of computational algorithms that apply
techniques in which a large quantity of randomly generated numbers are studied
using a probabilistic model to find an approximate solution to a numerical
problem that would be difficult to solve by other methods, see Leobacher and
Pillichshammer (2014).

These algorithms are complicated because they require a large number of sim-
ulations. However these algorithms produce approximations of the integral of
functions f : R — R by an equal weight quadrature rule of the form:

1 N-1
Qv(f) =5 D Flan), (1)
n=0

where N is the number of total experiments or realisations and f(z,) is the
produced value by the function f for each quadrature point x,. These realisa-
tions can be modelled as a set of independent and uniform distributed random
variables for each x,, or as a set of systematic random samples with particular
periods.

This method is unbiased because the expectation value is equal to the computed
integral of the function f.

N-1

Blon (/)] = 5 > Bl =Blfl = [ fa)de. 2)

n=0



Therefore we have a unbiased method and if we know the variance of the func-
tion f we can obtain the variance of the produced values by the Monte Carlo
method, as follows:

Var[Qw ()] = Va]ﬁf J, (3)

In conclusion, Monte Carlo methods are designed to solve problems, when de-
terministic algorithms are inefficient and solving exact mathematical models is
very costly. If the probabilistic model is correctly selected and applied these
algorithms provide a good estimation of the real solution.

2.3 Unbiased Stereology concepts

Understanding unbiased stereology as well as its application in our specific
problem requires a previous definition of concepts, which refers to probability
and geometry.

Focusing on geometric concepts, we define a particle as a 3D set of points,
edges and planes, which conform a mesh. These particles can be convex or star
convex. A particle is convex if for every pair of points within the particle, every
point on the straight line segment that joins the pair of points is also in the
particle. A particle is star convex if there exists a point in the particle such that
the line segment from this point to any point in the particle is also contained.
Therefore a convex particle is always star convex but a star convex particle is
not always convex.

The measurement tools are the instruments to obtain quantitative properties
of these particles (volumes, perimeters, areas and surfaces) in 3D space. In our
case the measurement tools are isotropic lines. A line or ray is isotropic when
its properties (¢ and 6 are uniform in any interval of the sphere) are the same
in all directions.

Hence, we are going to use a systematic random sampling method, see 3.5, which
starts from a random seed to generate a uniform distributed set of samples. This
method, like random sampling, has drawbacks for exceptional cases. For ex-
ample, random sampling methods can generate a set of spatially concentrated
samples as well as systematic random sampling can produce samples with sim-
ilar properties due to the periodicity and the object shape.

Finally, we must consider the bias of an estimator. This property is defined as
the difference between the expected value of an estimator and the true value
of the parameter being estimated. Hence, an unbiased method is defined as a
method, with bias equal to zero. Consequently, the mean square error depends
only on the variance value provided by any unbiased method.



3 Material & Methods

3.1 The nucleator

The object of interest is a fixed particle, namely a bounded, nonvoid subset
Y C R? with piecewise smooth boundary 9Y. Our target parameter is the
volume V of Y and the design adopted to estimate V' is the nucleator Gundersen
(1988). The basic idea underlying the nucleator (Cruz-Orive (1987), Appendix
B), was based on a ray emanating from a fixed point O € R? in a direction
u €S2

If such ray hits Y, then the corresponding intersection will in general consist of
say m(u) > 1 separate intercept segments. The distances of the end points of
these intercepts from the origin O, arranged in increasing order of magnitude,
may be denoted as follows,

{l ( ) H—( ); Z:17277m(u)} (4)

Integration of the conic volume element associated with a ray leads to the
nucleator representation of volume, namely,

m(u)

t@}: ) — 13 (u))du. (5)

where du is the area element on the unit hemisphere (Fig. 2). If O € Y, then
li—(u) = 0 for all u. If the particle Y is moreover star convex with respect to

O €Y, then
1

3
vzgéﬁgwm, (6)
where [4 (u) = 14+ (u) is the intercept length determined by a ray w.

More generally, the problem is to estimate the integral @} of a function f :
S? — [0, +00) called the measurement function, which is a nonrandom function
defined on the unit sphere and square integrable on it:

27 ™

Q= [ fiu- /0 /0 £(6,0)sin0d0ds, (7)
27 1

_ /0 /_ F(6.cos”y)dyd. (8)



Figure 2: Representation of the area element du on the unit hemisphere.

To estimate () we adopt a sampling design on the unit sphere involving n,
systematic values of ¢ with period 71 = 27 /n; and ng systematic values of
y = cos(#) with period T5 = 2/ng; ni. The niny sampling sites {(¢;,6;)} have
the following spherical polar coordinates:

¢i = = +ilx, 9)
T = 0,1,..,TL1—1,
yj = z2—jl, (10)
j = O,l,..,ng—l.
where z = (z1,22) is a pair of independent uniform random variables z; ~

UR([0,T1)), zo ~ UR([1 — T»,1)). Each sampling site lies in a cell of a grid
on the unit sphere formed by meridians a constant angle T} apart, and parallel
circles a constant distance T5 apart. This grid consists of nino cells of equal area
4w /(ning), but not of equal shape — hence the design is called pseudosystematic.

To predict the variance of the corresponding estimator is difficult unless the
measurement function is periodic in both angles ¢ and 6. To this end we
redefine the measurement function as the average of antipodal observations of
f namely

F(8,6) = 5[/(6,0) + f(&+ 7,7~ )] ay

whereby F(¢,0) = F(¢ + 2kmw,0 + In), (k,l € Z), as required. The target
parameter has essentially the same form as before with f replaced by F', that
is,

27 pm
Q:/O /0 F(¢,0)sinfdfd. (12)

Now an unbiased estimator of () based on the aforementioned design is:

Q=TT Z Z F(z1 + 1T, cos™ ! (20 — §T3)), (13)



which depends on the random pair (z1, z2).

3.2 Example: Applying the nucleator method

As a way to illustrate the nucleator method, the parameters selected are n; = 3,
ny = 3 to generate a sample. The first step is calculate z = (z1, 22), which is
defined as a couple of random values with uniform distributions as we define
previously. Hence, these random values are defined by periods T} = 27/3 and
T, = 2/3, which define the directions of the rays.

These directions are used to generate the systematic sample A, which is a set of
9 values {(z1, 22), (214+27/3, 22), (z1+47/3, 22), (21, 22+2/3), (21, 22+4/3), (z1+
27T/3, 22+2/3), (Zl +47T/3, 22—1—2/3), (21 —|—27T/3, 29 +4/3), (Zl +47T/3, ZQ+4/3)}.
Fig. 3 represents the isotropic rays, which allow us to calculate the radius r
from origin to the particle surface for each ray and its antipode.

Therefore the set of r values, which is formed by 18 values (9 radii of the rays and
9 radii of the antipodes), are used to calculate f(¢,f) measurement function.
The results f(¢,0) are employed to calculate the reformulated measurement
function F(¢,0) and a volume estimation @ = 8.4486. The real volume is
Q =9.0194.

Figure 3: Representation of the rays (rays and antipodes) contained in the systematic
sample A, on Particle 1 defined below.

In the next subsection we analyse the error variance estimation from one single
sample.

3.3 Variance prediction of volume estimations

Since the nucleator volume estimation is unbiased the quality of the estimator
is given by the variance. The variance estimation in systematic sampling is not
an easy matter. In general no unbiased variance estimators are known. Here we



use the nucleator variance estimators derived in Gual-Arnau and Cruz-Orive
(2002) and shown in (Egs. 14, 15).

These equations were deduced by a specific covariogram model and Fourier
expansions and that is why we need to work with a periodical measurement
function on the sphere. True variances are denoted by Var(-) whereas variance
estimators are denoted by var(-).

Varo,g (Q\) =
e
Ining(ny —1)(ng — 1)
x[6(n1 — 1)(Coo — Co1)
+6(n2 — 1)(Coo — C1o) (14)
—(n} +n3 — 1)(Coo — Cor — C10C11)]

vary | (@) =
472
225n1n2(ny — 1)2(ng — 1)2
x[30(ny — 1)*(Coo — Co1)
+30(ng — 1)%(Cog — Cho) (15)
—(ni +n3 — 1)(Coo — Cor — C10C11)]

Eqgs. 14, 15, give us a prediction of the variance from a single volume estimation.
These equations depend on sampling sizes n1 and no. Moreover, both equations
are determined by Cy; coefficients, which represent the relationship between
some adjacent measurements depending on the values k = 0,1 and I = 0,1. As
a way to simplify, we denote Fj; = F(21 + i1}, cos ! (22 — jT3)), thus:

ni—1ng—1

O = Z Z FijFivkjri, Fij = Fignyj = Fijin, = Figny jin,-  (16)
i=0 j=0

3.4 Particles

In this subsection we define the particles considered for volume and variance
estimation and implement them in Blender (http://www.blender.org/).

e Particle 0: First, we use the Gaussian-like particle, g(x,y, z) defined in
Gual-Arnau and Cruz-Orive (2002). This particle is generated from the
unit sphere S? = {(z,y,2) : 22 +y> + 22 = 1}:

9(z,y,2) =1+ t(z,y,2), (v,9,2)€S? (17)

where the bounded test function ¢ : R3 — (—1,00) is defined as:



t(z,y,2) =

exp{—2[(z + 0.2)* + (y + 0.2)* + (= — 1)?]}
+0.5exp{—4[(z — 0.7)% + (y — 0.7)* + 2?]} (18)

—0.25exp{—4[(z + 0.7)2 + (y + 0.7)2 + 2?]}.

This particle allows us to check for consistency and to test the method
under optimal conditions, since it is star convex. The particle has a
well defined symmetry and is completely smooth but is oval rather than
spherical as can be seen in Fig. 4.

i
A
FA A
Ry

Figure 4: Gaussian-like simulated particle; right side view, front view and top view.

e Particle 1: This particle is an irregular, asteroid-like particle, which we
simulate as follows: Based on a simple icosahedron, we select a uniform
random subset containing 50% of the total vertices. Each selected vertex
in the subset is scaled in the j direction, j = (x,y,2) , by a random
uniform factor ¢;; ~ U([u;j,vi;]). The whole process is repeated ngteps = 4
times with different sets of selected vertices and particular factors c;;.
The factors defined by the ¢ index referring to each of the steps, i =
1,2, ..., Nsteps- The sampling intervals [u;;, v;;] depending on i, j are given
in Table 1(Ronan (2014)).

Between each of the four scaling steps, the particle edges are subdivided to
add new vertices by interpolating smoothly across the deformed object.
Finally, we rotate the particle an angle o, o ~ U([—m,7]) rad. The
resulting asteroid-like particle can be seen in Fig. 5. The particle is
star convex with a slightly irregular surface but keeping some spherical
symmetry.



Figure 5: Simulated particle 1; right side view, front view and top view.

Table 1: Scaling intervals which define the interval [u;;,v;;] to obtain the
random uniform scale factor. ¢ represents the scaling step and j stands for the
target Cartesian coordinate.

[uij, vij]

X y 7

1,14 | [1.1,1.4] | [1.1,1.4]
[1.05,1.15] | [1.05,1.15] | [1.05,1.15]
0.92,1.05] | [0.92,1.05] | [0.92,1.05]

0.9,1.5] [1,1] [1,1]

_~w N =

e Particle 2: This particle is obtained by the same method as used for
particle 1. However the particle is manually modified to obtain a non-
star-convex particle with the origin outside the surface (Fig. 6). However
it is somewhat spherical but the surface is irregular. This allows us to
test the nucleator method under these particular conditions where each
ray may cross the particle surface multiple times (Fig. 6).

Figure 6: Simulated particle 2; right side view, front view and top view.



3.5 Pseudosystematic sampling to calculate empirical variance

~ ~

In order to test the performance of the variance estimators, varg o(Q), vary 1(Q)
defined above (Egs. 14 and 15), we calculate the empirical variance, through
Monte Carlo replications of the nucleator estimator on the particles described
in the previous section.

As a prior consideration to carry out the replication process, we must bear
in mind that the sampling method is periodic, ¢ + 27 = ¢, 6 + © = 0 and
¥y + 2 = y. The unit sphere surface can be represented as a periodical grid
on which the sampling process defined above is replicated. Each replication
involves taking a sample Al,:’l, where the nucleator method is applied to obtain
a volume estimation @k’l(z), as follows:

NS = { (i, w0} (19)

ik = 21 + 111 + kTN, (20)
i=0,1,m—1, k=01, N —1,

yj = 22 — jT2 — Tno, (21)
jZO,l,..,TLQ—l, 120,1,..,N2—1,

where k£ and [ are the indexes, which determine the position of a particular
sample and its corresponding volume estimation in the replications set. This
replication process is systematically repeated Ny x Nj times (Fig. 7), where Ny
is the number of systematic replications on the azimuthal angle and N, on the
polar angle with periods between samples Ty = 27/N; and Ty = 2/Na. The
entire replication process requires a single starting random ray z. The indexes
i and j determine the position of a particular ray in a sample as in Eq. 13.

Figure 7: Pseudosystematic sampling method applied to Particle 1, with n; = 3,
n2=3, N1:4andN2:4.

10



The empirical variance, Vare(Q), and coefficient of error, CE2(Q), can be cal-
culated from the set of volume estimations {Q*!(z)} obtained from the Monte
Carlo replications:

Vare(Q) = 3 Y (@M () —E(Q)), (22)

4 Results

We test the performance of the theoretical variance estimators against the em-
pirical variance. Two sets of N1 x Ny variance estimations are obtained applying
Eqgs. 14, 15 for each of the N7 x Ny replications.

The parameters used for the Monte Carlo replications are all possible combina-
tions of n; = 2,3,..,10 ng = 2,3,..,10 with N; = 180/n1, No = 90/ny yielding
a total of 180 x 90 = 16200 generated rays .

Figs. 8, 9, 10 show the replicated volume estimations for particles 0,1 and 2
respectively. The values of n1 and no considered for the graphs are nqy = 3,6,9
and no = 2,3,4, .., 10.

Figs. 11, 12 and 13 show the empirical coefficient of error defined above, and
the theoretical coefficients of error:

~ varg,o @

Ceg,O(Q) = Qg( ) 5 (25)
~ vari i @

cel 1(Q) = Qg() (26)

11
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Values for n,

Figure 8: Particle 0 Monte Carlo replications (black dots) represent all the replicated
volume estimations, whose average is illustrated by a red dot, and the red line represents
the real volume.
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2 3 4 5 7 8 9 10

6
Values for n,

Figure 9: Particle 1 Monte Carlo replications (black dots) represent all the replicated
volume estimations, whose average is illustrated by a red dot, and the red line represents
the real volume.
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0 2 3 1 6
Values for n,

Figure 10: Particle 2 Monte Carlo replications (black dots) represent all the replicated
volume estimations, whose average is illustrated by a red dot, and the red line represents

the real volume.
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Figure 11: Particle 0 Monte Carlo replications for estimators ceao(@) (left) and
ceil(@) (right). The black line represents their mean and the red line the empirical
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Figure 12: Particle 1 Monte Carlo replications for estimators ceao(@) (left) and

ceil(@) (right). The black line represents their mean and the red line the empirical
coefficient of error. The dashed blue line corresponds to 5% coefficient of error.
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Figure 13: Particle 2 Monte Carlo replications for estimators ceao(@) (left) and

ceil(@) (right). The black line represents their mean and the red line the empirical
coefficient of error. The dashed blue line corresponds to 5% coefficient of error.
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5 Discussion

The results shown above, allow us to analyse the behaviour of the volume
and variance estimators. First, we verify that the results corresponding to the
Gaussian-like particle in the ranges 1 < n; < 4, 1 < ng < 4 match those
in Gual-Arnau and Cruz-Orive (2002) within rounding errors, confirming that
our method is properly implemented. Figs. 8, 9 and 10, show that the volume
estimations are unbiased regardless from the origin position and type of particle,
as expected from Gundersen (1988). However the variance may increase if the
origin is located far from the center of mass or if the particle shape is non-
spherical.

~ ~

When computing the estimators varg o(Q),vary 1(Q)) we remark that sometimes
they yield negative variance estimations. This happens when the particle shows
very abrupt changes and an irregular surface or when |ng — nq| is large as we
can see in Figs. 12 and 13.

~

Estimator varj 1(Q) shows very poor performance. In many cases the variance
estimation is negative as we can see in Figs. 11, Fig. 12 and Fig. 13. Therefore
we focus on estimator Val‘o,o(éj) that shows a better performance for all the
considered particles. The estimation for particle 0 looks worse since for n; > 6
and ny > 6 the empirical coefficient of error is almost zero and therefore difficult

to estimate.

Therefore we do not recommend using var; ;(Q), whereas varg (@) can be
useful in some cases.

We conclude that the theoretical variance estimators are subject to improve-
ment. The symmetry restrictions of the covariogram model used in Gual-Arnau
and Cruz-Orive (2002) are probably not accurate enough for realistic particles.
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APPENDIX A: Code

All the code was developed in Python 3.3.2 on the free open-source 3D computer
graphics software Blender 2.68, see Anders (2010). The code responsible to
generate the particles is presented below.

Listing 1: Code used to generate particles 1 and 2.

def asteroid(size=1,x=0,y=0,z=0,sub=1):

bpy.ops.mesh. primitive_ico_sphere_add (size=size ,
location=(x,y,z),rotation=(0,0,0))

bpy.ops.object . mode_set (mode="EDIT ")

bpy.ops.mesh. faces_shade_smooth ()

bpy.ops.mesh.select_mode (type="VERT")

bpy.ops.mesh.select_all (action="DESELECT ")

bpy.ops.mesh.select_random ()

bpy.ops.transform.resize (value=(random. uniform
(1.1,1.4) ,random. uniform (1.1,1.4) ,random.uniform
(1.1,1.4)))

bpy.ops.mesh. select_all (action="SELECT")

bpy . ops.mesh.subdivide (smoothness=1)

bpy.ops.mesh. select_all (action="DESELECT)

bpy . ops.mesh.select_random ()

bpy.ops.transform.resize (value=(random. uniform
(1.05,1.15) ,random . uniform (1.05,1.15) ,random.
uniform (1.05,1.15)))

bpy.ops.mesh. select_all (action="SELECT")

if sub = 1:
bpy.ops.mesh.subdivide (smoothness=1)

bpy.ops.mesh.select_random ()

bpy.ops.transform.resize (value=(random. uniform
(0.92,1.05) ,random . uniform (0.92,1.05) ,random.
uniform (0.92,1.05)))

bpy.ops.mesh. select_all (action="SELECT")

if sub = 1:
bpy.ops.mesh.subdivide (smoothness=1)
stretch = random. uniform (0.9,1.5)

bpy.ops.transform.resize (value=(stretch ,1,1))

bpy.ops.transform.rotate (value=(random. uniform
(=1.57,1.57)), axis=(random.uniform(—-1.57,1.57),
random . uniform (—1.57,1.57) ,random. uniform
(—1.57,1.57)))

bpy.ops.object . mode_set (mode="OBJECT )

Listing 2: Code used to generate particle 0.

1 |def gaussian ():
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bpy.ops.mesh. primitive_ico_sphere_add (subdivisions =6,
size=1,location=(0,0,0) ,rotation=(0,0,0))
me = bpy.context.object.data

O0=0
for v in me.vertices:
if (v.co[0]==0) and (v.co[l]==0) and (v.co[2]==0)

O=v
bpy.ops.object . mode_set (mode="EDIT ")
bpy .ops.mesh.select_mode (type="VERT")
bpy.ops.mesh. select_all (action="DESELECT” )
O.select =True
for v in me. vertices:
if v I= O:
x=v.co [0]
y=v.co[1]
z=v.co [2]
t=math.exp(—2%(math.pow(x+0.2,2)+math.pow (y
+0.2,2)4math.pow(z—1,2)))+0.5*math.exp
(—4%(math.pow(x—0.7,2)4math.pow(y—0.7,2)+
math.pow(z,2))) —0.25%math.exp(—4%(math.pow
(x4+0.7,2)+math.pow(y+0.7,2)+math.pow(z,2) )
)
v.co[0] = xx(1+1t)
v.co[l] = yx(1+t)
v.co[2] = zx(1+t)
bpy.ops.object . mode_set (mode="EDIT ")
bpy.ops.mesh. faces_shade_smooth ()
bpy.ops.object . mode_set (mode="OBJECT ")

Moreover, there are three algorithms involved in the nucleator method imple-
mentation. The first and most basic is the next one:

Listing 3: Method used to obtain the particle mesh.

def get_polygons (obj_name):

© 00 J O U i W N~

— = =
N = O

scene = bpy.context.scene
bpy.ops.object . mode_set (mode="OBJECT’, toggle =False)
obj = bpy.data.objects[obj_name]
scene.objects.active = obj
polygons = []
verts = []
polygons_sh_tmp = []
me = bpy.context.object.data
for poly in me.polygons:

pol = []

pol.append (poly.index)
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pol.append (poly.loop_total)
tmp_pol = []
for loop_index in range(poly.loop_start, poly.
loop_start + poly.loop_total):
pol.append (me.loops[loop_index]. vertex_index)
tmp_pol.append (me. vertices [me. loops |
loop_index ]. vertex_index |.co+bpy.context .
object .location)
polygons.append (pol)
polygons_sh_tmp .append (Polygon (tmp_pol))
for ver in me.vertices:
verts.append(ver.co+bpy.context.object.location)
plain_verts = [vert.to_tuple() for vert in verts]
points_sh = MultiPoint (plain_verts)
polygons_sh = MultiPolygon (polygons_sh_tmp)
pol_verts = []
for pol in polygons_sh:
verts = []
Pl_.T=mathutils. Vector (pol.exterior.coords[0])
P2_T=mathutils. Vector (pol.exterior.coords[1])
P3_T=mathutils. Vector (pol.exterior.coords[2])
verts .append (P1.T)
verts .append (P2.T)
verts.append (P3.T)
pol_verts.append(verts)
return polygons,plain_verts ,polygons_sh ,points_sh ,
pol_verts

This method is used to obtain five sets of polygons and vertices, which represent
the particle mesh in different ways. We only need to provide it the object name
to obtain the data sets.

These data sets are used by the next method to obtain the collisions between a
provided ray (ray and its antipode) and the particle surface. Hence, we need to
establish the ray parameters (¢, ) and the measurement origin to obtain the
intersections coordinates and the distances between the origin and the particle
surface.

Listing 4: Method which calculate the intersections and distances between a
ray and a particle surface given the measurement origin.

def get_collisions_line (fi ,theta,r_o,fi o, theta_ o,

polygons , polygons_sh ,obj_name, graphics = 1,max.r = 0,
pol_verts=[]):
if maxr = 0:
max.r = max._radius_object (obj_name , graphics)
if graphics = 1:
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create_line(—max_r*2 max r2, fi ,theta,r o, fi_o,
theta_o, 'Line )

scene = bpy.context.scene

bpy.ops.object . mode_set (mode="OBJECT’, toggle =
False)

obj = bpy.data.objects[obj_name]

scene.objects.active = obj

scene . update ()
intersection_polygons = []

intersection_points = []
intersection_distances = []
number_intersections = 0

O = mathutils. Vector (coord_conversion_spher_to_cart (
ro,fi_o,theta_o))
P1 = mathutils. Vector(coord_conversion_spher_to_cart
(—max_r*1000,fi , theta))4+O
P2 = mathutils. Vector(coord_conversion_spher_to_cart (
max_r*1000, fi , theta))+O
indice = 0
for pol in polygons_sh:
if len(pol_verts)==0:
Pl_T=mathutils. Vector(pol.exterior.coords[0])
P2_T=mathutils. Vector(pol.exterior.coords[1])
P3_-T=mathutils. Vector (pol.exterior.coords[2])
intersection = mathutils.geometry.
intersect_ray_tri(P1.T,P2.T ,P3.T,P2-P1,0)

else:
intersection = mathutils.geometry.
intersect_ray_tri(pol_verts[indice]|[0],
pol_verts[indice|[1], pol_verts[indice][2],
P2-P1,0)
if (intersection != None):
number_intersections = number_intersections +
1

intersection_polygons.append(polygons|[indice
1)
intersection_points.append(intersection)
= intersection
intersection_distances .append(math.sqrt (math.
pow (P[0] —O[0] ,2)+4math.pow (P[1] -O[1] ,2)+
math . pow (P[2] —0[2],2)))
indice = indice + 1
if graphics = 1:
select_some_polys (intersection_polygons ,obj_name)
return number_intersections, intersection_polygons ,
intersection_points , intersection_distances
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Hence these methods are the base to implements the nucleator method.

Listing 5: Nucleator method implementation.

def nucleator (r-max,n_fi ,n_theta ,obj.name, graphics = 1,
i fi = —1,i.y = —2,polygons = [],polygons_sh = [],
pol_verts = [],0.p=[0,0,0]):
fi_step = (math.pi*2)/n_fi
theta_step = 2/n_theta

Fs = []
if i fi = —1:
init_fi = i_fi
else:
init_fi = random.uniform (0,2+*math. pi)
if iy != —2:
init.y = iy
else:
init.y = random.uniform(—1,1)
fis = [init_fi+(ixfi_step) for i in range(n_fi)]
thetas = [(math.acos(init_.y —(ixtheta_step))) for i in

range (n_theta) |
if (len(polygons)==0) or (len(polygons_sh)==0) or (
len(pol_verts)==0):
polygons, plain_verts, polygons_sh, points_sh,
pol_verts = get_polygons (obj_name)
volume_estimations = |[]
total_estimation = 0
volume_estimation = 0
cont = 1
suma = 0
for fi in fis:
Fs_temp = []
for theta in thetas:
if graphics = 1:
create_line(—r_max,r_max, fi ,theta ,O_p[0],
Op[1],0p[2],str(fi)+str(theta))
n_inter , inter_polys, inter_points,
inter_dist = get_collisions_line (fi,theta,
Op[0],0p[1],0p[2],polygons,polygons_sh ,
obj_name ,0 ,r_max, pol_verts)
estimation ,F = estimate_volume (inter_points ,
inter_dist , O_p)
Fs_temp.append (F)
if (n_fi > 1) and (n_theta > 1):
total_estimation = total_estimation +
estimation
volume_estimations.append(estimation)
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if n_fi = 1:

estimation = ((math.pi*4)/n_theta)s*sum/(
Fs_temp)
volume_estimations.append(estimation)
total_estimation = total_estimation +
estimation
if n_theta = 1:

suma = suma + Fs_temp [0]
if (cont % n_fi) = 0:

estimation = ((math.pi*4)/n_fi)s*suma
volume_estimations.append(estimation)
total_estimation = total_estimation +
estimation
suma = 0
cont = cont + 1

Fs.append (Fs_temp)
if (n_fi > 1) and (n_theta > 1):

volume_estimation = total_estimation /(n_fix
n_theta)
elif n_fi — 1:
volume_estimation = total_estimation
elif n_theta — 1:
volume_estimation = total_estimation

return volume_estimations ,volume_estimation ,Fs

Listing 6: Auxiliar method to calculate the volume estimation.

def estimate_volume (inter_points ,inter_dist ,O_p=[0,0,0]):
O = coord_conversion_spher_to_cart (Op[0],0p[1],O.p

[2])

estimation = —1
F=-1
rsl = []
rs2 = []
signs = []
index = 0
for p in inter_points:
if (len(rsl) = 0) and (len(rs2) = 0):
if (p[0]—0O[0])+math.copysign ((p[0]—-0O[0]),—1)
= 0:
signs .append (1)
else:

signs.append(—1)

if (p[1]—O[1])+math. copysign ((p[1]-O[1]),~1)
= 0:
signs .append (1)

else:
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signs.append(—1)

if (p[2]—-0O[2])+math.copysign ((p[2]-0[2]),—1)

= 0:
signs .append (1)
else:
signs .append(—1)
rsl.append(inter_dist [index])

else:
if ((p[0]-0[0])-math. copysign ((p[0] -
signs [0]) — 0) and ({(p[1]-O[1])-m
copysign ((p[1]=0[1]) , signs [1]) —
((p[2] —O[2])—math. copysign ((p[2] -
signs [2]) = 0):
rsl.append(inter_dist [index])
else:
rs2.append(inter_dist [index])
index = index + 1
rsl.sort ()
rs2.sort ()
rl =0
r2 =0
if (len(rsl) % 2) = O:
signorl = —1
else:
signorl =1
if (len(rs2) % 2) = O:
signor2 = -1
else:
signor2 =1

for r in rsl:
rl = rl + (signorlsxmath.pow(r,3))
signorl = signorlx(—1)
for r in rs2:
r2 = r2 + (signor2sxmath.pow(r,3))
signor2 = signor2x(—1)
estimation = (4/3)*math.pi*(1/2)*((rl)+(r2))
F=(1/3)«(1/2)*%((r1)+(r2))

return estimation, F

ofo]),
ath.
0) and
o[2]) ,

These methods generate a systematic sample A, for a given z value. We need
to provide it also the measurement origin to obtain a volume estimation and
the reformulated measurement function F(¢,6) values, which are used below

to obtain the variance estimations.

Finally, the main method that implements the pseudosystematic sampling to
calculate the empirical variance and to obtain the variance estimations is defined
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below:

Listing 7: Main algorithm, which implements the pseudosystematic sampling
method.

def pseudosystematic_sampling(nl,n2,max N1, max N2,
obj_name , graphics = 1,0p=[0,0,0]):
r.max = max_radius_object (obj_name, graphics)
N1 = int (max_N1/nl)
N2 = int (max_-N2/n2)
T1 = (math.pi*2)/nl

T2 = 2/n2

dT1 = T1/N1

dT2 = T2/N2

init_-random_sample_fi = random.uniform (0,dT1)
init_-random_sample_y = random.uniform(1,1—-dT2)

volume _estimations = []
variances_th_00 = []
variances_th_11 = []
polygons, plain_verts, polygons_sh, points_sh ,
pol_verts = get_polygons (obj_name)
for k in range(NI1):
for 1 in range(N2):
fi0 = init_.random_sample_fi + (kxdT1)
y0 = init_random_sample_y — (1xdT2)
vols ,estimation ,Fs = nucleator (r_max,nl , n2,
obj_name , graphics , fi0 ,y0, polygons
polygons_sh ,pol_verts ,O_p)
if (n1 > 1) and (n2 > 1):
C00=C_value (0,0,nl1,n2,Fs)
C01=C_value (0,1,nl1,n2,Fs)
C10=C_value (1,0,nl1,n2,Fs)
Cl1=C_value (1,1 ,n1,n2,Fs)
var00 = ((math.pow(math.pi,2)=*4)/((9%nlx
n2)*(nl—1)%(n2—1))) x((6*(nl—1)*(C0O0—
COl)) (6%(n2—1)%(C00—C10) ) —(math . pow (
nl,2)4math.pow(n2,2)—1)*(C00—C01-C10+
C11))
varll = ((math.pow(math.pi,2)x4)/(225*%nlx*
n2+math.pow ((nl—1),2)+math.pow ((n2—1)
,2)) ) *#((30*math.pow((nl—1),2)*(C00—C01
) ) +(30xmath.pow ((n2—1),2) *(C00—C10) ) —(
math . pow(nl,4)+math.pow(n2,4) —1)*(C00—
C01-C10+C11))
variances_th_00.append(var00)
variances_th_11.append(varll)
elif nl = 1:
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var0) = (16xmath.pow(math.pi,2)*((C_value
(0,0,n1,n2,Fs)—C_value(0,1,nl,n2,Fs)))
)/ ((6xmath.pow(n2,2))—(6%n2))

varl = (16xmath.pow(math.pi,2)*((C_value
(0,0,n1,n2,Fs)—C_value(0,1,n1,n2,Fs)))
)/ ((30xmath.pow(n2,3) ) —(60xmath.pow(n2
,2))+(30%n2))

variances_th_00 .append(var0)

variances_th_11.append(varl)

elif n2 = 1:

var0) = (16xmath.pow(math.pi,2)«((C_value
(0,0,n1,n2,Fs)—C_value(1,0,n1,n2,Fs)))
)/ ((6xmath.pow(nl,2))—(6%nl))

varl = (16xmath.pow(math.pi,2)*((C_value
(0,0,n1,n2,Fs)—C_value(0,1,nl,n2,Fs)))
) /((30*math.pow(nl,3))—(60xmath.pow(nl
,2))+(30%nl))

variances_th_00.append(var0)

variances_th_11.append(varl)

volume _estimations.append(estimation)
return volume_estimations ,variances_th_00
variances_th_11

This method use a set of parameters which define the pseudosystematic sampling
(n1,m2,N1 and N3). These parameters and other auxiliary methods, which im-
plement basic calculations, are used to obtain three sets of results (volume

estimations, varg g (Q) theoretical variances and vary (Q) theoretical vari-

ances).
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APPENDIX B: Libraries
The libraries used to implement the methods presented previously are as follows:

e Shapely: Shapely is a BSD-licensed Python package for manipulation
and analysis of planar geometric objects. This library is used to manipu-
late the elements of the particle mesh as sets of vectors and matrices with
which to work.

e Mathutils: More specifically the module geometry is the default Blender
geometry module. This module is used to obtain the intersections between
a ray and a triangle.

e Sympy: Sympy is a Python library for symbolic mathematics. It aims
to become a full-featured computer algebra system. In concrete the geo-
metric modules are used to create geometrical entities, such as lines and
circles, and query for information about these entities.

e Bpy: This module is provided by Blender to the Python interpreter. The
module can be imported in a Python script and gives access to blender
data, classes and functions. Therefore, we need these functions to manip-
ulate the Blender objects (particles).

e Bmesh: Bmesh is the Blender mesh system, which is used to remove,
modify or create new meshes. This module allow us to manipulate simple
meshes to create complex objects.

e Other default Python libraries: Other default libraries as math, ran-
dom or time are used to implement basic methods, which are the tools to
create the main methods explained above.
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