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1 Resumen
El Gran Colisionador de Hadrones (LHC) ha comenzado recientemente su Run II, produciendo
colisiones protón-protón con una energı́a en el centro de masas de 13 TeV, tras haber alcanzado
hasta 8 TeV en el Run I. Este trabajo debe entenderse en este contexto cientı́fico e histórico,
en el que las búsquedas de nueva fı́sica juegan un papel central en los experimentos de coli-
sionadores.

Para poder descubrir nuevas partı́culas elementales como las predichas por varias exten-
siones del Modelo Estándar, se requiere un conocimiento muy preciso de dicho modelo. Los
procesos que involucran producción de quarks top, como tt̄, tt̄W y tt̄Z, suponen un ejemplo in-
teresante ya que son fuentes relevantes de fondo en las búsquedas de partı́culas supersimétricas
(SUSY), siendo además procesos importantes por sı́ mismos.

Esta constante necesidad de obtener medidas más precisas, especialmente de procesos con
baja sección eficaz, sirve de motivación para explorar técnicas avanzadas que puedan mejorar
nuestro rechazo de sucesos de fondo al realizar medidas. El método aquı́ presentado se deno-
mina Boosted Decision Trees (BDTs), un tipo de algoritmo de Análisis Multivariable (MVA)
escogido por ser relativamente intuitivo en comparación con otros métodos populares como
las redes neuronales artificiales. Se proporciona una descripción exhaustiva de los Boosted
Decision Trees, entendidos como la aplicación del algoritmo de boosting AdaBoost a simples
árboles de decisión para mejorar drásticamente su poder de clasificación.

Se utilizaron Boosted Decision Trees en el análisis de tres diferentes procesos de producción
de quarks top: tt̄ en el canal con dos leptones de carga opuesta y distinto sabor en el estado
final, tt̄W en el canal trileptónico y tt̄Z con cuatro leptones. En cada caso se emplearon dos
interpretaciones distintas de la salida de los BDTs: como una única variable discriminante que
permite sustituir el análisis habitual con cortes secuenciales y como una función de los datos
cuya forma tiene una gran dependencia con los sucesos de señal, lo que se puede aprovechar
para reescalar la simulación de la señal de modo que se ajuste correctamente a los datos.

Los resultados para el análisis de tt̄ son dos medidas de sección eficaz consistentes con
las predicciones teóricas y con medidas experimentales publicadas por la colaboración CMS.
Para tt̄W y tt̄Z, se ha realizado con éxito una observación de ambos procesos a pesar de su baja
sección eficaz, demostrando la potencial utilidad de los métodos de Análisis Multivariable para
futuros análisis más avanzados.

Palabras clave: Fı́sica de Altas Energı́as, Fı́sica de Partı́culas, CMS, Top, Multileptones

4



2 Introduction
The Large Hadron Collider (LHC) has recently started its Run II, producing proton-proton
collisions with a centre-of-mass energy of 13 TeV, after achieving up to 8 TeV in Run I. This
work is to be understood within this scientific and historical context, in which new physics
searches play a central role in collider experiments.

In order to discover new elementary particles predicted by extensions of the Standard
Model, very precise knowledge is required about the Standard Model itself. Processes in-
volving top quark production, such as tt̄, tt̄W and tt̄Z, are an interesting example since they
are relevant background sources in searches for Supersymmetric (SUSY) particles, while also
being important processes on their own.

The constant need for more precise measurements, specially in low cross section processes,
serves as motivation to explore advanced techniques for improving our removal of background
events during measurements. The method presented here is known as Boosted Decision Trees
(BDTs), a type of Multivariate Analysis (MVA) algorithm chosen for being relatively intu-
itive as opposed to other popular method such as Artificial Neural Networks. A thorough
description of Boosted Decision Trees is provided, understanding them as the application of
the boosting algorithm AdaBoost to simple decision trees to drastically improve their separa-
tion power.

Boosted Decision Trees were used in the analysis of three top quark production processes:
tt̄ in the opposite-sign different-flavour dilepton channel, tt̄W in the trilepton channel and tt̄Z
in the four-lepton channel. In each case, the output from the BDTs was interpreted in two
different ways: as a single discriminating variable that substitutes a sequential cut analysis
and as a function of the data whose shape is greatly influenced by signal events, which can be
taken advantage of to rescale signal simulations so that they fit the data.

The results for the tt̄ analysis are two cross section measurements that are consistent with
theoretical predictions and experimental measurements published by the CMS collaboration.
For tt̄W and tt̄Z, a successful observation was made despite their low cross section, demon-
strating the potential usefulness of MVA methods in further analyses.

Keywords: High Energy Physics, Particle Physics, CMS, Top, Multileptons
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3 Physical context

3.1 Standard Model and extensions
The frame of this work is the Standard Model, the theory that has up to date been able to
successfully describe and consistently make accurate predictions of all known interactions in
particle physics with the exception of gravity, which is negligible in this context.

There are nevertheless some questions left open by the Standard Model, prompting physi-
cists to develop extensions of the theory. The most prominent of these extensions is Supersym-
metry or SUSY, which postulates the existence of Supersymmetric partners of the Standard
Model elementary particles, assigning Supersymmetric bosons to fermions and vice versa, as
presented in figure 1.

Figure 1: Elementary particles in the Standard Model and SUSY.

3.2 Top quark processes
Top quark production is one the most relevant processes in high energy physics. As the heav-
iest known elementary particle, it has the strongest coupling to the Higgs field. Moreover, top
quark production cross section measurements are used in estimations of the strong coupling
constant αs at high energy scales and fitting of parton distribution functions, which describe
the probability that each proton component carries a certain fraction of the total momentum.
The top-generating process with the highest cross section is tt̄, shown in figure 2.

Perhaps even more important is the fact that top quark production is intimately connected
to searches for new physics beyond the Standard Model, since the top is theoretically a part
of decays involving dark matter candidates such as t̃ → tχ̃0

1 [1] and has the same final-state
signature as some Supersymmetric decays such as t̃ → bχ̃+∗

1 → blν̃ [2].
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Figure 2: Leading-order Feynman diagram for tt̄ production in proton-proton collisions, with
W bosons decaying leptonically.

Measurements of related processes involving an additional vector boson, such as tt̄W or
tt̄Z production (shown in figure 3), also have an impact in searches for new physics. More
precisely, their cross section imposes constraints on the values of dimension-six operators that
appear in extensions of the Standard Model lagrangian [3][4]. Within the Standard Model,
these processes provide information about the vector and axial components of the coupling of
top quarks to vector bosons [5][6] and act as background sources in measurements of other
rare processes with multileptonic final states such as tt̄H production.

Figure 3: Leading-order Feynman diagrams for tt̄W and tt̄Z production in proton-proton col-
lisions.
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4 Large Hadron Collider
The Large Hadron Collider or LHC is a circular particle accelerator built by CERN (Conseil
Européen pour la Recherche Nucléaire) in Geneva, Switzerland. This accelerator is located in
the same tunnel that used to contain its predecessor, LEP, with a length of 26.7 km and being
between 45 and 170 m deep under Swiss and French territory. [7]

Four main detectors can be found in LHC, coinciding with the interaction points of the
proton beams as shown in figure 4.

Figure 4: Relative location of detector experiments and complementary accelerators of LHC.

ATLAS (A Toroidal LHC Apparatus) is a general-purpose detector, mainly used in searches
for new physics, such as dark matter candidates, and testing of Standard Model predic-
tions.
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CMS (Compact Muon Solenoid) is the other general-purpose detector, allowing for double-
checking of discoveries. It will be further described below, as this work is based on data
collected by it.

ALICE (A Large Ion Collider Experiment) is specialised in heavy-ion physics, exploring
properties of the strong interaction such as the predicted quark-gluon plasma state.

LHCb (LHC - beauty) is dedicated to the study of b-quark physics. More precisely, decay
of some B mesons allow for measurements of CP violation, potentially shedding some
light on the mystery of matter-antimatter asymmetry.

LHC is designed to collide opposing proton beams with a maximum centre-of-mass energy
of
√

s = 14 TeV, although it currently reaches 13 TeV. In 2012, when the data used in this
work were collected, the value of this energy was 8 TeV, about four times the highest energy
previously reached, in Tevatron at Fermilab.

Protons travel around the LHC ring in bunches, contained by multipolar magnets. These
bunches cross at the interaction points where the detectors are located every 25 ns (50 ns in
2012), producing an average of 15 primary vertices per crossing. This phenomenon, called
pile-up and illustrated in figure 5, introduces a need for high resolution and occupancy limit
in the detectors. The event rate is about 109 Hz.

The amount of data generated is measured in instantaneous luminosity, which describes
the number of collisions that take place per unit of area and time. It is dependent on several
parameters such as the crossing frequency, the effective size of the proton bunches and the
number of protons in each bunch. The number of data taken over a period of time is expressed
in terms of (integrated) luminosity, such as the 20 fb−1 collected by CMS in 2012. Figure 6
shows how luminosity was accumulated during the years 2010, 2011 and 2012.

4.1 CMS experiment
CMS [8] is a cylindrical detector located 100 m deep under the south-eastern edge of the
French village of Cessy, between the Jura Mountains and Lake Geneva. It is 21.6 metres long,
has a diameter of 14.6 m and weights around 12500 tonnes.

CMS contains a superconducting solenoid with a length of 12.5 m and a diameter of 6 m,
and within which a uniform magnetic field of 3.8 T is created. Its goal is to deviate electrically
charged particles in order to measure the sign of their charge and their momentum. The return
yoke of the magnet curves muons in the opposite way, improving their measurements, and
isolates the muon chambers.[9, 10]

The coordinate system in CMS is taken so that the x axis points to the centre of LHC, the y
axis points upwards and the z axis runs counter-clockwise along the beam pipe, if seen from
above. The centre is defined as the nominal point of interaction between the proton beams.
The θ angle is usually substituted by the pseudorapidity η = − ln[tan(θ/2)], which has a value
of 0 at the x-y plane and tends to infinity in the z axis. The subdetectors of CMS cover the
range up to |η| ≤ 5.
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Figure 5: Result of a bunch crossing in 2011 (
√

s = 7 TeV) as measured by the CMS detector,
with a pile-up of 13 reconstructed primary vertices.

The x-y plane is called the transverse plane, where some important observables are defined,
such as the transverse momentum, measured as pT (GeV/c) = 0, 3 · B(T) ·R(m) using the radius
R of the curved track of a charged particle.

The CMS detector is designed to meet the following goals:

• Good muon identification and momentum resolution for a broad momentum and angle
spectrum, good mass reconstruction for muon pairs (≈1% uncertainty at 100 GeV/c2),
correct charge assignment for muons up to 1 TeV/c.

• Good momentum and efficiency of reconstruction of charged particles from their tracks.
Efficient b- and τ-tagging, with high detector granularity near the interaction point.

• Good electromagnetic energy resolution, good resolution in diphoton and dielectron
mass reconstruction (≈1% uncertainty at 100 GeV/c2), wide angular coverage, efficient
π0 rejection and good photon and lepton isolation in high luminosity conditions.

• Good resolution in missing transverse energy and dijet mass reconstruction, requiring
hadronic calorimeters with the largest coverage possible and fine lateral segmentation.

A three-dimensional representation of CMS can be seen in figure 7, showing the subdetectors
that are described in the following paragraphs.

4.1.1 Tracker

The tracker provides a precise measurement of the trajectories of charged particles, which are
curved because of the magnet. Impacts in the various layers of the tracker are used to define
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Figure 6: Integrated luminosity accumulated during the years 2010, 2011 and 2012.

tracks, with information about the charge and pT of the particle, in addition to contributing to
its identification.

This subdetector is the closest one to the centre of the detector, with a length of 5.8 m, a
maximum radius of 1.13 m and a pseudorapidity range of |η| < 2.5.

The tracker has two distinct parts: the pixel tracker and the silicon strip tracker. The pixel
tracker is in the innermost part of the detector. These pixels are silicon microstrips that provide
a very high resolution, even more so in the inner layers, where they are smaller and their shape
is closer to a square in order to keep occupancy levels constant across the layers of the detector.
The silicon strip tracker is built around the pixel tracker. Although it has lower resolution, it
covers a much larger volume, being the largest silicon-based tracker in the world, with a
detection area of 200 m2. Both parts are divided into a barrel (curved part of the cylinder) and
two endcaps (bases) sections, while the barrel of the silicon strip tracker also has an inner and
an outer section with different resolutions.

4.1.2 Electromagnetic calorimeter

The electromagnetic calorimeter, or ECAL, is based around the used of scintillator PbWO4

crystals. This material was chosen due to its fast response, as upon receiving an impact it
emits 80% of the scintillation light in 25 ns, which the smallest time between collisions that
LHC was designed for. The barrel section covers the range |η| < 1.5, while the endcaps section
extends this up to 3.0.

4.1.3 Hadronic calorimeter

The hadronic calorimeter, or HCAL, is designed to fit between the ECAL and the solenoid.
The barrel area reaches up to |η| < 1.3 while the endcaps cover 1.3 < |η| < 3.0. The detection is
performed by scintillator plates made of different types of plastic. The main absorber material
for slowing down hadrons is brass, as it is a non-magnetic alloy. In the |η| < 1.26 region,
there is an additional calorimeter outside the solenoid with iron as the absorber, in order to
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Figure 7: 3D view of CMS and its parts.

stop high-pT hadrons. Finally, the forward detectors, closest to beam pipe cover the region
3.0 < |η| < 5.0. They are made of quartz fibres that collect Cherenkov radiation and steel was
chosen as the absorber material.

4.1.4 Muon system

The muon system is contained within the iron return yoke of the solenoid, where almost ex-
clusively muons can reach. It possesses three different types of subdetectors.

Drift tubes (DTs) are located in the central region |η| < 1.2, where the muon rate, the
neutrons background and the residual magnetic field are low. Muons crossing this detector
ionize a gaseous mixture, after which electrons drift towards the anode wire within a maximum
of 380 ns. Some tubes provide r and φ information and others measure the z coordinate,
allowing for 3D reconstruction of trajectories.

The cathode strip chambers (CSCs) cover the endcaps region, 0.9 < |η| < 2.4, due to their
flat shape, their larger muon acceptance and their ability to function inside a strong magnetic
field. The grids formed by anode wires and cathode strips give a bidimensional measurement
in each plane of the subdetector. The resistive plate chambers (RPCs) complement measure-
ments in the |η| < 1.6 region with excellent temporal resolution, of about 1 ns, which is
necessary to match muons to the bunch crossing they came from. In this case, electrons from
the gas mixture are collected in aluminum strips, with a response time comparable to that of
scintillators.
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4.1.5 Trigger

LHC generates events with a frequency of 20 MHz (when the time interval between crossings
is 50 ns), with each event occupying 1.5 MB. In order to be able to process such a humongous
amount of data, it needs to be reduced as soon as possible, following criteria that ensure that
potentially interesting events are not discarded by the filters. This whole process is known as
the trigger.

4.1.5.1 Level 1 Trigger
The Level 1 Trigger is implemented directly on the hardware. It filters events based on

simple criteria applied to measurements performed by the subdetectors, such as a minimum
pT of charged particles. The event output frequency of this level is no larger than 100 kHz.

4.1.5.2 High Level Trigger
The next step, the High Level Trigger or HLT, is software-based. It uses information from

fully reconstructed objects, having more complex criteria which might include lepton isolation
or origin point of jets. The event frequency of the final output is between 0.1 and 1 MHz.[11]

4.1.6 Identification

Since more refined methods require low-momentum (up to a few GeV/c) particles, identifica-
tion in CMS is performed basically by checking which subdetector a particle has interacted
with, as shown in figure 8.

• Muons, as electrically charged particles, are detected in both the tracker and the ECAL.
Save for those with low pT , they are expected to reach the muon system, being the only
ones to do so due to their minimum interaction with matter.

• Electrons are detected in the tracker and leave an energy cluster in the ECAL, where
they are stopped.

• Photons do not leave a track since they are neutral particle, but as they are affected by
electromagnetic interactions, they are detected in the ECAL.

• Charged hadrons are detected in the tracker and leave part of their energy in both the
ECAL and the HCAL. Neutral hadrons, on the other hand, are only detected in the
HCAL.

• Neutrinos and some hypothetical particles not included in the Standard Model are only
affected by the weak interaction and cannot be detected by CMS.

However, this is only a simplified version describing individual particles, as hadrons are con-
tained within jets, π0 might decay into a pair of photons, electrons emit bremsstrahlung radia-
tion, photons are prone to pair production, and so on.
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Figure 8: Interaction between different types of particles and the subdetectors of CMS.
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5 Physical objects and processes

5.1 Observables
5.1.1 Muons

5.1.1.1 Reconstruction
Muon reconstruction begins using information from the muon chambers, defining a stand-

alone muon. Impacts in the first station are used as seeds for local fits that are gradually
extended outwards, accounting for the effects of the magnetic field and interaction with the
iron yoke.

Once the stand-alone muon has been reconstructed, the algorithm searches for compatible
extrapolated trajectories from the tracker. This matching depends on the quality of the fit
between the extrapolated track and the reconstruction in the muon chambers, assuming the
muon is originated at the nominal interaction point. The result of this matching provides what
is called a global muon. The benefits of measuring muons with two subdetectors are made
clear in figure 9.

Figure 9: Relative uncertainty in muon pT measurements, depending on which subdetectors
were used for the reconstruction. The improvement in momentum resolution is spe-
cially significant for high-pT muons.

5.1.1.2 Identification
In parallel, muon identification algorithms are run in order to detect muons with loose con-

ditions, such as those not fully reconstructed as stand-alone muons. This is often necessary
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when a high number of muons in the final state are required, as some of them are likely to
have low momentum and not be able to reach the outermost layers of CMS.

Therefore, these algorithms work from the inside out starting from the tracker, searching for
matching energy deposits in the calorimeters, compatible with a minimum ionizing particle.
When the muon chambers are reached, this trajectory is extended as much as possible through
sequential χ2 fits, giving a larger weight to impacts in the outermost layers as it is more likely
to belong to a muon.

Objects identified as muons may also be rejected depending on their impact parameter, i.e.
the distance from their reconstructed track to the primary vertex, as a large value indicates
they were originated in heavy quark decays or even in other vertices from the pile-up.

5.1.1.3 Isolation
Muon isolation is especially important in the low-pT region, below 30 GeV/c, since their

primary source becomes decays of heavy quarks instead of weak bosons. Therefore, these
muons are recognisable due to being part of jets, whereas they would otherwise be only ac-
companied by particles created in the underlying event (secondary interaction between other
components of the colliding protons), initial or final-state radiation or coming simply from the
pile-up.

In order to discard these muons generated as a part of jets, a cone is defined around them,
with size ∆R =

√
∆η2 + ∆φ2 and with its axis aligned with the initial direction of the muon,

as shown in figure 10. If the sum of energy or pT contributions coming from particles other
than the muon is below a certain threshold, the muon is considered isolated. Originally, these
energy or pT measurements were taken directly from the calorimeters or the tracker; however,
the values of the fully reconstructed particles are used since the development of the Particle
Flow algorithm [12].

Figure 10: Isolation cone.

5.1.2 Electrons

5.1.2.1 Reconstruction
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Electron reconstruction is highly conditioned by bremsstrahlung emission, which causes en-
ergy to be scattered in an inverse proportion to the electron’s momentum. Therefore, measure-
ment in the ECAL are not in the form of individual hits, but rather of superclusters (clusters
of clusters) generated by electromagnetic showers. The mean positions of these superclusters
are used in the search for compatible hits in the pixel detector, which are then taken as seeds
for fitting tracks in the silicon strip tracker.

5.1.2.2 Identification
An electron candidate must have been fully reconstructed by the previous method. Addi-

tionally, it must meet a series of criteria, in order to reject possible fakes, mainly jets.
Some of the variables used are the sizes σφφ and σηη, the distance in the η−φ plane between

the mean position of the supercluster and the track extrapolation, the ratio between the mea-
sured energy and the initial momentum or the fraction of energy that leaks into the hadronic
calorimeter.

5.1.2.3 Isolation
In a similar manner to muons, electron isolation is also quantified by defining cones of size

∆R =
√

∆η2 + ∆φ2 around them and summing all pT contributions inside of it, while removing
that of the electron itself. Impact parameters are again taken into account in order to verify
whether these additional particles in the cone come from the same primary vertex.

5.1.3 Jets

When the products of an interaction process include high-energy gluons or quarks, they initiate
a series of successive decays known as parton showers. When energy has decreased enough,
the confinement property of Quantum Chromodynamics causes the gluons and quarks gener-
ated to be grouped into hadrons. The final state measured by the detectors is an approximately
conical stream of hadrons and other decay subproducts, called a jet, which carries over the
momentum of the original quark or gluon. Jet production cross section dominates specially at
high pT , due to the large QCD cross sections.

Jet identification uses information from the tracker and both calorimeters, since low mo-
mentum charged particles rarely reach the calorimeters and neutral particles cannot be mea-
sured by the tracker. This is done by matching tracks to clusters of energy deposits in the
calorimeters, ideally refining the information obtained with the Particle Flow algorithm.

There are several option for clustering all of its components into a single jet object. One of
them repeatedly generates cones around particles, finding new candidates for jet ingredients,
until energy and orientation of the jets are stabilized and all objects have been successfully
clustered. Other possibilities combine distance between particles with their transverse energy
in order to leave two objects as separate jets or merge them.

Jets coming from b quarks may be identified, in a process called b-tagging, through proper-
ties such as their decay time. This is the main way to detect the generation of top quarks in an
event. The variable used here is called Track Counting High Efficiency (TCHE) [13], which
takes the value of the second highest significance of the 3D impact parameter of all tracks in
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Figure 11: Distribution of TCHE for heavy and light quarks.

the jet. This significance is defined as the ratio between the impact parameter and its esti-
mated uncertainty. The distributions of the TCHE discriminator for different quark flavours
are shown in figure 11.

5.1.4 Missing transverse energy

Since neutrinos as well as several Supersymmetric particles cannot be directly detected, their
presence is determined through momentum conservation. Although total momentum along
the z axis is unknown due to its dependence on parton distribution functions, total transverse
momentum in the collision is 0. Assuming ultra-relativistic particles, missing energy in the
transverse plane is calculated as

~E miss
T = −

∑
~pT c = −

∑
n

(En sin θn cos φn ı̂ + En sin θn sin φn ̂) . (1)

This calculation uses either pT measurements from tracks or energy deposits in the calorime-
ters, depending on the level of reconstruction of each object.

5.2 Event selection
Data events are required to fire off at least one of the triggers listed in table 1. The general
preselection for the three analyses uses events with at least two leptons and also at least two
jets, optimizing lepton selection in the following way:

1. Muons
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lepton type trigger paths

SingleElectron HLT Ele27 WP80
SingleMu HLT IsoMu24 eta2p1
DoubleElectron HLT Ele17 CaloIdT CaloIsoVL TrkIdVL TrkIsoVL

Ele8 CaloIdT CaloIsoVL TrkIdVL TrkIsoVL
DoubleMu HLT Mu17 Mu8

HLT Mu17 TkMu8
MuEG HLT Mu17 Ele8 CaloIdT CaloIsoVL TrkIdVL TrkIsoV

HLT Mu8 Ele17 CaloIdT CaloIsoVL TrkIdVL TrkIsoV

Table 1: Trigger paths used to select events.

• pT > 20 GeV/c for the most energetic lepton, pT > 10 GeV/c for the second one.

• |η| < 2.4, due to the geometry of the muon system.

• More than 10 impacts in the inner tracker, with at least one hit in the pixel detector.

• Global fit χ2/d.o.f. < 10, rejecting muons from in-flight decays of heavy quarks
and hadrons reaching the muon system.

• Impact parameter in the transverse plane |d0| < 0.02 cm. This rejects up to 87% of
fakes, while keeping about 93% of real muons.

• Longitudinal impact parameter |dz| < 0.1 cm, selecting muons from the main event
taken place at the primary vertex.

• Relative pT uncertainty better than 10%. Besides improving pT distributions, this
also affects the quality of Emiss

T measurements.

• χ2/d.o.f. < 20 in the Kink-finder [14], which searches for impacts around recon-
structed trajectories in order to detect in-flight decays.

For further rejection of jets, an MVA-based algorithm was used for describing isolation.

2. Electrons

First of all, electrons have been identified using a MVA method with the following
variables:

• Supercluster η width σiηiη.

• Supercluster φ width σiφiφ.

• ∆ηin, distance in η between the track and the supercluster.

• ∆φin, distance in φ between the track and the supercluster.

• Fraction of the total momentum lost due to bremsstrahlung.

• Number of additional clusters from bremsstrahlung.

Afterwards, the selection is made even tighter with a series of cuts:
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• pT > 20 GeV/c.

• |η| < 2.5.

• σiηiη < 0.15(0.03) in the barrel (endcaps) region.

• |∆φin| < 0.15(0.010), |∆φin| < 0.007(0.009).

• EHCAL/EECAL < 0.12(0.10).

•
∑

tracker ET/pT < 0.2,
∑

ECAL ET/pT < 0.2,
∑

HCAL ET/pT < 0.2.

• IsoPF/pT < 0.13(0.09).

For the tt̄ analysis, the number of leptons required is exactly two, more precisely one elec-
tron and one muon with opposite charge.

For tt̄W, exactly three leptons are required, with their total charge adding up to 1 or -1.
Additionally, the event must not contain a pair of same-flavour opposite-sign leptons whose
reconstructed mass falls within 15 GeV/c2 of the Z boson mass, and at least two jets must be
marked as b-tagged, which means having a TCHE value larger than 2.1.

Finally, the tt̄Z selection requires exactly four leptons, with zero total charge. Out of these
four leptons, there must be a same-flavour, opposite-sign pair inside the Z mass peak.

5.3 Processes
The list of physical processes included in the analysis, along with their cross section at

√
s =

8 TeV and the Monte Carlo generator used for the simulations, is shown in table 2.
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Process cross section (pb) Generator
tt̄ 248 MadGraph [15]

tt̄W 0.232 MadGraph
tt̄Z 0.206 MadGraph
tW 2.34 Powheg [16][17]

Drell-Yan 4390 MadGraph
WW → 2l2ν 5.81 MadGraph

WZ 4.85 MadGraph
ZZ 2.03 MadGraph

WWγ 0.528 MadGraph
WWW 0.0822 MadGraph
WWZ 0.0633 MadGraph
WZZ 0.0192 MadGraph
ZZZ 0.00459 MadGraph
tt̄γ 1.44 MadGraph

tt̄WW 0.00204 MadGraph
(tt̄)H→ (tt̄)WW→ (tt̄)2l2ν 0.744 Powheg

H→ZZ→ 4l 0.0524 Powheg
W+jets→ lν+jets 37.5 MadGraph

Wγ → lνγ 8.12 MadGraph
Wγ∗ → lνγ∗ 554 MadGraph

Zγ → llγ 133 MadGraph

Table 2: List of processes, 8 TeV cross section and Monte Carlo generator used. The parton
showers and hadronization part of the simulation was performed with Pythia [18].
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6 Boosted Decision Trees
Multivariate Analysis methods combine several variables, which by themselves might not be
enough to efficiently select signal events from data, into a single variable that acts as a powerful
discriminator. Since Boosted Decision Trees are the MVA algorithm chosen in this work, they
will be thoroughly described in this section.

6.1 Motivation
Decision trees are easy to understand even by non-experts, as they can be considered similar
to human procedures for making decisions, such as medical diagnosis. Explanations are made
simple by the use of graphical representations, such as those of borders between different
classes in low-dimensionality problems or the trees themselves. Although boosting introduces
more complicated concepts, the fundamental idea is still intuitive.

Performance of Boosted Decision Trees usually falls behind that of an Artificial Neural
Network (ANN), another commonly used Multivariate Analysis method, perfectly optimized
for the task at hand. However, BDTs require much less fine-tuning in comparison, being
widely regarded at the best “out-of-the box” classifier, since finding a set of parameters that
lead to a satisfactory BDT is not as extremely time-consuming as in the case of ANNs.

Training of Boosted Decision Trees is not significantly impeded by the presence of irrel-
evant variables. Due to the use of maximum separation criteria, these variables are largely
ignored. Actually, input variables may be ranked in terms of how often they were used for
making decisions during the training, taking into account the separation achieved and the
weight of the corresponding trees. This is called variable importance.

Computation time required for growing small trees, like the ones the boosting algorithm
AdaBoost is specially designed for, is very short, therefore it may be possible to create a large
set of Boosted Decision Trees in a matter of minutes when running in a single machine. This
allows the user to test the impact of gradually altering several parameters.

Finally, Boosted Decision Trees are able to adapt to complex boundaries between classes,
as shown in figure 12a. However, they may not do so in the most optimal way, requiring more
time than classifiers specialized in specific shapes, as exemplified in figure 12b.

6.2 Decision trees
Decision trees are mostly used as a classification algorithm, although there are adaptation for
regression problems. The fundamental idea behind them is to perform a series of simple splits
in the variable space, establishing a list of binary conditions which are combined into the final
classification criterion.

Figure 13a shows a generic example with two classes. Originally, there is a single root node
which contains all the events to be classified. The variable space is partitioned into a grid,
from which the single-variable cut that maximizes separation between classes is chosen, thus
splitting the node into two. This process is repeated until some stopping condition is met, such
a high degree of purity or a small number of events in the node. The final nodes, called leaf
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(a)
(b)

Figure 12: (a) Binary classification with non-linear boundaries using Boosted Decision Trees.
(b) Describing a linear boundary is a trivial matter for a linear discriminant, while
a decision tree requires several steps for a rough approximation.

nodes, are associated with a single class, therefore representing the output of the decision tree
as a function of the split criteria used from the root node up to their own parent node.

A bidimensional graphical example is also presented in figure 13b, illustrating the effects
of splitting nodes.

The maximum separation criterion used for selecting the best way to split a node is one of
several magnitudes related to misclassification or purity [19]. The simplest one is the misclas-
sification error, expressed as

Em = 1 −max
k

(p̂mk), (2)

where p̂mk is the fraction of events in node m that belong to class k. However, it is rarely used
due to its low sensitivity for building trees and generally discarded in favour of one of the two
following quantities.

The Gini index is defined as

Gm =

K∑
k=1

p̂mk(1 − p̂mk) (3)

while cross-entropy takes the form of

Dm = −

K∑
k=1

p̂mk log p̂mk. (4)

Both indices tend to 0 when p̂mk is approximately 0 or 1, so they can be said to quantify the
purity of node m, i.e. the predominance of one class over others. They are also known to take
similar values, as shown in figure 14.

A single decision tree has many limitations, such as a prediction power inferior to that of
many other classifiers or a strong tendency to overfitting, even after “pruning” irrelevant nodes.
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(a)

(b)

Figure 13: (a) Example of a decision tree with generic variables and binary classification be-
tween signal and background.
(b) Bidimensional graphical example illustrating the partitiong of the variable
space. Darker boundaries indicate splits closer to the root node.

They also provide unstable models, with a high sensitivity to small variations in the training
dataset.

These reasons have led to the development of several methods that enhance the robustness
and overall performance of decision trees by combining the output of different trees through
a majority vote. One of these methods is called bagging, from bootstrap aggregating, and
it generates a large number of variations of the original tree by randomly choosing events
with the bootstrapping method, possibly also limiting the set of variables used in each tree.
The method is used in this work, boosting, follows a different approach, instead sequentially
growing trees so that each attempts to correct the classification mistakes of the previous one.

6.3 Boosting
The most commonly used method is Adaptive Boosting or AdaBoost [20]. In each iteration,
events mislabeled by the previous classifier (decision tree, in this case) are assigned a larger
weight, so that they are focused on in the next iteration. Figure 15 is useful for understanding
how this process takes place and the way it progresses towards the final output given by the
combination of all classifiers.

The AdaBoost algorithm follows these steps[21]:

1. One starts with a dataset
{
~xi, yi

}
, with ~xi ∈ ~X as variables and yi ∈ {−1,+1} as class

labels.

2. All weights are initialized with the same value, w1(i) = 1/N, with N being the number
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Figure 14: Values, in arbitrary scale, of three indices used as separation criteria as a function
of signal purity.

Figure 15: Application of AdaBoost for classifying two types of points, whose size represents
their weight relative to the first iteration. Dashed lines mark the borders given by
individual classifiers, while the green solid line describes the output of the com-
bined classifier. The dotted lines in the last two graphs show the output given by
the bagging method.
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of events.

3. For each classifier t = 1, ...,T :

• The classifier is trained according to the weight distribution wt.

• An output ht
(
~xi
)

is obtained.

• The misclassification error is calculated with weights εt, where I
[
yi , ht

(
~xi
)]

is 1
when event ~xi has been misclassified and 0 otherwise.

εt =

N∑
i=1

wt(i) I
[
yi , ht

(
~xi
)]

(5)

• The coefficient αt is calculated from the misclassification error, with parameter β
regulating learning speed, generally set to 1/2.

αt = β ln
(
1 − εt

εt

)
(6)

• Weights are updated according to whether events were correctly classified or not
(represented by the product yi · ht

(
~xi
)
), conditioned by αt. Zt is a normalization

coefficient.
wt+1(i) =

wt(i)
Zt

exp
[
−αt yi ht

(
~xi
)]

(7)

4. The output of the combined classifier takes the form of

H(~x) =
1∑T

t=1 αt

T∑
t=1

αt ht
(
~x
)
. (8)

Since the classifier created in each iteration focuses on events that difficult to label correctly,
after a number of steps the new classifiers only work for a limited set of events, misclassificat-
ing many others. This is the reason why the contributions of each classifier is weighted by αt,
mitigating this effect and giving more importance to classifiers that work best for the whole
dataset in general. Figure 16 shows how this coefficient evolves, along with the misclassifica-
tion error, as more trees are grown.

AdaBoost performs best with weak classifiers that properly label a moderately large fraction
of the events, rather than capturing every detail from the training dataset. For Boosted Decision
Trees, this often means limiting the depth of the trees to about three or even less layers of node
splitting.

6.4 Parameters
The most important parameters to be tuned in BDTs are the number of trees and their maxi-
mum depth.
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Figure 16: Example of the evolution of misclassification error and weights assigned to each
tree during the training process. Simple misclassification error, which may rise
above 0.5 for certain overly specialised trees, is shown in black. Weighted mis-
classification error is shown by the red points, which stabilize at a value below, but
not very far from, 0.5. αt weights, in blue, take larger values for the first trees and
gradually decreases as weighted misclassification error increases.

An excess in the number of trees has little effect thanks to their weights limiting the impact
of trees with bad generalization properties. However, it can lead to overtraining in extreme
cases. The total separation power improves more slowly the larger the number of trees be-
comes, so there is an ample margin for the user to notice when enough trees have been grown.
An example of this is presented in figure 17.

The maximum depth of the trees should be preferably as small as possible, since AdaBoost
is oriented at weak classifiers. Trees with a single split (called stumps) are often enough,
though the final choice is highly dependent on the specifics of the problem.

The learning parameter β is usually set at the standard value of 0.5, sometimes 1. However,
it was noticed in this work that when one of the classes, such as signal or background, is
significantly scarce, lowering this number (and adding more trees to compensate) prevents the
trees from starting to overtrain too fast.

Other technical details will not be elaborated upon, as they were not tuned in this work
during the training and optimization of the BDTs. These would include the lower limit on the
number of events in a node for it to be divisible, the number of values of each variable to be
considered when splitting nodes or the choice of separation index.
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Figure 17: Improvement of the separation power of a BDT as the number of trees is increased.
This data is taken from the MiniBooNE [22] experiment, which explains the large
number of leaves, since more than 80 input variables are used. The vertical axis
represents the ratio between the fraction of signal and background events kept for
a given efficiency, multiplied by a constant value.
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7 Analysis and results
This analysis was based on the implementation of Boosted Decision Trees in the Toolkit for
Multivariate Analysis (TMVA) package [23] for ROOT [24].

Each of the three analyses was performed in two ways for cross-checking:

1. Cut method.

After training the BDT, the output is a single variable with more separation power than
the input variables. For this reason, the usual method of applying a series of cuts to the
most discriminating variables is substituted by a single cut on the BDT output, selecting
only events with positive values of this variable.

2. Fit method.

The shape of the BDT output variable is expected to be greatly influenced by the signal
in the positive side. Assuming the simulation of all backgrounds is correct, the signal
can be rescaled to best fit the data, thus giving a data-driven estimation of expected
signal events.

The following input variables were considered:

• Highest TCHE value in the event.

• Second highest TCHE value in the event.

• pT of jet with highest TCHE value.

• pT of jet with second highest TCHE value.

• Highest pT of all leptons.

• pT of pair of most energetic leptons.

• mll, invariant mass of pair of most energetic leptons.

• Emiss
T , missing transverse energy.

• MT , transverse mass of all leptons, jet and Emiss
T , reconstructed using only the transverse

component of the momenta.

And additionally, in the tt̄W analysis with three leptons:

• Highest pT of the two same-sign leptons in the event.

• Second highest pT of the two same-sign leptons in the event.
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The cross section of a process is calculated as

σ =
Ndata − Nbackground

εL
(9)

where Nbackground is estimated from Monte Carlo simulations, L is the integrated luminosity
(19.5 fb−1) and ε is the selection efficiency, i.e. the fraction of simulated signal events that
pass the selection cuts.

For the fit method, the cross section is calculated instead as

σ =
Nfitted

signal

εL
(10)

since the method is meant to directly provide the number of signal events after rescaling the
corresponding simulation.

An estimation of systematic uncertainties affecting the cross section measurement was con-
sidered to be beyond the scope of this work and only the statistical and luminosity (and fit,
where applicable) components of the total uncertainty have been calculated.

7.1 tt̄

For the tt̄ analysis, the Boosted Decision Trees were trained using only tW, WW and Drell-
Yan processes, being the most prominent background sources within the already exclusive
selection. The number of trees was chosen to be 500, their maximum depth was limited to 3
layers and the learning parameter β was set at 0.1 to help deal with overtraining issues.

The distributions of all variables for the tt̄ analysis selection, with opposite-sign eµ plus two
or more jets, are shown in figures 18 and 19. The importance of these variables in the training,
as provided by TMVA, is listed in table 3.

The reference values to compare the measurements presented here are the theoretical esti-
mation [25]

σtheo
tt̄ = 252.9+6.4

−8.6 (scale) ± 11.7 (PDF+αs) pb (11)

and the experimental measurement [26]

σ
exp
tt̄ = 239 ± 2 (stat.) ± 11 (syst.) ± 6 (lumi.) pb, (12)

both assuming a top quark mass of 172.5 GeV/c2.

7.1.1 Cut on BDT output

The output of the BDT trained for the tt̄, having selected events with a BDT value greater than
0, is shown in figure 20a. With this method, the cross section was measured to be

σcut
tt̄ = 230.9 ± 1.3 (stat.) ± 10.2 (lumi.) pb, (13)

slightly lower but still compatible with the theoretical prediction and published measurements.
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Variable Importance

Highest TCHE 0.2091
MT 0.1538
p``T 0.1308

Emiss
T 0.1200

m`` 0.1096
pT of jet with 2nd highest TCHE 0.09551

pT of jet with highest TCHE 0.07437
Second highest TCHE 0.07311

p`,max
T 0.03375

Table 3: Variable importance in the training of the BDT for tt̄.

7.1.2 Fit signal to BDT output

Alternatively, the full output of the BDT was used to fit the tt̄ simulation to the data by rescal-
ing it while preserving its shape. The distributions of the BDT output after this fitting is shown
in figure 20b and the cross section estimated by this method is

σfit
tt̄ = 238.6 ± 2.0 (fit) ± 1.1 (stat.) ± 10.5 (lumi.) pb, (14)

which is consistent with previous estimations.
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Figure 18: Input variables related to the TCHE value of jets, for the tt̄ analysis selection.
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Figure 19: Input variables unrelated to the TCHE value of jets, for the tt̄ analysis selection.
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(a) (b)

Figure 20: (a) Final result after selecting positive-valued events from the BDT output for tt̄.
(b) Result of fitting the tt̄ simulation to match the data.
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7.2 tt̄W

In the tt̄W analysis, all of the available processes, listed in table 2, were considered for the
training. An ensemble of 5000 trees was grown, each with a maximum depth of only 2 layers
and a β parameter of 0.01, required by the small number of events left after the selection.

The distributions of the variables in the tt̄W analysis are shown in figures 21 and 22. The
importance of these variables is listed in table 4.

The theoretical estimation for the cross section at 8 TeV is [27]

σtheo
tt̄W = 232 ± 67 (scale) ± 30 (PDF) fb (15)

while the most recent experimental measurement, combining the same-sign dilepton chan-
nel and the trilepton channel, is [28]

σ
exp
tt̄ = 382+117

−102 fb, (16)

which suggests a possible excess over the theoretical prediction.

Variable Importance

Lowest pT of the two same-sign leptons 0.1668
Second highest TCHE 0.1402

m`` 0.1132
pT of jet with 2nd highest TCHE 0.1099

Emiss
T 0.1017

p``T 0.07694
Highest TCHE 0.07639

Highest pT of the two same-sign leptons 0.06874
MT 0.06342

pT of jet with highest TCHE 0.04928

p`,max
T 0.03337

Table 4: Variable importance in the training of the BDT for tt̄Z.

7.2.1 Cut on BDT output

The result of applying the BDT trained for the tt̄W analysis to the corresponding selection of
events and rejecting those with a BDT output lower than 0 is presented in figure 23a. The
final number of total events is extremely low due to the strict requirements imposed to obtain
a significant fraction of signal events.

The cross section measurement is

σcut
tt̄W = 370 ± 200 (stat.) ± 20 (lumi.) fb, (17)
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Figure 21: Input variables related to the TCHE value of jets, as well as the transverse momen-
tum of the two same-sign leptons in the event, for the tt̄W analysis selection.

with an uncertainty that is large enough for the measurement to be fully compatible with both
the theoretical prediction and the excess hypothesis. However, it can be considered as an
observation of a low cross section process and a strong step towards a precise measurement in
the future.

7.2.2 Fit signal to BDT output

After applying the fit method, the cross section was measured with even larger uncertainty:

σfit
tt̄W = 330 ± 270 (fit) ± 110 (stat.) ± 10 (lumi.) fb (18)

Nevertheless, figure 23b illustrates the observation previously noted, as the shape of the
data would be difficult to explain without considering tt̄W production.
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Figure 22: Input variables unrelated to the TCHE value of jets, for the tt̄W analysis selection.
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(a) (b)

Figure 23: (a) Final result after selecting positive-valued events from the BDT output for tt̄W.
(b) Result of fitting the tt̄W simulation to match the data.
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7.3 tt̄Z

Like in the tt̄W analysis, all processes with events that passed the selection were used in the
training. The number of trees was extended to 10000, with up to 4 layers each, and the β
parameter was lowered to 0.001, as larger values led to quick overfitting due to the number of
events being even lower, specially for tt̄Z events.

The distributions of the variables in the tt̄Z analysis are presented in figures 24 and 25,
whereas their importance in the training is listed in table 5.

The theoretical prediction for the cross section is [29]

σtheo
tt̄Z = 205.7+6.4

−8.6 (scale) fb (19)

while the most recent experimental measurement, which combines the opposite-sign dilep-
ton, trilepton and four-lepton channel, is [28]

σ
exp
tt̄ = 242+65

−55 fb, (20)

with a value slightly above the theoretical prediction, though compatible within uncertainty
limits.

Variable Importance

Emiss
T 0.2038

p`,max
T 0.1568
MT 0.1489

pT of jet with 2nd highest TCHE 0.1484
pT of jet with highest TCHE 0.1168

Highest TCHE 0.1009

p``T 0.0689
m`` 0.0472

Second highest TCHE 0.0084

Table 5: Variable importance in the training of the BDT for tt̄Z.

7.3.1 Cut on BDT output

After the selection using the BDT output values, as presented in figure 26a, the cross section
measurement is

σcut
tt̄Z = 190 ± 150 (stat.) ± 10 (lumi.) fb, (21)

which may again be considered as an observation of a process with low cross section which is
consistent with theoretical predictions and published measurements of the CMS collaboration.
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7.3.2 Fit signal to BDT output

Finally, the measured cross section after performing the fit shown in figure 26b is

σfit
tt̄Z = 200 ± 190 (fit) ± 110 (stat.) ± 10 (lumi.) fb, (22)

with an even larger uncertainty, once more derived from the restrictiveness of the selection.
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Figure 24: Input variables related to the TCHE value of jets, for the tt̄Z analysis selection.
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Figure 25: Input variables unrelated to the TCHE value of jets, for the tt̄Z analysis selection.

42



(a) (b)

Figure 26: (a) Final result after selecting positive-valued events from the BDT output for tt̄Z.
(b) Result of fitting the tt̄Z simulation to match the data.
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8 Conclusions
The Multivariate Analysis method known as Boosted Decision Trees has been thoroughly
described from its basic principles: decision trees and the AdaBoost algorithm. This method,
chosen for its relative simplicity, has been applied for signal discrimination in the analysis of
three processes related to top quark production: tt̄ with two different-flavour leptons in the
final state, tt̄W with three leptons and tt̄Z with four leptons.

The output values of the Boosted Decision Trees have been interpreted both as a combined
discriminating variable and as a function of the data that can be used to rescale signal simula-
tions.

The tt̄ cross section has been measured, obtaining values which are consistent with theoret-
ical predictions and officially published measurements of the CMS collaboration:

σcut
tt̄ = 230.9 ± 1.3 (stat.) ± 10.2 (lumi.) pb, (23)

σfit
tt̄ = 238.6 ± 2.0 (fit) ± 1.1 (stat.) ± 10.5 (lumi.) pb, (24)

On the other hand, a clear observation of tt̄W and tt̄Z, two processes whose cross section
is about 1000 times smaller, was successfully made. The values obtained for the tt̄W cross
section are

σcut
tt̄W = 370 ± 200 (stat.) ± 20 (lumi.) fb (25)

and
σfit

tt̄W = 330 ± 270 (fit) ± 110 (stat.) ± 10 (lumi.) fb, (26)

while for tt̄Z, the results were

σcut
tt̄Z = 190 ± 150 (stat.) ± 10 (lumi.) fb (27)

and
σfit

tt̄Z = 200 ± 190 (fit) ± 110 (stat.) ± 10 (lumi.) fb, (28)

all of them compatible with theoretical predictions and recent measurements, although having
large uncertainties due to the small number of events in their selection channels, with three
and four leptons in the final state respectively.

The fact that this estimation was possible indicates the potential usefulness of MVA meth-
ods for more refined analyses aimed at obtaining precise measurements of low cross section
processes.
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