
Facultad

de

Ciencias

Un acercamiento numérico al
problema de los tres cuerpos

A numerical approach to the Three Body Problem

Trabajo de Fin de Grado
para acceder al

GRADO EN FÍSICA

Autor: Diego Mart́ın López

Director: Francisco Matorras Weinig

Julio - 2015

Abstract

The three-body problem is a nonlinear, non analytically solved without approximations prob-
lem which is key in the understanding on the motion of three free bodies bounded by gravitational
attraction, such us the Sun-Earth-Moon system. The following work presents the development
and results of a numerical program that solves the three-body problem as if none of the work
around it were done before. We’ve started from the Newton’s gravitational law and continued
with the learnings got from the Physics degree. We’ve solved the ODE2 for the acceleration of
each of the bodies, so we got it’s positions as a function of time, considering the bodies moved
always in a Cartesian plane. The program was developed to numerically integrate these equations
and to permit the analysis of different quantities related to the observed motion under different
conditions. We’ve extensively tested the code for different examples, such us the Sun-Earth-Moon
system and the Satellite-Earth-Moon system. We got that, while the integration step is h < 10 s
and the bodies aren’t closer than R? = 9 × 106 m, the program returns reasonable solutions for
the Sun-Earth-Moon system and the Satellite-Earth-Moon system. We’ve done a fine-tuning to
get the simulated system to behave in a similar way the real system does, but getting the orbits
more circular in order to simplify the interpretations of the results. The initial conditions we
had to set when the three bodies were free were so fine that, for example, changing the Earth’s
speed δv⊕ = 1 m/s, made its period change δT⊕ = 1 hour. When we set the initial conditions so
the bodies had to move in circular motion, we got that Earth and Moon disturbed each other.
The Earth got an eccentricity of ε⊕ = 0.05 and the Moon εM = 0.28. We’ve study the Moon’s
stability when making little perturbations in its orbit, while the other conditions remained the
same. We got that it needs to change its path δθ = 1.2o in order to disengage from the Earth’s
orbit. We’ve make an attempt to study the stability of the system, and, during two hundred
years, it hasn’t seem to have any trend to change. Comparing the geostationary satellite with
and without Moon, we got that, because of the Moon influence, it had a delay of around two
hours every day. We made a study of the orbits for different distances to the Earth. We got
that while the satellite remains near the Earth (not further than R?? ≈ 2 × 108 m), there are
periodical perturbations in the orbit with respect to the circular case, but they don’t seem to
present any trend to change its orbit. Once the satellite surpasses this critical orbit the Moon
traps it and its orbit gets chaotic. In this stage the satellite usually gets so close to the Moon
that the error stack starts to be a problem. However, taking a small enough integration step, this
error shouldn’t mean any problem. When getting too close to the Moon, the satellite gets a boost
in its speed due to momentum transfer. If the energy transferred results enough, the satellite
escape from the system. Apart from the cases where the satellite and the Moon get too close to
each other, where we may need an adaptive integration step, the program works well and allows
us to make a detailed study of any case of the problem. Taking a look to the whole project,
we have developed a reliable tool, within the approximations we have taken. The program has
resulted useful for the study of these type of problems and, with some improvements to cover
some identified weak issues, can be used for a more detailed studies of the three body problem
itself or other similar problems.

Keywords: Numerical Calculus, Three Body Problem, Runge-Kutta, artificial satellites, clas-
sical gravitation.

1

Resumen

El problema de los tres cuerpos es un problema no lineal, no resoluble anaĺıticamente sin
aproximaciones, clave en la comprensión del movimiento de tres cuerpos que se atraen gravita-
cionalmente entre śı, como pasa en el sistema Sol-Tierra-Luna. El siguiente trabajo presenta el
desarrollo y los resultados de un programa de cálculo numérico que resuelve el problema de los
tres cuerpos como si ningún otro trabajo se hubiese desarrollado antes sobre él. Hemos partido
de la ley de la gravitación universal de Newton y seguido con los conocimientos adquiridos en
el grado en f́ısica. Haciendo uso de Matlab y a través de la implementación del método Runge
Kutta de cuarto orden, hemos resuelto la EDO2 para la aceleración de cada uno de estos cuer-
pos, de manera que obtuvimos sus posiciones como funciones del tiempo. Consideramos que los
cuerpos siempre se mov́ıan en el plano cartesiano. El programa fue desarrollado para integrar
numéricamente estas ecuaciones, y permitirnos analizar diferentes magnitudes relacionadas con
el movimiento observado bajo diferentes condiciones. Realizamos un análisis exaustivo del código
con diferentes ejemplos, como el sistema Sol-Tierra-Luna y el sistema Satélite-Tierra-Luna. Ob-
tuvimos que, mientras el paso de integración fuera h < 10 s y la distancia entre los cuerpos no
fuese menor de R? = 9 × 106 m, el programa nos daba soluciones razonables para los sistemas
Sol-Tierra-Luna y Satélite-Tierra-Luna. Hemos hecho un ajuste fino para que las simulaciones se
comportasen de manera parecida a los sistemas reales, pero con las órbitas más circulares para
poder simplificar las interpretaciones de los resultados. Las condiciones iniciales que tuvimos que
introducir para los tres cuerpos libres eran tan sensibles que, por ejemplo, cambiando la velocidad
de la Tierra δv⊕ = 1 m/s cambiaba su peŕıodo δT = 1 hora. Cuando inrodujimos las condiciones
iniciales para que la Luna y la Tierra se movieran de manera circular d emanera separada, nos
dimos cuenta que al simular el sistema completo éstas dejaban de moverse circularmente pues se
perturbaban la una a la otra. La excentricidad de la Tierra era de ε⊕ = 0.05 y la de la Luna de
εM = 0.28. Hemos estudiado la estabilidad de la Luna tras hacer pequeñas perturbaciones en su
órbita, mientras el resto de las condiciones las dejábamos igual. Encontramos que ésta necesitaba
cambiar su trayectoria 1.2o para desacoplarse de la órbita terrestre. Hemos tratado de estudiar
la estabilidad del sistema, y durante doscientos años no hemos encontrado ninguna tendencia del
sistema que indique algún cambio en su trayectoria. Comparando el satélite geostacionario con
y sin Luna, hemos visto que, debido a la influencia de ésta, el satélite sufŕıa un retraso de dos
horas cada d́ıa. Hicimos un estudio de las órbitas del satélite a distintas distancias de la Tierra,
y mientras éste permaneciese no más lejos de R?? = 2 × 108 m, encontramos perturbaciones
periódicas que no aparecen en el caso completamente circular, pero no parecen mostrar ninguna
tendencia a cambiar su órbita. Cuando el satélite sobrepasa la distancia ĺımite, la Luna lo atrapa
y empieza a comportarse de manera caótica. En este caso el satélite suele acercarse tanto a la
Luna que el error acumulado empieza a ser problemático. Sin embargo, tomando un paso de
integración suficientemente pequeño, este error no debeŕıa suponer un problema suficientemente
grande como para cambiar la trayectoria del satélite. Cuando el satélite se acerca tanto a la
Luna, éste recibe un incremento de velocidad debido a transferencia de momento. Si esta enerǵıa
es suficientemente grande, el satélite puede incluso escapar del sistema. Aparte de los casos en
los que el satélite se acerca demasiado a la Luna, donde debiéramos tomar un paso adaptativo,
el programa funciona bien y nos permite hacer un estudio detallado de cualquier caso de este
problema. Teniendo en cuenta el proyecto entero, hemos desarrollado una herramienta en la que
confiar, dentro del ĺımite de nuestras aproximaciones, y que ha resultado útil para el estudio de
este tipo de problemas y, con algunas mejoras para suplir las deficiencias ya identificadas, puede
ser empleado para estudios más detallados del problema de los tres cuerpos u otros problemas
similares.

Palabras clave: Cálculo numérico, Problema de los tres cuerpos, Runge-Kutta, satélites arti-
ficiales, gravitación clásica.

2

Contents

1 Introduction 4
1.1 Approaches and sense of the project . 4

2 Development and tests of the code 6
2.1 4th order Runge Kutta . 6
2.2 First and Second Order Differential Equations . 7
2.3 The Two Body Problem . 8

2.3.1 Circular orbits . 9
2.3.2 Elliptical orbits . 11
2.3.3 The Rocket Problem . 12

3 The Three Body Problem and the Sun-Earth-Moon system 15

4 The three body problem and the Earth-Satellite-Moon system 23

5 Conclusions 28

6 References 30

3

1 Introduction

The Three-body problem consists in solving the positions of three free bodies that move due to
gravitatory attraction. The equation we are interested in solving for each body is then:

d2 ~xi
dt2

= G(
mj ~rij
d3ij

+
mk ~rik
d3ik

)

where xi is the position of the body we are studying, mj and mk are the other two bodies masses,
dij and dik are the distances between the first body and the other two and ~rij and ~rik the vectors
that join the first body with the other two.
Due to the fact that these equations can’t be solved by analytic methods without approximations,
this problem has always been a very interesting topic in physics. It might appear as a subject with
not very useful applications, but when it comes to study the celestial bodies, it is the first order tool
in order to solve our questions on the matter.

The present work has been outlined as if none of the previous work around the Three-body prob-
lem had been made and focuses in a very practical line of work, so it starts from the Newton’s law
of universal gravitation and makes use of the 4th order Runge Kutta algorithm to make numerical
simulations of the trajectories of three different bodies from some initial conditions. Our goal is to get
to simulate the three body problem and get interesting results after simulating the Sun-Earth-Moon
system and the path of an artificial satellite between the Earth and the Moon.
The inner motive of this work is learning how to plan and solve any numerical problem, and how to
deal with a big project, from the planning to the conclusions.

We’ll start showing the implementation of the 4th order Runge Kutta algorithm with a first and
a second order differential equations and the tests we made to make sure our program worked so far.
Then we increased the complexity of the code implementing the Two-body problem with which we
simulated the Earth-Moon system. Once we had enough proves our program worked as well as we
needed we implemented the Three-body problem. After some exercises with the Sun-Earth-Moon
system we decided to remove some complexity to the code in order to make it faster and be able to
get easier conclusions from the results, so we fixed the most massive body and continued studying
the Sun-Earth-Moon system a bit more. The last exercise was to simulate an artificial satellite for
different orbits between the Earth and the Moon. We’ll finally finish the report with the conclusions
we’ve got from this project.

1.1 Approaches and sense of the project

Before we start writing about the project, we must make sure the reader doesn’t get the wrong idea
about the meaning of this work. We don’t claim we have done something new, neither something
useful to research or implement in a serious working environment. We’ve just developed a tool in
order to take some examples of numerically solved three body problem with some approximations
and without using the most optimized resources, but the ones we considered appropriate and that
granted us the success of the project on a reasonable time lapse.

We focused on the project from an academic perspective. We didn’t really want to get a specific
result but to learn as much as possible from the problems we were finding along the way. At the end
we actually found some interesting results and we got to simulate the three body problem, always
within the limits of our approximations.

In the first place we considered our bodies as points in a Cartesian Coordinate System plane.
This means there are nor rotation or collisions. The orbits we’ve considered for the Sun-Earth-Moon
system are set in a plane, while there’s actually a small degree of inclination between the Moon-Earth
orbit plane and the Sun-Earth orbit plane.

We also tried the motion of the bodies to be as circular as possible, so the results derived from
the simulations were easier to understand. When we wanted the results to be even simpler, we fixed

4

the most massive body, as we’ll explain later.

The physics of the problem aren’t as important, along the project, as the computational attack
we’ve made to solve it. We’ve use the three body problem as an example to solve numerically, but,
making the proper changes, we could use the program to solve any other.

5

2 Development and tests of the code

I chose to work with Matlab because it’s a really friendly user tool, with lots of libraries and helpful
resources along the net, which derives from the fact that it’s widely used along the world. We also
got to know, with the first trials we did, that Matlab was going to let us develop the tool we were
looking for in a flexible way.

In the early stages of the project, we knew it wasn’t possible, nor practical, for us to start with
the three-body problem at the very beginning. We had to take little safe steps in order to develop a
reliable tool.
That’s the main reason why we started solving analytically easy to solve differential equations and
the well known two-body problem. We’ll start by showing the 4th order Runge Kutta method we
used for the whole project and then introduce the two approaches we came with before we got into
the three-body problem.

2.1 4th order Runge Kutta

The Runge Kutta methods are an important set of useful numerical algorithms in the resolution of
ordinary differential equations. These methods were developed at the beginning of the 20th century
by the German mathematicians C. Runge and M. W. Kutta.

We chose the 4th order Runge Kutta to solve our problem because it’s conceptually simple in
order to understand how to use it and powerful enough to let us get to a reasonable result at the end
of the project.

Given f ′(t, x) = f(t, x), the algorithm divides the integral we usually would do analytically into
four discrete steps, where the slope is approximated by four coefficients we’ve called x1, x2, x3 and
x4. At the end of each iteration, we get the weighted average of the four portions. Between the
solution of an iteration and the next one, there’s an interval of time given by h, which is called the
integration step.
The mathematical shape of the algorithm is written as follows:

x1 = f(ti, xi) (1)

x2 = f(ti +
h

2
, xi +

h

2
x1)

x3 = f(ti +
h

2
, xi +

h

2
x2)

x4 = f(ti + h, xi + hx3)

xi+1 = xi +
h

6
(x1 + 2x2 + 2x3 + x4)

where i+ 1 is the next step we are calculating, and i is the step we’ve already got.
This iterative process begins from a known initial condition f(0, x).

If we want to solve a second order differential equation, f ′′(t, x) = f(t, x), then the algorithm gets
a bit more complicated. In this case we have to divide the ODE2 into two ODE1 so we can proceed
in a similar way as we did with the previous case. The order in which we write the line codes is
important, because of the interdependence of coefficients on each step.

v1 = f(ti, xi) (2)

x1 = vi

v2 = f(ti +
h

2
, xi +

h

2
x1)

x2 = vi +
h

2
v1

6

v3 = f(ti +
h

2
, xi +

h

2
x2)

x3 = vi +
h

2
v2

v4 = f(ti + h, xi + hx3)

x4 = vi + hv3

xi+1 = xi +
h

6
(x1 + 2x2 + 2x3 + x4)

vi+1 = vi +
h

6
(v1 + 2v2 + 2v3 + v4)

where x1, x2, x3, x4, v1, v2, v3 and v4 are the coefficients we have to calculate in order to get the
next step of the integral.

Because the time inside the simulation doesn’t usually correspond to the time the simulation is
running, we have to make a distinction between these two concepts. For example, a twenty minutes
running time simulation, may correspond to a simulated time of one year. This means that while we
have been waiting for twenty minutes until the simulation finished, the bodies we have simulated has
been looping around each other for one virtual year.

Along the project we’ll see how important it is to choose the right h. The idea for the method is
to choose the smallest positive h possible, but the smaller h is, the slower is the method. Because of
our limited time, we had to find a h which would give us a good precision-time relation.

2.2 First and Second Order Differential Equations

The first step we took was to solve a first order Ordinary Differential Equation (ODE):

ẋ = −kx
x = e−kt

where k is a constant, and x is a function of time t.
The first prove of the success of the implemented Runge-Kutta to Matlab was the comparison between
the program numerical approach and the analytical solution. When plotting both solutions together
we found out that both overlapped, as we could expect. Then we plotted the difference δz in absolute
value for different h.

As we see in Fig.(1)) the error function shape describes the one of an exponential function: at the
beginning the exponential function decays very fast, so the error function has a much bigger peak the
less steps in time you get (less steps in time means bigger h). An interesting result here is that for a
ten times smaller step, the code needs ten times more time to finish the simulation, but the result is
several orders of magnitude more precise (four in this case, as we see in Fig.(1)).

The second test for the code was a second order ODE,

ẍ = −kx
x = sin(kt) + cos(kt)

with which we proceeded the same way as with the ODE1 shown above. Once we got the numerical
solution to overlap the analytical we got the error plots for different h.

In this other example, the analytical function is periodical, so the mean error should be indepen-
dent of time. However, we see in Fig.(2) that it increases with time. This comes from the fact that
in numerical analysis the error is cumulative, so for long simulated time examples we’ll see not very
precise results for the last points if we don’t set a h small enough.

7

Figure 1: Error functions of the ODE1 trial for different integration steps, from h = 1 s to h = 10−4

s each step ten times smaller. The curves for h < 0.1 s are too small to be seen in the shown graph.
h = 1 s is plotted in green and h = 0.1 s in black.

We’ve seen that the error we get for h = 0.1 s is already quite small, at least for the first minutes
of simulated time. When we take h even smaller the error becomes practically negligible.
We’ve also seen that the error is cumulative, so simulations with long simulated time will have big
errors at the end of them if we are not cautious of taking a small enough h.

2.3 The Two Body Problem

The Two-body problem consists in solving the positions of two free bodies attracting each other with
their respective gravitational force.
This problem meant a big approach to the real topic we were after. In this case the ODE to be solved
was the one for the acceleration for each body due to the gravitational attraction to each other.
Because we had two bodies, we needed two ODE2:

ẍ1 = G
m2r

|r|3

ẍ2 = G
m1r

|r|3

where G is the gravitational constant, m1 and m2 are the masses of the bodies and r the distance
between each other.

The way we implemented these ODEs to Matlab, was in the Cartesian coordinate system. It
might appear better to introduce them with a polar coordinate system, but it was conceptually easier
to program it in the Cartesian system and we didn’t want to program a very optimized and difficult
code, but just a simple tool with which we could study afterwards some examples of the Three-body
problem.
The main difficulty on the implementation was the tedious work of writing two equations for each

8

Figure 2: Error functions of the ODE2 trial for different h, from h = 1 s to h = 10−4 s. The curves
for h < 0.1 are too small to be seen in the shown graph. h = 1 s is plotted in green and h = 0.1 s in
black.

body (because it’s an ODE2) and coordinate four times (one for each integral part). This resulted
into thirty two different equations on the program code.
Because we didn’t need every step value for any of these magnitudes, we only saved one over a hun-
dred or a thousand steps in order to plot later the orbit paths or the distances between the bodies.
This way, a lot of simulation time was saved, because Matlab doesn’t like to work with too large
vectors.

In order to have a point of reference with a daily known case, we used the masses and distances
of the Earth-Moon system. In this case we compared our results with the expected movement of the
Moon, approximating the Moon orbit around the Earth as a circular planar orbit, and letting both
bodies free. With this new code we made two tests focused in the problems we might had when we
expanded it to the three-body case. In the first place we checked which h was needed so that the
Moon circular orbits closed without much error. Afterwards we put the Moon in elliptical orbits and
checked for the error of the closed orbit depending on the initial velocity angle.

2.3.1 Circular orbits

While going through the mathematical problem we may got that the orbit the body goes over is
closed, but when studying the problem from a numerical perspective it’s fair to find some error.
Depending on the ratio time-quality we’ll allow more or less error in the simulation.
Making the Moon go around the Earth in circular orbits was quite easy using the uniform circular
motion. We just had to give the Moon the following velocity:

v =

√
G
M⊕
d

9

where G is the Gravitational constant, M⊕ is the mass of the Earth and d is the distance between
the two bodies.

In order to study the error on the circular orbit, we had to pay attention on the position of the
Moon on the moment before it crossed the horizontal position after the first loop (x1, y1) and the
moment when it had already crossed it (x2, y2). We can approximate the error on the loop δx as
the distance to the origin from the point of the line that links (x1, y1) and (x2, y2) that crosses the
horizontal. This is better explained with the scheme of Fig.(3). It’s easy, once we’ve got (x1, y1) and
(x2, y2), to derive that,

n =
y1x2 − y2x1
x2 − x1

m =
y1 − n
x1

and

δx =
−n
m

where m and n are the coefficients of the linear function that includes the points (x1, y1) and (x2, y2).

Figure 3: Scheme of the error δx taken in the two bodies circular orbits example. (x0, y0) is the initial
point of the orbit, (x1, y1) is the point before the body crosses the y = 0 line, and (x2, y2) is the point
one step after (x1, y1).

h = 10−2days h = 10−3days h = 10−4days h = 10−5days h = 10−6days
δx / m -250.78 -1.014 -0.0122 −3.31× 10−4 −1.226× 10−4

Table 1: Errors for the closed orbits in the two bodies circular orbits example.

As we see in the values from Table (1), and as we may expect from the results shown in the previ-
ous sections, we get a more precise answer for a smaller integration step. Once more we see that a ten
times smaller step sometimes result in a more than ten times more precise result. It’s important not
to forget that a ten times smaller step simulation is ten times slower, so we couldn’t take the smallest
h to get the most precise answer, but a reasonable h so we get a reasonable relation of precision and
running time. For the two body problem we used h = 10−4 days, which costs around four seconds of
waiting for thirty days of simulated time. It’s important to remark that δx = 10−2 m isn’t really a big
error if we take into account the fact that the orbits we were working with were around 6×106 m wide.

The integration step from now on has been taken in day units just because it’s more convenient
to write down in the code that the Moon body is going to be orbiting for thirty times the integration

10

step in order to make one loop than multiplying it every time by sixty squared times twenty four.
At the end, when taking h ≈ 10−4 days we are taking around ten seconds each step. It’s not that
important to take one unit or other, but to know with which unit you are working with and how
much error are you taking at the end of the simulation.

As a conclusion from this exercise, we got that h = 10−4 days is a good enough integration step
for our precision-running time ratio, and it’s the one we took for the following simulations.

2.3.2 Elliptical orbits

Once we finished studying the solutions of the code for the circular case, we wanted to make an
automatic sweep code, so we could avoid as much manual analysis as possible in future simulations.
For this, we prepared the moon with the same initial conditions as for the circular case, and then
changed the initial velocity angle, from 90o to different angles. We wanted it to stop after one loop,
so we imposed the following condition:

if y2(i) < 0 && y2(i+ 1) > 0 : stop

so the second body (the Moon) stopped once it had crossed the horizontal line upwards.

The result of the simulation for different initial angles is presented in Fig.(4), with the path of each
of the orbits. As we expected, the bigger the angle with respect to the vertical, the more elliptical
the orbit is.

Figure 4: Orbits of the Moon around the Earth for different initial angles.

We’ve avoid to shoot the Moon at 0o and 180o, just because at those angles the Moon crashes
with the Earth and no orbit is described.

Next thing we did was to check for the error on the closed orbits for the different angles. For that
we draw the difference δx between the end of each loop and the initial position of the body for the
first three loops.

As we see in Fig.(5), and as we saw with the ODE2 in the previous section, the error is cumulative.
We get another learning, for close enough orbits (we see it for 15o) the error is bigger. This gives
us a clue about how well works the program when two of the bodies are too close. When searching
for the minimum distance reached between the Moon and the Earth when the initial angle is 15o, we
got Rmin = 8.705× 106 m, so in further analysis will have into account the fact that for around this

11

Figure 5: δx for the first three loops of the Moon around the Earth for different initial angles, from
15o to 165o, in 15o steps. Black points are from the first loop, blue ones for the second and the reds
for the third. It’s been used h = 10−4 for this simulation.

distance or less, the program starts to be quite less precise.

The reason the program doesn’t work so well when the bodies are too close comes from the fact
that the integrals are proportional to 1

d2 , so when d is small the integral in each step gets too big. This
could be solved with an adaptive step program that we haven’t implemented, so we could decrease h
when the bodies came too close to each other.

We should point out that this distance between the bodies we’ve got as problematic, while seeming
quite big when thinking that the bodies are just points, it’s actually quite near the Earth radius value
(R⊕ ≈ 6×106 m). So the Moon represented in our program starts to move not as perfect as it should
when it’s almost touching the surface of the Earth. It’s quite difficult to make ourselves a good idea
of the magnitudes we are dealing with, but this far, the results we’ve presented for the code, while
not being really optimized, are good enough for our purpose.

We can say that the program works right for the Two-body problem, which is quite nearer on
complexity to the Three-body problem.

2.3.3 The Rocket Problem

In order to make another automatic program, we searched for the initial speed a rocket would need
to reach the Moon from the surface of the Earth. The two bodies represented were the Earth, set in
the centre of the system, and the rocket, which started in the Earth surface distance to the centre,
as we see in the scheme from Fig.(6). The break condition for the program this time was reaching
the Earth-Moon distance with the second body, and the program changed the rocket initial velocity
and started over once the rocket started to fall down the Earth.

We made a sweep on the velocities of the rocket until it could get to the desired height. In order
to get to RM = 3.85 × 108 m we knew the rocket needed a smaller speed than its escape velocity,
with which it would never fall into the Earth again.
It’s trivial to derive that the escape velocity for the rocket is:

ve =

√
2GMT

RT
= 3.056× 109 m/day (3)

so the velocity we were searching for was smaller than this result.

12

Figure 6: Scheme of the rocket problem. RE is the Earth radius, RM is the distance between the
Earth and the Moon, and v0 is the initial speed of the rocket.

The theoretical distance we use to compare with the simulation comes from the conservation of
the energy, so the energy when the rocket is in the Earth’s surface must be the same as the energy
when the rocket is somewhere along the way to the Moon height and just starts falling down.

E1 =
−Gmimii

y0
+
miiv

2
0

2

=
−Gmimii

y

= E2

where G is the gravitational constant, mi is the Earth’s mass, mii is the rocket mass, v0 is the
initial velocity of the rocket, y0 is the Earth radius (where the rocket starts from) and y is the position
of the rocket when it is starting to fall. Solving this for y we get:

y =
Gmi

Gmi

y0
− v20

2

(4)

so the error δh we plot in Fig.(7) is just y minus the integrated height in the simulation.

As we see in Fig.(7), the error pattern we get is quite fluctuating and decreases until it suddenly
grows up at the end. The simulation finishes with the initial velocity with which the rocket reaches
the Moon. The velocity we got is vf = 9.7× 108 m/day, which is smaller than the escape velocity, as
we expected.
The figure starts with a big error probably because the rocket starts around the conflict area where
we may say the two bodies are too close, so the program isn’t as precise as we may like.
As the rocket gets away from the Earth the error decreases, because the cumulative error is less
important than the one that appears when the bodies are too close to each other. At the end of the
graph the error suddenly grows up probably because the initial velocity of the rocket is each loop
closer to the escape velocity, and, taking a look to Eq.(3), when that happens Eq.(4) gets closer to
infinity. This is similar to the case when the two bodies are nearby, when the program start to get
numbers too big it starts getting bigger errors.
The last important point from Fig.(7) are the fluctuations. They probably come from the truncation
Matlab does. For some speed the value it gets after the truncation is very similar to the theoretical
value, but for the very next speed the truncation makes the final result to have quite a discrepancy
with respect to the theoretical one.

13

Figure 7: Difference between theory and simulation δh for the height of a rocket shot from the Earth’s
surface with certain velocity v. For this simulation it’s been used h = 10−4.

We also simulated the rocket problem with h = 10−5 days and we got that the fluctuations got a
hundred times smaller, so apparently the integration step has a stronger influence over the program
than the truncations, and because we couldn’t control these last ones in an easy way, we continued
using h as an indicator of the precision on the simulations.

With the rocket problem we got a code which was quite independent (it made long sweeps changing
the initial conditions of the system on its own) and with apparently good results.

14

3 The Three Body Problem and the Sun-Earth-Moon system

Once we got to this point we already knew we had a program that was able to simulate a two-body
system with quite enough precision - when the bodies weren’t too close - during around one year
of simulated time. We were finally ready to take the step of extending the code to the third body.
However, before we got to the Satellite-Earth-Moon system, we got into a much better known system,
the Sun-Earth-Moon system, which allowed us to interpret better the results of the simulations.

Before we get into the code checks, it’s important to specify the way the three bodies started to
move from in the program. Taking into account that we were going to simulate planar orbits, we set
the Sun in the centre of coordinates, located the Earth at the Sun-Earth distance horizontally from
the Sun ((xEarth, yEarth) = (dS−E ,0)) and the Moon at the Earth-Moon distance from the Earth (
(xMoon, yMoon) = (dS−E + dE−M ,0)). From there, the three bodies were ”shot” vertically (at 90o)
with their initial velocity, where the initial velocity of the Sun was such that the centre of mass was

at rest, v� = m2v⊕+m3(v⊕+vL)
m1

. The Moon’s and Earth’s velocity were chosen so they made circular
orbits when they were in couples (Sun-Earth and Earth-Moon). This configuration will be called the
”Moon-eclipse formation” from now on, and it’s represented in Fig.(8).

Figure 8: Moon eclipse formation scheme. v�, v⊕ and vL are the initial velocities for the Sun, the
Earth and the Moon, respectively, and m1,m2 and m3 are their masses, in the same order.

The first thing we realized was that the orbit of the Earth around the Sun without Moon (mMoon =
0 kg), starting with the initial conditions we got from the bibliography, didn’t finish after three
hundred and sixty five days, it needed four more days to finish it. In order to fix it we tried using
a smaller integration step, as we see in Fig.(9), but it didn’t solve it, which took us to think that it
wasn’t a cumulative error due to a large simulation time. The problem were the initial conditions.
Searching for the initial conditions that made the Earth finish the orbit after one year, we got that
the Earth initial velocity had to be very precise, and we used v⊕ = 2.9784× 104 m/s.
While with no Moon the Earth’s orbit finished at 365 days and 12 minutes, the orbit with the three
bodies finished at 365 days and 12 hours. Changing the velocity δv = 1 m/s meant a variation of
δT = 1 hour in the period of the Earth. Actually, because the bodies weren’t constraint to make
circular orbits, in this case, making the speed higher didn’t make the period smaller, because the
orbit got more elliptical. This meant a higher speed resulted in a higher period.
The reason because the Earth’s period decreased when including the Moon into the system is related
to the angular momentum. When there’s no Moon, the total angular momentum, considering the
Sun as fixed, and the system moving in circular motion, for simplicity, is as follows:

L1 = m⊕r⊕v⊕

where m⊕ is the mass of the Earth, r⊕ is the distance from the Earth to the Sun and v⊕ is the Earth’s
tangent velocity. When including the Moon we have to add another term,

L2 = m⊕r⊕v
′
⊕ +mMrMvM

where mM is the Moon’s mass, rM is the distance from the Moon to the Sun and vM is the Moon’s
tangent velocity. The Earth’s mass and distance to the Sun don’t change, but its speed does, so,
because of the angular momentum conservation, L1 = L2, the new Earth’s velocity becomes,

v′⊕ = v⊕ −
mM

m⊕

rM
r⊕

vM (5)

15

so the new Earth’s velocity is always smaller than the previous one, which means a delay in the
Earth’s period when considering a circular motion.
So, a small variation in these initial conditions meant a big difference in the Earth’s period, and
without a very careful look, we could even get an a priori surprising result. This first conclusion
made us be much more careful with the initial conditions we set before starting any simulations.

Figure 9: Orbit of the Earth around the Sun. In the left figure the step used is h = 10−4 days and
in the right figure, h = 10−5 days. However, in both orbits the Earth finishes in the very same spot.

Looking into the eccentricity of the orbits of the Earth orbit around the Sun and the Moon orbit
around the Earth, we got that the orbits described in our program were more circular than the
ones of the real system. The data from the bibliography are Rmax⊕ = 1.52 × 1012 m for the Earth
apogee and Rmin⊕ = 1.47 × 1012 m for its perigee. In the Moon case, RmaxM

= 4.06 × 108 m and
RmaxM

= 3.56× 108 m. Using the following definition for eccentricity,

ε =

√
1−

(Rmin
Rmax

)2
we got the theoretical values, ε⊕ = 0.2543 and εM = 0.4808. With our simulations, however, using
the velocity we talked about before, we get ε⊕ = 0.0360 when there’s no Moon, and ε⊕ = 0.0478 and
εM = 0.2776 with the Sun-Earth-Moon system complete.
This more circular system we’ve got might be caused because we have search for the initial conditions,
and we’ve set them in the Moon eclipse formation, as if the bodies were going to move circularly.
The higher eccentricity when including the Moon in the system comes from the perturbation that
the Moon causes in the Earth’s orbit.

Although we got really circular orbits, the Moon made twelve and a half loops around the Earth in
one year - remember that the Moon period is almost a month - which is very close to the real system
behaviour, where it does almost thirteen and a half loops. As we see in Fig.(10), the Earth without
Moon has a smooth path around the Sun, but when the Moon is included we see some perturbations
on its path. Those perturbations and the path of the Moon reflects the loops of the Moon around
the Earth.

As we see in Fig.(11), we simulated the three body motion for over two hundred years of simu-
lated time, and we didn’t find any variation trend in their paths. Nor the Earth or the Moon changed
drastically their distance from one another and the Sun, as we expected, because the real system
appears to have been working for at least that amount of time.
In the figure, while the Moon-Earth distance is much smaller than the Moon-Sun or the Earth-Sun

16

Figure 10: Earth distance to Sun without Moon (blue), with Moon (red) and Moon distance to Sun
(green) along one year time.

distances, it appears bigger because of the normalization and the fact that the eccentricity of the
Moon orbit around the Earth is much bigger than the eccentricity of its path (or the Earth path,
which is very similar) around the Sun, as we saw before.
The peaks we see for the Earth-Moon distance that repeats every eleven years is a period we haven’t
pay attention to, due to the fact that there doesn’t seem to be any similar correspondence with the
real Sun-Earth-Moon system, but it’s just a result of the approximations we have made. It may be
related to some sort of resonance effect with the Sun-Earth or Sun-Moon orbits.

Figure 11: Moon-Sun (black), Earth-Sun (red) and Moon-Earth (yellow) normalized distances to
their own mean value. After two hundred years of inside simulation time, no perturbation on the
distance trend of the bodies is found.

In order to have a deeper look on Moon’s stability, we tried, with the same velocity and distance

17

to the Earth and the Sun, to make it start from a different point than the one presented in the
Moon eclipse formation, as we see in Fig.(12). As expected, the Moon orbit changed its path, even
disengaging from the Earth’s orbit. In this case, it seems the resultant orbit is stable, but usually,
taking initial conditions a bit distorted, result in a Moon that even gets away from an orbit around
the Sun.
It’s important to remark that, in the three body problem, although we might have got a simulation
which represents quite good the conditions of the real Sun-Earth-Moon system, within the limits of
our approximations, we shouldn’t forget that a little change in the initial conditions we took for it,
makes the whole system to finish in a very difficult to predict result.

Figure 12: Moon (red) and Earth (blue) orbits around the Sun. The Moon didn’t start from the
Moon-eclipse formation, but from the same distance as the Earth from the Sun.

So far, the program worked well simulating the three body problem with the Sun-Earth-Moon
system, always within the range of our approximations. However, in order to make the problem a bit
simpler and get results a bit easier to interpret, we decided to fix the most massive body, the Sun in
this case. This way, the code got simpler, because we removed an equation, and it got faster.
The mass of the Sun is so big compared with those of the Earth and the Moon that the effect over it
from them is almost negligible. This is the reason because this approximation is quite fair, although
the results of the program change a bit, getting simpler to understand because there’s one less body
moving around.

We started by studying the perturbations that the Moon caused to the Earth again (now with
the Sun fixed) in order to get a comparison with the case when the Sun is free. Then we made a
comparison between the Earth and Sun forces over the Moon and finally we looked for the angle of
disengagement for the Moon orbit around the Earth in the Moon-eclipse formation.

As we’ve seen in Fig.(10) the Moon described twelve and a half loops around the Earth and the
Earth orbit got a bit distorted due to the Moon effect. In Fig.(13) we see the same effect, with
the difference that when there’s no Moon, because the Sun doesn’t move, the Earth describes a per-
fect circle around it when we use the initial conditions for the uniform circular motion, as we expected.

Another thing we were curious about was the influence of the most massive bodies on the third

18

Figure 13: Comparison of the effect of the Moon on the distance between Earth and Sun. The blue
line is the distance between Earth and Sun without Moon (Moon mass equals zero), and the red
curve is the distance when there’s Moon. The green curve is the distance between Moon and Sun,
that explains the perturbations on the Earth orbit and reflects the twelve months of the year with its
peaks (the Moon period around the Earth is almost a month).

one. As we could see in the orbit trace of the Moon when drawing the three bodies, it didn’t seem to
make orbits around the Earth, but around the Sun, as we see in Fig.(14).

Figure 14: Moon orbit (green) with the same orbit exaggerated (in black) so we can see the ’zig-zag’
that the Moon makes around the Earth (blue path under the green path of the Moon). In the centre
there’s the fixed Sun (in red).

This isn’t a revolutionary concept, but comes a bit against the most daily intuition. It’s true that
if we observe the Moon from the Earth perspective, it moves around it. But when we come to analyse
which body the Moon motion was more influenced by, we got that both the Sun and the Earth had a
similar contribution, but the one of the Sun was stronger (twice as big actually), as we see in Fig. (15).

19

Figure 15: Ratio of forces of the Earth and Sun against the Moon. The Sun attracts the Moon twice
as much as the Earth does.

That’s because from the Sun perspective, the Moon doesn’t seem to orbit the Earth, but moves
around it with some perturbations due to the proximity of the Earth. This is of course a frame of
reference problem, because as we’ve seen in Fig.(9) from the Earth’s perspective the Moon makes
circles around it. Because the Moon is almost in a constant gravitatory field (its relative difference
in distance to the Sun and Earth is quite small) from its own point of view the Earth and the Sun
make almost perfect circles around itself, as we see in Fig.(16).

In order to explain the peaks on Fig.(15) we have to take a look on the distance graph comparison
on Fig.(17), just because,

FSun
F⊕

∝
d2⊕
d2Sun

(6)

Comparing Fig.(15) and Fig.(17), we see the pronounced lower peaks correspond when the Moon
get a minimum in both the distances to the Earth and the Sun. The other not so pronounced mini-
mums in Fig.(15) come to be when a maximum in the Moon-Earth distance coincides with a minimum
from the Moon-Sun distance.

When we studied the Moon stability before, when the Sun was free, we saw it was quite easy to
change its path when changing its initial conditions. Once we fixed the Sun in the centre, knowing
we could get a not so chaotic result, we tried to figured out how much do we have to change this
conditions so the Moon didn’t orbit the Earth any more.

As we see in Fig.(18), the more we get the Moon away from the vertical at the beginning of its
path, the less it orbits regularly around the Earth. It starts changing its period, as we see in green.
Then it makes wider orbits, represented in magenta, until we get to 1.2o, the red curve, when it gets
lost around the Sun and gets away from the Earth’s path.

As an example of a case where the Moon could actually change its course 1.2o, we’ve proposed a
meteorite collision, as schemed in Fig.(19).
When making an easy analysis of the momentum in a perfect inelastic collision, we get that the mass
and velocity of a meteorite that may crash into the Moon to make it change its path 1.2o has to be
mmoon

mmeteorite
= 1.5 × 103 and vmeteorite

vmoon
= 31.8 (the angle of the meteorite with respect to the vertical

20

Figure 16: Earth (blue) and Sun (red) orbits from the Moon’s frame of reference. Sun orbit has been
plotted fifty times smaller so it can be properly compared with the Earth’s orbit.

Figure 17: Comparison of the distance between Earth and Moon (blue) and Sun and Moon (red).
Both distance curves have been normalized to their own mean, so they can be compared. The red
and blue peaks phase describes quite well the peaks progression on Fig.(15).

was taken as θ = (90− 1.2)o). So this result means that a quite fast rock a thousand times ”smaller”
than the Moon, would be enough to take the Moon out of its path around the Earth.

We shouldn’t forget that this is just a calculation over a rough approximation, but that gives us

21

Figure 18: Distance between the Sun and the Earth (on blue) and the Sun and the Moon (on different
colours) for different initial angles for the Moon velocity. The green curves are for angles between
90o and 89.4o, the magenta for angles between 89.4o and 88.9o, and the red curve is for an angle of
88.8o.

Figure 19: Scheme for the exercise of searching velocity and mass of a meteorite that would change
the Moon path for 1.2o.

a very well idea of the complexity on the motion of the three-body problem.

22

4 The three body problem and the Earth-Satellite-Moon sys-
tem

After all the tests on the program since we started by implementing the Runge-Kutta algorithm, we
were quite sure that it worked properly for the approximation we chose and while the bodies didn’t get
too close to each other. The last thing we wanted to pay attention to was the Satellite-Earth-Moon
system.
While when studying the Sun-Earth-Moon system there wasn’t much realism in changing the initial
conditions for each body from the real case perspective, when working with a body that represents
an artificial satellite it has much more sense to change its conditions, depending on which orbit we
want it to loop around. We focused on the influence of the Moon on the satellite, and how its path
changes when it gets too close to our natural satellite.
We kept the most massive body fixed approximation. In this case, it’s not such a good approxima-
tion, keeping the Earth motionless, as it was with the Sun. However, because the satellite mass was
negligible in this case, our system was equivalent to the Earth-Moon centre of mass system, working
with the reduced masses.

Before we started sweeping the space between the Earth and the Moon with the satellite, we
wanted to take a look to the geostationary case, so we made sure we had enough control over the
system, and we could claim we were able to predict what happened in the easiest case.

Figure 20: Distance between the satellite and the Earth along three months. The red line is the
distance from the Satellite to the Earth when there’s no Moon, while the blue line is the distance
between satellite and Earth when there’s Moon.

The configuration chosen for the bodies to start from for the examples on the Earth-Satellite-
Moon system was the Moon eclipse formation, presented in Fig.(8), where the previous Sun, Earth
and Moon, were now represented by the Earth, the satellite and the Moon, respectively. As we see
in Fig.(20), the satellite, while orbiting the Earth in the geostationary orbit, was perturbed by the
Moon, so it didn’t make perfect circles around the Earth, and had a twenty eight days perturbation
period (coinciding with the Moon period around the Earth) that made it have a delay of two days
every thirty days.
This delay in the period of the satellite comes from the same reason we saw before for the Earth. As
we saw in Eq.(5), when introducing the third body in the system, the one looping around the massive
one gets delayed because of the conservation of the angular momentum.

23

In this case, the satellite needs an average of one hour and forty three minutes more than a day to
finish a loop. As we see in Fig.(20), this daily period changes depending on the Moon’s period. When
the Moon is in the middle of the period, the satellite needs some more time to finish its loop (its
distance to the Earth increases), while when the Moon finishes its period the satellite has a one day
period.
Taking a look into stability, we’ve simulated over ten years of inside simulation time. The satellite
remained in a stable orbit, but as we’ll see in later examples, we can’t guarantee the stability of the
satellite for a long period of time. However, because the Moon is far enough from it in this example,
it’s likely to remain stable in the geostationary orbit.

The next exercise was to search for the farthest point from the Earth were the Satellite was still
stable for around a month before the Moon perturbed enough its motion.

Figure 21: Distance between the satellite and the Earth for different orbits (blue) and the reference
orbit (red) if they were perfectly circular because there was no Moon. The first orbit plotted (and
marked with its (X,Y) values at the end) is the geostationary.

As we see in Fig.(21), the farthest from the Earth we shoot the satellite, the more inhomogeneous
the orbit is, until around R ≈ 2 × 108 meters, when the orbit gets chaotic. In Table (2) we can see
quantitatively the discrepancies on the orbit paths.

R0 × 107/m 4.22 7 10 13 16 19 22 25
δRmax

R0
× 105 5.38 12.23 23.11 37.12 60.19 90.95 243.82 341.72

Table 2: Normalized discrepancies of the orbits presented on Fig.(21). δRmax is the biggest discrep-
ancy between the blue and the red lines for each orbit.

As we’ve already mentioned, we can’t ensure the stability of any of these orbits, not even the
nearest to the Earth. We can just say they are stable for at least thirty days when the orbit is less
than R ≈ 2× 108 meters from the Earth.

The orbits starting from a distance over two hundred million meters away from the Earth, illus-
trate perfectly the main problem on the three-body problem, the unpredictability of the motion of
the bodies along time. We’ve chosen the example of the orbit starting at R0 = 3.25× 108 meters as
an example.

24

(a) In red, the moon path, while in blue, the
satellite path is presented.

(b) Distance to the Earth on time. In red
the Moon distance, while in blue, the satel-
lite distance.

Figure 22: Distance from the satellite and Moon to Earth starting the satellite from a distance of
R0 = 3.25× 108 meters.

As we see in Fig.(22), it seems the satellite has entered a bounded orbit somewhere around the
Moon. But, when exploring the orbit for some more time, as we can see in Fig.(23), the satellite sud-
denly drops into another orbit and starts looping around, between the Earth and the Moon without
a trivial order.

(a) In red, the moon path, while in blue, the
satellite path is presented.

(b) Distance to the Earth on time. In red
the Moon distance, while in blue, the satel-
lite distance.

Figure 23: Distance from the satellite and Moon to Earth starting the satellite from a distance of
R0 = 3.25× 108 meters.

Because it seemed that during the first seventy days the satellite orbited the Moon in some strange
way we plotted the distance from the satellite to the Moon, in order to see what would be like watch-
ing the satellite from the Moon.
As we see in Fig.(24b), the orbits around the Moon weren’t circular at all and the satellite actually
got really close to the Moon position. This may make us think that the orbit shape is highly influ-
enced by the program error, as we see in previous sections. However, for this simulation we’ve used
a h = 10−5 days (which is equivalent to h = 0.864 s), and making use of Table (1), although these
values were for the two body problem case, we can make ourselves an idea that the error gathered
step by step isn’t that important, in principle, as to change the whole orbit path.

Every time the satellite gets really close around the Moon in Fig.(24), we see in Fig.(22) that its
path suddenly changes, represented by a peak. During these peaks we suspected that something like
a transference in momentum between the Moon and the satellite shall happen. As we see in Fig.(25),

25

(a) Satellite path around the Moon. (b) Zoom from (a).

Figure 24: Distance from the satellite to the Moon starting the satellite from a distance of R0 =
3.25× 108 meters to the Earth.

corresponding with each peak from the seventy three first days, the satellite gets a boost in its speed.
This boost comes from the Moon, which, being much more massive than the satellite, transfers part
of its momentum to the satellite, when this one gets close enough to it.
Later in the simulation, the satellite disengages from the weird orbits around the Moon we see in
Fig.(24b) and starts to go around somewhere around the centre of masses of the whole system. The
peaks in the speed we see in this part of the simulation aren’t as pronounced as the ones from before,
and just come from the gravitational pull the satellite suffers from the centre of masses.

Figure 25: Distance between the satellite and the Earth for an initial orbit of R = 3.25 × 108 m
(green) and its corresponding speed in absolute value (blue) along time.

The example for the R = 3.25 × 108 m orbit, at least for the time we have plotted, described a
bounded orbit. However, most of the times we looked randomly for an orbit, we found that, after a
transference of momentum because the satellite got really close to the Moon, it just escaped away
from the system. Sometimes, the satellite just got enough energy from the Moon as to escape the firs
time it passed near it, as in Fig.(26), and other times it orbited some time around the system and
suddenly got away, as in Fig.(27).
From these other two examples we see that, apart from the unpredictability of the motion of the
satellite once it gets close enough to the Moon, we can also say its bound to the system is usually
uncertain in these cases.

26

Figure 26: Orbit path of the satellite beginning from R = 3.2×108 m (blue) and Moon’s path around
the Earth (red).

Figure 27: Orbit path of the satellite beginning from R = 3.29 × 108 m (blue) and Moon’s path
around the Earth (red).

From this last section about the three-body problem we get as conclusions that it seems that the
effect of the Moon on the satellite when they aren’t too close (the critical distance from the Earth
was around R ≈ 2 × 108 m) is small, apart from the delay that comes from the angular momentum
conservation. The program returns reasonable solutions for the geostationary orbit as well. Once the
satellite gets captured by the Moon, its motion gets chaotic, so it doesn’t seem viable to throw a free
satellite that near to the Moon.
The tool we have developed, using a small enough h to avoid too much error stack, in spite of its
simplicity, has resulted very useful in order to study these kind of problems.

27

5 Conclusions

It’s important to remark that we’ve develop a program to solve the three-body problem as an example.
The physics of the problem aren’t as important as the numerical approach we’ve used for its resolution.
We’ve got several conclusions, achievements and learnings through the development of the project,
which have already been commented in the previous sections and that will be gathered in this one.

1. We have implemented several codes in Matlab to solve ODE systems, using the fourth order
Runge Kutta algorithm, so we could study the three-body problem. We took daily known
examples to check the results we got. The codes were made in increasing complexity, starting
with the two-body problem of the Sun-Earth system. We continued working with the three-
body problem taking the Sun-Earth-Moon system and the Earth-Moon system with an artificial
satellite. We got reasonable results within the limits of our approximations. We can say the
implementation was successful, considering our results agreed with our expectations.

2. We have used two different approaches for the Sun-Earth-Moon system, letting the three bodies
free and fixing the Sun, achieving the following results:

2.1. We’ve done a fine-tuning to get the simulated system to behave in a similar way the real
system does, but getting the orbits more circular in order to simplify the interpretations
of the results.

2.2. The initial conditions we had to set when the three bodies were free were so fine that, for
example, changing the Earth’s speed δv⊕ = 1 m/s, made its period change δT⊕ = 1 hour.
When we set the initial conditions so the bodies had to move in circular motion, we got
that Earth and Moon disturbed each other. The Earth got an eccentricity of ε⊕ = 0.05
and the Moon εM = 0.28.

2.3. We’ve make an attempt to study the stability of the system, and, during two hundred
years, it hasn’t seem to have any trend to change.

2.4. We’ve study the Moon’s stability when making little perturbations in its orbit, while the
other conditions remained the same. We got that the Moon needs to change its path
δθ = 1.2o in order to disengage from the Earth’s orbit.

3. We have simulated an artificial satellite orbit around the Earth and the Moon, with the following
results:

3.1. Comparing the geostationary satellite with and without Moon, we got that, because of the
Moon influence, it had a delay of around two hours every day.

3.2. We made a study of the orbits for different distances to the Earth. We got that while the
satellite remains near the Earth (not further than R?? ≈ 2× 108 m), there are periodical
perturbations in the orbit with respect to the circular case, but they don’t seem to present
any trend to change its orbit.

3.3. When the satellite gets trapped by the Moon its motion gets chaotic. In this stage the
satellite usually gets so close to the Moon that the error stack starts to be a problem.
However, taking a small enough integration step, this error shouldn’t mean any problem.
When getting to close to the Moon, the satellite gets a boost in its speed due to momentum
transfer. If the energy transferred results enough, the satellite escape from the system.

3.4. Apart from the cases where the satellite and the Moon get too close to each other, where
we may need an adaptive integration step, the program works well and allows us to make
a detailed study of any case of the problem.

4. Taking everything into account, we’ve proved that we’ve developed a useful tool with reasonable
results to solve the problems we have dealt with. In order to use it in a scientific environment,
however, there are several things that must be improved:

4.1. When two bodies come too close together (R? ≈ 9 × 106), because of the nature of the
gravitational force (∝ 1

r2), the code stacks more error than usual for the rest of the simula-
tion. This effect can be minimized implementing an adaptive algorithm, so the integration
step decreases when the two bodies get too close.

28

4.2. The code would run faster if the number of equations got decreased by treating the problem
theoretically.

4.3. In order to make the code even faster, another computing program would be useful. It
could also be prepared to be sent to more powerful computers and minimize the simulation
time.

5. The study of this problem has been a very interesting topic. It also has been useful to refresh
some computing concepts and learn a whole new. I have had to refresh how to solve the second
order ordinary differential equations and some concepts from mechanics too. In addition, it has
been the first big program I have developed, and the step by step process has been a really
enriching experience.

29

6 References

Because of the simplicity with which we have wanted to develop this work, we haven’t needed more
bibliography than that for the implementation of the 4th order Runge Kutta and the initial conditions
of the bodies for the Sun-Earth-Moon system.

The information presented in Section (2.1) was taken from:
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta methods#The Runge.E2.80.93Kutta method
(30/06/2015)

The initial conditions for distance, mass and initial speed for the Sun, Earth and Moon with
respect to the Sun were taken from:

https://en.wikipedia.org/wiki/Sun (30/06/2015)
https://en.wikipedia.org/wiki/Earth (30/06/2015)
https://en.wikipedia.org/wiki/Moon (30/06/2015)

Matlab questions and problems were solved in:
http://es.mathworks.com/help/matlab/ (30/06/2015)

For further reference contact the author: diegomartnlpez@gmail.com

30

	Introduction
	Approaches and sense of the project

	Development and tests of the code
	4th order Runge Kutta
	First and Second Order Differential Equations
	The Two Body Problem
	Circular orbits
	Elliptical orbits
	The Rocket Problem

	The Three Body Problem and the Sun-Earth-Moon system
	The three body problem and the Earth-Satellite-Moon system
	Conclusions
	References

