
Universidad de Cantabria

Departamento de Ingeniería Informática y
Electrónica

Tesis Doctoral

Propiedades de Distancia y Simetría en
Grafos y su Aplicación a Redes de

Interconexión y Códigos

Presentada por Cristóbal Camarero Coterillo.

Dirigida por Carmen Martínez Fernández y Ramón Beivide
Palacio.

Santander, Marzo de 2015.

Agradecimientos
Agradezco a mis directores Carmen Martínez y Ramón Beivide por su apoyo durante todos
estos años. Esta tesis a sido financiada por la Universidad de Cantabria en 2011 desde
Junio hasta Noviembre y por el ministerio de España desde entonces hasta Mayo de 2015
bajo las ayudas para la formación del profesorado universitario, referencia AP2010-4900.

Resumen

La topología de una red de interconexión es el grafo de sus elementos encaminadores
o routers. Es decir, los vértices del grafo representan routers y las aristas representan
conexiones. Las topologías actualmente usadas en los grandes supercomputadores se
pueden dividir en dos familias: las que usan routers con grado moderado y las que usan
routers de alto grado. El objetivo de esta tesis es proponer topologías para ambas familias
que posean mejores propiedades que las actuales.

* * * * *

La familia de topologías de grado moderado consta de toros de entre 3 y 6 dimensiones.
Entre las mayores máquinas existentes se encuentran el Cray XK7, el K computer y
varios Blue Gene/Q. En esta tesis se proponen variantes de los toros que, con los mismos
recursos, alcanzan mayor rendimiento. Una forma de mejorar las distancias en el toro es la
introducción de twists en los enlaces periféricos; su generalización lleva a la definición de
lattice graphs, que abarcan realmente todos los grafos de Cayley sobre grupos Abelianos. En
el caso tridimensional, uno puede fijarse en las lattices cúbicas que se usan en cristalografía.
Al usarse éstas como base de un lattice graph se obtienen buenas propiedades, tales como
una pequeña distancia media y muchas simetrías. Dichos cristales pueden generalizarse a
cualquier dimensión; esto es importante, ya que existen máquinas cuya topología es un
toro de 6 dimensiones. Entre las propiedades de estos cristales destaca la simetría; se
comprueba que los lattice graphs simétricos tienen mejor rendimiento que los asimétricos.
En contraposición, existen bastantes implementaciones con lados de tamaño diferente, es
decir, asimétricos, que obtendrían grandes mejoras con la adopción de estas técnicas.

* * * * *

Dentro de la familia de topologías de routers de alto grado más usadas se encuentran
los fat trees, las redes de Clos y más recientemente, las dragonflies. En esta tesis nos
hemos centrado en está última. Las dragonflies se definen jerárquicamente como grupos
de routers que están fuertemente conectados dentro del grupo y entre el conjunto de todos
los grupos. En concreto, cada grupo forma un grafo completo de routers y la red total
es un grafo completo de grupos. Esta definición hace muy fácil su realización física en
armarios. Tienen unas propiedades de distancia bastante buenas, con lo que a pesar de
que se conocen familias con mejores distancias, su simplicidad de uso y su bajo coste las
hace muy atractivas. Una topología más clásica, que se ha usado en redes de interconexión,
es el grafo de Hamming. En esta memoria se explica cómo un grafo de Hamming puede
verse como una dragonfly con gran trunking global y como ciertas propiedades de los
grafos de Hamming pueden extenderse a otras dragonflies. En concreto, en el grafo de
Hamming es muy fácil obtener un encaminamiento libre de deadlock simplemente fijando
un orden entre las dimensiones. En dragonflies con cierto trunking global puede obtenerse
un encaminamiento similar.

* * * * *

El problema de buscar lattice graphs con propiedades de distancia óptimas resulta ser
equivalente al problema de encontrar buenos códigos sobre el espacio de Lee. Así que
algunos resultados se vuelven mucho más interesantes desde una perspectiva de teoría
de códigos. En esta tesis se construyen varios códigos cuasi-perfectos, que se pueden por
tanto ver como topologías casi óptimas. Aparece el problema de que existen sólo para
cardinales que sean cuadrados de primos, lo que dificulta un uso claro como redes de
interconexión. Existe una conjetura por Golomb y Welch que dice que no existen códigos
perfectos para radio mayor o igual que 2 y dimensión mayor o igual que 3 y los últimos
resultados para dimensiones grandes tienen ya más de 30 años. En esta tesis se construyen
códigos cuasi-perfectos para dimensiones arbitrariamente grandes que alcanzan la mitad
de la densidad de los posibles códigos perfectos.

University of Cantabria

Department of Computer Science and
Electronics

Doctoral Thesis

Distance and Symmetry Properties of
Graphs and their Application to

Interconnection Networks and Codes

Presented by Cristóbal Camarero Coterillo.

Advised by Carmen Martínez Fernández and Ramón Beivide
Palacio.

Santander, March 2015.

Abstract

The topology of a interconnection network is the graph of its routers. Thus, the vertices
of the graph model the routers and the edges model the network links. The topologies
that are being currently used in large supercomputers can be classified into two families:
the ones that use routers with moderate radix and the ones using high-radix routers.
The objective of this thesis is to define topologies for both families that exhibit better
properties than the actual ones.

* * * * *

The family of moderate radix topologies consists on tori with among 3 and 6 dimensions.
The largest machines based on tori are the Cray XK7, the K computer and a variety
of Blue Gene/Q systems. In this thesis several variants of tori are proposed that can
achieve greater performance with the same cost. An idea to improve torus’ distance is the
introduction of twists in the peripheral links; the generalization of this idea brings the
definition of lattice graphs, which actually contains all Cayley graphs over Abelian groups.
In the three-dimensional case, special attention can be devoted to the cubic lattices used
in crystallography. When these are used to define lattice graphs, good properties are
obtained, such as small average distance and many symmetries. In fact, they can be
generalized to any number of dimensions, which is necessary to match the 6 dimensions of
some actual machines. From the properties of these crystal lattice graphs the symmetry is
very notable; it is obtained that symmetric lattice graphs have better performance than
the asymmetric ones. This confronts with many implementations of tori with mixed-radix,
which would obtain great improvements by adopting these techniques.

* * * * *

Among the most used topologies for the family of high-radix routers there are the fat-trees,
the Clos networks, and more recently, the dragonfly networks. This thesis focuses on
dragonfly networks. Dragonflies are defined in a hierarchic way as groups of routers
with a strong connectivity inside the group and among the collection of all the groups.
More specifically, each group is a complete graph of routers and the whole network is a
complete graph of those groups. This definition makes very easy to implement them in
racks. Although there are known families of graphs with better distance properties, the
simplicity of use and low cost of the dragonflies makes them very attractive. A very classic
topology, which has been proposed for interconnection networks, is the Hamming graph.
In this thesis, it is explained how Hamming graphs can be seen as a dragonfly with large
global trunking and that some properties of the Hamming graphs can be extrapolated
to dragonflies. Specifically, the Hamming graph has an easy deadlock-free routing that
consists simply in fixing an order among the dimensions. In dragonflies with some global
trunking a similar routing is shown to be possible.

* * * * *

The problem of finding lattice graphs with optimal distance properties is actually equivalent
to the problem of finding good codes over the Lee space. This makes some results more
attractive when seen from the coding theory perspective. In this thesis several quasi-perfect
codes are built, which can then be seen as nearly optimal lattice graphs. They only exist
when the number of vertices is the squares of a prime, which is an obstacle to their
implementation. A conjecture was made by Golomb and Welch stating that there are not
perfect codes for radius greater or equal to 2 and dimension greater or equal to 3, and the
last results concerning large dimensions were made more than 30 years ago. In this thesis
quasi-perfect codes are built for arbitrarily large dimensions that reach half the density of
the density of potential perfect Lee codes.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 3
1.3 Related Work . 3
1.4 Results . 4
1.5 Organization . 5
1.6 Fundamentals on Graphs and Networks . 6

1.6.1 Cayley Graphs . 7
1.6.2 Symmetry . 8
1.6.3 Degree Diameter Problem . 9
1.6.4 Routing . 12

2 Lattice Graphs 15
2.1 Definition of Lattice Graphs . 16

2.1.1 Projections and Lifts of Lattice Graphs 18
2.2 Symmetric Lattice Graphs . 21

2.2.1 Cubic Crystal Lattice Graphs . 24
2.2.2 Cubic Crystal Lattice Graph Comparison 25
2.2.3 Symmetric Lifts of Cubic Crystal Graphs 28
2.2.4 Hybrid Graphs: Common Lift of Crystal Graphs 31

2.3 Routing in Lattice Graphs . 31
2.3.1 Distance Properties and Routing of 2D Lattice Graphs 33
2.3.2 A Hierarchical Routing for Lattice Graphs 37

2.4 Layout . 40
2.4.1 Layout and Partitioning: Cray Technology 41
2.4.2 Layout and Partitioning: IBM Technology 42

2.5 Conclusions . 47

3 Hamming and Dragonfly Networks 49
3.1 Introduction . 49
3.2 Related Work . 50
3.3 Hamming Graphs . 51
3.4 Dragonfly Topologies . 53

3.4.1 Global Link Arrangement and Network Symmetries 55
3.5 Dragonfly topologies with Global Trunking 58

3.5.1 Balancing Conditions for the Trunked Dragonfly 58
3.5.2 Arrangements for Dragonflies with Global Trunking 60

3.6 Deadlock-free Adaptive Routing in Dragonflies with Trunking 62

i

ii CONTENTS

3.6.1 Oblivious Minimal Deadlock-free Routing for t ≥ 2 63
3.6.2 Oblivious Minimal and Non-minimal Deadlock-free Routing for t ≥ 4 64

3.7 3-level Dragonflies . 65
3.8 Conclusions . 68

4 Almost Optimal Lattice Graphs and Related Lee Codes 69
4.1 The Relations Among Linear Lee Error Correcting Codes and Lattice Graphs 69
4.2 2D Quasi-Perfect Codes from Cayley Graphs over Integer Rings 72

4.2.1 Related Work . 73
4.2.2 Preliminary Results . 74
4.2.3 Quasi-Perfect Codes over Quotient Rings of Gaussian Integers . . . 80
4.2.4 Quasi-Perfect Codes over Eisenstein–Jacobi Integer Rings 83
4.2.5 2-Dimensional Quasi-Perfect Codes for the Lee Metric 85
4.2.6 Decoding Algorithms . 88
4.2.7 Conclusions . 93

4.3 Quasi-Perfect Lee Codes of Radius 2 and Arbitrarily Large Dimension . . . 93
4.3.1 Introduction . 93
4.3.2 Error Correction Capacity of Gp . 97
4.3.3 Diameter of Gp . 100
4.3.4 Discussion . 104

5 Some Experimental Evaluations 107
5.1 The FSIN simulator . 108
5.2 NPB MPI traces . 110
5.3 Evaluation of the Impact of Symmetry in the Performance of 2D Lattice

Networks . 112
5.3.1 A Simple Performance Model for Networks Based on Lattice Graphs 112
5.3.2 Empirical Performance Evaluation of the Symmetry of 2D Lattice

Networks . 113
5.4 Mapping Applications on Lattice Graphs 117

5.4.1 Task Mapping in Rectangular and Twisted Torus 119
5.4.2 Performance Evaluation . 127
5.4.3 Conclusions . 132

5.5 Evaluation of Lattice Graphs Compared to Topologies of Current Super-
computers . 132

5.6 Evaluation of the Symmetry in Dragonflies 135
5.7 Evaluation of the Deadlock-free Adaptive Routing for Dragonflies with

Global Trunking . 136

6 Conclusions 141
6.1 About the Results . 141
6.2 Ongoing and Future Work . 142
6.3 Publications During the Realization of this Thesis 142

A Classes of Symmetric Lattice Graphs of Degrees 4 and 6 145
A.1 Introduction . 145
A.2 Linear Automorphisms of Lattice Graphs and 4-cycles 146
A.3 Edge-Transitivity of Lattice Graphs by Linear Automorphisms 148
A.4 Characterization of Symmetric Lattice Graphs of Dimension 2 149

CONTENTS iii

A.4.1 Edge-Transitive Lattice Graphs of Dimension 2 by Nonlinear Auto-
morphisms . 151

A.5 Linearly Edge-Transitive Lattice Graphs of Dimension 3 154

Bibliography 159

iv CONTENTS

List of Figures

1.1 Head of Line Blocking among two buffers. 14

2.1 Two perpendicular cycles of length 8 in the RTT (4). 19
2.2 The cycle 〈e3〉 joining the disjoint copies of the projection. 19
2.3 The three Cubic Crystal Graphs: PC, FCC and BCC. 24
2.4 Maximum injected phits/cycle/node to each even network size N = | det(M)|. 27
2.5 l 3

√
N to each even network size N = | det(M)|. Quotients are preserved. . . 27

2.6 Tree showing lifts and projections of cubic crystal graphs up to dimension 6. 30
2.7 Representations with minimum norm, respectively for b < 0, c < 0 and

0 < b, c. 35
2.8 Routing example of a packet in a 2D lattice graph with minimum norm

labelling. 36
2.9 Routing in a 2D lattice graph with minimum norm labelling. 37
2.10 Cray-like physical layout of PC(8)�BCC(4). 43
2.11 Connecting a midplane to itself and to others. 43
2.12 Split-redirection cables in BG/L. 43
2.13 The 4 partitions available in the BG/Q in every dimension. 44
2.14 Building a RTT of two midplanes. 45
2.15 Building a RTT of eight midplanes. 45
2.16 Physical layout and partitioning example. 46

3.1 Hamming graph K4�K4 with vertices arranged in rows and columns. . . . 52
3.2 Two layouts of the same dragonfly topology which is a subgraph of K5�K11,

with ∆2 = 2, with nodes organized in rows and columns (left, each row
corresponds to a different group) or groups (right). Global links leaving
group 0 are in bold. 55

3.3 Three arrangements for a = 4, b = 9,∆2 = 2 with nodes organized in groups. 56
3.4 Hamming graph K4�K4 with nodes organized in groups. 59
3.5 Dragonfly networks with extended palmtree arrangement; a=4 routers per

group and b groups, according to Table 3.1. 61
3.6 Palmtree arrangement for t = a = 4; vertices organized in rows and columns. 61
3.7 Coloring of routers with 0 or 1 and the local links with +0 or +1. The cyclic

dependency presented would be avoided using the color-ordering rules, since
at least one of the messages must follow the l+1 local channels. 63

3.8 A precedence of links using t = 4 which allows for routes lgl and lgllgl.
Allowed paths flow from left to right, and parallel routes represent different
alternatives, one of which is chosen depending on the labels of the source
and destination routers. 65

v

vi LIST OF FIGURES

3.9 Classification of 3-level networks. Nodes correspond to extreme cases. Solid
lines correspond to changes in one of the trunking levels. Dotted arrows
represent the increase from two to three dimensions, where a trunking level
for the new dimension must be chosen. 66

3.10 Scalability of different network configurations. 68

4.1 A 2-perfect code over Z2
13 and its associated lattice graph. 71

4.2 Signal constellations obtained as Z[i]3+4i and Z[ω]3+4ω 76
4.3 The graphs G3+4i and EJ3+4ω . 77
4.4 Geometrically uniform code generated by 3 + 10i over G16+17i 79
4.5 The 3 tiles of the 3-quasi-perfect codes over Z[i]. 81
4.6 3-quasi-perfect codes generated by 2 + 5i over G−8+9i and G−9+21i. 82
4.7 A non geometrically uniform quasi-perfect code over Z[i]23 82
4.8 The 7 tiles of the 3-quasi-perfect codes over Z[ω]. 84
4.9 Group quasi-perfect code C = 〈1 + 2ω〉 over G8+8ω. 85
4.10 A quasi-perfect code over Z29[i] being a group but not an ideal 86
4.11 A quasi-perfect code over Z29[i] being an ideal 87
4.12 A 2-quasi-perfect code over Z14+9ω[ω] . 92
4.13 Cases in which Golomb–Welch conjecture is proved. 95

5.1 Local communications in LU, CG and BT. 111
5.2 Local communication in MG. 111
5.3 Maximum load for values of 1/k̄max . 114
5.4 Average distance and link utilization of 2D lattice networks of 360 nodes. . 114
5.5 Throughput for some the symmetric 2D lattice networks of 360 nodes . . . 115
5.6 Throughput from rectangular torus . 115
5.7 Data partitioning and task mapping. 117
5.8 RT(4) and RTT(4) . 118
5.9 Identity and diagonal-shift mapping functions on RT(4). 119
5.10 Concentration functions f vc=2, fhc=2 and f tc=2 on a 8× 8 mesh. 120
5.11 Maximum throughput and latency for logical torus mapped on RT(4) and

RTT(4) . 124
5.12 Maximum throughput and latency for logical torus mapped on RT(4) and

RTT(4) with concentration c=2. 127
5.13 Simulation results for latency and maximum throughput for logical torus

mapped on RT(4) and RTT(4). 128
5.14 Simulation of base latency and maximum throughput for logical torus

mapped on RT(4) and RTT(4) with concentration c=2. 128
5.15 Network load for 64 tasks mapped onto a RT(4) with c = 2 130
5.16 Execution time for 32 processors mapped onto a RT(4) or RTT(4) with c = 1130
5.17 Execution time for 64 processes mapped onto a RT(4) or RTT(4) with c = 2131
5.18 Execution time for 128 processes mapped onto a RT(4) or RTT(4) with

concentration c = 4 . 131
5.19 Throughput peak in T (16, 8, 8, 8) and 4D-FCC(8) under several synthetic

traffics. 133
5.20 Throughput peak in T (8, 8, 8, 4) and 4D-BCC(4) under several synthetic

traffics. 133
5.21 Packet delays in T(16,8,8,8) and 4D-FCC(8) under several synthetic traffics.134
5.22 Packet delays in T(8,8,8,4) and 4D-BCC(4) under several synthetic traffics. 134

LIST OF FIGURES vii

5.23 The null effect of symmetry on dragonflies of 9 groups. 135
5.24 The null effect of symmetry on dragonflies of 73 groups. 135
5.25 Throughput and average latency for uniform and ADV+1 traffic. 137
5.26 Throughput and average latency for uniform and ADV+1 traffics varying

the number of virtual channels . 138

A.1 Linear automorphisms of lattice graphs of dimension 2. 150
A.2 A nonlinear automorphism in ((2, 0)t, (−1, 3)t) 153
A.3 A nonlinear automorphism of the square torus of side 4. 153

viii LIST OF FIGURES

List of Tables

2.1 Distance properties of cubic crystal lattice graphs. 27
2.2 Distance properties of several lattice graphs. 32

3.1 Examples of dimensioning the number of groups b of a network with a = 4
routers per group, for different levels of trunking t as in Figure 3.5. Networks
with less groups (middle column) require more trunking to be balanced. . . 60

3.2 Characteristics of the extreme cases (respect to trunking) of 2D and 3D
balanced dragonflies. a, b and c routers per dimension. ∆0 compute nodes
per router. Routers with R ports (radix). Number of compute nodes
approximate. 67

4.1 Distance distribution of G3+10i. 79
4.2 Some 3-quasi-perfect Lee codes over Znp . 106

5.1 Topology distance properties of RT and RTT [CMV+10]. 119
5.2 Simulation parameters used in experiments about mapping of applications. 129
5.3 Simulation parameters used in experiments in the evaluation of lattice graphs.133
5.4 Simulation parameters used in the evaluation of the routing in dragonfly

networks. 136
5.5 Parameters of each routing mechanism. 137

ix

x LIST OF TABLES

Chapter 1

Introduction

The purpose of this introductory chapter is to establish the context of this thesis, to outline
the results it contains and to introduce basic concepts to be used along this thesis.

For that, Section 1.1 tries to motivate the study by showing the importance of the
topology of the interconnection networks. Then, Section 1.2 establishes some important
problems that this thesis has tried to solve. In Section 1.3 a collection of works that are
related to these problems are considered. Later, Section 1.4 makes a summary of the
results. Afterwards, Section 1.5 outlines the contents of each chapter. Finally, Section 1.6
introduces the notation and basic theory that is used along the thesis.

1.1 Motivation
Since the introduction of packet switching by P. Baran [Bar64], interconnection networks
have played an increasingly important role in Computer Science and Engineering. Computer
networks were initially used for defense applications in which reliability and availability
were fundamental issues. Notwithstanding, interconnection networks quickly became
popular on the fields of distributed systems and High-Performance Computing (HPC).
Nowadays, most computer systems exploit the concept of parallelism and consequently,
networks have become strategic and pervasive.

A look to the interconnection networks of top current supercomputers shows a di-
chotomy: in one group there are the Cray XK7, the K computer and several Blue Gene/Q,
whose topologies are tori between 3 and 6 dimensions—they are topologies with moderate
degree; the other group contains machines as Tianhe-2, the Cray XC30 (a.k.a. CASCADE)
and Stampede, using high-radix routers. The second group is classically composed of Clos
networks1 (e.g., Tianhe-2 [LPW+15] and Stampede). The topology of Cray XC30 is based
on dragonflies, which is a more modern approach. This thesis discusses both groups of
machines, although more attention is paid to the ones with moderate degree.

Next, some basic concepts are introduced in order to facilitate further discussion. An
interconnection network is defined by its topology, routing, flow control and deadlock
avoidance mechanisms, along with other technological aspects such as the used media
and router design. However, very often the topology and network terms are used inter-
changeably in the literature. The topology of a network defines how the different routers
are connected. An indirect topology (or network) employs transit routers, to which no
computing node is connected. Typical examples of these are the tree and folded Clos

1Although they call them fat-trees. But that differs from the original meaning of fat-tree, which is a
tree where the links are ticker towards the root [Lei85].

1

2 CHAPTER 1. INTRODUCTION

topologies. Conversely, a direct topology does not employ transit routers, so each network
router has one or more compute nodes directly connected to it. When all the network links
are point-to-point, as often occurs today in HPC and datacenter networks, the topology
can be completely defined using a graph. The graph degree, ∆, is determined by the radix
of the network routers, not considering the connections to the compute nodes. Frequent
direct topologies proposed for HPC and datacenters are those based on meshes, tori,
dragonflies [KDSA08] and Hamming graphs (also known as flattened butterflies [KDA07]).
Some important issues of the network topology are its scalability, to be able to make
large machines—which in the graph theory literature is manifested as the degree-diameter
problem—and its symmetry properties—vertex- and edge-transitivity—which guarantee a
balanced resource usage, as well as the simplicity of its deadlock avoidance mechanisms.

Before the use of tori, ring topologies have been widely employed in different domains.
Token Ring [IEE89], MetaRing [CO93] and FDDI [IEE91] are good examples for local area
networks. More recently, on the VLSI domain, several current microprocessors [SKS+11,
SCS+08], use ring networks to interconnect their functional units. Although rings are
cheap and symmetric, they exhibit poor reliability and performance. Hence, the idea to
add connections to a base ring has been deeply studied and applied.

Two-dimensional tori are a natural evolution of rings. The torus is, together with the
mesh, the most popular two-dimensional topology. However, first significant developments
in parallel supercomputing were not based on tori. The SOLOMON, as described in a 1962
paper [SBM62], used a two-dimensional mesh but its successor, the ILLIAC IV described
in [BBK+68], added wraparound links to the mesh to form a two-dimensional twisted
torus. Such a twisted torus is, in fact, a circulant graph (specifically a chordal ring),
in which the Hamiltonian embedded ring was used for control and command purposes.
Notwithstanding, standard tori have became more popular than their twisted counterparts
and several current supercomputers are tori-based [ABC+05, Cra, ASS09].

Powerful supercomputers such as Cray XK7, IBM BluGene/Q and K computers use
moderate degree networks. The Cray employs a 3D torus whereas Blue Gene uses a 5D
one [Cra, CEH+11]. The K computer employs small 3D meshes (that can also be seen as
4× 3 tori) connected by a bigger 3D torus [ASS09]. All these topologies are mixed-radix
tori, as they have dimensions of different sizes. For example, a configuration for a Cray
Jaguar can be 25× 32× 16 and a Blue Gene configuration 16× 16× 16× 12× 2. The
topology of the 88, 128-node K computer installed at Riken, is equivalent to a 17× 18× 24
torus connecting 3D meshes of 12 nodes. Mixed-radix tori are not edge-symmetric, which
can lead to unbalanced use of their network links. However, these big systems are typically
divided into smaller partitions, which enable them to be used by multiple users. Hence,
providing symmetry is, at least in typical network partitions, an advisable design goal.

Other two-dimensional topologies based on rings have been explored time ago as
alternatives to tori. For example, the diagonal toroidal mesh, which is isomorphic to the
Kronecker product of two cycles, has been considered as a substitute to their Cartesian
product—i.e., to tori—claiming for some advantages, specially in the case of mixed-radix
topologies [TP94, Pea96]. Other Cayley graphs, such as circulants, chordal rings and
Gaussian networks have been previously studied, [FYAV87, BW85, MBS+08, LY10]. Some
variations of the 3D tori are given in [CMV+10]. That work starts with mixed-radix tori,
then by introducing twists the distances are reduced and certain symmetries are obtained.

Recently, dragonfly networks have appeared [KDSA08]. These topologies have great
connectivity, low cost, and they enjoy a natural layout into the physical racks containing
the compute boards. This explains the celerity with one of its variants has been used as

1.2. GOALS 3

the topology of one of the top 10 supercomputers—the CASCADE computer.

1.2 Goals

The general objective of this thesis is to find good network topologies for HPC systems. For
the case of moderate degree networks, the only topologies in use are tori; indeed, in most
cases they are unbalanced mixed-radix tori. Their twisted alternatives have been considered
only for two and three dimensions. Thus, an important problem is to make twists in tori
of arbitrary number of dimensions, or at least, up to the 6 dimensions that are currently
used in real supercomputers. Moreover, those mixed-radix torus implementations make
unbalanced use of the links, which reduce performance. Hence, these multidimensional
twists should be done in a way that balances the load. Others aspects that have been
addressed are routing algorithms, packaging and upgrading.

Respect to the high-degree networks, it is notable the recent development of the
promising dragonfly topologies. It was preceded by the reinvention of the Hamming graph
with the name of flattened butterfly. The Hamming graph has been deeply studied, under
many different points of view. On the contrary, dragonflies are novel and many aspects
of them can be studied. Furthermore, Hamming graphs and dragonflies possess several
similarities that are worth of study.

1.3 Related Work

For moderate degree topologies, many works have introduced twists in tori; some of
them explicitly calling them twists. The first use of twisted tori we know was in the
implementation of the Illiac IV computer [BBK+68]. Later, twisted tori were proposed for
design of VLSI systems [Seq81, Mar81]. In [TP94], 2D tori with diagonal links were shown
to have better distance properties than normal tori. Afterwards, Pearlmutter in [Pea96]
realized that these tori with diagonal links can be seen as twisted tori with orthogonal links.
The optimal twisted tori for each diameter was found in [BHBA91]. In [MBS+08] Gaussian
graphs were defined over the ring of Gaussian integers; they can be seen as bidimensional
twisted tori where the size and twist depend on the generator. In [CMV+10] some 2D
and 3D mixed-radix tori were studied whose sides followed the proportions 2:1 and 2:1:1,
respectively. They include some results on the implications of symmetry, although only
a few topologies were considered. In [Fio95] circulant graphs were generalized to more
dimensions, providing most of the mathematical background used in our work of lattice
graphs (Chapter 2).

Examples of high degree networks are fat trees, Clos networks, Hamming graphs and
dragonflies. Only the last two are studied in this thesis. The use of Hamming graphs
as interconnection network began in 1984 with [BA84] under the name of generalized
hypercubes—the binary hypercubes were already been used for some time—and they have
been reinvented several times since then. Bhuyan and Agrawal proposed in [BA84] the
Hamming graph with the name of generalized hypercube. They analyzed mostly distance
properties and latencies, together with some comments about routing and fault tolerance.
Later, LaForge et al. studied extensively the fault tolerance of Hamming graphs, using
the name of K-cubes [LKF03]. Kim et al. found the Hamming graph as the result of
applying a flattening operation to the butterfly network and they give it the name of
flattened butterfly [KDA07]. Dragonfly networks were recently introduced by Kim et

4 CHAPTER 1. INTRODUCTION

al. [KDSA08]. Many works have proposed routing mechanisms for dragonfly networks
to tolerate adverse traffic patterns, taking into account possible transient traffic and
implementation costs [JKD09, GVB+12b, GVB+13c]. Industrial implementations of the
dragonfly topology have been the IBM PERCS [AAC+10] and Cray Cascade [FBR+12].

1.4 Results
The results obtained in this thesis can be organized in three domains: i) the ones for
moderate degree, ii) the ones for high-degree and iii) some results in coding theory.

i) For moderate degree networks the problem has been attacked using lattices and
linear algebra.

• Lattice graphs are defined, which englobe multidimensional tori with multiple
twists. This family hence generalizes tori and multitude of their variants.

• The impact of symmetry on the performance of lattice graphs is proved to be
very high, in accordance with [CMV+10]. This has been done analytically and
confirmed by experimentation.

• The symmetric lattice graphs of dimension 2 and 3 have been characterized;
they are still a large family that include Gaussian graphs, Kronecker product of
cycles and the three-dimensional proposal of [CMV+10] (the prismatic doubly
twisted torus) among many others.

• The lattice graphs based on the cubic lattices inherited from crystallography have
been deeply studied. These crystal lattice graphs are shown to be 3D symmetric
graphs and to have very good distance properties. Moreover, analogous lattice
graphs are defined for any dimension.

• The diameter and average distance have been exactly determined for 2D lattice
graphs and for 3D crystal graphs by different methods.

• Lattice graphs have a matricial representation, which gives a compact way
to express characterizations and an immediate way to find natural subgraphs.
This has allowed to define a lift operator to construct lattice graphs containing
the desired lattice graphs as subgraphs.

• Several routing algorithms have been yield. For 2D lattice graphs it is given
a routing algorithm based on lattice reduction that can be understood in a
simple geometrical way by means of tessellations. For the special case of the
rectangular twisted torus (RTT) an algorithm is given, which is more elegant
than the general one for 2D lattice graphs. For greater dimension, a general
hierarchical algorithm is established that has better complexity for the case of
crystal lattice graphs than the best general known algorithms.

• For the physical deployment of lattice based networks, two strategies are given.
One is based on the generic approach that Cray uses in the layout of its tori.
The other one is based on the Blue Gene technology, where there is additional
hardware to make tori partitions.

• Simulations show that lattice graphs outperform some tori currently in use.

ii) For networks of high degree our focus has been on the recent dragonfly topologies.

1.5. ORGANIZATION 5

• Dragonflies has been defined in the literature in an informal way; some effort
has been done in this work to clear up many aspects.

• Global trunking—several global links between every pair of groups of routers—
in dragonflies is studied. They are shown to include the Hamming graphs as
the extremal case of a dragonfly with maximum global trunking.

• The global trunking alternatives are thoroughly studied, giving the conditions
to make a balanced use of links.

• Several possible arrangements for global links are studied, coming to the conclu-
sion that they have a very small impact on performance. This contrasts with
the case of lattice graphs, where the symmetry is very important. However,
symmetries can allow for specific mechanisms, like some routing algorithms.

• A deadlock-free routing is developed that does not require the use virtual
channels but a few symmetries in the topology are needed. Experiments show
that it has similar performance that known routing algorithms when given the
same resources.

• Finally, some remarks are given for three-level dragonflies. Note that three are
enough levels to reach astronomical amounts of compute nodes.

iii) There have been some interesting results on coding theory that derivate from our
study of lattice graphs.

• It is described how lattice-graphs and linear Lee-codes are related. A graph with
good distance properties will give a good linear Lee code with good correction
and covering properties and vice versa.

• A characterization is done of t-quasi-perfect codes given by ideals of Gaussian
and Eisenstein–Jacobi integers. Decoding algorithms are given and a comparison
is made with other 2D t-quasi-perfect Lee codes.

• 2-quasi-perfect Lee codes are built for arbitrarily large dimension. This result
has importance in coding theory, where the Golomb–Welch conjecture says that
there are not perfect codes and the ones obtained in this thesis are very close to
be perfect. Furthermore, the graphs associated to these codes are Ramanujan
graphs; these graphs have found uses in many different areas, so the impact of
the result could have more extension.

1.5 Organization
Many of the chapters and sections of this thesis are adaptations of articles published on
journals and conferences. A list of these publications can be found at the end of the thesis,
in Section 6.3.

Chapter 2 presents the results on lattice graphs, which correspond to moderate degree
network models. It starts with the necessary linear algebra to define lattice graphs and
stablishes its fundamental properties. Then, the crystal lattice graphs and its derivatives
are studied. The problem of routing is studied both in general and in specific cases. Some
ways to make the physical layout are devised.

Chapter 3 presents the results on dragonfly networks with global trunking, which
correspond to a model for high degree networks. This chapter begins with an introduction

6 CHAPTER 1. INTRODUCTION

to Hamming graphs, its properties and how they were rediscovered several times with
different names. Then the dragonfly topology is defined in a more precise way, introducing
the concept of global link arrangements. Global trunking is introduced, which allows to see
the Hamming graph as a dragonfly with large global trunking. This fact hints to the great
size of this family of graphs and motivates to study if some properties of the Hamming
graph can be translated to general dragonflies. Afterwards, it is seen that indeed the
Hamming graphs allow for deadlock-free routing without VCs and dragonflies with some
global trunking allow for similar routings. Finally, some remarks on 3-level dragonflies are
done.

Chapter 4 shows the relation between lattice graphs and linear Lee codes. Then,
quasi-perfect codes are built first for the bidimensional case and later 2-quasi-perfect codes
for large dimensions. The latter are related to a conjecture by Golomb and Welch that
says that perfect Lee codes do not exist for high dimension. The codes obtained are very
close to be perfect.

Chapter 5 explains the evaluation infrastructure and the experiments carried out.
These experiments are: study of symmetry in lattice networks, mapping applications on
lattice networks, and study of symmetry in dragonfly networks and evaluation of the
deadlock-free routing for dragonflies with global trunking.

Chapter 6 closes the document giving some conclusions about the realized work, stating
some lines of future work and listing the publications written during this time.

Finally, the Appendix A contains the proof of the characterization of symmetric lattice
graphs for dimensions 2 and 3.

1.6 Fundamentals on Graphs and Networks

This chapter introduces basic concepts to be used along this thesis. Subsection 1.6.1 presents
Cayley graphs over Abelian groups and gives some examples as Hamming graphs and
circulant graphs. Symmetry aspects are introduced in Subsection 1.6.2, defining the group
of automorphisms and giving some notes of symmetry in Cayley graphs. Subsection 1.6.3
presents the degree-diameter problem together with graph expansion properties and
their impact on the performance of the networks they model. Finally, Subsection 1.6.4
describes the routing problem, with the concepts of routing record, routing by tables,
deadlock-freedom, routing randomization and head of line blocking.

Before beginning with those concepts some notation must be introduced.

Notation 1.6.1. The following notation will be used throughout this thesis:

• Lower case letters can denote integers (a, b, . . .), vertices, or elements of groups.

• Bold font denotes integer column vectors: v, w, . . .

• Capitals correspond to integral matrices (M , P , . . .), graphs (G, Cn, Kn) and
sometimes sets, groups and rings.

• ei denotes the vector with a 1 in its i-th component and 0 otherwise.

• If G is a graph, then V (G) is its set of vertices and E(G) the set of edges.

• Graph isomorphism is denoted by ∼=.

1.6. FUNDAMENTALS ON GRAPHS AND NETWORKS 7

• Zn denotes tuples of length n over the integers. The set of integral matrices of m
rows and n columns is denoted by Zm×n.

• arg minx∈S(f(x)) or arg min{f(x) | x ∈ S} is defined as the element x in S that
minimizes the value of f(x).

• Congruence of x and y modulo n is denoted by x ≡ y (mod n), and the congruence
class of x by (x (mod n)). This is explicitly discriminated from the remainder of x
by n using Euclidean division, denoted rem(x, n), this is, 0 ≤ rem(x, n) < |n| and
x ≡ rem(x, n) (mod n).

• For a real number r, [r] denotes the closest integer, brc denotes the greatest integer
that is less or equal than r and dre denotes the lowest integer that is greater or equal
than r.

1.6.1 Cayley Graphs

A graph G is defined by a finite set of vertices V (G) and a set of unordered pairs of vertices
E(G) that is called its edge set. An edge e = {x, y} ∈ E(G) is said to connect x to y;
then x and y are called adjacent vertices or neighbours; and e is incident on both x and y.
The degree of a vertex is the number of its neighbours. If all vertices of a graph G have
degree ∆ then G is a ∆-regular graph. Sometimes, to avoid confusions in some places, the
explicit notation deg(G) will be used. Graphs are used as a model for the topologies of
interconnection networks, where routers are represented by vertices and links by edges.
The compute nodes are abstracted and the constant ∆0 will be used to represent the
number of compute nodes attached to every router.

A walk in a graph G is a list of vertices x1, x2, . . . , xn such that {xi, xi+1} ∈ E(G) for
i ∈ {1, . . . , n− 1}; x1 and xn are the endpoints of the walk. The length of a walk w is the
number of edges it traverses; hence, for w = x1, . . . , xn the length of w is |w| = n− 1. A
path is a walk composed of distinct vertices, i.e., xi 6= xj for i 6= j. A graph G is connected
is for any vertices x, y ∈ V (G) there is a path (or equivalently a walk) with x and y as its
endpoints.

The distance between two vertices v, w in a graph is defined as the length of the
shortest path between them; it will be denoted as D(v, w). The diameter (respectively
average distance) of a graph is the greatest (resp. average) graph distance along all pairs
of different vertices. The diameter is typically denoted by k and the average distance by k̄.

The order of an element x of a group Γ is the minimum positive integer n such that xn
is the neutral element of Γ. In symbols ord(x) = min{n ∈ Z | n > 0 and xn = 1}.

Given a ring K (as Z or Z[i]), a pair of elements x, y ∈ K are said congruent modulo
other element z ∈ K, denoted x ≡ y (mod z), if there is q ∈ K such that x − y = zq.
Then, the quotient K

xK represents the subring of K where two elements are identified if
they are the same modulo x.

The concept of Cayley graph is key in this thesis.

Definition 1.6.2. The Cayley graph over a group Γ and adjacency set A ⊂ Γ is defined
as the graph Cay(Γ;A) with vertex set V = Γ and edges

E = {(v, v + g) | v ∈ Γ, g ∈ A}.

8 CHAPTER 1. INTRODUCTION

The considered groups will always be Abelian groups; thus the group operation will be
+ with neutral element 0. The set of hops A cannot contain 0, since it would imply a loop
in every vertex, and must satisfy −A = A for the edges to be undirected.

Cayley graphs over Zn are called circulant graphs. The name comes from the fact that
they are exactly the graphs whose adjacency matrix is a circulant matrix—each row is a
rotation of the preceding one by one entry. The cycle of length n, Cn = Cay(Zn; {±1})
is a common circulant graph. Another important circulant graph is the complete graph
Kn = Cay(Zn;Zn \ {0}).

The Cartesian product of two graphs G1, G2 is denoted by G1�G2. It is defined by
V (G1�G2) = V (G1)× V (G2) and

E(G1�G2) =
{
{(x1, y1), (x2, y2)} |

(x1 = x2 ∧ {y1, y2} ∈ E(G2)) ∨ (y1 = y2 ∧ {x1, x2} ∈ E(G1))
}
.

Weichsel [Wei62] defined the Kronecker product of two graphs as the graph having
as adjacency matrix the Kronecker product of the respective adjacency matrices of their
factors. Weichsel also gave another equivalent definition, which was rewritten in [IK00] in
a more natural way:

Definition 1.6.3. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Their Kronecker
product G1 × G2 is defined as the graph G = (V,E) such that the set of vertices is the
Cartesian product V = V1× V2 and the set of edges is E =

{(
(v1, v2), (w1, w2)

)
| (v1, w1) ∈

E1 and (v2, w2) ∈ E2

}
.

Therefore, each vertex of the product is related to a vertex in each of the original
graphs, and two vertices are connected in the Kronecker product if their corresponding
vertices are connected in its factors.

Note that both the Cartesian product and the Kronecker product are commutative
and associative up to graph isomorphism.

The n-dimensional torus graph of sides a1, . . . , an denoted by T(a1, . . . , an) is de-
fined as Ca1� · · ·�Can . Similarly, the Hamming graph of arities a1, . . . , an is defined as
Ka1� · · ·�Kan . Its name comes from the fact that its graph distance coincides with the
Hamming distance. We will make special emphasis on this graph in Chapter 3.

Both the Cartesian and the Kronecker products of two Cayley graphs are Cayley graphs.
And if the original graphs are Cayley graphs over Abelian groups then the resulting graph
is again a Cayley graph over an Abelian group.

If α is a Gaussian integer, then G = Cay(Z[i]
αZ[i]

; {1,−1, i,−i}) is called a Gaussian
graph [MBS+08]. The analogous graph can be made for the Eisenstein–Jacobi integers.
Let ω be a root of x3 − 1 other than 1. Then Z[ω] is the ring of Eisenstein–Jacobi integers
and for any α ∈ Z[ω], the graph G = Cay(Z[i]

αZ[i]
; {±1,±ω,±ω2}) is called an Eisenstein–

Jacobi graph [MSBG08]. Gaussian graphs were generalized in [MBG09] as graphs over any
ring from the Cayley–Dickson constructions. Gaussian graphs will be mentioned several
times in Chapter 2. Later, in Chapter 4 there will be extensive work on Gaussian and
Eisenstein–Jacobi graphs.

1.6.2 Symmetry

Given two graphs G and H, a graph isomorphism from G to H is a bijection φ : V (G)→
V (H) such that there is an edge {x, y} ∈ E(G) if and only if there is the edge {φ(x), φ(y)} ∈
E(H). When G = H then φ is a graph automorphism.

1.6. FUNDAMENTALS ON GRAPHS AND NETWORKS 9

Then, a graphG is said vertex-transitive (or vertex-symmetric) if for each pair of vertices
(x, y) ∈ V (G), there is an automorphism φ of G such that φ(x) = y. In addition, G is said
edge-transitive (or edge-symmetric) if for each pair of edges ({x1, x2}, {y1, y2}) ∈ E(G),
there is an automorphism φ of G such that φ({x1, x2}) = {φ(x1), φ(x2)} = {y1, y2}. Finally,
G is said to be symmetric when it is both vertex-transitive and edge-transitive.

Clearly, vertex-transitivity implies that all vertices have the same degree.
All Cayley graphs are vertex-transitive [AK89]. This is immediate upon realizing that

for any a, b ∈ V (G), φ : x 7→ b− a+ x is an automorphism that maps a into b.
In a vertex-transitive graph all vertices have the same distance distribution. Thus, the

average distance is

k̄ =
1

|V (G)| − 1

∑
v∈V (G)

D(o, v)

and the diameter is k = max{D(o, v) | v ∈ V (G)}, where o is any vertex chosen a priori ;
typically the neutral element in the case of Cayley graphs.

On the case of Cayley graphs it is also important the concept of linear automorphism,
which is an automorphism φ satisfying φ(x+ y) = φ(x) + φ(y) for any vertices x, y.

The group of automorphisms of a graph G is denoted by Aut(G), and the group of
linear automorphisms by LAut(G). If LAut(G) acts transitively on the vertices and edges
then G is linearly symmetric.

Symmetry can have a great impact on performance. Topologies of interconnection
networks of general purpose must perform well under uniform traffic, since it determines
the worst case performance (when using the best routing algorithm, see Subsection 1.6.4).
Thus, let us count for every edge e the number of minimal paths that traverse it2. If this
amount is the same for every edge, then the topology is edge balanced; otherwise, the
edge with greatest value will be saturated first (with uniform traffic) and the other edges
will not reach their full capacity. Clearly, edge-transitivity implies to be perfectly edge
balanced. For the family of lattice graphs studied in Chapter 2, edge-transitivity will have
a great impact on performance. In contrast, dragonflies (studied in Chapter 3) have a
simple condition to be very well edge-balanced, and looking for edge-transitivity does not
provide an increase in performance; symmetries can still be important to have access to
other mechanisms as it will be shown.

Some of the previously mentioned Cayley graphs are edge-transitive. The Gaussian
graphs are edge-transitive by action of the automorphism φ : x 7→ xi and the Eisenstein–
Jacobi graphs by action of the automorphism φ : x 7→ xω. Cycles and complete graphs
are trivially symmetric. Powers (Cartesian or Kronecker) of graphs inherit the symmetry
of the base graph.

1.6.3 Degree Diameter Problem

The degree-diameter, or d-k-problem, consists in finding a graph G for a given degree
∆ and diameter k with the maximum number of vertices N(∆, k). An upper bound in
N(∆, k) is the Moore bound, of value [HS60]

M(∆, k) =
∆(∆− 1)k − 2

∆− 2
.

2In some cases there are several minimal path between two endpoints x, y. To solve it, simply increase
the count for e by # x, y-minimal paths traversing e

x, y-minimal paths .

10 CHAPTER 1. INTRODUCTION

Graphs reaching this bound are called Moore graphs. Optimizing the degree-diameter
problem provides the largest possible network with optimal performance under uniform
traffic. However, practical constraints such as regularity of the topology, fine-grain
scalability3, convenient layouts and cable length, number of computing nodes per router
(or concentration level), routing mechanisms and performance under alternative traffic
patterns make that other topologies with a lower amount of network nodes become more
attractive.

The Moore bound sets a limit on the degree-diameter problem. A thorough survey of
the problem and Moore graphs can be found in [MŠ13]. For diameter k = 1 the complete
graphs K∆+1 attain the bound. Their simplicity and existence for any size make them
very interesting; however they are subject to technological constraints given the large
degree necessary to reach a high number of nodes. For diameter k = 2 there are only 2
or 3 Moore graphs [HS60]: the Petersen graph (∆ = 3, N = 10), the Hoffman–Singleton
graph (∆ = 7, N = 50) and an hypothetical graph with ∆ = 57 and N = 3250 whose
existence is still an open problem. This sporadic existence of Moore graphs complicates
scalability, being very difficult to decide which topology to use for a given network size.
The problem can be relaxed by considering only the asymptotic behaviour. This relaxed
problem consists in finding, for every diameter k, an infinite family of graphs with about
∆k vertices. Such graphs exist for k = 1 (complete graphs), k = 2 [Bro66, BBC13], k = 3
and k = 5 [Del85]. They are conjectured to exist for any diameter, but even the best
general bounds are exponential in k. The work in [BBC13] seems to be the first to propose
one of these families as interconnection networks, but fails to address many practical
problems. More recently, Besta and Hoefler [BH14] have studied some known good families
of graphs as topologies for interconnection networks, considering partially aspects as cost,
layout, energy and oversubscription.

For Cayley graphs over Abelian groups of diameter 2 there is an upper bound of
1
2
∆2 + ∆ + 1 vertices; the current best construction inside this family is the given in

[MŠŠ12], which achieves 3
8
(∆2 − 4) vertices, about 3

4
of the bound.

The degree-diameter problem can be useful to state if a topology has good scalability—
maintaining good performance for large amounts of compute nodes. However it only gives
a partial idea of the performance, so other measures are necessary. In networking literature
there is a commonly used parameter called the bisection bandwidth [Tho79]. Take a graph
G, then consider time measured in cycles and communication units called phits. Every phit
has a vertex as target destination and the network tries to move the phits from their origin
to their destination. Each cycle every vertex generates l phits and every edges allows the
transmission of 1 phit. Now, assume that the origin and destination of phits are selected
uniformly at random and partition V (G) into two sets A and B with |A| = |B| (or close),
trying to minimize the number of edges from A into B, |δ(A,B)|. Then, in the set A
there is a generation of l|A| phits each cycle. Thus, l|A|·|B|

|V (G)|−1
phits will have as destination

a vertex in set B, so they must cross |δ(A,B)| edges. Thus l|A|·|B|
|V (G)|−1

≤ |δ(A,B)|, which
is l ≤ |V (G)|−1

|A|·|B| |δ(A,B)| ≈ |V (G)|
4
|δ(A,B)|. The amount |δ(A,B)| is called the bisection

bandwidth of a network, which, as it has been shown, limits the throughput of a network.

In spectral theory there is a similar concept called edge expansion. Let δ(S) =

3Being able to construct topologies for many different sizes. For example, the binary hypercube requires
2n routers, and hence, it is not fine-grain scalable.

1.6. FUNDAMENTALS ON GRAPHS AND NETWORKS 11

δ(S, V (G) \ S). The edge expansion of G is

h(G) = min
0<|S|≤ |V (G)|

2

|δ(S)|
|S| .

Except for constants and the naivety of the selection of the set, the expression is the same
as the bisection bandwidth. This means that for uniform traffic good expanding topologies
are desired for the networks. The name of expansion makes reference to that for any small
set of vertices, the set of their neighbours is larger; other form to view this, is that a set of
vertices expands when adding its neighbours. Thus, in a good expander graph, random
walks quickly converge to a random vertex following an uniform distribution. These
graphs have applications in many areas; for example to reduce the need for randomness in
probabilistic algorithms and to find good error-correcting codes [Nie05]. Their relation to
the d-k-problem can be seen by means of this rapid convergence of random walks. Note
that in a Moore graph of diameter k, most vertices are at distance k from the origin.
Then, a random walk of length k ends in a vertex at distance diameter with probability
(∆−1

∆
)k−1 ≈ 1. Thus, for large degree, random walks of length k finish with the same

probability for the majority of vertices. There are a few vertices that have probability very
different. It can be calculated that walks of length 2k + 1 are enough for all the vertices
have almost the same probability. Therefore, random walks in graphs close to the Moore
bound rapidly arrive to random vertices with uniform probability, so they must be good
expander graphs.

The edge expansion is related to the second greatest eigenvalue λ of the adjacency
matrix of G (the first one equals the degree) by the Cheeger inequalities:

1

2
(∆− λ) ≤ h(G) ≤

√
2∆(∆− λ).

Thus, maximizing the edge expansion is similar to minimize λ. A known bound is
λ ≥ 2

√
∆− 1− o(1), that is, for every ε > 0 there is only a finite number of exceptions

to λ ≥ 2
√

∆− 1− ε. A Ramanujan graph is a graph with λ ≤ 2
√

∆− 1 [DSV03], i.e., a
graph that is optimal in the spectral expansion sense. In Chapter 4 some new Ramanujan
graphs are presented. In that chapter, an infinite family of graphs of diameter 3 is built
for which the first tens can be computed to be Ramanujan graphs. Unfortunately, we do
not have yet proved that the infinitely many graphs of the family are Ramanujan.

It was shown in [CMV+10] a few examples of topologies in which the bisection band-
width does not reflect performance accurately; since for any cut several minimal paths
traverse the cut twice. For the case of edge-transitive graphs there is a simple accurate
bound for the maximum throughput. As, under uniform traffic at rate l, l phits are
injected into each node each cycle, there is a total of l|V (G)|k̄ links being used each
cycle. Any link can only transfer 2 phits—one in each way—each cycle, which implies that
l|V (G)|k̄ ≤ 2|E(G)| = ∆|V (G)|. Thus, it is obtained that network throughput is bounded
by

l ≤ ∆k̄−1. (1.1)

The d-k-problem emerged from a graph-theoretical point of view, so it is not exactly
the practical problem to be optimized. In the degree-diameter problem, one maximize the
number of routers N given a degree ∆ and diameter k. However, in practice, it can be
preferable to instead maximize the number of compute nodes M given the router radix
R = ∆0 + ∆ and diameter k, where ∆0 is the number of compute nodes attached to

12 CHAPTER 1. INTRODUCTION

every router. Nevertheless, in networks close to the Moore bound, these problems become
equivalent. In first place, a network close to the Moore bound will be locally similar to a
∆-ary tree. Thus, such networks are close to be edge-balanced and by the above argument
for edge-balanced networks, its load will be approximately the value of Equation (1.1),
∆k̄−1. Furthermore, these graphs have high density and hence the number of vertices at
distance k is much greater than the number of vertices at distance k − 1; this implies that
the average distance k̄ is close to the diameter k. Therefore, it can be assumed that there
are ∆0 ≈ ∆k−1 compute nodes attached to every router. Then, the number of compute
nodes M can be related to the radix R of the routers as

M

Rk+1
=

N∆0

(∆ + ∆0)k+1
≈ N∆k−1

(∆ + ∆k−1)k+1
=

N∆k−1

(k+1
k

∆)k+1
=

N

∆k
· 1

k(k+1
k

)k+1

=
N

∆k
· 1

k(1 + k−1)k+1
.

Thus, the two problems are related by a constant that depends only on the diameter k.

1.6.4 Routing

Packets are injected into queues of routers, which are the vertices of the topology, and
they have another vertex as destination. Somehow it must be established a path for the
packet to go to its destination. Some time ago it was common to establish the whole path
at the time of the injection of the packet. However, that prevented from using those links
for other communications during the transmission. Because of that, now messages are
divided into small packets—which typically can fit into any buffer—and only allocate local
resources. Specifically, in virtual cut-through when a packet moves, it allocates in the
next buffer enough space for the whole packet. With this mechanism the decision of which
path to take can be made every cycle. Here cycle means the smallest unit of time in which
routers operate; the context will avoid any possible confusion with the cycle graph Cn.

Regardless whether the whole path is decided at the beginning of every cycle, the
router must be able, given a destination vertex, to decide by which of its incident edges
the packet will move. For this, we consider that every vertex has a label and then there is
an algorithm that, given source and destination labels, determines at least the first edge
of the route. For example, in the cycle Cn, two possible labellings are {0, 1, . . . , n − 1}
and {−dn−1

2
e, 1− dn−1

2
e, . . . ,−1, 0, 1, . . . , bn−1

2
c − 1, bn−1

2
c}.

Usually the routes are made trying them to be as shortest as possible, although
sometimes it is necessary to make a longer one to avoid problems like faulty components
or congestion.

Classically, routing has been done with tables. In this approach every router contains
a table indicating the next edge to use for each destination. For large graphs the size of
the table can incur in high costs (which translates into chip area, energy consumption or
time to fill the tables among others) and other approach can be preferred.

An algorithmic routing is possible for some topologies, which allows to avoid tables.
An illustrative example is the mesh. Let G be a n-dimensional mesh of side a, for
example n = 2 and a = 8. Given source s = (1, 2) and destination d = (4, 3) compute
r = d− s = (3, 1). Then if r = 0 the destination is in the current router, otherwise—as
is the case of the example—let i be such that ri 6= 0—take i = 0 in the example. Then
if the current router is x, the edge {x,x + sign(ri)ei} is an edge in one of the minimum
routes—in the example, as r1 = 3, there is a minimal path from s to d beginning with the

1.6. FUNDAMENTALS ON GRAPHS AND NETWORKS 13

edge {s, s + e1}. Moreover, the vector r is called a routing record and it can be computed
once and updated in every hop of the packet. It also allows for adaptive routing, since
there are generally several values for i with ri 6= 0; or to select them in a specific order to
obtain other properties.

Using minimal routes is optimal for uniform traffic and good enough for many others
traffic patterns. However, there are always some traffic patterns for which using minimal
routes results in very poor performance. As using minimal routes is optimal for uniform
traffic, there is an elegant solution: traffic randomization. The scheme by Valiant [Val82]
doubles and randomizes the traffic; for a packet with origin in x and destination in z a
random router y is selected, then the packet is first routed from x to y and later from y to
z. As the resulting traffic is uniform, the subroutes can be made minimal. Therefore, this
solution guarantees a worst case of half the throughput than in uniform traffic.

Deadlock is a major problem in networking. If the edge selected by the routing algorithm
have all its buffers filled, then the packet must wait. This can happen simultaneously for
all the edges in a cycle, causing that none of them can ever move. The most immediate
solution to this problem is the one taken in Ethernet, which consists in dropping (and
resending) deadlocked packets. However, for latency-sensitive applications like the ones
used in HPC this is not an option, and deadlocks must be avoided or resolved without
packet loss.

To avoid deadlock, one option is to have deadlock-free routing algorithms. Consider
the case of a n-dimensional mesh, as in the above example. The Dimension Order Routing
(DOR) is the routing in which the least i such that ri 6= 0 is selected every cycle. This
means that the edges in direction i can only wait to edges in a direction j such that
i ≤ j. As a path is deadlock free, the direction n is deadlock-free, and by induction the
whole topology. This approach implies a restriction on routing and hence it can harm
performance [GN92].

Another option to avoid deadlock is to use Virtual Channels (VCs). In every edge
put several buffers and make the routing algorithm select between them. Now, to get
a deadlock, there must be a cycle (a cycle graph, not the unit of time) in the graph of
buffers, which can be avoided with enough VCs. A cycle can be made deadlock-free by
using 2VCs. For general topologies it can be solved with a number of VCs equal to the
diameter, a mechanism by Günther [Gün81], which consists in using the VC i for the i-th
hop. This approach to solve the deadlock problem incurs in a greater cost depending on
the number of VCs, both for the memory associated to it and the logic to control it.

In the case of the topology being a cycle there is also the option of using Bubble
Routing [CBGV97]. By forbidding the packets in injection queues to move to transit
queues when there is space for only one packet, it is guaranteed that there is at least space
for one packet among all the transit queues of the cycle. This space moves continuously,
which implies that all packets reach their destination. This mechanism can be extended to
tori-like topologies (and indeed for any graph of the ones studied in Chapter 2). Thus,
one way to make a torus deadlock-free is to adopt the bubble mechanism together with
the DOR routing.

Furthermore, although virtual channels have a clear motivation by preventing deadlock
they have also impact on performance. Specifically, they mitigate the Head of Line
Blocking (HoLB) problem. The HoLB is the situation in which the first packet of a buffer
cannot advance because it requires a link being used for another packet. While, there
can be subsequent packets that will go for currently free links, but these are blocked by
the first packet in the buffer. This situation is illustrated in Figure 1.1, which shows two

14 CHAPTER 1. INTRODUCTION

1 1 1 0

0 1 0 0
allocated

requested

0

1

Input Buffers
Crossbar

Output Ports

Figure 1.1: Head of Line Blocking among two buffers.

entry buffers on the left and two exit ports on the right. In the buffers there are packets
in which it is written their required exit port. The head of the bottom buffer cannot
advance because the port is allocated to the other buffer. However, there are packets in
the bottom buffer that could make use of port 1, but they are blocked by the queue’s head.
The use of several channels, even if used in a random way, reduces the probability of this
situation, as it increases the number of head packets. Some policies on virtual channels
can reduce the HoLB even further. For example, if there are so many virtual channels as
possible destination ports, reserve every virtual channel for packets that require to exit by
a specific port, then there is not HoLB in routers. However, even with that policy, some
similar blocking situations can occur at a network level.

Chapter 2

Lattice Graphs

Tori are not well suited to support global and remote communications. Their relatively
long paths among nodes, especially their diameter and average distance, incur high
latencies and limited throughput. Thus, reducing topological distances in the network
should be pursued. In order to achieve network distance reductions changes must be
done to the topology. These topological changes depend on the router degree. If the
router degree must be kept within moderate values, that is between 5 and 20, it would
be interesting to preserve the good topological properties of tori such as grid locality,
easy partitioning and simple routing. Hence, practicable topological changes should
not be radical. A typical technique employed to this end has been twisting the wrap-
around links of tori [BBK+68, Seq81, BHBA91, Mar81]. Interestingly, this twisting
also allows for edge-symmetric networks of sizes for which their corresponding tori are
asymmetric [CMV+10, CMB13]. Twisting 2D tori is nearly as old as the history of
supercomputers. The Illiac IV developed in 1971 already employed a twisted network.
Many works dealing with twisted 2D tori have been published since then. However, when
scaling dimensions, the problem of finding a good twisting scheme becomes harder. Very
few solutions are known for 3D, with the one presented in [CMV+10] being a practicable
example. Studying the effect of twists in higher dimensions remains, to our knowledge, an
unexplored domain. A target of this chapter is to improve current topologies for moderate
degree interconnection networks. By twisting links of the tori, distance properties are
improved and graph symmetry can be enforced. Both topological parameters have impact
on performance, as demonstrated in Sections 5.3 and 5.5. If the router degree can be
increased, a radically different solution for reducing network diameter can be used in
high-degree hierarchical networks, to which Chapter 3 is devoted.

It has been recognized for a long time that Cayley graphs are well suited to intercon-
nection networks. Actually, the widely used rings and tori are Cayley graphs. Nowadays,
rings are common in on-chip networks [PBB+10] and, as stated in Chapter 1, many tori
are in the top of high-end supercomputing. In [Fio95], Fiol introduced multidimensional
circulant graphs as a new algebraic representation for Cayley graphs over Abelian groups.
In this chapter, lattice graphs are introduced as multidimensional circulant graphs with
orthonormal adjacencies, that is, multidimensional meshes plus additional wrap-around
links that complete their regular adjacency. Therefore, this chapter is devoted to the study
of low and high dimensional twisted tori topologies by means of lattice graphs. Special
emphasis on the study of network upgrading and sub-network decompositions is done.
Later, special attention will be devoted to symmetric 3D networks, which are completely
characterized in Appendix A.

15

16 CHAPTER 2. LATTICE GRAPHS

This chapter is organized as follows. Section 2.1 defines lattice graphs and introduces
the concepts of graph lift and projection. Section 2.2 describes symmetric lattice graphs,
with special emphasis on those based on the cubic crystal lattices. Section 2.3 studies
routing in lattice graphs. For the bidimensional case, a matrix reduction can be easily
applied, which gives all the information to calculate diameter, average distance and
performing routing. For more dimensions a hierarchical algorithm is presented, specially
though for symmetric topologies. In Section 2.4 some proposals for physical realization of
these topologies are given. First, a proposal for more common technology like the used in
Cray’s tori. And second, a proposal inspired in the Blue Gene technology, which uses link
chips to define dynamically the peripheral links. Section 2.5 ends the chapter with a few
conclusions.

2.1 Definition of Lattice Graphs
In this section lattice graphs are introduced, which will be used to model interconnection
topologies of any finite dimension. The lattice graph is not a new concept; in fact, it has
different uses. In its most common use, which is also the one considered in this thesis, is
a graph built over an n-dimensional grid that induces a regular tiling of the space. In
[Fio95], multidimensional circulant graphs were defined as lattice graphs but for any set
of adjacencies (not only the orthonormal adjacencies leading to the grids considered in
this work), which a priori can seem to be a wider family of graphs. However, it can be
proved that any multidimensional circulant can be seen as a lattice graph. Hence, the
study presented in this section is devoted, in fact, to the family of Cayley graphs over finite
Abelian groups; fact that will be proved in Theorem 2.1.3 after stating a few definitions.

Lattice graphs are defined over the integer lattice Zn. Hence, their nodes are labelled
by means of n-dimensional (column) integral vectors. A lattice graph can be intuitively
seen as a multidimensional finite grid with additional wrap-around links between opposite
faces that complete its regular adjacency.

To define the finite set of nodes of these graphs and their wrap-around links, a modulo
function using a square integer matrix will be used. Hence, congruences of vectors modulo
matrices are introduced in the next definition.

Definition 2.1.1. [Fio87] Let M ∈ Zn×n be a non-singular square matrix of dimension n.

Two vectors v,w ∈ Zn are congruent modulo M if and only if we have u =


u1

u2
...
un

 ∈ Zn

such that
v −w = u1m1 + u2m2 + · · ·+ unmn = Mu,

where mj denotes the j-th column of M . We will denote this congruence as v ≡ w
(mod M) and the congruence class of v by (v (mod M)).

The set of nodes of a lattice graph will be the elements of the quotient group

Zn/MZn = {v (mod M) | v ∈ Zn}

generated by the equivalence relation induced by M . As was proved in [Fio87], Zn/MZn
has | det(M)| elements. Now, the formal definition of a lattice graph can be posed.

2.1. DEFINITION OF LATTICE GRAPHS 17

Definition 2.1.2. Given a square non-singular integral matrix M ∈ Zn×n, the lattice
graph generated by M is defined as G(M), where:

i) The vertex set is Zn/MZn = {v (mod M) | v ∈ Zn}.

ii) Two nodes v and w are adjacent if and only if v − w ≡ ±ei (mod M) for some
i = 1, . . . , n.

From here onwards, all matrices will be considered to be non-singular, unless the
contrary is stated. Note that, since Zn/MZn has | det(M)| elements, this will be the
number of nodes of G(M). Moreover, since any vertex v is adjacent to v ± ei (mod M),
the lattice graph G(M) is, in general1, regular of degree 2n, that is, any node has 2n
different neighbours. Next, we show that the family of lattice graphs coincide with the
family of Cayley graphs over Abelian groups.

Theorem 2.1.3. For any connected Cayley graph G over a finite Abelian group there is
M ∈ Zn×n non-singular such that G ∼= G(M).

Proof. Let Γ be any Abelian finite group, {g1, . . . , gn} a subset of Γ and Gk = Cay(Γ;
{±g1, . . . ,±gk}). It is proved by induction in k that for any k there is a matrix Mk, a
positive integer c and an isomorphism f from c×G(Mk) into Gk satisfying f(0, ei) = gi for
i ∈ {1, . . . , k}. For the base case k = 1 the matrix M1 =

(
ord(g1)

)
satisfies the conditions.

Otherwise, by induction hypothesis, let Mk−1 be a matrix such that c′ × G(Mk−1) ∼=
Cay(Γ; {g1, . . . , gk−1}) with an isomorphism f(0, ei) = gi for i ∈ {1, . . . , k − 1}. Then, let
a be the minimum positive integer such that agk = x1g1 +x2g2 + · · ·+xk−1gk−1 for integers

xi (which exists because Γ is finite). Then M =

(
Mk−1 x

0 a

)
satisfies G(M) ∼= c×Gk for

some c divisor of c′, with an isomorphism f(0, ei) = gi for i ∈ {1, . . . , k}.
As Gn is connected by hypothesis it follows that Gn

∼= G(Mn).

Example 2.1.4. The graph C17(1, 3, 7) has as set of nodes the group Z17, and every node
n is adjacent to the other six nodes n±1,±3,±7 (mod 17). As this graph is a Cayley
graph over Z17 is isomorphic to some lattice graph. Specifically, this graph is isomorphic
to the lattice graph generated by the matrix17 3 7

0 1 0
0 0 1

 .

Isomorphisms of lattice graphs is related to equivalences of integral matrices.

Definition 2.1.5. M1 is right equivalent to M2, which is denoted by M1
∼= M2, if and

only if there exists a unitary matrix P ∈ Zn×n such that M1 = M2P.

As was proved in [Fio95], ifM1
∼= M2 then the graphs G(M1) and G(M2) are isomorphic.

Moreover, if P is an unitary matrix then

Cay(Zn/MZn; {a1, . . . , an}) ∼= Cay(Zn/PMZn; {Pa1, . . . , Pan});

the isomorphism being f(x) = Ax. It follows that in a lattice graph swapping two rows or
changing the sign of one row also results in an isomorphic graph.

Hence, the list of elementary matrix operations that preserve graph isomorphy is:
1Unless ei ≡ ±ej (mod M) or 2ei ≡ 0 (mod M) for some i, j ∈ {1, . . . , n}.

18 CHAPTER 2. LATTICE GRAPHS

• add/subtract a column to another,

• swap two columns,

• swap two rows,

• change the sign of a column,

• change the sign of a row.

2.1.1 Projections and Lifts of Lattice Graphs

In this subsection, the concepts of projection and lift of a lattice graph will be stated.
Projecting a lattice graph allows the study of the different lattice graphs of smaller
dimensions that are embedded on it, while lifting a lattice graph will be used for increasing
its dimension.

Now, performing Gaussian elimination by columns in a matrix is a right-equivalent
operation. Therefore, after one step of Gaussian elimination in the generating matrix of a
lattice graph gives isomorphic graphs. The resulting matrix would be

M ∼=
(
B c
0t a

)
,

where B ∈ Zn−1×n−1 is a matrix of smaller dimension, c ∈ Zn−1 is a column vector and
a is a positive integer. As a consequence, we obtain that | det(M)| = | det(B)|a, that
is, the number of nodes of G(M) can be expressed in terms of G(B) and the integer a.
Moreover, the lattice graph G(B) is isomorphic to the subgraph of G(M) generated by
{±e1,±e2, . . . ,±en−1}, which allows us to state the following definition.

Definition 2.1.6. Let M ∈ Zn×n be non-singular and G(M) be lattice graph it generates.

Let us consider M ∼=
(
B c
0t a

)
such that a is a positive integer. Then, we will say that a

is the side of G(M) and G(B) its projection over en. Moreover, we will call G(M) a lift
of G(B).

In particular, any lattice graph can be considered to be generated by its unique Hermite
matrix, which may be convenient as Examples 2.1.8 and 2.1.9 attempt to show. Before
stating the examples, the Hermite normal form of a matrix is recalled.

Definition 2.1.7. A matrix H is said to be in Hermite normal form if it is upper triangular,
has positive diagonal and each Hi,j with j > i lies in a complete set of residues modulo
Hi,i.

Definitions 2.1.6 and 2.1.7 allow to consider a helpful graphical visualization of any
lattice graph, that will also be used for routing in Subsection 2.3.2. First, lattice graphs
and their subgraphs can be seen as n-dimensional spaces whose dimensions are sized by
the elements in the principal diagonal of M . Each column vector in M represents a graph
dimension, signaling the point in the space at which a new copy of the tile induced by
M is located; this is important as column vectors dictate the pattern of the wrap-around
connections of each dimension.

Moreover, from the cardinal equality |G(M)| = |G(B)|a, the lattice graph G(M) can be
seen as composed of a disjoint copies of its projection G(B). One or several parallel cycles

2.1. DEFINITION OF LATTICE GRAPHS 19

connect these disjoint copies completing the adjacency pattern. The length of these cycles
can be computed as ord(en), which is the order of the element en in the group Zn/MZn.
According to [Fio87], the order of any element x can be computed as

ord(x) =
det(M)

gcd(det(M), gcd(det(M)M−1x))
.

Note that the second gcd (greatest common divisor) in the fraction corresponds to the
gcd of the elements of a vector. The number of vertices of each cycle lying in each copy of
G(B) can be calculated as the length of the cycle over the side of the graph, that is ord(en)

a
.

e1

e2

Figure 2.1: Two perpendicular cycles of length 8 in the RTT (4).

Example 2.1.8. The rectangular twisted torus[CMV+10] is a lattice graph of size 2a× a
and twist a; it is denoted as RTT (a). A graphical representation of RTT (4) can be seen in

Figure 2.1. This graph is generated by the matrix H =

(
2a a
0 a

)
and its side is a. Using

H, the graph can be seen as a mesh of 2a× a (h1,1 × h2,2). In the previous representation,
wrap-around links in e1 (first) dimension conserve their horizontality since h2,1 = 0;
wrap-around links in e2 (second) dimension do not conserve their verticality but suffer
a twist of a columns since h1,2 = a. According to Definition 2.1.6, the projection over
e2 of RTT (a) is a cycle of 2a nodes. As the side of RTT (a) is a, it will have a disjoint
cycles of 2a nodes. As ord(e2) (the element representing a jump in e2 dimension) is 2a,
the graph will have a parallel cycles of length 2a in that dimension. Each of these a cycles
contains two vertices of each projection.

e1

e2

e3

Figure 2.2: The cycle 〈e3〉 joining the disjoint copies of the projection.

20 CHAPTER 2. LATTICE GRAPHS

Example 2.1.9. Now, let M =

4 0 0
0 4 2
0 0 4

 and consider the lattice graph G(M). Note

that M is in Hermite form. G(M) can be seen as a 4× 4× 4 cubic grid whose side is also
4. Three sets of wrap-around links, each one connecting opposite faces, have to be added to
the grid-based cube. Wrap-around links in e1 always remain horizontal by construction, as
imposed by the n− 1 zeros in the first column vector of any Hermite matrix. Wrap-around
links in the e2 dimension remain vertical in this graph because m1,2 = 0 but, in general,
they can undergo only a twist over the e1 dimension of m1,2 units. Finally, wrap-around
links in the e3 dimension can undergo twists over both e1 and e2 dimensions. In the graph
of this example, no twist is applied in e3 over e1 because m1,3 = 0 and a twist of 2 units is
applied over the e2 dimension as m2,3 = 2. As can be seen in Figure 2.2, the projection of

G(M) is G(

(
4 0
0 4

)
), a 2D torus T (4, 4). Thus, the graph is composed of 4 disjoint copies

of its projection, each of them connected by a cycle of length 8, as represented in the figure.
Note that for every vertex in the graph there will be a similar cycle with the same pattern
as the one represented in the figure. The cycle intersects in two vertices with each copy of

the projection. For the sake of the clarity, only one cycle between copies of G(

(
4 0
0 4

)
) has

been represented.

Note that the projection can be over any ei, simply by swapping rows i and n (which
gives an isomorphic graph) and then, project over en. Moreover, as we will see later,
symmetries will make irrelevant over which dimension we project, so we will consider en
by default. The resulting projection can again be projected over another vector, which
results in a projection over a plane of the lattice graph. Clearly, projecting over a pair of
vectors {ei, ej} can be done in any order, since projecting first over ei and then over ej
results in the same graph as projecting first over ej and then over ei. Following the same
idea, we can project over several dimensions iteratively. Therefore, the result of projecting
iteratively over the vectors in the set {ei1 , . . . , eir} will be called the projection of G(M)
over the set. In this case we will call it an r-dimensional projection which turns into a
lattice graph generated by a (n− r)× (n− r) matrix.

Now, let us consider a new way of lifting lattice graphs. In this new operation, given two
lattice graphs we will look for another one which has them as projections but minimizing
the resulting degree.

Definition 2.1.10. The lattice graph G(M) is a common lift of G(M1) and G(M2) if both
can be obtained as projections of G(M).

Remark 2.1.11. There are several ways of obtaining different common lifts of two given
lattice graphs. A straightforward one is to consider the lattice graph G(M1⊕M2) generated
by the direct sum of the matrices. As we state next, this option leads to the Cartesian
product of the two given lattice graphs.

Lemma 2.1.12. G(M1 ⊕M2) is a common lift of G(M1) and G(M2) and G(M1 ⊕M2) ∼=
G(M1)�G(M2).

In addition, there exist other common lifts that obtain G(M1) and G(M2) as projections
but generating a lattice graph of smaller dimension. Note that this would be beneficial for
cost aspects, such as minimizing the degree of the network routers, and to provide a good
relation between the size of the graph and its projections.

2.2. SYMMETRIC LATTICE GRAPHS 21

Theorem 2.1.13. Given two lattice graphs G(M1) and G(M2), the lattice graph G(M1�M2)
is defined as follows: Let M1

∼= H1 and M2
∼= H2 with H1 and H2 in Hermite normal

form. Let C be the submatrix with the first common columns of H1 and H2. Then

H1 =

(
C RA

0 A

)
and H2 =

(
C RB

0 B

)
, where A and B are square matrices. Then

M1 �M2 =

C RA RB

0 A 0
0 0 B

 .

It is obtained that:

i) G(M1 �M2) is a common lift of G(M1) and G(M2)

ii) max{dim(G(M1)), dim(G(M2))} ≤ dim(G(M1 �M2)) ≤ dim(G(M1 ⊕M2))

Proof. The first item is obtained by construction. For the second one, consider max{dim(
G(M1)), dim(G(M2))} ≤ dim(G(M1 �M2)) = dim(G(M1)) + dim(G(M2))− dim(G(C)) ≤
dim(G(M1)) + dim(G(M2)) = dim(G(M1 ⊕M2))

Note that when the matrices M1 and M2 have no common columns, both G(M1 �M2)
and G(M1⊕M2) coincide. Moreover, by construction, the operation G(M1�M2) provides
a lift that minimizes its dimension. Although in Subsection 2.2.4 several examples will be
considered, the next one tries to clarify this definition.

Example 2.1.14. Let M1 and M2 the integral matrices defined by M1 =

(
2a 0
0 2a

)
and

M2 =

(
2a a
0 a

)
. Clearly, G(M1) is the 2D-torus of side 2a and G(M2) the RTT. Then if

we consider M1 �M2 =

2a 0 a
0 2a 0
0 0 a

, the resulting is a lattice graph of degree 6 having

both graphs as its projections.

2.2 Symmetric Lattice Graphs
Symmetry is a desirable property for any network as it impacts on performance and routing
efficiency. Many interconnection networks have been based on vertex-symmetric graphs,
but less attention has been devoted to edge-symmetric networks. Square and cubic tori
have been the networks of choice for many designs as they are symmetric (vertex and edge
symmetric). For this reason, symmetric lattice graphs will be considered in this section.

Symmetry is a desirable characteristic for any network as it has a big impact on
performance and router design complexity. In terms of performance, tori are clearly
superior to meshes that do not use wraparound edges which simplifies their planar design
at the price of losing vertex-symmetry. Many interconnection networks have been based
on vertex-symmetric graphs. In a vertex-symmetric graph, any node can “observe" the
same environment. This is the case of current parallel computers from Cray and IBM,
among others, that are built around torus networks.

Less attention has been devoted to edge-symmetric networks, that is, those in which
any link has the same surrounding environment. Square torus has been the network of

22 CHAPTER 2. LATTICE GRAPHS

choice for many designs as it is symmetric (vertex and edge symmetric). However, for
practical reasons such as packaging, modularity, cost and scalability, the number of nodes
per dimension might be different. These topologies are denoted as mixed-radix networks
in [DT03]. Mixed-radix tori have the drawback of being non-edge-symmetric which leads
to an imbalanced utilization of network links and buffers. For different commonly used
traffic patterns, the load on the longer dimension is higher than on the shorter one, and
hence, links in the longer dimension become network bottlenecks, [CMV+10].

It is important to state the following result as projections of symmetric graphs will be
considered later.

Theorem 2.2.1. The projections of a linearly symmetric lattice graph are all isomorphic.

Proof. Let proji(G(M)) denote the projection of G(M) over ei and Bn the n-dimensional
orthonormal basis. Clearly, proji(G(M)) is isomorphic to the subgraph of G(M) generated
by Bn \ {ei}. Since G(M) is symmetric there is an automorphism φ ∈ Aut(G(M)) such
that φ(ei) = ±ej . As ei is the only generator not in proji(G(M)), ej is the only generator
not in φ(proji(G(M))). Hence, as φ is an automorphism, it follows that proji(G(M)) ∼=
projj(G(M)).

Remember that all Cayley graphs are vertex-transitive, and therefore, a lattice graph
is symmetric if and only if it is edge-transitive. In Appendix A there is a characterization
of the matrices which generate symmetric lattice graphs for dimensions 2 and 3. For the
sake of clarity this result is also summarized here:

Theorem 2.2.2. Let M ∈ Z2×2. Then, the lattice graph G(M) is edge-transitive if and
only if it is isomorphic to G(M ′) for M ′ being one of the following matrices for some
a, b ∈ Z.

i)
(
a b
b a

)
,

ii)
(
a −b
b a

)
,

iii)
(
a −b
a b

)
,

iv)
(
a 2
0 2

)
,

v)
(

4 0
0 2

)
,
(

3 3
1 −1

)
or
(

3 1
1 2

)
.

Theorem 2.2.3. Let M ∈ Z3×3. Then, the lattice graph G(M) is linearly symmetric if
and only if it is isomorphic to G(M ′), for some a, b, c ∈ Z, where:

M ′ ∈


a c b
b a c
c b a

 ,

a b c
a c −b− c
a −b− c b

 .

2.2. SYMMETRIC LATTICE GRAPHS 23

These graphs are very interesting. The lattice graph generated by the matrix
(
a −b
b a

)
is isomorphic to the Gaussian graph generated by a+ bi. The family of Gaussian graphs
was introduced in [MBS+08] as a model for interconnection network topologies. This
family englobes the RTT as the case a = b. The lattice graphs generated by the matrices(
a b
b a

)
or
(
a −b
a b

)
are isomorphic to the Kronecker product of cycles as stated in the

following theorem:

Theorem 2.2.4. Let a, b ∈ Z. Then, the Kronecker product of the two cycles Ca × Cb is
isomorphic to:

• G(M), where M =

(
a+b

2
a−b

2
a−b

2
a+b

2

)
, if a and b are odd integers.

• Two disjoint copies of G(M), with M =

(
a
2
−b
2

a
2

b
2

)
, if a and b are even integers.

• G(M), with M =

(
a
2
−b

a
2

b

)
, if a is an even integer and b is an odd integer.

It is clear that the previous characterization gives us a broad family of symmetric

graphs. For the three-dimensional case, note that the side of the matrix

a c b
b a c
c b a

 is

gcd(a, b, c). Thus, maximizing the side implies without loss of generality that b, c ∈ {0,±a}.
This is exactly the case of cubic crystal lattices [Jan73], which are:

• Primitive Cubic Lattice:

a 0 0
0 a 0
0 0 a

.

• Face-centered Cubic Lattice:

a a 0
a 0 a
0 a a

.

• Body-centered Cubic Lattice:

−a a a
a −a a
a a −a

.

For the rest of the chapter there will be a focus on cubic crystal lattice graphs for three
major reasons. First, the projections of these lattice graphs are also symmetric. Moreover,
the fact that their side is maximum will provide an efficient routing algorithm. Finally,
the selection of this family of 3D symmetric lattice graphs exemplify how the previously
introduced graph operations can be applied to construct a wide variety of new topologies
for interconnection networks.

In the following the lattice graphs defined by the cubic crystal lattices will be consid-
ered, together with their isomorphisms with previously studied network topologies and a
comparison among them in terms of their distance properties.

Once detailed the special case of the cubic crystal graphs, their upgrading process can
be considered. As it has been asserted before, symmetry helps when an application runs

24 CHAPTER 2. LATTICE GRAPHS

Figure 2.3: The three Cubic Crystal Graphs: PC, FCC and BCC.

on the whole network. However, in big systems the user typically only has a partition of
the complete machine assigned. Therefore, looking for symmetry in higher dimensions
cannot be prioritized. Nevertheless, reducing the distance properties of the whole network
would be still beneficial since applications and system software sometimes run over the
entire network. Consequently, what will be looked for in higher dimensional networks is
to embed the previous crystal cubic lattice graphs. Therefore, two more subsections are
included in which two different methods for upgrading cubic crystal lattice graphs are
explored. The first one is to consider the lifting of crystal graphs, which results in 4D
topologies. Whenever possible, the lift is done in such a way that the resulting eight-degree
topology preserves symmetry. Furthermore, it will be introduced a tree that represents
the process of network upgrading, preserving symmetry.

2.2.1 Cubic Crystal Lattice Graphs

The Primitive Cubic Lattice Graph PC(a) is defined as the lattice graph generated
by the matrix associated with the primitive cubic lattice, that is:a 0 0

0 a 0
0 0 a

 .

Clearly, the number of nodes of the graph is a3, which is the determinant of the diagonal
matrix. Clearly, PC(a) is isomorphic to the 3D torus of side a, or equivalently, the a-ary
3-cube.

Lemma 2.2.5. The projection of PC(a) is the 2D torus graph of side a or G(

(
a 0
0 a

)
).

The Face-centered Cubic lattice graph FCC(a) of side a can be defined as the
lattice graph generated by the matrix associated with the face-centered cubic crystal
lattice, that is: a a 0

a 0 a
0 a a

 ∼=
2a a a

0 a 0
0 0 a

 . (2.1)

The number of nodes of the graph is | det(M)| = 2|a|3.

2.2. SYMMETRIC LATTICE GRAPHS 25

Lemma 2.2.6. The projection of FCC(a) is the rectangular twisted torus graph of side a,
RTT (a).

Proof. After performing Gaussian elimination, as in the previous expression (2.1), it is
obtained the Hermite form of the matrix. Then it is immediate to see that its projection

is generated by
(

2a a
0 a

)
. As it has been seen before and it was proved in [CMB13], this

graph is isomorphic to the rectangular twisted torus RTT (a) of side a or the Gaussian
graph generated by a+ ai [MBS+08].

A FCC(a) is isomorphic to the prismatic doubly twisted torus of side a (PDTT (a)),
introduced in [CMV+10], as the next proposition proves.

Proposition 2.2.7. FCC(a) is isomorphic to the prismatic doubly twisted torus of side
a, PDTT (a).

Proof. The PDTT (a) was defined in [CMV+10] as a graph in which the connectivity of
each plane is a RTT (a), hence the isomorphism is immediate once it has been proved
that all the projections of FCC(a) are isomorphic to RTT (a). Note that this fact can be
inferred from Lemma 2.2.6 and Theorem 2.2.1.

The Body-centered Cubic lattice graph BCC(a) of side a can be defined as the
lattice graph generated by the matrix:−a a a

a −a a
a a −a

 ∼=
2a 0 a

0 2a a
0 0 a

 . (2.2)

The number of nodes of the graph is 4a3. As far as we know, this graph has not previously
been considered for interconnection networks. However, as it will be seen later, the graph
not only meets the symmetry requirements but also has a better nodes/diameter ratio
than PC and FCC, as it will be explained later. Moreover, it embeds 2D symmetric tori
as is proved in:

Lemma 2.2.8. The projection of BCC(a) is the 2D torus graph T (2a, 2a)

Proof. Performing Gaussian elimination as in expression (2.2) shows that the projection

of BCC(a) is the lattice graph generated by the matrix
(

2a 0
0 2a

)
, which is the 2D torus

of side 2a.

A graphical representation of the three topologies introduced in this subsection is
presented in Figure 2.3.

2.2.2 Cubic Crystal Lattice Graph Comparison

Among the three different 3D symmetric topologies based on cubic crystal lattices, two
of them—the 3D torus or PC and the PDTT or FCC—were previously known, and the
last one, that is the BCC, is a new proposal introduced in this chapter. In the remainder
of this subsection, our aim is to consider their distance properties and to perform a first
comparison in terms of diameter, average distance and projections.

26 CHAPTER 2. LATTICE GRAPHS

First of all, it is important to highlight that a cubic crystal lattice graph exists for any
number of nodes that is a power of two. This is significant because it allows to gracefully
upgrade a network in three steps while conserving symmetry. If t is a positive integer,
then:

• There exists a primitive cubic lattice graph with 23t nodes.

• There exists a face-centered cubic lattice graph with 23t+1 nodes.

• There exists a body-centered cubic lattice graph with 23t+2 nodes.

Although this fact provides practical versatility, it complicates the comparison among
networks. The following expressions for average distance of the three crystals have been
calculated under the assumption that 8k̄(| det(M)|−1) is a polynomial and computationally
checked for a number of nodes up to 40, 000.

PC(a) has average distance

k̄ =

{
3a4

4(a3−1)
if 2|a and

3a4−3a2

4(a3−1)
if 26 |a.

FCC(a) has average distance

k̄ =

{
7a4−2a2

4(2a3−1)
if 2|a and

7a4−2a2−1
4(2a3−1)

if 26 |a.

BCC(a) has average distance

k̄ =

{
35a4−8a2

8(4a3−1)
if 2|a and

35a4−14a2+30
8(4a3−1)

if 26 |a.

In Table 2.1 the distance properties for the three graphs are summarized. For an easier
comparison, note that average distance values are given as approximations. Mixed-radix
torus graphs that have the same number of nodes of the FCC and BCC crystals have been
also added in the table for comparison. Clearly, crystals have better distance properties
than their corresponding torus networks. Moreover, BCC is more dense than the other
two cubic crystals in the sense that for the same diameter, it attains a greater number of
nodes. Finally, as we have seen in previous subsections, while FCC has the twisted torus
as its projection, both PC and BCC are lifts of a 2D symmetric torus graph.

Having considered distance-related parameters for comparing crystals, let us also take
into account other topological parameters to complete the study. As said in Section 1.6,
the bisection bandwidth is commonly used to evaluate a topology. However the work in
[CMV+10] showed that it is not a tight bound for network throughput in twisted topologies.
Indeed, the same happens with any non-torus lattice graph.

Hence, for symmetric lattice graphs is better to use the bound based on the average
distance given in Equation (1.1). For lattice graphs, ∆ = 2n where n is the number of

dimensions. Hence, in FCC(a), maximum throughput will be bounded by
48

7a
and in

BCC(a) by
192

35a
. Nevertheless, the previous count cannot be applied to edge-asymmetric

networks such as mixed-radix tori. In that case, it can be seen that throughput is inversely

2.2. SYMMETRIC LATTICE GRAPHS 27

Topology Nodes Diameter Average Distance

PC(a) a3 3
⌊
a
2

⌋
≈ 3

4
a = 0.75a

T (2a, a, a) 2a3 a+ 2
⌊
a
2

⌋
≈ a

FCC(a) 2a3
⌊

3
2
a
⌋

≈ 7
8
a = 0.875a

T (2a, 2a, a) 4a3
⌊

5
2
a
⌋

≈ 5
4
a = 1.25a

BCC(a) 4a3
⌊

3
2
a
⌋

≈ 35
32
a = 1.09375a

Table 2.1: Distance properties of cubic crystal lattice graphs.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0.5

1

1.5

2

N

l

PC
FCC
BCC

Figure 2.4: Maximum injected phits/cycle/node to each even network size N = | det(M)|.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

7.8

8

8.2

8.4

8.6

8.8

N

l
3√
N

PC
FCC
BCC

Figure 2.5: l 3
√
N to each even network size N = | det(M)|. Quotients are preserved.

28 CHAPTER 2. LATTICE GRAPHS

proportional to the maximum average distance per dimension, namely
∆

nk̄max
, as inferred

from [CMV+10]. Network throughput for both T (2a, a, a) and T (2a, 2a, a) is bounded by
12

3a
=

4

a
as k̄max ≈

a

2
, given that their longest dimensions are 2a-node rings. This leads to

an improvement in maximum throughput under uniform traffic of 71% when comparing
FCC(a) to T (2a, a, a) and 37% for BCC(a) versus T (2a, 2a, a).

Being symmetric has more positive impact when the number of nodes is 2a3. In
T (2a, a, a), when the links in the longest dimension are fully utilized, links in the other
two shortest dimensions are used at 50%. This is because, on average, the length of the
paths in the longest dimension doubles the length of the shortest ones. When the number
of nodes is 4a3, T (2a, 2a, a) uses its resources better as only links in one dimension operate
at half rate.

Since network throughput under uniform traffic is bounded by an expression on the
side of the lattice graph, it is possible to make a graphical comparison of crystal graphs.
In first place, Figure 2.4 shows for different network sizes N = | det(M)| this theoretical
load l injected under uniform traffic. After a normalization, Figure 2.5 shows the amount
l 3
√
N instead of l; value chosen to make each curve converge to some constant. Note that

for each graph size, the quotient between these amounts is the same as the quotient of the
loads themselves. Thus, this shows that BCCs are about 9% more efficient under uniform
traffic than PCs.

2.2.3 Symmetric Lifts of Cubic Crystal Graphs

First, there is a straightforward way of lifting a PC(a) to 4D, which is the Cartesian
product of the PC by one cycle of length a, thus obtaining the generator matrix

a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

 .

The 4D torus generated by the previous matrix is a symmetric lift of PC(a). However,
the lifting technique can be used to embed the symmetric 3D torus in a different lattice
graph. The body centered hypercube lattice graph will be denoted as 4D-BCC, that is,
the lattice graph generated by the matrix

2a 0 0 a
0 2a 0 a
0 0 2a a
0 0 0 a

 .

Proposition 2.2.9. 4D-BCC(a) is a symmetric lattice graph of side a and projection
PC(2a).

Proof. Let φ be defined by φ(ei) = ei+1 (mod n). The matrix associated to the function

φ is P =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

. As Q = M−1PM =


0 0 −1 0
1 0 −1 0
0 1 −1 0
0 0 2 1

 is an integer matrix, it is

concluded that φ is an automorphism of 4D-BCC (by Theorems A.3.1 and A.3.2). In

2.2. SYMMETRIC LATTICE GRAPHS 29

the group generated by φ there are enough automorphisms to provide the edge-symmetry.
It should be noted that the projection is straightforward as the matrix is triangular
superior.

Now, to obtain a lift of the FCC, there are two ways of doing so which make the lifted
graph symmetric. The first one will be denoted as 4D-FCC (4-dimensional face-centered
cubic lattice graph), that is, the lattice graph generated by the matrix

2a a a a
0 a 0 0
0 0 a 0
0 0 0 a

 .

Proposition 2.2.10. 4D-FCC(a) is a symmetric lattice graph of side a whose projection
is a FCC(a).

Proof. Exactly like the proof of Proposition 2.2.9; the matrix Q = M−1PM is different
but still with integer entries.

The second way to lift a FCC is introduced below.

Proposition 2.2.11. The lattice graph generated by the matrix


a −a −a −a
a a −a a
a a a −a
a −a a a

 is a

symmetric lifting of the FCC(2a).

Proof. First, the following two matrices are right-equivalent:
a −a −a −a
a a −a a
a a a −a
a −a a a

 ∼=


2a −2a 0 −a
0 2a −2a a
2a 0 2a −a
0 0 0 a


Hence, the corresponding lattice graphs are isomorphic. Note that the (4, 4)-minor

corresponds with the generating matrix of FCC(2a). Finally, for symmetry, the procedure
described in the proof of Proposition 2.2.9 is repeated.

This second lifting relates the graphs obtained to the family of Lipschitz graphs and
quaternion algebras, introduced in [MBG09], for obtaining perfect codes over 4D spaces.
This graph will be denoted as Lip(a). Specifically Lip(a) ∼= Cay(H[Z]

(a+ai+aj+ak)H[Z]
; {±1,±i,

±j,±k}), where H[Z] are the integer quaternions and 1, i, j, k the quaternion units.
Finally, there are several ways of lifting the BCC, although none of them preserves

symmetry as proved in the next theorem.

Theorem 2.2.12. Any lift of BCC yields a non-edge-symmetric graph.

Proof. Let M =

2a 0 a
0 2a a
0 0 a

, BCC(a) ∼= G(M). Assume that there exists a symmetric

lift G(L) of BCC(a), where

L =


2a 0 a x
0 2a a y
0 0 a z
0 0 0 t



30 CHAPTER 2. LATTICE GRAPHS

(
1
)

(
1 0
0 1

)




1 0 0
0 1 0
0 0 1




PC




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




4D-PC




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




5D-PC




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




6D-PC




2 0 0 0 0 1
0 2 0 0 0 1
0 0 2 0 0 1
0 0 0 2 0 1
0 0 0 0 2 1
0 0 0 0 0 1




6D-BCC




2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 1




5D-BCC




2 0 0 1
0 2 0 1
0 0 2 1
0 0 0 1




4D-BCC




2 0 1
0 2 1
0 0 1




BCC

(
2 1
0 1

)




2 1 1
0 1 0
0 0 1




FCC




2 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1




4D-FCC




2 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




5D-FCC




2 1 1 1 1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




6D-FCC




4 2 2 2 2 1
0 2 0 0 0 1
0 0 2 0 0 1
0 0 0 2 0 1
0 0 0 0 2 1
0 0 0 0 0 1







4 2 2 2 2 3
0 2 0 0 0 1
0 0 2 0 0 1
0 0 0 2 0 1
0 0 0 0 2 1
0 0 0 0 0 1







4 2 2 1
0 2 0 1
0 0 2 1
0 0 0 1




Lip




4 2 2 3
0 2 0 1
0 0 2 1
0 0 0 1


'

'

Figure 2.6: Tree showing lifts and projections of cubic crystal graphs up to dimension 6.

is in Hermite form, i.e., 0 ≤ x, y < 2a and 0 ≤ z < a. For symmetry, the gcd of every row
must be the same (map ei into en and Gauss-reduce), hence t divides all the other entries
of L and without loss of generality it can be assumed that t = 1. By Theorems A.3.1 and
A.3.2 it is known that automorphisms are matrices P satisfying the condition that L−1PL
is an integer matrix where P is unitary and has only ±1 entries. Both, the sets of these
matrices that would give edge-transitivity, and the possible lifts, are finite. Hence it is
possible to run a computation that gives the negative result.

As it has been concluded before, there is no decisive interest in obtaining a symmetric
graph in 4D such that its 3D partitions remain themselves symmetric. Therefore, it is of
interest to explore which of the lattice graphs whose projection is a BCC would be the
most interesting.

Figure 2.6 summarizes how the previous constructions can be generalized to any number
of dimensions. The procedure is represented in a tree. In this tree, nodes are the matrices
of the lattice graphs. Note that, for an easier visualization, matrices have been normalized
by multiplying by 1

a
. Hence, each child is a lift of its parent. Moreover, lift are restricted

to those whose side is greater or equal to the half of the side of its projection, otherwise
many more graphs would appear.

The root of the tree is the matrix associated with a cycle. The lifts of the cycle
conserving symmetry, and fulfilling the restrictions mentioned above, are the torus and the
RTT introduced in Section 2.1. Then, as it has been seen in Section 2.2, the cubic crystal
lattice graphs are lifts of these two. The two branches show that only two families are
obtained. The left branch consists of the infinite family of symmetric tori or n-dimensional
PCs; and each nD-PC has a nD-BCC sibling that is a leaf, without any further symmetric
lift. The right branch is the family of the n-dimensional FCCs; the nD-FCC always has
the (n+ 1)D-FCC as a symmetric lift. Moreover, there are some dimensions (4 and 6 in
the figure) in which a different lift exists. Interestingly, two non-right-equivalent matrices

2.3. ROUTING IN LATTICE GRAPHS 31

generate isomorphic graphs (denoted with '). The two branches in the tree are really
different and, as it is shown next, they can be used to obtain new hybrid lattice graphs.

2.2.4 Hybrid Graphs: Common Lift of Crystal Graphs

In this subsection a different approach for embedding crystal graphs is considered, that is,
to create common lifts that do not necessarily combine symmetric graphs. As shown in
the next example, to handle graphs using the � operator that belong to the same branch
of the tree in Figure 2.6 has some advantages.

Example 2.2.13. The first one is the hybrid graph obtained as a common lift of the
PC(2a) and BCC(a). The calculation described in the Theorem 2.1.13 leads to the matrix

2a 0 0
0 2a 0
0 0 2a

�
2a 0 a

0 2a a
0 0 a

 =


2a 0 0 a
0 2a 0 a
0 0 2a 0
0 0 0 a

 ,

which corresponds to a 4D lattice graph. On the other hand, when making the common lift
of PC(2a) and FCC(a) it is obtained the matrix

2a 0 0
0 2a 0
0 0 2a

�
2a a a

0 a 0
0 0 a

 =


2a 0 0 a a
0 2a 0 0 0
0 0 2a 0 0
0 0 0 a 0
0 0 0 0 a

 ,

which generates a 5D lattice graph. In this case, the common lift has one extra dimension
since the graphs considered belong to different branches of the tree (Figure 2.6). The same
happens with the mix FCC(a) and BCC(a), as shown next:

2a a a
0 a 0
0 0 a

�
2a 0 a

0 2a a
0 0 a

 =


2a a a 0 a
0 a 0 0 0
0 0 a 0 0
0 0 0 2a a
0 0 0 0 a

 .

Finally, in Table 2.2 it is presented a selection of lattice graphs composed following
the guidelines presented in this section. The table also includes their main topological
characteristics. Depending on the focus some of them outperform the others. For example,
when looking for a 4-dimensional topology that embeds tori networks, 4D-BCC(a) and
PC(2a)�BCC(a) must be considered. Both topologies equal their number of nodes, so if it
is desired to minimize distance properties, 4D-BCC(a) should be a good candidate. On the
other hand, if there is interest on 5 dimensions and a great number of different embedded
topologies, PC(2a)�FCC(a) would be a good choice having a good nodes/distance ratio.
Therefore, what these examples show is that there is a wide range of possibilities that
provides the previous �-operation.

2.3 Routing in Lattice Graphs
Most interconnection networks use routing tables but their size can compromise system
scalability. In this section routing algorithms for lattice graphs are presented. In this way,

32 CHAPTER 2. LATTICE GRAPHS

Topology Dimension Nodes Projection Diameter Average Dist.
T (2a, 2a)�RTT (a) 3 4a3 vary 2a ≈ 1.14877a
4D-FCC(a) 4 2a4 FCC(a) 2a ≈ 1.10396a
4D-BCC(a) 4 8a4 T (2a, 2a, 2a) 2a ≈ 1.5379a
Lip(a) 4 16a4 FCC(2a) 3a ≈ 1.815a
PC(2a)�BCC(a) 4 8a4 vary 2.5a ≈ 1.59715a
PC(2a)� FCC(a) 5 8a5 vary 3.5a ≈ 1.87856a
BCC(a)� FCC(a) 5 4a5 vary 2.5a ≈ 1.52522a

Table 2.2: Distance properties of several lattice graphs.

algorithmic routing can be used to avoid the need of tables. If tables are going to be used,
the algorithms presented can be employed to fill them.

Routing in circulant graphs was first related to the Closest Vector Problem (CVP) in
[CHM+99] for the l1-norm. Later, this fact was used to optimize a routing algorithm for
circulant graphs of degree four in [GGI+05]. Following the same ideas, similar complexity
for the CVP can be inferred for routing in lattice graphs. As proved in [DV12] and [DV13],
CVP can be solved with asymptotical complexity 2O(n). However, algorithms for particular
graphs can have lower complexity.

In order to solve the routing problem over lattice graphs there is the need to state
which labelling set will be applied. A labelling set is the set that contains the labels for
the vertices of the graph. There are many choices for the labelling set. In the 2D case,
several approaches to the routing problem have been made in [FB10, Rob96, CMB13]. In
those articles, several labellings such as the one given by the fundamental parallelepiped of
the lattice, the set of integers modulo N or the set of minimum norm residues have been
considered. Anyway, for labelling a lattice graph of dimension n, a subset of Zn will be
needed.

Definition 2.3.1. Given a lattice graph G(M) of dimension n a labelling set of the graph
is a set L ⊂ Zn such that |L| = | det(M)| and for every pair l1, l2 ∈ L if l1 6= l2 then
l1 6≡ l2 (mod M).

If vs,vd ∈ L, where vs labels the source node and vd labels the destination node, any
vector r ∈ Zn will be called a routing record when

vd − vs ≡ r (mod M)

with vd − vs ∈ Zn such that

vd − vs ∈ L − L = {x− y | x,y ∈ L}.
Each component of a routing record indicates the number of hops in the corresponding

dimension and its sign, the direction of the hops. The length of a path associated with a
routing record is given by its l1-norm:

|r| =
∑
i

|ri|

As minimal routing requires shortest paths, minimum norm routing records should be
obtained. Hence, the routing problem over G(M) can be stated as follows:

2.3. ROUTING IN LATTICE GRAPHS 33

input: v:=vd − vs ∈ L − L
output: arg min

r≡v (mod M)

(|r|)

where arg min states for the element in the set {r ∈ Zn | r ≡ v (mod M)} minimizing |r|.
The integral points inside the fundamental parallel give a very useful labelling. For

Gaussian integers it was already considered by Huber in [Hub94].

Theorem 2.3.2. Let M be an integral matrix. The sets

P = {x ∈ Zn | 0 ≤ (adj(M)x)i < | det(M)|, for 1 ≤ i ≤ n}

and
P0 = {x ∈ Zn | −| det(M)| ≤ 2(adj(M)x)i < | det(M)|, for 1 ≤ i ≤ n}

are both sets of representatives of Zn/MZn, where adj(M) = det(M)M−1 is the adjoint
matrix of M .

Proof. Geometrically, the set P is the parallelepiped with vertices in the sum of a subset
of columns of M . In order to see that for any x ∈ Zn there is a unique x′ ∈ P such that
x ≡ x′ (mod M), apply Euclidean division on adj(M)x. Thus, it is obtained that for
some unique integer vectors y and k, adj(M)x = y + k det(M) with 0 ≤ yi < | det(M)|.
Then x′ = x−Mk = adj(M)−1y satisfies both x′ ∈ P and x ≡ x′ (mod M).

The second set, P0, is then obtained by shifting this parallelepiped to center it at the
origin.

Another useful set of representatives is the one of minimum distances. This is,

M = { arg min
r≡x (mod M)

(|r|) | x ∈ Zn}. (2.3)

The interest of this set is clear from the fact that routing can be thought as function from
L − L intoM. This set was already used for Gaussian integers in [FG04].

From a design perspective, it is convenient to label the graph nodes according to their
positive coordinates. Hence, it is interesting to consider the labelling given by the Hermite
normal form of the generating matrix. Therefore, let H be the Hermite normal form of M
and define the set of representatives

H = {x ∈ Zn | 0 ≤ xi < Hi,i}. (2.4)

In the following subsections it will be seen that for the 2D case, lattice reduction solves
the problem of routing and additionally gives expressions for the diameter and average
distance. Later a hierarchical routing algorithm is presented, which although it has been
thought for the crystal graphs, it also works for general lattice graphs.

2.3.1 Distance Properties and Routing of 2D Lattice Graphs

This subsection summarizes the routing and distance properties of 2D lattice graphs. A
more extensive discussion can be found in [Cam10] and [CMB13].

With a variation of the concept of reduced lattice basis from [KS96] it was obtained
that:

34 CHAPTER 2. LATTICE GRAPHS

Theorem 2.3.3. For any matrix M ∈ Z2×2 there exists another M ′ =

(
a b
c d

)
such that

G(M) ∼= G(M ′) and

|c|, |b| ≤ d ≤ a,

2b+ c ≤ a,

2c+ b ≤ d,

0 ≤ b+ c.

The matrix M ′ is called positive-reduced.

This positive-reduced matrix can be exploited to get expressions for the diameter and
average distance.

Theorem 2.3.4. If M =

(
a b
c d

)
is a positive-reduced matrix and δ is defined as

δ =

⌊
a− b− c+ d

2

⌋
.

Then, the diameter k of G(M) is

k =

{
δ − 1 if b = −c, N ≡ 1 (mod 2) and a ≡ d (mod 2);
δ otherwise.

Example 2.3.5. The previous theorem provides a closed expression for the diameter of
any 2D lattice graph. In addition, it generalizes some other results that can be found in
the literature. For Gaussian networks, [Mar07], the diameter of Ga+bi is a when a2 + b2 is
even and a− 1 otherwise. This can be easily obtained from our result by realizing that the

matrix
(
a −b
b a

)
is, by default, a positive-reduced one.

In [TP94], the diameter of the Kronecker product of two cycles of odd lengths a and
b, with a ≥ b, was described. As shown in Theorem 2.2.4, the resulting graph can be

seen as the 2D lattice graph with matrix
(
a+b

2
a−b

2
a−b

2
a+b

2

)
=

(
p q
q p

)
with 0 ≤ q ≤ p, which

needs, at most, one division to make it positive-reduced. Clearly, when 3q ≤ p the matrix
is positive-reduced, thus obtaining a diameter of k = p − q = b (or k = b − 1 if q = 0).

Otherwise, the matrix
(
p+ s(p− q) p− q
s(p− q)− q p− q

)
is the positive-reduced of M for some integer

s, obtaining k =
⌊
p+q

2

⌋
=
⌊
a
2

⌋
. Consequently, the diameter is

k =

{
max{b,

⌊
a
2

⌋
} if a > b

b− 1 if a = b
.

For the Kronecker product of cycles of lengths with even parities (or even and odd,
respectively), we have not found previous expression in the literature but they can be easily

obtained by considering their matrix
(
a −b
a b

)
with a ≥ b; consequently, k = a.

The labelling with minimum distances given by Equation (2.3) can be seen in Figure 2.7.
All the regions in the figure can be expressed as differences of triangular numbers, and
hence, the average distance can be computed:

2.3. ROUTING IN LATTICE GRAPHS 35

d+|b|
2d−|b|

2
a+|c|

2

a−|c|
2

d+|b|
2

d−|b|
2

a+|c|
2

a−|c|
2

d+|b|
2 d−|b|

2

a+|c|
2

a−|c|
2

Figure 2.7: Representations with minimum norm, respectively for b < 0, c < 0 and 0 < b, c.

Theorem 2.3.6. Let M =

(
a b
c d

)
be a positive-reduced matrix. Then, the average

distance k̄ of G(M) is given by

12(| det(M)| − 1)k̄ =− 6bcd− 6abc+ 3a2d+ 3ad2

− 3ab2 + 6b2c+ 6bc2 − 3c2d

+ 4b3 − 4b if b > 0

+ 4c3 − 4c if c > 0

− 3d if a 6≡ c (mod 2)

− 3a if b 6≡ d (mod 2)

+ 6b+ 6c

{
if a 6≡ c (mod 2)

∧ b 6≡ d (mod 2).

The minimum labelling depicted in Figure 2.7 can be employed in a geometrical routing.
LetM be the minimum distance labelling of the lattice graph G(M). It is known that
there is a small set S depending only on M with |S| ≤ 11 such that for any x,y ∈ M
there is r ∈M and s ∈ S such that y − x = r +Ms. Thus, routing in 2D lattice graphs
can be approached by Algorithm 1. The set S depends on the tilling with copies ofM. Its
cardinal is usually 7 or 9 but it can get up to 11 because of non-convexity ofM. When M
is positive-reduced the elements of S have the absolute value of its entries bounded by 2.

Algorithm 1: Routing record in 2D lattice graphs.
Input: Generator matrix M ∈ Z2×2

Precomputed set S with |S| ≤ 11 that depends only on M
v,w ∈ Z2 with minimum l1-norm

Output: r ∈ Z2 with minimum l1-norm and r ≡ w − v (mod M)
R:={w − v +Ms | s ∈ S};
r:=arg min l1-norm(x) for x ∈ R;
return r;

Example 2.3.7. This example shows how the routing Algorithm 1 performs in a particular

36 CHAPTER 2. LATTICE GRAPHS

2D lattice graph G(M) given by M =

(
2 −9
3 10

)
. Figure 2.8 shows the representation of

this 2D lattice graph in minimum norm representation.

Note that the positive-reduced of M is the matrix M ′ =

(
15 2
−1 3

)
. Using the matrix

M ′ as generator the minimal set S is S = {0,±e1,±e2,±(e1−e2)} Now, in order to route

from a node vo =

(
−6
2

)
to a node vd =

(
−2
1

)
of G(M), it must be found a representative

r with minimum norm of vd − vo =

(
4
−1

)
. Therefore, it is computed

R = {vd − vo +M ′s | s ∈ S}

=

{(
6
2

)
,

(
19
−2

)
,

(
−9
3

)
,

(
4
−1

)
,

(
17
−5

)
,

(
−11

0

)
,

(
2
−4

)}
.

Finally, the one with minimum l1-norm is r =

(
4
−1

)
, which corresponds to the routing

record. In Figure 2.9 a drawing of the graph and the tessellation usingM as tiles. Note
that the 7 tiles given by the set S are enough to cover the set in grey color, which correspond
to the set of differences of the minimum norm labellings.

Figure 2.8: Routing example of a packet in a 2D lattice graph with minimum norm
labelling.

Although Algorithm 1 already has constant complexity, for some cases there are more
elegant algorithms with a lower constant. For example, the routing in a 2D torus T (a1, a2)
can be done by two comparisons or explicitly by r = (rem(x+ a1

2
, a1)− a1

2
, rem(y+ a2

2
, a2)−

a2

2
)t, and the routing in RTT (a) can be done by Algorithm 2.

Algorithm 2: Routing in RTT (a).
Input: x, y := vd − vs
Output: r routing record
p := rem(x+ y + a, 2a);
q := rem(y − x+ a, 2a);
x′ := (p− q)/2;
y′ := (p+ q − 2a)/2;
r := (x′, y′)t;

2.3. ROUTING IN LATTICE GRAPHS 37

Minimum norm labeling V
V − V
covering Voronoi tiles
origin vo

destination vd
vd − vo

Figure 2.9: Routing in a 2D lattice graph with minimum norm labelling.

2.3.2 A Hierarchical Routing for Lattice Graphs

Now, a routing algorithm is proposed based on the hierarchy induced by the projecting
operation. The idea is that routing in a lifted graph can be done by routing in its projection
and in the cycle that joins the disjoint projections. First, the node labelling to be adopted
is stated and then the general hierarchical routing is presented. Finally, complexity and
implementation aspects are considered.

Remember that the lattice graph G(M) with M ∼=
(
B c
0 a

)
has a disjoint copies of

its projection G(B) embedded, which are connected by | det(M)|
ord(en)

parallel cycles. The cycles
have length ord(en). The number of vertices belonging to a cycle that lies in the same copy
of G(B) is ord(en)

a
. Hence, the elements of the routing record can be considered separately

in the following way:

Proposition 2.3.8. Let M ∼=
(
B c
0 a

)
. Then, a labelling set LM of the lattice graph

G(M) can be obtained from a labelling set LB of its projection G(B) as

LM =

{(
x
y

)
| x ∈ LB, 0 ≤ y < a

}
.

If this is done recursively, then the labelling obtained is the one defined by Equa-
tion (2.4), denoted by H. Now, it is possible to give the following main result:

Theorem 2.3.9. If [G(B)]y is the projection G(B) of G(M) that contains yen, C denotes
the cycle generated by en and, given a vertex v ∈ Zn, v + C denotes the translation of the
cycle to this vertex. Algorithm 3 gives minimum routing records in any lattice graph.

38 CHAPTER 2. LATTICE GRAPHS

Algorithm 3: Hierarchical routing in lattice graphs.
Input: vs source, vd destination
Output: r minimum routing record from vs to vd
Let y be the last component of vd;
vs + C is the cycle translated to vs;
foreach vertex ci of the cycle in the copy [G(B)]y do

rCi : Route in the cycle from vs to vertex ci;
r
G(B)
i : Route in [G(B)]y from ci to vd;

end

Return the routing record that minimizes the weight of
(
r
G(B)
i

rCi

)
;

Proof. Since the algorithm composes routing records from two subgraphs, then the result
is indeed a routing record.

In order to see that the minimum one is found, let rmin be one of the routing records
with minimum norm. Since vs + rmin

n is in the cycle mentioned in the algorithm, then
there is an index i such that rmin

n is the minimum route in the cycle from vs to ci. As rmin

is minimal, the minimal routing from ci to vd does not use the n dimension. Thus, routing
in [G(B)]y gives the minimum. By composing both, the algorithm finds the minimum
routing rmin and returns it or another one with same norm.

Remark 2.3.10. In the last step of Algorithm 3 there can sometimes be several routing
records with the same weight. In this case it is advisable to choose one of them at random,
thus balancing the use of the paths.

Remark 2.3.11. Let G(M) be a lattice graph with M ∼=
(
B c
0 a

)
. Clearly, the complexity

of Algorithm 3 is O(C ord(en)
a

), where C denotes the complexity of routing in [G(B)]y. If
routing is done with the same algorithm by means of recursive calls, the final complexity
would be O(

∏n
i=1

ord(ei,Mi)
ai

), where Mi are the successive projections, ai denotes the side of
G(Mi) and ord(ei,Mi) the order of ei in G(Mi). In the worst case, this complexity would
attain O(det(M)n). However, in some families the order of ei is upper bounded, thus
obtaining good complexities for this recursive version of the routing algorithm, as it will be
seen in the following section.

Routing Discussion of Crystal Lattice Graphs

The above ideas can be used to calculate the routing complexity for the crystal lattice
graphs and its lifts. As it has be seen, ord(en)

a
determines the number of intersections of the

cycle with the destination projection, which dictates the number of nested routing calls.
First, ord(en)

a
= 1 in nD-PC. Second, ord(en)

a
= 2 in nD-BCC and nD-FCC. Clearly,

these are constant values, which imply just one or two calls to the routing of dimension
n− 1 in Algorithm 3. Therefore, if the algorithm is used in a recursive form, it follows
that:

• The routing in nD-PC can be done immediately with n comparisons in parallel.

• The hierarchical routing in nD-BCC requires 2 calls to the routing algorithm for
(n− 1)D-PC.

2.3. ROUTING IN LATTICE GRAPHS 39

• The hierarchical routing in nD-FCC requires 2 calls to the (n− 1)D-FCC, which
accumulates into 2n−2 calls to 2D-FCC or RTT. These last routing calls will be
performed by Algorithm 2.

As it was seen in Subsection 2.1.1, hybrid graphs are obtained as common lifts of
different lattice graphs. Therefore, given a hybrid graph G(M) there would be several
possible lattice graphs that could be considered as its projection. Since the heaviest
computation part in Algorithm 3 corresponds to the routing calls in the projection, that
projection should be carefully chosen. For example, let G(M) be given by

M =


2a 0 0 a
0 2a 0 a
0 0 2a 0
0 0 0 a

 .

This graph, as previously seen, is obtained as the common lift of PC(2a) and BCC(a).
Clearly, taking BCC(a) as the projection, would complicate the routing function. Hence,
PC(2a) should be chosen as projection, in which dependencies among dimensions do not
exist and routing will be less laborious.

Now, Algorithm 3 is specialized for cubic crystal graphs; stating precisely the operations
to work with the labelling H, defined in Equation (2.4). Since routing in PC is widely
known, only the particular cases of FCC and BCC are considered.

As it has been previously seen, FCC(a) is defined as the lattice graph generated by2a a a
0 a 0
0 0 a


is isomorphic to the PDTT presented in [CMV+10], where a generic graph routing was

used. As can be observed, its projection is the graph with matrix
(

2a a
0 a

)
, denoted

as RTT (a) in [CMV+10]. It is easy to verify that the order of en is 2a, which implies
that the cardinal of the intersection between vs + C and [G(B)]y is 2, that is, two calls to
routeB are needed. Using this mechanism Algorithm 4 is obtained for FCC(a). Note that
the product by a Boolean is defined as a · true = a and a · false = 0. An algorithm for
routing in the projected 2D graph can be seen in Algorithm 2 and it has been introduced
in [CVM+13].

Remark 2.3.12. When a is a power of 2, the starting arithmetic operations are easier to
calculate as rem(y, a), rem(z, a) and rem(x̂, 2a).

Example 2.3.13. As an example consider the lattice graph FCC(4). The labelling used
for this graph is

L = {(x, y, z)t | 0 ≤ x < 8, 0 ≤ y, z < 4}.
If there is need to route from vs = (1, 3, 3)t to vd = (6, 0, 1)t, first v = vd−vs = (5,−3,−2)t

is computed, which is in the set of differences:

v ∈ L − L = {(x, y, z)t | −8 < x < 8, −4 < y, z < 4}.

According to Algorithm 4, since that y = −3 < 0 and z = −2 < 0 these values have to be
modified as y′ = −3 + 4 = 1 and z′ = −2 + 4 = 2. Moreover, since (−3 < 0)xor(−2 <

40 CHAPTER 2. LATTICE GRAPHS

Algorithm 4: Routing in FCC(a).
Input: (x, y, z)t := vd − vs ∈ L − L
Output: r minimum routing record from vs to vd
y′ := y + a(y < 0);
z′ := z + a(z < 0);
x̂ := x+ a

(
(y < 0)xor(z < 0)

)
;

x′ := x̂+ 2a(x̂ < 0)− 2a(x̂ ≥ 2a);
It is hold that (x′, y′, z′)t ∈ L;
r
G(B)
1 := route(2a a

0 a)(

(
0
0

)
,

(
x′

y′

)
);

r
G(B)
2 := route(2a a

0 a)(

(
a
0

)
,

(
x′

y′

)
);

r := arg min(|k| | k ∈ {
(
r
G(B)
1

z′

)
,

(
r
G(B)
2

z′ − a

)
});

Algorithm 5: Routing in BCC(a).
Input: (x, y, z)t := vd − vs ∈ L − L
Output: r minimum routing record from vs to vd
z′ := z + a(z < 0);
x̂ := x+ a(z < 0);
ŷ := x+ a(z < 0);
x′ := x̂+ 2a(x̂ < 0)− 2a(x̂ ≥ 2a);
y′ := x̂+ 2a(ŷ < 0)− 2a(ŷ ≥ 2a);
It is hold that (x′, y′, z′)t ∈ L;
r
G(B)
1 := route(2a 0

0 2a)(

(
0
0

)
,

(
x′

y′

)
);

r
G(B)
2 := route(2a 0

0 2a)(

(
a
a

)
,

(
x′

y′

)
);

r := arg min(|k| | k ∈ {
(
r
G(B)
1

z′

)
,

(
r
G(B)
2

z′ − a

)
});

0) ≡ false it is obtained that x̂ = x = 5. Finally, as 0 ≤ 5 < 8 this implies x′ = 5 and
v ≡ (5, 1, 2)t ∈ L.

Now, in RTT (a) a minimum route from (0, 0)t to (5, 1)t is (1,−3)t and a minimum
route from (4, 0)t to (5, 1)t is (1, 1)t. Consequently, r1 = (1,−3, 2)t and r2 = (1, 1,−2)t.
Finally, after comparing the two norms |r1| = 6 and |r2| = 4, we find that the minimum
routing record to reach vd from vs is given by r = r2.

Similarly, for the network BCC(a), Algorithm 5 is obtained. Again, the order is
ord(en) = 2a, which implies 2 calls to the routing of a 2D torus T (2a, 2a).

2.4 Layout

This section considers how the physical implementation of these networks clearly can be
done in a room. The computing units will be arranged in node boards and several node

2.4. LAYOUT 41

boards will lay in a rack. Additionally, the half of the node boards in a rack will receive
the name of midplane.

It is not difficult to conceive a package hierarchy and a 3D physical organization to
deploy systems based on lattice graphs. For illustrating this organization, let us first
consider the approaches followed by manufacturers. Cray uses a straightforward structure.
For example, an actual configuration [Bla09], was a T (25, 32, 16) packaged on a 200 rack
system arranged as an 8× 25 rectangle. The system can be seen as:

• The full system composed of 25× 8× 1 racks.

• Each rack composed of 1× 4× 16 nodes (routers).

That is, the third dimension is completely inside the racks and the first dimension is formed
entirely joining racks. However the second dimension is partially inside the rack and
requires connecting rack columns by rings. Taking into account forthcoming improvements
in integration and packaging technologies, it could be expected that a 4D torus would
have two dimensions internal to the racks and the other 2 external to the racks. This
idea generalizes to lattice graphs. If G(M) is a 4D lattice graph, its 2D projections would
be built inside racks, which would be a torus or a twisted torus. Then it becomes a
question of completing the lattice by adjusting the offsets of the cables connecting the
racks. Moreover, folding techniques for 3D networks presented in [CMV+10] can also be
of application in our case and easily generalized to higher dimensions.

IBM presents a more elaborated organization in the Blue Gene family [CBC+05].
Although the complete network is a torus, each midplane (half of a rack) has additional
edge hardware that enables the midplane to disconnect from the remainder of the network
and to become itself a small torus. By arranging several midplanes, this additional hardware
enables a multitude of different tori shapes to be connected. With slight modifications
to such hardware, it would be possible to allow each group to be a symmetric crystal
(or another lattice if desired) instead of a mixed-radix torus. This hardware changes
its configuration only between different application runs. Then, the potentially added
functionality would not have any negative impact on the system.

In this chapter different topologies have been proposed of different degrees as alternatives
to current HPC toroidal networks. Since such a system is used by multiple users through
partitions, the starting point in this study was to build machines having as natural
partitions the cubic crystals graphs developed in Section 2.2.

In this section both the physical layout and partitioning problems of the proposed
networks are considered. There are mainly two companies in the market that stand out the
development of interconnection networks whose topologies correspond to torus networks:
Cray and IBM. Hence, both the physical layout and partitioning problems are considered
according to what these two companies do. Therefore, in the first part of this section
it is studied how are layout and partitioning problems solved in the Blue Gene family
and general guidelines are given for embedding crystal graphs instead of plain tori. In
the second part of this section the physical layout of two lattice graphs of dimensions
4 and 5 will be developed, mimicking what it is used in the Cray family for the XT5
supercomputer.

2.4.1 Layout and Partitioning: Cray Technology

Tori-based Cray systems are classified in which they call network topology classes; there
are four of these classes:

42 CHAPTER 2. LATTICE GRAPHS

• Class 0: 1 row, 1 to 3 racks

• Class 1: 1 row, 4 to 16 racks

• Class 2: 2 equal rows, 14 to 48 racks

• Class 3: 48 to 320 racks

– 3 equal rows: mesh in some dimensions

– An even number of rows greater or equal to 4: torus in all dimensions

Class 3 is the more interesting to us—when it is a whole torus.
An actual configuration was a 200 rack system in 8 rows, totalling a torus of 25×32×16

nodes.

• Racks of 1× 4× 16 nodes.

• System of 25× 8× 1 racks.

This is, the third dimension is totally inside the racks and the first dimension is done
entirely joining racks. However the second dimension is partially inside the rack. Following
that policy it could be expected that 4D torus would have two dimensions internal to the
racks and the other 2 dimensions external to the racks.

With this idea is very easy to make a network based on any other lattice graph. As
example, a layout of PC(8)�BCC(4) is shown in Figure 2.10. We have proposed racks
which contain a torus of 8× 8× 1× 1 nodes and a full system of 1× 1× 8× 4 racks. In
the left part of the figure, the system is shown as a connection of 8× 4 racks making a 2D
torus. The only twist is made inside of some of the e4 cables. The cables indicated with

a mark () connect a node
(
a
b

)
in a rack with the node

(
a+ 4 (mod 8)
b+ 4 (mod 8)

)
of the other

rack. Hence, this is shown in right part of Figure 2.10, where solid lines indicate the links
belonging to the cycle 〈e4〉 and with dashed lines a parallel cycle.

The partitions given to users in the machines of Cray are generally meshes. When
a partition has a full dimension then it becomes a cycle. Hence the projections of the
full machine are the toric partitions that they offer. Hence, using PC(2a)�BCC(a) or
other of the mentioned in Subsection 2.1.1 would be very useful to provide the users with
a variety of symmetric graphs.

2.4.2 Layout and Partitioning: IBM Technology

This subsection begins explaining how is the layout of IBM’s implementations. Later it
shows how it can be extended for lattice graphs other than tori.

The topologies of the Blue Gene families (BGs) have been all tori and the typical
configurations are:

• For BG/L or BG/P a system of 72× 32× 32 nodes with midplanes of 8× 8× 8.

• For BG/Q, the Sequoia supercomputer has 16× 16× 16× 12× 2 node boards with
midplanes of 4× 4× 4× 4× 2 [BKM+10].

2.4. LAYOUT 43

...

Figure 2.10: Cray-like physical layout of PC(8)�BCC(4).

Midplane

link chip

Figure 2.11: Connecting a midplane to itself and to others.

Usually, the partition assigned to a user will be a multiple of a midplane. Smaller
partitions will not be considered in this study. The following will deal with the connections
between midplanes, hence the last dimension, of side 2, of the BG/Q, will be ignored, and
its topology treated as a four dimensional one. Each midplane has connections to be itself
a torus of the same degree than the complete topology. This is done using additional links
and specific hardware, which will be called link chip, that selects between the used links.
There will be a link chip for each dimension in each midplane. In a typical configuration,
the BG/Q has cycles of 4 midplanes, in which each midplane has connection to itself and to
the next midplane, as represented in Figure 2.11. Therefore, the configuration considered
in the figure will allow the midplane to be itself a torus. Also, a different configuration or
mode of the link chip would allow to connect adjacent midplanes to form a larger torus.

In the BG/L the cycles are of 8 midplanes, as shown in Figure 2.12. To allow several
cycles formed by less than 8 midplanes, there exist extra links or split-redirection cables
which are represented by dashed lines in the figure, [CBC+05].

The link chips of BG/Q have 4 ports (out to midplane, in from midplane, in from
previous midplane, out to next midplane) while in the BG/L they have 6 ports (the same

0 1 2 3

4567

Figure 2.12: Split-redirection cables in BG/L.

44 CHAPTER 2. LATTICE GRAPHS

Figure 2.13: The 4 partitions available in the BG/Q in every dimension.

as the BG/Q plus two new ports: in split cable, out split cable). Each link chip has several
modes and in each mode a different pair of ports is connected. The change of mode is
made each time a partition is allocated to an user. The potential number of modes for
2n ports, that is, the number of possible pairings is

∏n
k=1(2k − 1). Therefore, for 4 and 6

ports the number of potential modes are 3 and 15, respectively. However BG/Q only uses
2 modes and BG/L only uses 9 modes, which are the only modes which provide useful
connectivity.

For each midplane and dimension there is a link chip2. The choice of a mode for every
link chip determines the partitioning of the full machine into smaller tori.

A look for the cycles that can be made in BG/Q shows that only 4 configurations can
be made (see Figure 2.13), albeit the integer 4 has 5 partitions—ways to write it as a sum
of positive integers3: 4 = 3+1 = 2+1+1 = 1+1+1+1 = 2+2. The partition 2+2 (which
would correspond to 2 tori, each torus of 2 midplanes) is impossible to make since the first
2-midplane torus uses all the inter-midplane links. In the BG/L the split-redirection cables
mitigate this problem (which with cycles of 8, which has 22 partitions, is more important)
and only remains a problem with partitions of odd length [LK12].

In the following it is considered how to obtain symmetric partitions in the Blue Gene
family. The partitions assigned to a user are a multiple of a midplane. Thus, it will
be shown how to make this partitions to have the topology of any cubic crystal graphs
considered in previous sections. For the sake of simplicity it begins with dimension n = 2.
Since tori can be done as in the Blue Gene family, it is studied how to make partitions

based on G(

(
2a a
0 a

)
). The link chips associated to the dimension e1 will be as in the Blue

Gene. On the other hand, the ones corresponding to dimension e2 will have two additional
ports. In Figure 2.14 it can be seen how to select modes of some link chips to make a

partition based on G(

(
2 1
0 1

)
), were the cables with twist do not impose more restrictions

in the mode of links outside the partition than which is imposed by the normal cables. In

2Actually in the BG/Q the link chip is inside of every node board, but all the node boards of the same
midplane are always in the same mode [Mil12].

3These are the partitions with the meaning of number theory. Nevertheless, they coincide with the
potential physical partitions in one dimension.

2.4. LAYOUT 45

Figure 2.14: Building a RTT of two midplanes.

the figure the two link chips of the midplanes are represented: the left one associated to
the first dimension and the right one associated to the second dimension. The partition is

colored and the cables used are in bold. Additionally it is possible to build a G(

(
4 2
0 2

)
),

as in Figure 2.15, forcing link chips outside the partition in similar way to how is done for
a typical torus in the BGs. As a consequence, a user who wants to run an application in a
partition formed by 2k midplanes could always obtain a symmetric one, thus getting a
torus for k even and a RTT when k odd.

Figure 2.15: Building a RTT of eight midplanes.

For more dimensions the same idea can be realized. The link chips of the dimension
e1 are always done like BG, that is, 4 ports for length 4 and 6 ports for length 8. The
other link chips will have additional ports to make the twists. If it is desired to allow t
additional topologies to the tori it is required to add at most 2t ports to each link chip
from e2 to en. In particular, when n = 3 one can decide to allow the topologies PC, FCC
and BCC which are symmetric and in a whole they allow to users to obtain partitions
with any power of two as size.

However, for current machines using n = 4 (like BG/Q in terms of midplanes) it is not
possible to give all powers of 2 giving only lattice graphs with all the possible symmetries.
Nevertheless, there are still a large selection of graphs from which to build the partitions.
For example the following partitions are possible:

i) A 4PC for 24k nodes,

ii) A 4FCC for 24k+1 nodes,

46 CHAPTER 2. LATTICE GRAPHS

0000

0100

0300

0200

0010

0110

0310

0210

0030

0130

0330

0230

0020

0120

0320

0220

1000

1100

1300

1200

1010

1110

1310

1210

1030

1130

1330

1230

1020

1120

1320

1220

3000

3100

3300

3200

3010

3110

3310

3210

3030

3130

3330

3230

3020

3120

3320

3220

2000

2100

2300

2200

2010

2110

2310

2210

2030

2130

2330

2230

2020

2120

2320

2220

0001

0101

0301

0201

0011

0111

0311

0211

0031

0131

0331

0231

0021

0121

0321

0221

1001

1101

1301

1201

1011

1111

1311

1211

1031

1131

1331

1231

1021

1121

1321

1221

3001

3101

3301

3201

3011

3111

3311

3211

3031

3131

3331

3231

3021

3121

3321

3221

2001

2101

2301

2201

2011

2111

2311

2211

2031

2131

2331

2231

2021

2121

2321

2221

0002

0102

0302

0202

0012

0112

0312

0212

0032

0132

0332

0232

0022

0122

0322

0222

1002

1102

1302

1202

1012

1112

1312

1212

1032

1132

1332

1232

1022

1122

1322

1222

3002

3102

3302

3202

3012

3112

3312

3212

3032

3132

3332

3232

3022

3122

3322

3222

2002

2102

2302

2202

2012

2112

2312

2212

2032

2132

2332

2232

2022

2122

2322

2222

Partitions
Single midplane partitions
4FCC(2)

First PC(2) �BCC(1)

Second PC(2) �BCC(1)

4PC(2)
4FCC(1)

4FCC(1)

4FCC(1)

4FCC(1)

Modes
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7

mode 0

mode 1

+e1 −e1

link chip for
dimension 1

24

5

+e2 −e2+e1 −e1

link chip for
dimension 2

+e3 −e3+e1 −e1

link chip for
dimension 3

3 6 7

+e4 −e4+e1 −e1

+




1
1
0
1


 −




1
1
0
1




link chip for
dimension 4

Figure 2.16: Physical layout and partitioning example.

iii) A G(


2a 0 a a
0 2a a a
0 0 a 0
0 0 0 a

) for 24k+2 nodes, although it is not symmetric and only has

the crystal BCC as its projection,

iv) A 4BCC for 24k+3 nodes; or maybe T (2a, 2a, 2a)�BCC(a), which can be useful if
the users have 3D applications.

Figure 2.16 shows a physical layout of a complete system similar to the Sequoia
supercomputer which allows as partitions the topologies 4PC, 4FCC and T (2a, 2a, 2a)�
BCC(a). This figure is done in a similar way to the one found in [CBC+05]. In the bottom
of the figure there are the four classes of link chips, each corresponding to a dimension. The
ports are shown as black dots, with a label that indicates to which midplane it is connected.
The ones labelled with ei, where i is its dimension, were already found in the BG/Q, the

2.5. CONCLUSIONS 47

others have been added to allow the new topologies. Each line color corresponds to a
mode of the link chip (following the legend in the right side), with lines connecting pairs
of ports. In the central part of the figure it is shown the physical layout of the system. It
is distributed in the same way than the Sequoia, with 12 rows of 8 racks each one. The
racks are divided in 2 midplanes, which are represented with a square with 4 numbers
corresponding to its logical position. The layout has been folded, as it would be done in a
realistic scenario to keep the length of the cables bounded. For example, the midplane

numbered as 1230 correspond to the vector


1
2
3
0

 over the system


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 3

 (in terms

of midplanes). Furthermore, the figure shows a partitioning of the system. The color of a
midplane indicates the partition to which it belongs (following the colors in the legend)
with the special case of the isolated midplanes, which are shown in red. The partitioning
is defined by the selection of the modes of the link chips. In each midplane 4 small colored
squares are drawn to indicate the mode of the respective link chips.

Finally it should be noted that additional resources have been added over the resources
of Sequoia to embed additionally a 4FCC and a T (2a, 2a, 2a) � BCC(a). Thus, the
present configuration allows the previous partitions and these new ones. This has been
done by changing 3 of the 4 classes of link chips and doubling the number of cables between
midplanes. Clearly, the fewer graphs which are allowed the fewer resources should be
added.

2.5 Conclusions

This chapter has been focused on the study and proposal of new multidimensional twisted
torus interconnection networks. Due to their complex spatial characteristics, their analysis
is far from being straightforward. Nevertheless, it had been taken advantage of an algebraic
tool based on integral square matrices presented in [Fio95]. Such matrices define the
graph and its topological characteristics. Adequate algebraic manipulations of the matrices
enable a better understanding of different network properties. For example, when using the
Hermite normal form, matrices reveal the subgraphs naturally embedded in the network.

It has been seen that lattice graphs englobe many previously considered regular network
topologies. As it has been proved, the lattice graph family includes tori and twisted tori,
circulant graphs, chordal rings, Gaussian graphs, Kronecker products of cycles, Midimews
and many other graphs.

Using this tool, several networks have been proposed and analyzed in this chapter. Two
graph lifting methods have been introduced that allow for higher dimensional networks
that embed lattice subnetworks. Complementarily, the use of graph projections facilitates
the conception of routing algorithms for these networks. Based on this graph operation,
minimal routing schemes have been proposed for all the topologies. Then, the focus is on 3D
symmetric networks as alternatives to mixed-radix tori that are not edge-symmetric. Taking
the matrices that define cubic crystallographic lattices, it was possible to evaluate and
compare their associated interconnection networks. If symmetry is desired, the best path
when upgrading 3D systems clearly seems to be PC(a)→ FCC(a)→ BCC(a)→ PC(2a),
that is, duplicating the machine size on each step and maintaining most of the original
connections. Although the focus has been on typical network configurations derived from
powers of two, the results remain valid for any other network size. For bidimensional

48 CHAPTER 2. LATTICE GRAPHS

lattice graphs closed expressions for their diameter and average distance has been provided,
with the addition of an optimal routing algorithm.

The chapter addresses some practical issues. Physical packaging and system organiza-
tion in racks have been taken into account, concluding that, for deploying networks based
on lattice graphs, very few changes over typical tori would be necessary. In addition to
the algebraic analysis carried out through the chapter, an empirical evaluation of different
interesting topologies has been considered. The evaluation in Section 5.5 will certify that
hyper-dimensional twisted tori clearly outperform their standard (not twisted) counterparts
for sizes of current machines. Noticeable gains are exhibited by twisted lattice topologies
for both configurations under consideration.

Chapter 3

Hamming and Dragonfly Networks

Part of the current HPC and most datacenter networks rely on large-radix routers.
Hamming graphs (Cartesian products of complete graphs) and dragonflies (two-level
direct networks with nodes organized in groups) are some direct topologies proposed
for such networks. The original definition of the dragonfly topology is very loose, with
several degrees of freedom such as the inter- and intra-group topology, the specific global
connectivity and the number of parallel links between groups (or trunking level).

This chapter provides a comprehensive analysis of the topological properties of the
dragonfly network, providing balancing conditions for network dimensioning, as well as
introducing and classifying several alternatives for the global connectivity and trunking
level. From a topological study of the network, it is noted that a Hamming graph can
be seen as a canonical dragonfly topology with a large level of trunking. Based on this
observation and by carefully selecting the global connectivity, the Dimension Order Routing
(DOR) mechanism safely used to avoid deadlock in Hamming graphs is adapted to dragonfly
networks with trunking. The resulting routing algorithms approximate the performance of
minimal, non-minimal and adaptive routings typically used in dragonflies, but without
requiring virtual channels to avoid packet deadlock, thus allowing for lower-cost router
implementations. This is obtained by selecting properly the link to route between groups,
based on a graph coloring of the network routers. Evaluations presented in Section 5.7
show that the proposed mechanisms are competitive to traditional solutions when using the
same number of virtual channels, and enable for simpler implementations with lower cost.
Finally, multilevel dragonflies are discussed, considering how the proposed mechanisms
could be adapted to them.

3.1 Introduction

Technology trends suggest that the use of high-radix routers [KDTG05] is the most cost-
efficient alternative for the interconnection networks typically used in datacenters and
High-Performance Computers (HPC). Frequent direct topologies proposed for HPC and
datacenters are those based on meshes, tori, dragonflies [KDSA08] and Hamming graphs
(also known as flattened butterflies [KDA07]). Among these, dragonflies and Hamming
graphs are suitable for their use with high-radix routers, and they will be studied in detail
in this chapter.

This chapter characterizes and compares Hamming and dragonfly topologies, studying
their scalability, their respective degrees of freedom and providing a systematic characteri-
zation of each graph including balancing conditions that lead to a uniform use of network

49

50 CHAPTER 3. HAMMING AND DRAGONFLY NETWORKS

resources under uniform traffic. The relationship between the Hamming graph and the
dragonfly topology is studied, showing that the former can be seen as a dragonfly topology
with an extremely high level of global trunking—several links among each pair of groups.
Based on this relationship, the dimension-ordered deadlock-free routing (DOR) mechanism
used in Hamming graphs, which does not rely on virtual channels (VCs), is adapted to
dragonflies. Minimal and non-minimal routing mechanisms of this type are introduced for
dragonflies with global trunking t ≥ 2 and t ≥ 4 respectively. These mechanisms rely on
routing restrictions and therefore they decouple the number and use of virtual channels
from deadlock avoidance. The posterior evaluation in Chapter 5 shows that the proposed
mechanisms are competitive with state-of-the-art alternatives, without imposing minimal
VC requirements on the router design.

On the other hand, high-radix is the norm for current HPC discrete routers, forthcoming
designs such as Intel’s Knights Landing and future Xeon chips will implement on-chip
routers [Haz14]. In such designs, the router competes with on-chip cores, memories and
I/O for the chip resources, including the pin bandwidth. This will necessarily lead to lower-
radix routers. Scaling to large networks based on low-radix switches can be accomplished
using multi-level dragonflies. Such designs will be studied in the last part of the chapter,
compared to previously proposed routing mechanisms.

The rest of the chapter is organized as follows. Section 3.2 presents related work in
the area. Sections 3.3 and 3.4 introduce and characterize the Hamming and dragonfly
topologies. Section 3.5 focuses on dragonflies with trunking in the global level. Section 3.6
introduces two novel deadlock-free routing mechanisms for dragonflies with trunking,
based on coloring the underlying graphs, which are evaluated in Section 5.7. To finish
the contributions, Section 3.7 makes some remarks about the scalability and routing of
multi-level dragonfly networks, discussing how to adapt the previous proposals for such
cases. Finally, Section 3.8 concludes the chapter.

3.2 Related Work

The Hamming graph [Mul82] has been extensively studied. Other names for this graph, or
for topologies based on it, are rook’s graph, K-cube [LKF03], generalized hypercube [BA84],
flattened butterfly [KDA07] and HyperX topology [ABD+09]. This graph has been also
considered in [ASK13] as one of the base topologies for an intra-switch network1. The
dragonfly network was first introduced by Kim et al. in [KDSA08]. Different routing
mechanisms for dragonflies that better adapt to the traffic pattern or reduce the implemen-
tation cost have been proposed in other works [JKD09, GVB+12b, GVB+13c]. Industrial
implementations have been the IBM PERCS [AAC+10] and Cray Cascade [FBR+12].

Network dimensioning typically seeks to balance the utilization of the network resources
to maximize performance. Resource usage being balanced or not depends on the topology,
traffic pattern and routing employed. Under uniform traffic and minimal routing, Square
Hamming graphs and dragonflies with twice as many local ports as global ports per router
are balanced [KDSA08], as will be detailed later. By contrast, an unbalanced design
such as a rectangular Hamming graph would provide reduced performance caused by the
bottleneck in the scarcest resources. However, even a balanced network can easily saturate
under adverse traffic using minimal routing. This occurs when all the traffic concentrates

1[ASK13] also considers local and global topologies as it is done in this work, but they refer to the
intra-switch topology and the traditional topology between switches, instead of per-group and intra-group.

3.3. HAMMING GRAPHS 51

on some few links, which leads to severe congestion. Valiant routing [Val82] selects a
random intermediate router; traffic is first sent minimally to the intermediate router and
then minimally to the final destination. This randomizes the network load, balancing the
use of links, but doubles the utilization of the resources, halving its maximum throughput.
Alternatively, task placement randomization [BGJK11] avoids hotspots by randomizing
communications. Given the disparity of performance depending on the traffic pattern and
routing, Hamming and dragonfly networks typically require adaptive routing mechanisms
which rely on minimal routing for uniform traffic and revert to Valiant routing for adverse
traffic patterns. Several of such adaptive routing mechanisms have been proposed in the
literature [KDA07, KDSA08, JKD09, GVB+12b, GVB+13c].

Networks built on Hamming graphs are deadlock-free under DOR. Valiant routing can
be made deadlock-free when DOR is employed for each half of the path using different VCs,
requiring two of them. For dragonflies, most of the previous proposals adapt the distance-
based mechanism by Günther [Gün81], employing as many VCs per router port as the
longest path allowed in the network. When local and global links are always traversed in the
same sequence, their VCs can be considered independently, leading to 2/1 VCs (local/global)
required for minimal routing and 4/2 for Valiant routing [Val82, PRG+14]. In [KDSA08]
Kim et al. reduce this number to 3/2 by misrouting traffic to an intermediate group instead
of an specific intermediate router, but in this way the traffic is not completely uniform and
pathological performance problems can arise [GVB+12b]. In OFAR [GVB+12b] a simple
deadlock-free escape network is embedded in the dragonfly and packets have the option to
move to the escape network to avoid deadlock. Hence, in each port only 1 or 2 VCs are
necessary (depending if it belongs to the escape subnetwork). However, this mechanism does
not guarantee bounded paths per se, and requires a congestion management mechanism
to avoid saturation in the escape subnetwork, [GVB+13a]. Restricted Local Misrouting
(RLM [GVB+13c]) allows for local misrouting within any group of a canonical dragonfly
without increasing the number of required VCs. This is implemented by forbidding
certain combinations of two local hops which would generate cycles, in a similar way
to how the routing mechanisms for dragonflies with trunking introduced in Section 3.6
select the global links that guarantee deadlock avoidance. Opportunistic Local Misrouting
(OLM [GVB+13c]) allows for cyclic dependencies to appear when applying local misrouting,
but it guarantees that an alternative safe escape path always exists at any hop in the
network.

The use of multiple virtual channels besides providing deadlock-freedom helps to reduce
Head of Line Blocking (HoLB). However, they entail a significant cost. Not only they
increase the area and power requirements for the router, but also make some router allocator
stages more complex, leading to lower router frequencies and reduced throughput [PD01].
For this reason, multiple works propose alternatives to avoid or reduce the number of VCs
in network routers, such as [WCP13, GVB+12b]. HoLB is typically mitigated in these
cases employing internal speedup, such as in [AAC+10, FBR+12].

3.3 Hamming Graphs
This section defines Hamming graphs, their properties, some alternative isomorphic
definitions and the main routing mechanisms proposed for networks based on it.

The Hamming distance between two vectors is the number of components in which the
vectors differ. Given a space S over which the Hamming distance is defined, the Hamming
graph is defined as the graph with S as vertex set in which two vertices are connected if

52 CHAPTER 3. HAMMING AND DRAGONFLY NETWORKS

Figure 3.1: Hamming graph K4�K4 with vertices arranged in rows and columns.

and only if their Hamming distance is 1. For the Hamming distance the only relevant
characteristics of the space are the number of components (dimensions) and the possible
values of each component, this is, it can be assumed that the space is Zm1 × · · · × Zmn for
some integers mi. Figure 3.1 shows a representation of the Hamming graph over Z4 × Z4.

The Hamming graph is isomorphic to the Cartesian product of complete graphs
Km1� · · ·�Kmn . As in the complete graph all vertices are connected, in the Hamming
graph every vertex is connected with any other which differs in exactly one component.
The Hamming graph is also isomorphic to the Cayley graph over the Abelian group
(Zm1 × · · · × Zmn ,+), with generator set

⋃n
i=1{xei | x ∈ Zmi \ {0}}. Hence it is a lattice

graph, although with a generator matrix of order
∏n

i=1bmi2
c.

This chapter focuses in the bidimensional case, i.e. the Hamming graph over the space
Za × Zb, for any pair of integers a, b. This Hamming graph is a diameter k = 2, ∆-regular
graph, for ∆ = a+ b− 2, comprising ab vertices. In the square case, this corresponds to
1
4
∆2 + ∆ + 1 vertices. As said in Section 1.6, for Cayley graphs over Abelian groups of

diameter 2 there is an upper bound of 1
2
∆2 + ∆ + 1 vertices; the current best construction

inside this family is the given in [MŠŠ12], which achieves 3
8
(∆2 − 4) vertices, about 3

4
of

the bound. Square Hamming graphs have about 1/2 of this bound, so while they are
not the best, they have a good position among Cayley graphs over Abelian groups, while
existing for any even degree. Each of these vertices represents one router in the network,
to which ∆0 compute nodes are attached (also known as concentration level). Thus, each
router requires R = ∆ + ∆0 = ∆0 + a+ b− 2 ports.

The Hamming topology admits up to ∆0 = min{a, b} compute nodes per router injecting
at full rate under uniform traffic. Hence, larger concentration values are oversubscribed,
leading to potential congestion; while lower values imply an underutilization of the network.
This can be proved as follows. First, assume without loss of generality a < b and consider the
traffic from the region {(x, y) | 0 ≤ x < a

2
, 0 ≤ y < b} into {(x, y) | a

2
≤ x < a, 0 ≤ y < b},

with a even for simplicity. Each region contains ab
2
routers, each router attached to ∆0

compute nodes. As the regions have the same size, the probability of having a destination
in the other one is 1

2
. Thus ab

4
∆0 packets must traverse the links joining the regions each

cycle. The number of these links is b · a
2
· a

2
; thus, to avoid saturation ab

4
∆0 ≤ ba2

4
is required,

which simplifies to ∆0 ≤ a. Then, in a balanced Hamming network with a = b = ∆0,
there are a3 compute nodes for routers of radix R = 3a− 2. Then, for a given radix R the

3.4. DRAGONFLY TOPOLOGIES 53

network connects up to
(
R+2

3

)3 compute nodes.
Like all Cayley graphs, the Hamming graph is vertex-transitive [AK89]. This can

be seen with the automorphism f(v) = v + v2 − v1 for some vertices v1, v2, for which
f(v1) = v2. The edges from (x, y) to (x′, y) can be naturally denoted as a-edges and the
edges from (x, y) to (x, y′) as b-edges, corresponding to the two different dimensions in the
Hamming graph. Under uniform traffic, a minimal network path will have one a-link with
a probability (a−1)b

ab−1
and one b-link with probability (b−1)a

ab−1
, which are both almost 1. Thus,

in order to balance the use of the network links, the required condition is to have the same
number of links per dimension (a = b), which corresponds to a square Hamming graph.
Indeed, the Hamming graph is edge-transitive if and only if it is square. The sufficient
condition is simple, if a = b there exists an automorphism which maps each vertex (x, y)
into (y, x). For the necessary condition, assume without loss of generality that a < b; then
every a-link is included in some Ka subgraph but not in any Kb subgraph, thus a-links
cannot be mapped into b-links. An unbalanced (not edge-transitive) implementation has
less links in the shorter dimension, which becomes a performance bottleneck because of
their higher utilization.

Networks based on the Hamming graph are deadlock-free under a DOR policy. This
imposes restrictions on the paths that packets can follow, but not on the number of
VCs employed by routers. Alternatively, distance-based deadlock avoidance mechanisms
could be used without routing restrictions if the routers employ at least two VCs: one for
the first hop and the other for the second. Finally, it is interesting to note that perfect
error-correcting Hamming codes directly translate into solutions for the resource placement
problem in Hamming networks (in a analogous way to [BB96]). However, this can be useful
for Hamming networks of high dimension but it is not very relevant for the bidimensional
case, since there are not perfect codes of length 2.

3.4 Dragonfly Topologies
This section presents the dragonfly topology analyzing its multiple degrees of freedom.
Next, it discusses how some dragonfly topologies are subgraphs of a bidimensional Hamming
graph. Finally, it introduces a formal definition of the canonical dragonfly topology with
several alternatives for its global link arrangement.

The dragonfly network was proposed by Kim et al. [KDSA08] as a two-level hierarchical
direct network. A dragonfly topology has b groups (0, . . . , b−1) each group being composed
of a routers (0, . . . , a−1). Routers within a group (first level) are connected by short, cheap,
electrical local links. Different groups (second level) are connected by long, expensive,
optical global links. The definition of the dragonfly in [KDSA08] is, purposely, very loose,
focusing on technological and economical aspects, rather than providing a closed definition
of the underlying graph. Thus, from a formal point of view, multiple different topologies
can be considered as variants of the dragonfly.

Apart from the parameters a and b, there are three degrees of freedom in the definition
of a dragonfly topology:

i) local topology : the connectivity pattern of the routers within a group,

ii) global topology : the connectivity pattern between the different groups, and

iii) global link arrangement: the specific router on each group to which each global link
connects.

54 CHAPTER 3. HAMMING AND DRAGONFLY NETWORKS

The diameter k of the dragonfly topology depends on the diameters of the global
topology kg and local topology kl as follows: k ≤ kg + (kg + 1)kl = kg + kgkl + kl. That is,
a limit of kg global links, kg + 1 visited groups, with at most kl local links in each of the
visited groups. In order to minimize the diameter, the complete graph can be employed as
both local and global topologies, leading to k = 3. Furthermore, the complete graphs reach
the Moore bound and thus are very good candidates considering scalability. This choice of
topologies has been the one of previous proposals [KDSA08, AAC+10, JKD09, GVB+12b,
GVB+13c] and hence it will be called canonical dragonfly to the dragonfly network using
complete graphs Ka and Kb in both local and global topologies. The canonical dragonfly,
for k = 3, asymptotically reaches 4/27 of the vertices of the Moore bound. The known
families of graphs exceeding this value are theoretical works to reach the bound; mainly the
family introduced in [Del85], which has severe practical inconveniences, such as restricting
∆− 1 to odd powers of 2.

Alternative implementations to the canonical dragonfly also exist, such as in Cray
Cascade [FBR+12], where a complete graph is used for the global topology and a rectangular
2D Hamming graph is used for the local one. Section 3.7 will discuss how this topology
can be considered as a 3-level dragonfly. Topologies can employ parallel links between
routers (trunking) what will be considered later in Section 3.5 and, unless otherwise noted,
it is not employed in the dragonfly.

The degree of the topology ∆ can be divided into the two levels. The degree associated
to the first level is denoted by ∆1, this is, the number of local links connected to each
router. Analogously, ∆2 represents the number of global links connected to each router.
Thus, the topology has degree ∆ = ∆1 +∆2 and the routers have a total number of ports or
radix R = ∆0 + ∆1 + ∆2, treating compute nodes as the level 0. In any canonical dragonfly
b = a∆2 + 1 and a = ∆1 + 1. To achieve a balanced use of resources under uniform traffic,
this is, to have similar load in local and global links, the condition 2∆2 ≈ ∆1 needs to
hold; the balancing condition proposed in [KDSA08] is a = 2∆2, whereas up to ∆0 = ∆2

compute nodes can be connected to each router without saturating the network under
uniform traffic. In a canonical dragonfly this imposes a relation between the group size a
and the number of groups b. Given a group size a, the network is balanced only for the
corresponding number of groups b; with less groups there would be too few global links
which would become a bottleneck, and with more groups the local links would be the
bottleneck. The second case should be typically forbidden by design by setting a maximum
system size, but the first one is common in not fully populated systems which can be
upgraded by installing more groups. In such case, balanced networks with a low number
of groups b can be built using trunking; the corresponding balancing conditions will be
discussed in detail in Section 3.5.1. In a balanced canonical dragonfly without trunking,
the routers have radix R ≈ 2a, there are about a3/2 routers and about a4/4 compute
nodes. Then, for a given radix R the network comprises up to ≈ R4/26 compute nodes.

Proposed routing mechanisms in the canonical dragonfly are hierarchical, routing first
to the destination group and then to the destination node. The minimal routing introduced
in [KDSA08] first locates the global link between the source and destination groups; the
path consists of one local link l to the router with the required global link, then the global
link g itself and finally a local link l to the destination; this is denoted as a lgl route. Using
such hierarchical routing (instead of a flat routing) avoids paths with only two global
links gg, which can be shorter in terms of hops but typically have higher latency because
of the longer physical length of global links. Most deadlock-free routing mechanisms for
dragonflies rely on an ordered use of virtual channels. Each hop of a path employs a

3.4. DRAGONFLY TOPOLOGIES 55
a = 5

b = 11

Figure 3.2: Two layouts of the same dragonfly topology which is a subgraph of K5�K11,
with ∆2 = 2, with nodes organized in rows and columns (left, each row corresponds to a
different group) or groups (right). Global links leaving group 0 are in bold.

different VC in an increasing order, thus avoiding cyclic dependencies. Since minimal
paths are always of type lgl, or a subset of them in the same order (but never gll or llg),
using minimal routing, local ports employ two different VCs and global ports do not need
to employ VCs.

In some cases, a canonical dragonfly topology is a subgraph of the rectangular Hamming
graph Ka�Kb. Figure 3.2 presents an example with a = 5, b = 11 and ∆2 = 2. The local
topology of each dragonfly group corresponds to each of the complete graphs Ka, whereas
the global topology links need to connect vertices in the same position of each group in order
to belong to the original Hamming graph. Thus, a independent graphs, G0, G1, . . . , Ga−1,
define the global link connectivity. In order to build a canonical dragonfly, each of these
Gi graphs needs to have b vertices V (Gi) = {0, 1, . . . , b− 1} and degree ∆2, which exists
if and only if b ≥ ∆2 + 1 and b∆2 is even. The global topology composed as the union of
all Gi’s needs to be a complete graph Kb so the result is a canonical dragonfly; the union
of graphs over the same set of vertices is the graph containing all the edges of the factors,
this is, E(

⋃
iGi) = {e | e ∈ E(Gi) for some i}. Thus the problem is to decompose Kb into

a graphs, G0, . . . , Ga−1, of degree ∆2. Systematic decompositions can be found easily for b
odd and ∆2 even. For ∆2 = 2, as in Figure 3.2, Kb can be decomposed into b−1

2
cycles for

b odd, [Hil84]. For ∆2 > 2 even, several of such cycles can be merged into each of the Gi.
Although only for certain parameters, as it will be further discussed in Subsection 3.4.1,
these subgraphs of Hamming graphs are the only vertex-transitive canonical dragonfly
arrangements which we have encountered.

3.4.1 Global Link Arrangement and Network Symmetries

Given a canonical dragonfly, there exist b2O(a∆2) possible arrangements for the global
links. This subsection discusses link arrangements in general and a few specific cases:
consecutive, palmtree, and circulant-based in which the topology is a subgraph of the
Hamming graph, as introduced above. Finally, it presents a brief discussion on the selection
of an arrangement. Arrangements with trunking will be presented in Section 3.5.2.

In general, any arrangement can be implemented as follows:

56 CHAPTER 3. HAMMING AND DRAGONFLY NETWORKS

(a) Random (b) Consecutive (c) Palmtree

Figure 3.3: Three arrangements for a = 4, b = 9,∆2 = 2 with nodes organized in groups.

i) For each group g, partition the set of groups other than g, into a subsets (sets of
groups) of cardinality ∆2. Then assign one subset to each router of g.

ii) For every pair of groups A,B, find in A the router assigned to group B and in B
the router assigned to group A. Then, add a global link between the routers found.

A random arrangement makes the choices in the first step at random. An example is
presented in Figure 3.3a. Any network configuration admits being implemented in this
way, although sometimes there is a simpler ad hoc implementation.

Consecutive Arrangement

The consecutive allocation of global links consists on connecting the routers in each group
in consecutive order, with the groups in the network also in consecutive order, starting
always from group 0 and skipping those links with source and destination being in the same
group. Specifically, the vertex i in group j is connected for every integer k = 0, . . . ,∆2 − 1
with the vertex b j−1

∆2
c of the group g = i∆2 + k if g < j and with the vertex b j

∆2
c of the

group g + 1 otherwise. Although not explicitly indicated, this consecutive arrangement
can be inferred from the figures in [KDSA08]. Figure 3.3b shows an example for a = 4.

Palmtree Arrangement

The palmtree2 arrangement presents the same global connectivity pattern in each group
of the system. In this arrangement, vertex i in group j is connected to vertices a− 1− i
in groups j − i∆2 − 1, j − i∆2 − 2, . . . , j − i∆2 −∆2 (mod b). Although not explicitly
indicated, the palmtree arrangement can be inferred from the figures in [GVB+12b]. A
palmtree for a = 4 is included in Figure 3.3c.

The palmtree arrangement presents notable symmetries. The clearest one is the
rotational symmetry given by the automorphism defined by sending the vertex x in group
y, (x, y), to (x, y + 1 (mod b)). This rotation shows that all groups are equivalent modulo
automorphism. Another symmetry is given by f(x, y) = (a− 1− x,−y (mod b)), which is
a reflection in each group. Therefore, there are at most a/2 classes of vertices modulo the
equivalence relation induced by automorphisms. Interestingly, for any pair of vertices of

2The name is inspired by the similarity of the links leaving each group with the Palm Islands in Dubai,
which are shaped as a palmtree.

3.4. DRAGONFLY TOPOLOGIES 57

the same class of these a/2 classes, there is a path between them using only global links.
Reciprocally, each global link connects vertices of the same class.

Circulant-based Arrangement

This arrangement is a particular case in which the dragonfly network is a subgraph of the
Hamming graph, as introduced above in this section. Here, the set of global links is the
union of circulant graphs and ∆2 is restricted to be even for simplicity. In this arrangement,
vertex i in group j is connected to vertices i in groups j±(i∆2/2+1), j±(i∆2/2+2), . . . , j±
(i∆2/2 + ∆2/2) (mod b). In the example of Figure 3.2 with a = 5, b = 11,∆2 = 2, each
graph Gi (corresponding to column i) contains the edges from x to x ± i (mod b) and
thus it is a circulant graph.

Interestingly, this arrangement has the property that for ∆2 = 2 if b is a prime
number, the resultant topology is vertex-transitive. To see that, consider the following
automorphisms: an automorphism f that maps the vertex (i, j) into (i, j + 1 (mod b))
and an automorphism g which maps the vertex (i, j) into (min{2i + 1, b − 3 − 2i}, 2j
(mod b)). The automorphism f cycles the groups, and hence, there are at most a classes
of vertices. Then, if b is odd, g is an automorphism, and if b is a prime number then g
acts transitively into the vertices of the group 0. Thus, for b prime there is only one class
modulo isomorphism and the graph is vertex-transitive or node-symmetric.

Discussion on the Global Link Arrangement Selection

While the global link arrangement is important to fully characterize a topology, the
simulations in Section 5.6 will show that the impact of the selected arrangement on
network performance under uniform traffic is, in general, negligible3. However, specific
arrangements have different topological properties, such as symmetries and the possibility
of defining multiple classes of vertices in the network, what can be exploited to simplify
routing. The palmtree and any subgraph of the Hamming graph allow for a natural vertex
coloring with a

2
(for a even) and a colors respectively, in a way such that every global

link has the same color in its two endpoints. This property will be used by the routing
mechanisms in Section 3.6.

Additionally, as studied in [GVB+12b], for certain traffic patterns, pathological satura-
tion of local links occurs when using the Valiant variant from [KDSA08], which does not
employ local misrouting in the intermediate group. This occurs when all the nodes in group
i send traffic to nodes in group i+ ∆2 (mod b). The saturation arises in the intermediate
group, in which almost all of the traffic received from the ∆2 global links from a router
leaves the group using the same neighbour router. The single link between these routers
becomes a performance bottleneck. With the consecutive or palmtree arrangements, all
traffic received by router i needs to leave by router i+ 1, leading to a throughput limit of
1/∆2 phits/node/cycle (a phit is the amount of data transferred on a link on a single cycle).
In the circulant-based arrangement only ∆2/2 of such links would compete for the same
local link, leading to a throughput limit of 2/∆2 phits/node/cycle. A random arrangement
would typically eliminate this problem, at the cost of regularity in the network. In any
case, such pathological performance issues can be solved using the original implementation
of Valiant routing [Val82] (as discussed in [PRG+14] and implemented in [FBR+12]) or

3Different traffic patterns such as global permutations could be impacted by the global link arrangement.

58 CHAPTER 3. HAMMING AND DRAGONFLY NETWORKS

allowing for local misrouting in the intermediate group (as in the OLM routing [GVB+13c],
which is employed as a reference in Section 5.7).

3.5 Dragonfly topologies with Global Trunking

This section considers trunking in dragonfly topologies and discusses how the Hamming
graph responds to the definition of a dragonfly topology with trunking. Based on this
observation, Hamming graphs and canonical dragonfly topologies are considered as the two
extreme possibilities of trunking and the spectrum between them is studied considering
the corresponding balancing conditions.

The trunking level in a topology refers to the number of parallel links that are employed
to increase the aggregated bandwidth, increasing also the number of router ports used.
In a dragonfly topology, local trunking refers to parallel links between pairs of routers
within a group. Such parallel links between pairs of routers are typically known as a LAG
(Link Aggregation Group). This LAG could be also implemented in a Hamming topology
to increase bandwidth between routers in the same row or column. The global trunking
level t is the number of global links between every pair of groups. In this case, there are
multiple alternative implementations. Trunk links can join a single pair of routers (LAG),
one router in a group and multiple routers in the other (often called as Multi-Chassis LAG,
MC-LAG), or different pairs of routers.

Unless otherwise noted, trunking will always refer to global trunking between different
pairs of routers, that increases both bandwidth and reliability. As discussed in [FBR+12],
trunking is required to retain optimal global bandwidth in systems with less groups than
the maximum allowed. A dragonfly with trunking is specified by the number of routers
per group a, the groups b, the global links per router ∆2, the global link arrangement and
the global trunking t > 1 (t = 1 for a canonical dragonfly without trunking as defined in
Section 3.4). Dragonflies with global trunking obey the relation:

a∆2 = t(b− 1). (3.1)

The vertices of a Hamming graph Ka�Kb can be partitioned into b groups by defining
the group y as the set {(x, y) | x ∈ Za}. Clearly these groups are subgraphs isomorphic
to Ka and hence the Hamming graph satisfies the definition of the canonical dragonfly
topology (complete graphs for local and global topologies) with trunking t = a. Between
groups y1 and y2 there is the set of a global links

{
{(x, y1), (x, y2)} | x ∈ Za

}
.

Therefore from a topological point of view, the Hamming graph Ka′�Kb′ is a trunked
dragonfly with parameters a = a′, b = b′, t = a′ and ∆2 = b− 1; using a specific global link
arrangement which connects all routers in the same position of each group. An example of
the Hamming graph represented as a trunked dragonfly can be seen in Figure 3.4.

3.5.1 Balancing Conditions for the Trunked Dragonfly

The requirements for a balanced trunked dragonfly are studied in detail in this subsection,
considering uniform traffic and minimal routing. As discussed before, non-uniform traffic
can be made uniform by randomizing it (like Valiant routing) or by other means such as
randomizing task placement, so it is not considered in this analysis. The detailed balancing
conditions are derived from calculating the average distance on each type of links and
relating it to the number of links of each type to be used, considering network trunking.

3.5. DRAGONFLY TOPOLOGIES WITH GLOBAL TRUNKING 59

Figure 3.4: Hamming graph K4�K4 with nodes organized in groups.

Let k̄ be the average distance, this is, the quotient between the length and the number
of all possible minimal paths. This distance can be divided into k̄ = k̄1 + k̄2, with k̄1 being
the average number of hops in local links and k̄2 in global links. A similar relation can be
established with the total number of edges |E| = |E1|+ |E2|. A balanced network requires

k̄1

|E1|
=

k̄2

|E2|
.

Let α = k̄2

k̄1
represent the relation between the use of each type of links under uniform traffic.

Thus, α also represents the relation between the amount of links of each type (global, local)
for a balanced network, ∆2 = α ·∆1. In order to approximate α, it can be observed that
for global links k̄2 = ab−a

ab−1
≈ 1. The average distance in local links k̄1 can be derived from

the number of possible minimal paths between two groups, ignoring the communication
internal to a single group, as follows. There are a2 pairs of source/destination vertices
among two given groups; t vertices of each group have a direct global edge to the other
group and a− t do not. Hence,

• t pairs are connected by a direct global edge, which is their minimal path, g.

• t(a− t) pairs begin at a vertex with a global edge to the other group and finish in
one without such edge. Their minimal path is gl.

• (a− t)t pairs begin at a vertex without a global edge to the other group but finish
in one with such edge. Their minimal path is lg.

• t(t− 1) pairs begin and finish at vertices with global edges between the groups, but
they are different. Their two possible minimal paths are lg and gl.

• (a− t)(a− t) pairs begin and finish at vertices without direct global edges. The t
minimal paths are lgl.

Thus, ignoring the traffic local to a group, k̄1 ≈ (t2 − t − 2ta + 2a2)a−2. Removing low
order terms it becomes k̄1 ≈ 1 + (t

a
− 1)2 and α can be approximated as

α ≈ 1

1 + (t
a
− 1)2

. (3.2)

60 CHAPTER 3. HAMMING AND DRAGONFLY NETWORKS

t
Limit for b using
α = 1 in (3.3)

b for a balanced network,
according to (3.4)

Limit for b using
α = 1/2 in (3.3)

Actual network
example

1 13 8.7 7.5 can. dragonfly b = 9
2 7 5.8 4.0 b = 5, ∆2 = 2
3 5 4.8 3.0 b = 5, ∆2 = 3
4 4 4.0 2.5 Hamming K4�K4.

Table 3.1: Examples of dimensioning the number of groups b of a network with a = 4
routers per group, for different levels of trunking t as in Figure 3.5. Networks with less
groups (middle column) require more trunking to be balanced.

Thus, in the Hamming graph t = a and α = 1, whereas in the canonical dragonfly t = 1
and α tends to α → 1/2 for a → ∞. The approximate dragonfly balancing conditions
presented in Section 3.4 (2∆2 ≈ ∆1 or a = 2∆2) no longer hold when the network employs
trunking, since α becomes larger than 1/2 so the ratio between global and local router
ports needs to increase.

The parameter α and its relation with the number of edges of each type in a balanced
network is:

α =
k̄2

k̄1

=
|E2|
|E1|

=
tb(b−1)

2

ba(a−1)
2

=
t(b− 1)

a(a− 1)
. (3.3)

From the expressions of α in 3.3 and 3.2, the following balancing condition is obtained:

b = 1 + α
a(a− 1)

t
≈ 1 +

1

1 + (t
a
− 1)2

a(a− 1)

t
. (3.4)

The balancing condition (3.4) can be related with the cardinal equation (3.1):

a∆2 = t(b− 1) = a(a− 1)α. (3.5)

In the extreme case of Hamming graphs, t = a and α = 1, and hence the balancing
condition is b = a or equivalently ∆2 = a− 1. This was already known since it is the case
of the Hamming graph being edge-transitive.

Table 3.1 shows in the middle column several dimensioning examples for groups of
a = 4 routers, and in the sides the valid range for the number of groups b that keep
α ∈ [1

2
, 1]. Since the result from the balancing equation (3.4) is not necessarily integer, an

approximation with integral values is presented on the right. The corresponding topologies
can be seen in Figure 3.5. It can be observed that for t = 1 (no trunking) the balancing
condition is close to the lower limit given for α = 1/2 on its right, whereas for t = a = 4
(maximum trunking) the result is close to the upper limit for α = 1 on its left. Also, it
is clear that the less groups of a dragonfly are present, the higher the trunking level is
required for the topology to be balanced.

3.5.2 Arrangements for Dragonflies with Global Trunking

Trunking increases the number of possible arrangements of a dragonfly network. Subsec-
tion 3.4.1 introduced several possible global link arrangements for dragonflies without
trunking. Those same configurations can be directly applied when using LAG, this is,
multiple parallel links between each pair of linked routers. This section extends the ar-
rangements presented in Subsection 3.4.1 to use trunking with disjoint pairs of routers for
parallel links, to maximize fault tolerance. We denote such configurations as “extended.”

In general, building a trunked dragonfly with an arbitrary arrangement requires:

3.5. DRAGONFLY TOPOLOGIES WITH GLOBAL TRUNKING 61

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Figure 3.5: Dragonfly networks with extended palmtree arrangement; a=4 routers per
group and b groups, according to Table 3.1.

Figure 3.6: Palmtree arrangement for t = a = 4; vertices organized in rows and columns.

i) In each group, for each router select ∆2 (generally different) groups. Among all the
routers of the group, each other group must have been selected exactly t times.

ii) For every pair of groups A,B, find in A the t routers which have selected B and in
B the t routers which have selected A. Therefore, there are t! ways to add the t
global links between the two collections of routers found.

The consecutive arrangement presented in Subsection 3.4.1 is generated adding global
edges in a greedy way. However, for t > 1 any greedy strategy ends connecting some router
to several other routers of the same remote group (which is denoted as multichassis-LAG).
Since this section searches for solutions that connect disjoint pairs of routers for maximum
fault tolerance, no extension of the consecutive arrangement is presented.

Extended Palmtree Arrangement

A generalization of the palmtree arrangement is defined here for any trunking level which
obeys equation (3.1). This configuration employs disjoint pairs of routers for each parallel
link between groups. The router x of group y is connected by global links to the following

62 CHAPTER 3. HAMMING AND DRAGONFLY NETWORKS

∆2 routers:

{
(
a− x− 1, rem(y + 1 + rem((a− x− 1)∆2 + k − 1, b− 1), b)

)
| k ∈ {1, . . . ,∆2}}.

As in the base case, (x, y) 7→ (x, rem(y + 1, b)) and (x, y) 7→ (a − x − 1, rem(b − y, b))
are automorphisms of the extended palmtree. Hence, there are at most ba

2
c isomorphism

classes. The graphs in Figure 3.5 employ such arrangement and, as stated before, they
correspond to the examples in Table 3.1. The graph obtained for a = b is very similar
to the Hamming graph but not isomorphic to it; this is the case of the last graph in
Figure 3.5. A representation of such graph with nodes organized in rows and columns is
presented in Figure 3.6, providing a visual comparison with the Hamming graph presented
in Figure 3.1. It is remarkable that a lg path exists for any pair of routers with this last
arrangement, enabling a deadlock-free DOR routing.

Extended Circulant-based Arrangement

Subsection 3.4.1 discussed the construction of canonical dragonflies as subgraphs of the
Hamming graph, by finding a decomposition of the complete graph Kb into a regular
subgraphs. When using trunking, the construction relies on finding a decomposition of
t > 1 copies of a complete graph, this is, of a multigraph with t edges between every pair
of vertices.

The arrangements composed of multiple circulant graphs from Subsection 3.4.1 can be
easily extended to the case of global trunking, under the restrictions of equation (3.1), even
∆2 and odd b. Specifically, the following connectivity pattern generates a dragonfly with
trunking t: vertex i in group j is connected to vertices i in groups j±(rem(∆2

2
i+k, b−1

2
)+1)

(mod b) for every integer k ∈ {0, . . . , ∆2

2
− 1}.

3.6 Deadlock-free Adaptive Routing in Dragonflies with
Trunking

As discussed in Section 3.4, distance-based deadlock-free routing mechanisms proposed for
dragonflies require as many VCs as hops allowed through a given type of network link. Such
implementations can be costly and complex, and tie the number of VCs with the maximum
path length. However, Hamming graphs allow for deadlock avoidance mechanisms based
on route restrictions (DOR). Such a mechanism does not require VCs.

Section 3.5 showed how Hamming graphs and dragonflies with trunking can be seen as
members of the same family. In this section, three alternative routing mechanisms are
introduced for dragonflies with global trunking, based on a variation of the route restriction
mechanism employed in Hamming graphs. A DOR mechanism is equivalent to coloring
all the links in the network with one of two colors, according to their dimension, and
following paths that obey a certain color order. Similarly, the proposed mechanisms impose
a selection of the global links in the path, from those t specified by the trunking level.
They rely on coloring the routers, which is possible when the global link configuration is an
extended palmtree or a subgraph of the Hamming graph (as defined in Subsections 3.5.2 and
3.5.2), what highlights the importance of a careful selection of the global link connectivity.

DOR can be safely used with trunking level t = a. With a > t ≥ 2, cyclic dependencies
in minimal routing can be avoided by deciding which of the t global links to use each time,
based on two router colors and without relying on VCs; as it will be seen shortly, it requires

3.6. DEADLOCK-FREE ROUTING IN DRAGONFLIES WITH TRUNKING 63

0 0

1 1

l+0

l+0

l+1 l+1

0

0

1

1

l+
0

l+
0

l+
1

l+
1

0

0
1

1 l+
0

l+
0

l+
1

l+
1

0-colored router or a
global link connecting
two of them
1-colored router or a
global link connecting
two of them
l+0 local link
l+1 local link
Packet

Figure 3.7: Coloring of routers with 0 or 1 and the local links with +0 or +1. The cyclic
dependency presented would be avoided using the color-ordering rules, since at least one
of the messages must follow the l+1 local channels.

t ≥ 2. For adverse traffic patterns, a variant of Valiant routing (which sends traffic to an
intermediate network router) can be implemented without VCs, requiring t ≥ 4. These
two mechanisms are oblivious. Finally, an adaptive mechanism can be implemented, which
selects between the minimal or Valiant paths depending on network conditions, requiring
again t ≥ 4. These three mechanisms are detailed next and evaluated in Section 5.7.

3.6.1 Oblivious Minimal Deadlock-free Routing for t ≥ 2

In this subsection a deadlock-free routing mechanism denoted 2-color minimal is introduced
for dragonflies with t ≥ 2 global links between pairs of groups. Deciding which of the t
links to use for each packet can prevent deadlock; t = 2 will be assumed from here onwards
although the mechanism is still valid for larger values of t. However, in such cases the
proposals of the next subsection present several advantages.

Every router in the network will be colored with one of two colors, say 0 and 1.
Considering an even number of routes per group a, half of them receive each color. Global
links should be arranged so they only connect vertices with the same color, which implies
a restriction in the global link arrangement. The extended palmtree for a ≥ 4 and any
subgraph of the Hamming graph for a ≥ 2 satisfy this restriction since they divide vertices
into several classes. Local links are labelled according to the difference of the color of their
endpoints, modulo 2. Thus there are “+0” and “+1” local links, depending on whether
they connect vertices with the same or different color, respectively. They will be denoted
l+0 and l+1. A simple three-group example is presented in Figure 3.7.

The routing mechanism will vary depending on the respective colors of the source and
destination routers. Routes with source and destination of different colors will need to
employ up to one l+0 and one l+1 local links. The l+0 link always will be selected in the
source group and the l+1 in the destination group. Implicitly, this forces the selection
of the global link to be used, which will have the same color as the source router. This
routing restriction prevents dependencies from l+1 to l+0 local links, which furthermore
implies that any possible cyclic dependencies are completely composed either of l+0 local
links or of l+1 local links. For routes in which endpoints have the same color, the path

64 CHAPTER 3. HAMMING AND DRAGONFLY NETWORKS

must contain two l+0 or two l+1 local links. Selecting which one is employed is done in
a careful way to avoid deadlock. Our mechanism employs the l+0 local links when the
destination group index is larger than the source index and the l+1 local links otherwise.
Again, this implies a selection of the global link to traverse. Alternative orderings between
the groups can be used, as long as they guarantee that directed cycles do not appear in
the global topology.

The proposed mechanism is deadlock-free by construction: multiple paths between
routers with different color never form cycles because they follow local links in an ascending
order, and paths between routers of the same color never form cycles because they employ
different links when the group index is increased or decreased. An example is presented in
Figure 3.7, in which three paths between routers of different groups always employ l+0

local links. Such cycle is forbidden with the proposed mechanism, since at least one of
the paths will decrease the group index and thus will be forced to employ the l+1 links.
Finally, it should be noted that under uniform traffic all links are used similarly. There
are (a

2
)2 “+1” and 2

(
a/2
2

)
= a

2
(a

2
− 1) “+0” local links per group. Their ratio tends to 1 for

large a. Global link usage is completely balanced, according to the color of the source and
destination routers.

3.6.2 Oblivious Minimal and Non-minimal Deadlock-free Rout-
ing for t ≥ 4

Non-minimal Valiant routes like lgllgl are required to balance load and avoid bottlenecks
under adverse traffic patterns. This section introduces a non-minimal routing for dragonflies
with t ≥ 4 global links between pairs of groups denoted as “4-color nonminimal,” which
does not need VCs for deadlock-freedom. Additionally, by traversing only the first or the
second half of the allowed path, routes with a single global hop can be employed. Such
routing will be denoted as “4-color minimal,” despite using in some cases one extra local
hop. This minimal routing is less restrictive than the previous mechanism for t = 2, what
will be patent in the performance results of Section 5.7.

Like in the previous subsection, this new mechanism relies on a coloring of the routers
that allows to classify and order the local and global links considering a directed graph.
Unlike the previous mechanism in which the order was only relevant for local links, in this
case the link order will be strict. Considering the possible paths, this requires 4 colors for
routers, 2 colors for global links and 8 colors for local links; 6 colors for local links are not
enough to generate a balanced use of the network links, as it will be seen later. The four
router colors will be labelled with one number and one letter {0A, 0B, 1A, 1B}. Every
global link joins routers of the same color, what is possible for the extended palmtree with
a ≥ 8 and for subgraphs of the Hamming graph with a ≥ 4. Global links will receive one
of two labels, A or B, the same as of their endpoints. By contrast, local links receive
one of eight labels. A local link from a router labelled xP to a router labelled yQ will be
labelled as +zPQ where z ≡ y − x (mod 2), P,Q ∈ {A,B} and x, y, z ∈ {0, 1}.

In order to provide a deadlock-free routing, an ordering of the links is required. That
is, if α and β are two classes of links with α ≺ β (α preceding β), then in every possible
route there will be at most one link of each class and then the link of class α will appear
earlier in the route than the link of class β. The partial order of global links will always
be gA ≺ gB, as it is required in a complete graph Kb. Considering local links, the routing
employs the complete ordering l+0AA, l+0BA ≺ gA ≺ l+1AA ≺ l+1AB ≺ l+0AB ≺ l+1BB ≺
gB ≺ l+1BA, l+0BB, which allows for the paths shown in Figure 3.8 in which every node

3.7. 3-LEVEL DRAGONFLIES 65

l+0AA

l+0BA

gA
l+1AA l+1AB

l+0AB l+1BB

gB
l+1BA

l+0BB

Figure 3.8: A precedence of links using t = 4 which allows for routes lgl and lgllgl. Allowed
paths flow from left to right, and parallel routes represent different alternatives, one of
which is chosen depending on the labels of the source and destination routers.

represents a link in the path.
Any pair of nodes can communicate using this ordering. The first local link is selected

between l+0AA or l+0BA depending on the label A or B of the source router. Similarly,
the last local link allows to select the A/B label of the destination router and the middle
branch allows to select the change +0/+1 of the whole path. For example, a route from
0A to 0A must be l+0AA, gA, l+0AB, l+1BB, gB, l+1BA. This ordering restricts the class of
the middle router, 0B in the previous example, which illustrates the restriction of routes
applied. However, for any pair of 0A source and destination routers in different groups, this
mechanism allows to select any of the 0B routers in the network as the intermediate router
of the Valiant path. Similar routes can be calculated for the other 15 color combinations
of source-destination pairs. Thus, it is similar to Valiant [Val82] but with the intermediate
node restricted to a fourth of the total nodes.

The same link ordering can be used for minimal routing. Depending on the labeling
of the source and destination, either the first 3 links or the last 3 links will be used. For
example, packets going minimally from a 0A router to a 1A router will need to use a
route l+0AA, gA, l+1AA (first half); and to go minimally from a 0A to a 0A the path is
l+1AB, gB, l+1BA (second half). A priori, one could expect a small loss of performance
when using this routing, since some packets which could minimally route as gl increase
their paths in routes lgl to satisfy the coloring criteria. However, as it will be observed
in Section 5.7, the proposed deadlock-free routing algorithms perform similarly to the
references and in some cases outperform them. It is also interesting to remark that the
minimum routing mechanism for t ≥ 4 performs better than the one for t ≥ 2.

As both minimal and non-minimal routes are allowed with the same ordering of links,
adaptive routing can be employed by selecting one of them at the source. This requires the
use of some decision mechanism, such as UGAL [Sin05] and using congestion information
from neighbors as in [JKD09].

3.7 3-level Dragonflies

While dragonfly networks provide a very competitive scalability, larger networks can
be built if the number of hierarchy levels is increased at the cost of a longer diameter.
Alternatively, very large systems can be built based on moderate-radix routers (such as
the integrated routers discussed in the introduction) if multiple levels are employed. This
section explores the properties of 3-level dragonflies. More levels could be considered but
the analysis would be similar and as it will be seen, the scalability grows very quickly with
the number of levels, making configurations with more than 3 levels unlikely.

For 3-level dragonflies, links can be considered as local (l or 1), medium (m or 2) and
global (g or 3). For notation, a 1-level group contains a routers, a 2-level group contains

66 CHAPTER 3. HAMMING AND DRAGONFLY NETWORKS

t2 = a

2D Hamming
Ka�Ka

t2 = 1
canonical dragonfly

t2 = a, t3 = ab

3D Hamming
Ka�Ka�Ka

t2 = a, t3 = 1
Cascade-like

t2 = 1, t3 = b

t2 = 1, t3 = 1

3-level canonical
dragonfly

Figure 3.9: Classification of 3-level networks. Nodes correspond to extreme cases. Solid
lines correspond to changes in one of the trunking levels. Dotted arrows represent the
increase from two to three dimensions, where a trunking level for the new dimension must
be chosen.

b 1-level groups and there are c 2-level groups in the whole network. The degree will be
extended to ∆ = ∆1 + ∆2 + ∆3. Two trunking levels can be considered in this case: t2
will be the number of 2-links between every pair of 1-groups and t3 will be the number of
3-links between every pair of 2-level groups.

The network average distance can be decomposed as k̄ = k̄1 + k̄2 + k̄3. Similar to the
2D trunked dragonfly studied in Section 3.5.1, balancing conditions can be derived from a
calculation of the relations between the average distance on each type of link. It can be
defined as α = k̄2

k̄1
and β = k̄3

k̄2
. The equations of size and balance (3.5) generalize easily:

a∆2 = t2(b− 1) ≈ a(a− 1)α and ab∆3 = t3(c− 1) ≈ t2b(b− 1)β.

From which the following expressions of the degrees are obtained:

∆2 ≈ (a− 1)α ≈ ∆1α and ∆3 ≈ (a− 1)αβ ≈ ∆2β.

In 3-level dragonflies a medium-link arrangement and a global-link arrangement can
be defined. Any combination could be chosen such as (random, palmtree) or (random,
random), where the first element of the tuple indicates the medium-link arrangement
and the second element the global-link arrangement The definition for the global-link
arrangement equals the one in the 2-level case only when t2 = 1, otherwise it needs some
adaption.

In this 3-level case, minimal routes are in general lmlglml, thus requiring up to 4
VCs. The classical Valiant [Val82] (using an intermediate router) duplicates the route
and would need up to 8 VCs. Shortened versions as in [KDSA08] can be defined; using
an intermediate 1-level group the routes would be lmlglmlmlglml requiring only 7 VCs;
and using as intermediate a 2-level group routes would be lmlglmlglml requiring only 6
VCs. However, only the original Valiant routing makes traffic completely uniform. This
large number of VCs can be reduced by increasing one or both of the trunking levels, and
applying the studied coloring techniques.

Considering two levels, a family of topologies between the Hamming graph and the
dragonflies was built in Section 3.5 by modifying the parameter t. This is depicted by the
horizontal line on top of Figure 3.9. With three levels, there are two parameters (t2 and
t3) that can be modified, what extends the design space to a plane, represented in the
lower part of the same Figure. Some of the most remarkable properties of this family of
networks are presented in Table 3.2. There are three corner cases which are very relevant,
being the first of them the canonical 3-level dragonfly without any trunking. The opposite

3.7. 3-LEVEL DRAGONFLIES 67

name t2 t3 balancing
conditions

link use
relations

routers compute
nodes

general
route

2-levels ab ab∆0

canonical dragonfly 1 - b = 1 + a(a− 1)/2 α ≈ 1/2 ≈ a3/2 (R4 + 4R3 +
12R2)/26

lgl

Hamming Ka�Ka a - a = b α = 1 a2 (R+ 2)3/33 lg
3-levels abc abc∆0

3-level canonical
dragonfly

1 1 b = 1+a(a−1)/2,
c = 1 + b(b− 1)/2

α ≈ β ≈
1/2

≈ a7/16 R4(R+
2)4/214

lmlglml

Cascade-like a 1 a = b,
c−1 = a2(a−1)/2

α = 1,
β ≈ 1/2

≈ a5/2 (R6 + 12R5 +
54R3)/(2236)

lmglm

— 1 b c− 1 = b− 1 ≈
a(a− 1)/3

α ≈ 1/3,
β = 1

≈ a5/32 R6/(2633) lmlgl

Hamming
Ka�Ka�Ka

a ab a = b = c α = β = 1 a3 (R+ 3)4/28 lmg

Table 3.2: Characteristics of the extreme cases (respect to trunking) of 2D and 3D balanced
dragonflies. a, b and c routers per dimension. ∆0 compute nodes per router. Routers with
R ports (radix). Number of compute nodes approximate.

case is the 3D Hamming graph Ka�Kb�Kc, which is balanced for a = b = c. Notably,
according to this classification there exists another 3-level corner configuration (using
t2 = a) which employs 2D Hamming graphs in the two lower levels, but no trunking in the
highest level. This is equivalent to a 2-level dragonfly in which a Hamming graph is used
for the local group topology, as in Cray Cascade [FBR+12]. It is due to the fact that the
Hamming graph can be seen as a 2-level dragonfly as discussed in Section 3.5. Interestingly,
their design combines route-restriction and distance-based deadlock-avoidance mechanisms
(DOR in the 2D Hamming and increasing order of VCs otherwise).

The remaining corner case in the design space (the one with no name in Table 3.2)
employs t3 = b, as many global 3-level links as 2-level groups. With such trunking and a
proper arrangement, a global link leads directly to the destination 1-level group, shortening
minimal routes to lmlgl. This leads to β = 1 and α & 1/3. Larger values of trunking, up
to t3 = ab could shorten paths to lmlg, but this clearly overdimensions the network.

In a n-level network, up to ∆0 = ∆n compute nodes can be connected per router
with maximum throughput. Larger values ∆0 > ∆n lead to oversubscribed networks and
lower values to waste of the network maximum bandwidth. For these concentration values,
routers with radix R =

∑n
i=0 ∆i = ∆0 + ∆ are required. Then for 2-level networks it is

obtained R = (a− 1)(1 + 2α) and for 3-level balanced networks R = (a− 1)(1 + α+ 2αβ).
Table 3.2 summarizes the maximum number of compute nodes in a network (abc∆0) for a
given router radix R, along with balancing conditions and minimal routes employed in
each case.

Figure 3.10 depicts the system size for different router radices and trunking levels,
considering 2 and 3 levels. Notice the logarithmic vertical axis. Figure 3.10a corresponds
to the upper line in Figure 3.9. The 2D Hamming graph (t = a, diameter k = 2) and the
canonical 2-level dragonfly topology (t = 1, k = 3) are extreme cases. Between them, there
are are multiple alternatives with variable trunking and smaller size than the canonical
dragonfly. As discussed before, trunking is required to build systems smaller than the
maximum achievable size for a given router radix. Figure 3.10b represents the scalability
of certain designs in the lower rectangle of Figure 3.9, scaling from a 3D Hamming graph

68 CHAPTER 3. HAMMING AND DRAGONFLY NETWORKS

0 32 64 96 128
101
102
103
104
105
106

Router radix (number of ports)

C
om

pu
ti

ng
no

de
s

Canonical DF , k=3 DF , t=2, k=3
DF , t=4, k=3 DF , t=8, k=3
Hamming graph, k=2

(a) 2-level Dragonflies with trunking level t.

0 32 64 96 128

102
103
104
105
106
107
108
109

1010
1011
1012

Router radix (number of ports)

Canonical DF , k=7 DF , t2=4, t3=1, k=7
Cascade-like, t2=a, t3=1, k=5 DF , t2=a, t3=4, k=5
Hamming graph, k=3

(b) 3-level Dragonflies with trunking levels t1, t2.

Figure 3.10: Scalability of different network configurations.

(t2 = a, t3 = a2, k = 3) to a Cascade-like dragonfly topology (t2 = a, t3 = 1, k = 5) and
then to a canonical 3-level dragonfly without trunking (with diameter k = 7). These
figures clearly highlight two issues: the trade off between diameter, degree and scale (the
d − k problem discussed in the introduction) and the need of global trunking to build
systems that do not reach the maximum size for a given router and diameter, which can
be in the order of millions of nodes.

3.8 Conclusions
Hamming graphs and dragonflies have been extensively studied in the technical literature.
However, Hamming graphs have been revisited multiple times without recognizing its
previous existence, whereas the dragonfly topology definition was very loose and not
completely specified. This chapter has characterized topologically both networks, including
their balancing conditions and provided precise definitions for the dragonfly topology. The
relation between both graphs has been studied. With a proper global link arrangement,
canonical dragonfly topologies are subgraphs of Hamming graphs. On the other hand,
Hamming graphs can be seen as an extreme case of a dragonfly network with trunking,
showing that both networks are actually part of the same broader family.

Based on this classification, the typical deadlock-free DOR mechanism used in Hamming
graphs has been adapted to dragonflies with trunking, based on a coloring and ordering
of the network resources. Trunking t = 2 allows for 3-hop paths while trunking t = 4
allows for 6-hop paths and traffic randomization, in both cases without a restriction on
the number or use of virtual channels in the system. Evaluations in Section 5.7 will show
that performance results are competitive with alternative mechanisms based on VCs, but
they allow for implementations with more VCs to prevent Head of Line Blocking and
increased performance, or less VCs to reduce implementation cost. The overall cost of
this routing mechanism can be obviously higher than an equivalent VC-based routing,
because it requires more router ports rather than more VCs. However, in many cases the
required trunking is already employed to build a balanced dragonfly of a given size or
for adding fault tolerance, so it would imply no extra cost. Finally, this routing would
allow to leverage existing 2-level dragonfly router designs to multi-level dragonflies, thus
increasing the maximum achievable system size with the same router design.

Chapter 4

Almost Optimal Lattice Graphs and
Related Lee Codes

This chapter shows how the techniques developed for lattice graphs can offer deep insight
into Lee codes. Reciprocally, good codes can be translated back into good topologies.

Section 4.1 details the relation between lattice graphs and linear Lee codes and gives
some illustrative examples. In Section 4.2 all quasi-perfect codes over Gaussian and
Eisenstein–Jacobi integers given by ideals are built. It is also shown that the codes over
Gaussian integers generalize Lee codes over a bidimensional space. Section 4.3 builds a
family of 2-quasi-perfect Lee codes with arbitrarily large dimension with density very close
to the ones of perfect codes. Hence, it is an approach to the Golomb–Welch conjecture on
the existence of perfect Lee codes.

4.1 The Relations Among Linear Lee Error Correcting
Codes and Lattice Graphs

The lattice graphs introduced in Chapter 2 induce linear Lee-codes and vice versa. In this
chapter this view of lattice graphs is adopted. Thus, this first section starts the chapter
explaining this relation.

Since Lee codes are the target of our study, the natural space to be considered is the
finite integer lattice Znp . However, for convenience, also the infinite lattice Zn will be
considered. Therefore, a code C will be a subset of either Znp or Zn. This code is said to
be linear or lattice-like if it is a subgroup of the corresponding space.

In the space Zn it will be used the Manhattan distance. For any two words v,w ∈ Zn
its Manhattan distance is defined as:

D(v,w) =
n∑
j=1

|vi − wi|.

On the other hand, the Lee distance will be the metric when considering Znp . For v,w ∈ Znp
its Lee distance is defined as

D(v,w) =
n∑
j=1

min{|s| | s ≡ vi − wi (mod p), s ∈ Z}.

Since the Lee distance becomes the Manhattan distance for p = ∞, there will be no
opportunity for confusion. In both cases the weight of a word v is defined as its distance

69

70 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

to the zero vector, which will be denoted as |v| = D(v,0). For any positive integer r, the
Lee sphere of radius r is defined as all the points with weight less or equal to r, that is:

Bn
r = {v | |v| ≤ r}.

Note that, for any dimension n ≥ 1, the cardinal |Bn
2 | = 2n2 + 2n+ 1 [GW70] and that

|Bn
r | = |Br

n|.
A code C is said t-error correcting if t is the greatest integer such that for any word

w there is at most one codeword c ∈ C with D(w, c) ≤ t. A code C is said r-covering if
r is the smallest integer such that for any word w there is at least one codeword c ∈ C
with D(w, c) ≤ r. Then, a code that is both t-error correcting and t-covering is said to be
perfect. Golomb and Welch in [GW70] conjectured that there only exist perfect Lee codes
for t = 1 or n = 2. Therefore, the existence of quasi-perfect codes must be studied since
they are the best alternative to the perfect ones. Thus, a code that is t-error correcting
and (t+ 1)-covering is said to be t-quasi-perfect.

Codes and tilings are closely related as it is manifested in many papers. Given a linear
code C, the tessellation induced by the Voronoi regions of the codewords can be considered.
The Voronoi region of a codeword is composed by the words that are closer to it than to
other codewords. Since the code is linear, the tessellation is congruent, that is, all the
tiles have the same shape and size. If C is a t-perfect error correcting code then the tiles
obtained are translations of the Lee sphere of radius t. Otherwise, for a t-correcting and
r-covering code, each induced tile contains a Lee sphere of radius t and it is contained in
a Lee sphere of radius r. Reciprocally, the centers of the congruent tiles of a lattice-like
tessellation can be used to define a linear code.

Once the tessellation induced by the linear code is obtained, then this tessellation
can be used to define a Cayley graph. The set of the vertices of the graph are the words
inside the tile centered at codeword 0. To define the adjacency, two different situations
can be considered. For the vertices inside the tile, two vertices are adjacent if they are
at a distance 1. In the case of vertices in the boundary of the tile, two vertices v and
w are adjacent if there is a tile center c such that D(u, c+ v) = 1. Note that, since the
tessellation comes from a linear code, the graph is a undirected Cayley graph over the
Abelian group Zn/C. Now, if t is the greatest integer such that the Lee sphere Bn

t is
contained in the tile, then this graph has |Bn

t | vertices at distance t or less. By analogy
to the concept of correction in codes, this value t will be referred as the error correction
capacity of the graph. If r is the smallest positive integer such that Bn

r contains the tile,
then the graph has diameter r. Given a Cayley graph it is straightforward to obtain a
lattice-like congruent tilling. The tile can be defined by the representation in minimum
distances of the set of vertices. Then, the tiling of the space is induced by the adjacency
of the peripheral vertices.

This graph theoretical study of perfect codes can be seen as the reverse of the degree-
diameter problem for Cayley graphs over Abelian finite groups [MŠ13]. In this problem,
for a given diameter, graphs with the maximum possible number of vertices are searched.
Specifically, for a positive integer t, graphs providing t-covering codes but without caring
about the correction are looked for. Note that in this case, the order of the graphs obtained
is lower than the cardinal of the corresponding sphere |Bn

t |. Therefore, in the present
chapter graphs providing t-correcting codes and enforcing additionally (t + 1)-covering
have been constructed. In our case, the order of the Cayley graphs is always greater than
the cardinal of the sphere |Bn

t |. The degree-diameter problem for t = 2 and t = 3 has been
considered in [MŠŠ12, Vet13]. In that papers families of graphs with smaller number of

4.1. THE RELATIONS AMONG LEE CODES AND LATTICE GRAPHS 71

Figure 4.1: A 2-perfect code over Z2
13 and its associated lattice graph.

vertices than the sphere cardinal were given. Specifically, one of the graph constructions by
Macbeth et al. [MŠŠ12] is given for infinitely many degrees 2n of graphs of diameter 2 and
3
2
(n2− 1) = 3

4
|Bn

2 | − 3
2
n− 9

4
vertices. Then, Vetrík [Vet13] constructs graphs with diameter

3 and 9
128

(2n+ 3)2(2n− 5) vertices, which is asymptotically 27
64
|Bn

3 |; it is remarkable that
these graphs have error correction capacity 1 instead of the hoped 2, and thus they do
not induce quasi-perfect codes. Note that a Cayley graph attaining the degree-diameter
bound will induce a perfect code and vice versa.

For illustration of the graph–code relation, let us consider the following examples.

Example 4.1.1. Perfect linear error correcting codes of dimension 1 become cycles. For
example, the code C = {5k | k ∈ Z} ⊂ Zq is a perfect linear 2-error correcting code over
Zq if q is multiple of 5. The graph obtained is the cycle of length 5, or equivalently, the
lattice graph generated by the matrix M = (5).

Example 4.1.2. Perfect linear 1-error correcting codes become complete graphs. Take for
example Golomb and Welch perfect Lee code with dimension n = 3 and arity q = 2n+1 = 7.
The lattice graph associated is generated by the matrix

M =

7 2 3
0 1 0
0 0 1

 .

It is clear that G(M) is isomorphic to the circulant graph C7(±1,±2,±3), which in turn
is isomorphic to the complete graph K7, since ±1,±2 ± 3 is the whole set of possible
adjacencies. With the matrix, the code can be expressed as C = {Mx | x ∈ Z3}, a 1-perfect
linear 7-ary Lee code of length 3.

Example 4.1.3. Perfect linear error correcting codes of dimension 2 become dense mi-
dimews (or Gaussian). In dimension n = 2, perfect codes of correction t are associated to
the lattice graph generated by the matrix

M =

(
t+ 1 −t
t t+ 1

)
or its transpose. This graph is isomorphic to the Gaussian graph generated by t+ 1 + ti
and to the dense midimew. The case t = 2 is shown in Figure 4.1.

72 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

It is remarkable that as a by-product of constructing good Lee-codes, good solutions are
obtained for the resource distribution problem over lattice graphs. The resource placement
problem consist on finding the optimal location for sources of some resource, trying to
minimize the distance of every user to one of the resources. Thus the resources are the
codewords and the minimum distance from an user to the closest resource is the covering
radius. The distribution of the resources is optimal if the code is perfect. Specifically, for a
lattice graph G, let C the associated linear Lee code to G. Then for any subgroup C ′ ⊂ C,
C ′ gives a code over G with the same distance properties. For example, this was developed
for tori in [BB96] and for Gaussian graphs in [MBS+08].

In the following, Section 4.2 will characterize quasi-perfect codes given by ideals over
Gaussian and Eisenstein–Jacobi integers. The graphs related to those codes have few
more vertices than the dense midimew and one more diameter. Finally, Section 4.3 will
give a construction of 2-quasi-perfect Lee codes over arbitrarily large dimension, where
the related graphs have twice the number of vertices than the theoretical perfect graph
(conjectured not to exist), diameter 3 instead of 2, and many of them are Ramanujan
graphs.

4.2 2D Quasi-Perfect Codes from Cayley Graphs over
Integer Rings

The problem of searching for perfect codes has attracted great attention since the paper
by Golomb and Welch in which the existence of these codes over Lee metric spaces
was considered. Since perfect codes are not very common, the problem of searching for
quasi-perfect codes has also a great interest. In this aspect, also quasi-perfect Lee codes
have been considered for two and three dimensional Lee metric spaces. In this section
constructive methods for obtaining quasi-perfect codes over metric spaces modeled by
means of Gaussian and Eisenstein–Jacobi integers are given. The obtained codes form
ideals of the integer ring thus preserving the property of being geometrically uniform codes.
Moreover, they are able to correct more error patterns than the perfect codes that may
properly be used in asymmetric channels. Therefore, the results in this section complement
the constructions of perfect codes previously done for the same integer rings. Finally,
decoding algorithms for the quasi-perfect codes obtained in this section are provided and
the relationship of the codes and the Lee metric ones is investigated.

The remaining of the section is organized as follows. Subsection 4.2.1 details the
related literature about quasi-perfect codes for the Lee-metric and quadrature amplitude
modulation (QAM). In Subsection 4.2.2, some basic concepts from number theory that
are necessary to define quotient rings of Gaussian and Eisenstein–Jacobi integers are
presented. Moreover, graphs over quotients of these integer rings and codes over them are
considered. Also, perfect and quasi-perfect codes over graphs are defined and geometrically
uniform codes are constructed over them. In Subsection 4.2.3, an extension of perfect
codes is made by presenting quasi-perfect codes over quotient rings of Gaussian integers.
In addition, a complete characterization of quasi-perfect codes being ideals of the ring is
given. Similarly to the previous subsection, in Subsection 4.2.4 quasi-perfect ideal codes
over quotient rings of Eisenstein–Jacobi integers are characterized. In Subsection 4.2.5
the relation between the quasi-perfect codes presented in Subsection 4.2.3 and previously
known Lee metric quasi-perfect codes is considered. Necessary and sufficient conditions
for a group code being an ideal are given. As a consequence, the constructive method

4.2. 2D QUASI-PERFECT CODES FROM GRAPHS OVER INTEGER RINGS 73

presented in this section gives new quasi-perfect codes over two-dimensional Lee spaces.
In Subsection 4.2.6 some decoding algorithms for the codes presented in this section are
obtained. The decoding algorithms take advantage of the algebraic structure of the codes,
that is, that they form ideals. Finally, in Subsection 4.2.7 some conclusions are drawn.

4.2.1 Related Work

Geometrically uniform codes were proposed by Forney [FJ91]. This class of codes en-
compasses the Slepian Group codes and the lattice codes by allowing the elements of the
generator group be arbitrary isometries of the Euclidean space Rn, instead of orthogonal
transformations or translations when considering the previous classes separately. A space
signal code is defined as geometrically uniform if for any two code sequences, there exists
an isometry that takes a code sequence to the other while leaving the code invariant. Such
a code has desirable symmetry properties such as: the Voronoi regions are congruent, the
distance profile is the same for any codeword, each codeword has the same error probability,
and the generator group is isomorphic to the permutation group acting transitively on the
codewords.

In [GW70] Golomb and Welch define close-packed codes or perfect codes by the use
of polyominoes, where each codeword has a decision region, its Voronoi region, given
by Lee spheres of radius t. These regions satisfy the property that there is a group
acting transitively on them that cover the torus and consequently, the resulting code is
geometrically uniform. In [CMAPJ04] flat tori were used with a similar objective, as well
as signal sets of the QAM-type considered as perfect coset codes with the induced distance
from the Euclidean metric.

In [Hub94] and [Hub93] quotients of the Gaussian and Eisenstein–Jacobi (EJ) integer
rings were proposed for modeling QAM-type and hexagonal signal constellations. Later, in
[MBGG05, MBG07, MBG09, MMB06] a new metric over these spaces was introduced. This
metric, similar to the Lee metric, is defined by means of the Gaussian and Eisenstein–Jacobi
graphs, which are Cayley graphs over the integer rings modeling the signal constellation.
In [MBS+08] and [FB10], the main distance-related properties of Gaussian and Eisenstein–
Jacobi graphs were characterized, providing closed expressions for their diameter and
average distance. On the other hand, perfect codes were constructed as being ideals
of the integer rings, thus solving the theoretical problem over the graphs known as the
perfect dominating set of the vertices. This sections presents a complete characterization
of quasi-perfect codes over Gaussian and EJ graphs that are ideals. Some preliminar work
was done in [QPJ10, QPJ11].

The construction of quasi-perfect group codes was also considered in [AB03b] for the
Lee metric. This kind of codes have shown to have different practical applications, as
in phase modulated and multilevel quantized-pulse-modulated channels [GW70], [Ber68].
Moreover, they constitute the solution to the optimal resource allocation in toroidal
interconnection networks as it was considered in [AB05] and [AB03a] for the two and
three dimensional cases. In addition, decoding algorithms for Lee-distance quasi-perfect
codes were presented in [AB03b] and [HA06]. Also, in [HG14] the authors presented some
quasi-perfect codes for n = 3 and a few radii.

The aim of this section is to provide the construction of quasi-perfect codes over
the Gaussian and Eisenstein–Jacobi integers, which besides preserving the geometrically
uniform structure of the codes they are able to correct more error patterns than the
perfect codes. Moreover, since in [MMB06] the relationship between perfect codes for

74 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

the two-dimensional Lee spaces and perfect codes over Gaussian integers was shown, the
relation between the construction given in this section with the quasi-perfect Lee codes
is also investigated. It will be shown that new quasi-perfect codes over two-dimensional
spaces can be obtained from the methods given here. The new quasi-perfect codes not
only are groups but also form ideals over the integers rings.

Finally, decoding algorithms are given for the presented codes that take advantage of
the ideal structure of the constructions. The algorithms that will be considered have some
geometrical similarities to the one presented in [HA06] for the Lee metric although they
decode different code constructions.

4.2.2 Preliminary Results

This subsection is organized into three parts. In the first one, quotients of Gaussian and
Eisenstein–Jacobi rings, which will be used to design signal constellations, are introduced.
In the second one, Cayley graphs over these quotient rings are considered in order to define
metrics over the previous rings. Finally, the third one defines perfect and quasi-perfect
codes over these graphs.

Quotient of integer rings

Next, basic results from number theory that are important to the development of the
remaining sections are presented. More detailed information can be found in [Sam67],
[Hun74] and [HW79].

Let K be a number field with degree n and σ1, σ2, . . . , σn the monomorphisms of K
into C. For any α ∈ K the norm of α is defined as

N (α) =
n∏
i=1

σi(α).

Since the σi’s are monomorphisms, it follows that

N (αβ) = N (α)N (β),

for any α, β ∈ K. In addition, if α 6= 0, then N (α) 6= 0.
Now, given a number field K, let IK be the ring of integers of K and IKα = (α) the

ideal of IK generated by α. Then, the following result is obtained.

Proposition 4.2.1. [Sam67, Proposition 1, p.52] Let 0 6= α ∈ IK. Then

N (α) = card

(
IK
IKα

)
,

that is, the quotient ring IK
IKα

has N (α) elements.

The codes presented in this section will be constructed over signal constellations
modeled by Gaussian and Eisenstein–Jacobi integers. Therefore, let us first consider the
number field K = Q[i] = {a+ bi | a, b ∈ Q}, where i =

√
−1. The ring of integers of Q[i]

is Z[i], called the ring of the Gaussian integers and denoted by Z[i] = {a+ bi | a, b ∈ Z}.
If α = a+ bi ∈ Z[i] then its norm is given by

N (α) = αᾱ = (a+ bi)(a− bi) = a2 + b2,

4.2. 2D QUASI-PERFECT CODES FROM GRAPHS OVER INTEGER RINGS 75

where ᾱ is called the conjugate of α. That is, the norm is given by a quadratic form N
such that

N : Z[i] −→ Z+

a+ bi 7−→ a2 + b2.

Now, let Z[ω], called the ring of the Eisenstein–Jacobi integers and denoted by Z[ω] =

{a+ bω | a, b ∈ Z}, where ω = 1+
√−3
2

. Note that ω is such that ω2 − ω + 1 = 0. Hence, if
α = a+ bω ∈ Z[ω] then its norm is given by

N (α) = αᾱ = (a+ bω)(a− bω2) = (a+ bω)((a+ b)− bω) = a2 + b2 + ab,

that is, in this case its norm is given by a quadratic form N such that

N : Z[ω] −→ Z+

a+ bω 7−→ a2 + b2 + ab.

If (α) denotes the ideal of Z[ρ] generated by α, where either ρ = i or ρ = w, then the
quotient ring generated by such an ideal is

Z[ρ]α =
Z[ρ]

(α)
,

where α ∈ Z[ρ]α. From Proposition 4.2.1 it follows that:

Theorem 4.2.2. [MBG07], [MBG09] Let 0 6= α ∈ Z[ρ] with ρ ∈ {i, ω}. Then, Z[ρ]α has
N (α) elements.

Moreover, using the third ring isomorphism theorem, [Hun74], it can be easily inferred
the following consequence of the previous result.

Corollary 4.2.3. [MBG07], [MBG09] Let 0 6= α ∈ Z[ρ] with ρ ∈ {i, ω}.
i) If β ∈ Z[ρ] divides α, then the ideal (β) ⊂ Z[ρ]α has order N (α)/N (β);

ii) If β ∈ Z[ρ] does not divide α and γ = gcd(α, β), then the ideal (β) ⊂ Z[ρ]α is
generated by γ and has order N (α)/N (γ).

Example 4.2.4. Given α = 3 + 4i then its norm is N (α) = 25. Hence, from Theo-
rem 4.2.2, Z[i]3+4i has 25 elements, which are obtained from the quotient of the ring Z[i]
by the ideal (3 + 4i), or equivalently, by taking Z[i] modulo (3 + 4i). Hence, Z[i]3+4i =
{0, 1, 2, 3,−1,−2,−3, i, 2i, 3i,−i,−2i,−3i, 1 + i, 1 + 2i, 1− i, 1− 2i,−1− i,−1− 2i,−1 +
i,−1 + 2i, 2 + i,−2 + i, 2− i,−2− i}.

On the other hand, if α = 3 + 4ω, its norm is N (α) = 37 and the induced quotient
ring Z[ω]3+4ω has 37 elements. In Figure 4.2 both quotients are graphically represented.

The ring Z[ρ]α is a field if and only if α is a prime of Z[ρ]. It is worth remembering
that Gaussian primes fall into two categories:

• α = p for some p ∈ Z prime over the integers satisfying p ≡ 3 (mod 4). Its norm is
N (α) = p2.

• α = a + bi with norm N (α) = a2 + b2 = p for some integer prime p. This integer
must satisfy p = 2 or p ≡ 1 (mod 4).

In the special case of Z[i]p for some prime p, the norm functions become a function into
Zp and N (ζ) = 0 for ζ ∈ Z[i]p if and only if ζ is a zero divisor.

76 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

Figure 4.2: Signal constellations obtained as Z[i]3+4i and Z[ω]3+4ω

Graphs over Gaussian and Eisenstein–Jacobi integer rings

Since the codes presented in this section are obtained from quotients of Gaussian and
Eisenstein–Jacobi integers, metrics over these rings must be defined. In this direction,
Gaussian and Eisenstein–Jacobi graphs (EJ-graphs) are defined as Cayley graphs over
the quotient rings, so the metric induced by these graphs will be the one considered for
the code construction. Hence, Gaussian and Eisenstein–Jacobi graphs are Cayley graphs
where the corresponding adjacency sets are the units of the integer rings.

Definition 4.2.5. Let 0 6= α ∈ Z[ρ], where ρ ∈ {i, ω}.
• If ρ = i then the Gaussian graph generated by α is defined as

Gα = Cay(Z[i]α; {±1,±i}).

• If ρ = w then the Eisenstein–Jacobi graph generated by α is defined as

EJα = Cay(Z[w]α; {±1,±w,±w2}).

As it has been remarked in the previous subsection, the order of the graphs is given
by the norm of its generator. Clearly, Gaussian graphs are regular of degree 4 and EJ-
graphs have degree 6. Since they have been defined as Cayley graphs, they result in
vertex-symmetric graphs, that is, for any pair of vertices there is an automorphism that
sends one into the other. As a consequence, the distance distribution of the vertices can
be determined by counting the number of vertices at each distance from a central vertex,
which is usually selected to be zero. The complete determination of these distributions
has been done in [MBS+08] and [FB10] for Gaussian and EJ-graphs, respectively. As a
consequence, the diameter of the graph, that is, the length of the longest shortest path
has been exactly determined. Next, the results summarizing the distance distributions are
presented in order to be self-contained.

Theorem 4.2.6. [MBS+08] Let 0 6= α = a + bi ∈ Z[i] and 0 ≤ a ≤ b. Let T = a+b
2

and
for any positive integer t, let W (t) be the number of vertices in Gα at a distance t. Then

W (t) =



1 if t = 0

4t if 1 ≤ t < T

2(b− 1) if t = T < b

2b− 1 if t = T = b

4(b− t) if T < t < b

1 if T < t = b and a ≡ b (mod 2)

0 if b < t.

4.2. 2D QUASI-PERFECT CODES FROM GRAPHS OVER INTEGER RINGS 77

Theorem 4.2.7. (Fixed from [FB10]) Let 0 6= α = a + bω ∈ Z[ω] and a ≥ b ≥ 0. Let
T = a+b

2
and M = 2a+b

3
. For any positive integer t, let W (t) be the number of vertices in

EJα at a distance t. Then

W (t) =



1 if t = 0

6t if 1 ≤ t < T

3a− 3 if t = T < M

3a− 1 if t = T = M

18(M − t) if T < t < M

2 if T < t = M and a ≡ b (mod 3)

0 if M < t.

Example 4.2.8. In Example 4.2.4, the set of vertices is V = Z[i]3+4i and the set of edges
as in the previous definition, is shown in Figure 4.3. The diameter of the graph is 3 since
every vertex is at distance less than or equal to 3 from the central vertex. Moreover, as
can be seen this graph has the maximum number of vertices for diameter 3, or equivalently,
it is dense1. On the other hand, the graph EJ3+4ω has the set of vertices V = Z[ω]3+4ω

and the adjacency is completed as shown in Figure 4.3. In this case the diameter of the
graph is also 3, and the graph is also dense.

Figure 4.3: The graphs G3+4i and EJ3+4ω

Now, to define a metric over the integer rings considered in this section it is only needed
to consider the distance induced by its corresponding Gaussian or Eisenstein–Jacobi graph.

Definition 4.2.9. [MBG07, MSBG08] Let 0 6= α ∈ Z[ρ], where ρ ∈ {i, ω}. The distance
in Z[ρ]α is the distance induced by the associated Cayley graph Gα or EJα. Thus, if
η, τ ∈ Z[ρ]α, the graph distance can be computed as:

i) Dα(η, τ) = min{|x|+ |y| | x, y ∈ Z such that τ − η ≡ x+ yi (mod α)}.

ii) Dα(η, τ) = min{|x|+ |y|+ |z| | x, y, z ∈ Z such that τ−η ≡ x+yω+zω2 (mod α)}.

Remark 4.2.10. Note that the distance between any two vertices is the length of any
shortest path between them. Then, the diameter of the graph gives the maximum distance
in the metric space. As a consequence, signal constellations corresponding to dense graphs
contain the maximum number of signal points for a given maximum distance.

1Note that this is a different definition of dense graph from the usual one, which refers to the number
of edges instead of the number of vertices.

78 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

Geometrically uniform codes over quotient rings

Once the metric spaces to be considered for quasi-perfect codes constructions have been
established, classical definitions of codes will be provided in this subsection.

Given a graph G and distance D, a code in G is a nonempty subset C of V (G). The
Voronoi region Vη associated with η ∈ C is the subset of the elements in V for which η is
the closest point in C, that is,

Vη = {τ ∈ V | D(η, τ) = D(τ, C)}.

From this, the covering radius of the code is defined as

t = max{D(η, C) | η ∈ V }.

Let Bt(η) = {τ ∈ V | D(η, τ) ≤ t} denote the ball of radius t centered at η. Then the
covering radius is the least number t such that the balls of radius t centered at the points
of C cover V . Then,

δ = min{D(η, τ) | η, τ ∈ C, η 6= τ},
is the minimum distance of C, with δ ≤ 2t + 1. The equality holds, that is δ = 2t + 1,
when the balls of radius t centered at the points of C partition V . A code satisfying this
property is called perfect and it is said to correct t errors. Next, perfect and quasi-perfect
codes, which are the target of this section, are defined.

Definition 4.2.11. Let G = (V,E) be a graph and D denote its distance. Let C ⊂ V .

i) C is a t-quasi-perfect code if

• For every pair of different codewords c, c′ ∈ C it follows that Bt(c) ∩Bt(c
′) = ∅.

• For every vertex v ∈ V there exists c ∈ C such that D(c, v) ≤ t+ 1.

ii) C is a t-perfect code if for every vertex v ∈ V there exists a unique codeword c ∈ C
such that D(c, v) ≤ t.

Perfect codes being ideals for the Gaussian and Eisenstein–Jacobi graphs were obtained
in [MBGG05] and [MBG07]. These codes have the property of being generated by elements
with maximum norm for a given diameter, or equivalently, as codes associated with dense
graphs. The following result summarizes how to obtain perfect codes over Gaussian and
EJ-graphs.

Theorem 4.2.12. [MBG07, MSBG08] Let 0 6= α = a+ bρ ∈ Z[ρ], ρ ∈ {i, ω} and t be a
positive integer.

i) If ρ = i and β = t + (t + 1)i (or β) divides α, then the ideal (β) (resp. (β)) is a
t-perfect code over Gα.

ii) If ρ = ω and β = t+ (2t+ 1)ρ (or β) divides α, then the ideal (β) (resp. (β)) is a
t-perfect code over EJα.

Note that since the construction is made by means of ideals of the integer ring,
the resulting codes are not only perfect but also geometrically uniform. In fact, it is
straightforward that any ideal over the quotients generates a code over the graph, as it is
proved in the following result.

4.2. 2D QUASI-PERFECT CODES FROM GRAPHS OVER INTEGER RINGS 79

t 0 1 2 3 4 5 6 7 8 9
W (t) 1 4 8 12 16 20 24 12 8 4

Table 4.1: Distance distribution of G3+10i.

Corollary 4.2.13. Let 0 6= α, β ∈ Z[ρ], ρ ∈ {i, ω}. Then, if β divides α, then the ideal
(β) forms a geometrically uniform code over Z[ρ]α. Moreover, let β = a+ bρ,

• If ρ = i then the code can correct every error pattern of weight t, for t < |a|+|b|
2

• If ρ = ω then the code can correct every error pattern of weight t, for t < |a|+|b|
2

.

Proof. The ideal generates a geometrically uniform code straightforwardly. On the other
hand, the error correction capacity is obtained as a consequence of Theorems 4.2.6 and
4.2.7.

Example 4.2.14. Given α = 16 + 17i then N (α) = 545. Hence, from Theorem 4.2.2,
Z[i]16+17i has 545 elements. Now, α = 16 + 17i may be written as 16 + 17i = (−i)(1 +
2i)(3 + 10i). Therefore, β = 3 + 10i generates a geometrically uniform code over Gα

that corrects every error pattern of weight t = 6. Moreover, the distance distribution of
the graph Gβ can be directly inferred from Theorem 4.2.6, which is shown in Table 4.1.
Therefore, the code generated by β corrects 12 error patterns with t+ 1 = 7 errors, 8 with
t + 2 = 8 and 4 with t + 3 = 9, resulting in the 24 errors. This geometrically uniform
code is shown in Figure 4.4. As it can be checked, the code is not a perfect code neither a
quasi-perfect code.

Figure 4.4: Geometrically uniform code generated by 3 + 10i over G16+17i

In the next subsections the problem of characterizing quasi-perfect codes over Gaussian
and EJ-graphs is considered, thus complementing the previous works on perfect codes
over Gaussian and EJ-graphs. The codes considered will also be generated as an ideal,
thus obtaining geometrically uniform codes. Also, being ideals will simplify the decoding
procedures. Finally, by using Theorems 4.2.6 and 4.2.7 the distance distribution of the
codewords can be calculated as it was done in previous example.

80 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

4.2.3 Quasi-Perfect Codes over Quotient Rings of Gaussian Inte-
gers

In this subsection a constructive method for obtaining quasi-perfect codes over Gaussian
integer rings is presented. As it has been mentioned before, given the signal constellation
Z[i]α equipped with the Gaussian metric, it is enough to choose β a divisor of α, such
that β is either of the form t+ (t+ 1)i or t− (t+ 1)i, to obtain a perfect code. The code
is defined as the ideal generated by the divisor and the signal constellation is covered
by the fundamental region whose covering radius has maximum value of t. That is, the
fundamental regions consist of Lee spheres of radius t. Thus, perfect codes are obtained by
translations of Lee spheres of radius t. As observed in [GW70], a Lee sphere with radius
r has 2r2 + 2r + 1 cells. By Corollary 4.2.13, any β being a divisor of α, defines a new
code, although not necessarily a perfect code, but with the property of covering the signal
constellation by identical fundamental regions. In this section the characterization of a
divisor β such that the ideal generates a quasi-perfect code is done. In this aim, some
distance properties of Gaussian graphs will be needed. In Theorem 4.2.6 the vertices
distance distribution has been presented and as consequence, it can be obtained in the
following result:

Corollary 4.2.15. Let α = a+ bi ∈ Z[i] and consider Gα. Then,

• The value t = b |a|+|b|−1
2
c gives the radius of the maximum Lee sphere contained in

the Voronoi region associated to Gα.

• If N (α) is odd, the value k = max{|a|, |b|} − 1 is the maximum distance from any
word to the center of the Voronoi region. If N (α) is even, the value k = max{|a|, |b|}
is the maximum distance from any word to the center of the Voronoi region.

Proof. This corollary is a consequence of Theorem 4.2.6.

As a consequence a constructive method for quasi-perfect codes that gives a complete
characterization can be obtained as presented in Theorem 4.2.16.

Theorem 4.2.16. Let α ∈ Z[i] and t be a positive integer. Let β ∈ {(t− 1) + (t+ 2)i, t+
(t+ 1)i, (t+ 1) + (t+ 1)i}. Then,

• If β divides α, then the ideal (β) forms a t-quasi-perfect code over Z[i]α.

• If β divides α, then the ideal (β) forms a t-quasi-perfect code over Z[i]α.

In both cases the code can correct every error pattern of weight t and N (β)− (2t2 + 2t+ 1)
error patterns with weight t+1. Moreover, these are the unique ideals that form quasi-perfect
codes over Z[i]α.

Proof. Let us consider the first item since the other one can be demonstrated in a similar
way. Now, for every β = x+ yi ∈ Z[i]α it is of the form δt,h = t+ (t+ 1)i+ (−h+ hi) or
δ′t,h = (t+ 1) + (t+ 1)i+ (−h+ hi) with integers t, h, depending on the parity of its norm.
It is enough to consider the values t = x+y−1

2
and h = y−x−1

2
for β with odd norm and

t = x+y−2
2

and h = y−x
2

for β with even norm. Hence, it can be assumed that y ≥ x ≥ 0,
which implies t, h ≥ 0.

First, consider the case that β = δt,h = (t−h)+(t+1+h)i divides α and define C = (δt,h).
Now, given c, c′ ∈ C two different codewords, it has to be proved that Bt(c) ∩ Bt(c

′) is

4.2. 2D QUASI-PERFECT CODES FROM GRAPHS OVER INTEGER RINGS 81

Figure 4.5: The 3 tiles of the 3-quasi-perfect codes over Z[i].

an empty set. Clearly, this can be obtained from the first item of Corollary 4.2.15 since
b |t−h|+|t+h+1|−1

2
c = t gives the radius of the maximum Lee sphere contained in the Voronoi

region associated to Gα.
Now, let us consider v ∈ Z[i]α. Then, by Corollary 4.2.15 it is obtained that k =

max{|t− h|, |t+ 1 + h|} − 1 = t+ h is the maximum distance from any word to the center
of the Voronoi region. Therefore, for any v ∈ Z[i]α there must exist a codeword c ∈ C such
that Dα(v, c) ≤ t + 1. Now, k ≤ t + 1 if and only if 0 ≤ h ≤ 1, thus obtaining the first
two values for β in the theorem. Moreover, h = 0 gives us the t-perfect code.

Second, let us assume that β = δ′t,h = (t + 1) + (t + 1)i + (−h + hi). The proof is
similar to the previous case, however for the even cases of Gaussian generators. Note
that b |t+1−h|+|t+1+h|−1

2
c = t gives the radius of the maximum Lee sphere contained in the

Voronoi region associated to Gα. Now, since k = max{|t+ 1− h|, |t+ 1 + h|} = t+ 1 + h
it follows that this is the maximum distance from any word to the center of the Voronoi
region. Then, clearly k ≤ t+ 1 if and only if h = 0.

To conclude with the proof just note that the norm of β is cardinal of the Voronoi
region generated by β and 2t2 + 2t+ 1 is the number of vertices at a distance less or equal
to t.

The distance distribution of these 3 quasi-perfect codes is shown in Figure 4.5 for error
correction capacity t = 3. Note that the one in the middle corresponds with the perfect
code and that vertex zero is highlighted in white.

Example 4.2.17. Let us consider h = 1, t = 3, which implies δ3,1 = 2 + 5i. Hence,
for any multiple α of δ a Gaussian ring with a 3-quasi-perfect code is obtained. Let us
consider for example α1 = −8 + 9i = (1 + 2i)(2 + 5i). Then, the ideal (2 + 5i) ∈ Z[i]−8+9i

forms a 3-quasi-perfect code with N (1 + 2i) = N (−8+9i)
N (2+5i)

= 5 codewords. Now, if α2

is a multiple of the previous generator, that is, α2 = −9 + 21i = (3 + 3i)(2 + 5i),
then the ideal (2 + 5i) ∈ Z[i]−9+21i forms again a 3-quasi-perfect code however with
N (3 + 3i) = N (−9+21i)

N (2+5i)
= 18 codewords. A graphical representation of both sets over their

corresponding Gaussian graphs is shown in Figure 4.6.

Remark 4.2.18. Note that the uniqueness is strongly obtained from the condition of being
an ideal. If this condition is relaxed, codes that are not obtained from the construction
given in Theorem 4.2.16 can be more or less straightforwardly constructed. Example 4.2.19
shows one of these possible codes. A special case of quasi-perfect codes being groups but
not ideals, will be discussed in Subsection 4.2.5.

82 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

Figure 4.6: 3-quasi-perfect codes generated by 2 + 5i over G−8+9i and G−9+21i.

Example 4.2.19. Let us consider α = 23 ∈ Z[i]. The metric space induced by the
corresponding Gaussian graph has N (α) = 232 = 529 elements. Let us consider the subset
formed by the 46 elements depicted in Figure 4.7 as bolded points. It can be checked that
this subset forms a quasi-perfect code over Z[i]23, but it neither forms an ideal nor a group
of the ring. Moreover, the obtained code is not geometrically uniform. Note that Z[i]23 is
isomorphic to the two-dimensional Lee space Z23×Z23. More details about the relationship
between quasi-perfect codes over two-dimensional Lee spaces and the ones presented in this
section will be discussed in Subsection 4.2.5.

Figure 4.7: A non geometrically uniform quasi-perfect code over Z[i]23

4.2. 2D QUASI-PERFECT CODES FROM GRAPHS OVER INTEGER RINGS 83

4.2.4 Quasi-Perfect Codes over Eisenstein–Jacobi Integer Rings

In this subsection, the characterization of quasi-perfect codes over EJ-graphs generated by
ideals is considered. Analogously to the Gaussian case, perfect codes over EJ-graphs can be
obtained over Eisenstein–Jacobi integers modulo α by choosing β a divisor of α of the form
(t+ 1) + tω or its conjugate, as it was shown in [MSBG08]. Then, the ideal generated by
such a divisor forms a perfect code and the signal constellation is covered by fundamental
regions whose covering radius has maximum value of t, that is, the fundamental regions are
hexagons with radius t. Thus, perfect codes are obtained by translations of the hexagons
with radius t that have 3t2 + 3t + 1 cells. Therefore, if a different divisor is considered,
the generated code is not perfect anymore. In Theorem 4.2.21 the adequate values for a
divisor such that it generates a quasi-perfect code are stated. Moreover, it is also shown
that the divisors provided are the only ones if the wanted code has to be an ideal.

In order to construct such codes, some distance properties of EJ-graphs should be
considered first. The following result is a consequence of the distance distribution of
EJ-graphs given in [FB10] and summarized in Theorem 4.2.7.

Corollary 4.2.20. Let α = a+ bω ∈ Z[ω] and consider EJα. Then,

• The value t = b |a|+|b|−1
2
c gives the radius of the maximum Lee sphere contained in

the Voronoi region associated to EJα.

• The value k = bmax{|2a+b
3
|, |a+2b

3
|, |a−b

3
|}c is the maximum distance from any word

to the center of the Voronoi region.

The next result that gives a complete characterization of ideals over EJ-graphs that
form quasi-perfect codes.

Theorem 4.2.21. Let α ∈ Z[ω] and let t be a positive integer. Let β ∈ Z[ω] be such that
β|α and β ∈ {(t+ 1) + tω, (t+ 1) + (t+ 1)ω, (t+ 2) + tω, (t+ 2) + (t− 1)ω, (t+ 3) + (t−
1)ω, (t + 3) + (t− 2)ω, (t + 4) + (t− 3)ω, }. Then, the ideal C = (β) is a t-quasi-perfect
code over Z[ω]α. Moreover, these are the only (up to units multiplication and conjugation)
t-quasi-perfect codes being an ideal and β = (t+ 1) + tω generates a perfect code.

Proof. Let us consider β = x+ yω such that x ≥ y ≥ 0, 2x+ y ≡ p (mod 3), 0 ≤ p < 3
and x + y − 1 ≡ q (mod 2), 0 ≤ q < 2. Then, by Corollary 4.2.20 the β looked for are
such that: ⌊

2x+ y

3

⌋
≤
⌊
x+ y − 1

2

⌋
+ 1.

Now, two cases are considered separately:

i)
⌊

2x+y
3

⌋
=
⌊
x+y−1

2

⌋
;

ii)
⌊

2x+y
3

⌋
=
⌊
x+y−1

2

⌋
+ 1.

For the first case, it follows, for some integers 0 ≤ p < 3, 0 ≤ q < 2, that:

2x+ y − p
3

=
x+ y − 1− q

2
.

As a consequence x = y − 3 + 2p − 3q, which gives the following possible values for
x− y:

84 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

Figure 4.8: The 7 tiles of the 3-quasi-perfect codes over Z[ω].

q \p 0 1 2
0 -3 -1 1
1 -6 -4 -2

Then, considering the different cases and taking into account that x ≥ y ≥ 0, the only
possibility is x = y + 1 for p = 2, q = 0. Note that this value gives the perfect code.

Now, for the second case, it follows that x = y + 3 + 2p− 3q, which gives the following
values:

q \p 0 1 2
0 3 5 7
1 0 2 4

Then, considering the different cases and taking into account that t =
⌊
x+y−1

2

⌋
the

remaining of the given divisors are obtained.

The distance distributions of the 7 quasi-perfect codes obtained in Theorem 4.2.21 are
shown in Figure 4.8 for error correction capacity t = 3. Note that the tile situated on the
left upper corner corresponds with the perfect code and that vertex zero is highlighted in
white.

Example 4.2.22. Let us consider t = 2 and α = ((t + 1) + tω)((t + 3) + (t − 1)ω) =
(3 + 2ω)(5 +ω) = 13 + 15ω. This EJ-integer generates a hexagonal signal constellation with
N (α) = 132 + 152 + 13 · 15 = 589 points. Now, if the code is defined using the first divisor
of α, that is, C1 = (3 + 2ω), then this ideal constitutes a 2-perfect code with 31 codewords.
On the other hand, if the code is defined using the other divisor, that is C2 = (5 + ω), then
the ideal is in this case a 2-quasi-perfect code with 19 codewords. Both codes correct all the
error patterns for t = 2, but the latter code also corrects error patterns for t+ 1 = 3.

Remark 4.2.23. Again, note that the uniqueness of such codes is conditioned by the
restriction of being ideals. Therefore, codes that are neither ideals nor groups of the
EJ-integers can be easily constructed as it was done for the Gaussian integers case.

4.2. 2D QUASI-PERFECT CODES FROM GRAPHS OVER INTEGER RINGS 85

Figure 4.9: Group quasi-perfect code C = 〈1 + 2ω〉 over G8+8ω.

Example 4.2.24. In Figure 4.9 the code generated as a group C = 〈1 + 2ω〉 over the graph
G8+8ω is represented. As it can be checked, this code is not an ideal since 1 + 2ω ∈ C but
(1 + 2ω)ω = −2 + 3ω /∈ C.

4.2.5 2-Dimensional Quasi-Perfect Codes for the Lee Metric

Quasi-perfect Lee distance codes over Z2
K were considered in [AB03b]. Given positive

integersK and t, the proposed code Ct in Z2
K is the one generated by the matrixG = [t, t+1],

that is, the code is defined as a group over Z2
K as follows:

Ct = 〈t, t+ 1〉 = {(st (mod K), s(t+ 1) (mod K)) | 0 ≤ s < K}.

In [AB03b] the authors established the conditions over K such that Ct is a t-quasi-
perfect code in Z2

K . Moreover, two different decoding schemes are provided in the same
paper. Later, in [HA06] an optimized decoding algorithm is presented for the same family
of codes. In this subsection this construction will be referred as the quasi-perfect group
code construction.

As it was proved in [MMB06], certain perfect Lee codes over two dimensional spaces
can be obtained as subcases of perfect codes being ideals over the Gaussian integers. The
main idea under this result is that Z2

K and Z[i]K are isomorphic as groups such that

86 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

the two corresponding metrics coincide. That is, the Lee distance and the one induced
by the Gaussian graph are the same metric, since the underlying graphs are isomorphic.
Therefore, Theorem 4.2.16 can be applied also to obtain quasi-perfect Lee codes over Z2

K .
Moreover, it makes sense to consider the relationship between the two families of codes,
that is, the one given by the quasi-perfect group codes construction and the one presented
in this section.

As a first approach to the determination of the connection between the two types of
codes, note that the codes constructed using Gaussian integers are indeed ideals over the
Gaussian integer rings, while the codes defined by AlBdaiwi and Bose in [AB03b] are just
group codes over the Gaussian integers. Therefore, in the general case, both codes do not
coincide. As an example, let us consider the Lee space Z2

29. Clearly, this space can be seen
as Z[i]29 with the Gaussian graph’s metric. In Example 4.2.25, two different constructions
of quasi-perfect Lee codes over this space are considered, the first one being a group and
the second one being an ideal, both over the same Gaussian integer ring.

Example 4.2.25. Let us consider Z2
29
∼= Z[i]29. Expressed in the notation to Gaussian

integers, in [HA06] it was shown that the code given by the group C1 = 〈3 + 4i〉 ⊂ Z[i]29 is
a 3-quasi-perfect code, as shown in Figure 4.10. Note that the code has 29 codewords.

Figure 4.10: A quasi-perfect code over Z29[i] being a group but not an ideal

On the other hand the ideal C2 = (2 + 5i) over Z[i]29 is by Theorem 4.2.16 again a
3-quasi-perfect code with 29 codewords, since N (2− 5i) = N (29

2+5i
) = 29.

Now, if the distance properties of the codes are considered, it can be seen that both codes
have maximum distance 25 and average distance 15. However, the codes are different and
let us illustrate it. In the first group code C1, for every codeword there exist two codewords
at distance 7 and two codewords at distance 8 from it. On the other hand, in the code
being an ideal C2, for every codeword there are exactly 4 codewords at distance 7. The next
codewords are obtained at distance 10, as it can be seen in Figure 4.11.

What comes out from the previous example is that both constructions are different
in general. Moreover, the question of when both the construction of quasi-perfect group
codes and the one presented in this section coincide is directly connected with the study of

4.2. 2D QUASI-PERFECT CODES FROM GRAPHS OVER INTEGER RINGS 87

Figure 4.11: A quasi-perfect code over Z29[i] being an ideal

the situation in which both algebraic structures match up, that is, whenever an additive
group of the Gaussian integers is also an ideal over the same ring. In this direction, it is
proved the following lemma, which characterizes these situations. Let gcdZ[i] denote the
greatest common divisor over the Gaussian integers and gcdZ the greatest common divisor
over the ring of integers.

Lemma 4.2.26. Let α, β ∈ Z[i] and consider 〈β〉 = {nβ | n ∈ Z} ⊆ Z[i]α. Let α
gcdZ[i](α,β)

=

a+ bi. Then, iβ ∈ 〈β〉 if and only if gcdZ(a, b) = 1.

Proof. Let us denote δ = gcdZ[i](α, β), α′ = α
δ

= a+ bi and β′ = β
δ
.

First, it will be proved that if iβ ∈ 〈β〉 then gcdZ(a, b) = 1. Since iβ ∈ 〈β〉 it
follows that iβ ≡ nβ (mod α) for some integer n. Thus, there exists γ ∈ Z[i] such that
β(i− n) = αγ and β′(i− n) = α′γ with gcdZ[i](α

′, β′) = 1. Since α′ divides β′(i− n) and
α′ and β′ are coprimes, it follows that α′ divides i− n. This entails that N (α′) divides

(i− n)ᾱ′ = (i− n)(a− bi) = (−na+ b) + (a+ nb)i.

As a consequence the following Diophantine system is obtained:

−na+ b = N (α′)p

a+ nb = N (α′)q

for integers p, q. Now,

N (α′) = a2 + b2 = a(N (α′)q − nb) + b(N (α′)p+ na)

= aN(α′)q − anb+ bN(α′)p+ bna = N (α′)(aq + bp).

By simplification it is obtained that 1 = aq + bp, which implies gcdZ(a, b) = 1.
To prove the converse, let us assume gcdZ(a, b) = 1, that is, there exist integers p, q

such that aq+ bp = 1. Let γ be (p+ qi)β′. Then, αγ = α′δ(p+ qi)β′ = β(p+ qi)(a+ bi) =
β
(
(pa−qb)+(qa+pb)i

)
. As qa+pb = 1 and n = qb−pa ∈ Z it follows that αγ = β(−n+i).

Hence βi ≡ βn (mod α) and βi ∈ 〈β〉, which concludes the proof.

88 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

As a consequence of the previous lemma, it is expected that both constructions,
although different in the general case, yield the same codes in certain cases. In the
following example, such a situation is considered, that is, a quasi-perfect Lee group code is
given that results in an ideal code over the Gaussian integers. However, as it can be seen
in that example, the same quasi-perfect code cannot be obtained from both constructions
separately.

Example 4.2.27. Let us consider N = 892 = (5 + 8i)(5− 8i) and the ring Z[i]89. In this
ring a quasi-perfect code that is a group and also an ideal is being constructed. Therefore,
the example illustrates that the previously known construction given in [AB03b] and the
one presented in this section are not completely disjoint in the quasi-perfect case. Hence,
let us consider β = 27 + 28i = (−1 + 4i)(5− 8i) the generator of both codes. Note that
gcdZ[i](N, β) = 5− 8i, with N

5−8i
= 5 + 8i and gcd(5, 8) = 1, fulfilling the hypothesis of the

previous Lemma 4.2.26. Now, it is enough to realize that

〈27 + 28i〉 = (27 + 28i) = (5− 8i),

where 5− 8i = (6− 7i) + (−1− i), which gives a 6-quasi-perfect ideal code using Theo-
rem 4.2.16, with t = 6 and h = 1.

Remark 4.2.28. Note that in the previous example, the group code is generated by an
element of the form t + (t + 1)i but its correction capacity is not equal to t. Moreover,
it can be straightforwardly obtained that the only group codes from the construction in
[AB03b] that coincide with the ideal quasi-perfect codes considered in this section are in
fact the perfect codes generated by β = t + (t + 1)i. As a consequence, the generators
given in Theorem 4.2.16 provides many new examples of quasi-perfect Lee codes over
two-dimensional spaces.

4.2.6 Decoding Algorithms

In this subsection decoding algorithms for the quasi-perfect codes over Gaussian and
EJ-integers obtained in this section are presented. The algorithms take advantage of the
algebraic structure of the codes. Hence, the procedures use the fact that the codes form
ideals over the corresponding integer ring to perform the decoding process.

Decoding algorithms for the Lee-distance quasi-perfect codes were presented in [AB03b]
and [HA06]. AlBdaiwi and Bose’s algorithm in [AB03b] makes a strong use of the cyclic
nature of the group codes that they consider. They construct a subset of the code with
cardinality 2t + 1 and correct by the closest codeword. Therefore, the algorithm can
be straightforwardly adapted to decode our codes when these codes are additive cyclic
groups over the integer rings, as it has been considered in Lemma 4.2.26. A more efficient
algorithm also for decoding quasi-perfect Lee codes was presented by Horak and AlBdaiwi
in [HA06]. In this case, the received symbol is corrected by the closest codeword among at
most 4 codewords. The algorithms that are proposed in this section have some geometrical
similarities to this last one although they decode different code constructions. Finally,
in [ABF12] and [FB10] general algorithms for minimum distance calculations are given,
which can be used for decoding in Gaussian and Eisentein–Jacobi lattice constellations.
However, in this section a different approach is given, which tries to minimize integer
multiplications and divisions.

The decoding procedures, both for the Gaussian and the EJ-integer rings, are presented
in Algorithms 6 and 7, respectively. However, both methods follow the same idea. Since

4.2. 2D QUASI-PERFECT CODES FROM GRAPHS OVER INTEGER RINGS 89

the codes are defined by means of ideals, the codewords are multiples of the generator of
the ideal. Hence, given a received word, finding the nearest codeword that corrects it is
equivalent to finding the quotient that results from the Euclidean division of the received
word by the ideal generator. Moreover, the correctness of the algorithms is guaranteed by
Theorem 4.2.36, which is obtained as a consequence of the following lemmas.

Notation 4.2.29. As it can be seen in the algorithms’ description, |β| will denote the
common Manhattan weight for a given Gaussian or EJ-integer. Let us also denote by [·]
the rounding operator, with [a + bρ] = [a] + [b]ρ. Then, the quotient and the remainder
will be denoted as quot(α, β) =

[
αβ̄
N (β)

]
and rem(α, β) = α− quot(α, β)β. It can be checked

that α = β quot(α, β) + rem(α, β) with | rem(α, β)| < N (β), which provides a Euclidean
division algorithm for Z[ρ], ρ = i, ω.

Lemma 4.2.30. Let α1, α2, β ∈ Z[ρ]. If α1 ≡ α2 (mod β) then rem(α1, β) = rem(α2, β).

Proof. Let α2 = α1 + βµ, µ ∈ Z[ρ]. Then, it follows that rem(α2, β) = α2 −
[
α2β̄
N (β)

]
β =

α2 −
[
α1β̄+βµβ̄
N (β)

]
β = α2 −

[
α1β̄
N (β)

+ µ
]
β = α2 −

[
α1β̄
N (β)

]
β − µβ = α2 − quot(α1, β)β − µβ =

α1 + βµ− quot(α1, β)β − µβ = α1 − quot(α1, β)β = rem(α1, β).

Algorithm 6: Decoding in Z[i]α
Data: α ∈ Z[i] being the Z[i]α generator
β ∈ Z[i] being the code generator
t ∈ Z+ being the code correction capacity
γ ∈ Z[i]α being the received symbol
Result: θ ∈ Z[i]α being the corrected symbol
Compute q := quot(γ, β), r := rem(γ, β) ;
if β = (t+ 1) + (t+ 1)i or |r| ≤ t then

Return θ = qβ ;
else

Compute:
Q = {(q + h)β (mod α) | h ∈ {0,±1± i}} ;

Find θ such that |θ| = min{Dα(x, γ) | x ∈ Q} ;
Return θ ;

end

The next result considers the geometrical location of the remainders obtained by such
a division algorithm.

Lemma 4.2.31. Let β ∈ Z[ρ]. The set

Rβ = {rem(δ, β) | δ ∈ Z[ρ]},

is obtained as the integral points of the complex parallelepiped with vertices at {±µ,±η},
where 2µ = β(1 + ρ) and 2η = β(1− ρ).

Proof. Let us define a(a+ bρ) = a and b(a+ bρ) = b. By Lemma 4.2.30 it is obtained that
Rβ = {rem(δ, β) | δ ∈ Z[ρ]} = {δ ∈ Z[ρ] | quot(δ, β) = 0}. Hence, Rβ = {δ | |2a(δβ̄)| ≤
N (β) and |2b(δβ̄)| ≤ N (β)}. Since 2a(δβ̄) and 2b(δβ̄) are both linear functions it follows
that Rβ is a convex polyhedron.

90 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

Algorithm 7: Decoding in Z[ω]α
Data: α ∈ Z[ω] being the Z[ω]α generator
β ∈ Z[ω] being the code generator
t ∈ Z+ being the code correction capacity
δ ∈ Z[ω]α being the received symbol
Result: θ ∈ Z[ω]α being the corrected symbol
Compute q := quot(γ, β), r := rem(γ, β) ;
if |r| ≤ t then

Return θ = qβ ;
else

Compute:
Q = {(q + h)β (mod α) | h ∈ {0,±1± ω}} ;

Find θ such that |θ| = min{Dα(x, γ) | x ∈ Q} ;
Return θ ;

end

One pair of vertices of Rβ is ±µ with 2a(µβ̄) = 2b(µβ̄) = N (β). Thus, 2µβ̄ =
2a(µβ̄) + 2b(µβ̄)ρ = ββ̄(1 + ρ), from which it is obtained that 2µ = β(1 + ρ).

The other pair of vertices of Rβ is ±η with 2a(ηβ̄) = −2b(ηβ̄) = N (β). Thus,
2ηβ̄ = 2a(ηβ̄) + 2b(ηβ̄)ρ = ββ̄(1− ρ), from which it is obtained that 2η = β(1− ρ).

As a consequence, the remainders generated by β are located in a parallelepiped
Rβ. A translation of this parallelepiped was considered in [FB10] for defining a set of
representatives of the quotient group. Moreover, the weight of the remainder obtained
over the Gaussian integers is bounded by the diameter of the Gaussian graph generated
by the divisor. However, this remainder not always minimizes the weight as it is expected
in order to perform correction. The next lemma proves these facts.

Lemma 4.2.32. Let β = c+ di ∈ Z[i].

| rem(δ, β)| ≤
{

max{|c|, |d|} if c ≡ d (mod 2)

max{|c|, |d|} − 1 if c 6≡ d (mod 2)

Proof. Let µ and Rβ be as in Lemma 4.2.31. Since ρ = i, the vertices of Rβ are {µik |
k ∈ Z}. Now, as | · | is a linear function, it has to be maximized in a vertex. Thus,
| rem(δ, β)| ≤ |µik| = |µ| = | c−d

2
+ c+d

2
i| = max{|c|, |d|}. If 2 does not divide c + d,

rem(δ, β) cannot be µ /∈ Z[i] and as a consequence the strict inequality | rem(δ, β)| < |µ|
is obtained.

Since the remainder considered in the previous lemma not always minimizes the weight
function, slight modifications might be done in order to find the one with minimum weight,
as it is shown in the following result.

Lemma 4.2.33. Let (β) be a t-quasi-perfect code over Z[i]α such that N (β) is odd. Then,
for every δ ∈ Z[i]α, there exists σ ∈ {0,±1,±i} such that rem(δ, β) = arg min{|γ| | γ ≡ δ
(mod β)}+ σβ.

Proof. Let c be the closest codeword to δ′ = rem(δ, β). If c = 0 then let σ = 0. Otherwise,
as c is the closest codeword it follows that Dα(δ′, c) ≤ t+ 1. By Lemma 4.2.32 and the

4.2. 2D QUASI-PERFECT CODES FROM GRAPHS OVER INTEGER RINGS 91

fact that 2 - N (β) necessarily Dα(δ′, 0) ≤ (t+ 1 + h)− 1 ≤ t+ 1. Now, by the triangular
inequality Dα(0, c) ≤ Dα(0, δ′) +Dα(δ′, c) ≤ 2t+ 2. As c 6= 0 and (β) is a t-quasi-perfect
code, then 2t+ 1 ≤ Dα(c, 0) ≤ 2t+ 2. Finally, c ∈ {±β,±βi}.

Lemma 4.2.34. Let (β) be a t-quasi-perfect code over Z[i]α such that N (β) is even. Then,
for every δ ∈ Z[i]α, rem(δ, β) = arg min{|γ| | γ ≡ δ (mod β)}.

Proof. By uniqueness, it can be assumed that β = (t + 1) + (t + 1)i. For any δ′ ∈ Z[i]
let δ = arg min{|γ| | γ ≡ δ′ (mod β)} = a + bi. If |δ| = t + 1, then by Lemma 4.2.32 it
follows that | rem(δ, β)| = t+ 1 with minimum weight. Otherwise, |δ| ≤ t. Then,

quot(δ, β) =

[
(a+ b)(t+ 1)

2t2 + 2t+ 2

]
+

[
(b− a)(t+ 1)

2t2 + 2t+ 2

]
i.

As a consequence,
[
|(a+b)(t+1)|

2t2+2t+2

]
≤
[
|t(t+1)|

2t2+2t+2

]
≤
[

1
2

]
= 0 and

[
|(b−a)(t+1)|

2t2+2t+2

]
≤
[
|t(t+1)|

2t2+2t+2

]
≤[

1
2

]
= 0. Hence quot(δ, β) = 0 and rem(δ, β) = rem(δ′, β) = δ.

Although in the Eisenstein–Jacobi integers case the corresponding remainder may have
a larger weight, the operations to get the minimum one are similar, as it is shown in the
next result.

Lemma 4.2.35. Let β ∈ Z[ω] and C = (β) be a t-quasi-perfect code over Z[ω]α. For every
δ, there exists σ ∈ {0,±1,±ω} such that rem(δ, β) = arg min{|γ| | γ ≡ δ (mod β)}+ σβ.

Proof. Let us consider Rβ, µ and η as in Theorem 4.2.31. It is clear that the result only
has to be proved for the boundary of Rβ. Then, µ = β(1+ω)

2
is the middle point between β

and βω and η = β(1−ω)
2

= −ω2

2
is the middle point between 0 and −βω2.

Let us prove first that all the points in the segment from µ to η can be corrected by 0
or βω. In this direction, note that µ can be corrected by βω. Since the other points in the
segment are farther away from β, no point in the segment is corrected by β. Similarly, η
can be corrected by 0 and the other points are farther away from −βω2.

By an analogous reasoning regarding the other segments it follows that the only
codewords that correct points in Rβ are {0,±β,±βω}.

Theorem 4.2.36. Algorithms 6 and 7 are correct.

Proof. Lemmas 4.2.33 and 4.2.34 guarantee the correctness for β ∈ Z[i] with odd and
even norms, respectively. Lemma 4.2.35 guarantees the correctness of the algorithm over
Z[ω].

Remark 4.2.37. Although the algorithms have similar appearance for Gaussian and
Eisenstein integers, the case where |r| > t over the Gaussian integers is an exceptional
case (indeed |r| is at most t+ 1). However, in the Eisenstein–Jacobi case this is a usual
situation. Moreover, it can be computed that |r| ≤ 3t/2 + 3.

Finally, the next example shows the performance of Algorithm 7 over a particular
scenario.

Example 4.2.38. Let us consider α = 14 + 9ω ∈ Z[ω] and β = 5 + ω ∈ Z[ω]. Since
α = (3 + ω)β and β = (t + 3) + (t− 1)ω for t = 2 then C = (5 + ω) is a t-quasi-perfect
code over Z[ω]α for error correction capacity t = 2. Now, let us assume that the symbol

92 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

ω2 ω

1

Figure 4.12: A 2-quasi-perfect code over Z14+9ω[ω]

γ = 12− 3ω has been received. First, γ is not a codeword. Then, let us correct γ using
Algorithm 7. Applying Euclidean division it is obtained that

γ = (2− ω)β + (1 + ω).

Since |r| = t then it can be corrected by θ = qβ = 11− 4ω.
Now, if the received symbol is γ′ = 6 + 8ω, it is possible to proceed in a similar way.

Applying Algorithm 7 results that

γ′ = (1 + ω)β + (2 + ω),

with |r| = 2 + 1 = t+ 1. The set Q = {4 + 7ω, 9 + 8ω,−1 + 6ω, 3 + 13ω, 5 + ω}. Note that

Dα(4 + 7ω, γ) = 3,

Dα(9 + 8ω, γ) = 3.

So both θ′ = 4 + 7ω and θ′′ = 9 + 8ω correct the obtained symbol. In Figure 4.12 a graphical
representation of the constellation Z[ω]α is shown.

4.2. QUASI-PERFECT LEE CODES OF RADIUS 2 AND LARGE DIMENSION 93

4.2.7 Conclusions

QAM-type and hexagonal signal constellation have been previously modeled by means
of quotients of Gaussian and EJ-integers, [Hub94], [Hub93]. Cayley graphs over these
rings were proposed in [MBG07] and [MSBG08] to define the so called Gaussian and EJ
metrics over these spaces. Moreover, the problem of perfect codes over these quotient
rings has been previously considered and such perfect codes were built as ideals over the
rings generated by element with maximal norm in the ring [MBGG05].

In this section quasi-perfect codes over Gaussian and EJ-graphs have been considered.
Constructive methods for quasi-perfect codes being ideals have been given and the unique-
ness of the codes, under the hypothesis of being ideals, has been proved. As a consequence,
previously known perfect codes are shown to be the unique ones being ideals over these
graphs. Moreover, decoding algorithms for the quasi-perfect codes over Gaussian and
EJ-integers have been presented, which also decode the previously known perfect codes.

The relationship between perfect codes over Gaussian graphs and the perfect codes
for the two dimensional Lee space was considered in [MMB06]. As it was shown, some
quotient rings of the Gaussian integers and the two dimensional Lee space coincide. Thus,
the quasi-perfect codes construction given in this section can be also applied to generate
new quasi-perfect codes over Lee spaces. Moreover, the connections between quasi-perfect
codes and the previously known for the Lee metric [AB03b] have been investigated. It has
been shown that both constructions are different in the general case by the characterization
of the conditions under which both constructions collapse.

Finally, it can be guessed that the procedures used in this section may be extended
to other rings, resulting in the construction of new quasi-perfect codes associated with
different signal constellations.

4.3 Quasi-Perfect Lee Codes of Radius 2 and Arbitrar-
ily Large Dimension

A construction of 2-quasi-perfect Lee codes is given over the space Znp for p prime, p ≡ ±5
(mod 12) and n = 2[p

4
]. It is known that there are infinitely many such primes. Perfect

codes for the Lee-metric were conjectured by Golomb and Welch not to exist, which
has been proved for large radii and also for low dimension. The codes found in this
thesis are very close to be perfect, which tells about the nature of the conjecture. Some
computations show that the related lattice graphs are Ramanujan, which could provide
further connections between the fields of coding theory and optimal graph theory.

4.3.1 Introduction

Golomb and Welch conjectured in their seminal paper [GW70] that perfect Lee codes
do only exist for spheres of radius r = 1 or in Lee spaces of dimension n = 1, 2. A
constructive result for 1-perfect Lee codes was also given in that paper. Moreover, for
a radius sufficiently greater than the space dimension, a negative existence result was
given by approximating the problem to the densest tilling of Rn with cross-polytopes.
Afterwards, Molnár enumerated all lattice-like 1-perfect codes in [Mol71]. Later, Post
in [Pos75] gave a strong negative result. If a perfect code exists, Post determined an
upper bound for its radius, in terms of the dimension, specifically, the radius must fulfill
r < 1

2
n
√

2 − 3
4

√
2 − 1

2
for n ≥ 6. Later, J. Astola [Ast82] and Lepistö [Lep81] improved

94 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

the bound given by Post to a quadratic relation between r and n, which can be considered
as an Elias-type bound for Lee codes. Those negative results in [Pos75, Ast82, Lep81],
suggest that the conjecture is more difficult for radius 2, as argued by Horak in [Hor09a].

Other authors have considered the conjecture for small dimensions. For example,
Gravier et al. in [GMP98] proved the non-existence of perfect codes in 3-dimensional
Lee spaces, even considering spheres of different radii. Dimension 4 was considered by
Špacapan in [Špa07], again with the possibility of spheres of different radii but at least
2. Also, Horak in [Hor09b] and [Hor09a] proved the non-existence of perfect Lee codes
in spaces of dimension up to n ≤ 6. Later, to achieve higher dimensions, Horak and
Grošek in [HG14] restricted the problem to linear codes and verified computationally the
non-existence of perfect Lee codes for dimension n ≤ 12 and radius r = 2. The status of
the conjecture for low values of r and n is depicted in Figure 4.13.

On the other hand, several papers have considered problems around the conjecture
that could give some insight. One approach has been to generalize the Lee metric. Huber
in [Hub94] gave 1-perfect codes over Gaussian integers and some non-perfect codes with
greater correction. In [CMAPJ04] Costa et al. considered a relation between tessellations,
graphs and codes over flat tori. In [MBG07, MSB+08, MBG09] Martinez et al. gave a
generalization of the Lee distance by means of a family of Cayley graphs over Cayley–
Dickson algebras. Also, the existence of perfect codes being ideals of the algebras was
considered. Nishimura and Hiramatsu in [NH08] generalized the Lee distance using a
surjective function from Zl into a finite field and constructed some non-perfect 2-error
correcting codes for this metric.

The existence of Lee codes has also been considered in terms of the size q of the
alphabet. AlBdaiwi et al. in [AHM09] enumerated all the alphabet sizes q such that there
exists a linear 1-perfect Lee code over Zn. In [AT13] H. Astola and Tabus obtained, for
small alphabet size q and dimension n, an upper bound of the number of codewords of
error correcting Lee codes.

Recently, a new approach has been taken in terms of diameter perfect codes, which
were introduced by Ahlswede et al. in [AAK01]. A subset C ⊆ Znq is a diameter perfect
code if there exists an anticode A such that |C||A| = qn. This concept generalizes perfect
codes since diameter perfect codes with minimum distance being odd are in fact the perfect
codes. Etzion in [Etz11] built diameter perfect codes of minimum distance 4. Later, Horak
and AlBdaiwi [HA12] enumerated the arities q such that there are 4-diameter perfect
codes over Zq. Araujo et al. in [ADH14] presented a generalization of diameter perfect
Lee codes, together with a new conjecture that extends the conjecture by Golomb and
Welch. Etzion et al. in [EVY13] built Lee codes for large dimension by means of weighing
matrices2.

In the present section a explicit construction of linear quasi-perfect Lee codes of radius
2 for arbitrarily large dimension is given. As it will be shown, these codes are very close
to be perfect since they have half of the density of potential perfect codes. In the authors
opinion, the existence of these quasi-perfect codes, hints that maybe a perfect code could
exist for low radius; and if they do not exist then the proof must be of a very different
nature than the proofs in previous papers dealing with the conjecture.

These quasi-perfect 2-error correcting Lee codes will be defined by means of Cayley
graphs over Abelian finite groups. The degree of the graph will be the double of the
dimension of the Lee space. The order of the graph will be in inverse relation to the
density of the quasi-perfect code. Thus, the main contribution of the section is presented

2A matrix W is a weighing matrix of weight w if its entries belong to {0,±1} and WW t = wI.

4.3. QUASI-PERFECT LEE CODES OF RADIUS 2 AND LARGE DIMENSION 95

1

t

G

2

t

G

3

t

G

4

t

G

5

t

G

6

t

G

7

t

G

8

t

G

9

t

G

10

t

G

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

G

G

G

G

G

G

G

G

G

G

G

G

G

G, Gr∗ P, Gr∗

P

P

P, Gr∗

P

P

P, Gr∗

P

P

P, Gr∗

P

P

P, Gr∗

P

P

P, Gr∗

P

P

P, Gr∗

P

P

P, Gr∗

P

P

P, S∗c P, S∗c P, S∗c P, S∗c P, S∗c P, S∗c P, S∗c P, S∗c P, S∗c

H0

H1

H2lc

H2lc

H2lc

H2lc

H2lc

H2lc

P P P P P P P P

P P P P P P P P

P P P P P P P

P P P P P P

P P P P P P

P P P P P

P P P P P

P P P P

P P P P

P P P

r

n

A perfect Lee code is known.

It is known that there is no perfect Lee code.
∗: Even with different radii
c: Computer based proof
l: Only the linear case is known
t: Trivial
G: Golomb and Welch. 1970. [GW70]
P: Post. 1975. [Pos75]
Astola. 1982. [Ast82] and Lepistö. 1981. [Lep81]. Too small to show.
Gr: Gravier et al. 1998. [GMP98]
S: Špacapan. 2007. [Špa07]
H0: Horak. 2009. [Hor09b]
H1: Horak. 2009. [Hor09a]
H2: Horak and Grošek. 2014. [HG14]

Figure 4.13: Cases in which Golomb–Welch conjecture is proved.

96 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

in the next result.

Theorem 4.3.1. For any prime p ≥ 7 such that p ≡ ±5 (mod 12) there exists a linear
2-quasi-perfect p-ary Lee code over Znp , where n = 2

[
p
4

]
and with pn−2 codewords.

Note that the notation [a] stands for the closest integer to the rational number a. As
an example of the codes obtained in previous result, let us consider the following:

Example 4.3.2. Let n = 4, p = 7. Then, the code over Z4
7 defined by the parity-check

matrix (
1 0 2 −2
0 1 2 2

)
results in a 2-quasi-perfect 7-ary Lee code over Z4

7. This code has pn−2 = 49 codewords.
It is known that perfect codes do not exist in this case since the sphere packing bound is
74

41
≈ 58.56.

As a consequence of Dirichlet’s theorem on arithmetic progressions, there are infinitely
many primes p such that p ≡ 5 (mod 12) and infinitely many primes such that p ≡ −5
(mod 12). Thus, for any constant c, there is a prime p ≡ ±5 (mod 12) such that the
dimension n = 2

[
p
4

]
is greater than c. As a consequence of this and Theorem 4.3.1, it is

obtained that:

Corollary 4.3.3. There are infinitely many n ∈ N such that there exists a 2-quasi-perfect
Lee code over a n-dimensional Lee space.

As it will be seen later, the result is constructive, and any application that requires the
use of Lee-codes can benefit from it. For example, Roth and Siegel in [RS94] considered
BCH Lee codes and their application to constrained and partial-response channels. Using
space embeddings, Jiang et al. in [JSB10] gave a method to construct Charge-Constrained
Rank-Modulation codes (CCRM codes) from Lee error-correcting codes, which could be
employed for flash memories. H. Astola and Stankovic in [AS12] considered Lee codes to
build decision diagrams.

In the rest of the section a family of Cayley graphs over Gaussian integers will be
considered. Thus, the family is defined for the additive group of the quotient ring Z[i]/pZ[i]
as follows.

Definition 4.3.4. Given an integer prime p, let us define the Cayley graph

Gp = Cay(Z[i]/pZ[i];H),

where
H = {β ∈ Z[i]/pZ[i] | N (β) = 1}.

Moreover, the adjacency in the graph is determined by the elements with unitary norm.
In the following sections, it will be proved that Gp induces a 2-quasi-perfect Lee code over
Znp under some conditions. Therefore, it must be determined which primes p are such that
Gp has error correction capacity 2 and diameter 3.

The rest of the section is organized as follows. Subsection 4.3.2 proves that the Cayley
graphs selected have error correction capacity 2. In Subsection 4.3.3 those Cayley graphs
are shown to attain diameter 3, which concludes that they define 2-quasi-perfect codes.
Finally, in Subsection 4.3.4 the results presented in this section are discussed, and some
open problems and future lines of research are detailed.

4.3. QUASI-PERFECT LEE CODES OF RADIUS 2 AND LARGE DIMENSION 97

4.3.2 Error Correction Capacity of Gp
As explained in previous section, 2-quasi-perfect Lee codes are going to be obtained by
means of Cayley graphs. In particular, it will be determined under which conditions the
Cayley graph Gp over the additive group Z[i]/pZ[i] and generating set those elements with
unitary norm induces a 2-quasi-perfect code. In this section it will be proved that p ≡ ±5
(mod 12) implies that Gp has error correction capacity 2 over Znp for n = 2[p

4
]. Hence, in

the remainder of the section, let us assume that p > 2 is a prime integer. Therefore, the
natural number n = 2[p

4
] fulfills p = 2n± 1.

First, let us introduce some notation. Given a Gaussian integer β = b1 + b2i ∈ Z[i], β̄
will denote its conjugate, that is β̄ = b1 − b2i. Also, <(β) = b1 will stand for its real part
and =(β) = b2 for its imaginary part. Then, the following formula about the norm of a
sum of Gaussian integers will be useful in several points of this section.

Lemma 4.3.5. For any pair of Gaussian integers β, γ ∈ Z[i],

N (β + γ) = N (β) +N (γ) + 2<(βγ̄).

Then, the previous result can be used to prove the following technical lemma:

Lemma 4.3.6. For any γ1, γ2 ∈ Z[i]/pZ[i], if N (γ1) = N (γ2) and N (1 + γ1) = N (1 + γ2)
then γ1 ∈ {γ2, γ̄2}.

Proof. Since N (1 + γ1) = N (1 + γ2), by Lemma 4.3.5 it is obtained that <(γ1) = <(γ2).
Therefore, there are x, y, z ∈ Z/pZ such that γ1 = x + yi and γ2 = x + zi. Now,
N (γ1) = N (γ2) implies that x2 + y2 = x2 + z2. As a consequence, y2 = z2 and therefore
y ∈ {±z}, which means γ1 ∈ {γ2, γ̄2}.

Corollary 4.3.7. Let β ∈ Z[i]/pZ[i] be such that N (β) = 1. Then, 1 + β is not a proper
zero divisor.

Proof. If 1 + β is a zero divisor then N (1 + β) = 0 = N (1 + (−1)). By Lemma 4.3.6,
β ∈ {−1,−1} = {−1} and 1 + β = 0.

Let us denote by G = U(Z[i]/pZ[i]) the multiplicative group formed by the units of
the ring. Then, the set

H = {β ∈ G | N (β) = 1}
is clearly a multiplicative normal subgroup of G. It is actually a cyclic group, although
this fact will not be used in the proofs. Note that H is the set of adjacencies of Gp, this is,
G = Cay(Z[i]/pZ[i];H). For any γ ∈ Z[i]/pZ[i], the following notation is introduced:

γH = {γβ | β ∈ H}.

Notice that if γ ∈ G, then γH is the coset of H in G with respect to γ. Nevertheless, this
notation is also defined for elements outside G, i.e., for zero divisors of Z[i]/pZ[i].

The following lemma tells us that cosets can be identified by the norms of its elements.

Lemma 4.3.8. For any γ ∈ G,

γH = {β ∈ Z[i]/pZ[i] | N (β) = N (γ)}.

98 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

Proof. In order to prove the sets equality, it will be first proved that γH ⊆ {β ∈ G | N (β) =
N (γ)}. Thus, let us consider β ∈ γH and it has to be proved that N (β) = N (γ). Since
β ∈ γH, then there exists η ∈ H such that β = γη. Hence N (β) = N (γ)N (η) = N (γ).

Now, let us consider the other inclusion, that is, γH ⊇ {β ∈ G | N (β) = N (γ)}.
Therefore, let β ∈ G be such that N (β) = N (γ). Since γ is invertible, β = γ(βγ−1). Now,
as N (βγ−1) = 1 it is obtained that β ∈ γH.

Theorem 4.3.10 states that the degree of the graph Gp is 2n. To prove it some particular
cases of the Quadratic Reciprocity Law will be necessary, which are recalled in the following
theorem for self-containedness.

Theorem 4.3.9 (Quadratic Reciprocity Laws). If p is an integer prime, then:

i) The number of solutions to −1 = x2 in Z/pZ is:

• 2 if p ≡ 1 (mod 4),

• 1 if p = 2 and

• 0 if p ≡ 3 (mod 4).

ii) The number of solutions to 3 = x2 in Z/pZ is:

• 2 if p ≡ ±1 (mod 12),

• 1 if p = 3 or p = 2 and

• 0 otherwise.

Theorem 4.3.10. For any odd prime integer p, let n = 2[p
4
]. Then,

|H| = |{β ∈ Z[i]/pZ[i] | N (β) = 1}| = 2n.

Proof. It is clear that

|H| = |{(x, y) | x, y ∈ Z/pZ, x2 + y2 = 1}|.

Therefore, let us consider the solutions of x, y ∈ Z/pZ of equation x2 + y2 = 1. First, if
x = 1 then y2 = 0 whose unique solution is y = 0. Let us assume x 6= 1 to look for the rest
of solutions. Since x 6= 1, x−1 has inverse and it is possible to define s = y/(x−1) ∈ Z/pZ.
By considering the intersection of the straight line y = s(x− 1) with the curve x2 + y2 = 1
it is obtained that x2 + (s(x − 1))2 = 1. The only solutions of this equation are x = 1
(which has already been considered) and x = s2−1

s2+1
. This second solution for x equals 1 if

and only if p = 2. Thus, the only solutions with x 6= 1 are x = s2−1
s2+1

and y = −2s
s2+1

.
Now, for each possible value of s, there is one solution with this form, that is, p minus

the number of solutions of s2 + 1 = 0. By the Quadratic Reciprocity Law (first item of
Theorem 4.3.9) there are p + 1 solutions if p ≡ 3 (mod 4) and p − 1 if p ≡ 1 (mod 4).
Thus, for primes of the form p = 1 + 4k, there are p − 1 = 4k = 2n solutions and for
primes p = −1 + 4k there are p+ 1 = 4k = 2n solutions, where k ∈ N.

Finally, just to ensure that the counted solutions are all different, note that if for a
pair s1, s2 the same solution (x, y) is obtained, then s1 = s2 = y/(x− 1).

Next, it can be easily obtained the following consequence of previous theorem, which
will be used in Subsection 4.3.3 to determine the diameter of the graph Gp.

4.3. QUASI-PERFECT LEE CODES OF RADIUS 2 AND LARGE DIMENSION 99

Corollary 4.3.11. For any odd prime integer p, let n = 2[p
4
]. If 0 6= γ ∈ Z[i]/pZ[i] then

|γH| = 2n.

Proof. Firstly, note that if γ ∈ G, then γH is a coset, which are widely known to have
the same cardinal. Thus, the non-immediate part of the proof lies on the zero divisors.
By Theorem 4.3.10, it is straightforward that |γH| ≤ 2n. Proceeding by reductio ad
absurdum, let us assume |γH| < 2n. Then, there exist β1 6= β2 such that γβ1 = γβ2, thus
γ(β1 − β2) = 0. Since γ 6= 0 then β1 − β2 must be a zero divisor. Now, multiplying by
β−1

1 , 1− β2β
−1
1 is also a zero divisor. By Corollary 4.3.7, 1− β2β

−1
1 = 0 and hence β1 = β2,

which is a contradiction.

Before stating the conditions under which Gp has error correction capacity 2, the
following lemma is going to be proved. This lemma determines the number of possible
norms among the neighbours of a vertex with a given norm.

Lemma 4.3.12. For any c ∈ Z/pZ, c 6= 0, let us consider the set Np(c) = {N (1 + β) |
N (β) = c} ⊂ Z/pZ. Then, it is obtained that:

|Np(c)| =
{
n+ 1 if c is a square residue mod p,
n if c is not a square residue mod p.

Proof. In the first case, that is c being a square residue, there must exists s ∈ Z/pZ such
that c = s2. By Lemma 4.3.8 and Corollary 4.3.11 there are 2n elements with norm c,
which are:

{β | N (β) = c} = {s,−s, β1, β2, . . . , βn−1, β̄1, β̄2, . . . , β̄n−1},
for some β1, . . . , βn−1 ∈ Z[i]/pZ[i]. Then,

Np(c) = {N (1 + β) | N (β) = c}
= {N (1 + s),N (1− s),N (1 + β1),N (1 + β2), . . . ,N (1 + βn−1)},

which are different by Lemma 4.3.6. Hence |Np(c)| = 2 + (n− 1) = n+ 1.
For the case of c being a square non-residue let us proceed in a similar way. It is

obtained that

{β | N (β) = c} = {β0, β1, β2, . . . , βn−1, β̄0, β̄1, β̄2, . . . , β̄n−1}.

Then

Np(c) = {N (1 + β) | N (β) = c}
= {N (1 + β0),N (1 + β1),N (1 + β2), . . . ,N (1 + βn−1)},

which are different by Lemma 4.3.6. Hence |Np(c)| = n.

As it will be noted afterwards, the case c = 1 in previous lemma is going to be used to
prove the error correction capacity. Later, the fact that n is a lower bound of Np(c) will
be considered to determine the graph diameter.

To finish the section, next theorem establishes the conditions for p such that Gp has
error correction capacity 2.

Theorem 4.3.13. Let p be a prime integer satisfying p ≡ ±5 (mod 12). Let n = 2
[
p
4

]
.

Then, the Cayley graph Gp has error correction capacity 2.

100 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

Proof. As it was explained in previous section, it has to be proved that Gp contains
|Bn

2 | = 2n2 + 2n+ 1 vertices at distance 2 or less from 0. Clearly, 0 is the unique vertex
at distance 0. Now, the set H contains all the vertices at distance 1 and |H| = 2n by
Theorem 4.3.10.

The vertices at distance 2 is the set A = {βa + βb | βa, βb ∈ H} \ (H ∪ {0}). Thus, let
us prove that |A| = 2n2. By Lemma 4.3.8 and Corollary 4.3.11, |A| = 2n · |Np(1) \ {0, 1}|.
Since 1 is always a square residue for any p, hence by Lemma 4.3.12, |Np(1) \ {0}| = n. It
remains to be proved that 1 does not belong to Np(1).

Suppose that there is β with N (β) = 1 and N (1 + β) = 1. Then, by Lemma 4.3.5,
1 = 2 + 2<(β) and hence <(β) = −2−1. Let β = −2−1 + yi, which implies 1 = N (β) =
2−2 + y2. Then, 3 = (2y)2, which only has solutions for p = 3 or p ≡ ±1 (mod 12) by the
second item of Theorem 4.3.9. Thus, |Np(1) \ {0, 1}| = |Np(1) \ {0}| = n and |A| = 2n · n,
which concludes the proof.

Remark 4.3.14. If p is a prime greater than 3 that does not satisfy p ≡ ±5 (mod 12),
then p ≡ ±1 (mod 12). In this case, Gp only contains 2n2 + 1 vertices at distance 2 or
less from vertex 0. Although it is not a 2-error correcting code, it is very close since only
2n syndromes cannot be corrected.

4.3.3 Diameter of Gp
In this section it will be proved that Gp has diameter 3 for any prime p > 5. The proof
will be separated into two subsections, the first one considering the case p ≡ 3 (mod 4)
and the second one the case p ≡ 1 (mod 4). Also, from here onwards it will be assumed
again that n = 2[p

4
]. Note that, since |Z[i]/pZ[i]| = p2 > |Bn

2 |, there are vertices outside
the sphere of radius 2, which means that the diameter of the graph is at least 3. As it
will be seen next, the proofs proceed by reductio ad absurdum by the assumption of the
existence of a vertex at a distance 4 from vertex 0, thus reaching a contradiction.

Case p ≡ 3 (mod 4)

In this case the proof of the diameter can be easily obtained by using a counting argument.
Note that in this case p = 2n− 1 and therefore Z[i]/pZ[i] is a field.

Theorem 4.3.15. For any prime p such that p ≡ 3 (mod 4) the graph Gp has diameter 3.

Proof. By reductio ad absurdum let us assume that there exists a vertex γ ∈ Z[i]/pZ[i] at
distance 4 of vertex 0. Let c = N (γ). Since γ is so far, it is obtained that Np(1)∩Np(c) = ∅.

Let us denote by Wt(0) the number of vertices at a distance t from vertex 0. Then,
{Wt(0) | t = 0, . . . , 4} is the distance distribution of the graph Gp. Now, the cardi-
nals W1(0) = |H| and W4(0) ≥ |γH| can be calculated by Corollary 4.3.11. Also, by
Lemma 4.3.12 it can be computed that |Np(1)| = n+ 1 and |Np(c)| ≥ n. Thus, the bounds
for the distance distribution obtained are summarized next:

W0(0) = |{0}| = 1
W1(0) = |H| = 1 · 2n
W2(0) = 2n · |Np(1) \ {0, 1}| ≥ (n− 1) · 2n
W3(0) ≥ 2n · |Np(c) \ {c}| ≥ (n− 1) · 2n
W4(0) ≥ |γH| = 1 · 2n

As a consequence, the total number of vertices satisfies |Z[i]/pZ[i]| ≥ 1 + 2n(1 + (n− 1) +
(n− 1) + 1) = 4n2 + 1 > 4n2 − 4n+ 1 = p2 = |Z[i]/pZ[i]|, which is a contradiction.

4.3. QUASI-PERFECT LEE CODES OF RADIUS 2 AND LARGE DIMENSION 101

Case p ≡ 1 (mod 4)

Unfortunately, the reasoning of the previous case fails to give us a contradiction if p ≡ 1
(mod 4). Thereof, it will be needed to resort to the tight bound from algebraic geometry
obtained in the Hasse–Weil Theorem. Note that, in this case, p = 2n + 1 and the ring
Z[i]/pZ[i] contains zero divisors.

First, let us prove two technical lemmas that analyze what happens with the zero
divisors of the ring.

Lemma 4.3.16. For any proper zero divisor ζ ∈ Z[i]/pZ[i],

ζH = {xζ | x ∈ Z/pZ, x 6= 0}.

Proof. On one hand, by Corollary 4.3.11, the cardinal |ζH| is 2n. On the other hand,
|{xζ | x ∈ Z/pZ, x 6= 0}| has p− 1 = 2n elements. Since both sets have the same size, it
is enough to prove one inclusion to show the sets equality. Therefore, let us prove the left
to right inclusion.

Let β = a+ bi be an element of norm 1 and ζ = u+ vi a proper zero divisor, hence
of norm 0. As ζ 6= 0 and Z/pZ is a field, both u and v are nonzero. Let us define
x = a− b v

u
∈ Z/pZ. Therefore,

xζ = (a− bv
u

)(u+ vi) = (au− bv) + (av − bv
2

u
)i = (au− bv) + (av − b−u

2

u
)i

= (au− bv) + (av + bu)i = (a+ bi)(u+ vi) = βζ.

Finally, note that x cannot be zero, since it would imply that β were a zero divisor,
contradicting N (β) = 1.

The following lemma has its inspiration in Lemma 4.3.12, but with the intention to
generalize to the case of zero divisors and to give a stronger result.

Lemma 4.3.17. For any proper zero divisor ζ ∈ Z[i]/pZ[i],

{N (β + ζ) | N (β) = 1} = Z/pZ \ {1}.

Proof. Let ζ = u + vi be a proper zero divisor. By Lemma 4.3.16 and by making few
calculations,

{N (β + ζ) | N (β) = 1} = {N (1 + βζ) | N (β) = 1}
= {N (1 + xζ) | x ∈ Z/pZ, x 6= 0} = {1 + 2xu | x ∈ Z/pZ, x 6= 0}.

To finish, note that y = 1 + 2xu with x 6= 0 has solution for every value of y except
1.

The previous lemma indicates that proper zero divisors are neighbours of every vertex
at distance 2 from 0, and hence they are at distance 3 from 0. Then, the following lemma
gives a polynomial description of the sets Np(t).

Lemma 4.3.18. Let p ≡ 1 (mod 4) be a prime in Z. For any t ∈ Z/pZ, t 6= 0, it is
obtained that

Np(t) = {x−1(x+ 1)(x+ t) | x ∈ Z/pZ, x 6= 0}.

102 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

Proof. By the first item of Theorem 4.3.9, there exists r ∈ Z/pZ such that r2 = −1. Note
that x−1(x+ 1)(x+ t) = x+ tx−1 + t+ 1. First, let us prove the left to right inclusion of
the sets. In this aim, let β = a+ bi, N (β) = a2 + b2 = t for a generic element N (1 + β)
in Np(t). Thus, let us check that x = a + rb satisfies N (1 + β) = x + tx−1 + t + 1. By
Lemma 4.3.5, xN (1 + β) = x(N (1) +N (β) + 2<(β)) = x(t+ 1) + 2ax. Hence,

x(x+ tx−1 + t+ 1)− xN (1 + β) = x2 + t− 2ax

= t+ (a+ rb)2 − 2a(a+ rb)

= t+ (a2 + 2rab+ r2b2)− (2a2 + 2rab)

= t− a2 + r2b2

= t− a2 − b2

= 0.

For the right to the left inclusion, let x 6= 0 and y = x−1(x+ 1)(x+ t) an element of
{x−1(x+ 1)(x+ t) | x ∈ Z/pZ, x 6= 0}. Now, define β = x+x−1(t−x2) + 2−1x−1(t−x2)ri.
Then, by calculation N (β) = (x + x−1(t − x2))2 + (2−1x−1(t − x2)r)2 = t. Moreover,
N (1 + β) = 1 + t+ 2<(β) = 1 + t+ 2x+ x−1(t− x2) = y, which ends the proof.

The intersection between Np(1) and Np(t) will be given by the roots of polynomial
Pt(x, y) = y(x + 1)2 − x(y + 1)(y + t). In order to apply the Hasse–Weil bound, the
polynomial must be irreducible. Therefore, let us introduce the following definition and
two useful results in Lemma 4.3.20 and Corollary 4.3.21.

Definition 4.3.19. Given a field F, a polynomial P ∈ F[x, y] is called absolutely irre-
ducible if it is irreducible in the algebraic closure of F.

Lemma 4.3.20. For any prime p, the polynomial Pt(x, y) = y(x+ 1)2− x(y+ 1)(y+ t) ∈
Zp[x, y] is absolutely irreducible for t 6= 0, 1.

Proof. The polynomial Pt(x, y) = xy(x− y) + (1− t)xy + y − tx has degree 3. If Pt(x, y)
is not absolute irreducible, then there exist polynomials A(x, y), B(x, y) with coefficients
in the algebraic closure of Z/pZ such that Pt(x, y) = AB with degA(x, y) = 2 and
degB(x, y) = 1. Furthermore, the product of the leading terms of A(x, y) and B(x, y)
must be xy(x− y). Let us consider the following three mutually exclusive cases, depending
on polynomials A(x, y) and B(x, y)

i) Case A(x, y) = (xy + ax + by + c), B(x, y) = (x − y + d). The coefficient of x2

in A(x, y) · B(x, y) is a and the one of y2 is −b. By hypothesis, both are 0 in
Pt(x, y). Then, the coefficient of xy is d = 1− t, the coefficient of x is c = −t and
the coefficient of y is −c = t = 1. Hence, for t = 1 there exists the factorization
P1(x, y) = (xy − 1)(x− y).

ii) Case A(x, y) = (x(x− y) + ax+ by+ c), B(x, y) = (y+ d). Now, the coefficient of x2

in A(x, y) ·B(x, y) is d = 0 and the coefficient of y2 is b = 0. Then, the coefficient of
xy is a = 1− t, the coefficient of x is 0 = −t and the coefficient of y is c = 1. Hence,
for t = 0 there exists the factorization P0(x, y) = (x2 − xy + x+ 1)y.

iii) Case A(x, y) = (y(x− y) + ax+ by + c), B(x, y) = (x+ d). The coefficient of x2 is
a = 0 and the coefficient of y2 is −d = 0. Then, the coefficient of y would be 0 = 1,
which implies that there exists no factorization.

4.3. QUASI-PERFECT LEE CODES OF RADIUS 2 AND LARGE DIMENSION 103

Finally, there are factorizations of Pt(x, y) only for t = 0 and t = 1, which proves the
result.

Corollary 4.3.21. The homogeneous polynomial

hPt(x, y, z) = xy(x− y) + (1− t)xyz + (y − tx)z2

is absolutely irreducible for t 6= 0, 1.

Proof. If hPt(x, y) had a factorization, then its evaluation at z = 1 would be a factorization
of Pt(x, y), contradicting Lemma 4.3.20.

Finally, let us conclude the section by proving the main result.

Theorem 4.3.22. If p is a prime such that p ≡ 1 (mod 4) and p > 5, then the diameter
of Gp is 3.

Proof. Let us proceed again by reductio ad absurdum. In this aim, let us assume the
existence of a vertex γ at distance 4 from 0 in Gp, with p fulfilling the hypothesis of the
statement. Let t = N (γ). Note that t 6= 1 since vertices with norm equal to 1 are at
distance 1. Also, t 6= 0 by Lemma 4.3.17. Hence, by Lemma 4.3.8, the vertices with norm
in the set Np(t) \ {0} are at distance at least 3. Meanwhile, the vertices with norm in
Np(1) \ {0} are at distance at most 2 from 0. Therefore, the intersection of previous two
sets is Np(1) ∩Np(t) = {0}.

Now, using polynomial notation, the previous set equality is equivalent, by Lemma
4.3.18, to the non-existence of solutions to x−1(x + 1)2 = y−1(y + 1)(y + t) other than
x = −1. Let us highlight that the solution x = −1 corresponds with norm 0. Thus,
vertices in H have vertex 0 as their neighbour, while vertices in γH have as some of their
neighbours vertices that are proper zero divisors.

The contradiction will be obtained when proving the existence of a solution to the
equation Pt(x, y) = 0 other than the trivial ones (x, y) ∈ {(0, 0), (−1,−1), (−1,−t)}. In
this aim, let us define the varieties

Vt = {(x, y) ∈ (Z/pZ)2 | Pt(x, y) = 0},

Xt = {(x : y : z) ∈ P2
Z/pZ | hPt(x, y, z) = 0},

where P2
Z/pZ denotes the projective space of dimension 2 over Z/pZ. The notation (x : y : z)

indicates a projective point, which is the same point as (λx : λy : λz) for any λ 6= 0. Thus,
affine solutions can be recovered by taking λ = z−1; except for solutions (x : y : 0), which
are the points at the infinity.

Hasse–Weil’s theorem [Coh07] states that∣∣|Xt| − (p+ 1)
∣∣ ≤ 2

√
p,

for absolutely irreducible polynomial curves Xt of degree 3. Note that, by Corollary 4.3.21,
Hasse–Weil’s theorem can be applied to hPt(x, y, z). Therefore,

|Xt| ≥ p+ 1− 2
√
p.

Now, the only 3 projective solutions for hPt(x, y, z) = 0 with z = 0 are (x : y : z) ∈
{(0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 0)}. Thus, |Vt| = |Xt| − 3, which implies that

|Vt| ≥ p− 2− 2
√
p.

104 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

As a consequence, those primes p such that |Vt| ≥ 4 give the contradiction looked for.
Clearly, if p ≥ 17 then,

|Vt| ≥ p− 2− 2
√
p ≥ 17− 2− 2

√
17 ≥ 6.7.

Finally, the unique prime p ≡ 1 (mod 4) such that 5 < p < 17 is 13. In this particular
case, it can be computed that |Vt| ≥ 9 for any t, which concludes the proof.

Remark 4.3.23. G5 has diameter 4 since, vertex 2 + 2i and its associates are at distance
4 from vertex 0.

4.3.4 Discussion

In this final subsection, conclusions of this work and future research are going to be
presented. In the first subsection, the main result is rewritten using parity-check matrices.
Also, a formal proof of the infiniteness of the constructed family of quasi-perfect codes is
given. Some considerations on the density of the codes are addressed. Moreover, other
examples of codes presenting greater density and an upper error correction capacity are
shown. In the final subsection, the authors aim to exhibit the connections of the graphs
considered in the present study with other graph theoretical problems, trying to give a
new insight into the perfect Lee codes conjecture formulated by Golomb and Welch more
than forty years ago.

Quasi-Perfect Lee codes

As it has been proved in previous Subsections 4.3.2 and 4.3.3, Gp has error correction
capacity 2 and diameter 3, for any prime p > 5 and p ≡ ±5 (mod 12).

Dirichlet’s theorem on arithmetic progressions asserts that in any arithmetic progression
whose initial term is coprime with its increment there are infinitely many primes. As
a natural consequence, congruences can be considered as arithmetics progressions, and
therefore it can be straightforwardly obtained the following:

Corollary 4.3.24. There are infinitely many n ∈ N such that p = 2n± 1, p ≥ 7 prime in
Z, p ≡ ±5 (mod 12).

Then, when applying the previous result it is obtained:

Corollary 4.3.25. The family of graphs Gp contains infinitely many graphs with error
correction capacity 2 and diameter 3.

Now, as it was argued in Section 4.1, each of these graphs induces a 2-quasi perfect
Lee code. Let us consider Gp = Cay(Z[i]/pZ[i], {β1, . . . , β2n}), where β1, . . . , β2n are the
elements in Z[i]/pZ[i] with unitary norm and they are associates of the first n

2
elements:

β1, . . . , βn
2
.

The set of generators of the Cayley graph defines the parity-check matrix, that is,

M =
(
β1, . . . , βn

2

)
.

This can be verified by realizing that the word c is associated to vertex Mc and that
c belongs to the code if and only if it is associated to vertex 0; i.e., the codewords are
exactly the words c such that Mc = 0.

4.3. QUASI-PERFECT LEE CODES OF RADIUS 2 AND LARGE DIMENSION 105

However, the code associated to this matrix belongs to the space (Z[i]/pZ[i])n/2. In
order to obtain the Lee code over (Z/pZ)n and a parity-check matrix with integer entries,
every β has to be substituted by

β 7→
(
<(β) −=(β)
=(β) <(β)

)
.

Therefore, the parity-check matrix associated to the graph Gp is(<(β1) −=(β1) · · · <(βn
2
) −=(βn

2
)

=(β1) <(β1) · · · =(βn
2
) <(βn

2
)

)
.

Now, let us give some considerations on the quality of the codes constructed. Note
that, since the Lee sphere of radius 2 contains |B2| = 2n2 + 2n+ 1 words, then the graph
induced by any 2-quasi-perfect linear code has at least 2n2 + 2n+ 1 vertices. The graphs
Gp constructed in this section have p2 vertices. Therefore, for the case p = 2n + 1, the
number of vertices is p2 = 4n2 + 4n + 1 = 2|B2| − 1. Also, for the case p = 2n− 1, the
number of vertices is p2 = 4n2 − 4n+ 1 = 2|B2| − 8n− 1. Thus, the reached vertices are
asymptotically the double of which would be reached in the graph associated to a perfect
code. In other words, the density of the codes presented is 1

p2 .
Although the obtained density is quite good, for some small cases (low dimension),

graphs with a smaller number of vertices have been computationally found. Let us consider
the following examples.
Example 4.3.26. Let n = 8 be the dimension and p = 13. The set of generators of
the Cayley graphs will be H = ±{1, 4 + 10i, 8, 7 + 11i}. In this case the Cayley graph
G = Cay(Z[i]/pZ[i];H) induces a 2-quasi-perfect code. Note that G has p2 = 169 vertices,
which is just 17% over |B8

2 | = 145, the cardinal of the sphere in this dimension.
Example 4.3.27. Let n = 16 be the dimension. In this case, by extending the search to a
different ring, a new graph has been found. The graph is build over the Quaternion integers
modulo p = 5, being the generator set H = ±{1, 1 + 2i+ 3j, 3i+ 4j + 1k, 3 + 4i+ 3j}. In
this case, the number of vertices of the graph is p4 = 625, which is 15% over |B16

2 | = 545.
The previous small examples suggest that there exist codes very close to be perfect,

although general constructions appear to be difficult to find.
From the result by Post [Pos75] it was obtained that there is no perfect code with

radius greater than the dimension of the space. Previously to that paper, Golomb and
Welch [GW70] had already noted that there cannot be perfect codes with correction greater
than a constant that depends on the dimension by the use of the maximum density of
packing with cross-polytopes. Clearly, this can be applied to quasi-perfect codes. For every
n there exists tn such there are not t-quasi-perfect codes for t ≥ tn. Hence, this might
suggest that the radius 2 case is an exceptional one. Nevertheless, a few 3-quasi-perfect
codes have been found for small dimensions. Note that in this case the n-dimensional
sphere of radius 3 has cardinal |Bn

3 | = 1
3
(1 + 2n)(3 + 2n + 2n2). The examples that we

have found are summarized in Table 4.2. The codes are obtained from Cayley graphs
Cay(Z[i]/pZ[i];H), for parameters n, p,H indicated in the table. As it can be seen, the
first example is just 31% over the cardinal of the sphere, while the second and third are 79%
and 102%, respectively. Any of the three examples can be considered as 3-quasi-perfect
codes really near to the perfect one.

In the authors opinion, the construction of an infinite family of graphs containing these
codes or similar ones would have a great value, both practical and in a better understanding
of the Golomb and Welch conjecture.

106 CHAPTER 4. ALMOST OPTIMAL LATTICE GRAPHS AND LEE CODES

n p H p2 |Bn
3 |

4 13 ±{1, 3 + 4i} 169 129
6 26 ±{1, 4 + 4i, 9 + 11i} 676 377
8 41 ±{1, 2 + 13i, 6 + 18i, 11 + i} 1681 833

Table 4.2: Some 3-quasi-perfect Lee codes over Znp .

Related Problems

Other interesting problems from different areas than from Coding Theory could be profited
from this study. One example is the degree diameter problem over Abelian groups, as
discussed in Section 4.1. In the degree-diameter problem the perfect case is approximated
by below—in the number of vertices—while our construction has approximated it by above.
Specifically, a construction by Macbeth et al. [MŠŠ12] obtains graphs of degree 2n and
diameter 2 with cardinal approximately 3

4
|Bn

2 |, whilst our construction have error capacity
2 and about 2|Bn

2 | vertices.
Furthermore, the graphs considered in this section seemed to be good expanders.

Therefore, the spectrum of some of them was computed and the obtained values exhibit
that they are Ramanujan graphs. Ramanujan graphs are good expander graphs that
attain the spectral bound [DSV03]. More specifically, G is a Ramanujan graph if and
only if for every eigenvalue of its adjacency matrix λ it is hold either |λ| = deg(G) or
|λ| ≤ 2

√
deg(G)− 1. For the case of G being a Cayley graph some interesting properties

are known. Let G = Cay(G;S) for a Abelian group G, then, there is a group character
(an homomorphism into (C \ {0}, ·)) χα for every α ∈ G, and the eigenvalues are given by
λα =

∑
β∈S χα(β). In the case of the group Z[i]/pZ[i] the characters are

χα(β) = e
2πi
p

(<(α)<(β)+=(α)=(β)),

from which follows the eigenvalues of Gp:

λα =
∑

β, N (β)=1

e
2πi
p

(<(α)<(β)+=(α)=(β)).

Clearly λ0 = |H|; for the other values it seems plausible that Weil’s conjectures imply
|λα| ≤ 2

√
p for α 6= 0. Noticing in addition that if p ≡ −1 (mod 4) then p = deg(Gp)− 1

and that if p ≡ 1 (mod 4) then p = deg(Gp) + 1, it is natural to formulate the following
conjecture:

Conjecture 4.3.28. Gp is a Ramanujan graph for any prime p ≡ 3 (mod 4).

This conjecture has been verified for all primes p < 1000; the only primes in that range
for which Gp is not Ramanujan are 17, 53 and 541. Moreover, we believe that most primes
fulfilling p ≡ 1 (mod 4) give also Gp being Ramanujan graphs. Therefore, the proof of
this conjecture and the study of the relation between Golomb and Welch conjecture and
spectral analysis will be considered as future work.

Chapter 5

Some Experimental Evaluations

This chapter is devoted to explain the simulation infrastructure utilized and to show the
results of simulations related to the previous chapters. In Chapter 2 lattice graphs were
studied, giving emphasis to symmetry, and some topologies were proposed as alternatives
for actual supercomputers. Simulations will show how those alternatives are competitive.
Symmetry will be empirically verified to have a large impact on performance. It will be
also studied how applications that are designed for tori can run in other lattice graph
with some improvements. In Chapter 3, the dragonfly topology was studied, providing
deadlock-free routing algorithms that make use of global trunking and symmetry. In this
chapter those routings are evaluated and shown to give similar performance and allowing
for more variety in the amount of resources. Symmetry is also evaluated for dragonflies,
showing that, at difference than lattice graphs, symmetries do not increase throughput.

Section 5.1 details the network simulator used in the experiments. Some simulation-
related concepts are introduced and changes on the simulator are accounted. Section 5.2
explains NASA Advanced Supercomputing Division’s (NAS) Parallel Benchmarks (NPB)
and the traces obtained from them. Section 5.3 shows how symmetry impacts on the
network performance in lattice-graphs. Networks with different values of average distance
and symmetry are simulated and their effect on the performance is measured. Section 5.4
makes an study on how the twisted links of the RTT can break initially the locality of
some applications and how it can be fixed by modifying the application mapping. For
that, it introduces a traffic model generalizing uniform traffic by adding traffic local
respect to a torus. Then, it is studied analytically and experimentally that using proper
mapping functions the RTT topology usually outperforms the rectangular tori. Section 5.5
evaluates 4-dimensional lattice graphs. Some current Blue Gene systems with mixed
radix tori as topologies are compared against symmetric lattice networks of the same size.
Section 5.6 shows that the throughput of dragonfly topologies is unaffected by symmetry.
In these networks, the load can be well-distributed among the links, even if there are
not automorphisms among them. Section 5.7 gives the performance of the deadlock-free
routing algorithms introduced in Chapter 3 for dragonfly networks with global trunking.
These routing algorithms are shown to have comparable performance to other proposals.
Then, it is studied their performance using different numbers of VCs—since more VCs
reduce HoLB. Note that previous routings did not admit to change arbitrarily the number
of VCs.

107

108 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

5.1 The FSIN simulator
All the experiments in this chapter have been realized using the functional simulator called
FSIN [RPM05, NMPR11], which is part of INSEE (Interconnection Network Simulation
and Evaluation Environment). FSIN is a time driven simulator of network routers. Each
router has several ports, where each port can be an input port, an output port or connect
by a link to another router. The time is measured in router cycles. Compute nodes only
create and consume packets and are associated by an input and output port to a router.
When a packet is created it has a destination compute node. Packets are divided into
phits, the minimum data unit that can be manipulated every cycle. Each port has several
buffers or virtual channels. Tori and other lattice-graphs employ the Bubble Adaptive
Router presented in [CBGV97] and currently used by IBM Blue Gene supercomputers
with three virtual channels.

Measures of interest of a simulation are throughput, which is measured in phits/(cycle ·
node) and average latency of packets, measured in cycles. A simulation run consists of
choosing a load to be offered in every router, which is translated in the probability of
creating a packet each cycle for each compute node. Then, it begins with about 10,000
cycles of warmup to hopefully arrive a stationary state, where more simulation time does
not change fundamentally the state of the network. This is followed by another 10,000
cycles of statistics where the measures are taken.

The default mode of FSIN is to generate packets synthetically following a traffic
pattern. Nevertheless, it also has the capability of reading MPI traces, generating packets
in the same order and same waits than the application did when it was traced, including
computing times. This preserves causal dependencies between messages, although it cannot
represent the behaviour that the application would have if packets arrive in different order.
For a trace, the most interesting measure is the total time of execution.

The version of FSIN used in this thesis is a local branch deriving from a version of
April 5th, 2011, which is still the more recent available from http://www.sc.ehu.es/
ccwbayes/members/jnavaridas/home/simul.html. From that version, many changes
have been made, among which are:

• Bug fixes, miscellaneous features and scripts.

• Option to map several applications to the same router (either traces or synthetic
traffic).

• Option to expand the collectives found in traces into point to point messages.

• Several placement functions to be used in the mapping of applications.

• Capability of synthetic traffics to receive parameters.

• A new simulation mode for the simulation of bursts.

• Allow to set different values of buffer size and latency in each dimension. This is
motivated by the differences between local and global links in dragonfly networks.

• A basic deadlock/livelock detector, which works correctly for oblivious routings and
can be useful sometimes with adaptive routing.

• Allow topologies to have any number of dimensions, with a maximum defined at
compile time (MAX_DIM).

http://www.sc.ehu.es/ccwbayes/members/jnavaridas/home/simul.html
http://www.sc.ehu.es/ccwbayes/members/jnavaridas/home/simul.html

5.1. THE FSIN SIMULATOR 109

• Injection ports have been differentiated from their virtual channels.

• Option to make several router arbitrations each cycle.

• Option to arbitrate output ports instead of virtual channels.

• Option to use wormhole routing instead of virtual cut-through.

• New traffic patterns have been implemented:

– localuniform: with a parameter a. Consists of a
100

local traffic plus (1− a
100

)
uniform traffic.

– antipodal: Each node generate traffic to a node in the most distant router.
Also known as furthest-node pairing.

– fixedrandom: At the beginning of the simulation each node selects a different
random node. During the simulation, a node sends packets to its selected
destination.

– randompairing: At the beginning the set of compute nodes is partitioned in
pairs in a random uniform way. During the simulation, each node communicates
with its pair.

– centralsymmetric: Must be defined a center of symmetry for each topology.
Each node communicates with its symmetric respect to the selected center. If
possible, it uses as center of symmetry the center of the network, or equivalently
by (−1/2, ...,−1/2). It is the immediate generalization of the traffic called
diagonal pairing in [CEH+12].

– interval, with an argument a: The node x sends packets to a random node in
x+ 1, 2, . . . , a.

– corners: In a mesh each node sends traffic to a random corner. This traffic
has proved to be the most prone to deadlock in meshes with wormhole.

– row with two arguments X and Y : Each node sends traffic to a random router
in one of the rows from currentrow + X to currentrow + X + Y − 1. For
dragonflies and Y = 1 this traffic is more known as ADV+X.

• Several new topologies have been implemented:

– Canonical dragonfly: Including the global link arrangements: dally, palmtree,
coset (a symmetric one) and random.

– Lattice graphs: The generator matrix is introduced as argument.
– Hamming graphs: Although they are lattice graphs, they have enough

particularities to have a specific implementation. They include the complete
graphs.

– extdgfly_A_B_T: A dragonfly with A routers per group, B groups and T
links between every pair of groups.

• New injection modes:

– route: First route, then select injection buffer depending on your next direction.
– route adaptive: As above if there are packets to all destinations. Otherwise

randomizes. It adapts to traffic, avoiding HoLB in uniform and congestion on
permutations.

110 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

5.2 NPB MPI traces

This section studies several applications included in the NAS Parallel Benchmarks (NPB)
[BHS+95] and derives the communication pattern from an analysis of the calls to MPI
communication primitives. NPB is a set of benchmarks (kernels and pseudo-applications)
based on scientific applications typically employed in large parallel systems. Thus, we can
expect that the results of this section can be generalized to standard HPC applications.
These applications have been largely studied in the scientific literature [Rie06, LH, Lee09,
KL98]. This section will focus on their communications, considering separately point-to-
point and collective messages and ignoring management messages (Init, rank, size, etc).
The reason for this is that, while broadcast or all-to-all messages can contribute to a
significant part of the network traffic (or all of it, such as in FT), they do not reflect any
relevant communication topology, and their behaviour typically mimics the theoretical
topological properties of the underlying physical topology. Thus, our topological study
will remark the topology defined by point-to-point primitives and the amount of collective
communications, if present.

The five kernels and their communication characteristics are:

IS Integer Sort: Each process communicates with the following one, forming a directed
cycle. There is a large amount of broadcast/gather from the root process.

EP Embarrassingly Parallel: There is almost no communication, and all of it is composed
of collectives: barriers and allreduce. This program is known for not being typically
affected by network bottlenecks.

CG Conjugate Gradient: The dataset is a square matrix with data blocks regularly
allocated to processes. It is depicted in the middle of Figure 5.1. Starting from that
mesh of processes:

• Each process communicates with the process in the same row with a single-bit
change in their address (Hamming distance 1); this is, the nodes in each row
form an hypercube. This comprises most messages from the application. They
are the red lines in the figure.

• Each node communicates with the transpose in the mesh. If the process matrix
is rectangular with aspect ratio 2:1, the transpose is applied to consecutive
pairs of processes. These are the blue lines in the figure.

MG MultiGrid V-cycle: 3D torus with some broadcast/gather messages from the root
node. Figure 5.2 shows in the left a 3D cube and in the right what the communication
becomes after mapping it in a 2D mesh.

FT Fourier Transform: All messages are collectives (mainly broadcast), using barrier-based
synchronization between different execution phases.

5.2. NPB MPI TRACES 111

Figure 5.1: Local communications in LU, CG and BT.

Figure 5.2: Local communication in MG.

There are three pseudo-applications which implement different Computational Fluid
Dynamics (CFD) solvers:

BT Block tridiagonal: The logical topology is an square 2D torus with additional diagonal
links ±(−1, 1). There is much more data in one direction than in the opposite,
but using the same amount of messages. The right part of Figure 5.1 shows this
communication.

SP Pentadiagonal Solver: Same communication graph as BT.

LU LU Solver: Uses a typical wavefront communication mechanism, in which processes
are allocated in a 2D mesh and each one communicates to the one on the right and
below it. This is depicted in the left of Figure 5.1.

Finally, there is a miscellaneous benchmark with unconstructed computation:

DT Data Traffic: A network traffic benchmark using traffic patterns Black Hole (BH),
White Hole (WH) or Shuffle (SH). The BH model will be the one used.

From the previous list, and considering the amount of data sent on each message, it
can be observed that the most frequent communication graphs are 2D or 3D mesh or
torus. Generally, this happens because they correspond to the data layout employed with
a direct block-assignment partitioning algorithm and near-neighbour communication. The
additional edges in the communication graph correspond to application-specific patterns
such as the hypercubes in CG, which can be variable in time (because they only happen
in certain phases) and send a variable amount of data.

112 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

Regarding collective communications, the most frequent primitives are broadcast/scat-
ter from a root node or gather/reduce to this root node, used to distribute tasks among
nodes and compile the results. Also, all-to-all is used when each node needs the data from
all others in each step.

The Extrae MPI tracing tool [Ext] has been utilized to obtain traces from these
benchmarks using problem sizes A, running on 32, 64 and 128 nodes of the Altamira
supercomputer based on IBM JS21 blades. The obtained trace files are very large; a total
of 84GB of traces have been collected. Some applications require a square number of
processes, which limits the traces that have been collected.

When used in simulations, a mapping algorithm must map the trace processes into the
simulated nodes. The measure of interest is the execution time (in cycles) of the parallel
section from the call to MPI_Init to the call to MPI_Finalize. Simulations will show that
the network load differs a lot among NPB. EP and LU have very few network load while
that for FT and IS have a considerable load.

5.3 Evaluation of the Impact of Symmetry in the Per-
formance of 2D Lattice Networks

This section explores the effect of symmetry on the performance of lattice graphs. In
Subsection 5.3.1 it is given a formula for the throughput of a lattice network depending on
a measure of its symmetry. Later, in Subsection 5.3.2, the previous model is verified for
2D lattice graphs and a detailed comparison is done for a selection of networks.

5.3.1 A Simple Performance Model for Networks Based on Lat-
tice Graphs

In this subsection it is introduced a simple performance model based just on two topological
parameters: symmetry and average distance. Symmetric 2D lattice graphs are characterized
in Appendix A in terms of their generator matrices, showing that the most significant
examples of symmetric 2D lattice graphs are Gaussian networks and Kronecker products of
cycles. Now, the concept link utilization is introduced for these networks, which measures
how symmetric they are. The link utilization (LU) is defined as the average usage of the
network links under uniform traffic at maximum load.

Since the adjacency pattern of a lattice graph is determined by orthogonal vectors
{e1, . . . , en}, the network links can be separated into n disjoint sets, each containing the
links in the corresponding direction. Therefore, in these networks, the distance of any
minimal path between two nodes v and w can be decomposed as D(v,w) =

∑n
i=1Di(v,w),

where Di(v,w) is the distance in the ei direction when a packet travels through a shortest
path between nodes v and w. Furthermore, the average distance in ei (that is, the average
number of e1 links in the route of packets under uniform traffic) can be defined as

k̄i =
1

|V (G)| − 1

∑
v∈V (G)

Di(0,v).

In addition, it is clear that k̄ =
∑

i k̄i. Then the average distance of the longest dimension
is denoted as

k̄max = max{k̄i | i ∈ {1, . . . , n}}.

5.3. EVALUATION OF SYMMETRY IN 2D LATTICE NETWORKS 113

In [CMV+10], it is proposed that the link utilization is related to the average distances
as follows:

LU =
1

n

k̄

k̄max

.

Note that symmetric networks have k̄i = k̄
n
for any i, which implies LU = 1, or what is

the same, there is a full use of all the links. It is interesting to remark that the maximum
throughput achieved by a network under uniform traffic directly depends on the average
use of links (LU) and inversely on the network average distance, k̄. A random packet
traveling between two network nodes has to traverse k̄ links at a rate that depends on LU.
Hence, in general, the maximum throughput can be computed as

l = LU
∆

k̄
=

2

k̄max

,

which generalizes Equation (1.1) to non edge-balanced topologies.

5.3.2 Empirical Performance Evaluation of the Symmetry of 2D
Lattice Networks

In this subsection an experimental evaluation is carried out to empirically measure the
performance of 2D lattice networks. The simulations have been done for many 2D lattice
networks of 360 nodes, a number in which there are a lot of different symmetric and non
symmetric 2D lattice networks. Moreover, all the simulations will use uniform traffic, to
preserve symmetry. The routing is performed by a uniform selection of the route among all
the paths with minimum length. This is of great importance even using minimal routing.
If it is not done with such uniformity, there is a risk of breaking symmetry.

In Figure 5.3, the maximum accepted load of the set of the 360 node 2D lattice networks
under consideration is represented. In abscissa, the plotted values are of 1

k̄max
= 2LU

k̄
. In

ordinates, the throughput is plotted, measured as packets consumed by node per cycle.
As can be seen, the empirical values match with the performance model. The accepted
load or throughput is summarized by the k̄max parameter. Therefore, the throughput of
a 2D lattice network only depends on its k̄max. Hence, among all the possible 2D lattice
networks with the same number of nodes, it would be preferably to choose those with
k̄1 ≈ k̄2. The best case k̄1 = k̄2 is only obtained when the lattice graph is completely
symmetric, that is, when it is also edge-transitive. In this sense, the link utilization gives
a measure of how symmetric the network is.

Next, it will be evaluated how symmetry and average distance affect network perfor-
mance for the set of 360 node 2D lattice networks evaluated in the previous experiment.
In Figure 5.4, for each network, the average distance in abscissa and the link utilization in
ordinates is represented. The symmetric graphs are the ones at the top of the figure and
the non-symmetric ones lie nearly on a curve. The best networks in terms of performance
are represented by points on the upper left corner. Conversely, the worst networks are
represented by points in the bottom right corner. Each line represents networks with the
same throughput, where the throughput grows from one line to the next with the growing
velocity captured in the density of the lines. The results which are surrounded with a
circle correspond to some 2D lattice networks which are going to be considered next with
more detail.

Figure 5.5, contains examples of the four networks marked with a circle in Figure 5.4.
Two of them have the same throughput, one being symmetric and the other very asymmetric.

114 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

Figure 5.3: Load on saturation measured for empirical values of 1
k̄max

= 2LU
k̄

of a wide set
of 2D lattice networks of 360 nodes.

Figure 5.4: Average distance and link utilization of 2D lattice networks of 360 nodes.

5.3. EVALUATION OF SYMMETRY IN 2D LATTICE NETWORKS 115

Figure 5.5: Throughput for some the symmetric 2D lattice networks of 360 nodes

Figure 5.6: Throughput from rectangular torus of 1002 nodes normalized by the square
torus. Separating throughput into link utilization and inverse of k̄max as in l ≈ 1

k̄max
= LU 1

k̄
.

116 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

The other two are a symmetric one with an average distance similar to the asymmetric
one, and finally an asymmetric one with average distance similar to the symmetric one.
None of them are good in terms of performance, but they are a clear example of how
symmetry and distance impact separately on performance. The selected networks are:

i) G(

(
91 89
89 91

)
), with LU = 1 and k̄ = 45.131.

ii) G(

(
174 −4
3 2

)
), with LU = 0.527 and k̄ = 23.317.

iii) G(

(
45 −4
45 4

)
), with LU = 1 and k̄ = 22.618.

iv) G(

(
356 −2
2 1

)
), with LU = 0.505 and k̄ = 45.376.

Networks i) and ii) provide similar throughput because the product of LU by the
inverse of the average distance in each network is approximately the same. Network iii)
is the best one as it exhibits symmetry and lower average distance. Finally, as expected,
Network iv) is the one with lowest performance.

Finally, it is considered an important case of 2D lattice networks: rectangular tori of
constant size N = | det(M)| = xy, x ≥ y. As stated at the beginning of the present section,
mixed-radix tori are of great interest for practical reasons. Here, the average distances
per dimension are, approximately, k̄1 ≈ x

4
, k̄2 ≈ y

4
, thus k̄max = k̄1, k̄ = k̄1 + k̄2 ≈ x+y

4
and

therefore, the link utilization is

LU =
1

2

k̄

k̄1

≈ x+ y

2x
.

Since the throughput grows proportionally with the link utilization and inversely with
the average distance, follows that

l ≈ 1

k̄
LU =

2

x
=

2y

N
.

Therefore, given a network of size N , the torus with best performance which can be
built is the one whose sides have lengths as close as possible. In the case that it is possible,
the square torus, which is a completely symmetric graph, is the one showing the best
performance.

In Figure 5.6, the relative throughput of a rectangular torus against the square torus
of the same size can be seen. All the considered networks have 10,000 nodes. Since that
l ≈ ∆k̄−1LU , it is possible to decompose the throughput into two factors: the LU factor
gives us the performance related to the symmetry, which goes from 1

2
in the worst case

of the completely asymmetric torus degenerated into a cycle, to 1 when the network is
the completely symmetric square torus. The other factor, k̄−1, gives the performance
related to distance. As can be observed, it grows faster when the sides are different, but
slower when it is similar to the square tori. The product of the two curves gives us the
line that records the performance improvements. Just to finish, it should be remarked
that Kronecker products of cycles are clearly superior to tori (Cartesian product of cycles)
when used in mixed-radix topologies, as proved in [CMV+10].

5.4. MAPPING APPLICATIONS ON LATTICE GRAPHS 117

Data

P2
P1

P6

P4 P5 P3

Processes

P1 P2 P3

P4 P5 P6

Network

P1

P2

P3P4

P5 P6

N1 N2 N3

N4 N5 N6

N7 N8 N9
Data
partitioning

Task
mapping

Figure 5.7: Data partitioning and task mapping.

5.4 Mapping Applications on Lattice Graphs

Twisted tori are variants of the torus topology in which a twist is applied to the peripheral
links in one or more dimensions [BBK+68, Seq81, YFJ+01]. Different variants of 2D and
3D twisted tori have been studied in the past [CMV+10, CMV+07, VMMB11]. Rectangular
tori and meshes are often built for practical reasons of packaging and modularity. The
focus of this section is on the Rectangular Twisted Torus (RTT), which is a twisted
version of the 2D Rectangular Torus (RT) topology. Its peripheral twist modifies the
distance properties of the base topology, reducing the diameter, average distance, and
more importantly, balancing the use of the network links in different dimensions. As a
consequence, it can achieve a 50% increase in network throughput under uniform traffic.

Traffic from real applications behaves according to the nature of parallel algorithms and
depends on the allocation of each logical task in the network and on their communication
requirements. The assignment of work to system nodes is a two-step process. First, data
partitioning divides the program dataset into multiple groups of data to be operated in
parallel by each process. The second step is task mapping, which assigns each of the
processes to an individual computation node. Both steps are illustrated in Figure 5.7.

Depending on the application, processes are arranged according to a certain logical
topology (or communication graph), which reflects the communication pattern between
them. The logical topology depends on the data partitioning employed, which is largely
dependant on the data structures and the algorithm used by the application. Modifying
the data partitioning mechanism to fit the underlying physical topology is generally
considered very difficult since it implies modifying the algorithm. On the contrary, task
mapping considers the logical topology of the application and the physical topology of
the system to provide an efficient solution that preserves the communications locality as
much as possible. Task mapping is a graph embedding problem, in which a guest graph
(the logical topology) must be accommodated to a host graph (the physical topology)
minimizing an objective cost function such as byte-hop [ASK06], maximum dilation or
average dilation [YCM06]. Task mapping is an NP-complete problem [Bok81, KN84], but
multiple heuristic mechanisms have been deployed to provide acceptable results [Bha11].

Concentration is a technique typically employed in HPC to reduce system cost and
increase scalability. A concentrated system connects multiple computation nodes to a
single (higher-radix) switch. This has been routinely employed in fat trees, but also in
direct topologies. One example is the Gordon Supercomputer [NS10] which employs a 3D
concentrated torus using commodity Infiniband technology. The use of concentration adds
a new dimension to the mapping problem, which also needs to consider which logical tasks
are concentrated into the same network node.

118 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

Figure 5.8: RT(4) and RTT(4)

This section presents a comprehensive analysis of the RTT topology under realistic
conditions that considers the mappings of HPC applications and the use of concentration.
In this way, although twisting is apparently less amenable for task mapping, we can
show how the topological advantages of RTTs translates in execution time reductions by
choosing the adequate mapping technique. Specifically, the main contributions of this
section are the following:

i) An analytical model that estimates the expected performance of both topologies
with different mapping algorithms, according to the amount of local and global
communications in the system and observing that RTTs should outperform RTs
in many scenarios. It is presented the counterintuitive result that when mapping
mapping tasks into the RTT, using “twists” in the concentration function, despite not
allocating neighbor tasks to the same network node, helps to improve performance.

ii) The theoretical model is validated, considering both standard and concentrated
versions of each topology, by simulating synthetic traffic with local and global
communications.

iii) Finally, the performance in a real scenario is approached by simulating several
benchmarks from the NAS Parallel Benchmark (NPB 3.2) suite [BHS+95].

The topologies considered in this section are the rectangular torus of sides a and 2a,
RT(a), and the rectangular twisted torus RTT(a) (Figure 5.8). Both are lattice-graphs,
given by

RT (a) = G(

(
2a 0
0 a

)
) and

RTT (a) = G(

(
2a a
0 a

)
).

It will be required to have a definition of the rectangular mesh m× n:

Rm,n = {(x, y) ∈ Z2 | 0 ≤ x ≤ m− 1, 0 ≤ y ≤ n− 1}.

Note that both RT(a) and RTT(a) can be seen as a graph over R2a,a.
Table 5.1 summarizes approximated distance-properties of both topologies, where the

diameter is denoted k, and the average distance k̄. We also include the average distance
per dimension, so that k̄ = k̄1 + k̄2. Note that RTTs have better distance properties than
RTs for the same number of nodes. However, a topological difference with more impact on
performance is symmetry. RTTs and RTs are node-symmetric topologies, i.e. any node
can observe the same local environment. Nevertheless, RTs are not edge-symmetric graphs
since horizontal links are not equivalent to the vertical ones. For example, note that in
a RT(a) horizontal links form cycles of length 2a and the vertical links form cycles of

5.4. MAPPING APPLICATIONS ON LATTICE GRAPHS 119

Topology k k̄ k̄2 k̄1

RT(a) 3a
2

3a
4

a
2

a
4

RTT(a) a 2a
3

a
3

a
3

Table 5.1: Topology distance properties of RT and RTT [CMV+10].

Figure 5.9: Identity and diagonal-shift mapping functions on RT(4).

length a. On the contrary, RTTs are completely symmetric, since the twist in the vertical
dimension makes all links locally equivalent [CMB13].

The rest of this section is organized as follows. Subsection 5.4.1 considers the problem
of mapping applications, presenting a performance model. Subsection 5.4.2 details the
experimental environment and evaluates both topologies with different mapping and
concentration functions using the NPB benchmarks. Finally, Subsection 5.4.3 concludes
the section.

5.4.1 Task Mapping in Rectangular and Twisted Torus

As presented in the introduction, different mapping and concentration functions will be
studied to determine how they impact performance. Many scientific applications rely on
structured grid communication patterns which employ both local (near-neighbour) and
global communication [Col04, ABC+06]. The study across this section is restricted to
2D topologies for both the application communication pattern (meshes or tori) and the
network topology (RT and RTT). The mapping of meshes into both RT and RTT is simple,
since the peripheral links do not have an impact on the adjacency of the mesh. Therefore,
the focus is on the mapping of 2D torus into RT and RTT. Communication graphs will
have the same number of vertices as the physical topology, or a multiple value when using
concentration.

The mapping function maps each process (or a set of concentrated processes) from the
logical topology into one physical network node. Two mapping functions will be considered,
depicted in Figure 5.9: the identity function id maps the processes grid directly into the
internal mesh to preserve internal adjacency; by contrast, the diagonal-shift fd introduces
an internal incremental twist to compensate the twisted peripheral links in RTT. The
mapping fd is inspired by the mappings considered for double loop networks in [CS11].
These mapping functions are formally defined for logical and physical topologies of the
same size, a rectangle Rm,n, as follows:

id(x, y) = (x, y)

fd(x, y) = (rem(x+ y,m), y)

In concentrated networks, a concentrating function determines which processes are

120 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

Figure 5.10: Concentration functions f vc=2, fhc=2 and f tc=2 on a 8× 8 mesh.

placed on the same network node prior to the mapping function. Let R1 = Rpm,qn and
R2 = Rm,n be two rectangles with m,n, p, q ∈ N. A concentrating function of concentration
c = pq sends c processes from R1 to the same node in R2. There are several concentration
and mapping functions that preserve the communication locality from the logical graph.
Specifically, the horizontal union fhc , the vertical union f vc and the twisted union f tc are
defined as:

fhc (x, y) =
(⌊x

c

⌋
, y
)
, q = 1

f vc (x, y) =
(
x,
⌊y
c

⌋)
, p = 1

f tc(x, y) =
(

rem(x+
⌊y
n

⌋ m
2
,m), y −

⌊y
n

⌋
n
)

Figure 5.10 represents the three concentration functions with c = 2 applied to a 8× 8
mesh. Note how the twisted concentration function f t does not concentrate neighbor
nodes; rather, it is designed to compensate for the twist in the peripheral links of RTTs,
by preserving adjacency in the logical topology when the identity mapping is employed.
Different concentration functions can be combined for c > 2. The symbol ◦ will denote
function composition, i.e., (f ◦ g)(x, y) = f(g(x, y)).

The next subsections will study the relative performance obtained with each topology
(RT and RTT) using the different mapping and concentration functions presented here. In
first place, a model will be introduced that considers both the amount of local and global
messages that are sent in a generic application. Next, considering this model, expressions
are determined for the expected performance with a given topology and mapping in terms
of base latency and maximum accepted throughput. Finally, these performance values are
calculated for logical torus mapped into RT and into RTT with different combinations of
mapping and concentration functions.

Modelling a Generic Application

Now, a simple model for the communications of an application will be considered. Our
model considers a variable rate of local and collective (global) communications in the
application graph. The greek letter α will denote the proportion of local (l) messages, and
(1− α) the proportion of messages corresponding to collective communications (global, g),
assuming the same message size.

Local traffic communicates each process with one of its (up to) four direct neighbours in
the application graph, which will be a 2D mesh or torus. Depending on the mapping and

5.4. MAPPING APPLICATIONS ON LATTICE GRAPHS 121

concentration functions, these neighbor nodes could be mapped far away in the physical
topology. Collectives communicate a given process (or each of them) with a set (or all)
of the other processes in the system. While the behavior of local communications is
dependant on the mapping algorithm, it will be assumed that global communications can
be averaged as uniform traffic, whose performance only depends on the physical topology.
Our model does not consider the less frequent point-to-point messages sent to remote (not
neighbour) nodes.

Performance modelling

The performance of a network depends on which metric is most restrictive during the
execution of an application. Specifically, both maximum accepted throughput and average
latency will be considered. In general, average (base) latency, or average latency at zero
load, depends on the average distance of the topology while maximum (base) latency
depends on its diameter. Actual latencies in the network will depend on the base latency
plus the network contention which is not considered in our simple model.

Under uniform traffic, the maximum throughput in an asymmetric torus depends on
the maximum average distance per dimension [CMV+10], since longer dimensions will
typically saturate earlier. However, when certain mapping and concentration functions are
considered, the links in a given dimension may not receive all the same load. One such
case are the peripheral links of the RTT when the id mapping is employed. In such cases,
it is the subset of links that receives the highest load which determines the maximum
throughput.

Here the theoretical performance of RT and RTT is studied for applications in which
network performance is limited by either throughput or communication latency, considering
different mapping and concentration functions and a variable rate of local and global
traffic.

Latency Estimation The average distance travelled by the packets in the network will
be denoted by τ . Assuming a constant link latency in the network, τ is an indicator of
the base latency in the network. τ differs from the topological average distance k̄, since
τ depends on the communication pattern and the mapping and concentration functions.
Note that τ can be divided into two terms, considering the contribution of local and global
traffic:

τ = τ l + τ g = α · d+ (1− α) · k̄,

where τ l = α · d represents the contribution from local messages and depends on the
average dilation of the mapping function, d. Dilation, that is network distance of adjacent
processes in the logical topology, has been employed as an objective function in mapping
algorithms. However, in our model it does not directly determine the performance, since
the global communications are not affected by the mapping algorithm. Interestingly, τ g
only depends on the physical topology, with its overall value being determined by the
average distance, k̄, in Table 5.1.

Throughput Estimation Let l be the number of phits sent per cycle by each of the N
nodes in the network. Let E be the set of edges (links) in the graph, and |E| its cardinal.
If all the links in the network were used in a balanced way, the maximum throughput of

122 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

the network (in phits/cycle) would be calculated as:

N · l · τ ≤ 2|E| ⇒ l ≤ 2|E|
N · τ .

For example, when all nodes communicate with their four direct neighbours in the network
(τ = 1), up to l = 4 phits/(node·cycle) can be accepted, since |E| = 2N in both RT and
RTT.

By contrast, when the load on different links of the network differs, the set of links
that receives the highest load will saturate first and become the bottleneck that limits
the maximum throughput accepted by the network. Let E1, E2, . . . , Es be all the possible
different sets of links in the network and τj be the average distance that packets traverse
across links in Ej. Then, the maximum throughput in the network will be given by

maxl =
2

N
min

{ |Ej|
τEj

}
, Ej ⊆ E.

This calculation is valid as long as all nodes are limited by the subsets selected, which
happens in all cases considered in this section. For example, it was shown in [CMV+10]
that under uniform traffic τmax = max{τh, τv} serves to calculate the maximum throughput
in RTs and RTTs, where τ = τh + τv represents the division of the average distance on
the horizontal and vertical dimensions. This is true because all the links in a dimension
(horizontal or vertical) are used in the same proportion under uniform traffic. However,
when a mapping algorithm and local traffic are taken into account, the internal and
peripheral links within a given dimension can receive different loads. In such case, the
maximum throughput is determined by the subset of links receiving the higher load.
Therefore, in order to estimate the maximum throughput, it is required to determine the
subset of links that will saturate first. Specifically, Ehi and Evi will denote the sets of
horizontal and vertical internal links, and Ehp and Evp the peripheral ones. In the RT and
RTT |Ehi| = 2a2 − a, |Evi| = 2a2 − 2a, |Ehp| = a and |Evp| = 2a.

As before, τEj can be divided in its local and global components: τEj = τ lEj + τ gEj =

α · k̄Ej + (1− α)k̄gj , where k̄Ej represents the average number of hops of local packets in
Ej. In our model the global communications are approximated by uniform traffic, so k̄j is
independent of the mapping, and can be derived from the values given in Table 5.1 and the
specific |Ej|. For example, if Ej = Ehj , then k̄Ej = k̄1 · |Ehj|/|E| = k̄1 · 2a

2−a
2a2 = k̄1 ·

(
1− 1

2a

)
.

The next subsections will calculate the expected latency and maximum throughput
of applications mapped into RT and RTT. First, standard topologies will be considered,
followed by the case of concentration c = 2.

Mapping 2D Logical Tori into Standard RT and RTT

Now the previous model is applied to estimate the latency and maximum throughput when
the logical topology is a 2D (2a× a) torus with the same number of tasks as nodes in the
network. When the physical topology is a RT, the id mapping is the only one that makes
sense, since fd would otherwise break the locality. In the RTT, they will be considered
both id and fd.

id Mapping of 2D Tori into RT In this case the communication graph coincides with
RT(a), so with the mapping function id the locality is preserved and the dilation is d = 1.

5.4. MAPPING APPLICATIONS ON LATTICE GRAPHS 123

Global traffic follows a uniform distribution with k̄ = 3a
4
, so base latency can be calculated

from
τ = τ l + τ g = α · d+ (1− α) · k̄ = α + (1− α) · 3a

4
.

To determine the maximum throughput the sets of horizontal and vertical links, Eh
and Ev are considered. The average distance of local traffic is (0.5, 0.5). As a consequence,
τ lh = τ lv = 0.5α. Table 5.1 provides the average distances of global traffic in each dimension,
so:

τ gh = (1− α)k̄1 =
a

2
(1− α) and

τ gv = (1− α)k̄2 =
a

4
(1− α).

Horizontal links Eh are the ones which first saturate with τh = 1
2
α + a

2
(1 − α), and the

maximum throughput is

maxl =
2

N

|Eh|
τh

=
2

2a2

2a2

1
2
α + a

2
(1− α)

=
4

α + a(1− α)
.

This expression shows that under local traffic (α = 1) up to 4 phits/(node·cycle) can
be accepted, since communication occurs with the four direct neighbors on independent
links. Under uniform traffic, the maximum load will be 4

a
.

id Mapping of 2D Tori into RTT In this case the locality of the application is broken.
The internal and horizontal peripheral links preserve locality. By contrast, peripheral
vertical communications which would follow the path (0, 1) in the logical graph are
transformed into routes (0,−(a−1)) in the physical network (and reciprocally for peripheral
hops (0,−1)), with maximum dilation (a−1). This happens in a fraction 1/a of the vertical
local messages in the network, so the average dilation is d = 1

2a
· (a− 1) + 2a−1

2a
· 1 = 3

2
− 1

a
.

Using the value of k̄ from Table 5.1 it is obtained that

τ = τ l + τ g = α · d+ (1− α) · k̄ =

(
3

2
− 1

a

)
α + (1− α)

2a

3
.

Now, some calculation will show which dimension determines maximum throughput.
The local load on horizontal links is the same as in the case of id mapping on RT, so using
the value k̄1 = a

3
it is obtained that

maxl ≤
2

N

|Eh|
τh

=
4

α + 2a
3

(1− α)
.

On vertical links, all the local traffic is sent on the internal links Evi. Similarly to the dilation
calculation, the average distance of local traffic on Evi will be τ lvi = (1− 1

a
)1

2
α+ 1

a
(a−1)

2
α =

(1− 1
a
)α.

Global traffic uses every vertical link equally, which implies that τ gvi = k̄2
|Evi|
|Ev | (1− α) =

a
3
(1− 1

a
)(1− α). With these values one can determine that vertical links impose a lower

limit on maximum throughput than horizontal links:

maxl =
2

N

|Evi|
τvi

=
2

N

|Evi|
(1− 1

a
)α + a

3
(1− 1

a
)(1− α)

=
4

2α + 2a
3

(1− α)
.

124 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

1

2

3

4

M
ax

im
um

th
ro

ug
hp

ut
(p

hi
t/

cy
cl

e/
no

de
)

RT(4) id RTT(4) id RTT(4) fd

0 0.2 0.4 0.6 0.8 1

1

2

3

Locality (α)

B
as

e
la

te
nc

y
(c

yc
le

s)

Figure 5.11: Maximum throughput and latency for logical torus mapped on RT(4) and
RTT(4)

fd Mapping of 2D Tori into RTT Using the mapping fd with the RTT, horizontal
locality is preserved and vertical locality suffers dilation 2, with local traffic on vertical
links requiring routes ±(1, 1). Average dilation is 3/2. The distances for local traffic are

τ lh = α, τ lv =
α

2
, and τ l =

3α

2
.

From the values from Table 5.1 follows that τ = τ l + τ g = 3α
2

+ (1− α) · 2a
3
To calculate

maximum throughput observe that distances on the horizontal dimension are longer
τh = τ lh + τ gh = α + a

3
(1− α). Then it is obtained that

maxl =
2

N

|Eh|
τh

=
4

2α + 2a
3

(1− α)
.

Figure 5.11 shows the throughput and latency results when mapping a 2D logical torus
into RT and RTT. The identity mapping id provides the best results in RTT. With this
mapping, the RTT achieves better throughput and latency when global communications
dominate with up to 50% throughput improvements. However, the id mapping in RTT
has a maximum dilation of a− 1. The diagonal-shift mapping fd minimizes the maximum
dilation on the RTT(4) and it obtains the same throughput as id but worse average latency.
Both curves intersect in a

a+3
, which tends to 1 for larger networks. As a consecuence, the

RTT will obtain better throughput than RT except for traffic with high locality (α).

Mapping 2D Logical Tori into Concentrated RT and RTT

Now, the case of an application with more processes than routers in the physical topology
will be considered. The calculations will be restricted to an application whose local

5.4. MAPPING APPLICATIONS ON LATTICE GRAPHS 125

communication graph is a square torus 2a×2a and concentration c = 2 has to be employed.
Cases with larger concentration can be calculated similarly. Two concentration functions
can be employed to reduce the vertical dimension, f v2 and f t2. Then, any mapping can be
applied, leaving 4 possibilities: f v2 , fd ◦ f v2 , f t2, fd ◦ f t2, but the latter is omitted because
both the concentration f t2 and mapping fd are designed to cope with twisted peripheral
links. In the RT, f v2 is the only sensible combination, since it exploits the maximum
locality. Their performance is studied next.

f v2 Concentration of 2D Tori into RT In this case locality is preserved similarly
to the id mapping in RT, with two vertical neighbour processes mapped into the same
network node. From every 8 local communications from each node, 2 are internal to the
node, 2 imply a vertical hop and 4 imply a horizontal jump:

τ lh =
4

8
α =

α

2
, τ lv =

2

8
α =

α

4
, and τ l =

3α

4
.

Average dilation is d = 3/4, lower than 1 thanks to neighbor nodes being concentrated
together. With respect to global traffic, the values in Table 5.1 remain approximately
valid when using concentration, so it follows the estimation of average latency:

τ = τ l + τ g =
3α

4
+

3a

4
(1− α).

Regarding throughput, it is straightforward that horizontal links are saturated first since
both local and global average distances are larger in X than in Y. The same result is
obtained as in RT without concentration:

τh = τ lh + τ gh =
α

2
+ k̄1(1− α) =

α

2
+
a

2
(1− α), and

maxl =
2

N

|Eh|
τh

=
4

α + a(1− α)
.

f v2 Concentration of 2D Tori into RTT Again, this case is similar to the id mapping
in RTT without concentration, with locality preserved in the internal mesh but not in the
vertical peripheral links. Now, of each 8 local communications of each node of the first
and last rows (2

a
from total of rows) 2 are internal to the network node, 4 are (±1, 0), 1

is (0,±1) and 1 (0,±(a− 1)). Therefore, vertical peripheral links are not used by local
communications. The nodes in the internal rows (1− 2

a
) send 4 messages to (±1, 0) and 2

to (0,±1) from each 8 messages. Then, average local distances are

τ lh =
4

8
α =

1

2
α,

τ lvi =
a

8

2

a
α +

2

8

(
1− 2

a

)
α =

a− 1

2a
α, and

τ l = τ lh + τvi
l =

(
1− 1

2a

)
α.

Using the global values the average distance in the network can be calculated:

τ = τ l + τ g =

(
1− 1

2a

)
α + (1− α)

2a

3
.

126 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

Local distances are larger in X than in Y, and global distances are balanced in the
RTT, so the throughput will be determined by distances in horizontal links. With the
value of k̄1 from Table 5.1 is obtained that

maxl =
2

N

|Eh|
τh

=
4

α + 2a
3

(1− α)
.

fd ◦ f v2 Mapping of 2D Tori into RTT In this case horizontal locality is preserved
but vertical locality is modified: two vertical neighbours are mapped into each node,
so half of the vertical local messages are internal to the node. The remaining vertical
communications suffer dilation 2, similar to the case of the fd mapping in RTT without
concentration. From each 8 local messages of each network node, 6 use horizontal links
and 2 use vertical links, so average distances are

τ lh =
6

8
α =

3

4
α, and τ lv =

2

8
α =

1

4
α.

Then, τ l = α and base latency will be determined by

τ = α +
2a

3
(1− α).

Thus, the network throughput is limited by horizontal traffic by

maxl =
2

N

|Eh|
τh

=
2

3
4
α + a

3
(1− α)

=
4

3
2
α + 2a

3
(1− α)

.

f t2 Mapping of 2D Tori into RTT In this case, the f t2 mapping preserves the neigh-
borhood in the original task graph, but no neighbours are collocated in the same node.
The dilation of the network is d = 1 in both dimensions, so τ lh = τ lv = α

2
, τ = α. The

average distance will be determined by

τ = α + (1− α)
2a

3
.

Traffic is balanced, so any dimension is the throughput limiter. Global traffic is
τ gh = τ gv = a

3
(1− α). Then, the maximum network throughput will be

maxl =
2

N

|Eh|
τh

=
2

α
2

+ a
3
(1− α)

=
4

α + 2a
3

(1− α)
.

Throughput and average latency results with c = 2 are presented in Figure 5.12. In
the RTT both the twisted f t2 or vertical f v2 concentrations (with id mapping) obtain the
best results. The latency is better in the latter case, since the vertical concentration
puts neighbor processes together, reducing the amount of local communications in the
network. However, the f t2 concentration obtains maximum dilation 1, while in f v2 it is
a− 1. Interestingly, both concentrations on the RTT obtain better throughput than the
RT for any locality value, and the average base latency is similar in all cases (slightly
better for uniform traffic and slightly worse for local traffic).

5.4. MAPPING APPLICATIONS ON LATTICE GRAPHS 127

1

2

3

4

M
ax

im
um

th
ro

ug
hp

ut
(p

hi
t/

cy
cl

e/
no

de
)

RT(4) fv
2

RTT(4) fv
2 RTT(4) fd ◦ fv

2 RTT(4) f t
2

0 0.2 0.4 0.6 0.8 1

1

2

3

Locality (α)

B
as

e
la

te
nc

y
(c

yc
le

s)

Figure 5.12: Maximum throughput and latency for logical torus mapped on RT(4) and
RTT(4) with concentration c=2.

5.4.2 Performance Evaluation

The previous subsection presented an analytical study showing that the RTT can be
competitive against the RT. However, it did not consider the impact of other factors such
as maximum dilation, remote communications or the network load. In this subsection
different RT and RTT configurations using synthetic traffic and real applications from the
NPB suite [BHS+95] will be evaluated. It is organized in several parts. First, the traffic
model is described, followed by the configuration of the simulator. Then there are two
parts for the actual simulation: one for simulation with synthetic traffic and the other for
trace-based simulation.

Workloads

In first place, it is presented a simulation of independent traffic sources under random
traffic. In this case, a ratio 1−α of packets are distributed evenly along the whole network,
while a ratio α of packets is sent to neighbor nodes. The inter-injection interval at each
node is random following a Poisson distribution chosen as to modulate the provided load
in terms of phits/cycle/node. Some parallel applications exhibit traffic patterns in which
nodes communicate with their nearest neighbors in a torus topology. This can be either
due to the inherent symmetry of the application or because of mapping big data matrices
on the network nodes. For that reason, nearest-neighbor (NN) communication patterns
are included in this study.

128 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

1

2

3

M
ax

im
um

th
ro

ug
hp

ut
(p

hi
t/

cy
cl

e/
no

de
)

RT(4) id RTT(4) id RTT(4) fd

0 0.2 0.4 0.6 0.8 1

1

2

3

Locality (α)

B
as

e
la

te
nc

y
(c

yc
le

s)

Figure 5.13: Simulation results for latency and maximum throughput for logical torus
mapped on RT(4) and RTT(4).

1

2

3

4

M
ax

im
um

th
ro

ug
hp

ut
(p

hi
t/

cy
cl

e/
no

de
)

RT(4) fv
2

RTT(4) fv
2 RTT(4) fd ◦ fv

2 RTT(4) f t
2

0 0.2 0.4 0.6 0.8 1

1

2

3

Locality (α)

B
as

e
la

te
nc

y
(c

yc
le

s)

Figure 5.14: Simulation of base latency and maximum throughput for logical torus mapped
on RT(4) and RTT(4) with concentration c=2.

5.4. MAPPING APPLICATIONS ON LATTICE GRAPHS 129

Processor Frequency 2 GHz Virtual Channels 3
Phit size 4 bytes Routing Mechanisms adaptive
Packet size 64 phits Arbitration mechanims random
Link speed 1 Gbps Deadlock avoidance bubble

Table 5.2: Simulation parameters used in experiments about mapping of applications.

Simulation Configuration

Now, a simulation is done of the benchmarks with different sizes and concentration levels
employing the FSIN simulator with the parameters presented in Table 5.2. For this study,
the router employed is similar to the one implemented in the IBM Blue Gene/L: virtual cut-
through switching strategy [KK79], and bubble flow control deadlock avoidance [ABC+05],
with an static virtual channel plus two fully adaptive virtual ones. Blue Gene family of
supercomputers implements a congestion control mechanism that prioritizes in-transit
traffic against new injections, which is also implemented in our router. In our experiments,
packets have a fixed length of 64 phits of 4 bytes each.

Synthetic Traffic

Now, the analytical model presented in Subsection 5.4.1 is corroborated with simulation
results using synthetic traffic. A synthetic traffic is modelled in which each process
communicates with one of his neighbors with probability α. With probability 1 − α
the packet is sent to a random process, not necessarily one of the four neighbors. The
application is mapped to the physical network with different concentrations (1 or 2 processes
per node) and different mapping functions.

When measuring the maximum throughput of the network, 4 injectors are used, similar
to the Blue Gene/Q chips [CEH+12], and packets with a length of 64 phits. Multiple
injectors are required to saturate the network with local traffic, since α close to 1 can
provide throughput up to 4 phits/(node· cycle). When measuring minimum latency, a
load of 0.01 packets is injected per node per cycle, each of length 1 phit. In this way, the
delays due to network congestion and packet consumption time are eliminated, allowing
us to measure the minimum average latency to transit the network.

The results of a 16×8 toroidal application over a 16×8 network are shown in Figure 5.13.
Both throughput and latency results are really close to the ones predicted by the analytical
model shown in Figure 5.11.

The same results for a network with concentration (c = 2) are shown in Figure 5.14.
In this case, a 16 × 16 toroidal application is mapped onto a 16 × 8 network. For
both throughput and minimum latency, results are very similar to the ones predicted in
Figure 5.12 with the analytical model.

Real Applications Traffic

For a more realistic analysis, the traces of the NPB benchmarks showed in Section 5.2
have been simulated.

In all cases the performance is evaluated with all the mapping algorithms studied,
considering all the logical tasks as an array of consecutive nodes.

The usage of the network limits the maximum performance differences between con-
figurations. The traffic load of each application can be easily measured by simulation.

130 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

BT CG DT FT IS LU MG SP0

0.1

0.2

0.3

0.4

NPB

N
et

w
or

k
lo

ad
(p

hi
t/

cy
cl

e/
no

de
)

Figure 5.15: Network load for 64 tasks mapped onto a RT(4) with c = 2

MeanCG DT FT IS LU MG0.85

0.9

0.95

1

NPB

N
or

m
al

iz
ed

ex
ec

ut
io

n
ti

m
e RT(4), id RTT(4), id RTT(4), fd

Figure 5.16: Execution time for 32 processors mapped onto a RT(4) or RTT(4) with c = 1

Figure 5.15 shows the load measured when running on different networks with 64 tasks and
concentration c = 2. Results for 32 or 128 tasks are similar. It is observed that CG, FT,
IS and MG are the applications with the highest network load. Therefore, the theoretical
throughput results obtained by our model should be applicable to them.

Besides the network load, the performance can be limited by latency when there are
multiple dependency chains among messages. Thus, a low average network load does
not imply that the network is irrelevant: it can be either inactive (this occurs in the EP
benchmark, omitted for this reason) or limited by latency. This is the case, for example, of
DT: although having a low throughput (below 5%), the performance increase obtained by
the RTT is above this 5%. Specifically, DT is a data traffic benchmark with large amounts
of messages sent between nodes according to a certain pattern (black hole was employed),
what introduces a large amount of dependencies in the traffic traces.

In general BT, LU, and SP use mainly near-neighbor communications (α close to
1), while DT, EP, FT and IS use more global communications (α closer to 0). The
communication in CG occurs between certain pairs of nodes, not necessarily neighbors
(remote messages). Finally, the consecutive node labelling and task mapping on a 2D
network does not preserve adjacency of the 3D torus of MG.

First, the non-concentrated scenario is considered. Figure 5.16 shows the performance
obtained when running NAS benchmarks of 32 processes on RT(4) and RTT(4). The

5.4. MAPPING APPLICATIONS ON LATTICE GRAPHS 131

MeanBT CG DT FT IS LUMG SP0.85

0.9

0.95

1

1.05

NPB

N
or

m
al

iz
ed

ex
ec

ut
io

n
ti

m
e

RT(4), fv
2

RTT(4), fv
2 RTT(4), fd ◦ fv

2 RTT(4), f t
2

Figure 5.17: Execution time for 64 processes mapped onto a RT(4) or RTT(4) with c = 2

MeanCG DT FT IS0.8

0.85

0.9

0.95

1

NPB

N
or

m
al

iz
ed

ex
ec

ut
io

n
ti

m
e

RT(4), fv
2 ◦ fh

2

RTT(4), fv
2 ◦ fh

2 RTT(4), fd ◦ fv
2 ◦ fh

2 RTT(4), f t
2 ◦ fh

2

Figure 5.18: Execution time for 128 processes mapped onto a RT(4) or RTT(4) with
concentration c = 4

simulation is restricted to those benchmarks that allow a number of processes which is
not a square number. It is observed that RTT always performs equal or better than the
RT counterpart except just a slight loss in one case; CG and FT are the applications in
which the performance improvement is higher, saving up to 10% of the execution time.
Not surprisingly, these applications contain a large amount of global communications. LU
and MG are the ones with the worse performance, without any improvement or even a
slight loss of less than 0.1%. On average, the use of the RTT improves execution time in
2.2%, and fd behaves slightly better than id for the RTT.

Next, several concentration techniques are evaluated. Figure 5.17 shows the execution
time of NAS benchmarks running with 64 processes, mapped onto a RT(4) or RTT(4)
with two compute nodes per network router. On average the RTT outperforms the RT.
Interestingly, the f t2 concentration function, which does not concentrate neighbor tasks,
provides one of the best results thanks to the arrangement of tasks in relation to peripheral
links, similar to fd ◦ f v2 . Note that BT and SP, which employ 2D logical torus, do not vary
significantly from the base case when using an RTT. On average, the applications running
on the RTT save between 3.0% and 4.6% of the overall execution time.

Finally, Figure 5.18 presents the results of non-square applications with 128 tasks

132 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

(8 × 16) running on a 4 × 8 network1. The combinations employed for concentration 4
are f v2 ◦ fh2 and f t2 ◦ fh2 . Again, the RTT outperforms RT. The execution time savings of
the RTT range from 8.7% (FT) to 19.1% (CG) using the best combination. On average,
the best performance is obtained with the id ◦ f t2 ◦ fh2 combination for the RTT, with an
speedup of 12.8%.

The results are coherent with our analytical model. DT, FT and IS employ a large
amount of collective communications, translating into a larger performance on RTT,
especially on concentrated networks. CG sends remote messages and is also benefited by the
distance reduction in the RTT. By contrast, BT, LU and SP employ local communications,
and thus the performance on RTT is similar to RT. Regarding concentrated networks, it
is observed that in RTT the use of either the diagonal-shift mapping fd or the twisted
concentration f t2 improves performance.

5.4.3 Conclusions

This section makes a first exploration to mapping functions for rectangular torus topologies
with peripheral twists. As it has been proved, in non concentrated topologies the perfor-
mance gain depends on the local traffic amount. On the other hand, with concentration RT
always improves performance if the mapping technique is correctly chosen. Particularly,
it has been done a theoretical study that shows that simple mapping algorithms obtain
the maximum performance, with speedups ranging from −10% to 50% depending on the
locality of the communications and the application topology. When concentrated tori are
employed, proper concentration and mapping functions prevent this performance loss by
compensating the effect of the twisted peripheral links.

Those numbers reflect the performance of applications bounded by the network. How-
ever, real applications alternate computation and different communication patterns on
different phases. When simulating real applications (from the NPB benchmarks) the
topological advantages of the RTT translate to average performance gains of 2.2-13.2%
depending on the specific configuration.

5.5 Evaluation of Lattice Graphs Compared to Topolo-
gies of Current Supercomputers

Most evaluations of big networks have relied on measuring their behavior when managing
synthetic traffic loads. Typical experiments are based on simulation. Notwithstanding, the
work presented in [CEH+12] evaluates different routing algorithms reporting maximum
achievable loads on a real IBM Blue Gene/Q system. They make runs on machines whose
topologies are the tori T (8, 8, 8, 4, 2) and T (16, 8, 8, 8, 2). The last dimension of size 2 will
be ignored and treat the networks as four dimensional ones; the last small dimension comes
from the inside of computing nodes, fixed by computer technology. The simulated networks
are the same tori plus symmetric lattice graphs of the same sizes. Thus, in the evaluation,
4D-BCC(4) is compared to T (8, 8, 8, 4) and 4D-FCC(8) compared to T (16, 8, 8, 8).

The torus T (8, 8, 8, 4) contains 2048 vertices, has diameter 14 and an average distance of
7.0. On the other hand, 4D-BCC(4) has the same number of vertices, but it has diameter
8 and average distance 6.1. In addition the torus is not symmetric while the body-centered

1LU and MG, are omitted because of technical difficulties. Results should be similar to the ones
presented in Figure 5.16.

5.5. LATTICE GRAPHS COMPARED TO CURRENT SUPERCOMPUTERS 133

Injectors 6
Packet size 16 phits
Queues 4 packets
Deadlock avoidance Bubble
Virtual Channels 3
flow control Virtual Cut-through
Routing Mechanisms DOR
Arbitration mechanism random

Table 5.3: Simulation parameters used in experiments in the evaluation of lattice graphs.

uniform antipodal centralsymmetric randompairing
0

0.2

0.4

0.6

0.8

traffic pattern

pe
ak

th
ro
ug

hp
ut

T (16, 8, 8, 8)
4D-FCC(8)

Figure 5.19: Throughput peak in T (16, 8, 8, 8) and 4D-FCC(8) under several synthetic
traffics.

is, thus it is expected an increase of more than 7.0/6.1 = 1.15 for uniform loads. For
the large size, T (16, 8, 8, 8) contains 8192 vertices with diameter 20 and average distance
10.0; while 4D-FCC(8) has diameter 16 and average distance 8.8. In this subsection
simulation results show that better distance properties plus symmetry translate into a
better performance of symmetric networks.

The synthetic traffic patterns used are some of the used in [CEH+12]: uniform, antipo-
dal, centralsymmetric and randompairings. Simulation parameters are shown in Table 5.3.
The simulation starts with a network warmup, followed by 100,000 cycles in which statistics
are collected. At least 5 simulations are averaged for each point.

uniform antipodal centralsymmetric randompairing
0

0.5

1

traffic pattern

pe
ak

th
ro
ug

hp
ut T (8, 8, 8, 4)

4D-BCC(4)

Figure 5.20: Throughput peak in T (8, 8, 8, 4) and 4D-BCC(4) under several synthetic
traffics.

134 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

0 0.2 0.4 0.6 0.8
0

200

400

600

800

1,000

offered load (phits/(cycle · node))

av
er
ag
e
la
te
nc
y
(c
yc
le
s)

4D-FCC(8)+uniform T(16,8,8,8)+uniform
4D-FCC(8)+antipodal T(16,8,8,8)+antipodal
4D-FCC(8)+centralsymmetric T(16,8,8,8)+centralsymmetric
4D-FCC(8)+randompairing T(16,8,8,8)+randompairing

Figure 5.21: Packet delays in T(16,8,8,8) and 4D-FCC(8) under several synthetic traffics.

0 0.2 0.4 0.6 0.8 1 1.2
0

200

400

600

800

1,000

offered load (phits/(cycle · node))

av
er
ag

e
la
te
nc
y
(c
yc
le
s)

4D-BCC(4)+uniform T(8,8,8,4)+uniform
4D-BCC(4)+antipodal T(8,8,8,4)+antipodal
4D-BCC(4)+centralsymmetric T(8,8,8,4)+centralsymmetric
4D-BCC(4)+randompairing T(8,8,8,4)+randompairing

Figure 5.22: Packet delays in T(8,8,8,4) and 4D-BCC(4) under several synthetic traffics.

Figures 5.19 and 5.20 show results of accepted load in the four networks. Under uniform
traffic, results exhibit gains of 27% in the small case (4D-BCC) and 49% in the large
one (4D-FCC). In random pairings, the throughput is consistently higher, with gains of
15% and 2% respectively. The other two traffic patterns show congestion at high loads for
all the networks considered. Nevertheless, the peak throughput for the antipodal traffic
improves by 95% and 43% respectively. Under central symmetric traffic, gains are 29%

5.6. EVALUATION OF THE SYMMETRY IN DRAGONFLIES 135

coset palmtree dally

1.5

1.6

1.7

1.8

arrangement

th
ro

ug
hp

ut
on

sa
tu

ra
ti

on

Figure 5.23: The null effect of symmetry on dragonflies of 9 groups.

coset palmtree dally

2.85

2.9

2.95

3

arrangement

th
ro

ug
hp

ut
on

sa
tu

ra
ti

on

Figure 5.24: The null effect of symmetry on dragonflies of 73 groups.

in the small case and 34% in the large one. Figures 5.21 and 5.22 show average packet
latencies. The different curves demonstrate the superior behavior of lattice topologies.
Gain values are coherent with the topological analysis presented in Section 2.2.

5.6 Evaluation of the Symmetry in Dragonflies

In previous sections it has been shown that symmetry has a lot of impact in the performance
of lattice graphs. This section studies the same question for the case of dragonflies. Note
that there is never (except with very large trunking) an automorphism between local edges
and global edges, so they are never edge-transitive. As seen in Section 3.4.1, there are
global link arrangements for which the resulting dragonfly is vertex-transitive, while others
give no symmetry at all, or some middle case between them. Among the vertex-transitive
it is possible that there are also automorphisms that map a global edge to any other

136 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

Group size a = 24 routers, 312 nodes Link latency (local/global) 10/100 cycles
Number of groups b = 79 groups Packet size 8 phits

Network size 24,648 computing nodes Buffer capacity(local/global) 32/256 phits
Router size (ports) R = 49 Virtual channels per port 3 (except Valiant, 4)

(∆0 = 13, ∆1 = 23, ∆2 = 13) Switching policy Virtual Cut-Through
Global link arrangement Extended palmtree Router arbitration Random

Router model input-queued Router speedup No

Table 5.4: Simulation parameters used in the evaluation of the routing in dragonfly
networks.

global edge, and local edges to any other local edge, which would be a relaxed form
of edge-transitivity. Nevertheless, expansion properties do not depend almost of the
arrangement. The diameter is always 3 and the average distance can vary very little. Thus,
in a asymmetric dragonfly, although there are no automorphism between edges, the load
is quite well distributed among all edges of the same type; and among all the edges if the
balancing condition (3.5) is hold.

Figures 5.23 and 5.24 shows the throughput of dragonflies with arrangements of different
levels of symmetry for uniform traffic. The differences are lesser than the random variations
in a simulation. The first one for dragonflies with 9 groups of 4 routers and the second one
for dragonflies with 73 groups of 12 routers. From these results it is clear that symmetry
is not required for dragonflies to have good performance, although it can allow for special
mechanism as the one seen in Section 3.6.

5.7 Evaluation of the Deadlock-free Adaptive Routing
for Dragonflies with Global Trunking

This section shows the performance of the routing mechanisms proposed in Chapter 3. The
simulated network has input-buffered routers with a = 24 routers per group and global
trunking t = 4 using the extended palmtree arrangement. The number of groups has been
rounded to b = 79, what provides a balanced topology according to equation (3.4), requiring
routers with R = 49 ports and leading to a total of 24,648 computing nodes. The complete
set of parameters is presented in Table 5.4 and the routing mechanisms characteristics in
Table 5.5. The following oblivious routing mechanisms have been implemented:

• Minimal: Hierarchical routing first to the destination group and then to the des-
tination router, as described in [KDSA08]. The global link of the path is selected
as follows: if the source router has a direct link to the destination group, select it;
otherwise, select an available link to any random router with a direct link to the
destination. This mechanism is the reference for uniform traffic, although it only
exploits 2/1 VCs, therefore suffering from more HoLB.

• Valiant [Val82]: Nonminimal routing composed of two parts: Minimal to a random
intermediate router and then minimal to the destination, as defined before. This is
the reference mechanism for adversarial traffic.

• 2-color Minimal, 4-color Minimal and Nonminimal: As described in Section 3.6.

Additionally, two adaptive mechanisms have been implemented:

5.7. EVALUATING THE DEADLOCK-FREE ROUTING FOR DRAGONFLIES 137

Routing Adaptive Min VCs (local/global) Min. trunking
Minimal No 2/1 1
Valiant No 4/2 1

2-color minimal No 1/1 2
4-color minimal/nonminimal No 1/1 4

OLM Yes 3/2 1
4-color adaptive Yes 1/1 4

Table 5.5: Parameters of each routing mechanism.

• OLM-MML: An in-transit adaptive routing mechanism described in [GVB+13c],
using the MM+L global misrouting policy from [GVB+13b]. This mechanism has
been selected because it provides similar or better performance than the naïve
PAR6/2 from the same paper, while requiring less virtual channels.

• 4-color adaptive: The 4-color routing presented in Section 3.6.2, implementing
Piggybacking [JKD09] to adaptively select between minimal (lgl) or nonminimal
(lgllgl) paths at injection time, using information from the neighbour routers.

minimal Valiant 4VCs OLM+MML 4 color minimal
2 color minimal 4 color nonminimal 4 color adaptive

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Offered load

A
cc
ep
te
d
lo
ad

(a) Throughput uniform

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

Offered load

(b) Throughput ADV+1

0 0.2 0.4 0.6 0.8 1
100

150

200

250

300

Accepted load

A
ve

ra
ge

la
te

nc
y

(c) Latency uniform

0 0.1 0.2 0.3 0.4 0.5
200

250

300

350

400

Accepted load

(d) Latency ADV+1

Figure 5.25: Throughput and average latency for uniform and ADV+1 traffic.

Figure 5.25 shows latency and throughput results under minimal and adverse traffic
patterns. As expected, minimal routings give the best results for uniform traffic but accept

138 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Offered load

A
cc
ep
te
d
lo
ad

Number of VCs
1 2
3 4

(a) Throughput uniform

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

Offered load

(b) Throughput ADV+1

0 0.2 0.4 0.6 0.8 1
100

150

200

250

300

Accepted load

A
ve

ra
ge

la
te

nc
y

(c) Latency uniform

0 0.1 0.2 0.3 0.4 0.5
200

250

300

350

400

Accepted load

(d) Latency ADV+1

Figure 5.26: Throughput and average latency for uniform and ADV+1 traffics varying the
number of virtual channels

an insignificant amount of the adverse traffic. 2 and 4 colors minimal routings obtain
approximately the same latency with a slight advantage for the 2-color implementation at
medium loads, but higher throughput for the 4-color variant. The lower throughput of
the 2-color variant comes from some groups using local links of type l+0 in most of the
first local hops, especially in those with a low group index: l+0 is used in the first local
hop both when the source and destination colors are the same, and when they differ and
the destination group has a higher index. An alternative more balanced ordering between
each pair of groups (without introducing cyclic dependencies) would mitigate this effect.
Interestingly, the 4-color adaptive mechanism throughput is close to the maximum, despite
being adaptive (and thus making some erroneous decisions).

The 4-color nonminimal implementation is relatively close to the performance of Valiant,
despite its route restrictions and the use of one VC less for HoLB, which explain the lower
throughput. The adaptive variant reacts very well to the traffic pattern, almost reaching
the accepted load of its respective oblivious minimal and non-minimal counterparts. It
also accepts more load than the OLM reference for adaptive routing. However latency is
higher than OLM and Valiant especially for adverse traffic; this comes from worse decisions
using source-routing in the 4-color mechanism, compared to in-transit adaptivity of OLM,
which can save intermediate hops when no congestion is detected (for ADV+1 traffic, one
hop in the intermediate group).

Figure 5.26 shows the performance of 4-color adaptive using different number of virtual
channels. As the mechanism does not restrict VCs at all, any number of buffers can be
employed, unlike the fixed requirement imposed by other policies. Furthermore, there
is freedom in the way to use the VCs; in these simulations the VC is selected randomly

5.7. EVALUATING THE DEADLOCK-FREE ROUTING FOR DRAGONFLIES 139

among those available. The HoLB problem is seen to have a great impact especially when
not using VCs (i.e. 1 VC), but the performance with just 2 VCs noticeably improves.
It is interesting to see that for adversarial traffic the delay increases with the number of
VCs; this is explained by the higher capacity of the network buffers before the bottleneck,
which increases the number of stored packets. When the buffer count is low, explicit
mechanisms could be employed to mitigate the HoLB performance issues, such as internal
router speedup or virtual-output queueing [TF88]. Such mechanisms are widely known
and they have not been explored in this work.

140 CHAPTER 5. SOME EXPERIMENTAL EVALUATIONS

Chapter 6

Conclusions

This final chapter shows some conclusions about the results and describes some interesting
future lines of work. It ends with a list of publications that were written during the
realization of this thesis, both related and non-related to this thesis.

6.1 About the Results

Tori are used in many of the top supercomputers. In many cases, that implementations
have mixed-radix, which as seen, causes a notable performance lose. This can be solved
by doing the appropriate twist with negligible increase of cost. Indeed, the greatest cost
seems to understand the related concepts, but we think anyone can grasp them with some
dedication. Thus, we do not see any impediment to the adoption of these topologies. A
little more hard would be to give to a Blue Gene like system the capability of partitioning
into multitude of different topologies. We have seen that it is possible with a few hardware
modifications. Of course, it also would require work to implement the software handling
the many different possible modes of the link chips.

When we read about the dragonfly we saw that it had a lot of potential; however its
formal definition was very vague, which got us a little peeved, since we can actually fit any
graph in that definition. Hence, effort has been dedicated to make a more proper definition
trying to keep the original spirit. We also read about the flattened butterfly topology,
which resulted to be the same as the Hamming graph or the generalized hypercube, and
again made us displeased, this time for the lack of good references. We hope to have at
least cleared up these aspects and to have not omitted ourselves something important.
From a more practical viewpoint, the dragonflies that are actually implemented have some
global trunking, which contrasts with the original study, which focused on dragonflies
without any trunking. Together with the view of Hamming graphs as dragonflies with a
lot of trunking this suggested that those implementations of dragonflies could have more
potential. We have shown this to be true by providing a deadlock-free routing algorithm
that does not require virtual channels when some trunking is present; this conforms with
the existence of DOR in Hamming graphs.

Using the techniques learn when developing the lattice graphs we have been able to
give some results about coding theory. We have shown the equivalence with topologies,
although is not obvious how to implement systems based on them, in a similar way as
how is not obvious to implement systems based on other families of graphs that attack the
degree-diameter problem. Anyway, from the coding theory perspective the results seem
rather important. The Golomb–Welch conjecture says that the only perfect Lee codes

141

142 CHAPTER 6. CONCLUSIONS

for dimension n ≥ 3 have radius (correction) 1. Recently, there have been advances only
for low dimension, up to n ≤ 6 in general or up to n ≤ 12 with some restrictions. The
last results for arbitrarily large dimension were before 1982. Those results showed that
there are not perfect Lee codes where the radius is greater than

√
n modified by some

constants. Indeed, if the radius is very large, then the problem can be approximated to
the problem of tiling Rn with cross-polytopes, as shown by Golomb and Welch [GW70].
However, that said nothing at all about low radius. We have shown that for radius 2 and
arbitrarily large dimension there are quasi-perfect Lee codes with approximately half the
density that perfect Lee codes would have if they exist. Moreover, there is no reason to
think that the codes we have obtained are the best ones; indeed, we have found a bunch
of better ones for low dimensions. What is clear is that more advanced techniques are
required to attack the conjecture.

6.2 Ongoing and Future Work

Dragonfly networks have a good degree-diameter relation (4/27 of the bound in its
more expanded form) and possess good properties to make easy its implementation.
Nevertheless, there are other topologies with much better degree-diameter relation, some
of them asymptotically reaching the bound. However, these graphs do not possess the
implementation benefits of the dragonfly. Nevertheless, there are currently some proposals
of them as interconnection topologies [BBC13, BH14]. One of the major problems of these
families reaching asymptotically the Moore bound is that the graph only exists when
some parameter is a power of a prime number—to be working in a finite field—which
can seem preposterous to any system provider that have clients requesting different sizes.
Thus, an important problem is: do these families can be generalized to contain graphs
for every number of vertices? This problem can be hard, since it implies getting out of
the comfortable finite fields (and of their projective spaces). This also links with the
quasi-perfect Lee codes that we have constructed. It is possible to extend them to many
sizes? How should be a network system based on them?

When trying to find good codes, many ideas have appeared. A few codes have been
found that are better than the infinite construction. Spectral computation has shown that
most of the graphs in the construction are Ramanujan graph. Weil’s conjectures have
appeared, first with an use of the Hasse–Weil theorem to get a bound on the number of
solutions of a polynomial and later they have seemed to be implicated in the family being
Ramanujan graphs. We have not introduced weighing matrices and the Cayley Dickson’s
construction; they give good codes, although we have not found a conclusive way of using
them. Thus, there is not shortage of ideas to continue attacking Golomb–Welch conjecture.

6.3 Publications During the Realization of this Thesis

Along the development of this thesis, several works have been published in journals and
conferences. Here is the list this publications that form part of this thesis or are directly
related to it:

1. [MCB10] Carmen Martínez, Cristóbal Camarero, and Ramón Beivide. Perfect
graph codes over two dimensional lattices. In Information Theory Proceedings (ISIT),
2010 IEEE International Symposium on, pages 1047–1051, June 2010.

6.3. PUBLICATIONS DURING THE REALIZATION OF THIS THESIS 143

2. [CMB10] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. Symmetric
L-networks. In 2010 International Workshop on Optimal Network Topologies, 2010.

3. [CMB13] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. L-net-
works: A topological model for regular 2D interconnection networks. Computers,
IEEE Transactions on, 62(7):1362–1375, July 2013.

4. [CVM+13] Cristóbal Camarero, Enrique Vallejo, Carmen Martínez, Miquel Mo-
retó, and Ramón Beivide. Task mapping in rectangular twisted tori. In Proceedings
of the High Performance Computing Symposium, HPC ’13, pages 15:1–15:11, San
Diego, CA, USA, 2013. Society for Computer Simulation International.

5. [QCMPJ13] Cátia Quilles Queiroz, Cristóbal Camarero, Carmen Martínez, and
Reginaldo Palazzo Jr. Quasi-perfect codes from Cayley graphs over integer rings.
Information Theory, IEEE Transactions on, 59(9):5905–5916, September 2013.

6. [CMB14] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. Lattice
graphs for high-scale interconnection topologies. Parallel and Distributed Systems,
IEEE Transactions on, 2014.

7. [CVB14] Cristóbal Camarero, Enrique Vallejo, and Ramón Beivide. Topological
characterization of Hamming and dragonfly networks and its implications on routing.
ACM Trans. Archit. Code Optim., 11(4):39:1–39:25, December 2014.

Other publications are less related to the present thesis. They are briefly described
before listing them. Some works on king topologies [SBM+10, SCV+12, CSV+12]; the
king torus of side a is the graph Cay(Z2

a; {±e1,±e2,±(e1 + e2),±(e1 − e2)}), so they are
actually lattice graphs. Then the king mesh is to the king torus as the mesh is to the torus.
The king mesh and king torus will be the main theme of Esteban Stafford’s thesis, which
hopefully will be written soon. Some works on dragonflies have been a collaboration on
Marina García’s thesis: [GVB+12a, GVB+12b, GVB+13b, GVB+15]. They mainly consist
on strategies to adapt well to terrible traffic patterns. A work about identifying codes is in
[CMB11, CMB15]. A collaboration with Emilio Castillo et al. on a routing mechanism for
tori [CCS+13]. Another collaboration with Emilio Castillo et al. where we won a challenge
posed by the Santander bank called “Métodos Numéricos alternativos a Montecarlo” and
has become a publication on the Journal of Supercomputing as [CCBB15].

1. [SBM+10] Esteban Stafford, Jose Luis Bosque, Carmen Martínez, Fernando Vallejo,
Ramón Beivide, and Cristóbal Camarero. A first approach to king topologies for
on-chip networks. In Proceedings of the 16th international Euro-Par conference on
Parallel processing: Part II, Euro-Par’10, pages 428–439, Berlin, Heidelberg, 2010.
Springer-Verlag.

2. [CMB11] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. Identify-
ing codes over L-graphs. In 3rd International Castle Meeting on Coding Theory
and Applications, 3ICMTA, pages 81–87, Barcelona, SPAIN, 2011. UB Servei de
Publicacions.

3. [SCV+12] Esteban Stafford, Emilio Castillo, Fernando Vallejo, José Luis Bosque,
Carmen Martínez, Cristóbal Camarero, and Ramón Beivide. King topologies for
fault tolerance. In High Performance Computing and Communication & 2012 IEEE

144 CHAPTER 6. CONCLUSIONS

9th International Conference on Embedded Software and Systems (HPCC-ICESS),
2012 IEEE 14th International Conference on, pages 608–616. IEEE, June 2012.

4. [CSV+12] Emilio Castillo, Esteban Stafford, Fernando Vallejo, Jose Luis Bosque,
Carmen Martínez, Cristóbal Camarero, and Ramón Beivide. Study of fault
tolerance for king topologies. In jornadas sarteco, September 2012.

5. [GVB+12a] Marina García, Enrique Vallejo, Ramón Beivide, Miguel Odriozola,
Cristóbal Camarero, Mateo Valero, Germán Rodríguez, Jesús Labarta, and Cyriel
Minkenberg. Bubble flow control in high-radix hierarchical networks. In jornadas
sarteco, September 2012.

6. [GVB+12b] Marina García, Enrique Vallejo, Ramón Beivide, Miguel Odriozola,
Cristóbal Camarero, Mateo Valero, Germán Rodríguez, Jesús Labarta, and Cyriel
Minkenberg. On-the-fly adaptive routing in high-radix hierarchical networks. In
The 41st International Conference on Parallel Processing (ICPP), pages 279–288,
September 2012.

7. [GVB+13b] Marina García, Enrique Vallejo, Ramón Beivide, Miguel Odriozola,
Cristóbal Camarero, Mateo Valero, J. Labarta, and G. Rodríguez. Global
misrouting policies in two-level hierarchical networks. In Proceedings of the 2013
Interconnection Network Architecture: On-Chip, Multi-Chip, IMA-OCMC ’13, pages
13–16, New York, NY, USA, 2013. ACM.

8. [CCS+13] Emilio Castillo, Cristóbal Camarero, Esteban Stafford, Fernando Va-
llejo, Jose Luis Bosque, and Ramón Beivide. Advanced switching mechanisms for
forthcoming on-chip networks. In Digital System Design (DSD), 2013 Euromicro
Conference on, pages 598–605. IEEE, September 2013.

9. [CCBB15] Emilio Castillo, Cristóbal Camarero, Ana Borrego, and Jose Luis
Bosque. Financial applications on multi-CPU and multi-GPU architectures. The
Journal of Supercomputing, 71(2):729–739, 2015.

10. [CMB15] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. Identifying
codes of degree 4 Cayley graphs over Abelian groups. Accepted for publication in
Advances in Mathematics of Communications, 2015.

11. [GVB+15] Marina García, Enrique Vallejo, Ramón Beivide, Cristóbal Camarero,
Mateo Valero, Germán Rodríguez, and Cyriel Minkenberg. On-the-fly adaptive
routing for dragonfly interconnection networks. The Journal of Supercomputing,
71(3):1116–1142, 2015.

Appendix A

Classes of Symmetric Lattice Graphs of
Degrees 4 and 6

This appendix is devoted to characterize the family of symmetric undirected lattice graphs
for degrees 4 and 6.

A.1 Introduction
The present appendix is devoted to characterize the symmetric members of the family
of undirected lattice graphs for degrees 4 and 6. Since these graphs are known to be
vertex-transitive [AK89], the characterization will be done by determining those being
edge-transitive.

Definition A.1.1. Let M1,M2 ∈ Zn×n. Then, M1 is right equivalent to M2, denoted by
M1
∼= M2, if and only if there exists a unit matrix P ∈ Zn×n such that M1 = M2P .

Theorem A.1.2. [Fio95]. If a pair of matrices M1,M2 ∈ Zn×n are right-equivalent, then
G(M1) and G(M2) are isomorphic graphs.

Definition A.1.3. A signed permutation matrix is a matrix with entries in {−1, 0, 1}
which has exactly one ±1 in each row and column.

Note that in Zn×n the signed permutation matrices are exactly the unitary matrices,
this is, the matrices U such UU t = I. They are related to permutations in the way that
for each permutation σ ∈ Σn there is a unique signed permutation matrix Pσ such that

Pσ

v1
...
vn

 =

±vσ(1)
...

±vσ(n)

 .

Theorem A.1.4. [Fio95] If P is a signed permutation matrix then G(PM) ∼= G(M).

In this appendix we will find matrices such that G(M) is edge-transitive for dimensions
2 and 3. In the first case, the characterization will be complete, that is we will find all
G(M) being symmetric. In the case of dimension 3, we will only consider those being
edge-transitive by means of linear automorphism, as explained later.

With this aim, in Section A.2 we will consider some properties of isomorphisms between
lattice graphs, their automorphisms and the implications of containing cycles of length 4.

145

146 APPENDIX A. SYMMETRIC LATTICE GRAPHS OF DEGREES 4 AND 6

In Section A.3, we give some general results for the characterization of G(M) graphs of
any dimension which are symmetric by means of linear automorphisms. In Section A.4
we give the full characterization of symmetric G(M) graphs of dimension 2 (degree 4). In
Section A.5 we give the full characterization of symmetric by linear automorphisms G(M)
graphs of dimension 3 (degree 6).

A.2 Linear Automorphisms of Lattice Graphs and 4-
cycles

Given a graphG, Aut(G) denotes its automorphisms group. G is said to be vertex-transitive
if, for any pair of vertices v1,v2 ∈ V there exists f ∈ Aut(G) such that f(v1) = v2.
Similarly, G is said to be edge-transitive if for any pair of edges a = {v1,v2}, b ∈ E there
exists f ∈ Aut(G) such that f(a) = {f(v1), f(v2)} = b. Then, if G is both vertex and
edge transitive, then it is called symmetric. The subgroup of Aut(G) of elements which fix
some element x ∈ V is denoted as Aut(G,x) (also known as stabilizer).

All Cayley graphs graphs are vertex-transitive [AK89]. The linear automorphisms of a
lattice graph G(M) form a group LAut(G(M)). This group usually coincides with the full
automorphism group Aut(G(M)), except in a few cases that we consider separately. We
also consider the group of linear automorphisms which fixes 0, LAut(G(M),0).

Definition A.2.1. G(M) is said linearly edge-transitive if for every i there exists f ∈
LAut(G(M),0) such that f(e1) = ±ei.

Clearly, a linearly edge-transitive lattice graph G(M) is symmetric. Therefore, in
this section we study the automorphism group of G(M) graphs. A basic question is
determining when there are nonlinear automorphisms; which is very related to the problem
of determining Ádám isomorphy [Ádá67, DFM92]. A pair of graphs G(M1) and G(M2)
are Ádám isomorphic if there exists an isomorphism between their groups of vertices such
that it sends the set of generators of one graph into the generators of the other graph.
It is clear that any Ádám isomorphic graphs are isomorphic, but the opposite it is not
always true.

In [DFM92] it was proved that any pair of isomorphic lattice multigraphs of degree four

are Ádám isomorphic unless the pair is (up to Ádám isomorphy)
(

2k + 1 2
1 2

)
,

(
2k 2
0 2

)
for some integer k. Using the nonlinear isomorphism between them one can build a
nonlinear automorphism in each; hence they will appear in our study of the nonlinear
automorphisms of dimension 2. However the reverse is not true, as there are a few graphs
with nonlinear automorphisms which do not have a pairing non-Ádám isomorphic graph.

Definition A.2.2. The neighborhood of a vertex v in the graph G = (V,E) is defined
as N(v) = {w | {v, w} ∈ E}. Then, the common neighborhood of a list of vertices
v1, . . . , vn ∈ V as N(v1, . . . , vn) =

⋂n
i=1 N(vi).

Theorem A.2.3. The neighborhood is preserved in graph isomorphisms. That is, if f is
a graph isomorphism, then

N(f(v1), . . . , f(vn)) = {f(w) | w ∈ N(v1, . . . , vn)}.

A.2. LINEAR AUTOMORPHISMS OF LATTICE GRAPHS AND 4-CYCLES 147

Proof. Let f be a graph isomorphism from G = (V,E) into G′ = (V ′, E ′). We have that
f(w) ∈ N(f(v1), . . . , f(vn)) if only if ∀i, f(w) ∈ N(f(vi)), that is ∀i, {f(w), f(vi)} ∈ E ′.
Since f is an isomorphism we have that this is equivalent to ∀i, {w, vi} ∈ E so w ∈
N(v1, . . . , vn).

Next, we analyze which isomorphisms between lattice graphs are linear mappings. This
is related to the following concept.

Definition A.2.4. We say that a,b, c,d ∈ ±Bn form a 4-cycle in G(M) if 0 ≡ a+b+c+d
(mod M)1. If we have a ∈ {−b,−c,−d} then we call the cycle trivial. Then, we say that
G(M) has not nontrivial 4-cycles if all its 4-cycles are trivial.

Theorem A.2.5. If G(M) is has not nontrivial 4-cycles, then for all a,b ∈ ±Bn with
a 6= b

N(a,b) = {0, a + b}.

Proof. If v ∈ N(a,b) then ∃x,y ∈ ±Bn such that v = a + x = b + y. Since we have
a− b + x− y = 0 and G(M) has not nontrivial 4-cycles, it must be fulfilled one of the
following expressions:

• a = b contradicting the hypothesis,

• a = −x and thus v = a− a = 0,

• a = y and thus v = b + y = a + b.

Lemma A.2.6. If f is an automorphism of G(M), then for any t ∈ Zn/MZn, ft : x 7→
f(t + x)− f(t) is an automorphism of G(M) with ft(0) = 0.

Proof. We have ft(0) = f(t + 0) − f(t) = 0, thus ft fixes 0. Now if x ∈ Zn/MZn is
adjacent to y ∈ Zn/MZn then t+x is adjacent to t+y and then as f is an automorphism
we have that f(t + x) is adjacent to f(t + y). Hence ft(x) is adjacent to ft(y).

Lemma A.2.7. Let G(M) be such that it has not nontrivial 4-cycles. Then for any
f ∈ Aut(G(M),0) we have that f(a + b) = f(a) + f(b) for any a,b ∈ ±Bn.

Proof. Let a,b ∈ ±Bn. First we prove the lemma for a 6= b. From Theorem A.2.5 we get
that N(a,b) = {0, a + b}, hence by Theorem A.2.3 N(f(a), f(b)) = {f(0), f(a + b)} =
{0, f(a) + f(b)}. As f(0) = 0 we have that f(a + b) = f(a) + f(b).

Now note that since for any a ∈ ±Bn, a 6= −a we have that for any f ∈ Aut(G(M),0),
f(−a) = −f(a).

It remains to prove that f(2a) = 2f(a). Consider the automorphism f ′ defined by
f ′(v) = f(a+v)−f(a) (it is an automorphism by Lemma A.2.6). We have f ′(−a) = −f ′(a),
hence f(a− a)− f(a) = −(f(a + a)− f(a)). Rearranging terms we obtain the desired
f(2a) = 2f(a).

Lemma A.2.8. If ∀a,b ∈ ±Bn, f ∈ Aut(G(M),0), f(a + b) = f(a) + f(b) then every
f ∈ Aut(G(M),0) is a group automorphism of Zn/MZn.

1each of {(v,v + a,v + a + b,v + a + b + c,v + a + b + c + d) | v ∈ Zn/MZn)} is a cycle of length 4.

148 APPENDIX A. SYMMETRIC LATTICE GRAPHS OF DEGREES 4 AND 6

Proof. First we prove that for all f ∈ Aut
(
G(M),0

)
we have that

∀t ∈ G(M), f(t + a + b) = f(t + a) + f(t + b)− f(t).

Let t ∈ G(M). We define ft(v) = f(t + v)− f(t), by Lemma A.2.6 ft ∈ Aut(G(M),0).
By hypothesis, we have ∀t ∈ G(M), ft(a + b) = ft(a) + ft(b), which implies ∀t ∈
G(M), f(t + a + b)− f(t) = f(t + a)− f(t) + f(t + b)− f(t).

We need to prove ∀ni ∈ N, f(
∑

i niei) =
∑

i nif(ei). We proceed by induction in
N =

∑
i ni; for N = 0, 1 it is immediate. Now let v =

∑
i niei and

∑
i ni = N + 1.

Let u, v be any positive integers such that nu + nv ≥ 2. Now, because of the first claim,
f(v) = f((v−eu−ev)+eu+ev) = f((v−eu−ev)+eu)+f((v−eu−ev)+ev)−f(v−eu−ev).
Applying the induction hypothesis we have that: f(v) =

(
f(v − eu − ev) + f(eu)

)
+(

f(v − eu − ev) + f(ev)
)
− f(v − eu − ev) = f(v − eu − ev) + f(eu) + f(ev). Then

as f(v − eu − ev) = f(
∑

i niei − eu − ev) =
∑

i nif(ei) − f(eu) − f(ev) we have that
f(v) =

∑
i nif(ei).

Theorem A.2.9. If the graph G(M) has not nontrivial 4-cycles then any graph automor-
phism with f(0) = 0 is a group automorphism of Zn/MZn.

Proof. If there are not nontrivial 4-cycles then by Lemma A.2.7 we have for any f ∈
Aut(G(M),0) that f(a + b) = f(a) + f(b) for any a,b ∈ ±Bn. Now we have linearity by
Lemma A.2.8.

A.3 Edge-Transitivity of Lattice Graphs by Linear Au-
tomorphisms

In this section we will consider those graphs G(M) such that any of its automorphisms is
a linear mapping.

Theorem A.3.1. For any f ∈ LAut(G(M),0) there exists a signed permutation matrix
P such that ∀a ∈ Zn/MZn, f(a) = Pa.

Proof. We define P as:

Pi,j =


1 if f(ej) = ei
−1 if f(ej) = −ei

0 otherwise

having f(ei) = Pei. Let a =
∑
niei. Now,

f(a) =
∑
i

nif(ei) =
∑
i

niPei = P
∑
i

niei = Pa.

Theorem A.3.2. For any M ∈ Zn×n the mapping f(x) = Px is a linear automorphism
of G(M) if only if there exists Q ∈ Zn×n such that PM = MQ.

Proof. We prove first the left to right implication. As f must be well-defined, for all i,
0 = P0 ≡ PMei (mod M). And then exists qi such that PMei = Mqi, gathering all is
together

PM = [PMe1, . . . , PMen] = M [q1, . . . ,qn] = MQ.

For the right to left implication; by Theorem A.1.4 f is an isomorphism from G(M)
into G(PM) = G(MQ). Then by Theorem A.1.2 f is an automorphism of G(M).

A.3. SYMMETRIC LATTICE GRAPHS OF DIMENSION 2 149

To know if G(M) is linearly edge-transitive we need to look to the multiplicative group
of the signed permutation matrices P such PM = MQ. It is clear that, if a matrix
representing a cycle of length n (even if it changes signs) is in the group then by composing
it with itself, we can map e1 to every ei making the graph edge-transitive. In these cases
we have that LAut(G(M),0) is a cyclic group. The smallest dimension for which we found
LAut(G(M),0) to be noncyclic is for n = 4 with the Klein four-group. That situation
occurs for example for Lipschitz graphs, which were introduced in in [MBG09]. Since we
just consider dimensions 2 and 3, this will not suppose any problem.

Definition A.3.3. Two matrices A,B ∈ Zn×n are similar, denoted by A ∼ B, if there
exists a unit matrix U ∈ Zn×n such that AU = UB.

Lemma A.3.4. Let PM = MQ and PM ′ = M ′Q′. Then, M ∼= M ′ if and only if Q ∼ Q′.

Proof. Since PM = MQ andM = M ′U then PM ′U = M ′UQ and PM ′ = M ′(UQU−1) =
M ′Q′ with Q′ ∼ Q. Reciprocally, we know that if PM = MQ and Q′ = UQU−1 then
M ′ = MU produces PM ′ = M ′Q′ and M ′ ∼= M .

Since right equivalences leave the group invariant (Theorem A.1.2), we know that for a
given P we only need to see how many Q there are modulo similarity. Then, knowing P
and Q we can solve for M . In [New72] the next theorems are stated, which will be very
helpful in the determination of Q in the following Sections A.4 and A.5.

Theorem A.3.5 ([New72], Theorem III.12, page 50). Given a matrix A we can find a
similar matrix, made of blocks, which is block upper triangular and moreover, that the
blocks of the diagonal all have characteristic polynomial irreducible over Q .

Theorem A.3.6 ([New72], Theorem III.14, pag 53, The theorem of Lattimer and Mac-
Duffee). If we have a matrix with irreducible characteristic polynomial, like the produced
by the previous theorem then the number of matrices modulo similarity is the class number
of Z[θ] where θ is a root of the polynomial.

A.4 Characterization of Symmetric Lattice Graphs of
Dimension 2

The complete characterization of symmetric G(M) graphs with M ∈ Z2×2 will be done in
this section. Firstly, we will consider those which are edge-transitive by means of linear
automorphism. Later, we will consider those cases involving non-linear automorphisms.

By Theorem A.3.1 a graph G(M) is linearly edge-transitive if there is an automorphism
f with f(e1) = ±e2 and f(e2) = ±e1. Such automorphism is associated to one of the

matrices:
(

0 1
1 0

)
,
(

0 −1
1 0

)
,
(

0 1
−1 0

)
,
(

0 −1
−1 0

)
.

Since
(

0 1
−1 0

)3

=

(
0 −1
1 0

)
there is only need to check

(
0 −1
1 0

)
and ±

(
0 1
1 0

)
.

Theorem A.4.1. Let M ∈ Z2×2 be non-singular. Then, G(M) is linearly edge-transitive
if and only if, for some a, b ∈ Z, M is right equivalent to one of the following matrices:

M1 =

(
a b
b a

)
, M2 =

(
a −b
b a

)
, M3 =

(
a −b
a b

)
.

150 APPENDIX A. SYMMETRIC LATTICE GRAPHS OF DEGREES 4 AND 6

Figure A.1: Linear automorphisms of lattice graphs of dimension 2.

Proof. Let M =

(
a b
c d

)
. We will determine Q and solve the system PM = MQ; which

by Theorem A.3.2 is a necessary and sufficient condition to be linearly edge-transitive.

The characteristic polynomial of ±
(

0 1
1 0

)
is λ2 − 1, and the one of

(
0 −1
1 0

)
is λ2 + 1.

As PM = MQ it must be the characteristic polynomial of both P and Q. By Lemma
A.3.4 we can choose any matrix similar to Q and obtain a matrix right-equivalent to M .
Therefore, we have two cases:

• P = ±
(

0 1
1 0

)
, λ2 − 1 = (λ+ 1)(λ− 1), being reducible over Q, by Theorem A.3.5

Q must be similar to a matrix Q′ =
(

1 p
0 −1

)
, which is similar to either

(
1 0
0 −1

)
or to

(
1 1
0 −1

)
∼
(

0 1
1 0

)
. In the first case, depending on P we obtain M equal

to
(
a b
b a

)
or to

(
a b
−b −a

)
∼=
(
a −b
−b a

)
; which are the same under the variable

change b 7→ −b. In the second case, the same happens for the possible matrices(
a −b
a b

)
and

(
a b
−a b

)
∼=
(
b −a
b a

)
and the variable change a 7→ b, b 7→ a.

• P =

(
0 −1
1 0

)
, λ2 + 1 which is irreducible over Q and the class number of Z[i] is

1, so by Theorem A.3.6 Q must be similar to P . The only possible solutions are(
a −b
b a

)
.

The first two cases of Theorem A.4.1, G(M1) and G(M2), are depicted in Figure A.1.
As it was proved in [MCB10], G(M1) and G(M3) are isomorphic to the Kronecker product
of two cycles. Furthermore G(M2) is isomorphic to the Gaussian graph introduced in
[MBS+08].

A.4. SYMMETRIC LATTICE GRAPHS OF DIMENSION 2 151

A.4.1 Edge-Transitive Lattice Graphs of Dimension 2 by Nonlin-
ear Automorphisms

In this subsection we focus on those lattice graphs with nontrivial 4-cycles, and hence,
according to Theorem A.2.9 their group of automorphisms could contain nonlinear au-
tomorphisms. Clearly, if there is a nontrivial 4-cycle then there exist a,b ∈ ±Bn which
fulfill:

i) 4a ≡ 0 (mod M)

ii) 3a + b ≡ 0 (mod M)

iii) 2a + 2b ≡ 0 (mod M)

If we consider ua + vb ≡ 0 (mod M) it means that there exists x ∈ Z2 such that

k =

(
u
v

)
= Mx. Now, let gcd(x) = gcd(x1, . . . , xn), x′ = x

gcdx
and k′ = k

gcdx
, having

k′ = Mx′. As gcdx′ = 1 we can build a unit matrix U with x′ as one of its columns, and
therefore M ′ = MU has k′ as a column. In addition, Theorem A.1.4 allows to choose each
component positive.

We will begin with item (iii). In this case we obtain the matrixM =

(
u 2
v 2

)
. If v = 2k

we have that
(
u 2
2k 2

)
is right equivalent to

(
u− v 2

0 2

)
. On the other hand, if v = 2k+ 1

then
(

u 2
2k + 1 2

)
is right equivalent to

(
u− v + 1 2

1 2

)
. Both matrices generate the

same graph and there is a nonlinear isomorphism between them. In addition note that

if the first column has odd weight then
(

0 1
1 0

)(
2k + 1 2

0 2

)
∼=
(

2k + 2 2
1 2

)
, so there is

a linear isomorphism in addition to the nonlinear one. Hence, the only pairs non Ádám

isomorphic are (

(
2k + 1 2

1 2

)
,

(
2k 2
0 2

)
), which correspond with the ones in [DFM92].

Furthermore, the matrices of these non Ádám isomorphic graphs satisfy
(

0 1
1 0

)
M ∼= M ,

thus by Theorem A.3.2 they are actually linearly edge-transitive.
For the items (i) and (ii) we begin proving that if there is exactly one nontrivial 4-cycle,

then all automorphisms are linear. Furthermore note that these results are also valid in
any number of dimensions.

Lemma A.4.2. Let f ∈ Aut(G(M),0) and a ∈ ±Bn. If ∀b ∈ ±Bn \ {a,−a}, f(−b) =
−f(b) then f−1(−a) = −f−1(a).

Proof. We check three cases.

• Case f−1(a) 6= ±a. Applying the hypothesis we get a = f(f−1(a)) = −f(−f−1(a)).
Then f−1(−a) = f−1(f(−f−1(a))) = −f−1(a).

• Case f−1(−a) 6= ±a. Applying the hypothesis we get −a = f(f−1(−a)) = −f(
−f−1(−a)). Then f−1(a) = f−1(f(−f−1(−a))) = −f−1(−a).

• Case {f−1(a), f−1(−a)} ⊆ {±a}. As f−1 is a bijection we have the equality
{f−1(a), f−1(−a)} = {±a}. Now f−1(a) + f−1(−a) = a + (−a) = 0.

152 APPENDIX A. SYMMETRIC LATTICE GRAPHS OF DEGREES 4 AND 6

Theorem A.4.3. If the only nontrivial 4-cycle is 4a ≡ 0 (mod M) or 3a + b ≡ 0
(mod M) then

Aut(G(M)) = LAut(G(M)).

Proof. We proceed proving several claims iteratively.

i) For all x,y ∈ ±Bn \ {a,−a}, x 6= y, N(x,y) = {0,x + y}.
We have N(x,y) = {v | v = x + p = y + q, p,q ∈ ±Bn}. That is, we look
for 4-cycles x + p − y − q = 0. The trivial ones are x = −p and x = q which
respectively give v = 0 and v = x + y. If it is the nontrivial 4-cycle 4a = 0 then we
have {x,y} = {a,−a}, contradicting the hypothesis. If it is the nontrivial 4-cycle
3a + b = 0, then at least one of x or y is ±a.

ii) For all x ∈ ±Bn \ {a,−a}, N(a,x) ⊆ {0, a + x, 2a}.
In this case we look for nontrivial 4-cycles a+p−x−q = 0. As x 6∈ {±a}, we have
p = −q = a and then v = a + p = 2a. Note that if we have the cycle 4a = 0 then
we only have the trivial solutions.

iii) N(a,−a) = {0,±2a}.
In this case we look for nontrivial 4-cycles a + p + a− q = 0. At least one of p,−q
is equal to a. If p = a then v = a + p = 2a. If −q = a then v = −a + q = −2a.

iv) For all x ∈ ±Bn \ {±a}, f ∈ Aut(G(M),0), f(−x) = −f(x).

We have 4x 6= 0, since it would be another nontrivial 4-cycle. Hence x 6= −x and by
item (i) N(x,−x) = {0}. By Theorem A.2.3 we have N(f(x), f(−x)) = {0}, thus
f(x) + f(−x) = 0.

v) For all x ∈ ±Bn, f ∈ Aut(G(M),0), f(−x) = −f(x) and f(2x) = 2f(x).

First apply Lemma A.4.2 together item (iv) to f−1 to get ∀f ∈ Aut(G(M),0),
f(−a) = −f(a). Then considering the automorphism f ′ defined by f ′(v) = f(x +
v)− f(x) like in the proof of Lemma A.2.7 we obtain that f(2x) = 2f(x).

vi) For all f ∈ Aut(G(M),0), f(±a) = ±a.
From item (iii) we have N(a,−a) = {0,±2a} with 0 6= ±2a. By Theorem A.2.3
we get N(f(a), f(−a)) = {0, f(±2a)} with 0 6= f(±2a). By items (i, ii, iii) we get
{f(a), f(−a)} = {±a}.

vii) For all f ∈ Aut(G(M),0), x,y ∈ ±Bn, f(x + y) = f(x) + f(y).

If x = y it is item (v). Otherwise if neither of x,y is in {±a} we proceed like the first
step of the proof of Lemma A.2.7; from item (i) we get N(x,y) = {0,x+y}, hence by
Theorem A.2.3 N(f(x), f(y)) = {f(0), f(x+y)} = {0, f(x)+f(y)}. As f(0) = 0 we
have that f(x+y) = f(x)+f(y). Now if some is in {±a}, we assume without loss of
generality that y = a and x 6∈ {±a}. From item (ii) we have N(a,x) ⊆ {0, a+x, 2a}.
And by Theorem A.2.3 that N(f(a), f(x)) ⊆ {0, f(a + x), f(2a)}. By item (vi) we
have N(f(a), f(x)) ⊆ {0, f(a) + f(x), 2f(a)}. As f(2a) = 2f(a) (item (v)) we have
that f(a + x) = f(a) + f(x).

A.4. SYMMETRIC LATTICE GRAPHS OF DIMENSION 2 153

viii) Aut(G(M)) = LAut(G(M)).

Apply Lemma A.2.8 to item (vii).

Figure A.2: A nonlinear automorphism of G(M), where M =

(
2 −1
0 3

)
.

Figure A.3: A nonlinear automorphism of the square torus of side 4.

Finally, there are a few marginal cases in which the graph contains several nontrivial
4-cycles. These matrices are the matrices whose both columns correspond to nontrivial

154 APPENDIX A. SYMMETRIC LATTICE GRAPHS OF DEGREES 4 AND 6

4-cycles and their left divisors. These matrices can be built by selecting two columns in
the set:

C =

{(
4
0

)
,

(
3
1

)
,

(
1
3

)
,

(
0
4

)
,

(
3
−1

)
,

(
1
−3

)
,

(
2
0

)
,

(
0
2

)}
.

A complete study of the following cases, shows that most of the combinations are
edge-transitive. However, there are cases that lack of a nonlinear automorphism, leading
to non-edge-transitive graphs.

Up to isomorphism, the bidimensional G(M) graphs with 2 different nontrivial solutions
for 4-cycles are:

• With nontrivial 4 cycles but without nonlinear automorphisms.(
1 0
3 2

)
,

(
2 0
0 2

)
,

(
4 3
0 1

)
,

(
4 1
0 3

)
• With a nonlinear automorphism, which makes them edge-transitive,(

4 0
0 2

)
,

(
3 3
1 −1

)
∼=
(

2 −1
0 3

)
,

(
3 1
1 2

)
with an example in Figure A.2. The first two have degree 3. Their associated lattice
multigraphs do not have nonlinear automorphisms. In the figure, we show in blue a
nonlinear automorphism involution, which fixes two vertices and maps the nontrivial
green 4-cycle into the red 4-cycle.

• With a nonlinear automorphism, but their linear automorphisms already make them
edge-transitive, (

4 0
0 4

)
,

(
3 1
1 3

)
,

(
3 −1
1 3

)
with the torus as example in Figure A.3.

A.5 Linearly Edge-Transitive Lattice Graphs of Dimen-
sion 3

This section provides a complete characterization of those lattice graphs generated by a
matrix M ∈ Z3×3 being linearly edge-transitive.

Lemma A.5.1. Given M ∈ Z3×3, G(M) is linearly edge-transitive if and only if there
exists a signed permutation matrix of order 3 in LAut(G(M),0).

Proof. If such a signed permutation exists, it is clear that G(M) is linearly edge-transitive.
For the reciprocal, by Theorem A.3.1 the automorphism is a signed permutation matrix.

We can check that signed permutations matrices of dimension 3 can have orders 1, 2, 3,
4 and 6. The identity is the only signed permutation matrix of order 1 and it does not
contribute to symmetry. Moreover, the signed permutation matrices which only change
signs (that is, which are diagonal matrices) do no contribute to symmetry. Any remaining
signed permutation matrix of orders 2 and 4 do not provide symmetry by themselves,
since they fix one of the components, and the composition of two of them generates either
a sign change or a signed permutation matrix of order 3 or 6.

Hence, linear edge-transitivity implies the existence of an automorphism f ∈ LAut(
G(M),0) with order 3 or 6. If f has order 3 then it satisfies the condition. Otherwise, it
satisfies f 3 = −id and thus, g = f 2 has order 3.

A.5. LINEARLY EDGE-TRANSITIVE LATTICE GRAPHS OF DIMENSION 3 155

Hence, if G(M) is linearly edge-transitive then LAut(G(M),0) contains at least one of
the next four cyclic groups as a subgroup and by Theorem A.3.2 there is a matrix P such
that PM = MQ for some Q.

P1 =

0 0 1
1 0 0
0 1 0

 P2 =

 0 0 1
−1 0 0
0 −1 0


P3 =

0 0 −1
1 0 0
0 −1 0

 P4 =

 0 0 −1
−1 0 0
0 1 0


These signed permutation matrices have characteristic and minimum polynomial λ3−1.

We can find some matrices (symbolic over 3 integer parameters) whose lattice graphs are
edge-transitive by taking Q = P , that is, we obtain Mi such that PiMi = MiPi. They are:

M1 =

a c b
b a c
c b a

 , M2 =

a −c −bb a −c
c b a

 ,

M3 =

a −c −bb a c
c −b a

 , M4 =

a c b
b a −c
c −b a

 .

Next, we find the similar matrices.

Lemma A.5.2. There are exactly 2 similarity classes with characteristic polynomial λ3−1:

Q1 =

1 0 0
0 −1 1
0 −1 0

 and Q2 =

1 0 1
0 −1 1
0 −1 0

 .

Proof. For λ3 − 1 = (λ− 1)(λ(λ+ 1) + 1) we have the following upper triangular block

matrix which has it as its characteristic polynomial: Q =

1 0 0
0 −1 1
0 −1 0

. We know that

1 v u
0 1 0
0 0 1

1 u+ 2v u− v
0 −1 1
0 −1 0

1 −v −u
0 1 0
0 0 1

 =

1 0 0
0 −1 1
0 −1 0



So ∀u, v ∈ Z,

1 u+ 2v u− v
0 −1 1
0 −1 0

 ∼
1 0 0

0 −1 1
0 −1 0

. Since | det(

(
−1 −2
−1 1

)
)| = 3, by

Theorem A.3.5, we have at most 3 matrices modulo similarity, which are:1 0 0
0 −1 1
0 −1 0

 ,

1 0 1
0 −1 1
0 −1 0

 and

1 0 2
0 −1 1
0 −1 0

 .

156 APPENDIX A. SYMMETRIC LATTICE GRAPHS OF DEGREES 4 AND 6

We check that the first two are non-similar. If1 0 0
0 −1 1
0 −1 0

a b c
d e f
g h i

 =

a b c
d e f
g h i

1 0 1
0 −1 1
0 −1 0


then  a b c

−d+ g −e+ h −f + i
−d −e −f

 =

a −b− c a+ b
d −e− f d+ e
g −h− i g + h

 .

Hence d = g = 0 and a = −3b; and 3b divides the determinant, which cannot be a unit.
Now we see that the last two are similar.1 0 1

0 −1 1
0 −1 0

1 0 1
0 0 1
0 −1 1

 =

1 0 1
0 0 1
0 −1 1

1 0 2
0 −1 1
0 −1 0


So we have proved that there are exactly 2 similarity classes with characteristic polynomial
λ3 − 1:

Q1 =

1 0 0
0 −1 1
0 −1 0

 and Q2 =

1 0 1
0 −1 1
0 −1 0

 .

Finally, we explore the 4 · 2 = 8 possible matrices from all the combinations.

Lemma A.5.3. With the previous definitions, P1 ∼ Q2 ∼ P2 ∼ P3 ∼ P4.

Proof. First we see that P1 ∼ Q2.0 0 1
1 0 0
0 1 0

1 0 0
1 −1 1
1 0 1

 =

1 0 0
1 −1 1
1 0 1

1 0 1
0 −1 1
0 −1 0


And now that P1 ∼ P2 ∼ P3 ∼ P4.0 0 1

1 0 0
0 1 0

−1 0 0
0 1 0
0 0 −1

 =

−1 0 0
0 1 0
0 0 −1

 0 0 1
−1 0 0
0 −1 0


0 0 1

1 0 0
0 1 0

1 0 0
0 1 0
0 0 −1

 =

1 0 0
0 1 0
0 0 −1

0 0 −1
1 0 0
0 −1 0


0 0 1

1 0 0
0 1 0

1 0 0
0 −1 0
0 0 −1

 =

1 0 0
0 −1 0
0 0 −1

 0 0 −1
−1 0 0
0 1 0



A.5. LINEARLY EDGE-TRANSITIVE LATTICE GRAPHS OF DIMENSION 3 157

Thus, the first 4 matrices with PiM = MQ2 are right equivalent to the previously
calculated Mi. Therefore, we find the 4 symbolic matrices M ′

i which satisfy PiM ′
i = M ′

iQ1.

M ′
1 =

a b c
a c −b− c
a −b− c b

 M ′
2 =

 a b c
−a −c b+ c
a −b− c b


M ′

3 =

 a b c
a c −b− c
−a b+ c −b

 M ′
4 =

 a b c
−a −c b+ c
−a b+ c −b


Now we have all the necessary elements to enunciate the tridimensional characterization

of linearly edge-transitive graphs.

Theorem A.5.4. Let M ∈ Z3×3 be non-singular. Then, G(M) is linearly edge-transitive
if and only if it is isomorphic to G(M1) or G(M ′

1), where:

M1 =

a c b
b a c
c b a

 or M ′
1 =

a b c
a c −b− c
a −b− c b


for some a, b, c ∈ Z.

Proof. Let G(M) be linearly edge-transitive with M ∈ Z3×3. By Lemma A.5.1, P must
exist with PM = MQ with P ∈ {P1, P2, P3, P4}. By Lemmas A.3.4 and A.5.2 there exist
M ′ and Q with M ∼= M ′, Q ∈ {Q1, Q2} and PM ′ = M ′Q.

• If Q = Q2, then by Lemma A.5.3 we know M ′′ ∈ {M1,M2,M3,M4}, with PM ′′ =
M ′′P , M ′′ ∼= M . Now we want to see that the matricesM1, M2, M3 andM4 generate
the same set of matrices modulo graph-isomorphism. For each Mi we find a variable
change and isomorphism from M1 into Mi:

−1 0 0
0 1 0
0 0 1

M1

1 0 0
0 −1 0
0 0 −1

 =

−a c b
b −a −c
c −b −a

 ,

which is M4 giving a the value −a.

1 0 0
0 −1 0
0 0 1

M1

−1 0 0
0 1 0
0 0 −1

 =

−a c −b
b −a c
−c b −a

 ,

which is M2 giving a the value −a and c the value −c.

1 0 0
0 1 0
0 0 −1

M1

1 0 0
0 1 0
0 0 −1

 =

 a c −b
b a −c
−c −b a

 ,

which is M3 giving c the value −c.

158 APPENDIX A. SYMMETRIC LATTICE GRAPHS OF DEGREES 4 AND 6

• If Q = Q1, then by Lemma A.5.3 we know M ′ ∈ {M ′
1,M

′
2,M

′
3,M

′
4}. Now we want to

see that the matrices M ′
1, M ′

2, M ′
3 and M ′

4 generate the same set of matrices modulo
graph-isomorphism. For each Mi we find an isomorphism from M1 into Mi; we do
not need in this case variable changes:

M ′
1 =

1 0 0
0 −1 0
0 0 1

M ′
2 =

1 0 0
0 1 0
0 0 −1

M ′
3 =

1 0 0
0 −1 0
0 0 −1

M ′
4.

Bibliography

[AAC+10] Baba Arimilli, Ravi Arimilli, Vicente Chung, Scott Clark, Wolfgang Denzel,
Ben Drerup, Torsten Hoefler, Jody Joyner, Jerry Lewis, Jian Li, Nan Ni,
and Ram Rajamony. The PERCS high-performance interconnect. In 2010
18th IEEE Symposium on High Performance Interconnects, pages 75–82,
Washington, DC, USA, 2010. IEEE, IEEE Computer Society.

[AAK01] Rudolf Ahlswede, Harout K. Aydinian, and Levon H. Khachatrian. On perfect
codes and related concepts. Designs, Codes and Cryptography, 22(3):221–237,
2001.

[AB03a] Bader F. AlBdaiwi and Bella Bose. On resource placements in 3D tori. J.
Parallel Distrib. Comput., 63(9):838–845, September 2003.

[AB03b] Bader F. AlBdaiwi and Bella Bose. Quasi-perfect Lee distance codes. Infor-
mation Theory, IEEE Transactions on, 49(6):1535–1539, June 2003.

[AB05] Bader F. AlBdaiwi and Bella Bose. Quasi-perfect resource placements for two-
dimensional toroidal networks. J. Parallel Distrib. Comput., 65(7):815–831,
July 2005.

[ABC+05] Narasimha R. Adiga, Matthias A. Blumrich, Dong Chen, Paul Coteus, Alan
Gara, Mark E. Giampapa, Philip Heidelberger, Sarabjeet Singh, Burkhard D.
Steinmacher-Burow, Todd Takken, Mickey Tsao, and Pavlos Vranas. Blue
Gene/L torus interconnection network. IBM Journal of Research and Devel-
opment, 49(2.3):265–276, March 2005.

[ABC+06] Krste Asanovic, Rastilav Bodík, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The
landscape of parallel computing research: A view from Berkeley. Technical
report, UCB/EECS-2006-183, 2006.

[ABD+09] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and Robert S.
Schreiber. HyperX: Topology, routing, and packaging of efficient large-scale
networks. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, pages 1–11, New York, NY, USA,
2009. ACM.

[ABF12] Bader Albader, Bella Bose, and Mary Flahive. Efficient communication algo-
rithms in hexagonal mesh interconnection networks. Parallel and Distributed
Systems, IEEE Transactions on, 23(1):69–77, January 2012.

159

160 BIBLIOGRAPHY

[Ádá67] A. Ádám. Research problem 2-10. J. Combin. Theory, 2(393):217, 1967.
Edited by Alan J. Hoffman.

[ADH14] Carlos Araújo, Italo J. Dejter, and Peter Horak. A generalization of Lee
codes. Designs, Codes and Cryptography, 70(1-2):77–90, 2014.

[AHM09] Bader F. AlBdaiwi, Peter Horak, and Lorenzo Milazzo. Enumerating and
decoding perfect linear Lee codes. Des. Codes Cryptography, 52(2):155–162,
2009.

[AK89] Sheldon B. Akers and Balakrishnan Krishnamurthy. A group-theoretic model
for symmetric interconnection networks. IEEE Transactions on Computers,
38:555–566, 1989.

[AS12] Helena Astola and Stanislav Stankovic. On the use of Lee-codes for construct-
ing multiple-valued error-correcting decision diagrams. In Communications
Control and Signal Processing (ISCCSP), 2012 5th International Symposium
on, pages 1–6. IEEE, 2012.

[ASK06] Tarun Agarwal, Amit Sharma, and Laxmikant V. Kalé. Topology-aware task
mapping for reducing communication contention on large parallel machines.
In IPDPS, 2006.

[ASK13] Jung Ho Ahn, Young Hoon Son, and John Kim. Scalable high-radix router
microarchitecture using a network switch organization. ACM Trans. Archit.
Code Optim., 10(3):17:1–17:25, September 2013.

[ASS09] Yuichiro Ajima, Shinji Sumimoto, and Toshiyuki Shimizu. Tofu: A 6D
mesh/torus interconnect for exascale computers. Computer, 42:36–40, 2009.

[Ast82] Jaakko Astola. An Elias-type bound for Lee codes over large alphabets
and its application to perfect codes (corresp.). Information Theory, IEEE
Transactions on, 28(1):111–113, January 1982.

[AT13] Helena Astola and Ioan Tabus. Bounds on the size of Lee-codes. In Image and
Signal Processing and Analysis (ISPA), 2013 8th International Symposium
on, pages 471–476, September 2013.

[BA84] Laxmi N. Bhuyan and Dharma P. Agrawal. Generalized hypercube and
hyperbus structures for a computer network. Computers, IEEE Transactions
on, C-33(4):323–333, April 1984.

[Bar64] Paul Baran. On distributed communications networks. Communications
Systems, IEEE Transactions on, 12(1):1–9, March 1964.

[BB96] Myung M. Bae and Bella Bose. Resource placement in torus-based networks.
In Parallel Processing Symposium, 1996., Proceedings of IPPS ’96, The 10th
International, pages 327–331, April 1996.

[BBC13] Dhananjay Brahme, Onkar Bhardwaj, and Vipin Chaudhary. SymSig: A
low latency interconnection topology for HPC clusters. In High Performance
Computing (HiPC), 2013 20th International Conference on, pages 462–471,
December 2013.

BIBLIOGRAPHY 161

[BBK+68] George H. Barnes, Richard M. Brown, Maso Kato, David J. Kuck, Daniel L.
Slotnick, and Richard A. Stokes. The Illiac IV computer. IEEE Transactions
on Computers, C-17(8):746–757, August 1968.

[Ber68] Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill, 1968.

[BGJK11] Abhinav Bhatele, William D. Gropp, Nikhil Jain, and Laxmikant V. Kale.
Avoiding hot-spots on two-level direct networks. In High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2011 International Conference
for, pages 1–11, New York, NY, USA, November 2011. ACM.

[BH14] Maciej Besta and Torsten Hoefler. Slim Fly: A cost effective low-diameter
network topology. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’14, pages
348–359, Piscataway, NJ, USA, 2014. IEEE Press.

[Bha11] Abhinav Bhatele. Topology aware task mapping. In David Padua, editor,
Encyclopedia of Parallel Computing, pages 2057–2062. Springer US, 2011.

[BHBA91] Ramón Beivide, Enrique Herrada, José L. Balcázar, and Agustin Arruaba-
rrena. Optimal distance networks of low degree for parallel computers. IEEE
Trans. Comput., 40(10):1109–1124, 1991.

[BHS+95] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo,
and Maurice Yarrow. The NAS parallel benchmarks 2.0. Technical report,
NAS-95-020, NASA Ames Research Center, 1995.

[BKM+10] Tom Budnik, Brant Knudson, Mark Megerian, Sam Miller, Mike Mundy,
and Will Stockdell. Blue Gene/Q resource management architecture. In
Many-Task Computing on Grids and Supercomputers (MTAGS), 2010 IEEE
Workshop on, pages 1–5, November 2010.

[Bla09] Buddy Bland. Jaguar: Powering and cooling the beast. http://www.cse.
ohio-state.edu/~panda/875/class_slides/cray-jaguar.pdf, 2009.

[Bok81] Shahid H. Bokhari. On the mapping problem. IEEE Trans. Comput.,
30(3):207–214, March 1981.

[Bro66] William G Brown. On graphs that do not contain a Thomsen graph. Canad.
Math. Bull, 9(2):1–2, 1966.

[BW85] Francis T. Boesch and Jhing-Fa Wang. Reliable circulant networks with
minimum transmission delay. Circuits and Systems, IEEE Transactions on,
32(12):1286–1291, December 1985.

[Cam10] Cristóbal Camarero Coterillo. Toroidal L-graphs and applications. Proyecto
Fin de Carrera, Universidad de Cantabria., 2010.

[CBC+05] Paul Coteus, H. Randall Bickford, Thomas M. Cipolla, Paul G. Crumley, Alan
Gara, Shawn A. Hall, Gerard V. Kopcsay, Alphonso P. Lanzetta, Lawrence S.
Mok, Rick A. Rand, Richard A. Swetz, Todd Takken, Paul La Rocca, Christo-
pher Marroquin, Philip R. Germann, and Mark J. Jeanson. Packaging the
Blue Gene/L supercomputer. IBM Journal of Research and Development,
49(2/3):213–248, March 2005.

http://www.cse.ohio-state.edu/~panda/875/class_slides/cray-jaguar.pdf
http://www.cse.ohio-state.edu/~panda/875/class_slides/cray-jaguar.pdf

162 BIBLIOGRAPHY

[CBGV97] Carmen Carrion, Ramón Beivide, José Ángel Gregorio, and Fernando Vallejo.
A flow control mechanism to avoid message deadlock in k-ary n-cube networks.
In High-Performance Computing, 1997. Proceedings. Fourth International
Conference on, pages 322–329, December 1997.

[CCBB15] Emilio Castillo, Cristóbal Camarero, Ana Borrego, and Jose Luis Bosque.
Financial applications on multi-CPU and multi-GPU architectures. The
Journal of Supercomputing, 71(2):729–739, 2015.

[CCS+13] Emilio Castillo, Cristóbal Camarero, Esteban Stafford, Fernando Vallejo,
Jose Luis Bosque, and Ramón Beivide. Advanced switching mechanisms
for forthcoming on-chip networks. In Digital System Design (DSD), 2013
Euromicro Conference on, pages 598–605. IEEE, September 2013.

[CEH+11] Dong Chen, Noel A. Eisley, Philip Heidelberger, Robert M. Senger, Yu-
taka Sugawara, Sameer Kumar, Valentina Salapura, David L. Satterfield,
Burkhard Steinmacher-Burow, and Jeffrey J. Parker. The IBM Blue Gene/Q
interconnection network and message unit. In Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 1–10, New York, NY, USA, 2011. IEEE, ACM.

[CEH+12] Dong Chen, Noel Eisley, Philip Heidelberger, Sameer Kumar, Amith Mami-
dala, Fabrizio Petrini, Robert Senger, Yutaka Sugawara, Robert Walkup,
Burkhard Steinmacher-Burow, Anamitra Choudhury, Yogish Sabharwal,
Swati Singhal, and Jeffrey J. Parker. Looking under the hood of the IBM
Blue Gene/Q network. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC ’12,
pages 69:1–69:12, Los Alamitos, CA, USA, 2012. IEEE Computer Society
Press.

[CHM+99] Jin-yi Cai, George Havas, Bernard Mans, Ajay Nerurkar, Jean-Pierre Seifert,
and Igor Shparlinski. On routing in circulant graphs. In COCOON, pages
360–369, 1999.

[CMAPJ04] Sueli I. R. Costa, Marcelo Muniz, Edson Agustini, and Reginaldo Palazzo Jr.
Graphs, tessellations, and perfect codes on flat tori. Information Theory,
IEEE Transactions on, 50(10):2363–2377, October 2004.

[CMB10] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. Symmetric
L-networks. In 2010 International Workshop on Optimal Network Topologies,
2010.

[CMB11] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. Identifying
codes over L-graphs. In 3rd International Castle Meeting on Coding Theory
and Applications, 3ICMTA, pages 81–87, Barcelona, SPAIN, 2011. UB Servei
de Publicacions.

[CMB13] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. L-networks: A
topological model for regular 2D interconnection networks. Computers, IEEE
Transactions on, 62(7):1362–1375, July 2013.

BIBLIOGRAPHY 163

[CMB14] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. Lattice graphs
for high-scale interconnection topologies. Parallel and Distributed Systems,
IEEE Transactions on, 2014.

[CMB15] Cristóbal Camarero, Carmen Martínez, and Ramón Beivide. Identifying codes
of degree 4 Cayley graphs over Abelian groups. Accepted for publication in
Advances in Mathematics of Communications, 2015.

[CMV+07] José M. Cámara, Miquel Moretó, Enrique Vallejo, Ramón Beivide, José
Miguel-Alonso, Carmen Martínez, and Javier Navaridas. Mixed-radix twisted
torus interconnection networks. In Parallel and Distributed Processing Sym-
posium, 2007. IPDPS 2007. IEEE International, pages 1–10, March 2007.

[CMV+10] Jose M. Cámara, Miquel Moretó, Enrique Vallejo, Ramón Beivide, José
Miguel-Alonso, Carmen Martínez, and Javier Navaridas. Twisted torus
topologies for enhanced interconnection networks. IEEE Transactions on
Parallel and Distributed Systems, 21(12):1765–1778, December 2010.

[CO93] Israel Cidon and Yoram Ofek. MetaRing—a full-duplex ring with fairness
and spatial reuse. Communications, IEEE Transactions on, 41(1):110 –120,
January 1993.

[Coh07] Henri Cohen. Number Theory: Volume I: Tools and Diophantine Equations,
volume 1. Springer, 2007.

[Col04] Phillip Colella. Defining software requirements for scientific computing. slide
of 2004 presentation included in David Patterson’s 2005 talk, 2004.

[Cra] Cray XE6 brochure. http://www.cray.com/Products/XE/Technology.
aspx.

[CS11] Yawen Chen and Hong Shen. Embedding meshes and tori on double-loop
networks of the same size. IEEE Trans. Comput., 60(8):1157–1168, August
2011.

[CSV+12] Emilio Castillo, Esteban Stafford, Fernando Vallejo, Jose Luis Bosque, Carmen
Martínez, Cristóbal Camarero, and Ramón Beivide. Study of fault tolerance
for king topologies. In jornadas sarteco, September 2012.

[CVB14] Cristóbal Camarero, Enrique Vallejo, and Ramón Beivide. Topological
characterization of Hamming and dragonfly networks and its implications on
routing. ACM Trans. Archit. Code Optim., 11(4):39:1–39:25, December 2014.

[CVM+13] Cristóbal Camarero, Enrique Vallejo, Carmen Martínez, Miquel Moretó, and
Ramón Beivide. Task mapping in rectangular twisted tori. In Proceedings of
the High Performance Computing Symposium, HPC ’13, pages 15:1–15:11,
San Diego, CA, USA, 2013. Society for Computer Simulation International.

[Del85] Charles Delorme. Grands graphes de degré et diamètre donnés. European
Journal of Combinatorics, 6(4):291–302, 1985.

http://www.cray.com/Products/XE/Technology.aspx
http://www.cray.com/Products/XE/Technology.aspx

164 BIBLIOGRAPHY

[DFM92] Charles Delorme, O. Favaron, and M. Mahéo. Isomorphisms of Cayley
multigraphs of degree 4 on finite Abelian groups. Eur. J. Comb., 13(1):59–61,
1992.

[DSV03] Giuliana Davidoff, Peter Sarnak, and Alain Valette. Elementary number
theory, group theory and Ramanujan graphs, volume 55. Cambridge University
Press, 2003.

[DT03] William Dally and Brian Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[DV12] Daniel Dadush and Santosh S. Vempala. Deterministic construction of an
approximate M-ellipsoid and its applications to derandomizing lattice algo-
rithms. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’12, pages 1445–1456. SIAM, 2012.

[DV13] Daniel Dadush and Santosh S. Vempala. Near-optimal deterministic algo-
rithms for volume computation via M-ellipsoids. Proceedings of the National
Academy of Sciences, 2013.

[Etz11] Tuvi Etzion. Product constructions for perfect Lee codes. Information Theory,
IEEE Transactions on, 57(11):7473–7481, November 2011.

[EVY13] Tuvi Etzion, Alexander Vardy, and Eitan Yaakobi. Coding for the Lee
and Manhattan metrics with weighing matrices. Information Theory, IEEE
Transactions on, 59(10):6712–6723, October 2013.

[Ext] Extrae MPI profiling tool. http://www.bsc.es/ssl/apps/
performanceTools/.

[FB10] Mary Flahive and Bella Bose. The topology of Gaussian and Eisenstein-Jacobi
interconnection networks. IEEE Trans. Parallel Distrib. Syst., 21(8):1132–
1142, August 2010.

[FBR+12] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese,
Bob Alverson, Tim Johnson, Joe Kopnick, Mike Higgins, and James Reinhard.
Cray Cascade: a scalable HPC system based on a dragonfly network. In
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages 1–9, Los Alamitos, CA,
USA, November 2012. IEEE Computer Society Press.

[FG04] Yun Fan and Ying Gao. Codes over algebraic integer rings of cyclotomic
fields. IEEE Transactions on Information Theory, 50(1):194–200, January
2004.

[Fio87] Miguel Angel Fiol. Congruences in Zn, finite Abelian groups and the Chinese
remainder theorem. Discrete Math., 67:101–105, October 1987.

[Fio95] Miguel Angel Fiol. On congruence in Zn and the dimension of a multidimen-
sional circulant. Discrete Math, 141:1–3, 1995.

[FJ91] G. David Forney Jr. Geometrically uniform codes. Information Theory, IEEE
Transactions on, 37(5):1241–1260, September 1991.

http://www.bsc.es/ssl/apps/performanceTools/
http://www.bsc.es/ssl/apps/performanceTools/

BIBLIOGRAPHY 165

[FYAV87] Miguel Angel Fiol, José Luis Andrés Yebra, Ignacio Alegre, and Mateo Valero.
Discrete optimization problem in local networks and data alignment. IEEE
Trans. Comput., 36(6):702–713, 1987.

[GGI+05] Domingo Gómez, Jaime Gutierrez, Álvar Ibeas, Carmen Martínez, and Ramón
Beivide. On finding a shortest path in circulant graphs with two jumps. In
COCOON, pages 777–786, 2005.

[GMP98] Sylvain Gravier, Michel Mollard, and Charles Payan. On the non-existence of
3-dimensional tiling in the Lee metric. European Journal of Combinatorics,
19(5):567–572, 1998.

[GN92] Christopher J. Glass and Lionel M. Ni. The turn model for adaptive routing.
In Proceedings of the 19th Annual International Symposium on Computer
Architecture, ISCA ’92, pages 278–287, New York, NY, USA, 1992. ACM.

[Gün81] Klaus D. Günther. Prevention of deadlocks in packet-switched data transport
systems. Communications, IEEE Transactions on, 29(4):512–524, April 1981.

[GVB+12a] Marina García, Enrique Vallejo, Ramón Beivide, Miguel Odriozola, Cristóbal
Camarero, Mateo Valero, Germán Rodríguez, Jesús Labarta, and Cyriel
Minkenberg. Bubble flow control in high-radix hierarchical networks. In
jornadas sarteco, September 2012.

[GVB+12b] Marina García, Enrique Vallejo, Ramón Beivide, Miguel Odriozola, Cristóbal
Camarero, Mateo Valero, Germán Rodríguez, Jesús Labarta, and Cyriel
Minkenberg. On-the-fly adaptive routing in high-radix hierarchical networks.
In The 41st International Conference on Parallel Processing (ICPP), pages
279–288, September 2012.

[GVB+13a] Marina García, Enrique Vallejo, Ramón Beivide, Mateo Valero, and Germán
Rodríguez. OFAR-CM: Efficient dragonfly networks with simple congestion
management. In High-Performance Interconnects (HOTI), 2013 IEEE 21st
Annual Symposium on, pages 55–62, 2013.

[GVB+13b] Marina García, Enrique Vallejo, Ramón Beivide, Miguel Odriozola, Cristóbal
Camarero, Mateo Valero, J. Labarta, and G. Rodríguez. Global misrouting
policies in two-level hierarchical networks. In Proceedings of the 2013 In-
terconnection Network Architecture: On-Chip, Multi-Chip, IMA-OCMC ’13,
pages 13–16, New York, NY, USA, 2013. ACM.

[GVB+13c] Marina García, Enrique Vallejo, Ramón Beivide, Miguel Odriozola, and Mateo
Valero. Efficient routing mechanisms for dragonfly networks. In Parallel
Processing (ICPP), 2013 42nd International Conference on, pages 582–592,
October 2013.

[GVB+15] Marina García, Enrique Vallejo, Ramón Beivide, Cristóbal Camarero, Mateo
Valero, Germán Rodríguez, and Cyriel Minkenberg. On-the-fly adaptive rout-
ing for dragonfly interconnection networks. The Journal of Supercomputing,
71(3):1116–1142, 2015.

166 BIBLIOGRAPHY

[GW70] Solomon W. Golomb and Lloyd R. Welch. Perfect codes in the Lee metric
and the packing of polyominoes. SIAM Journal on Applied Mathematics,
18(2):302–317, 1970.

[HA06] Peter Horak and Bader F. Albdaiwi. Fast decoding of quasi-perfect Lee
distance codes. Des. Codes Cryptography, 40(3):357–367, September 2006.

[HA12] Peter Horak and Bader F. AlBdaiwi. Diameter perfect Lee codes. Information
Theory, IEEE Transactions on, 58(8):5490–5499, August 2012.

[Haz14] Raj Hazra. Accelerating insights... in the technical computing transformation,
June 2014. keynote at the International Supercomputing Conference (ISC’14).

[HG14] Peter Horak and Otokar Grošek. A new approach towards the Golomb–Welch
conjecture. European Journal of Combinatorics, 38:12–22, 2014.

[Hil84] Anthony J. W. Hilton. Hamiltonian decompositions of complete graphs.
Journal of Combinatorial Theory, Series B, 36(2):125–134, 1984.

[Hor09a] Peter Horak. On perfect Lee codes. Discrete Mathematics, 309(18):5551–5561,
2009. Combinatorics 2006, A Meeting in Celebration of Pavol Hell’s 60th
Birthday (May 1–5, 2006).

[Hor09b] Peter Horak. Tilings in Lee metric. European Journal of Combinatorics,
30(2):480–489, 2009.

[HS60] Alan J. Hoffman and Robert R. Singleton. On Moore graphs with diameters
2 and 3. IBM Journal of Research and Development, 4(5):497–504, November
1960.

[Hub93] Klaus Huber. Codes over Eisenstein-Jacobi integers. Finite fields: theory,
applications, and algorithms (Las Vegas, NV, 1993), pages 165–179, 1993.

[Hub94] Klaus Huber. Codes over Gaussian integers. IEEE Transactions on Informa-
tion Theory, 40(1):207–216, January 1994.

[Hun74] Thomas W. Hungerford. Algebra. 1974. Grad. Texts in Math, 1974.

[HW79] Godfrey Harold Hardy and Edward Maitland Wright. An introduction to the
theory of numbers, volume 4. Oxford University Press, fourth edition, 1979.

[IEE89] IEEE standards for local area networks: Token ring access method and
physical layer specifications. IEEE Std 802.5-1989, 1989.

[IEE91] IEEE standards for local and metropolitan area networks: Distributed queue
dual bus (DQDB) subnetwork of a metropolitan area network (MAN). IEEE
Std 802.6-1990, 1991.

[IK00] Wilfried Imrich and Sandi Klavžar. Product Graphs: Structure and Recogni-
tion. Wiley-Interscience, 2000.

[Jan73] Ted Janssen. Crystallographic Groups. American Elsevier, 1973.

BIBLIOGRAPHY 167

[JKD09] Nan Jiang, John Kim, and William J Dally. Indirect adaptive routing on large
scale interconnection networks. In ISCA ’09: 36th International Symposium
on Computer Architecture, pages 220–231, 2009.

[JSB10] Anxiao Jiang, Moshe Schwartz, and Jehoshua Bruck. Correcting charge-
constrained errors in the rank-modulation scheme. Information Theory,
IEEE Transactions on, 56(5):2112–2120, 2010.

[KDA07] John Kim, William J. Dally, and Dennis Abts. Flattened butterfly: a cost-
efficient topology for high-radix networks. In Proceedings of the 34th annual
international symposium on Computer architecture, ISCA ’07, pages 126–137,
New York, NY, USA, 2007. ACM.

[KDSA08] John Kim, William J. Dally, Steve Scott, and Dennis Abts. Technology-
driven, highly-scalable dragonfly topology. In Proceedings of the 35th Annual
International Symposium on Computer Architecture, pages 77–88. IEEE
Computer Society, 2008.

[KDTG05] John Kim, William J. Dally, Brian Towles, and Amit K. Gupta. Microarchi-
tecture of a high-radix router. In Proceedings of the 32th annual international
symposium on Computer architecture, volume 33 of ISCA ’05, pages 420–431.
IEEE Computer Society, 2005.

[KK79] Parviz Kermani and Leonard Kleinrock. Virtual cut-through: a new computer
communication switching technique. Computer Networks, 3(4):267–286, 1979.

[KL98] JunSeong Kim and David J. Lilja. Characterization of communication patterns
in message-passing parallel scientific application programs. Network-Based
Parallel Computing Communication, Architecture, and Applications, pages
202–216, 1998.

[KN84] Hironori Kasahara and Seinosuke Narita. Practical multiprocessor scheduling
algorithms for efficient parallel processing. IEEE Trans. Comput., 33(11):1023–
1029, November 1984.

[KS96] Michael Kaib and Claus P. Schnorr. The generalized Gauss reduction algo-
rithm. J. Algorithms, 21(3):565–578, 1996.

[Lee09] Ingyu Lee. Characterizing communication patterns of NAS-MPI benchmark
programs. In Southeastcon, pages 158–163, 2009.

[Lei85] Charles E. Leiserson. Fat-trees: Universal networks for hardware-efficient su-
percomputing. Computers, IEEE Transactions on, C-34(10):892–901, October
1985.

[Lep81] Timo Lepistö. A modification of the Elias-bound and nonexistence theorems
for perfect codes in the Lee-metric. Information and Control, 49(2):109–124,
1981.

[LH] Antoine Le Hyaric. Converting the NAS benchmarks from MPI to BSP.
http://www.ann.jussieu.fr/~lehyaric/NASfromMPItoBSP/.

http://www.ann.jussieu.fr/~lehyaric/NASfromMPItoBSP/

168 BIBLIOGRAPHY

[LK12] Gary Lakner and Brant Knudson. IBM System Blue Gene Solution: Blue
Gene/Q Hardware Installation and Maintenance Guide. IBM Redbooks, April
2012.

[LKF03] Laurence E. LaForge, Kirk F. Korver, and M. Sami Fadali. What designers
of bus and network architectures should know about hypercubes. Computers,
IEEE Transactions on, 52(4):525–544, April 2003.

[LPW+15] Xiang-Ke Liao, Zheng-Bin Pang, Ke-Fei Wang, Yu-Tong Lu, Min Xie, Jun Xia,
De-Zun Dong, and Guang Suo. High performance interconnect network for
Tianhe system. Journal of Computer Science and Technology, 30(2):259–272,
2015.

[LY10] Lin Liu and Yuanyuan Yang. Energy-aware routing in hybrid optical network-
on-chip for future multi-processor system-on-chip. In Proceedings of the 6th
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS ’10, pages 18:1–18:9, New York, NY, USA, 2010. ACM.

[Mar81] Alain J. Martin. The torus: An exercise in constructing a processing surface.
Proceedings of the VLSI Conference, 1981.

[Mar07] Carmen Martínez. Codes and Graphs over Complex Integer Rings. PhD
thesis, University of Cantabria, 2007.

[MBG07] Carmen Martínez, Ramón Beivide, and Ernst M. Gabidulin. Perfect codes
for metrics induced by circulant graphs. IEEE Transactions on Information
Theory, 53(9):3042–3052, 2007.

[MBG09] Carmen Martínez, Ramón Beivide, and Ernst M. Gabidulin. Perfect codes
from Cayley graphs over Lipschitz integers. Information Theory, IEEE
Transactions on, 55(8):3552–3562, August 2009.

[MBGG05] Carmen Martínez, Ramón Beivide, Jaime Gutierrez, and Ernst Gabidulin.
On the perfect t-dominating set problem in circulant graphs and codes over
Gaussian integers. In Information Theory, 2005. ISIT 2005. Proceedings.
International Symposium on, pages 254–258, September 2005.

[MBS+08] Carmen Martínez, Ramón Beivide, Esteban Stafford, Miquel Moretó, and
Ernst M. Gabidulin. Modeling toroidal networks with the Gaussian integers.
IEEE Transactions on Computers, 57:1046–1056, 2008.

[MCB10] Carmen Martínez, Cristóbal Camarero, and Ramón Beivide. Perfect graph
codes over two dimensional lattices. In Information Theory Proceedings
(ISIT), 2010 IEEE International Symposium on, pages 1047–1051, June 2010.

[Mil12] James Milano. IBM System Blue Gene Solution: Blue Gene/Q Hardware
Installation and Maintenance Guide. IBM Redbooks, April 2012. In progress.

[MMB06] Carmen Martínez, Miquel Moretó, and Ramón Beivide. A generalization of
perfect Lee codes over Gaussian integers. In Information Theory, 2006 IEEE
International Symposium on, pages 1070–1074, July 2006.

BIBLIOGRAPHY 169

[Mol71] Emil Molnár. Sui mosaici dello spazio di dimensionen. Atti Accad. Naz.
Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat, 51:177–185, 1971.

[MŠ13] Mirka Miller and Jozef Širáň. Moore graphs and beyond: A survey of the
degree/diameter problem (2nd ed). The Electronic Journal of Combinatorics,
5 2013.

[MSB+08] Carmen Martínez, Esteban Stafford, Ramón Beivide, Cristóbal Camarero,
Fernando Vallejo, and Ernst Gabidulin. Graph-base metrics over QAM
constellations. In 2008 IEEE International Symposium on Information Theory,
pages 2494–2498, July 2008.

[MSBG08] Carmen Martínez, Esteban Stafford, Ramón Beivide, and Ernst. M. Gabidulin.
Modeling hexagonal constellations with Eisenstein-Jacobi graphs. Probl. Inf.
Transm., 44:1–11, March 2008.

[MŠŠ12] Heather Macbeth, Jana Šiagiová, and Jozef Širáň. Cayley graphs of given
degree and diameter for cyclic, Abelian, and metacyclic groups. Discrete
Mathematics, 312(1):94–99, 2012. Algebraic Graph Theory – A Volume
Dedicated to Gert Sabidussi on the Occasion of His 80th Birthday.

[Mul82] Henry Martyn Mulder. Interval-regular graphs. Discrete Mathematics,
41(3):253–269, 1982.

[New72] Morris Newman. Integral matrices. Academic Press, New York„ 1972.

[NH08] Shigeto Nishimura and Toyokazu Hiramatsu. A generalization of the Lee
distance and error correcting codes. Discrete Applied Mathematics, 156(5):588–
595, 2008.

[Nie05] Michael A Nielsen. Introduction to expander graphs, 2005.

[NMPR11] Javier Navaridas, José Miguel-Alonso, Jose Antonio Pascual, and Fran-
cisco Javier Ridruejo. Simulating and evaluating interconnection networks
with INSEE. Simulation Modelling Practice and Theory, 19(1):494–515, 2011.

[NS10] Michael L. Norman and Allan Snavely. Accelerating data-intensive science
with Gordon and Dash. In Proceedings of the 2010 TeraGrid Conference, TG
’10, pages 14:1–14:7, New York, NY, USA, 2010. ACM.

[PBB+10] Cheolmin Park, Roy Badeau, Larry Biro, Jonathan Chang, Tejpal Singh, Jim
Vash, Bo Wang, and Tom Wang. A 1.2 TB/s on-chip ring interconnect for
45nm 8-core enterprise Xeonr processor. In Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2010 IEEE International, pages 180–181,
February 2010.

[PD01] Li-Shiuan Peh and William J. Dally. A delay model and speculative architec-
ture for pipelined routers. In Proceedings of the 7th International Symposium
on High-Performance Computer Architecture, HPCA ’01, pages 255–266,
Washington, DC, USA, 2001. IEEE Computer Society.

170 BIBLIOGRAPHY

[Pea96] Barak A. Pearlmutter. Doing the twist: Diagonal meshes are isomorphic
to twisted toroidal meshes. IEEE Transactions on Computers, 45:766–767,
1996.

[Pos75] Karel A. Post. Nonexistence theorems on perfect Lee codes over large
alphabets. Information and Control, 29(4):369–380, 1975.

[PRG+14] Bogdan Prisacari, Germán Rodríguez, Marina García, Enrique Vallejo, Ramón
Beivide, and Cyriel Minkenberg. Performance implications of remote-only
load balancing under adversarial traffic in dragonflies. In Proceedings of
the 8th International Workshop on Interconnection Network Architecture:
On-Chip, Multi-Chip, INA-OCMC ’14, pages 5:1–5:4, New York, NY, USA,
2014. ACM.

[QCMPJ13] Cátia Quilles Queiroz, Cristóbal Camarero, Carmen Martínez, and Regi-
naldo Palazzo Jr. Quasi-perfect codes from Cayley graphs over integer rings.
Information Theory, IEEE Transactions on, 59(9):5905–5916, September
2013.

[QPJ10] Cátia Quilles Queiroz and Reginaldo Palazzo Jr. Quasi-perfect geometrically
uniform codes derived from graphs over Gaussian integer rings. In Information
Theory Proceedings (ISIT), 2010 IEEE International Symposium on, pages
1158–1162, June 2010.

[QPJ11] Cátia Quilles Queiroz and Reginaldo Palazzo Jr. Geometrically uniform quasi-
perfect codes derived from graphs over integer rings. In 3rd International
Castle Meeting on Coding Theory and Applications, volume 5, page 237. Univ.
Autònoma de Barcelona, 2011.

[Rie06] Rolf Riesen. Communication patterns. In Proceedings of the 20th International
Conference on Parallel and Distributed Processing, IPDPS’06, pages 275–232,
Washington, DC, USA, 2006. IEEE Computer Society.

[Rob96] Borut Robic. Optimal routing in 2-jump circulant networks. Technical report,
University of Cambridge Computer Laboratory, TR397, 1996.

[RPM05] Francisco Javier Ridruejo Pérez and José Miguel-Alonso. INSEE: An inter-
connection network simulation and evaluation environment. In Euro-Par
2005, Parallel Processing, 11th International Euro-Par Conference, Lisbon,
Portugal, pages 1014–1023. Springer, 2005.

[RS94] Ron M. Roth and Paul H. Siegel. Lee-metric BCH codes and their application
to constrained and partial-response channels. Information Theory, IEEE
Transactions on, 40(4):1083–1096, July 1994.

[Sam67] Pierre Samuel. Algebraic Theory of Numbers. Hermann, 1967.

[SBM62] Daniel L. Slotnick, W. Carl Borck, and Robert C. McReynolds. The
SOLOMON computer. In AFIPS ’62 (Fall): Proceedings of the Decem-
ber 4-6, 1962, fall joint computer conference, pages 97–107, New York, NY,
USA, 1962. ACM.

BIBLIOGRAPHY 171

[SBM+10] Esteban Stafford, Jose Luis Bosque, Carmen Martínez, Fernando Vallejo,
Ramón Beivide, and Cristóbal Camarero. A first approach to king topologies
for on-chip networks. In Proceedings of the 16th international Euro-Par
conference on Parallel processing: Part II, Euro-Par’10, pages 428–439, Berlin,
Heidelberg, 2010. Springer-Verlag.

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert
Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan.
Larrabee: a many-core x86 architecture for visual computing. ACM Trans.
Graph., 27:18:1–18:15, August 2008.

[SCV+12] Esteban Stafford, Emilio Castillo, Fernando Vallejo, José Luis Bosque, Carmen
Martínez, Cristóbal Camarero, and Ramón Beivide. King topologies for fault
tolerance. In High Performance Computing and Communication & 2012 IEEE
9th International Conference on Embedded Software and Systems (HPCC-
ICESS), 2012 IEEE 14th International Conference on, pages 608–616. IEEE,
June 2012.

[Seq81] Carlo H. Sequin. Doubly twisted torus networks for VLSI processor arrays. In
ISCA ’81: Proceedings of the 8th annual symposium on Computer Architecture,
pages 471–480, Los Alamitos, CA, USA, 1981. IEEE Computer Society Press.

[Sin05] Arjun Singh. Load-Balanced Routing in Interconnection Networks. PhD
thesis, Stanford University, 2005.

[SKS+11] Balaram Sinharoy, Ronald N. Kalla, William J. Starke, Hung Le, Robert
Cargnoni, James Van Norstrand, B. J. Ronchetti, J. Stuecheli, Jens Leenstra,
G. L. Guthrie, D. Q. Nguyen, Bart Blaner, C. F. Marino, E. Retter, and
Phillip G. Williams. IBM POWER7 multicore server processor. IBM Journal
of Research and Development, 55(3):1:1–1:29, May–June 2011.

[Špa07] Simon Špacapan. Nonexistence of face-to-face four-dimensional tilings in the
Lee metric. European Journal of Combinatorics, 28(1):127–133, 2007.

[TF88] Y. Tamir and G. L. Frazier. High-performance multi-queue buffers for VLSI
communications switches. In Proceedings of the 15th Annual International
Symposium on Computer Architecture, ISCA ’88, pages 343–354, Los Alamitos,
CA, USA, 1988. IEEE Computer Society Press.

[Tho79] Clark D. Thompson. Area–time complexity for VLSI. In Proceedings of
the eleventh annual ACM symposium on Theory of computing, pages 81–88.
ACM, 1979.

[TP94] K. Wendy Tang and Sanjay A. Padubidri. Diagonal and toroidal mesh
networks. IEEE Trans. Comput., 43(7):815–826, 1994.

[Val82] Leslie G. Valiant. A scheme for fast parallel communication. SIAM Journal
on Computing, 11(2):350–361, 1982.

[Vet13] Tomáš Vetrík. Abelian Cayley graphs of given degree and diameter 2 and 3.
Graphs and Combinatorics, pages 1–5, 2013.

172 BIBLIOGRAPHY

[VMMB11] Enrique Vallejo, Miquel Moretó, Carmen Martínez, and Ramón Beivide.
Peripheral twists for torus topologies with arbitrary aspect ratio. In Actas
XXII Jornadas de Paralelismo, pages 421–426, 2011.

[WCP13] Ruisheng Wang, Lizhong Chen, and Timothy Mark Pinkston. Bubble color-
ing: Avoiding routing- and protocol-induced deadlocks with minimal virtual
channel requirement. In Proceedings of the 27th International ACM Confer-
ence on International Conference on Supercomputing, ICS ’13, pages 193–202,
New York, NY, USA, 2013. ACM.

[Wei62] Paul M. Weichsel. The Kronecker product of graphs. Proceedings of the
American Mathematical Society, 13(1):47–52, 1962.

[YCM06] Hao Yu, I-Hsin Chung, and José E. Moreira. Topology mapping for
Blue Gene/L supercomputer. In SC 2006 Conference, Proceedings of the
ACM/IEEE, November 2006.

[YFJ+01] Yulu Yang, Akira Funahashi, Akiya Jouraku, Hiroaki Nishi, Hideharu Amano,
and Toshinori Sueyoshi. Recursive diagonal torus: An interconnection net-
work for massively parallel computers. IEEE Transactions on Parallel and
Distributed Systems, 12:701–715, 2001.

	Portada
	Agradecimientos
	Resumen
	Portada en inglés
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Related Work
	1.4 Results
	1.5 Organization
	1.6 Fundamentals on Graphs and Networks
	1.6.1 Cayley Graphs
	1.6.2 Symmetry
	1.6.3 Degree Diameter Problem
	1.6.4 Routing

	Chapter 2 Lattice Graphs
	2.1 Definition of Lattice Graphs
	2.1.1 Projections and Lifts of Lattice Graphs

	2.2 Symmetric Lattice Graphs
	2.2.1 Cubic Crystal Lattice Graphs
	2.2.2 Cubic Crystal Lattice Graph Comparison
	2.2.3 Symmetric Lifts of Cubic Crystal Graphs
	2.2.4 Hybrid Graphs: Common Lift of Crystal Graphs

	2.3 Routing in Lattice Graphs
	2.3.1 Distance Properties and Routing of 2D Lattice Graphs
	2.3.2 A Hierarchical Routing for Lattice Graphs

	2.4 Layout
	2.4.1 Layout and Partitioning: Cray Technology
	2.4.2 Layout and Partitioning: IBM Technology

	2.5 Conclusions

	Chapter 3 Hamming and Dragonfly Networks
	3.1 Introduction
	3.2 Related Work
	3.3 Hamming Graphs
	3.4 Dragonfly Topologies
	3.4.1 Global Link Arrangement and Network Symmetries

	3.5 Dragonfly topologies with Global Trunking
	3.5.1 Balancing Conditions for the Trunked Dragonfly
	3.5.2 Arrangements for Dragonflies with Global Trunking

	3.6 Deadlock-free Adaptive Routing in Dragonflies withTrunking
	3.6.1 Oblivious Minimal Deadlock-free Routing for t - 2
	3.6.2 Oblivious Minimal and Non-minimal Deadlock-free Routingfor t - 4

	3.7 3-level Dragonflies
	3.8 Conclusions

	Chapter 4 Almost Optimal Lattice Graphs andRelated Lee Codes
	4.1 The Relations Among Linear Lee Error CorrectingCodes and Lattice Graphs
	4.2 2D Quasi-Perfect Codes from Cayley Graphs overInteger Rings
	4.2.1 Related Work
	4.2.2 Preliminary Results
	4.2.3 Quasi-Perfect Codes over Quotient Rings of Gaussian Integers
	4.2.4 Quasi-Perfect Codes over Eisenstein–Jacobi Integer Rings
	4.2.5 2-Dimensional Quasi-Perfect Codes for the Lee Metric
	4.2.6 Decoding Algorithms
	4.2.7 Conclusions

	4.3 Quasi-Perfect Lee Codes of Radius 2 and ArbitrarilyLarge Dimension
	4.3.1 Introduction
	4.3.2 Error Correction Capacity of Gp
	4.3.3 Diameter of Gp
	4.3.4 Discussion

	Chapter 5 Some Experimental Evaluations
	5.1 The FSIN simulator
	5.2 NPB MPI traces
	5.3 Evaluation of the Impact of Symmetry in the Performanceof 2D Lattice Networks
	5.3.1 A Simple Performance Model for Networks Based on LatticeGraphs
	5.3.2 Empirical Performance Evaluation of the Symmetry of 2DLattice Networks

	5.4 Mapping Applications on Lattice Graphs
	5.4.1 Task Mapping in Rectangular and Twisted Torus
	5.4.2 Performance Evaluation
	5.4.3 Conclusions

	5.5 Evaluation of Lattice Graphs Compared to Topologiesof Current Supercomputers
	5.6 Evaluation of the Symmetry in Dragonflies
	5.7 Evaluation of the Deadlock-free Adaptive Routingfor Dragonflies with Global Trunking

	Chapter 6 Conclusions
	6.1 About the Results
	6.2 Ongoing and Future Work
	6.3 Publications During the Realization of this Thesis

	Appendix A Classes of Symmetric Lattice Graphs ofDegrees 4 and 6
	A.1 Introduction
	A.2 Linear Automorphisms of Lattice Graphs and 4-cycles
	A.3 Edge-Transitivity of Lattice Graphs by Linear Automorphisms
	A.4 Characterization of Symmetric Lattice Graphs ofDimension 2
	A.4.1 Edge-Transitive Lattice Graphs of Dimension 2 by NonlinearAutomorphisms

	A.5 Linearly Edge-Transitive Lattice Graphs of Dimension3

	Bibliography

