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ABSTRACT 

A polarimetric Distributed Bragg Reflector (DBR) laser sensor in a low birefringent Er-doped fiber has been proposed. 

The spectral overlap of two uniform fiber Bragg gratings (FBG) has been employed as filtering technique to achieve a 

Single Longitudinal Mode (SLM) regime. By measuring the RF beat frequency between the two orthogonal polarized 

lasing modes and the absolute wavelength of one mode, both strain and temperature has been determined simultaneously. 
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1. INTRODUCTION

Multi-parameter sensors can solve the cross sensitivity problem (e.g. FBGs) when working in real scenarios and also 

reduce the complexity, size and cost of the whole sensing system. Many techniques based on fiber Bragg gratings (FBG)

have been reported for multi-parameters measurement, such as embedded FBG [1], different types of FBG  [2], 

superstructure Bragg grating [3], combination with a long period grating [4]. However, for remote sensing applications,

the FBG sensors can be limited by their signal-to-noise ratio (SNR) and, consequently,  reducing the accuracy of the 

sensor system. Active fiber grating sensors,  (e.g  sensors where gratings form part of a fiber laser) have been proved to

be a reliable technology to overcome this limitation due to their narrow linewidth and high output power. 

Fiber lasers based on Distributed Bragg Reflector (DBR) or Distributed Feedback laser (DFB) have been employed as 
polarimetric sensors for simultaneous measurement of strain and temperature [5], [6]. These fiber lasers typically exhibit 

two orthogonal polarization modes caused by the fiber birefringence. Any external perturbation such as strain or

temperature, changes the birefringence and, therefore, the polarization beat frequency. Moreover, fiber lasers should 

operate in single longitudinal mode regime (SLM) to achieve high resolutions in sensing systems. For SLM regime, 

usually DBR fiber laser may not be longer than a few centimeters and the grating bandwidth has to be below 0.2nm. 
Nevertheless, narrow filtering technique based on the spectral overlapping of two uniform FBGs [7] has been proved as a 

reliable technique to achieve a SLM operation in DBR fiber lasers, even when long cavity lengths are required. 

In this work, a DBR laser sensor working on the Single Longitudinal Mode regime has been employed to discriminate 

between two measurements (strain and temperature). The DBR laser structure has two orthogonal polarization modes 

whose frequency distance exhibits different sensitivities to strain and temperature variations than the FBGs, allowing the 

simultaneous measuring of both parameters. The experimental results based on a proof-of-concept laser enable this 

technique to be employed in structural applications. 

2. WORKING PRINCIPLE

The DBR fiber laser sensor consist of two uniform FBGs written in an erbium doped fiber with an appropriate distance 

between them. The spectral overlap technique has been used to achieve single longitudinal mode (SLM) laser [7]. This 

method is based on combining two uniform FBGs of matched Bragg wavelengths, being one slightly detuned and 

keeping its reflection spectra partially overlapped with the other. In this way, the whole spectral overlapped response of

both FBGs becomes narrower than the ones associated with the two individual FBGs. Moreover, due to the fiber 

birefringence introduced during the fiber fabrication and/or the grating inscription, there are two orthogonal polarization

modes and, consequently, the laser emits in two different lasing wavelengths. For a low birefringent fiber (nxnyn
where nx,y are the modal refractive indexes), the beat frequency is given by: 
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where c is the light speed in vacuum, λ is the laser wavelength, n is the average refractive index and B=  n x -n y  is the 

birefringence. Typically, the beat frequency is within the range from several hundred MHz to several Ghz. When the 

DBR laser is under strain or temperature variations, the Bragg wavelength and the birefringence will change. As a result, 

the lasing wavelength and the polarization beat frequency will vary in different ways and both strain and temperature can

be simultaneously retrieved. 

Figure 1 . Illustration of the laser transducer based on the spectral overlap technique to achieve the SLM regime. 

Dimensions are in millimeters. 

3. EXPERIMENTS

A proof- of-concept device has been manufactured using a commercial Er-doped fiber (M12 of Fibercore) . Two matched 

FBGs have been written into using the phase mask technique with a continuous laser emitting at 244 nm. A small 

Gaussian apodizing function has been applied to reduce the secondary lobes of both FBGs. After writing both FBGs, one 

of them has been pos-exposed to drift its Bragg wavelength and reduce the overlapping area, narrowing consequently the 

equivalent filter bandwidth. The tuning process has been monitored using a high resolution Optical Spectrum Analyzer 

(B OSA -C of Aragon Photonics) and has been finished when the SLM regime was achieved. The structure of the device 

is depicted in Fig. 1. 

The manufactured laser was pumped using a 980 nm laser diode through a WDM. The laser output has been interrogated

using an Optical Spectrum Analyzer (HP70952B) and in the electric domain using an Optical Converter (HP11982A)

and an Electric Spectrum Analyzer (HP8592L). The interrogation scheme is detailed in Fig.2. 

Figure 2 . Interrogation scheme employed for the laser characterization. 

3.1  SLM operation and beat frequency 

The first tests have been employed to verify the SLM operation. Employing a heterodyne detection system, the DBR

laser output has been mixed with the signal of a Tunable Laser Source (TLS) using a 3 dB coupler. The TLS (Agilent 
8164B) has a full-width at half maximum (FWHM) linewidth of 100 kHz and its wavelength has been placed close to the 

manufactured laser. In Fig. 3 (left), the two polarization modes of the lasing signal from the manufactured laser has been 
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combined with the signal of the TLS and converted to the electrical domain. In Fig 3. (right) the TLS signal has been 

removed and the two polarization modes were beaten at baseband. Af ter verifying the SLM operation and to obtain the 

strain and temperature response of the laser, the TLS source has been removed, employing only the beat between the 

polarization modes as the electrical signal.  

Figure 3 . SLM operation measured at 25ºC. The laser signal was mixed with a TLS source obtaining both

orthogonal modes (left). Beat between the two polarization modes separated 426.2 MHz (right). 

3.2  Temperature and strain 

The manufactured laser has been subjected to a temperature sweep from 20 to 100ºC employing a climatic chamber 

without any deformation. The laser output was interrogated using both methods (optic al  and electric al ) simultaneously to
obtain both sensitivities. Maintaining both interrogation schemes, the laser has been attached to a micrometric linear

motor stage to perform a strain sweep reaching a peak deformation above 1500 μϵ while its temperature remained

constant. The achieved results are depicted in Fig. 4. 

Figure 4. Temperature (left) and strain responses of the manufactured laser interrogated using both 

interrogation methods (optical and electrical) 

As expected, the response of the DBR structure to temperature and strain variations shows the same characteristics as its 

reflectors (FBGs) when it is interrogated within the optical domain. On the contrary, the electrical signal created by the 

beat between the polarization modes is driven by the fiber birefringence, exhibiting very different sensitivities but the 

same trend is maintained. The achieved sensitivities were 8.9 pm/ºC and 24.1 kHz/ºC for temperature and 1.02 pm/μϵ 

and 0.72 kHz/μϵ for strain in both  optical and electrical domains respectively. 
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3.3 Error analysis 

Both sensitivities (optical and electrical) are different, thus, consequently, it is possible to obtain both measurands 

simultaneously, by solving the system of equations [1]. In Fig. 5, the achieved resolution is depicted. The graph was 

obtained by varying one measure while the other was fixed. The applied sweeps (strain and temperature) are depicted

(solid lines) against the computed variations using wavelength drifts (dots). 

Figure 5. Resolution of the manufactured laser for different ramps. 

The achieved error depends on the sensitivities difference, thus a better discrimination can be achieved by increasing this 
difference. For the manufactured laser there were high differences between sensitivities (different domains), achieving a 

mean strain error of 8.1 μϵ, being the temperature mean error 2.1 ºC during the discrimination.  

4. CONCLUSIONS

In this work, a dual polarization DBR fiber laser sensor has been designed to achieve simultaneous measurements of 

strain and temperature. Using the spectral overlapping technique in a commercial low birefringent Er-doped fiber, a 

proof-of-concept fiber laser sensor has been manufactured and experimentally tested. This laser operated in robust SLM 

regime for different working conditions and in two orthogonal polarization modes. The simultaneous measurement of

strain and temperature has been experimentally demonstrated by measuring the laser wavelength and polarization beat 

frequency. This work has been supported by the project TEC2010-20224-C02-02 and grant AP2009-1403 
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