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ABSTRACT 

Objectives. Genes explaining the susceptibility to osteoporosis have not been fully elucidated.  

Our objective was to explore the association of polymorphisms capturing common variations 

of the lipoprotein receptor related protein (LRP) 5 and 6 genes, encoding two Wnt receptors, 

with femoral neck bone mineral density (BMD) and osteoporotic fractures of the spine and the 

hip. 

Design. Cross-sectional, case-control and replication genetic association study. 

Methods. Thirty nine tagging and functional single nucleotide polymorphisms (SNP) were 

analyzed in a group of 1043 postmenopausal women and 394 women with hip fractures. The 

results were replicated in a different group of 342 women. 

Results. Three SNPs of the LRP6 gene were associated with BMD (nominal uncorrected p-

values<0.05) in the discovery cohort. One showed a significant association after multiple test 

correction; two of them were also associated in the replication cohort, with a combined 

standardized mean difference of 0.51 (p=0.009) and 0.65 (p<0.0001) across rs11054704 and 

rs2302685 genotypes. In the discovery cohort, several LRP5 SNPs were associated with 

vertebral fractures (odds ratio 0.67; p=0.01), with hip fractures (unadjusted odds ratios between 

0.59 and 1.21, p=0.005-0.033, but not significant after multiple test- or age-adjustment), and 

with height and the projected femoral neck area, but not with BMD. Transcripts of LRP5 and 

LRP6 were similarly abundant in bone samples. 

Conclusions. In this study we found common polymorphisms of LRP5 associated with 

osteoporotic fractures, and polymorphisms of the LRP6 gene associated with BMD, thus 

suggesting them as likely candidates to contribute explaining the hereditary influence on 

osteoporosis. 

 

KEYWORDS: Osteoporosis, fractures, Wnt pathway, genetic association study. 
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INTRODUCTION 

The Wnt family includes more than fifteen proteins which have been shown to play an 

important role in organ development and the homeostasis of several adult tissues, including 

bone. Wnt ligands stimulate the differentiation of pluripotential precursors towards the 

osteoblastic lineage, and have an anabolic effect on bone.  Intracellular signals transducing 

Wnt effects are complex and include several pathways, the best known of which is the so 

called canonical pathway. It starts with the union of Wnt ligands to a membrane receptor 

complex constituted by a lipoprotein receptor related peptide (LRP) and a frizzled protein. 

There are at least 10 members of the frizzled family. There are also several LRP’s, with 

positive or negative effects on Wnt signaling (1). The best known members of the LRP family 

are LRP5 and LRP6. The role of LRP5 was emphasized by the discovery of some patients with 

either high or low bone mass phenotypes, caused by activating and loss-of-function mutations, 

respectively, of LRP5. Furthermore, several candidate gene studies and some multicenter large-

scale and genome-wide studies (GWAS) suggested that common LRP5 polymorphisms may 

influence bone mineral density (BMD) in the general population. Nevertheless, recent animal 

studies have raised some doubts about the direct role of LRP5 in bone (2). The role of LRP6 

has not been studied extensively, but both LRP5 and LRP6 appear to be necessary for skeletal 

homeostasis (3; 4). Moreover, some investigators suggested that LRP6 polymorphisms 

influence BMD (5; 6), but the results were not confirmed in other studies (7; 8). Therefore, this 

is a controversial issue. Population differences and the particular polymorphisms included in 

those analyses may explain the discordant results. On the other hand, little is known about the 

relationship between LRP5/6 polymorphisms and hip fractures, which are the most devastating 

osteoporotic fractures. Therefore, the aim of this study was to use a gene-wide approach to 
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explore the association of common polymorphisms of LRP5 and LRP6 genes with femoral 

neck BMD and osteoporotic fractures of the spine and the hip. 

 

MATERIALS AND METHODS 

Subjects.- To study the association of genetic polymorphisms with BMD and vertebral 

fractures we performed a cross-sectional study including 1043 postmenopausal women over 50 

years of age (age 51-90) living in Cantabria, a region in Northern Spain with a population of 

550.000. They included volunteers recruited by advertisements and women sent to our clinic 

because of osteoporosis concerns (“Santander group”) and women taking part in a population-

based cohort study on the epidemiology of osteoporosis (“Camargo cohort”) (9).  Both groups 

belong to the same geographical region. Femoral neck BMD was measured by DXA using a 

Hologic QDR 4500 densitometer. The projected neck area in the DXA output was also 

analyzed. Since the densitometer uses a fixed length for femoral neck assessment, the projected 

area is a function of the neck diameter. The presence of vertebral fractures was defined as a 

loss of vertebral body height higher than 20% in lateral X-rays (available in 637 women) 

assessed by an experienced reader, prior to genotyping.  

To study the association with hip fractures, we recruited a convenience sample of unselected 

patients admitted to hospital because a hip fracture, 60 to 90 years of age (n=394). Those with 

fractures due to high-impact trauma (such as traffic accidents and falls from a height) were 

excluded. Control subjects (n=529) included women from the Santander and Camargo groups 

within the same age range but without osteoporotic fractures. 

Women with present or past diseases (cancer, rheumatoid arthritis, malabsorption, severe 

systemic diseases, etc) or treatments (corticosteroids, anticonvulsants, hormone replacement 

therapy, etc.) known to affect bone metabolism, or with non-Spanish ancestors were excluded. 
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The study protocol was approved by the Institutional Committee of Ethics in Clinical 

Research, and informed consent was obtained from study subjects or their representatives. 

The results about genetic polymorphisms and BMD were replicated in a cohort of women 

attending a menopause clinic in Valencia, a region in Eastern Spain. After applying similar 

exclusion criteria, the cohort included 342 Caucasian postmenopausal women aged 41-69 

years.  BMD was measured by DXA using either a Lunar or a Norland densitometer. The 

results from different densitometers were standardized as proposed by Lu  et al. (10).  

Genotyping.-  The Hapmap database was explored to identify SNPs of the LRP5 and LRP6 

genes in the Caucasian population. Then, tag-SNPs  were selected using the algorithms 

available in Haploview with  the “aggressive tagging” option (11). Minor allele frequency 

(MAF) of 0.1 and r2 0.8 were used as criteria. In addition, we included some SNPs with 

potential regulatory function as assessed by the bioinformatics suite Pupa (12; 13). Therefore, 

31 SNPs of the LRP5 gene and 11 of the LRP6 gene were finally selected. DNA was isolated 

from peripheral blood or buccal swabs by using column-based commercial methods and 

quantified with the Qubit procedure (Invitrogen, Carlsbad, CA, USA).   Then alleles at each 

locus were analyzed by a mass-array Sequenom platform at the Centro Nacional de Genotipado 

(Santiago de Compostela, Spain). In a sub-sample of study participants, the rs3736228 

polymorphism of the LRP5 gene was analyzed by using a Taqman assay (Applied Biosystems). 

Polymorphisms associated with BMD in the discovery cohort were analyzed in the replication 

cohort by using the same procedure (mass-array) for genotyping at Unidad Central de 

Investigación (Facultad de Medicina, Valencia, Spain). Replicate samples were included to 

confirm the consistency of results. 

Gene expression.- Trabecular bone samples were obtained from the femoral heads of patients 

subjected to hip replacement because of severe osteoarthritis. RNA was isolated with Trizol 

(Invitrogen), and further purified by using a column adsorption procedure (Qiagen, Hilden, 
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Germany). Aliquots of RNA (250 ng) were reverse-transcribed with the Superscript III kit 

(Invitrogen) and quantified by real-time PCR in an ABI7300 apparatus (Applied Biosystems, 

Foster City, CA), using specific primers and  FAM-labelled probes for LRP5 and LRP6 

(Taqman gene expression assays, Applied Biosystems). The results were then normalized to 

the expression of  the housekeeping gene TATA box protein (TBP) and an universal reference 

RNA (Stratagene), by the  2-ΔCt  method (14).    

Statistical analysis.- Haplotypic blocks were estimated by the Gabriel method, implemented in 

Haploview (11). The departure from Hardy-Weinberg equilibrium was tested with Plink 

software (15). The association of alleles with BMD was studied at the single-locus level, 

assuming additive and recessive models, with Plink. The presence of population stratification 

was explored with STRUCTURE software, running a dataset with five markers located in 

different chromosomes (16). BMD results in different cohorts were combined by computing 

the Hedges’ standardized weighted mean difference with MIX software (17; 18). The 

significance threshold after multiple test correction for each gene was estimated by considering 

the effective number of independent marker loci, as proposed by Li and Ji, using the single 

nucleotide spectral decomposition software (SNPSpD), developed by Nyholt (19).Uncorrected 

nominal p-values are shown, unless otherwise indicated. p-values <0.05 were considered as 

statistically significant. The study power (estimated with QUANTO software, available at 

http://hydra.usc.edu/gxe/) was higher than 89% to find genetic effects explaining at least 1% of 

BMD variance. Power to detect a fracture odds ratio of 1.4 or higher was 80% and 54%, for hip 

fractures and vertebral fractures, respectively, assuming an additive model and a minor allele 

frequency of 0.2. 
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RESULTS 

Bone mineral density 

Four SNPs of the LRP5 gene were excluded due to inaccurate separation or low calling rate. 

The genotyping rate in the remaining set (table 1) was 97.4%. The allelic frequencies were 

similar to those reported in other Caucasian populations and there was no evidence for 

departure from the Hardy-Weinberg equilibrium. Only one SNP was associated with a nominal 

p-value less than 0.05 (0.02, well above the significance 0.003 threshold after multiple test 

correction) (table 1). No significant hidden population stratification was detected running the 

STRUCTURE software.   The characteristics of women included in the study are shown in 

table 2. 

The rs4988321 polymorphism of the LRP5 gene showed a marginal association with age-

adjusted BMD (p=0.0488) (figure 1), that did not reach the multiple test-adjusted threshold of 

significance (estimated as p=0.003). Three SNPs of the LRP6 gene were also associated with 

BMD: rs11054704 (additive p=0.035; recessive p= 0.016), rs2302685 (additive p=0.058; 

recessive p=0.0039), and rs10845493 (additive p=0.54; recessive p=0.036) (figure 2).  Only the 

p-value for the rs2302685 polymorphism was below the multiple test-adjusted threshold for 

significance (estimated as 0.006 for the LRP6 SNP set). 

We selected those three SNPs for replication in a different cohort (Valencia). In this cohort, 

rs10845493 was not associated with BMD, but the association was replicated for rs11054704 

(p= 0.016, additive model) and almost reached statistical significance for rs2302685 (p=0.057, 

additive model). The combined standardized weighted mean differences between women with 

opposite genotypes were 0.51 standard deviations (95% confidence interval 0.13-0.89) and 

0.65 standard deviations (95% confidence interval 0.35-0.96) for rs11054704 and rs2302685 

loci, respectively (table 3). 
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Fractures 

The association of genetic polymorphisms with fractures was analyzed in 637 women with 

spine X-rays available (140 with osteoporotic vertebral fractures and 497 controls without 

fractures). Several polymorphisms of the LRP5 gene tended to be associated with fractures,  

with nominal p-values <0.05, but they did not reach the multiple test threshold for significance 

(0.003). Loci rs312788 and rs160607 showed the most significant association The age-adjusted  

odds ratio was 0.67 in both cases (p=0.009 and 0.01, respectively; figure 3). The rs3736228 

polymorphism could not be included in the multiplex reaction along other polymorphisms and 

was genotyped later in a single assay. It also tended to be associated with fractures in our 

population (OR 1.5; 95% confidence interval 1.1-2.2; p=0.025).  

Since LRP5 polymorphisms showed a trend for association with vertebral fractures, but not 

with BMD, we explored their relationship with body size. After excluding women with 

vertebral fractures (which can cause a loss of height by themselves), several LRP5 

polymorphisms  were associated with height (uncorrected p-values 0.002-0.04; figure 3). 

Likewise, they were associated with the projected femoral neck area, as measured from the 

densitometer output, even after controlling for height (p-values=0.0014-0.048, figure 3).   

Several LRP5 polymorphisms also tended to be associated with hip fractures (uncorrected p-

values <0.05), including some found associated with vertebral fractures (rs4988300 and 

rs160607). However, the hip fracture group was somewhat older than the control group. After 

adjusting the results introducing age as a covariate, similar odds ratios were observed, but with 

larger confidence intervals and no longer statistically significant (table 4).  

SNPs of the LRP6 gene were not significantly associated with either vertebral or hip fractures. 

The incomplete assessment of fractures in the Valencia cohort did not allow replicating 

fracture association data. 
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Gene expression 

Gene transcripts were measured in 17 femoral bone samples of patients with osteoarthritis 

undergoing hip replacement surgery. Transcripts of LRP5 and LRP6 were similarly abundant: 

1.5 (range 0.1-4.9) and 1.2 (range 0.1-5.7) arbitrary units, respectively (not significantly 

different). 

 

DISCUSSION 

Rare cases of loss-of-function or gain-of-function mutations of LRP5 are associated with 

marked decreases or increases, respectively, of bone mass (20-23). Although the skeletal 

impact of common allelic variants is less clear, several polymorphisms of the LRP5 gene have 

been associated with bone mass and fractures, in candidate gene studies (6; 24; 25) and in 

some, but not all genome-wide studies (26; 27). The nonsynonymous rs3736228 polymorphism 

has been the most widely studied SNP in candidate gene studies (25; 28) and was identified as 

a quantitative trait locus in the Rotterdam cohort GWAS. It showed a stronger association with 

spine BMD than with femoral neck BMD (26). In a meta-analysis including 10 eligible studies 

with 16705 individuals, Tran et al. estimated that the difference in femoral neck BMD across 

rs3736288 genotypes was 0.011 g/cm2, roughly equivalent to 0.1 standard deviations (25). Our 

study was not powered to detect such a small difference. The LRP5 polymorphism was also 

associated with fractures in the GWAS and in a large multicenter study (29). In the present 

study we confirmed the trend for association with vertebral fractures, but we were not able to 

confirm the association with BMD. Several factors may explain the differences between 

studies, including age and menopausal status of subjects. In fact, the association with fractures 

but not with BMD might suggest an effect of LRP5 alleles on other factors influencing bone 

strength, such as bone tissue quality or bone geometry. In the present study some LRP5 

polymorphisms were associated with body height and femoral neck size. This is in line with 
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previously published results (30), and suggests that LRP5 may influence skeletal development 

and growth, and consequently the peak bone mass attained in early adulthood, as also 

suggested by studies showing an association of LRP5 polymorphisms with BMD in children 

and young adults (30-33). However, LRP5 SNPs associated with fractures did not coincide 

with those associated with height or femoral neck projected area. Therefore, further studies are 

needed to clarify the mechanism explaining the association of LRP5 variants with fractures. 

LRP5 and LRP6 are known to bind Wnt ligands, but their relative importance in bone tissue is 

unclear. Whereas several mutations of the LRP5 gene have been associated with abnormal 

human bone phenotypes (20; 21; 23; 34; 35), only a pedigree with a LRP6 mutation causing 

metabolic syndrome, coronary heart disease and osteoporosis has been reported (36). Studies 

with knock-out mice suggest that both LRP5 and LRP6 are needed for the normal skeletal 

homeostasis (3; 4). In the present study, we showed that LRP5 and LRP6 are expressed in 

similar amounts in human bone. However, unlike LRP5 polymorphisms, the association of 

genetic variants of LRP6 with bone mass has been rarely studied, and controversial results have 

been reported. Van Meurs et al first published that the nonsynonymous rs2302685 

polymorphism (Ile1062Val) of the LRP6 gene was associated with fragility fractures in men of 

the Rotterdam cohort (6). However, the results were not confirmed in a multicenter study (29) 

and no evidence for association with SNPS in the LRP6 region was found in a meta-analysis of 

data directly obtained or imputed from GWAS results (37). However, Sims et al reported an 

association of genetic variants of LRP6, and specifically rs11054704, with  BMD in 

postmenopausal women (5).  Trying to clarify the possible influence of LRP6 variants on bone 

mass, we performed a gene-wide analysis including tagging LRP6 SNPs in a defined 

population of postmenopausal women. There is no doubt that exploring the association of 

several SNPs with a phenotype inflate type I error (ie, the possibility of false positive 

associations). However, there is no general consensus about the best way to control it without 
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compromising study power, particularly in hypothesis-driven candidate gene studies with 

several SNPs in linkage disequilibrium. Here we used the method proposed by Nyholt, which 

takes into consideration the linkage between the genotyped loci (19). The replication in 

independent cohorts may be the best way to confirm that the results are not just a chance 

finding. In the present study we found an association of LRP6 SNPs with BMD, with some p-

values below the multiple test-adjusted threshold for significance. Furthermore, in the 

replication cohort we found a consistent association of two LRP6 polymorphisms with BMD. 

Thus, our results support the hypothesis that allelic variants of LRP6 are associated with BMD 

in postmenopausal women. 

The non-synonymous polymorphism rs2302865 is located on exon 14 of the LRP6 gene and 

causes an isoleucine/valine change. The rs11054704 polymorphism is located in intron 15, just 

2.1 kb downstream of rs2302865, and both belong to the same haplotypic block. The molecular 

mechanisms involved in the association of these SNPs with BMD remain to be elucidated. 

Nevertheless, according to the Fast SNP bioinformatic tool (http://fastsnp.ibms.sinica.edu.tw), 

the region including rs11054704 may act as an intronic enhancer and there may be allelic 

differences in the binding affinity for some transcription factors (CEBP/ß, CdxA).  On the 

other hand, different rs2302685 alleles not only induce an aminoacid change which may impair 

the activity of LRP6, but they may also have splicing regulatory consequences. Therefore, 

considered together, these results strongly suggest that these polymorphisms, or other linked 

variants located in the same region of the LRP6 gene, are indeed associated with individual 

differences in BMD. Our data suggest that in women with the least frequent homozygous 

genotype BMD is 0.5 standard deviations lower than in those with the most frequent genotype. 

Such a difference is likely to have an important influence at the individual level, but it may be 

less important at the population level, because the risk genotype is present in only 2-3% of 
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women. The explanation for the negative results in other studies is unclear (7; 29), but it might 

be related to differences in the populations studied or to cohort heterogeneity.  

This study has several limitations. We estimated that the number of subjects included in 

Cantabria cohort resulted in 89% power to detect a genetic effect explaining 1% of the BMD 

variance. However, the sample size limited the statistical power to detect smaller effects, 

particularly in the replication cohort, which was relatively small and without enough numbers 

of fractures for replication (only clinical vertebral fractures were recorded because X-rays were 

not routinely obtained). We were not able to demonstrate a parallel association of LRP6 

polymorphisms with fractures, which may be related to the small number of homozygotes for 

the risk allele and the moderate size of our fracture subgroup, which limited the power of the 

study when the minor allele frequencies were small. We do not have anthropometric data of 

patients with hip fractures. Therefore we could not include some potentially important factors, 

such as body weight, as covariates.  

In summary, our data are in line with previously published studies showing an association of  

LRP5 polymorphisms with osteoporotic fractures and strongly suggest that some genetic 

variants of LRP6 are associated with bone mineral density in postmenopausal women, pointing 

towards both Wnt co-receptors as osteoporosis candidate genes. 
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Table 1. Polymorphisms genotyped. 

 

Gene Chrom SNP Position Minor allele Major allele MAF P (HWE)

LRP5 11 rs4988330 67837575 T C 0.08 0.43 

LRP5 11 rs7116604 67841050 A G 0.13 0.83 

LRP5 11 rs312014 67841538 C G 0.39 0.35 

LRP5 11 rs4988331 67841909 T C 0.08 0.65 

LRP5 11 rs4988300 67845407 G T 0.48 0.81 

LRP5 11 rs3781600 67849913 C G 0.11 0.20 

LRP5 11 rs312024 67851007 A G 0.31 0.62 

LRP5 11 rs314779 67854402 G T 0.31 0.35 

LRP5 11 rs606989 67858576 T C 0.09 0.06 

LRP5 11 rs314756 67868248 G A 0.07 1 

LRP5 11 rs3781596 67870578 C G 0.14 0.69 

LRP5 11 rs643981 67872340 T C 0.44 0.88 

LRP5 11 rs312786 67876553 T G 0.29 0.64 

LRP5 11 rs312788 67878871 G T 0.44 0.85 

LRP5 11 rs160607 67886182 A G 0.43 0.73 

LRP5 11 rs11826287 67903237 C T 0.19 0.26 

LRP5 11 rs671191 67906557 C T 0.38 0.02 

LRP5 11 rs4930573 67920032 G C 0.32 0.87 

LRP5 11 rs587397 67923999 G C 0.09 0.65 

LRP5 11 rs4988321 67930765 A G 0.08 1 

LRP5 11 rs2306862 67934086 T C 0.20 0.55 

LRP5 11 rs923346 67938951 C T 0.20 0.60 

LRP5 11 rs1784235 67942076 C T 0.28 0.76 

LRP5 11 rs556442 67949266 G A 0.39 0.47 

LRP5 11 rs12417014 67957583 T C 0.10 0.13 

LRP5 11 rs3781579 67966294 G A 0.16 0.09 

LRP5 11 rs632605 67972530 A G 0.07 1 

LRP6 12 rs2075241 12182746 C G 0.14 0.05 

LRP6 12 rs718403 12188223 T C 0.24 0.43 

LRP6 12 rs11054704 12191036 A G 0.13 0.45 

LRP6 12 rs2302685 12193165 C T 0.16 0.53 
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LRP6 12 rs12833575 12216108 G A 0.06 0.68 

LRP6 12 rs2417085 12222642 C T 0.47 0.42 

LRP6 12 rs10845493 12223463 T C 0.15 0.52 

LRP6 12 rs10082834 12225273 C G 0.11 0.48 

LRP6 12 rs17374170 12255678 C T 0.08 1 

LRP6 12 rs17302049 12256592 G A 0.17 0.81 

LRP6 12 rs1181334 12258855 T G 0.18 1 
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Table 2.  Characteristics of study subjects (mean and SD or percentages).  

Cohort/Phenotype Santander/BMD-
vertebral 
fractures 
(n=608) 

Camargo/BMD-
vertebral 
fractures 
(n=435) 

Hip fractures 
(n=394) 

Valencia/BMD 
(n= 342) 

Age, yr 69±7 64±9 80±7 52±5 

Weight, Kg 66±10 70±12 - 66±10 

Height, cm 155±6 155±6 - 158±6 

BMI, kg/m2 27.6±4.1 28.9±4.8 - 26.5±4.3 

Age at menopause, yr 50±5 49±5 - 48±4 

Vertebral Fractures*, % 36 8 - - 

Arm/forearm fractures, % 11 8.4 16  9  

BMD**, g/cm2 0.671±0.112 0.720±0.117 - 0.804±0.115 

Smoking, % 4 12 3 26 

Calcium intake***, mg/day 659±397 680±358 620±376 - 

*: data from 637 women with x-rays 

**: Hologic DXA in Cantabria and standardized (Lunar or Norland) in Valencia 
*** From dairy products
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Table 3. Association of LRP6 genotypes with BMD in the discovery and replication cohorts 

and combined estimate of effect. P-values for age-adjusted additive models in each cohort and  

standardized weighted mean difference (SWMD) between opposite homozygotes (in standard 

deviation units).  

 

Locus/cohort BMD g/cm2   

rs11054704 AA AG GG 
SWMD 

(GG-AA) 
p 

Cantabria 0.626±0.180 

(19) 

0.681±0.101 

(201) 

0.688±0.117 

(782) 

 0.035 

Valencia 0.757±0.103 

(8) 

0.782±0.108 

(90) 

0.813±0.116 

(222) 

 0.016 

Combined    0.51 0.009 

      

rs2302685 CC CT TT 
SWMD 

(TT-CC) 
p 

Cantabria 0.626±0.154 

(30) 

0.687±0.104 

(254) 

0.687±0.117 

(724) 

 0.058 

Valencia 0.770±0.090 

(13) 

0.788±0.112 

(91) 

0.812±0.119 

(187) 

 0.057 

Combined    0.65 <0.0001 
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Table 4. Association of LRP5 polymorphisms with hip fractures. Odds ratio (OR), limits of the 

95% confidence interval (L95,U95) and p-values for additive models in the unadjusted and 

age-adjusted analysis.   

 

  Undjusted  Age-adjusted 

SNP Allele OR L95 U95 P  OR L95 U95 P

rs4988330 T 0.84 0.59 1.20 0.36  1.02 0.65 1.59 0.91

rs7116604 A 0.90 0.67 1.19 0.47  1.15 0.80 1.64 0.43

rs312014 C 1.01 0.84 1.22 0.86  0.88 0.70 1.11 0.30

rs4988331 T 0.59 0.41 0.85 0.005  0.71 0.46 1.10 0.13

rs4988300 G 1.25 1.04 1.50 0.017  1.12 0.89 1.40 0.32

rs3781600 C 0.98 0.73 1.31 0.91  1.14 0.79 1.64 0.46

rs312024 A 1.16 0.95 1.41 0.13  0.95 0.74 1.21 0.69

rs314779 G 0.90 0.74 1.10 0.31  0.90 0.70 1.14 0.40

rs606989 T 0.89 0.65 1.22 0.48  1.10 0.74 1.61 0.62

rs314756 G 0.87 0.60 1.26 0.49  0.81 0.52 1.27 0.36

rs3781596 C 0.74 0.56 0.97 0.033  0.93 0.66 1.31 0.70

rs643981 T 0.85 0.71 1.02 0.09  0.87 0.69 1.09 0.24

rs312786 T 0.93 0.76 1.14 0.52  0.83 0.65 1.07 0.16

rs312788 G 0.84 0.70 1.02 0.08  0.86 0.69 1.08 0.19

rs160607 A 0.81 0.67 0.97 0.025  0.83 0.67 1.04 0.12

rs11826287 C 0.96 0.76 1.22 0.78  0.90 0.67 1.19 0.47

rs671191 C 0.86 0.71 1.03 0.11  0.91 0.73 1.14 0.43

rs4930573 G 1.00 0.81 1.22 0.99  0.88 0.69 1.13 0.34

rs587397 G 0.84 0.60 1.17 0.31  0.81 0.53 1.22 0.31

rs4988321 A 1.10 0.78 1.56 0.55  1.12 0.73 1.71 0.58

rs2306862 T 1.01 0.80 1.28 0.88  0.93 0.69 1.24 0.62

rs923346 C 1.02 0.80 1.29 0.86  0.94 0.70 1.25 0.68

rs1784235 C 0.97 0.79 1.20 0.84  0.89 0.68 1.15 0.37

rs556442 G 0.94 0.77 1.14 0.54  0.99 0.77 1.26 0.95

rs12417014 T 0.88 0.64 1.21 0.44  0.99 0.66 1.47 0.97

rs3781579 G 0.97 0.76 1.25 0.86  0.96 0.70 1.31 0.81

rs632605 A 0.80 0.56 1.16 0.24  1.03 0.65 1.62 0.89
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FIGURE LEGENDS 
 
Figure 1.-Association of LRP5 polymorphisms with femoral neck BMD. Nominal p-values 

under an age-adjusted recessive model. 
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Figure 2.- Association of LRP6 polymorphisms with femoral neck BMD. Nominal p-values 

under an age-adjusted recessive model. 
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Figure 3.- Association of LRP5 polymorphisms with osteoporotic vertebral fractures (A), 

femoral neck projected area (B) and height (C).  Nominal p-values under an additive age-

adjusted model. 
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