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ABSTRACT 

Objectives.- Secreted frizzled-related protein and sclerostin, encoded by FRZB and SOST 

genes, respectively, are extracellular Wnt inhibitors that tend to decrease bone formation. The 

purpose of this study was to explore the association of sets of polymorphisms capturing 

common variations of these genes with bone mineral density (BMD). 

Methods.- Twelve polymorphic loci of the FRZB gene and 7 of the SOST gene were 

genotyped in postmenopausal women from two Spanish regions (Cantabria, n=1043, and  

Valencia, n=342). The polymorphisms included tagging SNPs and SNPs with possible 

functional consequences assessed in silico. 

Results.-The rs4666865 polymorphism of the FRZB gene was associated with spine BMD in 

the Cantabria cohort in the single-locus (p=0.008) and the haplotypic analysis. However, the 

results were not replicated in the Valencia cohort. Several polymorphisms at the 5´region of 

the SOST gene, and particularly rs851056, were associated with BMD in women from both 

cohorts (p=0.002 in Cantabria and 0.005 in Valencia). When the results of both cohorts were 

combined, the mean BMD difference across rs851056 genotypes was 47 mg/cm2  or 0.31 

standard deviations (p<0.001). No differences in FRZB and SOST expression was detected 

across genotypes. 

Conclusions.- Polymorphisms in the 5’ region of SOST gene are associated with BMD in 

postmenopausal women, and consequently contribute to explain in part the hereditary 

influence on bone mass. 
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INTRODUCTION 

The Wnt pathway has emerged as an important player in skeletal homeostasis. Wnt ligands  

promote the differentiation of mesenchymal precursors towards the osteoblastic lineage and  

have a positive effect on bone formation. On the other hand, they decrease the expression of 

RANKL by osteoblastic cells, which in turn inhibits osteoclast differentiation and bone 

resorption 1-4. Wnt receptors are membrane molecular complexes including LRP5/6 and a 

frizzled protein. A number of  extracellular Wnt inhibitors have been identified. Dickkopf 1 is a 

Wnt inhibitor, encoded by the DKK1 gene, which appears to play an important role in multiple 

myeloma and other skeletal tumours 5. Secreted frizzled-related protein 3 (SFRP3), the 

product of the FRZB gene, is related to membrane frizzled and binds Wnt ligands, thus 

preventing their binding to membrane receptors 6. Sclerostin, the product of the SOST gene, 

appears to interact with LRP5/6, making it unable to bind Wnt’s.  It has been suggested that  

polymorphisms of the genes encoding SFRP3 and sclerostin influence bone mass and the risk 

of skeletal diseases such as osteoarthritis and osteoporosis 7;8. Contradictory results were 

initially reported  regarding their influence on bone mass 9;10, and no evidence for association 

between polymorphisms of these genes and bone mineral density (BMD) was reported in two 

genome-wide association studies (GWAS) 11;12. However, some investigators later reported an  

association of  SOST alleles and BMD  13-15.  Three  markers located 23-57 kb downstream to 

the  SOST gene were also recently found as genome-wide significant quantitative trait loci in 

an extended GWAS in Iceland population 16. Differences in study subjects  and the markers 

selected may explain these contradictory results.  In fact, mixed populations, including men 

and women, pre and postmenopausal, or individuals with extreme BMD values were included 

in previous studies. Therefore, the aim of this study was to try to clarify the possible 

association of allelic variants of the FRZB and SOST genes with BMD in postmenopausal 

women by genotyping sets of SNPs located throughout these genes.  
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MATERIALS AND METHODS 

Subjects.- We studied 1043 postmenopausal women over 50 years of age (mean 66±8) living 

in Cantabria, a region in Northern Spain. They included volunteers recruited by 

advertisements and women sent to our clinic because of osteoporosis concerns.  Women with 

present or past diseases or treatments known to affect bone metabolism, or with non-Spanish 

ancestors (parents and grandparents) were excluded. BMD at the lumbar spine and femoral 

neck was measured by DXA using a Hologic QDR 4500 densitometer. Participants gave 

informed consent and the study was approved by the Clinical Research Ethical Committee of 

the Hospital U.M. Valdecilla. 

Positive results were replicated in a cohort of women attending a menopause clinic in 

Valencia, a region in Eastern Spain. After applying similar exclusion criteria, the cohort 

included 342 Caucasian postmenopausal women (more than 6 months since the last 

menstruation) aged 41-69 years (mean 52).  BMD was measured by DXA using either a DPX 

(GE Lunar Corporation, Madison, WI, USA) or a Norland XR-36 (Norland Medical Systems 

Inc; Fort Atkinson, WI, USA). The results from different densitometers were standardized as 

proposed by Lu and Hui 17;18.  

Genotyping.-  The Hapmap database was explored to identify SNPs of the FRZB and SOST 

regions in the Caucasian population. Then, tag-SNPs were selected using the algorithms 

available in Haploview with  the “aggressive tagging” option 19. Minor allele frequency (MAF) 

of 0.05 and r2 0.8 were used as criteria. In addition, we included two SNPs (rs7775 and 

rs1230395 in FRZB and SOST genes, respectively) with potential functional consequences, 

as assessed by PUPASUITE, a web tool that explores a variety of databases (coding SNPs, 

SNPs disrupting potential transcription factors binding sites, intron/exon boundaries) 20;21. DNA 

was isolated from peripheral blood by using column-based commercial methods and 

quantified with the Qubit procedure (Invitrogen, Carlsbad, CA, USA).   Then alleles at each 

locus were analyzed on a mass-array Sequenom platform at the Centro Nacional de 

Genotipado (Santiago de Compostela, Spain). Polymorphisms associated with BMD in the 
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Cantabria cohort were analyzed in Valencia cohort by using similar procedures for genotyping 

at Unidad Central de Investigación (Facultad de Medicina, Valencia, Spain). 

Gene expression.- Trabecular bone samples were obtained from the central part of the 

femoral heads of 27 patients undergoing hip replacement because of osteoarthritis, as 

previously reported 22. RNA was isolated with Trizol (Invitrogen), and further purified by using 

a column adsorption procedure (Qiagen, Hilden, Germany). Gene expression was analyzed 

by reverse transcription (RT) real-time polymerase chain reaction (PCR). Aliquots of RNA 

(250 ng) were reverse-transcribed with the Superscript III kit (Invitrogen). After RT, a  real-time 

PCR was done in an ABI7300 apparatus (Applied Biosystems, Foster City, CA), using specific 

primers and FAM-labelled probes for FRZB and SOST  (Taqman gene expression assays, 

Applied Biosystems). The results were then normalized to the expression of  the 

housekeeping gene TATA box protein (TBP) as 2-ΔCt, where ΔCt is the difference between 

either the  FRZB or SOST threshold cycle and TBP threshold cycle  23.    

Statistical analysis.- Haplotypic blocks were estimated by the method of Gabriel, implemented 

in Haploview 19. The departure from Hardy-Weinberg equilibrium (HWE) was tested with Plink 

software 24. The association of alleles with BMD was studied at the single-locus level, 

assuming codominant and recessive models, with Plink. The significance threshold after 

multiple test correction for each gene was estimated by considering the effective number of 

independent marker loci, as proposed by Li and Ji, using the single nucleotide spectral 

decomposition software (SNPSpD), developed by Nyholt 25. Haplotypic analyses were 

performed using the sliding window procedure including 3 consecutive SNPs. The presence of 

population stratification was explored with STRUCTURE software, running several datasets of 

5-68 markers 26. Results from different cohorts were combined with MIX software 27.Gene 

expression data, normalized by housekeeping gene expression, were log-transformed and 

compared by t-test.  Association between SNP genotypes and gene expression was also 

explored in silico comparing expression data in immortalized B-lymphocytes, using a database 

from the Sanger Institute GENEVAR project  28  and HapMap project, explored with 

WGAViever software 29. The study power to detect an a polymorphism explaining at least 



 6 

1.5% variance of BMD under an additive model was more than 96% in the discovery cohort 

and more than 60% in the replication cohort (estimates obtained with QUANTO v1.2.3 

(available at available at http://hydra.usc.edu/gxe/). Uncorrected nominal p-values are shown, 

unless otherwise indicated. p-values <0.05 were considered as statistically significant. 

 

 
RESULTS 

Cantabria cohort 

The polymorphisms studied are shown in table 1. Allelic frequencies were similar to those 

reported in the Hapmap database for the Caucasian population. There was no evidence for 

departure from HWE; some SNPs were associated with p-values in the 0.03-0.05 range, well 

above the multiple test significance threshold (see below). The characteristics of women 

included in the study are shown in table 2. 

FRZB 

Lumbar spine.-The rs4666865 polymorphism of the FRZB gene was associated with lumbar 

spine BMD (p=0.008; figure 1), but it did not reach the significance threshold after multiple test 

adjustment, estimated as 0.0051.  The average spine BMD in women with different genotypes 

was: GG, 0.850±0.156; GC, 0.861±0.140; CC, 0.884±0.149 g/cm2. Similar results were 

obtained including age and weight as covariates (not shown). In the multimarker analysis, 

haplotypes including this SNP and two neighbour downstream polymorphisms (rs7775 and 

rs6710705) showed the most significant association with BMD. Among the individual 

haplotypes, the frequent ACC haplotype showed the strongest association and explained 

0.9% of the overall variance in BMD (table 3). Spine BMD was 0.853±0.009, 0.867±0.145, and 

0.900±0.141 g/cm2, in women with 0, 1 and 2 copies of the ACC haplotype, respectively 

(p=0.002). In the haplotype conditional analysis, rs4666865 was independently associated 

with BMD (p=0.004), but rs7775 and rs6710705 were not (p=0.13 and 0.28, respectively). 

Femoral neck.- In the single locus analysis, rs4666865 showed a marginally significant 

association with femoral neck BMD. Average values were 0.678±0.120, 0.681±0.109 and 

http://hydra.usc.edu/gxe/
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0.697±0.121 g/cm2 in women with GG, GC and CC genotypes, respectively (nominal p-

value=0.048). Several haplotypes including the rs4666865 locus were also associated with 

femoral neck BMD. As with spine BMD, the most significant one included rs4666865, rs7775 

and rs6710705 polymorphisms. Femoral neck BMD was 0.677±0.115, 0.683±0.110, and 

0.714±0.0.125 g/cm2, in women with 0, 1 and 2 copies of the ACC haplotype, respectively 

(p=0.0017) (table 3).  

When the association of haplotypic blocks (defined according to the Gabriel method, see 

figure 1) with BMD was studied, similar but slightly less significant results were found (lowest 

p-values were 0.004 and 0.005, for the association of block 2 haplotypes with spine and 

femoral BMD, respectively). 

SOST 

Lumbar spine.- There was an association between several linked polymorphisms in the 5’ 

region of the SOST gene and spine BMD, best fitting a recessive genetic model (figure 2). 

Thus, women homozygotes for the G minor allele at rs851056  had significantly lower BMD 

than women with other genotypes (p=0.0022), in the crude analysis and after adjustment by 

age and weight (not shown). The p-value was below the significance threshold after multiple 

test correction, which was estimated as 0.0085. Furthermore, the haplotype analysis 

confirmed an association with BMD, but it did not increase the statistical significance in 

comparison with the single locus analysis. Thus, the CTT haplotype at loci rs851056, 

rs12346012 and rs1230395 was significantly associated with spine BMD. The average BMD 

values were 0.851±0.147, 0.880±0.150 and 0.873±0.152 g/cm2, in women with 0, 1 and 2 CTT 

copies, respectively (p=0.031, table 4). 

Femoral neck.- There was no evidence for association of either SNPs or haplotypes with 

femoral neck BMD, although rs851056 alleles almost reached nominal statistical significance 

(p=0.06).  

Haplotypic blocks (defined according to the Gabriel method, see figure 2) were not 

significantly associated with either spine or femoral BMD (p>0.07 and >0.10, respectively).   
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Valencia cohort 

The allele frequencies were similar in both cohorts (table 1). In the Valencia cohort we could 

not replicate the association of FRZB polymorphisms with either spine or femoral neck BMD. 

However, the rs851056 polymorphism of the SOST gene was associated with lumbar spine 

BMD (p=0.005).  

The combination of  the results of both cohorts confirmed a significant association of rs851056 

genotypes with BMD, with a weighted mean difference of 47 mg/cm2 (95% confidence interval 

24-70) between women with GG genotypes and those with other genotypes (GC or CC). As 

shown in table 5, the standardized mean weighted difference was 0.31 standard deviations 

(95% CI 0.16-0.46; p<0.0001).  

There was no evidence for association between SOST polymorphisms and femoral neck BMD 

in the single locus analysis (p=0.10 for the rs801056 polymorphism).   

FRZB and SOST expression 

FRZB and SOST transcripts were readily detected in bone samples by RT-qPCR. However, 

no significant association between rs4666865 alleles and FRZB expression was found in 

either bone samples or in the lymphoblastoid cell line database. Likewise. there were no 

significant differences in SOST gene expression across the genotypes of the SOST rs851056 

locus.  

 

 

DISCUSSION 

The binding of Wnt ligands to their membrane receptors activate a number of intracellular 

signals, the best known of which constitute the so-called canonical pathway and involves an 

increase in ß-catenin, which induces the transcription of target genes 30;31. SFRP3, encoded 

by FRZB gene, is usually considered a Wnt antagonist. Nevertheless, it is still unclear whether 

it may promote Wnt actions on target cells under certain conditions 6. Targeting deletion of 

FRZB in mice appears to accelerate osteoarthritis 32, and FRZB polymorphisms, including 

rs7775,  have been associated with large joint osteoarthritis in humans 8;33. In the present 
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study we found an association of rs4666865 and neighbour SNPs, including rs7775, with BMD 

in postmenopausal women from the Cantabria cohort. However, the results could not be 

replicated in the Valencia cohort. Gao et al  recently studied four SNPs of the FRZB gene in 

Chinese families and explored their association with peak BMD. They found some suggestion 

for association of  rs4666865 alleles and lumbar spine BMD in the whole male offspring 

population (p=0.02), but no within-family evidence for association 34. Therefore, the possible 

association of FRZB allelic variants with either peak bone mass or bone loss in later life is still 

unclear. 

Sclerostin, the product of the SOST gene, inhibits Wnt signaling. Its role is emphasized by 

studies showing that the inhibition of sclerostin by means of targeted gene deletion or 

neutralizing antibodies increases bone mass 35;36. Osteocytes are the main source of 

sclerostin in the bone microenvironment, but little is known about the mechanisms regulating 

sclerostin synthesis 37;38. The  human SOST gene has two exons and spans about 5 kb on 

chromosome 17. A 52 kb deletion located in a noncoding region,  approximately 35 kb 

downstream of SOST gene (the Van Buchen region) may act as a gene transcription 

enhancer 9.   

In the present study we found a consistent association of the rs851056 polymorphism, located 

in the 5’ region of the gene, and lumbar spine BMD in two Spanish cohorts. These results are 

consistent with previous reports showing an association of several SNPs in this region with 

BMD 9;13;15;39. Although some negative results have also been reported 10, our data, showing 

an association in two different populations, add further support to the contention that allelic 

variants of the proximal region of the SOST gene are associated with BMD. Some 

investigators also found evidence for association of bone mass with the so-called Van Buchen 

region, located 35-87 downstream of the SOST gene. It was usually reported in studies with 

male individuals 9;39, suggesting that there might be some sex-specific influence.  However, in 

a large GWAS study including both men and women, three SNPs located between 23 kb and 

57 kb 3’ to the SOST gene were also associated with BMD 16.  Therefore, further studies are 
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needed to clarify whether SOST variants show sex-dependent associations with bone mass. 

We did not include Van Buchen region in our study. 

This rs851056 polymorphism is located around 1100 bp upstream of the SOST translation 

start site. Therefore, it can be speculated that its allelic variants influence gene transcription. 

In fact, the Fast SNP bioinformatics tool (http://fastsnp.ibms.sinica.edu.tw/pages 

/input_SNPListAnalysis.jsp) suggested that a putative binding site for c-Myc was lost in G 

alleles. We found no genotype-related differences in the abundance of RNA transcripts in a 

lymphoblastoid cell  expression database. However, the relevance of  those non-skeletal data 

is questionable. In studies of SOST expression in bone samples, we did not find differences 

across genotypes either. These data may be more relevant, but, given the relatively small 

number of samples studied, they should be interpreted with caution. It is also possible that 

rs801056 is linked to other polymorphisms which are the actual regulatory loci.  

This study has several limitations. First, it included only Caucasian women and therefore it is 

unclear if the results can be extrapolated to women from a different ethnicity or to men. 

Second, the size of the replication cohort was small. It is also worth to mention that women in 

the replication cohort were younger than in the discovery cohort. Therefore, the lack of 

replication of the association of FRZB polymorphisms may reflect a chance association in the 

discovery cohort, but it might also be the consequence of the limited statistical power for 

replication. Alternatively, if FRZB variants influence postmenopausal bone loss, rather than 

peak bone mass, genotypic differences in BMD might be more evident in women with longer 

duration of menopause. The study design was cross-sectional, clinic and volunteer-based, not 

population based. Therefore, although we tried to avoid potential biases,  some may remain. 

For instance, individuals with musculoskeletal complaints are likely to be over-represented. 

We excluded women with diseases or treatments known to have a powerful influence on bone 

mass, which may confound the genetic influence. We also excluded women with severe 

osteoarthritis, but we did not control for subtle skeletal degenerative changes. Therefore, 

since we found a stronger association of FRZB and SOST polymorphisms with spine BMD 

than with femoral BMD, it could be questioned whether the associations were actually the 

http://fastsnp.ibms.sinica.edu.tw/pages%20/input_SNPListAnalysis.jsp
http://fastsnp.ibms.sinica.edu.tw/pages%20/input_SNPListAnalysis.jsp
http://fastsnp.ibms.sinica.edu.tw/pages%20/input_SNPListAnalysis.jsp
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consequence of a genetic influence on spine osteoarthritis, particularly for FRZB 

polymorphisms, which have been previously associated with large-joint osteoarthritis 8.  

Further studies with a prospective design are needed to clarify this issue, because 

osteoarthritis may spuriously influence BMD measurements, but, on the other hand, a true 

association between bone mass and osteoarthritis has also been suggested 40.  

In summary, this study confirms that polymorphisms in the 5’ region of SOST gene are 

associated with BMD in postmenopausal women. The molecular mechanisms involved remain 

to be elucidated. We also found an association of some  FRZB polymorphisms with BMD, but 

it could not be replicated in an independent cohort. Therefore, its actual biological relevance is 

uncertain. 
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FIGURE LEGENDS 
 
Figure 1.  Association of  FRZB polymorphisms with lumbar spine and femoral neck BMD 

(Cantabria cohort). In the lower part, the haplotypic structure is shown. 

 

Figure 2.  Association of  SOST polymorphisms with lumbar spine and femoral neck BMD 

(Cantabria cohort). In the lower part, the haplotypic structure is shown. 



Table 1. Polymorphisms studied 
 

Chr SNP Gene Position Location 
Minor 
alelle 

Major 
allele 

p-HWE 
(Cantabria) 

p-HWE 
(Valencia) 

MAF 
(Cantabria) 

MAF 
(Valencia) 

2 rs288316 FRZB 183403694 Intergenic A G 0.49  0.22  - 

2 rs17265803 FRZB 183404764 Intergenic C T 0.34  0.08  - 

2 rs4666865 FRZB 183406336 3’ G A 0.50 0.59 0.41 0.39 

2 rs7775 FRZB 183407829 Exon 6 

(Gly/Arg) 

G C 0.64 0.71 0.11 0.11 

2 rs6710705 FRZB 183408338 Intron 5 T C 0.14 0.13 0.08 0.08 

2 rs288324 FRZB 183409833 Intron 5 A G 0.54  0.48  - 

2 rs288326 FRZB 183411581 

Exon 4 

(Trp/Arg) A G 
0.04  

0.14  - 

2 rs7602601 FRZB 183431211 Intron 2 C T 0.52  0.15  - 

2 rs6433993 FRZB 183432193 Intron 1 G A 0.18  0.30  - 

2 rs7592998 FRZB 183432783 Intron 1 C T 0.17  0.06  - 

2 rs13026760 FRZB 183434958 Intron 1 C T 0.04  0.47  - 

2 rs12469777 FRZB 183440609 Intergenic C T 0.78  0.45  - 

17 rs17610444 SOST 39181383 Intergenic C T 0.04  0.04  - 

17 rs865429 SOST 39190741 Intron 1 C T 0.99  0.12  - 

17 rs17882143 SOST 39191608 Exon 1 

(Ile/Val) 

A G 0.11  0.03 - 

17 rs851054 SOST 39192149 5’ G A 0.73  0.38  - 

17 rs851056 SOST 39192708 5’ G C 0.96 0.24 0.38 0.38 

17 rs1234612 SOST 39196328 Intergenic C T 0.06 0.55 0.32 0.32 

17 rs1230395 SOST 39198463 Intergenic C T 0.03 0.99 0.08 0.07 

 
MAF: minor allele frequency 

Tables 1-5



Table 2. Characteristics of women included in the study (mean±SD) 
 

 Cantabria Valencia 

Age, yr 66±8 52±5  

BMI, kg/m2 27.9±4.3 26.5±14.3 

Years since menopause 16±10 4±4 

Spine BMD, T-score -1.7±1.3 -1.1±1.4 

Spine BMD, Z-score -0.1±1.4 -0.2 ±1.2 

Femur BMD, T-score -1.5±1.2 -0.9±1.0 

Femur BMD, Z-score 0.2±1.1 -0.1±1.0 



Table 3. Association of haplotypes of the FRZB  gene (rs466865-rs7775-rs6710705 

loci) with spine and femoral BMD 

 
 
 

Haplotype Frequency 
 % 

p-value 
Spine 

p-value 
Femoral neck 

GCT 1.5 0.71 0.72 

ACT 6.2 0.72 0.41 

AGC 11.3 0.76 0.26 

GCC 39.3 0.0058 0.053 

ACC 41.7 0.0021 0.0017 

 
 



 
Table 4. Association of haplotypes of the SOST gene (rs851056-rs1234612-

rs1230395) with spine and femoral BMD 
 

Haplotype Frequency 
% 

p-value 
Spine 

p-value 
Femoral neck 

GCC 7.6 0.72 0.28 

CCT 24.3 0.26 0.18 

GTT 30.3 0.34 0.14 

CTT 37.8 0.031 0.034 

 
 
 



 
 
Table 5. Lumbar spine BMD according to rs851056 (SOST) genotypes in both cohorts. 

Mean±SD [n] and standardized weighted difference (SWD, SD units and confidence 

interval). 

 

Cohort CC CT/TT SWD p 

 
Cantabria 

 
0.899±0.153 (157) 

 
0.940±0.152 (823) 

 
0.27 

(0.09-0.44) 

 
0.002 

 
Valencia 

 
0.946±0.159 (48) 

 
1.023±0.140 (273) 

 
0.46 

(0.15-0.77) 

 
0.005 

 
Combined  

  
0.31 

(0.16-0.46) 

 
<0.001 
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