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Recurrent chromosomal gains and heterogeneous
driver mutations characterise papillary renal cancer
evolution
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Papillary renal cell carcinoma (pRCC) is an important subtype of kidney cancer with a problematic

pathological classification and highly variable clinical behaviour. Here we sequence the genomes or exomes

of 31 pRCCs, and in four tumours, multi-region sequencing is undertaken. We identify BAP1, SETD2, ARID2

and Nrf2 pathway genes (KEAP1, NHE2L2 and CUL3) as probable drivers, together with at least eight other

possible drivers. However, only B10% of tumours harbour detectable pathogenic changes in any one driver

gene, and where present, the mutations are often predicted to be present within cancer sub-clones. We

specifically detect parallel evolution of multiple SETD2 mutations within different sub-regions of the same

tumour. By contrast, large copy number gains of chromosomes 7, 12, 16 and 17 are usually early, monoclonal

changes in pRCC evolution. The predominance of large copy number variants as the major drivers for pRCC

highlights an unusual mode of tumorigenesis that may challenge precision medicine approaches.
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P
rimary renal cell cancer (RCC) constitutes about 2% of the
cancers in western populations and tumours show a wide
range of clinical behaviours. The most common type of

RCC has a clear cell morphology (ccRCC) and usually arises
owing to mutations in the VHL tumour suppressor gene1. Several
other ccRCC driver mutations have been identified2. Papillary
RCC (pRCC) is the second most common morphological type
and germline MET, FH and, occasionally, FLCN mutations
predispose to pRCCs. These mutations respectively cause the
Mendelian conditions of hereditary pRCC3, hereditary
leiomyomatosis and RCC4, and Birt-Hogg-Dubé syndrome5.
Somatic MET mutations occur in a small proportion of sporadic
pRCCs and a greater number show somatic copy number gains
involving the MET locus on chromosome 7q3. Rarer RCC
subtypes include collecting duct carcinoma, oncocytoma and
chromophobe carcinoma. The genetic basis of these less common
lesions is complex, and includes germline FLCN mutations in
some cases.

RCCs resulting from high-penetrance germline mutations are
frequently multi-focal, but up to 20% of apparently sporadic
RCCs also have several discrete nodules in one or both kidneys.
Clonality analysis of multiple nodules from sporadic ccRCCs has
historically used microsatellite-based loss of heterozygosity
(LOH), and these analyses have mostly concluded that ccRCCs
are monoclonal. Other analyses of multi-focal, sporadic pRCCs
have, by contrast, shown polyclonal origins of each nodule6–8.
Recent studies based on next-generation sequencing have largely
resolved the issue of ccRCC clonality, showing a common
initiating VHL mutation, followed by divergence as different
subsequent driver mutations are acquired and selected9. However,
no comparable analysis of multi-focal pRCCs has previously been
performed, and it remains possible that the nodules of these
pRCCs have truly independent (epi)genetic origins.

pRCCs comprise about 10–15% or all RCCs and are thought to
develop from the proximal or distal convoluted tubule10. They are
sub-divided into two histological types. Type 1 lesions typically
contain small cuboidal cells and thin papillae, with small, uniform
nuclei and basophilic cytoplasm. Type 2 tumours have larger cells
with eosinophilic cytoplasm and pseudostratification. However,
mixed tumours are relatively common, and the classification is
challenging and hence not universally adopted. Several studies
have identified recurrent chromosomal copy number changes in
pRCCs, the most consistent being gain of chromosome 7, 12, 16,
17 and 20, and loss of 6q and X11–17. Type 1 and 2 cancers have
been reported as having different copy number profiles, but the
data vary considerably among studies, perhaps as a result of
inconsistencies in morphological assignment. In contrast to
ccRCC18, relatively little is known about the mutations that
drive pRCC growth and the clonality of copy number events and
single-nucleotide variants (SNVs), apart from the small minority
of cancers with changes in MET and FH.

In this study, we aim to search for driver mutations and
recurrent copy number events and decipher the evolutionary
landscape of pRCC, by inferring clonality from both single- and
multi-region sampling strategies. We find driver mutations in
BAP1, SETD2, ARID2 and Nrf2 pathway genes that frequently
occur within sub-clones, and recurrent, large-scale copy number
changes that are usually present in major clones.

Results
Overview of the pRCC exome. Our discovery set comprised 31
pRCCs and paired normal tissue or peripheral blood (Table 1).
Three tumours were separate foci from case GK116; these
appeared to be grossly distinct lesions and were regarded as such
for sequence analysis. All tumours were therapy naive, with the
exception of patient RK36 who had been treated with

sunitinib before cancer resection. Twenty of our pRCCs had type
2 morphology, the remaining 11 having type 1 morphology or
mixed features.

Nineteen tumours (P01-07, P16-23, GK116_2, GK116_3,
GK102 and RK133) underwent Agilent SureSelect or Illumina
TruSeq exome capture, followed by sequencing on the Illumina
HiSeq platform at median 110� depth (cross-sample range
27–372� ). A further four cancers (GK101, GK116_1, RK30 and
RK36) underwent multi-region sampling, SureSelect exome
capture and Illumina HiSeq sequencing, but the sequence data
from the multiple regions of these tumours were combined for
our initial analyses, resulting in median 173� read depth (cross-
sample range 131–240� ). The remaining eight pRCCs (P08-15)
underwent whole-genome sequencing using the Complete
Genomics platform19. Further details of basic sequencing
performance parameters and technical validation are given in
the Supplementary Methods.

The exonic SNV spectrum for each cancer is shown in Fig. 1
and Supplementary Table 1. C:G4T:A changes were the most
common, followed by T:A4C:G, C:G4A:T and C:G4G:C
changes. Seven cancers showed significant deviation (qweighted

o0.05) from the global mutation spectrum (Supplementary
Table 1). The outlying cancers tended to have higher mutation
burdens, suggesting a specific genomic instability or mutagen
exposure. Of the four most extreme cancers, two (GK102, P17)
had a large proportion of C:G4T:A changes, one (P07) tended to
acquire C:G4A:T changes and another (RK30) had mostly
T:A4G:C changes. In no case did we identify a specific cause of
genome instability, such as a mutant DNA repair gene, and no
examples of kataegis were found. The genome-wide SNV
mutation spectra for the Complete Genomics samples closely
resembled those of the samples with exome sequence data.

Mutation signatures based on 95 otherwise unpublished TCGA
pRCC exomes have been reported by Alexandrov et al20 who
identified signature 5, and to a lesser extent 2 (‘APOBEC’),
as prevalent. Signature 5 is characterized by a small excess of C4T
and T4C changes of uncertain aetiology with no clear trinucleotide
context bias. With the exception of the relatively hypermutant
cancers highlighted above, most of our pRCCs’ mutation spectra
were consistent with signature 5 (Supplementary Data 1). Signature
2 is characterized by C4T and C4G changes, especially when the
preceding base is T, but none of our cancers clearly had this
signature. Cancer P12 was notable, in that it did not have a high
mutation burden, but had a broad excess of C4T changes,
especially when the following base was A or G.

Twenty-three cancers were analysed for copy number changes
and LOH using Affymetrix single-nucleotide polymorphism
(SNP) arrays. Large somatic copy number changes (430%
chromosome arm) were present in 18/23 genomes (Table 1), with
a total of 105 changes (median¼ 5 and range 0–12). There was
evidence of bimodality in the number of large somatic copy
number alterations (SCNAs) (Supplementary Fig. 2). SCNA
burden did not correlate with any of the global SNV metrics
(details not shown). Gain of copy number was about twice as
frequent as deletions and copy-neutral LOH was uncommon.
We examined chromosomes for profound, complex rearrange-
ments suggestive of chromothripsis21 or chromoplexy22. Two of
the 23 cancers (P09 and P23) showed such rearrangement
(Supplementary Fig. 3) on three and one chromosomes,
respectively. Notably, in both cases, chromosome 2 was
involved and the patterns of rearrangements on this
chromosome were remarkably similar between the two cancers.

Identification of pRCC driver genes. We initially investigated all
31 cancers and paired constitutional DNA for mutations in the
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Mendelian pRCC genes MET, FH and FLCN (Supplementary
Table 2). Patient P11 carried the germline FH variant
c.1189G4A (p.Gly397Arg) and the tumour showed copy-neutral
LOH around FH. Functional prediction programmes and the FH
mutation database reported this variant as likely to be pathogenic
(http://chromium.liacs.nl/lovd_sdh/variants.php?action=search_
unique&select_db=FH). No somatic FH mutations were found.
Three germline MET variants of uncertain significance were
found (Supplementary Table 2). Tumour RK36 had acquired a
somatic MET mutation, c.G799A (p.Glu267Lys; Table 2) that has
strong predicted functional effects and lies next to a residue
recurrently mutated in human cancer, but has not itself been
reported as mutated (http://cancer.sanger.ac.uk/cosmic/gene/
overview?ln=MET). No germline FLCN mutations were present,
although the cancer of patient P15 carried a somatic, protein-
truncating mutation (c.1568_1569insG, p.Lys523fs) in the last
exon of FLCN (Table 2). This mutation was not accompanied
by LOH.

For discovery of somatic pRCC driver mutations, we examined
somatic mutation calls from the 31 cancers with exome- and
genome-sequence data, and restricted our analysis to protein-
coding regions. A minimum variant allele frequency of 0.05

was set. We then prioritized genes for further investigation by
filtering out somatic mutations to exclude all SNVs with benign
predicted functional effects (SIFT score40.3 and Polyphen2
scoreo0.7). All protein-truncating and splice-site mutations were
retained. We identified genes that were somatically mutated in
three or more cancers and inspected all mutant sequencing reads
in the Integrated Genome Viewer to exclude any mutations at
sites of evidently poor sequencing quality. Twelve genes (SETD2,
BAP1, TRIO, RADIL, AKAP9, PLEC, CUBN, ARID2, CCDC168,
CNOT1, TRIM37 and MED13) remained after this filtering
process (Table 2; Fig. 2).

We chose three genes—SETD2, BAP1 and ARID2—for
replication testing on the basis of their known or potential
functional roles and the presence of at least one protein-
truncating mutation. SETD2 and BAP1 both lie on the short
arm of chromosome 3, undergo copy-neutral LOH or deletion
(Fig. 2) and are driver genes for ccRCC and other cancer types.
SETD2 is a histone methyltransferase and BAP1 is a deubiqui-
tinase involved in the control of polycomb repressors18,23. ARID2
is a subunit of the PBAF chromatin-remodelling complex, has
been reported as a potential driver gene in hepatocellular
carcinoma24 and is functionally related to other cancer genes

Table 1 | Clinicopathological data and summary mutation data for each pRCC.

ID Age Sex Stage Type Grade Sequencing
modality

M-seq Exome
coverage
430�

SNV
no.

dN/
dS

Ts:Tv Chromosomal
gains

Chromosomal
deletions

Total
chromosomal

changes

P01 38 M T1bN2Mx 1/2/
CDC

3 1 94.0% 45 1.72 0.78 1q, 2p, 17q 3p, 6q, 11q, 13q,
14q, 21q

9

P02 85 F T3aN2MX 2 3 1 93.5% 57 2.36 0.82 1q, 2, 6p, 7,
12p, 13q, 16q,
17q, 18p, 19q

3p, 17p, 18q 12

P03 86 F T1bNXMX 2 2 1 93.3% 44 1.98 1.08 7, 8, 16, 17, 20 X 6
P04 55 M T3bN2MX 1/2 3 1 82.4% 55 1.75 1.89 — — 0
P05 57 M T1aNXMX 2 2 1 93.3% 2 0.50 1.00 7, 16, 17, 21q 9p, X 6
P06 62 M T1aN0M0 2 3 1 94.9% 87 2.67 0.58 3q, 7, 12, 16, 17 X 6
P07 38 F T1aN0M0 2 2 1 93.8% 185 1.87 0.24 — — 0
P08 72 M T3aNXMX 1/2 3 2 83.1% 30 3.00 1.69 7, 16p — 2
P09 75 M T1aN0MX 2 3 2 78.7% 79 3.95 1.06 2q 1p, 2p, 2q, 3p,

3q, 4q, 6p, 7q,
9, 18, 20p

12

P10 63 F T2N0MX 1/2 3 2 82.8% 77 2.19 0.94 2, 3, 5, 7, 12,
16, 17

— 7

P11 30 F T1aN0MX 2 3 2 81.7% 63 3.68 1.32 — 14q, 21q, 22q 3
P12 44 F T2NXMX 2 3 2 84.3% 46 1.28 2.15 — — 0
P13 76 M T2NXMX 2 3 2 78.2% 94 2.56 0.89 12, 16, 17 — 3
P14 62 M T2NXMX 2 3 2 85.6% 71 1.98 0.97 7, 16, 17, 20 X 5
P15 57 F T1aNXMX 2 3 2 77.3% 83 2.56 0.66 16, 17q — 2
P16 48 M T1aNXMX 2 1 3 90.5% 42 3.46 1.27 7, 16, 17 — 3
P17 44 F 2 3 3 91.2% 243 1.68 1.77 2q, 5, 7, 12, 16,

17
3p 7

P18 46 F T1NXMX 2 2 3 89.1% 64 4.22 1.04 — — 0
P19 60 M T1NXMX 2 2 3 85.7% 5 0.63 1.12 7 — 1
P20 63 M T1aNXMX 2 3 3 87.3% 77 3.20 0.72 17 — 1
P21 87 F T2NXMX 2 2 3 89.9% 100 2.46 0.71 3, 8, 12, 16 3p, 9, 11, 18, 22 9
P22 76 M T3bNXMX 1/2 2 3 84.9% 75 2.90 0.95 7, 12, 17, 20 3, 18 5
P23 80 M T3bN0MX 2 3 3 90.0% 95 3.32 0.90 1q, 9, 16p, 17q 2p, 2q 6
RK30 38 F T1bN0M0 1 2 3 Yes 90.3% 199 3.13 0.21 7, 16, 17 1p, 19, 22 6
RK36 69 F T3aN2M1 1 3 3 Yes 85.9% 23 1.67 0.37 Complex Complex Complex
GK101 59 M T3aN0M0 2 4 3 Yes 89.6% 90 3.51 0.67 12 9, 14, 22 4
GK102 20 F T1bN0M0 1 3 84.6% 132 1.62 1.59 Complex Complex Complex
GK116_1 59 M T1bN0M0 1 3 Yes 93.7% 58 5.92 1.02 7, 12, 17 22 4
GK116_2 59 M T1bN0M0 1 3 92.0% 72 3.35 1.49 2, 3, 7, 12, 16,

17
21 7

GK116_3 59 M T1bN0M0 1 3 92.4% 55 1.57 1.25 7, 12, 17 18 4
RK133 68 M T2aN0M0 2 2 3 90.0% 69 2.50 0.59 7, 16, 17 3

CDC, collecting duct cancer features; F, female; grade, Fuhrman grade; ID, cancer ID; M, male; pRCC, papillary renal cell carcinoma; SNVs, single-nucleotide variants.
Basic demographic, clinical and histopathological data are shown. Age¼ age at presentation. . Stage denotes TNM classification. Type denotes morphological type 1 or 2; cancers with mixed features or
disagreement between pathologists are shown with ‘þ ’. The sequencing modality is: 1, Agilent or Illumina exon capture with sequencing in Oxford; 2, Complete Genomics whole-genome sequencing; 3,
Illumina exon capture and sequencing in London. M-seq denotes a tumour for which multi-region sequencing was performed; in subsequent data, for the multi-region cancers, only the region with the
highest mutation burden is displayed to provide a valid comparison with the other tumours. Coverage 430� ¼ proportion of the exome covered at 430� read depth. SNV number denotes number of
high-quality, exonic somatic SNVs. dN/dS denotes ratio of non-synonymous to synonymous somatic exonic mutations. Ts:Tv denotes ratio of somatic exonic transitions to transversions. Chromosomal
gains and Chromosomal deletions denote large chromosomal SCNAs involving 430% of any chromosome arm from SNP array data. For completeness, similar large SCNAs from exome sequencing are
also shown for the eight cancers without SNP array data, but only if a whole-chromosome arm was involved. For two cancers, RK36 and GK102, a very complex picture was found, perhaps owing to
polyclonality. Total number of chromosomal changes is also shown. ‘—’ denotes not found. Blank cells denote data not obtained. Further data are in Supplementary Fig. 4.
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including ARID1A. Following independent confirmation of the
SETD2, BAP1 and ARID2 mutations in our discovery phase
samples using Sanger or Ion Torrent sequencing, we screened a
replication set of 60 archival pRCCs for mutations in these genes
(Supplementary Table 3), resulting in an additional five BAP1,
three SETD2, and three ARID2 mutations. Most of these
mutations had good evidence of being pathogenic, based on
prediction programs, conservation, presence of deletion/LOH,
mutation reports in other cancer types and previous functional
studies. Further details of the functional annotation of the BAP1,
SETD2 and ARID2 mutations, together with additional
information on our search for new driver mutations, are given
in Supplementary Table 4.

Since there was pre-existing functional evidence for the
importance of the stress response mediator Nrf2 in the
pathogenesis of pRCCs25,26 and a small independent study (five
pRCC exomes) had provided limited support for this notion27, we
performed a focussed examination of three members of the Nrf2
pathway for somatic mutations: NFE2L2, which encodes Nrf2;
CUL3, an Nrf2 ubiquitin ligase; and KEAP1, the Nrf2-specific
ubiquitin ligase adaptor. We found KEAP1 mutations in two
cancers (Table 2). One tumour (P13) had acquired a frameshift
change and another (RK133) carried a somatic SNV,
p.Arg320Gly, of probable pathogenicity (SIFT¼ 0.03 and
Polyphen2¼ 0.99) at an evolutionarily residue that is
recurrently mutated in lung cancers (http://cancer.sanger.ac.
uk/cosmic/gene/analysis?ln=KEAP1; http://www.cbioportal.org/
public-portal/cross_cancer.do?cancer_study_id=all&data_priority=
1&case_ids=&gene_set_choice=user-defined-list&gene_list=NFE2L
2%0D%0AKEAP1&clinical_param_selection=null&tab_index=tab_
visualize&Action=Submit#crosscancer/overview/1/NFE2L2%20KE
AP1). A protein-truncating CUL3 mutation was found in one
cancer (P16). Missense NFE2L2 mutations of predicted
functionality p.Asp77Ala (SIFT¼ 0.15 and Polyphen2¼ 1.00)
and p.Leu30Phe (SIFT¼ 0.00 and Polyphen2¼ 1.00) were
present in tumours P20 and RK133, respectively (Table 2); both
these specific changes were at evolutionarily conserved sites and
had been reported previously as very probably pathogenic in lung

carcinomas (http://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=
NFE2L2; http://www.cbioportal.org/public-portal/cross_cancer.
do?cancer_study_id=all&data_priority=1&case_ids=&gene_set_
choice=user-defined-list&gene_list=KEAP1%0D%0ANFE2L2&
clinical_param_selection=null&tab_index=tab_visualize&Action=
Submit#crosscancer/overview/1/KEAP1%20NFE2L2).

We then examined publicly available TCGA pRCC data
(https://tcga-data.nci.nih.gov/tcga/tcgaCancerDetails.jsp?disease-
Type=KIRP&diseaseName=Kidney%20renal%20papillary%20cell
%20carcinoma) for somatic SNVs in our 20 candidate pRCC
drivers (Fig. 2), using the Intogen28 and MutSigCV29 programs
to identify significantly mutated genes (Supplementary Table 5).
This analysis confirmed SETD2, BAP1, NFE2L2 and CUL3 as
drivers, with a more modest degree of support for some other
genes, including MET, ARID1A, ARID2 and, interestingly, TRIO.
Of note, no gene predicted by Intogen to be a driver at q¼ 0.05
was mutated in 410% of all TCGA samples, confirming our
finding that high-frequency driver SNVs are not present in
pRCC.

Structural and copy number mutation analysis. Global SCNA
data are summarized in Supplementary Fig. 4. The most common
changes were gains involving chromosomes 17q (N¼ 14), 7
(N¼ 11), 16 (N¼ 10) and 12 (N¼ 7). These changes tended to
co-occur (P¼ 0.026, exact binomial test). It has been plausibly
suggested that gain of chr7 in pRCC targets MET30,31, and in the
23 pRCCs with SNP array data, we examined SCNAs for evidence
that specific genes were targeted. However, in our cancers, chr7
gain always involved the whole chromosome. Similarly, all the
gains of chromosomes 12, 16 and 17 involved large regions
(minimal regions shown in Supplementary Table 6).

Large deletions were about half as common as gains, the most
frequent involving chromosomes 3p (N¼ 5), 18 (N¼ 4) and X
(N¼ 4). The 3p deletion region usually encompassed the whole-
chromosome arm, although two cancers had smaller regions of
change that involved the BAP1 and SETD2 loci but excluded VHL
(see below). While deletions, and occasional copy-neutral LOH,
of chromosome 3p usually involved all or most of the whole-
chromosome arm, in a few cases, smaller changes occurred and
these clearly targeted the region around the SETD2 and BAP1 loci
(Fig. 2; Supplementary Table 4). One cancer, P17, had acquired
two small regions of deletion, one around SETD2 and the other
around BAP1, although we did not detect pathogenic SNVs of
either gene in this tumour (Supplementary Fig. 5).

We then searched for small (o1 Mb), focal SCNAs genome
wide that might represent oncogene amplification or tumour
suppressor deletion. After filtering for germline segmental
duplications, 12 such regions were found (Supplementary
Table 7), although none was recurrent. However, one of the
focal SCNAs involved a gene with strong a priori importance in
cancer, this being a deletion of B1 Mb around CDKN2A in
tumour P02.

In the eight cancers with whole-genome sequence data, we
annotated and investigated the structural variants that were
identified by the Complete Genomics pipeline based on the
presence of split sequencing reads between or within chromo-
somes. Medians of 81 (range 65–564) intrachromosomal changes
and 14 (range 7–127) interchromosomal changes were found per
cancer. There was a strong correlation between the numbers of
intra- and interchromosomal changes in each cancer (linear
regression, Po0.00001). Although some known fragile site
changes were detected (for example, WWOX and FHIT), no
recurrent or clearly pathogenic fusion genes, intra-gene deletions
or translocations were present (Supplementary Data 1). Specifi-
cally, none of the TFE3 translocations previously reported in
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pRCC32 was detected. One outlying cancer (P09) had a very large
number (N¼ 691) of structural changes. Comparison with our
SNP array data showed that this excess was accounted for by the
changes on chromosomes 2, 4 and 6 that we had identified above
as having chromothripsis-like events (Supplementary Fig. 3).
On chromosome 2, the sequence data showed the gross
rearrangements almost all to be intrachromosomal, resulting in
segmental disorder and multiple copy number changes. By
contrast, the rearrangements on chromosomes 4 and 6 were
driven by reciprocal interchromosomal exchanges, suggesting
chromoplexy (Supplementary Fig. 6).

A further large-scale mutation of interest was identified from
a split read in the Complete Genomics data between
chr1:27,080,702 (intron 16 of ARID1A) and chr1: 109,834,252
(close to MYBPHL) in cancer P13. This change was confirmed
using the SNP array data to comprise a deletion from the short-
arm telomere to a site within intron 4 of ARID1A (Supplementary
Fig. 7). There was an accompanying structural change, predicted
from split reads (Supplementary Data 1) to be a pericentric
inversion, with the short-arm break point at the ARID1A intron 4
site and the long-arm break point at a small B1.5 kb region of
copy number gain close to MYBPHL. This change deletes the 50

Table 2 | Putative somatic driver mutations.

Chr Start Ref Alt Mutation type Sample ID Gene DNA change Protein change

2 178,098,815 T G Non-synonymous SNV P20 NFE2L2 c.230A4C p.D77A
2 178,098,957 G A Non-synonymous SNV RK133 NFE2L2 c.C40T p.L30F
2 225,368,499 AT — Frameshift deletion P16 CUL3 c.1246_1247del p.416_416del
3 47,098,445 G A Stopgain SNV RK36 SETD2 c.C6829T p.Q2277X
3 47,125,708 C del52bp Frameshift deletion P21 SETD2 c.5562insCAAGCCdel58bp p.P1854fs
3 47,142,964 G A Stopgain SNV RK36 SETD2 c.C4999T p.Q1667X
3 47,163,755 A G Non-synonymous SNV GK116_2 SETD2 c.T2371C p.S791P
3 47,165,490 GGCC — Frameshift deletion RK36 SETD2 c.636_639delGGCC p.V212fs
3 52,437,911 C T Splicing GK102 BAP1 c.1251-1G4A splicing
3 52,441,217 C T Non-synonymous SNV P21 BAP1 c.553G4A p.G185R
3 52,442,082 G — Frameshift deletion P02 BAP1 c.267delC p.N89fs
5 14,368,959 G A Non-synonymous SNV RK36 TRIO c.G3017A p.R1006H
5 14,401,132 G A Nons-ynonymous SNV P18 TRIO c.4675G4A p.V1559M
5 14,488,232 T C Non-synonymous SNV RK36 TRIO c.T7495C p.S2499P
5 14,498,309 G A Non-synonymous SNV GK116_3 TRIO c.G8159A p.G2720D
7 4,839,909 — G Frameshift insertion P15 RADIL c.2875_2876insC p.P959fs
7 4,855,034 C A Non-synonymous SNV P11 RADIL c.2014G4T p.A672S
7 4,855,997 G A Non-synonymous SNV P20 RADIL c.1828C4T p.R610C
7 91,630,828 C G Non-synonymous SNV GK101 AKAP9 c.C1597G p.L533V
7 91,631,082 — T Frameshift insertion P12 AKAP9 c.1851_1852insT p.S617fs
7 91,712,923 A G Non-synonymous SNV P17 AKAP9 c.8576A4G p.E2859G
7 116,339,937 G A Non-synonymous SNV RK36 MET c.G799A p.E267K
8 144,990,455 C T Non-synonymous SNV P11 PLEC c.13438G4A p.G4480S
8 144,992,402 G A Non-synonymous SNV P07 PLEC c.11491C4T p.R3831W
8 145,000,007 C A Stopgain SNV P10 PLEC c.3994G4T p.E1332X
8 145,006,606 G A Non-synonymous SNV P13 PLEC c.1843C4T p.R615C
10 17,089,584 — A Frameshift insertion P10 CUBN c.3158_3159insT p.T1053fs
10 17,110,636 C T Non-synonymous SNV RK30 CUBN c.G2759A p.G920D
10 17,113,514 T C Non-synonymous SNV P23 CUBN c.2536A4G p.I846V
10 17,165,680 G T Non-synonymous SNV RK30 CUBN c.C396A p.D132E
12 46,243,511 — A Frameshift insertion P11 ARID2 c.1864_1865insA p.V622fs
12 46,244,150 TA GTAC Frameshift substitution P15 ARID2 c.2244_2245GTAC p.S748fs
12 46,287,469 A — Frameshift deletion P01 ARID2 c.5328delA p.L1776fs
13 103,388,350 C A Non-synonymous SNV P03 CCDC168 c.14697G4T p.R4899S
13 103,395,330 C G Non-synonymous SNV GK102 CCDC168 c.G7717C p.E2573Q
13 103,395,332 A — Frameshift deletion GK102 CCDC168 c.7715delT p.I2572fs
13 103,395,338 A T Non-synonymous SNV GK102 CCDC168 c.T7709A p.V2570E
13 103,400,929 TT — Frameshift deletion P10 CCDC168 c.2117_2118del p.706_706del
16 58,554,883 CAT — Non-frameshift deletion P06 CNOT1 c.7108_7110del p.2370_2370del
16 58,577,328 — A Frameshift insertion P11 CNOT1 c.4617_4618insT p.C1539fs
16 58,610,470 A — Frameshift deletion P10 CNOT1 c.1601delT p.I534fs
17 17,117,141 — C Frameshift insertion P15 FLCN c.1568_1569insG p.K523fs
17 57,093,106 ATCAA — Frameshift deletion P16 TRIM37 c.2437_2441del p.813_814del
17 57,134,346 A — Frameshift deletion P02 TRIM37 c.1089delT p.F363fs
17 57,181,680 — T Frameshift insertion P08 TRIM37 c.97_98insA p.K33fs
17 60,028,290 A C Non-synonymous SNV GK101 MED13 c.T6187G p.L2063V
17 60,062,442 — T Frameshift insertion P10 MED13 c.2395_2396insA p.K799fs
17 60,072,560 — T Frameshift insertion P11 MED13 c.2134_2135insA p.K712fs
19 10,597,406 C — Frameshift deletion P13 KEAP1 c.1797delG p.S599fs
19 10,602,620 G C Non-synonymous SNV RK133 KEAP1 c.C958G p.R320G

pRCCs, papillary renal cell carcinomas; SNVs, single-nucleotide variants.
Data are from the discovery set of 31 pRCCs with exome or genome sequence data. The table shows genes in which three or more cancers carried somatic mutations of moderate or greater predicted
functional effect. In addition, selected somatic mutations in genes of known or potential importance in renal cancer are shown. Reference accession numbers are: NFE2L2 NM_006164, CUL3
NM_003590, SETD2 NM_014159, BAP1 NM_004656, TRIO NM_007118, RADIL NM_018059, AKAP9 NM_147185, MET NM_000245, PLEC NM_201381, CUBN NM_001081, ARID2 NM_152641,
CCDC168 NM_001146197, CNOT1 NM_016284, FLCN NM_144997, TRIM37 NM_015294, MED13 NM_005121 and KEAP1 NM_012289.
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end of ARID1A, and is thus predicted to inactivate protein
function.

Single-sample clonality analysis. Clonal structure in all cancers
was evaluated using Pyclone33 (Supplementary Fig. 8). Median
predicted number of clones was 7 (range 1–22). Large-scale gains
of chromosomes 7, 12, 16 and 17 almost always mapped onto the
major clone. BAP1 and ARID2 mutations mostly mapped to
major clones, whereas SETD2 and Nrf2 pathway mutations were
almost all predicted to be sub-clonal (Supplementary Table 8).
Since the resolution of clonal prediction from single samples may
be limited, especially where there are multiple rare sub-clones, we
sought to validate these findings in multi-region sequencing (M-
seq) studies.

M-seq and intra-tumour heterogeneity. Papillary carcinomas of
different stages were collected from four patients (RK30, RK36,
GK101 and GK116; Table 1) and subjected to M-seq. For the
multi-focal cancer GK116, 5 regions were analysed (regions 1–4
from GK116_1 and, for comparison, region 5 corresponding to
GK116_2). Whole-exome sequencing to a median depth of 99�
(range 72–172� ) was performed on DNA from each tumour
region and from paired normal kidney (or for GK116, blood).
The regional distribution of non-synonymous mutations was
determined on the basis of ultra-deep Ion Torrent amplicon
sequencing. On average, 20.6% (range 5–49%) of the validated
non-synonymous SNVs were heterogeneous, that is, not detect-
able in all sampled regions of an individual tumour.

Somatic SNVs in the tumour regions were separated into
mutations likely to be present in either the dominant or minority
sub-clones, and we constructed phylogenetic trees by UPGMA
(Unweighted Pair Group Method)34. The three earlier-stage
tumours (RK30, GK116_1 and GK101) displayed minimal
regional mutational heterogeneity or evidence of branched
tumour evolution (Fig. 3), and the data were entirely consistent
with the origins of GK116_1 and GK116_2 as separate cancers.
The highest-stage cancer, RK36, displayed extensive branched
evolution (Fig. 3). Although this patient was treated with
sunitinib for 4 weeks before surgery, disease was stable during

this period, and it is therefore unlikely that significant clonal
selection occurred to account for the heterogeneity observed.

Similar diversity patterns were observed in regional copy
number profiles (Supplementary Fig. 9), with relative SCNA
uniformity found in the three earlier-stage tumours (Table 1),
while RK36 exhibited greater intra-tumour heterogeneity.
However, in contrast to somatic SNVs, ubiquitous and recurrent
‘driver’ events were identified—specifically, gains of chromo-
somes 7 and 17 in all regions of RK30, GK116_1 and RK36, and
of chromosome 12 in GK101 and GK116 (Supplementary Fig. 9).
However, RK36 showed some SCNA heterogeneity: while most
regions (R1, R2, R3, R5, R6 and R10) showed haplotype-
concordant gain of chromosomes 16 and 17, others (LN, R8 and
R9) showed no copy number gain (Fig. 3; Supplementary Fig. 9).
LN, R8 and R9 were not closely related by SNV analysis,
suggesting that copy number losses subsequent to initial gains
may have occurred independently in several regions. GK116_2
(region 5) had acquired gains of the same chromosomes as
GK116_1 (regions 1–4). However, for chromosomes 7 and 17, the
alternate haplotype was involved (Supplementary Fig. 10),
consistent with independent tumour origins, but parallel evolu-
tion (that is, selection for the same oncogenic events in each
pRCC from the same kidney).

We previously demonstrated parallel evolution in ccRCC
involving multiple independent driver SNVs in different regions
of the same cancer34. Here we identified parallel evolution in
tumour RK36. This patient carried three spatially separated,
truncating mutations in SETD2 (p.Glu2277X in R2, p.Val212fs in
R8 and p.Glu1667X in LN), all accompanied by 3p deletions
that were not all concordant with respect to haplotype
(Supplementary Fig. 10). These data support the role of SETD2
as a sub-clonal driver in pRCC. Events such as this and the
Nrf2 pathway mutations in the single-sample cancer RK133—
converging on single genes in the same pathway—indicate
remarkably strong selection for these mutations in particular
tumours at certain stages of their growth.

Discussion
Genome and exome sequencing have shown that pRCC driver
mutations overlap with those of other cancers, but there are also

Gene P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 GK101 GK102 GK116_1GK116_2GK116_3 RK133 RK30 RK36
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Figure 2 | Distribution of selected somatic SNVs with predicted pathogenic effects and indels across cancers. The germline FH mutation, the

somatic CDKN2A deletion and the large deletion with break point within ARID1A are also shown for completeness. Note that copy number and LOH

data are not shown for cancers GK101, GK102, GK116_1, GK116_2, GK116_3, RK133, RK30 and RK36 since these lack SNP array data.
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Figure 3 | Regional distributions of non-synonymous somatic mutations in four pRCCs. For these M-seq cancers, the heat maps indicate the presence of

a mutation (yellow) or its absence (blue) in each region. The non-M-seq sample GK116_2 is shown alongside GK116_1 for comparative purposes. Note that

the SETD2 mutation p.Glu1667X in RK36 LN was identified in the combined call of all regions of this tumour, but not called by the M-seq pipeline;

subsequent inspection showed the M-seq call to be a false negative (Supplementary Fig. 11). Each picture shows the regions of core biopsies and regions

harvested at nephrectomy. Phylogenetic trees were generated by UPGMA from Ion Torrent M-seq SNV data. Branch and trunk lengths are proportional to

the number of non-synonymous mutations acquired. No cancer showed a significant difference between the spectra of SNVs present on the trunk or

branches (P40.05, details not shown). Putative driver SCNAs and SNVs are shown on their respective branch. For clarity, sub-clonal SCNA gains are not

shown for the highly branched tumour RK36; these involve chromosomes 7, 16 and 17, and are present in regions 5, 9, 1, 10, 3, LN and (apart from chr17) 8.

The apparent discordancy between the SNV-based trees and SCNAs may reflect chance, genomic instability, recurrent mutations or reversion mutations.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7336 ARTICLE

NATURE COMMUNICATIONS | 6:6336 | DOI: 10.1038/ncomms7336 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


genetic features specific to pRCC. We have identified probable
pathogenic pRCC driver mutations in BAP1, SETD2, ARID2 and
the Nrf2 pathway genes, and where investigation by M-seq was
possible, these mutations were sub-clonal drivers. This was
evidenced most strikingly in the parallel evolution of tumour
RK36 that acquired three distinct, truncating SETD2 mutations
associated with deletions of different 3p haplotypes in three
regions out of nine tested. The fact that 7 of 31 pRCCs had no
detectable SNVs or small insertion–deletions (indels) of probable
pathogenic effect in the top genes (Table 2; Fig. 2) is also
compatible with the presence of heterogeneous, sub-clonal driver
SNVs that were not readily identifiable in those lesions. However,
all but one of those seven cancers had acquired large SCNAs. This
suggested that the major, truncal drivers for pRCC might be copy
number changes. In keeping with this hypothesis, we typically
found that large-scale copy number gains on chromosomes 7, 16
and 17 are often clonal changes that are strong candidates for
major pRCC drivers, even though the genes targeted by these
changes have not unambiguously been identified.

The pRCC driver genes identified by this study include BAP1
and SETD2. Pathogenic BAP1 and SETD2 mutations have now
been found in several cancer types35,36, especially in bladder
tumours and ccRCC. Our additional focus on ARID2 mutations
as pRCC drivers was prompted by our initial finding that all three
mutations in our discovery phase were protein truncating, and by
the role that the ARID2 protein plays in chromatin remodelling.
Interestingly, TCGA project has shown that ARID2 is not
significantly mutated in any individual cancer type studied to
date, but is significantly mutated, although at a low frequency, in
a pan-cancer analysis37. Our finding of somatic Nrf2 pathway
(KEAP1, CUL3 and NFE2L2) mutations in pRCCs is in line with
a small, previous study38. It is possible that targeting Nrf2
signalling will have limited clinical potential given that the
mutations are often sub-clonal, but there remains hope for such
treatments given that one cancer acquired Nrf2 activation by both
KEAP1 and NFE2L2 mutations in what appeared to be different
cancer sub-clones.

We found very few clinicopathological–molecular associations
in our samples (Table 1), but we did find differences between
pRCC and ccRCC. It is established that pRCC differs markedly
from ccRCC in the near-complete absence of VHL mutations in
the former and their almost ubiquitous presence in the latter, and
it appears from our study that pRCCs also have fewer PBRM1
mutations than ccRCCs. However, these two genes lie on the
same chromosome arm (3p) as SETD2 and BAP1, which are
mutated in both types of renal tumour. It has been proposed in
ccRCC that, following a VHL mutation, one copy of 3p is deleted
and that the other genes are ‘opportunistic’ in that they can act as
tumour suppressors, while only requiring a single ‘hit’, because
they have been rendered hemizygous by the VHL ‘second hit’
(summarized in ref. 39). The pRCC data show that a model
whereby the other 3p mutations depend on preceding VHL
mutations is unlikely to be correct, and that loss of 3p is an
important event in pRCC development in the absence of VHL
changes. However, it remains entirely possible that SETD2
mutation can be opportunistic in both ccRCC and pRCC,
depending on a preceding BAP1 mutation and 3p deletion in the
latter case. pRCCs also have relatively few mutations in ccRCC
drivers such as KDM5C, PTEN, MTOR and PIK3CA, while
ccRCCs have few ARID2 mutations and gains of chromosomes 7,
16 and 17 are uncommon40. Mutations in the Nrf2 pathway genes
appear to be specific to pRCC, but re-analysis of TCGA ccRCC
data (details not shown) using Intogen does shows that a small,
but significant proportion (B2%) has mutations in NFE2L2
(ref. 18). Whether these tumours show any mixed ccRCC–pRCC
features is unclear.

Our study has a few limitations. The different sequencing
platforms used provided a potential problem, but there was no
clear effect on SNV detection, which was the mainstay of our
analysis. Indel detection did, however, show inter-platform
differences and indel analysis had to be restricted to validated
changes used in driver gene identification. Sample requirements
also meant that SNP array data could not be obtained for the
multi-region samples, and that complementary techniques, such
as methylation and RNA sequencing, could not be used for any of
the cancers. These limitations do not affect our findings or
conclusions, but we cannot, for example, exclude a methylator
pathway of tumorigenesis in some pRCCs. Finally, our sample
size was sub-optimal for the detection of rare driver genes,
providing a limited power to identify genes mutated in o15%
pRCCs; this does not invalidate our positive findings, but means
that the additional rare pRCC drivers may require projects
involving many hundreds of cancers, at an even larger scale than
the current TCGA analysis. Finally, additional clonal reconstruc-
tion and M-seq analyses will be required to pick apart the
evolutionary complexity of pRCCs and to confirm or refute our
model that copy number gains typically drive the initial
stages of pRCC pathogenesis, with many driver SNVs acting in
sub-clones.

In conclusion, sequencing of papillary renal cancer exomes and
genomes has identified similarities to and differences from the
more common clear-cell type of kidney cancer. Shared mutated
genes include BAP1 and SETD2, but mutations in genes such as
ARID2 and KEAP1 are specifically associated with pRCC. In
general, our model is that the evolution of pRCCs proceeds from
truncal, chromosome-scale copy number changes, such as that
involving chromosome 7, to the acquisition of sub-clonal-specific
driver mutations. Although VHL and PBRM1 mutations are
known to be frequent truncal drivers in ccRCCs9, similar high-
frequency, major pRCC driver mutations appear not to exist in
pRCCs. The predominance of large, truncal SCNAs in pRCC
highlights an arguably under-recognized mode of tumorigenesis,
and therapeutic targeting of these SCNAs is likely to be
problematic, given the number of potential driver events
present within each region.

Methods
Sample description. The discovery set comprised 31 papillary renal cell cancers,
paired with peripheral blood or normal tissue that had been collected at
nephrectomy from unrelated individuals from the United Kingdom. Ethics
approval was obtained from Oxfordshire Research Ethics Committee C (project
09/H0606/5) for analysis of anonymized samples for driver gene discovery.
Samples for M-seq were collected from individuals enrolled in the ‘Response and
Resistance to Targeted Therapy in Renal Cell Carcinoma’ tissue collection protocol
of the London Renal Cancer Consortium (ethics approval reference 11/LO/1996)
and informed consent was obtained from participants. Tumour morphology
was reported after collection by the local histopathologist and then reviewed by
another histopathologist (S.F.). This confirmed pRCC in all cases (Table 1), with
470% cancer cells in the tumour specimens. Genomic DNA was extracted from
each tumour and paired blood or normal tissue and quantified using standard
methods.

The replication set comprised 60 frozen or formalin-fixed, paraffin-embedded
(FFPE) pRCCs. Each sample had 460% cancer cells, and was subject to
enrichment for malignant cells using haematoxylin and eosin-stained-sections as a
guide. After homogenization where necessary, DNA was extracted using the
Qiagen Dneasy Blood and tissue kit according to the manufacturer’s instructions.

Multi-region sampling. We isolated between 4 and 9 samples of 10� 5� 5 mm,
representing the spatial extent of the primary tumour, from each nephrectomy
specimen. Samples were macrodissected to minimize the stromal contamination,
and half of each sample was snap frozen in liquid nitrogen within 1 h of clamping
the renal artery. Sample collection was performed according to strict standard
operating procedures in all cases and included photographic documentation.
DNA and RNA were extracted using the Qiagen AllPrep micro kit following the
manufacturer’s instructions. Nucleic acid yields were determined by Quibit
(Invitrogen). Regions which histopathological review judged to contain o70%
tumour cells were excluded.
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Single-sample sequencing. Paired-end sequencing of eight tumour and paired
normal samples were performed using the Complete Genomics (Mountain View,
California) service. The Complete Genomics’ CGAtools package was used to map
reads to the hg19 reference genome and call variants, including somatic mutations, in
the tumour-normal pairs. Standard Complete Genomics quality filters were used. A
list of potential structural variants was also provided by CGAtools. Variants were
annotated with ANNOVAR41 using hg19 reference genome and 2013 versions of
standard databases and functional prediction programs. We excluded duplicated
genomic regions (490% homology) from the analysis and variants within regions
with low mappability scores (Z3 locations per genome). Variants were annotated
with ANNOVAR (RefSeq gene models) using: dbSNP (132); 1,000 genomes project
allele frequencies (November 2011); University of California Santa Cruz (UCSC)
segmental duplication scores; and UCSC 46 species conservation scores; and
predictions of functional importance from SIFT and PolyPhen2.

Exome capture was performed using the Agilent SureSelect (N¼ 7) or Illumina
TruSeq (N¼ 8) kits. Samples were quantified using the Qubit system (Invitrogen)
and sequencing libraries constructed from 1 mg DNA post capture using the
NEBNext DNA Sample Prep Master Mix Set 1 Kit (NEB). Ligation of adaptors
was performed using 6 ml of the Illumina Multiplexing Sample Preparation
Oliogonucleotide Kit. Libraries were size-selected using 2% gel electrophoresis and
the distribution of fragments in the purified fraction was determined using the
Tapestation 1DK system (Agilent/Lab901). Each library was PCR-enriched using
the following custom primers:

Multiplex PCR primer 1.0: 50-AATGATACGGCGACCACCGAGATCTACAC
TCTTTCCCTACACGACGCTCTTCCGATCT-30

Index primer: 50-CAAGCAGAAGACGGCATACGAGAT[INDEX]CAGTGA
CTGGAGTTCA GACGTGTGCTCTTCCGATCT-30

Indexes were 8-bp long and part of an indexing system developed in-house.
Four independent PCR reactions per sample were prepared using 25% volume of
the pre-PCR library each. After eight cycles of PCR (cycling conditions as per
Illumina recommendations), the four reactions were pooled and purified with
AmpureXp beads. The final size distribution was determined using the Tapestation
1DK system (Agilent/Lab901). The concentration of each library was determined
by the Agilent qPCR Library Quantification kit. Samples were sequenced using the
Illumina HiSeq2,000 platform as paired 100-bp reads with Chemistry version 3.0,
with the aim of a target average coverage of 100� for the blood DNA and 200�
for the tumours. After removal of PCR duplicates using Picard, reads were mapped
with Stampy version 1.0.12 (r975) 18 onto the Human Reference Genome to
(GRCh37d5/hg19). SNVs and small indels were called with Platypus version 0.2
using the tumour-normal pairs of bam files together to ensure comparable calls at
every locus. Variants were only called if they were assigned a sufficiently high
posterior probability (phred score of 5). We removed the allele bias filter to increase
sensitivity. Finally, for selected variants, we made sure the automatic call matched
the data by expert visual inspection of the mapped reads onto the reference genome
using read direction colouring on top of the standard integrated genomics viewer
(IGV) scheme (http://www.broadinstitute.org/igv/alignmentdata/). We had
previously used Ion Torrent technology to show that the Illumina-Stampy-Playtpus
pipeline produces 495% validated variants in comparable cancer samples42.
Annotation was performed as for the Complete Genomics samples.

For filtering of variant calls for analysis, calls were first compared between
matched constitutional and tumour samples to identify somatic mutations. For
analysis of mutation burden and spectra, we applied the following exclusion filters
to somatic variants: (i) presence in a segmental duplication region or a region with
mappability score o0.5; (ii) variant present in any read from the paired normal
sample; (iii) fewer than 10 reads in total at the variant site in the normal sample;
(iv) fewer than eight reads in total in the tumour; (v) fewer than three variant reads
in the tumour; (vi) variant allele frequency o10% in the tumour; and (vi) presence
of variant in public databases (Exome Variant Server, 1,000 genomes project,
Complete Genomics 69 reference genomes) at a frequency of 41%. Variants
identified in constitutional DNA from any of the other local, non-cancer
sequencing projects (for example, 29 million variants across 284 samples from the
Oxford-Illumina WGS500 consortium) were discarded as being more likely due to
systematic error in our pipeline than genuine somatic mutation. For driver gene
identification, we enriched further for high-confidence calls. We therefore applied
the following exclusion filters to somatic variants: (i) presence in a segmental
duplication region or a region with mappability score o0.5; (ii) frequency in 500
locally sequenced constitutional genomes of 4%1, or Exome Variant Server 41%,
1,000 genomes project 41% or Complete Genomics 69 reference genomes 410%;
or (iii) variant read depth below 10� .

Targeted Sanger sequencing. Validation in the original discovery set and
replication in the set of 60 additional pRCCs were performed for mutations
in BAP1, SETD2 and ARID2, and validation of FH, MET and KEAP1 using
bidirectional Sanger sequencing of the coding regions of each gene (details available
from authors). For SETD2, analysis was restricted to the SET, WW and SRI
domains of the protein that show a degree of mutation clustering. Any variants
found were replication-tested in a second, independent DNA sample from the
same tumour. The somatic origin of any variation from the human reference
sequence was confirmed by analysis of paired DNA from blood or normal tissue.
Mutations were analysed with Mutation Surveyor V3.97 and confirmed by
inspection of electropherograms.

Ion Torrent validation sequencing. As previously employed42, a custom 75
cancer-gene exome panel (details available on request) was used for technical
validation of sequencing in the non-M-Seq cancers. Approximately 100 ng DNA
was used for sequencing. Mean read depth was 1,067. Variants present in the
genome and exome sequence data were assessed alongside the equivalent Ion
Torrent data, using both automatic calls in the Torrent Server output and visual
inspection using the IGV.

SNP arrays. Twenty-three tumours were genotyped using the Affymetrix 2.7 M
Cytogenetics array or the CytoScan HD array. The data were analysed using
Chromosome Analysis Suite (ChAS) 2.1. Copy number changes and LOH were
called using the software high-resolution settings, which allowed detection of
‘mosaic’ changes. Copy number variants that overlapped by 450% with germline
copy number variants were filtered out.

Clonal structure of single-sample tumours. Allelic heterogeneity, and thus
clonal structure, was evaluated from whole-cancer samples using an in-house
program based on PyClone version 12.3.1. Allelic frequencies of selected somatic
mutations were obtained using the number of reads and the number of reads
carrying a variant as the total copy number. The copy number value at each of
these loci and the tumour content were obtained from the ChAS program as
described above. For each sample, all exome-wide somatic mutations were used to
characterize heterogeneity. Selected copy number changes (gains of large regions of
chromosomes 7, 16 and 17) were also included in the Pyclone analysis using
dummy composite number of reads and number of reads carrying a variant values
for all somatic variants within regions defined using ChAS.

Mutation significance analysis. Gene-based and pathway analyses to detect
significantly over-represented mutant genes and pathways were performed by
Intogen 23 and MutSigCV using the annotated, quality-filtered, somatic mutations
from all cancers.

M-seq and cancer evolution analysis. Exome capture was performed on 3 mg of
genomic DNA per sample with the Agilent SureSelect Human All Exon V4 kit
according to the manufacturer’s instructions, and paired-end multiplex sequencing
of samples on the Illumina Genome Analyzer II and HiSeq platforms at Cancer
Research UK London Research Institute (LRI; RK30, RK36, GK101 and GK116_1).
Genomic DNA sequenced at LRI was randomly fragmented by Covaris to obtain
fragments distributed between 250 and 300 bp in length. Adaptors were ligated to
both ends of the fragments and adaptor-liagted templates were purified using
Agencourt AMPure SPRI beads. Extracted DNA was amplified by ligation-
mediated PCR, purified and hybridized to the Sure Selected biotinylated RNA
library (BAITS) for enrinchment. Each capture library was loaded on the Ilumina
platform, and paired-end sequencing was performed to the desired median
sequencing depth (B60� ).

To provide a consistent comparison with our previous data on ccRCC9, we used
the following special pipeline to analyse the M-seq sequencing output. Reads were
aligned to hg19 using BWA 0.5.9 (r16) with a seed length of 100 and up to
4 mismatches allowed. Duplicate reads were removed using Samtools before
analysis. Single-nucleotide variant calling was performed using CAVEMAN9,43 and
small insertions and deletions were identified using a modified version on Pindel in
paired tumour-normal mode. The following filtering criteria were applied to the
called variants: only nucleotides with Phred quality of 20 or greater were
considered; only reads mapping uniquely to the genome were considered; a
minimum of 10� coverage in both germ line and tumour was required; a
minimum of two instances of the variant in the tumour region were required; and
variants in positions listed in dbSNP 132 were removed. Somatic mutations present
in at least 5% of the reads based on exome sequencing in at least one tumour region
were further analysed. To increase specificity, only simple insertions and deletions
events of o10 bp were selected. In-house filter software was used to extract high-
quality indels: considering the high-sequence coverage obtained in these samples,
only those indels with a minimum coverage of 20 reads in both tumour and normal
samples and with a minimum frequency of 10% of the reads and also a minimum
of 5 independent reads supporting the event on the tumour sample and with no
evidence in the normal sample were considered.

Putative variants of interest were manually inspected in IGV before validation
by Ion Torrent sequencing. Similar to Illumina-Stampy-Platypus, we had shown
the Illumina-BWA-CAVEMAN pipeline previously generated a 490% Ion
Torrent validation rate9. We created custom Ampliseq (Lifetech) validation panels
for non-synonymous somatic mutations and indels called in at least one region
using the AmpliSeq Designer (http://www.ampliseq.com/). Multiplex PCRs were
performed according to the manufacturer’s instructions with the tumour-specific
primer pool on DNA from each region of the tumours. Amplicon pools were used
for the construction of barcode sequencing libraries and these were multiplex
sequenced on the Ion Torrent PGM sequencer, to a mean target depth of 500�
(Lifetech). A mutation was considered to be present in a tumour region if a non-
synonymous mutation or indel was detected in at least 1% of the ultra-deep reads,
thresholds selected on the basis of the error rate of the sequencing platform.
Mutations that passed validation were included in the phylogenetic analysis.
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For ploidy profiling, a suspension of nuclei was created from fresh tumour
tissue and washed with PBS, and then fixed with 70% ethanol. After 60 min, nuclei
were washed again with PBS and stained with propidium iodide. Flow cytometric
analysis of DNA content was performed using the BD LSRFortessa cell analyser,
BDFacsDiva software and FlowJo software. The DNA index of an aneuploid peak,
where present, was calculated by dividing G1 peak of the aneuploid population by
G1 peak of the normal diploid cells.

For copy number analysis, relative copy number was estimated from whole-
exome-sequencing data using VarScan2 (v2.2.11)44 with default parameters,
excluding the sex chromosomes and low mapability regions (ENCODE ’DAC
blacklisted’ regions) and adjusting for GC content. To identify genomic segments
of constant copy number, logR values were quantile normalized, winsorized using
the median absolute deviation, and jointly segmented at the patient level
(gamma¼ 1,000). Absolute (integer) copy numbers were derived from relative
copy numbers using ABSOLUTE (v1.0.6)45. SNVs with Z50� sequencing
coverage were included in the analysis and AmpliSeq-derived variant allele
frequencies were used where possible. Minimum/maximum ploidy was set to
within ±0.5 of the prior ploidy estimate, calculated from the sample’s
fluorescence-activated cell sorting-based DNA index. Subsequently, the top five
ABSOLUTE models (ranked by log likelihood) were retrieved for each exome, and
a set of inter-sample models was identified that minimized the total pairwise
distance derived from the segments’ expected modal copy number, while
maximizing the model’s posterior log likelihood. Final model solutions were
manually reviewed as recommended. Finally, adjacent segments of equal clonality
and absolute copy number were merged. To compare the haplotypic origin of
shared SCNAs between tumour regions, allele frequencies for each heterozygous
SNP were estimated. SNP alleles were classed as ‘major’ (allele frequency40.5) or
‘minor’ (allele frequencyo0.5) in the highest cellularity region (as defined by
ABSOLUTE) of each tumour, assuming that the ‘major’ allele represents the
higher-copy number haplotype where applicable. Patterns of major/minor allele
frequency were then compared with these reference regions; a SCNA with an
inverted major/minor allele frequency distribution was interpreted as a recurrent
(or secondary) SCNA affecting the alternate haplotype.

Phylogenetic analysis of multi-region cancers. Phylogenetic relationships
between tumour regions were inferred using the UPGMA as implemented in
MEGA6 (ref. 46). The evolutionary distances were calculated using the number of
differences between regions, and uncertainty assessed by a bootstrap test (1,000
replicates). Trees are shown drawn to scale, with branch lengths in the same units
as those of the evolutionary distances used to infer the phylogenetic tree, and the
percentage of replicate trees in which regions clustered together in the bootstrap
test shown next to the branches.
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