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Abstract 

Permeable pavements are one of the world’s most widely applied techniques for source control in 

sustainable drainage systems. Porous concrete (PC) and porous asphalt (PA) are two of the most studied 

surfaces in terms of runoff reduction. Nevertheless, previous research has highlighted a lack of a 

comprehensive laboratory methodology for the analysis of the topographical variables, runoff surface 

length (RSL) and surface slope (SS), and their impact on the infiltration behaviour of these porous surfaces. 

This research paper analyses the infiltration performance of polymer-modified PC and PA-16 for 0, 3, 5, 

7 and 10% slope on newly built and clogged surfaces, using an improved version of the Cantabrian fixed 

(CF) infiltrometer and LCS permeameter, enabling comparison of the infiltration behaviour. This 

laboratory methodology has proved to be well suited to the study of the infiltration behaviour of porous 

surfaces and also to the quantification of their infiltration capacity reduction due to clogging. As main 

results, this paper presents regression models with high R2 obtained with a confidence level of 95%, based 

on RSL and SS variables, corresponding to each porous surface and clogging level. 

 

 

 

1. Introduction 

Permeable pavements are the most widely used technique for source control in sustainable drainage 

systems (SuDS) to mitigate flooding [1]. Permeable pavements can occupy large urban areas, especially 

through their use in car parks [2], reducing runoff and diffuse pollution by retaining pollutants [3]. Porous 

pavements such as porous concrete (PC) and porous asphalt (PA) have been widely used in car parks to 

increase the infiltration capacity of pervious pavements during recent years. For instance, the EPA 

considers PC surfaces to be one of the best management practices (BMPs) due to their high percentage of 

voids and their additional properties (resistance improvement, noise and heat reduction) compared with 

other permeable surfaces [4]. Recently studies have demonstrated that polymer-modified PC (PMPC) 

presents better fatigue behaviour [5] and infiltration capacity than standard PC [6]. 

A typical permeable paving structure has a permeable surface of porous material or impervious material 

with joints, a base layer made of aggregates, a separation and a geotextile filtration layer and a sub-base 

made of stone (Fig. 1). Nowadays, the most widely used permeable surfaces are made of interlocking 

concrete blocks pavement (ICBP) in the case of impervious materials in which the infiltration occurs 

through the joints and PC and PA porous surfaces where case infiltration occurs through their void 

structure. A standard permeable paving structure made of PC or PA porous surfaces is shown in Fig. 1. 
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t Loss of permeability due to clogging is the main problem of PC and PA surfaces, highlighted by research 

all over the world [7]. Clogging problems are due to long-term deposition of sediments carried by surface 

runoff or short-term events such as catastrophic flooding [8]. In spite of the fact that there were many 

studies in which the impact of clogging on permeable surfaces had been analysed, Lucke et al. [9] and 

Sañudo-Fontaneda et al. [10] pointed out that not all variables regarding topography had been studied 

(surface slope and flow distance) and, using ICBP surfaces, they demonstrated the significant impact of 

these variables in the general analysis of clogging. Their study not only took into account the influence of 

surface runoff from adjacent impervious surfaces, which was commonplace in research, but also the 

influence of direct rainfall. 

The main aim of this paper is to translate this methodology toward porous surfaces in order to obtain a 

common methodology for the analysis of the infiltration behaviour of permeable pavements. Moreover, 

specific objectives, divided into two main aspects, will be addressed. The infiltration behaviour of PMPC 

and PA-16 (PA with 16 mm of maximum aggregates size) will be analysed based on the topographic 

variables runoff surface length (RSL) and surface slope (SS), using the CF infiltrometer with different 

levels of clogging. Two regression models, which simulate both newly built and clogged surfaces, will be 

proposed to explain the infiltration process. Furthermore, the reduction of the infiltration capacity due to 

clogging in porous surfaces and geotextiles will be evaluated, and the real impact of clogging on the 

appearance of residual runoff on porous surfaces will be assessed. 

 

2. Materials and Methods 

2.1. Materials 

The materials used to simulate a permeable pavement structure in this research were PMPC and PA-16 

[11] as porous surface, limestone aggregates as base layer and geotextile as separation and filtration layer 

(Fig. 1). No sub-base layer was studied in this research because its permeability is usually higher than the 

other layers and it is not the limiting factor. 

The PMPC layer was 100 mm thick, with 18 and 27 MPa of compressive strength measured according to 

European Standards [12]-[14] after 7 and 28 days, respectively, with 25% voids, and 1778 kg/m3 apparent 

density obtained following the European Standards [15]. 

Another porous surface layer 100 mm thick of PA-16 with 2050 kg/m3 apparent density and 23.45% 

voids was also used. It had a particle size distribution of the ophite agglomerate. 

A 50-mm thick base layer of limestone aggregate with a particle size of 4-6 mm, 1.354 g/cm3 apparent 

density and 50% voids was used as the permeable paving structure. 

Finally, one polyester nonwoven geotextile was used as the bottom layer with the characteristics shown in 

Table 1. The geotextile has two main functions: filtration of water and separation of the base and sub-base 

layers. 

The sediment used to clog porous PMPC and PA-16 surfaces in order to simulate a catastrophic scenario 

of flooding was limestone silt with particle size distribution shown in Fig. 2. The difference between 

particle size distribution of sediments used to clog the ICBP surface [16], and the distribution used to clog 

PMPC and PA-16 in this research can also be observed. The distribution of the latter was based on studies 
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t carried out on PC by [17] and studies carried out on PA by [7] (Fig. 2). A high percentage of fine 

sediments due to previous researches [8] that demonstrated a high decrease in the infiltration rates of PC 

with an increasing percentage of fine sediments. Davies et al. demonstrated that organic matter is the 

cause of a major decrease in the infiltration capacity of ICBP [16]. Therefore, 14% of organic matter was 

introduced, through the use of sawdust, in the range of fines up to 0.5mm of particle size in order to 

decrease the infiltration capacity of PMPC and PA-16. 

 

2.2. Experimental methodology 

2.2.1. Analysis of the infiltration behaviour 

The infiltration behaviour of PMPC and PA-16 surfaces was analysed using the CF infiltrometer of the 

University of Cantabria [18] with the modifications introduced by [10] in order to achieve more accurate 

results. The CF infiltrometer is an experimental laboratory device that enables the simulation of rainfall 

intensities in the range of 10-150 mm/h for any storm event duration and surface slopes between 0 and 

10% under controlled laboratory conditions of 16°C and 75% of humidity (Fig. 3). 

The variables studied in this research were chosen after an analysis of the most influential variables in 

previous infiltration studies. The independent variables were the runoff surface length (RSL) which is the 

distance (cm) measured from the top part of the porous surface specimen, and surface slope (SS) (%) (Fig. 

3). The dependent variable was the cumulative infiltration rate (CIR), which is the cumulative percentage 

of infiltration rate, measured in each water infiltration chamber (Fig. 3). 

An extreme rainfall of 60 mm/h, corresponding to a 50-year return period with duration of 30 min was 

simulated over three 50 × 50 cm2 test specimens of PMPC and another three test pieces of PA-16 

surfaces, and slopes of 0, 3, 5, 7 and 10%, following the same procedure described in [10] for ICBP 

surfaces. Two different scenarios of clogging were tested on the CF infiltrometer for each test piece in 

order to simulate two extreme periods of the operational life of porous surfaces, corresponding to an 

initial, newly built surface in which the porous surface is free of sediments, and a clogged surface, 

simulating their behaviour after a catastrophic event related to a massive pouring of sediments from a 

construction site [7]. The latter clogging level was simulated using sediments described in Section 2.1, 

representing the amount of sediments necessary to clog a porous surface, according to [16]. The 

sediments were applied following the methodology demonstrated by [7] for PA surfaces with slight hand-

compaction. Finally, a light brushing was used to simulate sweeping machines that clean sediments from 

urban surfaces in Spain, in order to analyse the possible recovery of permeability after this type of 

maintenance. 

Previous studies highlighted that an initial period of 10 min was necessary to achieve the steady-state 

stage [16], and then the measuring stage used in the CF infiltrometer lasted 20 min, as in [7], collecting 

infiltrated and residual runoff water in the chambers prepared for this purpose (Fig. 3). Calibration tests 

carried out on both porous surfaces in this research highlighted that just 3 min were necessary to achieve 

steady state conditions. In each case, all measurements were recorded over 20 min of time after 10 initial 

min, maintaining the same procedure. 

Darcy’s law can be applied to the infiltration process which takes place during the steady-state stage on 
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t PMPC and PA-16 porous surfaces, and base layer of aggregates, according to previous researchers such 

as [19], [20], assuming that the infiltration process of a non-saturated porous media is governed by the 

Navier-Stokes equations. The theoretical hydraulic phenomena described in this test pointed out that the 

hydraulic conductivity always facing the rainfall intensity simulated in each test undertaken, using the CF 

infiltrometer, as was demonstrated by Sañudo-Fontaneda et al. [10]. 

 

2.2.2. Reduction of the infiltration capacity 

The reduction of the infiltration capacity was measured through the difference between permeabilities 

measured on porous surfaces and geotextiles in both the initial scenario of clogging with a newly built 

surface without sediments and in the final scenario of clogged surface without maintenance. Clogged 

scenario was achieved by adding 2000 g/m2 of the sediments (Fig. 2) in both porous surfaces in contrast 

to the research of Rodriguez-Hernandez et al. [7]. The LCS permeameter, which is a falling-head 

permeameter for PA surfaces, and the equipment of water permeability normal to the plane, without load, 

LAGUC E-003 (ENSA 3HL8-200) (Fig. 4) were used based on European Standards [15]. Charbeneau et 

al. demonstrated that the LCS permeameter can also be used on PC surfaces to measure their permeability 

[22]. 

LCS was applied at the midpoint of both sides of each test piece to calculate the average permeability in 

the case of a newly built surface scenario with clogging. However, in the case of the clogging scenario, 

two different zones could be observed due to the influence of the drops with a kinetic energy of 5.6 × 10-4 

J and 3.5 mm diameter from the direct rainfall simulator which has 5 lines of 15 adjustable drippers (0-40 

L/h) each. The drops take away part of the sediments that clog the surface in the zone where the drops hit 

the surface during the CF infiltrometer test. Hence, two different zones can be observed; a clogged zone 

where the drops did not touch the surface and a less clogged zone where the drops contacted the surface. 

24 points of measurement were taken with the LCS permeameter (12 in each zone) in order to check the 

permeability reduction over both porous surfaces and the possible impact of the drops in producing 

different zones of permeability in the same test piece. 

A comparative analysis is presented in this paper between the reduction of permeability and the influence 

of the type of porous surface, clogging scenario and surface slope on the residual runoff (RR) measured in 

the infiltration behaviour test (Fig. 3). Finally, the behaviour of the sediments will be analysed through 

their migration from the surface toward the geotextile layer, by determining mass per unit area based on 

the European Standard [23]. 

 

3. RESULTS AND DISCUSSION 

3.1. Infiltration behaviour test 

All regression models were obtained under the laboratory conditions detailed previously for a 95% 

confidence level, fulfilling the statistical criteria of analysis of co-linearity, independence of observations, 

normality of the standardised residues of the dependent variable, and homocedasticity (Table 2, Fig. 5). 

Sample size was always 75 for each clogging level and porous surface. 

RSL is the most influential variable in all models as can be seen in Table 2, showing a positive relation 
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t with CIR. SS also has an important impact on the model and its relation is negative, CIR decreasing when 

SS increases. The constant is not significant in all models, registering a p-value >0.05 in all cases. This 

point and high R2 together make these regression models a good predictor of the infiltration behaviour of 

PMPC and PA-16 surfaces. 

 

3.2. Reduction of the infiltration capacity 

The LCS test applied to both porous surfaces showed an average difference of permeability in the newly 

built scenario of 40% between PMPC (0.020 m/s) and PA-16 (0.012 m/s) surfaces and 58.33% after 

clogging (Table 3). The average reduction in the permeability after clogging was 33.05% for PMPC, 

while the reduction for PA-16 was 64.16%, being much more influential in the latter case (Table 3), using 

the same sediments and clogging procedure. Infiltration capacity for PMPC after clogging was 0.012 

mm/s, being nearly 2.4 times higher than PA-16’s infiltration capacity (0.005 mm/s) at the same clogging 

level. The difference in permeability between clogged zones and less clogged zones in the same test 

piece, found in both surfaces after clogging, was 44.97% for the PMPS surface and 42.50% for the PA-16 

surface. It was noted that drops took away part of the sediments used to clog both porous surfaces. 

This high reduction in permeability only caused a slight increase in the residual runoff from 7% surface 

slope, always <1% for slopes up to 5% in both porous surfaces. Therefore, both surfaces still continue to 

infiltrate >90% of the total direct rainfall and surface runoff from adjacent impervious surfaces in the first 

50 cm of the porous surface, which is the surface tested in the CF infiltrometer. 

A statistical analysis of the bivariate correlations was undertaken in order to study the impact on residual 

runoff of the type of porous surface, clogging level (newly built surface and clogged surface) and surface 

slope. It was established that RR has a positive relation with the type of surface, being higher for the 

PMPC than the PA-16 surface. According to the Spearman coefficients with p-value >0.05 shown in 

Table 4, it can also be observed that the clogging level is not linearly related with RR under this procedure 

of adding sediments. However, a highly linear relation exists between SS and RR: an increasing RR when 

SS increases (Fig. 6). 

The geotextile used in this research had a high permeability of 155.10 mm/s in the case of the newly built 

surface. However, permeabilities of 154.42 and 155.50 mm/s were obtained after clogging in PMPS and 

PA-16 surfaces, respectively. In addition, the average mass measured after clogging was 188.60 g/m2 in 

the case of PMPC and 170 g/m2 in the case of PA-16 surface. Hence, 38.60 and 20 g of sediments were 

retained by the geotextile per m2, corresponding to 7.72 and 4% of the total amount of sediments used to 

clog PMPC and PA-16 porous surfaces, respectively. In spite of the important amount of sediments 

trapped in the geotextile, permeability did not decrease. This fact is explained by the degradation 

observed in the geotextile, producing local spaces in which the local permeability was much higher than 

the permeability of a newly built surface. Moreover, the majority of the sediments used to clog the porous 

surfaces were retained by upper layers such as the surface layer and the base layer, especially the former 

(Fig. 7), confirming previous studies by [24]. 

Maintenance used in this research was able to remove an average amount of sediments of 44.50 g from 

both porous surfaces (8.90% of the total amount of sediments used to clog the two surfaces). However, it 
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t should also be said that the kind of maintenance used in this research does not lead to a recovery in the 

infiltration capacity of porous surfaces as in the case of ICBP [9]. This finding tries to emphasize 

previous conclusions obtained by Ferguson [25] who had been demonstrated that vacuuming was more 

effective than sweeping at maintaining or restoring infiltration in porous surfaces. 

 

4. CONCLUDING REMARKS 

After the analysis of the infiltration behaviour of PMPC and PA-16 in the laboratory, with the CF 

infiltrometer, regression models were obtained based on the topographical variables in newly built and 

clogged surfaces, with a confidence level of 95%, and with R2 values >0.85. 

The most influential topographical variable in the regression models was always RSL compared to SS. 

From this study of the reduction of the infiltration capacity with the LCS in laboratory, it is concluded 

that PMPC surfaces had a greater infiltration capacity (40%) than PA-16 surfaces, in the case of newly 

built surfaces. Under the methodology used for clogging in this paper, the reduction of the infiltration 

capacity for PMPC surfaces was 33.05%, while reduction for PA-16 was 64.16% under the methodology 

used in this paper. 

However, these reductions of the infiltration capacity has a slight impact on residual runoff, as can be 

observed in the values of infiltration >90% of the total either direct rainfall and surface runoff from 

adjacent impervious surfaces in all clogging scenarios, with the CF infiltrometer. 

In future, field tests will be developed to validate the regression models obtained in the laboratory. 
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Figure 1. Schematic cross section of a standard permeable paving structure made of PC or PA. 

Figure 2. Size distribution of the sediments used to clog the PMPC and PA-16 surfaces in comparison 

with the sediments used to clog ICBP surfaces. 

Figure 3. Scheme of the CF infiltrometer and the variables measured on the infiltration behaviour test. 

Figure 4. LCS permeameter and the equipment of water permeability normal to the plane, without load 

LAGUC E-003 (ENSA 3HL8-200) based on European standards. 

Figure 5. Relationship between CIR, RSL and SS in all regression models obtained for PMPC and PA-16 

surfaces. 

Figure 6. Relationship between SS and RR. 

Figure 7. Sediments clogging PA-16 surface, especially focused on their migration toward the geotextile. 
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Table 1. Main characteristics of the geotextile, DANOFELT PY 150. 
Geotextile DANOFELT PY 150 

Average mass 

(g/m2)

UNE EN 965

Longitudinal 

tensile strength 

(KN/m)

UNE EN ISO 

10319

Transverse 

tensile strength 

(KN/m) 

UNE EN ISO 

10319

Thickness under 

2 kPa pressure 

(mm) 

UNE EN 964

Opening size 

(μm) 

UNE EN ISO 

12956

150 1.2 1.2 1.90 100 

 

 

 

 

 

 

 

Table 2. Regression models obtained for PMPC and PA-16 surfaces in each 
clogging levels. 

Porous surface Regression model R2
Student’s t-test 

C RSL SS

PMPC Newly built 0.85 1.438 18.637 -8.168 

PA-16 Newly built 0.87 1.963 17.805 -11.302

PMPC Clogged 0.88 1.994 21.164 -10.007

PA-16 Clogged 0.89 3.565 22.406 -11.057
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t Table 3. Permeability values of the LCS tests in the three test pieces of PMPC and 
PA-16 after clogging and percentage of permeability reduction in comparison with 
values of the newly built surface. 

Clogged 

surface 
PMPC PA-16 

Test

piece
Zone 

Average 

permeability 

(m/s) 

Reduction 

(%) 
Average permeability 

(m/s) 

Reduction 

(%) 

1
Clogged 0.009 

0.013 13.33 
0.005 

0.006 53.85 
Less clogged 0.017 0.008 

2
Clogged 0.008 

0.012 40.00 
0.003 

0.004 63.64 
Less clogged 0.015 0.005 

3
Clogged 0.010 

0.013 45.83 
0.002 

0.003 75.00 
Less clogged 0.017 0.004 

 

 

 

 

 

 

Table 4. Spearman’s Rho coefficients obtained in the statistical analysis of the 
bivariate correlation. 

Residual 

runoff (RR)

Type of porous 

surface 
Surface slope Clogging level 

Residual 

runoff (RR)

Correlation 

coefficient 
1.000 -0.481** 0.660** 0.227 

Significance 

(bilateral) 
 0.000 0.000 0.081 

** Correlation is significant at level 0.01 (bilateral).
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Figure 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

A
cc

ep
te

d

 
 
 

  P
re

pr
in

t  

 
Figure 2.
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
 
 
 
 
 
 
 


