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ABSTRACT

The angular spectrum representation of electromagnetic fields scattered by metallic particles much 
smaller than the incident wavelength was used to interpret and analyze the spectral response of 
localized surface plasmon resonances (LSPs) both in the near-field and far-zone regimes. The 
previously observed spectral redshift and broadening of the LSP peak, as one moves from the far-
zone to the near-field region of the scatterer, was analyzed on studying the role and contribution of 
the evanescent and propagating plane wave components of the emitted field. For such dipolar 
particles, it was found that the evanescent waves are responsible for those broadenings and shifts. 
Further, we proved that the shift is a universal phenomenon, and hence, it constitutes a general law, 
its value increasing as the imaginary part of the nanostructure permittivity grows. Following these 
lines, and because of the recent interest on the light scattering by magnetodielectric particles, the 
purpose of the work we propose is investigating the physical effects of the contribution of the 
evanescent channel to the electromagnetic behavior of the scattered fields in the near- and far-field 
regimes by these particles which in turn show coherent effects between the excited dipolar electric 
and magnetic modes. Our results should be of use for the prediction and interpretation of the 
spectral behavior in applications assisting surface-enhanced Raman spectroscopy or equivalent 
processes with the recent proposed configurations made of dielectric nanoantennas where ohmic 
losses are very low.

Key words: magnetodielectric, radiative, non radiative, evanescent waves, redshift, broadening, 
near field, far field.

La representación angular del campo electromagnético difundido por partículas metálicas de 
tamaño mucho menor que la longitud de onda del campo incidente ha sido usada para interpretar y 
analizar la respuesta espectral de las resonancias de plasmones superficiales localizados (LSPs), 
tanto en campo cercano como lejano. El corrimiento al rojo y el ensanchamiento de los picos de las 
resonancias de los LSP cuando pasamos del campo cercano al lejano ha sido analizado mediante el 
estudio de la contribución de las ondas evanescentes y propagantes al campo emitido. Para este tipo 
de partículas dipolares, se ha observado que las ondas evanescentes son las responsables del este 
corrimiento al rojo y ensanchamiento. Es más, se ha probado que este corrimiento es un fenómeno 
universal, y por lo tanto, sirve para enunciar una nueva ley general: este corrimiento es mayor 
cuanto más grande es la parte imaginaria de la permitividad eléctrica de la nanoestructura. A partir 
de esto, y teniendo en cuenta el interés reciente en la difusión de luz por partículas 
magnetodieléctricas, el propósito de este trabajo es la investigación del efecto de la contribución de 
las ondas evanescentes al comportamiento del campo difundido en campo cercano y lejano por este 
tipo de partículas, las cuales muestran efectos coherentes entre los modos dipolares eléctricos y 
magnéticos excitados. Los resultados obtenidos deben ser útiles para la predicción e interpretación 
del comportamiento espectral en aplicaciones como SERS o procesos equivalentes con 
configuraciones propuestas hechas de nano antenas dieléctricas donde las perdidas óhmicas son 
muy bajas.

Palabras clave: magnetodieléctrico, radiativo, no radiativo, ondas evanescentes, corrimiento al rojo,  
ensanchamiento, campo cercano, campo lejano.
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1. INTRODUCTION

! Nowadays we are living in the era of the miniaturization. When Richard Feynman first 
postulated the possibility of direct manipulations of a bulk of atoms, or atoms themselves, in his 
lecture “There’s plenty of Room at the Bottom”, he set the bases of nanotechnology. What he 
proposed sounded futuristic and the road to that goal seemed extremely long. However, the 
increasing demand of miniaturized devices in fields such as medicine or communication has led to 
an astonishing evolution of nanotechnology.
!  Nanotechnology is a new branch in science in charge of the study and the manipulation of 
matter at a nanoscale level. When the interaction between matter and light is considered at  
dimensions of the nanometer we are talking about nanophotonics. One of the most important 
discipline in this area of study is nanoplasmonics due to its enormous quantity of applications.
!  Nanoplasmonics [1] studies the optical phenomena in the nanoscale vicinity of metallic 
surfaces. In a metallic nanoparticle electrons in the conduction band can be considered to move 
freely through the surface. When a metallic nanoparticle is placed in an electromagnetic field whose 
wavelength, !, is bigger than its size, the free charges start to oscillate. There is a characteristic 
frequency which depends on the electron density of the metal known as plasma frequency. When 
the incident electromagnetic field oscillates with a frequency equal to the plasma frequency a 
resonance is produced. As a result, a charge displacement with respect to the lattice ions is produced 
and a localized surface plasmon (LSP) is created. These surface plasmons produced very intense 
and localized electromagnetic fields confined in the vicinity of the metallic nanoparticle surface at 
dimensions smaller than the wavelength.
! These particular characteristics of metallic nanoparticles are used for new techniques of 
spectroscopy such as Surface Enhancement Raman Spectroscopy (SERS). This type of 
spectroscopy requires the control of the peak position of the resonance in the near field because in 
this region is where the molecules are placed. This position, that depends on the size and refractive 
index of the nanoparticle, has led to a great development in the LSP studies. 
! In the last years the position of the resonance peaks were calculated in terms of the 
scattering and extinction spectra. These types of spectra are measured at distances much larger than 
the wavelength, in the region known as far field. However, what is interesting for SERS is the 
position of the resonance peaks near the surface of the nanoparticle, at the near field regime. 
! More precisely, the far field is defined as the region where kr>>1, and the near field where 
kr<1.  k  is a magnitude known as wavelength number and it is defined by k=2"/!.  r is the distance 
at which the measurement is done. 
! One of the first experimental attempts to show the different behavior at the near and far field 
regimens were made by Alonso-González et al [2]. Their results showed that the resonance peak in 
the near field regime was red shifted with respect to the far field regime.!
! The explanation of this phenomenon has led to great discussion. There are interpretations 
based in different principles.
! On the one hand, this phenomena has been explained by considering the metallic 
nanoparticles to behave like an electric dipole. This electric dipole was considered as a driven, 
damped harmonic oscillator [3, 4, 5]. This damping caused by the emission of light into the free 
space has been said to be the reason of the redshift.
! On the other hand, this redshift has been explained in terms of the radiative and non 
radiative contribution to the total scattered field [6] while considering the metallic nanoparticle as 
an electric dipole. Whereas in far field the radiative contribution takes the lead roll and the non 
radiative is negligible,  in near field it is the other way round.! !
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! As it has been said, depending on the particle parameters such as refractive index or size this 
localized surface plasmons will appear for different wavelengths. In addition, depending on the 
relation between the size of the particle and the wavelength of the incoming electromagnetic field 
the charge distribution in the surface will be more or less complex. For example, if the size of the 
particles is much more smaller than the wavelength of the incoming electromagnetic field, a dipolar 
charge distribution will appear. However, if the the size of the particle is increased, the charges in 
the interior of the nanoparticles are subjected to different electromagnetic fields. This anisotropy 
leads to more complex charge distributions and to higher order resonances such as the quadrupolar, 
octupolar, etc.!
! Although all these studies have only been done with metals, these materials present 
absorption, so part of the incident energy is lost by Joule effect. For this reason in the last years 
dielectric particles with high refractive index have became a new topic of research. 

! Dielectric particles with high refractive index also show this plasmonic-like resonances for 
certain size, configurations and incident wavelengths. Due to the fact that they do not absorb any of 
the radiation they have become a revolution in nowadays technology [14,15]. 
! Dielectric materials do not have free electrons unlike metals. As a result of this difference 
the resonances that show high refractive index (HRI) materials, are not produced by plasmonic 
mechanisms as in the case of metals. However, a similar phenomenon, known as Whispering 
Gallery Modes, takes place.
! This name was inspired in the whispering gallery of St Paul’s Cathedral in London in which 
a whisper emitted in one point of the gallery could be heard across the dome, but not in any 
intermediate point. The first one who gave an explanation to this phenomena was Lord Rayleigh. 
The Whispering Gallery Modes [7] are resonances produced inside the dome. They are waves that 
travel around the cavity supported by continuous reflection that meet the resonance condition after 
each lap. As a result it interfere constructively with itself.
! A similar phenomena is produced in HRI particles but instead of sound, light is the wave 
bouncing in the interior of the particle. Because the dielectric sphere has a refractive index higher 
than the medium in which it is placed, the beam suffers total reflection in the boundary between the 
two media. As a result, the electromagnetic field is not able to leave the interior of the dielectric 
sphere and keeps circulating returning to the same point with the same phase producing a 
constructive interference. This mechanism apart from electric resonances, due to the displacement 
currents, produces magnetic resonances too.
! By varying the refractive index, the size and other optical properties of the nanoparticles, it 
is possible to build nano-structures with the characteristics that suit better the function for which 
they have been designed. It is possible to choose which wavelength the resonances are produced 
for, in which regime of the spectrum their optical properties are active...
! Another advantage that HRI nanoparticles have with respect to metallic nanoparticles is that 
they can fulfill the Kerker’s scattering conditions: zero forward and zero backward scattering due to 
coherent effects between the excited electric and magnetic dipolar terms. The possibility of  
controlling the directionally of the scattered radiation has opened new branches of research 
concerning nano-antennas, cloaking devices, solar cells, SERS ...!
! Due to all of these characteristics, high refractive index materials have become one of the 
most interesting research topic in the field of nanophotonics.
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2. OBJECTIVES AND WORK SCHEME

2.1 OBJECTIVES
!

! The main purpose of this work is to analyze the radiative and non radiative contribution to 
the total scattered field by high refractive index spherical nanoparticles. Through this study it is 
expected to give an explanation to the red shift and broadening of the resonance peaks of the 
electric and magnetic scattered field by HRI particles in near field with respect to the far field 
regime. All this study will be done by means of an approximation in which the HRI particles are 
considered to behave as an electric dipole crossed to a magnetic dipole.
! Another goal of this project is to prove that this approximation is a good approach to 
consider this problem. In order to achieve this goal, the spectral evolution of the total scattered field 
by a metallic and a HRI particle calculated by means of the approximation will be compared with 
the exact solution given by Mie Theory.
! For this study an HRI spherical nanoparticle of radius a=7.5 mm and #=16 has been 
considered. However, a more general analysis has been done too by removing the dependence to the 
HRI nanoparticle parameters.!
! Although the dimensions are not in the nanoscale, the results are equivalent to those of a 
nanoparticle. This re-escalation is due to experimental reasons[8]. The data obtained through these 
experiments, which are done in the microwave spectral range, have been used as a basis for all the 
following calculations. Such re-escalation can be done because while !/(a#1/2) remains constant, the 
shape of the spectra does not change.

2.2 WORK SCHEME
!
! First of all, a review on the literature concerning the topic of study has been made. This 
review includes Mie Scattering Theory, the dipole approximation for high refractive index (HRI) 
spherical nanoparticles, the radiative and non radiative contribution to the electromagnetic fields,  
the spectral evolution of the localized plasmon resonances in near and far field for metallic 
nanoparticles, and the Kerker’s conditions. Then, the laboratory system in which the calculus were 
done will be presented so as the computer programs done in order to do all the calculations needed 
to analyze the topic of this work.
! The different steps that will be followed in order to achieve the main objectives of this work 
are:

• Comparison of the dipole approximation with the exact solution given by Mie theory for a 
metallic and a HRI nanoparticle.

• Calculation of the intensity of the electric and magnetic field scattered by the electric and 
magnetic dipole terms of the dipole approximation of a HRI nanoparticle in near and far 
field.

• Calculation of the intensity of the radiative and non radiative contribution to the electric 
and magnetic field for a specific and general case of a HRI spherical nanoparticle.

• Calculation of the intensity of the electromagnetic field scattered by the electric and 
magnetic dipole terms of the dipole approximation of a HRI nanoparticle in near and far 
field by means of the Poynting vector.

• Calculation of the intensity of the radiative and non radiative components of the scattered 
electromagnetic waves to the Poynting vector of the electromagnetic field scattered by a 
HRI nanoparticle.
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3. THEORETICAL BACKGROUND

3.1 MIE’S THEORY
!
! Mie’s Theory [8] provides a way to calculate the field scattered and absorbed by spheres of 
arbitrary radius, a, and refractive index, n. By expanding the incident electromagnetic wave into 
spherical harmonics, Gustav Mie was able to solve the Maxwell equations for this kind of geometry 
taking into account the boundary condition between the sphere and the medium that surrounds it.
! The solutions of the absorbed and scattered fields are developed into vector spherical 
harmonics. Both  solutions depend on different coefficients which are called Mie coefficients. On 
the one hand there are the scattering coefficients which are usually denoted as an and bn. On the 
other hand there are the coefficients related to the field inside the sphere, cn and dn.
 ! For a linear, homogeneous and isotropic medium, the electromagnetic field must satisfy the 
Helmholtz equation

where E and H are the electric and magnetic fields and k= 2"n/!, being n the refractive index of the 
medium and ! the wavelength of the electromagnetic field.
! If the electromagnetic field travels through a free charge medium, the divergence of the 
electric and the magnetic field is zero

and the relation between the electric and magnetic field is given by

where i is the imaginary unit, $ the angular frequency of the electromagnetic field, % the magnetic 
permeability of the medium and # the electric permittivity of the medium.
! In order to solve the Helmholtz equation it is convenient to define a new function, M, as

where c is a constant vector and & an scalar function. The divergence of the function M is zero.
! Taking into account the relation between the electric and magnetic fields, it is possible to 
generate another divergence free function from M that fulfill the Helmholtz equation

! This pair of function, M and N, are known as the vector harmonics. By means of this 
functions the initial problem of solving a vectorial differential equation, Helmholtz equation, has 
been simpiflied to an easy one, finding the solution to a scalar differential equation

!

!2
r
E + k 2

r
E = 0             !2

r
H + k 2

r
H = 0

!
r
E = 0             !

r
H = 0

!"
r
E = i!µ

r
H              !"

r
H = i!"

r
E

r
M = !" (rc·! )

r
N = !"

r
M
k

!2! + k 2! = 0 
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! Because this theory is going to be applied to spheres, the correct set of coordinates to solve 
this problem are the spherical coordinates. So the scalar function chosen to generate the vector 
harmonics must satisfy the wave equation in spherical coordinates

! In order to solve this equation it is necessary to apply the separation of variables method. So 
the solutions that are being sought, have this form

which when are substituted into (3.1.7) leads to three separated equations. The solution to these 
three equations are

where m is an integer, Pnm are the associated Legendre functions of first kind, of degree n and order 
m, where n=m, m+1 … and zn represents the spherical Bessel functions. The subscripts o and e 
indicates either the function has a positive (even) or negative (odd) parity.
! By introducing these into the expression (3.1.4 and 3.1.5) the formula of the vector spherical 
harmonics, M(1)o1n, M(1)e1n, N(1)o1n, N(1)e1n,  are obtained.  This  peculiar functions give the normal 
modes of a spherical particle.
! Let a linearly polarized plane wave of wavelength " be incident on a spherical particle of 
radius a in the vacuum (#=1). The electric permittivity of the particle is # and its magnetic 
permeability is %. In a laboratory coordinate system, the incident electric and magnetic fields are 
given by

with a wave propagation direction, k=2"/!(sin' cos(, sin' cos(, cos').
! The expansion of these incident fields into vector spherical harmonics can be expressed as

where $ is the angular frequency of the field, % the magnetic permeability of the medium and the 
super index (1) indicates that the spherical Bessel function of first kind,  jn(kr), should be used for 
the calculus of the vector spherical harmonics M(1)o1n, M(1)e1n, N(1)o1n, N(1)e1n. 
! Therefore, the scattered field is

where the super index (3) indicates that the spherical Hankel function, hn(1), may be used for the 
calculus of the vector spherical harmonics of these expansions.

1
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! The scattering coefficients, an and bn, can be expressed as a function of the Ricatti-Bessel 
functions

! For a non magnetic medium the expressions of the scattering coefficients are

where x is the size parameter and m is the relative refractive index defined by

! In addition, the expansion in terms of the Mie scattering coefficients gives us a multipolar 
expansion of the field. The an coefficients represent the electrical contribution whereas the bn 
coefficients represent the magnetic contribution to the scattered field. The subindex n indicates 
which multipole we are considering. For example, n=1 represents the dipole term, n=2 the 
quadrupole terms, n=3 the octupole terms and so on.
! By evaluating them as function of the wavelength it is easy to know which wavelength the 
resonances are produced for. For example, the wavelength that makes a1 maximum is the one at 
which the electric dipole resonance is produced.
! A related magnitude with the scattering problem is the scattering efficiency, Qsca. This 
scattering efficiency gives the relation between the interaction and the particle cross sections. It can 
also be defined the extinction efficiency, Qext. Both magnitudes can be expressed in terms of the Mie 
scattering coefficients as

! Due to energy conservation, the extinguished radiation may be equal to the sum of the 
scattered and absorbed radiation. As a result of this, it is possible to give an expression for the 
absorption efficiency, Qabs.

!

! n(") = " jn(")       #n(") = "hn
(1) (")

an =
m! n(mx)! 'n(x)!! n(x)! 'n(mx)
m! n(mx)" 'n(x)! "n(x)! 'n(mx)

     bn =
! n(mx)! 'n(x)!m! n(x)! 'n(mx)
! n(mx)" 'n(x)!m"n(x)! 'n(mx)

x = 2!a
"

     m =
nsphere
nmedium

 

Qext =
2
x2 (2n+1)

n=1

!

" Re(an + bn )         Qsca =
2
x2 (2n+1)

n=1

!

" ( an
2
+ bn

2
)

Qabs = Qext !Qsca
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3.2 DIPOLE APPROXIMATION FOR METALLIC AND HIGH REFRACTIVE 
INDEX NANOPARTICLES

! Metallic and high refractive index (HRI) nanoparticles with size much smaller than the 
wavelength show different behavior when they are illuminated. While metallic ones only present 
electric dipole resonances, HRI nanoparticles can show both electric and magnetic dipole 
resonances. In terms of the Mie Theory, the behavior of metallic particles is dominated by the 
scattering coefficient a1.  Usually, for this kind of particles the b1 coefficient is negligible. However, 
for HRI particles, a1 and b1 are necessary to explain their scattering behavior.
! Although the exact solution of the scattered field by spheres of arbitrary size and refractive 
index is given by Mie Theory, it is possible to use an approximation for metallic and HRI 
nanoparticles to calculate their scattered field when their size is much smaller than the wavelength 
of the incident light.
! By using this approximation, particles are modeled as dipoles. In the case of the metallic 
nanoparticles, because they only present electric dipole resonances, they are considered as electric 
dipoles. On the contrary, HRI nanoparticles are considered as an electric dipole perpendicular to a 
magnetic dipole because they show electric and magnetic dipole resonances.
! Because the electric and magnetic fields radiated by electric and magnetic dipoles are well 
known, it is easy to obtain the total scattered field by metallic and HRI nanoparticles. In addition, 
by using this approximation it is easier to separate the electric from the magnetic response of the 
nanoparticles.!
! The expressions for the electric and magnetic fields radiated by an electric dipole, ES elec and 
HS elec, are respectively given by [9]

! The expressions for the electric and magnetic fields radiated by a magnetic dipole, ES mag and 
HS mag, are respectively given by [9]

where p and m are

r
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r 2 +
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%
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(
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,
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and a1 and b1 are the Mie scattering coefficients.
! For metallic nanoparticles, because they are modeled as electric dipoles, the total electric 
and magnetic scattered fields are given by

! However, due to the fact that HRI nanoparticles are modeled as an electric dipole 
perpendicular to a  magnetic dipole, the total electric and magnetic scattered fields are

! This formulation of the electric and magnetic scattered fields provides an easy way to 
separate the electric and magnetic dipolar contributions to them. By taking the electric and magnetic 
fields scattered by the magnetic dipole equal to zero, ES mag(r)=0 and HS mag(r)=0, only the electric 
dipolar term is being considered. On the contrary, by taking the electric and magnetic fields 
scattered by the electric dipole equal to zero, ES elec(r)=0 and HS elec(r)=0, only the magnetic dipolar 
term is being considered in this approximation.
! In the next figure shows how the electric and magnetic dipoles are oriented depending on the 
linear polarization of the incoming electromagnetic field. The electric dipole (blue arrow) is 
considered to be parallel to the linear polarization of the electric field. The same thing happens with 
the magnetic dipole in the case of HRI nanoparticles, for which the magnetic dipole is considered to 
be in the same direction as the linear polarization of the magnetic field. The displacement current 
generated by the magnetic dipole is represented by the blue circle.
!

Figure 3.1. Representation of the dipole approximation for a high refractive index (HRI) and a metallic nanoparticle. It 
is shown the orientation of the electric dipole (blue arrow) and the displacement current produced by the magnetic 
dipole (blue circle) for a determined linear polarization of the incoming electromagnetic field.
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3.3 RADIATIVE AND NON RADIATIVE CONTRIBUTION

! The angular spectrum representation [10] is a method used to solve propagation, radiation, 
scattering and diffraction problems by expanding the electromagnetic field into plane waves. The 
scattered field by spheres can be expanded into its radiative and non radiative contribution by using 
this representation. Whereas the radiative contribution takes the main role in far field optics, the non 
radiative contribution cannot be neglected in near field optics. !
! Let’s consider a monochromatic scalar wavefield propagating in a source free region of the 
space with z > 0.  The spatial part of the wavefield, U(r.), satisfies the Helmholtz equation

! We assume that at any z-constant plane the wavefield, U(r.), has a Fourier transform given by 
the next formula

! By introducing this expression into the Helmholtz equation one obtains

where

! There are two solutions for the differential equation (3.3.3)

! By introducing these expressions into the equation (3.3.2), we obtain

! These expressions are the angular spectrum representations of the wavefield in the source 
free half space. The first one corresponds to plane waves components propagating into z)0 whereas 
in the second one the plane waves components are propagating into z*0.
! When m takes real values, (3.3.4.a), the components are called homogenous or radiative. On 
the contrary, if m takes imaginary values, (3.3.4.b) the components are called inhomogenous or non 
radiative. These inhomogenous components are also called evanescent waves and their amplitude 
decay exponentially along the z-axis.

!2U + k 2U = 0      for  z "1

U (x, y, z) = %U ( p,q,m) 
!"

"

## eik ( px+qy )dpdq

!2

!z2
%U ( p,q, z) +k 2m2 %U ( p,q, z) = 0

m = 1! p2 ! q2       for  p2 + q2 "1

m = i p2 + q2 !1      for  p2 + q2 >1

%U1( p,q, z) = a( p,q)eikmz            %U2( p,q, z) = b( p,q)e! ikmz

U (x, y, z) = a( p,q)  
!"

"

## eik ( px+qy+mz )dpdq      V (x, y, z) = a( p,q)  
!"

"

## eik ( px+qy!mz )dpdq
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(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4.a)
(3.3.4.b)

(3.3.5)

(3.3.6)



! The angular spectrum of the wavefield propagating through z > 0 in spherical coordinates 
takes a very useful form that allows us to solve problems that involve spheres. In this case, the polar 
angles characterize the components of the unit vector s=(p,q,m). 

p=(sin' cos()
q=(sin' sin() 

m=cos'. 
! The ( angle is real and takes values between [-", "]. However ' may take imaginary values.  
The ' angle depends on the value of m (equation (3.3.7.c) ). On the one hand, as p2+q2 grows from 
p2+q2=0 to p2+q2=1 (equation (3.3.4.a)) ' takes values between [0, "/2]. On the other hand, when 
p2+q2 takes values that fulfill the condition p2+q2>1, m takes imaginary values (equation (3.3.4.b)) 
in the interval [0, i+]. However, if '= "/2-i, then m=cos("/2-i,) = i sinh, which also grows from 
m=0 to m=i+. So for p2+q2>1, ' takes values as ' = "/2-i,.
- As a result, the angular spectrum of the wavefield propagating through z > 0 in spherical 
coordinates is given by

! The second integral can be divided into two parts: the one with a real integrating angle, 
which corresponds to the radiative contribution, and the one with an imaginary integrating angle,  
which corresponds to the non radiative contribution.
! This expression can be particularized for the case of the electromagnetic field scattered by a 
sphere in terms of a multipolar expansion [11]. The angular spectrum of plane waves of the 
scattered field by a sphere is given by

where the angular spectra S1 (cos#) and S2 (cos#) are

where  "n and .n are the angle-depend function from Mie scattering.
! Because we are interested in magnetodielectric particles, only the terms with n=1 will be 
considered. This terms only take into account the electric and magnetic dipolar contributions.
! Finally, the angular spectrum of plane waves of the scattered field by a magnetodielectric 
particle can be written in terms of a1 and b1 as
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(3.3.7.a)
(3.3.7.b)
(3.3.7.c)

(3.3.8)

(3.3.9.a)

(3.3.9.b)

(3.3.10)

(3.3.11)



! This equations are expressed in such a way that the response of the electric and the magnetic 
dipole can be easily separated. By considering a1=0, only the electromagnetic field scattered by the 
magnetic dipole is being considered. On the contrary, if b1=0, only the electromagnetic field 
scattered by the electric dipole is being considered. For example, when the radiative and non 
radiative contribution to the scattered field by a metallic nanoparticles under the dipole 
approximation is being calculated, b1=0 is considered in the equations (3.3.11).
! In the laboratory coordinate system (see figure 3.2) k=2"/!(sin' cos(, sin' cos(, cos'), e'=
(cos' cos(, cos' sin(, -sin') and e(=(-sin(, cos(, 0). By dividing the coordinate ' into two 
intervals, [0, "/2] and ["/2-i0, "/2-i+], the radiative and non radiative contribution can be obtained.

Figure 3.2. Scheme of the laboratory system considered during the calculus. A HRI spherical particle has been placed 
in the origin of a laboratory coordinate system. It has been illuminated with a plane wave electromagnetic field 
traveling in the z-direction. At a point r the contribution of the plane wave with wave vector k(",#) to the angular 
spectrum of the scattered field is also represented.

! Then, the total scattered field can be expressed in terms of the radiative and non radiative 
contribution as

where ESR represents the radiative contribution and ESN-R represents the non radiative contribution.
! However, due to the arduousness of the evaluation of the non radiative integral, this 
contribution is obtain by the subtraction of the total scattered field and the radiative contribution.

! In the following calculations the square modulus of the electric, |E2|, and the magnetic fields, 
|H2|, are going to be analyzed. By calculating this magnitude from equation 3.3.12, it is obtained

 ! As it can be seen, the intensity of the total scattered field is not just the sum of the intensities 
of both contributions. A interference term between the radiative and non radiative contribution has 
to be added  too.
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(3.3.12)

(3.3.13)

(3.3.14)
(3.3.15)



3.4 SPECTRAL BEHAVIOR OF LOCALIZED PLASMON RESONANCES IN 
NEAR AND FAR FIELD FOR METALLIC NANOPARTICLES.

! When the spectral evolution of the LSP peaks produced in metallic nanoparticles are studied 
in the near and far field regimes, two main differences are observed: The LSP near field peak is red 
shifted with respect to the LSP far field peak. In addition, a broadening of the peak is produced in 
the transition from far to near field [6]. This features can be seen in the next figures, where the 
scattered field by a silver nanoparticle of radius a=25 nm has been calculated at the point (a,0,0) in 
the near and far field (see Figure 4.1) regimens.!

Figure 3.3. Spectral evolution of the total scattered field by a silver nanoparticle of radius a=25 nm calculated at the 
point (a,0,0), in the near and far field regime. A broadening and a red shift of the near field LSP peak with respect to the 
far field LSP peak can be seen.!
! This phenomenon can be explained in terms of the radiative and non radiative contribution 
to the total scattered field [6]. The non radiative contribution composed mainly of evanescent waves 
keeps attached to the surface of the scatterer. As the distance from the scatterer increases, the 
amplitude of these waves decreases exponentially and the radiative part of the scattered wave starts 
to dominate.

Figure 3.4. Spectral evolution of |ERad|2 (green solid line),  |ENon Rad|2 (blue solid line) and |ETot|2 (red dots) at the point 
(a,0,0) of a spherical silver nanoparticle with a=25nm.
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! As it can be seen in Figure 3.4, the spectral evolution of the total scattered field matches 
exactly the one of the non radiative contribution. In addition, it can be seen how the total and non 
radiative contribution resonance peak is redshifted and broader than the peak of the radiative 
contribution.
! Figure 3.5 shows a more general study of this phenomenon. In this plot the dependence with 
the particle parameters has been suppressed by dividing the different contributions by the Mie 
scattering coefficient a1. This parameter is the one who contains all the particle information (size 
and refractive index). So this plot shows the universal behavior of metallic nanoparticles.
! One of the features that are clearly represented in Figure 3.5 is that in near field the non 
radiative contribution takes the lead roll while the radiative contribution is negligible.  In addition, it 
is important to point out that he interference between the radiative and non radiative contribution is 
also negligible. 
! Due to the fact that in near field the non radiative contribution resonance peak is red shifted 
and broader than the resonance peak of radiative contribution, and it dominates over the latter, the 
evanescent waves could be responsible of the broadening and the redshift observed in Figure 3.3.
! Figure 3.5 also shows an universal dependence on the incident wavelength under the dipole 
approximation. This universal law determines that while the incident wavelength increases, so does 
|ENon Rad/a1|2 following a power law !n with n/6. In the far field regime the radiative contribution 
follows a power law with n/2 as the Rayleigh approximation dictates [8]. 

Figure 3.5. Spectral evolution of |ERad/a1|2 (green solid line), |ENon Rad/a1|2 (blue crosses) and |ETot/a1|2 (red dots) at the 
point (a,0,0) where a is the radius of the nanoparticle. The interference between contributions is also represented by a  
magenta line. The blue line represents the numerical fitting of the spectral evolution of the non radiative contribution to 
a power law a+b$5.8.

! Another factor that takes an important role in this phenomenon is the magnitude of the 
imaginary part of the electric permittivity, #i, in the spectral range in which the study is done. 
Materials like gallium or nickel with a high #i suffer a bigger red shift than those with low #i  as 
silver, gold or aluminum.  
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3.5 KERKER’S CONDITIONS

 ! In the early eighties Kerker et al. [13] showed that the light scattered by spherical particles 
with magnetic properties (%01) presents unusual scattering properties. A particle with this 
characteristics shows both electric and magnetic resonances that can be expressed in terms of the 
Mie scattering coefficients an and bn.
! When a1 = b1, the electric permittivity is equal to the magnetic permeability, (%=#), and the 
zero backward scattering condition is fulfilled. Under this condition the intensity of the 
backscattered light is zero (see Figure 3.6 (left)). However, when a1 = -b1, the electric permittivity 
has opposite sign to the magnetic permeability, (%=-#), and the zero forward scattering condition is 
achieved (see Figure 3.6 (right)).
!  If we consider high refractive index nanoparticles, the scattered field can be described as an 
electric and magnetic dipole with Mie scattering terms a1 and b1. As a result it is also possible to 
observe the Kerker’s conditions [12] in this type of particles. 

Figure 3.6. Polar representation of the intensity of the scattered electromagnetic field by a high refractive particle when 
it is fulfilled the zero backward condition (left) or the zero forward condition (right). The red arrow represents the 
direction in which the particle is being illuminated.
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4. RESULTS
! In this section the results of the calculus will be exposed as well as their physical 
interpretation. In addition, a brief explanation of the laboratory system considered during the 
calculus and the programs created to do them will be given.

4.1 LABORATORY SYSTEM
 -
- In all the analyzed situations a spherical HRI particle of radius a= 7.5mm with constant 
refractive index n=4 has been considered. The particle has been illuminated by a plane wave 
electromagnetic field. This incident electromagnetic field has been considered to travel in the z-
direction, with the electric field linearly polarized along the x-direction and the magnetic field 
linearly polarized along the y-direction (see Figure 3.2). 
! In Figure 3.2 is also represented the contribution in a r distant point of a plane wave to the 
angular spectrum of the scattered field. The calculus made of the radiative and non radiative 
contributions are made by taking into account this reference frame and coordinates ' and (.
- For the dipole approximation in the case of the metallic particles, the electric dipole will be 
considered to be oriented along the x-direction. In the case of HRI nanoparticles, the electric dipole 
will be considered to be oriented along the x-direction and the magnetic dipole along the y-direction 
(see Figure 3.1). 
! All the calculation will be done in two different points of the particle: (a,0,0) and (0,0,a). 
These two points have been chosen because for the electric dipole resonances the hot spot is 
produced at (a,0,0) and the minimum at (0,0,a) (see Figure 4.1).

Figure 4.1. Scheme of the orientation of the dipoles taken during the calculus for HRI and metallic nanoparticles using 
the dipole approximation. With a blue arrow is represented the electric dipole whereas with the blue circle is 
represented the displacement current produced by the magnetic dipole.  The points (a,0,0) (hotspot) and (0,0,a) 
(minimum) are the places where all the calculations are going to be done. The color map represents the intensity of the 
scattered electric field near the surface of the scatterer (near field distribution).
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4.2 COMPUTER PROGRAMS

! In order to calculate the radiative and non radiative contribution to the total electric scattered 
field a computer program using Matlab programming language has been done. It is formed by 
different functions:
• coeficiente_an_no_vacio.m: calculate the Mie scattering coefficient an from incoming 

parameters as the wavelength, radius and refractive index of the particle, refractive index of the 
medium and order n.

• coeficiente_bn_no_vacio.m: calculate the Mie scattering coefficient bn from incoming 
parameters as the wavelength, radius and refractive index of the particle, refractive index of the 
medium and order n.

• campo_dipolos_cualquier_punto.m: calculate the intensity of the electric field scattered by an 
electric and a magnetic dipole both crossed at any point of space in the laboratory system. The 
incoming parameters are the wavelength, refractive index and radius of the particle, refractive 
index of the medium and the point of space in which the calculus is done.

• campo_homo_cualquier_punto.m: calculate the intensity of the homogenous contribution of the 
electric field at any point of space. The incoming parameters are the wavelength, refractive index 
and radius of the particle, refractive index of the medium and the point of space in which the 
calculus is done. 

• campo_inhomo_cualquier_punto.m: calculate the intensity of the inhomogenous contribution of 
the electric field in any point of space. The incoming parameters are the wavelength, refractive 
index and radius of the particle, refractive index of the medium and the point of space in which 
the calculus is done.

• inter_cualquier_punto.m: calculate the interference of the homogenous and inhomogenous 
contributions in any point of space. The incoming parameters are the wavelength, refractive 
index and radius of the particle, refractive index of the medium and the point of space in which 
the calculus is done.

• pinta_homo_inhomo_dip.m: plot in the same figure all the contributions. The incoming 
parameters are the wavelength, refractive index and radius of the particle, refractive index of the 
medium and the point of space in which the calculus is done.

• plot_field: calculate and plot the intensity of the electric field scattered by a spherical particle  in 
the XZ plane considering the Dipole Approximation. The incoming parameters are the 
wavelength, refractive index and radius of the particle, and a matrix with the evaluation points in 
the XZ plane.

• plot_field_homo: calculate and plot the intensity of the radiative contribution to the electric field 
scattered by a spherical particle  in the XZ plane considering the Dipole Approximation. The 
incoming parameters are the wavelength, refractive index and radius of the particle, and a matrix 
with the evaluation points in the XZ plane.

• plot_field_inhomo: calculate and plot the intensity of the non radiative contribution to the 
electric field scattered by a spherical particle in the XZ plane considering the Dipole 
Approximation. The incoming parameters are the wavelength, refractive index and radius of the 
particle, and a matrix with the evaluation points in the XZ plane.

• plot_field_inter: calculate and plot the interference of the homogenous and inhomogenous 
contributions in the XZ plane. The incoming parameters are the wavelength, refractive index and 
radius of the particle, and a matrix with the evaluation points in the XZ plane.

! Similar programs have been done in order to calculated the radiative and non radiative 
contribution to the total magnetic scattered field. 
!
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! The HRI nanoparticles have been modeled as two dipoles. In order to know the behavior of 
the electric and magnetic fields scattered by the isolated electric dipole, some computer programs 
have been created in order to achieve this goal. The whole program has been programmed with 
Matlab programming language and it is made from several functions which are presented below:
• campo_elec_dipolo_elec_isolated.m: calculate the electric field scattered by a spherical 

nanoparticle modeled as a electric dipole at any point of space. It also calculate its intensity and 
intensity normalized to the Mie coefficient a1. The incoming parameters are the wavelength, 
refractive index and radius of the particle, refractive index of the medium and the point of space 
in which the calculus is done.

• campo_elec_inhomogeneo_dip_elec_isolated.m: calculate the non radiative contribution to the  
electric field scattered by a spherical nanoparticle modeled as a electric dipole at any point of 
space. It also calculate its intensity and intensity normalized to the Mie coefficient a1. The 
incoming parameters are the wavelength, refractive index and radius of the particle, refractive 
index of the medium and the point of space in which the calculus is done.

• campo_elec_homogeneo_dip_elec_isolated.m: calculate the radiative contribution to the  
electric field scattered by a spherical nanoparticle modeled as a electric dipole at any point of 
space. It also calculate its intensity and intensity normalized to the Mie coefficient a1. The 
incoming parameters are the wavelength, refractive index and radius of the particle, refractive 
index of the medium and the point of space in which the calculus is done.

• campo_elec_inter_dip_elec_isolated.m: calculate the interference between the radiative and non 
radiative contribution of the total electric scattered field by a spherical nanoparticle modeled as a 
electric dipole at any point of space . The incoming parameters are the wavelength, refractive 
index and radius of the particle, refractive index of the medium and the point of space in which 
the calculus is done.

• campo_mag_dipolo_elec_isolated.m: calculate the magnetic field scattered by a spherical 
nanoparticle modeled as a electric dipole at any point of space. It also calculate its intensity and 
intensity normalized to the Mie coefficient a1. The incoming parameters are the wavelength, 
refractive index and radius of the particle, refractive index of the medium and the point of space 
in which the calculus is done.

• campo_mag_inhomogeneo_dip_elec_isolated.m: calculate the non radiative contribution to the  
magnetic field scattered by a spherical nanoparticle modeled as a electric dipole at any point of 
space. It also calculate its intensity and intensity normalized to the Mie coefficient a1. The 
incoming parameters are the wavelength, refractive index and radius of the particle, refractive 
index of the medium and the point of space in which the calculus is done.

• campo_mag_homogeneo_dip_elec_isolated.m: calculate the radiative contribution to the  
magnetic field scattered by a spherical nanoparticle modeled as a electric dipole at any point of 
space. It also calculate its intensity and intensity normalized to the Mie coefficient a1. The 
incoming parameters are the wavelength, refractive index and radius of the particle, refractive 
index of the medium and the point of space in which the calculus is done.

• campo_mag_inter_dip_elec_isolated.m: calculate the interference between the radiative and non 
radiative contribution of the total magnetic scattered field by a spherical nanoparticle modeled as 
a electric dipole at any point of space . The incoming parameters are the wavelength, refractive 
index and radius of the particle, refractive index of the medium and the point of space in which 
the calculus is done.

• poynting_total_dip_elec_isolated.m: calculate the Poynting vector of the total field scattered by 
a spherical nanoparticle modeled as a electric dipole at any point of space. The incoming 
parameters are the wavelength, refractive index and radius of the particle, refractive index of the 
medium and the point of space in which the calculus is done.
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• poynting_vec_homo_dip_elec_isolated.m: calculate the Poynting vector of the radiative 
contribution to the total field scattered by a spherical nanoparticle modeled as a electric dipole at 
any point of space. The incoming parameters are the wavelength, refractive index and radius of 
the particle, refractive index of the medium and the point of space in which the calculus is done.

• poynting_vec_inhomo_elec_isolated.m: calculate the Poynting vector of the non radiative 
contribution to the total field scattered by a spherical nanoparticle modeled as a electric dipole at 
any point of space. The incoming parameters are the wavelength, refractive index and radius of 
the particle, refractive index of the medium and the point of space in which the calculus is done.

• pinta_cualquier_punto_elec_dip_elec_isolated_div_an.m: plot the intensity of the electric field, 
its radiative and non radiative contribution normalized to a1 scattered by a spherical nanoparticle 
modeled as a electric dipole at any point of space. The incoming parameters are the wavelength, 
refractive index and radius of the particle, refractive index of the medium and the point of space 
in which the calculus is done.

• pinta_cualquier_punto_elec_dip_elec_isolated.m: plot the intensity of the electric field, its 
radiative and non radiative contribution scattered by a spherical nanoparticle modeled as a 
electric dipole at any point of space. The incoming parameters are the wavelength, refractive 
index and radius of the particle, refractive index of the medium and the point of space in which 
the calculus is done.

• pinta_cualquier_punto_mag_dip_elec_isolated_div_an.m: plot the intensity of the magnetic 
field, its radiative and non radiative contribution normalized to a1 scattered by a spherical 
nanoparticle modeled as a electric dipole at any point of space. The incoming parameters are the 
wavelength, refractive index and radius of the particle, refractive index of the medium and the 
point of space in which the calculus is done.

• pinta_cualquier_punto_mag_dip_elec_isolated.m: plot the intensity of the magnetic field, its 
radiative and non radiative contribution scattered by a spherical nanoparticle modeled as a 
electric dipole at any point of space. The incoming parameters are the wavelength, refractive 
index and radius of the particle, refractive index of the medium and the point of space in which 
the calculus is done.

- Similar programs have been done to study the electric and magnetic fields scattered by the 
isolated magnetic dipole. In this case the normalization have been done to b1.
! For doing the comparison between the exact method, Mie Theory, and the  dipole 
approximation, another computer program has been done. This program like the previous ones have 
been programmed using Matlab. The different functions that make the whole program are:
• plot_field.m: calculate and plot the intensity of the electric field scattered by a spherical particle  

in the XZ plane considering the Dipole Approximation. The incoming parameters are the 
wavelength, refractive index and radius of the particle, and a matrix with the evaluation points in 
the XZ plane.

• plot_field_mag.m: calculate and plot the intensity of the magnetic field scattered by a spherical 
particle  in the XZ plane considering the Dipole Approximation. The incoming parameters are 
the wavelength, refractive index and radius of the particle, and a matrix with the evaluation 
points in the XZ plane.

• MIE_field.m: calculate and plot the intensity of the electric field scattered by a spherical particle   
at any point considering Mie Theory. The incoming parameters are the wavelength, refractive 
index and radius of the particle, and a matrix with the evaluation plane.

• MIE_field_mag.m: calculate and plot the intensity of the magnetic field scattered by a spherical 
particle at any point considering Mie Theory. The incoming parameters are the wavelength, 
refractive index and radius of the particle, and a matrix with the evaluation points.
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• MIE_spectral_evolution_elec.m: calculate the spectral evolution of the scattered electric field. 
The incoming parameters are the wavelength, refractive index and radius of the particle, 
refractive index of the medium and the point of space in which the calculus is done.

• MIE_spectral_evolution_mag.m: calculate the spectral evolution of the scattered magnetic field. 
The incoming parameters are the wavelength, refractive index and radius of the particle, 
refractive index of the medium and the points of space in which the calculus is done.
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4.3 COMPARISON BETWEEN MIE THEORY AND THE DIPOLE 
APPROXIMATION

! The exact solution for the scattered field by spherical particles of arbitrary size and 
refractive index is given by the Mie theory. However, it is possible to treat metallic and high 
refractive index dielectric nanoparticles using the dipole approximation as it was commented in 
section (3.2). In order to know if this approximation is a good approach to the problem which is 
going to be analyzed, both methods are going to be compared.
! The spectral evolution of the total electric and magnetic fields scattered by metallic and HRI 
nanoparticles will be calculated using Mie theory and the dipole approximation. The spectral 
evolution is a representation of the intensity of the scattered field versus the wavelength of the 
incident electromagnetic field. This representation is very common in the field of nanoplasmonics  
because it allows us to see in an easy way for which wavelength the resonances are produced.

4.3.1 METALLIC NANOPARTICLES
! For the calculus of the spectral evolution of metallic nanoparticles it has been considered a 
silver nanoparticle with a radius of a=25 nm. The point of space at which the calculations have 
been done are (a,0,0) and (0,0,a) (see Figure 4.1), where the electric field reaches its maximum (hot 
spot) and minimum intensity respectively. The wavelength range used goes from 300 to 500 nm.
! As it is seen in the next plots, only the electric dipole resonance is present in all the spectral 
evolutions that have been calculated. This is the expected behavior since metallic nanoparticles 
have been considered to behave as electric dipoles when their size is smaller than the incident 
wavelength.
! Another interesting thing is that the calculations using the dipole approximation match 
perfectly the exact solution given by Mie theory. As a result, the dipole approximation is a good 
approach to the study of metallic nanoparticles with size much smaller than the incident 
wavelength.
! Finally, as it was predicted by the expression of the magnetic field scattered by the electric 
dipole (equation (3.2.2)), the intensity of the magnetic field is zero at (a,0,0) (see Figure 4.3 (left)).
• Spectral evolution of the scattered electric field:

 Figure 4.2. Spectral evolution of the electric field scattered by a metallic nanoparticle made of silver which has a 
radius of a=25nm. The calculus has been done at (a,0,0) and (0,0,a) by means of Mie theory (black dots) and the dipole 
approximation (red line).
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• Spectral evolution of the scattered magnetic field:

Figure 4.3. Spectral evolution of the magnetic field scattered by a metallic nanoparticle made of silver which has a 
radius of a=25nm. The calculus has been done at  (a,0,0) and (0,0,a) by means of Mie theory (black dots) and the 
dipole approximation (red line).

! Another thing that can be observed is how the intensity of the electric field is several orders 
of magnitude bigger than the intensity of the magnetic field.
4.3.2 HIGH REFRACTIVE INDEX NANOPARTICLES
! For the calculus of the spectral evolution of high refractive index nanoparticles it has been 
considered a nanoparticle with a radius of a=7,5 mm and an electric permittivity ! =16. The point 
of space in which the calculations have been done are (a,0,0) and (0,0,a). The wavelength range 
used goes from the 40 to the 70 mm.
! As it is shown in the next plots, both the electric and magnetic dipole resonances can be 
seen. The electric dipole resonance is produced at around 46 mm, whereas the magnetic dipole 
resonance is produced at around 62 mm. This is the expected behavior since we have considered the 
HRI nanoparticles as an electric dipole crossed to a magnetic dipole.
! Once again, the results that have been obtained by means of the dipole approximation match 
perfectly with the exact solution given by Mie theory. So the dipole approximation is a good 
approach to the study of high refractive index nanoparticles too.

• Spectral evolution of the scattered electric field:

Figure 4.4. Spectral evolution of the electric field scattered by a high refractive index nanoparticle which has a radius 
of a=7,5mm and ɛ=16. The calculus has been done at (a,0,0) and (0,0,a) by means of Mie theory (black dots) and the 
dipole approximation (red line).
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• Spectral evolution of the scattered magnetic field:

Figure 4.5. Spectral evolution of the magnetic field scattered by a high refractive index nanoparticle which has a radius 
of a=7,5mm and ɛ=16. The calculus has been done at (a,0,0) and (0,0,a) by means of Mie theory (black dots) and the 
dipole approximation (red line).

! Once again, it can be seen how the intensity of the electric field is several orders of 
magnitude bigger than the intensity of the magnetic field.
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4.4 SPECTRAL BEHAVIOR OF THE DIPOLE RESONANCES OF HRI 
NANOPARTICLES IN NEAR AND FAR FIELD.

! High refractive index nanoparticles not only do they show electric dipole resonances, but 
also magnetic dipole ones. These scatterers can be modeled as an electric dipole crossed to a 
magnetic one, following the dipole approximation explained in section (3.2). As in the case of the 
metallic nanoparticles, section (3.4), the resonances peaks are different in the near and far field 
regimes. 

4.4.1 SPECTRAL EVOLUTION OF THE ELECTRIC SCATTERED FIELD IN NEAR AND FAR 
FIELD.

! The next plots show the intensity of the total scattered electric field by the electric and 
magnetic dipoles as a function of the wavelength of the incident field at the electric and magnetic 
dipole resonances in near (red line) and far field (blue line) regimens. 

Figure 4.6. Spectral evolution of the total electric scattered field by the electric (left) and magnetic dipoles (right) in the 
near (red solid line) and far field regimes (blue solid line) at the point (a,0,0). For the calculus an HRI nanoparticle 
with a=7.5 mm and %=16 has been considered.

Figure 4.7. Spectral evolution of the total electric scattered field by the electric (left) and magnetic dipoles (right) in the 
near (red solid line) and far field regimes (blue solid line) at the point (0,0,a). For the calculus an HRI nanoparticle 
with a=7.5 mm and %=16 has been considered.
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! The electric and magnetic dipole shows very different behaviors. The peaks for the electric 
dipole resonance in near field are broader and redshifted with respect to those in the far field 
regime. However, the peaks for the magnetic dipole resonance in near field are not broader, and less 
red shifted than in the far field regime.

4.4.2 SPECTRAL EVOLUTION OF THE MAGNETIC SCATTERED FIELD IN NEAR AND 
FAR FIELD.
! In the next plots are shown the intensity of the total magnetic scattered field by the electric 
and magnetic dipoles as function of the wavelength at the electric and magnetic dipole resonances 
in near (red line) and far field (blue line).

Figure 4.8 Spectral evolution of the total magnetic scattered field by the magnetic dipoles in the near (red solid line) 
and far field regimes (blue solid line) at the point (a,0,0). For the calculus an HRI nanoparticle with a=7.5 mm and 
%=16 has been considered.

Figure 4.9. Spectral evolution of the total electric scattered field by the electric (left) and magnetic dipoles (right) in the 
near (red solid line) and far field regimes (blue solid line) at the point (0,0,a). For the calculus an HRI nanoparticle 
with a=7.5 mm and %=16 has been considered.

! In this case, the peaks at the electric dipole resonance in near field are broader and red 
shifted with respect to the ones in the far field regimes. However, the peaks at the magnetic dipole 
resonance in near field are redshifted with respect to the far field regime but they are not broader.
!
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4.4.3 RADIATIVE AND NON RADIATIVE CONTRIBUTION TO THE ELECTRIC FIELD 
SCATTERED BY HIGH REFRACTIVE INDEX NANOPARTICLES IN NEAR FIELD.
! In this section we will discuss the radiative and non radiative contribution to the total 
scattered electric field in the near field regime. As it has been outlined before, in far field the total 
field is dominated by the radiative contribution. However, as it will be seen now, in near field the 
non radiative contribution takes the lead role.
! In the next figures, an specific case of a HRI index particle of #=16 is studied. The spectral 
evolution of the total scattered electric field (red line), its radiative (green line) and non radiative 
contribution (blue line) and the interference (pink line) between both contributions has been 
calculated at two different points, (a,0,0) and (0,0,a) (see Figure 4.1), for a range of wavelengths 
between 40 and 70 mm.

Figure 4.10. Spectral evolution of the radiative (green line), non radiative (blue line) contribution as well as their 
interference (magenta line) to the electric scattered field. The total electric scattered field is represented by the red solid 
line. All the contributions have been calculated in the points r=(a,0,0) (left), and r=(0,0,a) (right).

Figure 4.11. Intensity of the electric field scattered by an HRI spherical particle of radius a=7.5mm and refractive index 
n=4. The excitation wavelength is $&46.5 mm (left) and $=62 mm (right). This wavelength corresponds with the electric 
dipole excitation wavelength (left) and the magnetic dipole excitation wavelength (right).
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! Figure 4.10 shows two important features. The first one related to the resonance peaks and 
the other one to the intensity of the different contributions. 
! First, as it was expected since an HRI particle is being considered, there are two resonance 
peaks. The electric dipole resonance is produced at !/46.5 mm  and the magnetic dipole resonance 
produced at !/62 mm. The electric dipole resonance peak at (a,0,0) is much intense than at (0,0,a). 
However, the magnetic dipole resonance peaks have similar intensities at both positions. This can 
be explained taking into account the geometrical configuration (Figure 4.1 left) considered for each 
dipole in the dipole approximation (see section 4.1). The electric dipole is considered along the x-
direction, so in the direction (1,0,0) the intensity of the total scattered electric field is maximum. On 
the contrary, in the perpendicular direction, (0,0,1), it takes its minimum value (see Figure 4.11 
left). The magnetic dipole, chosen along the y-direction, due to its circular symmetry scatters the 
electric field with the same intensity at both points (see Figure 4.11 right).
! Another important thing that Figure 4.10 shows is that the non radiative contribution 
dominates over the radiative contribution. However, the latter is not negligible as in the case of 
metallic nanoparticles. The interference between both contributions for HRI is also not negligible 
unlike for metallic nanoparticles.!
! By decomposing the scattered field into the electric and the magnetic dipolar terms in the 
dipole approximation, it is possible to see how the total and the non radiative contributions are red 
shifted with respect to the radiative contribution (Figure 4.12 and Figure 4.13). Due to the fact that 
the radiative contribution dominates over the non radiative contribution in the far field regime, the 
evanescent waves can be responsible for this red shift.

Figure 4.12. Normalized spectral evolution of the electric scattered field (red dots) and its radiative (green solid line) 
and non radiative contribution (blue solid line). The electric field is considered to be scattered by the electric dipolar 
term of the dipole approximation for an HRI with radius a=7.5 mm and %=16. The calculus has been done in two 
different points:(a,0,0) (left) and (0,0,a) (right).

! In far field, where the radiative contribution dominates, the peaks are narrower than in near 
field (see Figure 4.6 (left) and Figure 4.7 (left)). Due to the fact that in near field the non radiative 
contribution is also broader than the radiative contribution, and it dominates over the latter, the 
evanescent waves could be also responsible of the broadening.
! The red shift of the radiative contribution with respect to the non radiative contribution and 
total electric scattered field by the magnetic dipolar term (figure 4.13), is much smaller than in the 
case of the electric dipolar term (figure 4.12). In addition, no broadening of the peaks can be 
appreciated.
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Figure 4.13. Normalized spectral evolution of the electric scattered field (red dots) and its radiative (green solid line) 
and non radiative contribution (blue solid line). The electric field is considered to be scattered by the magnetic dipolar 
term of the dipole approximation for an HRI with radius a=7.5 mm and %=16. The calculus has been done in two 
different points:(a,0,0) (left) and (0,0,a) (right).!
! Although for the electric dipolar term the non radiative contribution does not exactly 
matches the total scattered field, in the case of the magnetic dipolar term they are nearly equal (see 
Figure 4.13). The discrepancy between the non radiative and the total scattered fields can be 
produced by the interference between the radiative and non radiative contribution. This term that 
was negligible for metals it is not for HRI particles.
! Until now the analysis of this phenomena has been done considering an HRI spherical 
nanoparticle of radius a=7.5 mm and #=16. In order to do a more general analysis, the dependence 
with the nanoparticle parameters will be removed by normalizing to the Mie scattering coefficients 
in the equation 3.3.11: a1 in the case of the electric dipolar term and b1 for the magnetic dipolar term 
of the dipole approximation. 

Figure 4.14. Spectral evolution of |Etot/a1|2 (red dots), |Enon rad/a1|2 (blue dots) and |Erad/a1|2 (green line) at two 
positions, (a,0,0) (left) and (0,0,a) (right). The orange and the fair blue solid line represents the numeral fitting of the 
spectral evolution of the total and non radiative contribution to a function a+b$n. In the case of the point (a,0,0) for the 
total scattered field n=5.37 and for the non radiative contribution n=5.36.  In the case of the point (0,0,a) for the total 
scattered field n=6,37 and for the non radiative contribution n=5.77. ! !
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Figure 4.15. Spectral evolution of |Etot/b1|2 (red dots), |Enon rad/b1|2 (blue dots) and |Erad/b1|2 (green line) at two 
positions, (a,0,0) (left) and (0,0,a) (right). The orange and the fair blue solid line represents the numeral fitting of the 
spectral evolution of the total and non radiative contribution to a function a+b$n. In the case of the point (a,0,0) for the 
total scattered field n=3.47 and for the non radiative contribution n=3.46.  In the case of the point (0,0,a) for the total 
scattered field n=3.47 and for the non radiative contribution n=3,05. 

! Figure 4.14 and figure 4.15 show two important features. First, in near field, the non 
radiative contribution dominates over the radiative one. This can be seen by comparing the blue 
dots with the green solid line. However, the total scattered field does not match the non radiative 
contribution. This difference is caused by the interference between the radiative and non radiative 
contributions.

! In addition, by the numerical fitting, it can be seen how the total scattered field and its non 
radiative contribution show an universal dependence with the wavelength. In the case of the electric 
field scattered by the electric dipolar term of the dipole approximation (Figure 4.14) at the point (a,
0,0), both the total and non radiative contribution follow a power law a+b!n with n/5. At the point 
(0,0,a) the exponent is n/6. This behavior in near field differs from far field where the total field 
scales at a+b!n with n/2.
! Also, for the electric field scattered by the magnetic dipolar term of the dipole 
approximation (Figure 4.15), an universal dependence with the wavelength can be observed. 
However, in this case it does not matter the point we considered; the total electric field scales at a
+b!n with n/3.5. This was the expected result since the magnetic dipole scatters equally in the (a,
0,0) and (0,0,a) points as it can be seen in  Figure 4.11 (right). Once again the near field behavior 
differs from the far field behavior, where the power law followed by the scattered field is a+b!n 
with n/2. In the case of the non radiative contribution, it also follows a universal dependence with 
the wavelength as a power law. At the point (a,0,0) n/3.5 and at (0,0,a) n/3.
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4.4.4 RADIATIVE AND NON RADIATIVE CONTRIBUTION TO THE MAGNETIC FIELD 
SCATTERED BY HIGH REFRACTIVE INDEX NANOPARTICLES IN NEAR FIELD.
! In this section we will discuss the radiative and non radiative contribution to the total 
magnetic scattered field in the near field regime for a HRI particle. 
! In the next figures, an specific case of a HRI index particle of #=16 is studied. The spectral 
evolution of the total scattered magnetic field, its radiative and non radiative contribution, and the 
interference between them has been calculated at two different points, (a,0,0) and (0,0,a), and for a 
range of wavelengths between 40 and 70 mm.

Figure 4.16. Spectral evolution of the radiative (green line), non radiative (blue line) contribution as well as their 
interference (magenta line) to the magnetic scattered field. The total magnetic scattered field is represented by the red 
solid line. All the contributions have been calculated in the points r=(a,0,0) (left), and r=(0,0,a) (right).

Figure 4.17. Intensity of the magnetic field scattered by an HRI spherical particle of radius a=7.5mm and refractive 
index n=4. The excitation wavelength is $&47 mm (left) and $&63 mm (right). This wavelength corresponds with the 
electric dipole excitation wavelength (left) and the magnetic dipole excitation wavelength (right).
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! Some interesting features can be observed in figure 4.16 and 4.17 concerning the distribution 
of the total scattered field and the intensity of its contributions.
! First, figure 4.16 shows how two resonance peaks appear in the spectrum. The first one, 
produced at !/47 mm, is caused by the electric dipolar term of the dipole approximation, and the 
other one, !/63 mm, by the magnetic dipolar term.  However, the intensity of the scattered magnetic 
field is much smaller, five orders of magnitude, than the intensity of the electric scattered field (see 
figure 4.10). 
! Another important thing can be seen in figure 4.16. The non radiative contribution 
dominates over the radiative contribution. However, the latter is not negligible as in the case of 
metallic nanoparticles. Once again, the interference between both contribution is not negligible. 
Furthermore, the interference in some situations takes values comparable to the intensity of the total 
magnetic field. !
! The intensity values of the resonance peaks are in accordance with the results of the 
intensity maps in near field showed in figure 4.17. In addition, it can be seen how the back scattered 
magnetic field is more intense than the one scattered in the forward direction. In fact, for a 
wavelength !/58 mm the intensity of the magnetic field scattered at the point (a,0,0) is equal to 
zero. This special situation is one of the Kerker’s condition (see section 3.6). More precisely this 
corresponds to the zero forward condition.
! By decomposing the scattered field into the electric and the magnetic dipolar terms, it is 
possible to see how the total and the non radiative contributions are red shifted with respect to the 
radiative contribution (Figure 4.18 and Figure 4.19). Once again, due to the fact that the radiative 
contribution dominates over the non radiative contribution in the far field regime, the evanescent 
waves can be responsible for this red shift .

Figure 4.18. Normalized spectral evolution of the magnetic scattered field (red dots) and its radiative (green solid line) 
and non radiative contribution (blue solid line). The magnetic field is considered to be scattered by the electric dipolar 
term of the dipole approximation for an HRI with radius a=7.5 mm and %=16 at the point (0,0,a).

! In far field, where the radiative contribution dominates, the peaks are narrower than in near 
field (see Figure 4.9). Due to the fact that in near field the non radiative contribution is also broader 
than the radiative contribution and it dominates over the latter, the evanescent waves are also 
responsible for the broadening.
!
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! The red shift in the case of the magnetic scattered field by the magnetic dipolar term, (figure 
4.19) is much smaller than in the case of the electric dipolar term. In addition, the broadening of the 
peaks is negligible.

Figure 4.19. Normalized spectral evolution of the magnetic scattered field intensity (red dots) and its radiative (green 
solid line) and non radiative contribution (blue solid line). The magnetic field is considered to be scattered by the 
magnetic dipolar term of the dipole approximation for an HRI with radius a=7.5 mm and %=16. The calculus has been 
done in two different points: (a,0,0) (left) and (0,0,a) (right).

! Although for the electric dipolar term (figure 4.18) the non radiative contribution does not 
exactly matches the total scattered field, in the case of the magnetic dipolar term (figure 4.19) they 
are nearly equal. The discrepancy between the non radiative and the total scattered fields can be 
produced by the interference between the radiative and non radiative contribution. This term, that 
was negligible for metals, it is not for HRI particles.!
! Once again, a more general analysis will be done by normalizing to the Mie scattering 
coefficients: a1 in the case of the electric dipolar term and b1 for the magnetic dipolar term of the 
dipole approximation. 

Figure 4.20. Spectral evolution of |Htot/a1|2 (red line), |Hnon rad/a1|2 (blue line) and |Hrad/a1|2 (green line) at (0,0,a) . 
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Figure 4.21. Spectral evolution of |Htot/b1|2 (red line), |Hnon rad/b1|2 (blue line) and |Hrad/b1|2 (green line) at two 
positions, (a,0,0) (left) and (0,0,a) (right). The orange line represents the numeral fitting of the spectral evolution of the 
total field to a function a·e0.09!. !

! Figure 4.20 and figure 4.21 shows two important features. First, in near field, the non 
radiative contribution dominates over the radiative one. This can be seen by comparing the blue 
dots with the green solid line. However, the total scattered field do not matches the non radiative 
contribution. This difference can be caused by the interference between the radiative and non 
radiative contribution.

! Second, by the numerical fitting, it can be seen how the total magnetic field scattered by the 
magnetic dipole, shows an universal dependence with the wavelength. At both points it scales to a 
exponential law a·e0.09!. This is different from the far field behavior, where the total scattered field 
follows a power law a+b!n with n/2.
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4.4.5 SPECTRAL EVOLUTION OF THE POYNTING VECTOR OF THE  
ELECTROMAGNETIC SCATTERED FIELD BY HIGH REFRACTIVE INDEX 
NANOPARTICLES IN FIELD IN NEAR AND FAR FIELD.

! The next plots show the modulus of the Poynting vector, |S|, of the scattered electromagnetic 
field by the electric and magnetic dipole as function of the wavelength at the electric and magnetic 
dipole resonances in near and far field. 

Figure 4.22. Spectral evolution of the Poynting vector of the electromagnetic scattered field by the electric dipole at  the 
points (a,0,0) (left) and (0,0,a) (right) in near (red dots) and far (blue solid line) field. For the calculus an HRI 
nanoparticle with a=7.5 mm and %=16 has been considered.

Figure 4.23. Spectral evolution of the Poynting vector of the electromagnetic scattered field by the magnetic dipole at  
the points (a,0,0) (left) and (0,0,a) (right) in near (red dots) and far (blue solid line) field. For the calculus an HRI 
nanoparticle with a=7.5 mm and %=16 has been considered.

! Although the peaks of the electric and magnetic scattered fields at the electric and magnetic 
dipole resonances are red shifted and widened in near field with respect to the far field regime (see 
sections 4.4.1 an 4.4.2), the intensity of the electromagnetic field, modulus of the Poynting vector, 
shows exactly the same behavior at the electric and magnetic dipole resonances in near and far field.
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4.4.6 RADIATIVE AND NON RADIATIVE CONTRIBUTION TO THE POYNTING VECTOR 
OF THE ELECTROMAGNETIC FIELD SCATTERED BY HIGH REFRACTIVE INDEX 
NANOPARTICLES IN NEAR FIELD.
! In this section we will discuss the radiative and non radiative contribution to the total 
Poynting vector in the near field regime. The modulus of this magnitude, |S|, represents the energy 
flux associated to the electromagnetic radiation. Although in far field |S|= |E|2, in near field this 
identity in not valid. In near field it is necessary to use its definition:  |S|=1/2|E x H|.
- In the next figures, a specific case of an HRI index particle of #=16 is studied. The spectral 
evolution of the Poynting vector of the electromagnetic scattered field,  |S|, its radiative and non 
radiative contribution has been calculated at two different points, (a,0,0) and (0,0,a), and for a range 
of wavelengths between the 40 and 70 mm.

Figure 4.24. Spectral evolution of the radiative (green line), non radiative (blue line) to the Poynting vector (red line) of 
the electromagnetic field scattered by an HRI nanoparticle with radius a=7.5 mm and %=16. All the contributions have 
been calculated in the points r=(a,0,0) (left), and r=(0,0,a) (right).

Figure 4.25. Intensity of the electromagnetic field scattered,  |Stot|2 by an HRI spherical particle of radius a=7.5mm and 
refractive index %=16. The excitation wavelength is $&47 mm (left) and $&63 mm (right).  This wavelength corresponds 
with the electric dipole excitation wavelength (left) and the magnetic dipole excitation wavelength (right).!
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! Once again, as it was expected, since HRI nanoparticles have been studied, the electric and 
magnetic dipole resonances can be seen (see Figure 4.24). At both resonances the non radiative 
dominates over the radiative contribution.

! By decomposing the scattered field into the electric and the magnetic dipolar terms in the 
dipole approximation, it is possible to see how the total and the non radiative contributions are red 
shifted with respect to the radiative contribution (Figure 4.26 and Figure 4.27). However, for the 
Poynting vector, no red shift and broadening can be seen in near field with respect to far field 
(Figure 4.22 and Figure 4.23).

Figure 4.26.  Normalized spectral evolution of the intensity of the electromagnetic scattered field (red dots) and its 
radiative (green solid line) and non radiative contribution (blue solid line).  The electromagnetic field is considered to 
be scattered by the electric dipolar term of the dipole approximation for an HRI with radius a=7.5 mm and %=16 at the 
point (0,0,a).

Figure 4.27. Normalized spectral evolution of the intensity of the electromagnetic scattered field (red dots), its radiative 
(green solid line), and non radiative contribution (blue solid line). The electromagnetic field is considered to be 
scattered by the magnetic dipolar term of the dipole approximation for an HRI with radius a=7.5 mm and %=16. The 
calculus has been done in two different points: (a,0,0) (left) and (0,0,a) (right).

!
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! The red shift and broadening of the non radiative contribution with respect to the radiative 
contribution has no effect on the behavior on near field with respect to far field because the 
Poynting vector represents the flux associated to the electromagnetic radiation. The non radiative 
contribution keeps attached to the surface of the nanoparticle and does not contribute to the flux of 
the electromagnetic radiation. As a result, only the radiative contribution takes part on the Poynting 
vector in both, far and near field regimens, and no red shift and broadening are observed.
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5. CONCLUSIONS
! An study of the scattered field by both metallic and high refractive index nanoparticles in the 
near field and far field has been done. The scattered field has been studied by means of its spectral 
evolution. In order to give and explanation to the differences observed, the radiative and non 
radiative contribution of the scattered field in far and near field has been calculated. 
! Although the exact solution of the scattered field by a spherical nanoparticle with arbitrary 
size and electric permittivity is given by Mie Theory, for HRI and metallic spherical nanoparticles 
with a size smaller than the wavelength of the incident electromagnetic field, it is possible to use the 
dipole approximation. It has been proved how the results obtained by means of the dipole 
approximation exactly matches the results given by Mie theory. As a result, the dipole 
approximation is a good approach to the study of metallic and HRI nanoparticles.
! By representing the spectral evolution of the Poynting vector and the total electric and 
magnetic field scattered by the electric and magnetic dipole terms of the dipole approximation for 
HRI nanoparticles in near and far field it is observed that:

•  The resonance peak of the electric and magnetic field scattered by the electric dipolar term 
in near field is red shifted and widened with respect to the peak in far field.

• The resonance peak of the electric and magnetic field scattered by the magnetic dipolar term 
in near field is red shifted but hardly widened with respect to the peak in far field.

• In the case of the Poynting vector calculated from the electric and magnetic scattered fields, 
it shows the same behavior in near and far field for both dipolar terms of the dipole 
approximation.

! By the study of the radiative and non radiative contribution to the Poynting vector and the 
electric and magnetic field in near field it is observed that:

• The non radiative contribution in near field dominates over the radiative contribution unlike 
in the far field regime. However, the latter is not negligible as in the case of metallic 
particles in near field.

• The interference between the radiative and non radiative contribution is not negligible too.
• The non radiative contribution to the resonance peak of Poynting vector and the electric and 

magnetic field by the electric dipolar term is red shifted and widened with respect to the 
radiative contribution.  

• The non radiative contribution to the resonance peak of Poynting vector and of the electric 
and magnetic field by the magnetic dipolar term is red shifted and hardly widened with 
respect to the radiative contribution. 

• The non radiative contribution has a very similar behavior to the total scattered field in near 
field. The differences may be caused by the interference term.

! Therefore, the non radiative contribution, which dominates over the radiative contribution in 
near field, may be responsible of the red shift and broadening of the resonance peaks in near field 
with respect to far field.  
! In the case of the Poynting vector the red shift between contributions does not lead to a 
difference of behavior on near field with respect to far field. The Poynting vector measures the flux 
of electromagnetic radiation. Because the fact that the non radiative contribution keeps attached to 
the surface of the scatterer, it has not effect on the electromagnetic flux. As a result, the non 
radiative contribution has not any effect on the Poynting vector and no red shift or broadening can 
be observed.
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6. FURTHER WORK
It may be interesting to extend the present work by study and analyzing the following topics:

• The effect on the radiative and non radiative contribution of placing HRI nanoparticles in a 
dielectric medium with #01.

• The effect on the radiative and non radiative contribution of considering HRI nanoparticles 
with a electric permittivity with an imaginary part different from zero, #i 0 0.

• The effect on the radiative and on radiative contribution when some impurities are 
introduced into the HRI nanoparticle.

• To introduce in the calculus the electric and magnetic quadrupolar terms.
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INTRODUCTION

This work at Brown has been made through a new student exchange program between Brown and 
Cantabria Universities. The 8 weeks internship has been made under the supervision of Professor 
Rashid Zia at his lab.

 The Zia Lab [1] works in the field of nanophotonics, studying light emission from solid 
stated quantum emitters such as atoms, quantum dots or molecules, and also developing techniques 
to control and enhance the light emission process by using photonic devices. Instead of using 
artificial scatterers as metamaterials or nanoantenas, they study their natural analogue: the 
multipolar transitions in solid-state quantum emitters. By studying and quantifying this transitions 
they can take full advantage of the light-matter interactions.

 One of the latest techniques developed at Zia Lab is the Wide-Angle Energy-Momentum 
Spectroscopy  [2]. This type of spectroscopy  allows to measure simultaneously the spectral 
distribution and the momentum of light emission while maximizing the collected signal.

 At Zia Lab, the tasks assigned to me were:

• Learn how to operate the white light source Energetiq EQ 1500 LDLS.

• Alignment of a parabolic mirror system with and without shearing plate 
interferometer.

• Build a photoluminescence excitation spectroscopy  set up with an inverted 
microscope system.

 The main objective of my work at Brown, the performance of the essential parts in the 
experimental set up, and all the built set ups are explained in the next sections.
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OBJECTIVES AND ESSENTIAL COMPONENTS FOR THE SET UP

 The main objective of the work developed at Brown University  was to build an experimental 
set up to do photoluminescence excitation (PLE) spectroscopy by using a white light source.

 In PLE spectroscopy the light emission of a sample is measured for a fixed wavelength 
while the excitation wavelength is varied. Therefore, for this kind of spectroscopy it is necessary to 
illuminate the sample with a wide range of wavelengths. In this case, a white light source and a 
diffraction grating to separate each wavelength has been used to achieve this goal.

 The light source available for doing this set up was a broadband laser-driven light source [3]. 
In this kind of lamps, light  is produced in a very particular way: a very powerful laser beam is 
focused into a Xenon plasma in order to heat it. When the temperature is high enough, light is 
emitted.

 The advantage of this type of lamps is that they emit a very  broad spectrum, from ultraviolet 
(UV) to the near-infrared (NIR), and it is possible to obtain very bright light  no matter the 
wavelength. In the next figure is shown the spectral radiance versus the wavelength of the light 
emitted by the lamp used for this work, a Energetiq EQ 1500 LDLS:

Figure 5. Spectral radiance versus the wavelength of the light emitted by the lamp Energetiq EQ 1500 LDLS [3].

 

 In order to collimate the light coming from the light source, off-axis parabolic (OAP) 
mirrors [4] were used. This type of mirrors were chosen because they are able to create a collimated 
beam from point sources. This means that they convert spherical into planar wavefronts and vice 
versa.

 However, the alignment of these systems that  use more than one OAP mirrors is very 
complex. There are four essential parameters in order to achieve a good alignment: distance, angle 
between the OAP and the beam, the tip and the tilt. The last two parameters are easy to vary if the 
OAP mirrors are placed in proper mounts that have knobs to do this type of movements.

 When a system like this is going to be aligned, a shearing interferometer [5] can be used. 
This device makes easier the process of alignment because the shape of the interference pattern 
indicates which parameter should be modified.

 For collimation, the previous four parameters are important. When the fringes are tilted, the 
beam is converging or diverging, so the point source is not at the focus of the OAP (see figure 6). 
As a result, the distance between the source and the mirror should be changed. However, if the 
fringes are not straight, the angle between mirror and beam, the tip and the tilt should be varied.
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Figure 6. Image at the shearing interferometer when it is used to collimated a beam using an off-axis parabolic mirror. 
When the fringes are straight the beam is collimated. However, when the fringes are tilted, the beam is diverging or 
converging, and the position of the mirror should me changed [5].

 For focusing a collimated beam, only  the angle between the OAP and the collimated beam is 
important.

Figure 7. Scheme of a off axis parabolic mirror. The light coming from a point light source with a spherical wavefront is 
collimated (planar wavefront) in the reflection with the mirror. The reversed process is also possible.

 The problem with the alignment of these systems is that the interferometer bases its 
performance on the interference of the beam. The interference phenomena needs the coherence, 
both temporal and spatial, of the light. When the light source is a laser the interferometer works 
perfectly, however, when a white light source is used, the interference pattern is not observed 
because the beam is not coherent. In order to improve the coherence of the white light beam, and be 
able to use the interferometer, several things were tried. First, a filter was placed at the output of the 
source in order to select only one wavelength. Then a pinhole was placed before de filter. It was not 
possible to see an interference pattern in any of the previous cases. 

 A possible solution to this problem was to do the alignment with a laser and then replace it  
with the white light source. However, there was not enough time to try  this, so the alignment was 
made without the use of the shearing plate interferometer.
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EXPERIMENTAL SET UPS

 In order to do PLE spectroscopy several set ups were tried. However, none of them seem to 
be able to obtain a extinction spectrum from a thin film sample doped with Eu3+.

 The first experimental set  up that was tried is shown in figure 8. In this set up the light from 
the source is collimated by using an off axis parabolic mirror (OAP). Then, the beam hits a 
diffraction grating that allows us to select the excitation wavelength by  changing the angle between 
the beam and the grating. Afterwards, the light hits two OAPs, and the collimated beam that results 
from these two reflections is redirected to a microscope objective (MO) that focus the light into the 
sample. The light emitted by the sample goes through another MO that produces the collimation of 
the beam and sends it to a spectrograph. In the spectrograph, the intensity of the light is measured 
for a wavelength fixed by means of a computer.

Figure 8. Photoluminescence excitation spectroscopy setup. OAP: Off axis parabolic mirror. MO: Microscope 
objective.

 Because we were not able to obtain an extinction signal from the sample (thin film doped 
with Eu3+),494747 another experimental set up  was tried (see figure 9). In this case, instead of using 
two MO, only  one was used followed by  a dichroic mirror (DM) [6]. This kind of mirror lets some 
wavelengths to pass through it  and reflects others. So the light from the OAPs its redirected to the 
MO that  focus the light into the sample. The emitted light, which has a bigger wavelength than the 
excitation light, goes through the MO and is reflected by the DM  to the spectrograph. Neither this 
way we were able to obtain a signal.

 One of the possible improvements to this previous set  up  was to reduce the spot size at the 
back of the MO. Because the size of the spot was bigger than the back of the MO, a lot of light 
intensity was lost. In order to decrease the spot size, a spatial filter was placed before the MO (see 
figure 10). However, even with this improvement, we were not able to obtain the excitation signal.

47



Figure 9. Photoluminescence excitation spectroscopy setup. OAP: Off axis parabolic mirror.  MO: Microscope 
objective. DM: dichroic mirror.

Figure 10. Photoluminescence excitation spectroscopy setup. OAP: Off axis parabolic mirror. MO: Microscope 
objective. DM: dichroic mirror.
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