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Abstract

We determine necessary and sufficient conditions for a tubular surface to be
swung, and viceversa. From these characterizations, we derive two symbolic
algorithms. The first one decides whether a given implicit equation, of a tubular
surface, admits a swung parametrization and, in the affirmative case, it outputs
such a parametrization. The second one decides whether a given swung surface
parametrization is a tubular surface and, in the affirmative case, it outputs the
implicit equation.
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1. Introduction1

In CAGD, many different families of surfaces are usually considered. For2

instance, we may talk about revolution, ruled, tubular, swung, swept, etc. sur-3

faces (see [7] for a nice survey on these different families of surfaces). However,4

it is possible that a surface belongs to more than one of these families. For5

example, every revolution surface is an instance of a swung surface, that is also6

an example of swept surface.7

But the inclusion of different families of surfaces into each other, does not8

hold in general. In many cases, surfaces belonging to a particular family have9

to verify some extra conditions in order to be, as well, members of a different10

family of surfaces. These extra conditions usually take an algebraic form, so11

the intersection of the two families of surfaces has measure zero in the space12

representing each family. But, when this happens, the manipulation of such a13

surface, belonging to several families of surfaces, can profit from the accumu-14

lated knowledge about surfaces on each concrete family. For instance, elements15

belonging to some families can have a simple implicit description, while those16

pertaining to some other families could enjoy having straightforward paramet-17

ric representations. Belonging simultaneously to two families of such different18
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kinds could result, for example, in an easier method for solving the symbolic19

implicit/parametric conversion for the given surface.20

In this paper, we determine those surfaces that are simultaneously tubular21

and swung.22

Tubular surfaces are those irreducible surfaces described by an implicit equa-23

tion24

A(x3)x
2
1 +B(x3)x

2
2 + C(x3) = 025

where A,B,C ∈ R[x3], gcd(A,B,C) = 1 and the total degree w.r.t. {x1, x2}26

is 2; note that in a tubular surface it cannot happen that two of the poly-27

nomials A,B,C vanish simultaneously. Notice that any surface with a pencil28

of rational curves is birational equivalent to a tubular surface. Algorithms to29

parametrize a tubular surface are described in [4], where it is also shown that30

many instances of the real surface parametrization problem can be reduced to31

the tubular case. See [2], Example 2.3 for an application in the context of swung32

surfaces. The importance of tubular surfaces concerning this relevant, generally33

unsolved, problem of parametrizing over the reals, is one of the reasons for our34

choice of tubular surfaces as one of the families in our double test approach.35

On the other hand, swung surfaces are a generalization of the well known36

revolution surfaces (around the x3-axis) in which a profile curve parametrized by37

(0,φ1(t),φ2(t)) is transported around a trajectory curve (ψ1(s),ψ2(s), 0). The38

obtained surface is the surface parametrized by39

(φ1(t)ψ1(s),φ1(t)ψ2(s),φ2(t)) .40

If the trajectory curve is a circle, then the swung surface is just the classical41

revolution surface. Swung surfaces have been subject of recent research, even42

considering elementary issues as the problem of implicitizing; see [6] where the43

authors use µ-bases to develop specific techniques for implicitation of swung44

surfaces, as an alternative of the well-know techniques in elimination theory.45

Notice that, if the profile curve of a revolution surface is given by the graph46

of a rational function x2 = (f/g)(x3), then the revolution surface has equation47

g(x3)2x2
1+g(x3)2x2

2−f(x3)2 = 0 and this is clearly a tubular surface. Conversely,48

a necessary condition for a swung surface to be tubular is that its intersection49

with the family of planes {x3 = c} is a pencil of conics. However, this is not50

sufficient in general, see Example 4.2.51

Since tubular surfaces are very relevant in the real reparametrization prob-52

lem and swung surfaces are very useful in CAD, in this paper we want to merge53

both advantages and determine necessary and sufficient conditions for a tubular54

surface to be swung and viceversa (Theorems 2.3 and 3.1). These characteriza-55

tions provide a symbolic algorithm that passes from an implicit tubular repre-56

sentation to a swung parametrization whenever possible, as well as a symbolic57

algorithm that decides whether a swung parametrization is tubular and, if so, it58

computes the implicit equation. An example of the above mentioned advantages59

of being simultaneously in both categories is developed in Example 4.3.60

Throughout the paper we assume that the implicit representations of the61
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tubular surfaces are real polynomials, and that the swung surface parametriza-62

tions are real.63

2. From tubular to swung64

We show how to decide if a tubular surface is swung and, then, how to65

compute a swung parametrization. A naive approach could start applying66

parametrization algorithms to the given implicit equation of the tubular sur-67

face, expecting to obtain swung parametrization (if the surface is swung). But68

parametrization algorithms are not trivial and, even if a parametrization is ob-69

tained, it is not expected that it will have the structure of a swung parametriza-70

tion. Thus, we need to develop some specific techniques to deal with this prob-71

lem.72

We start this section analyzing some special cases. We already know that73

two of the polynomials A,B,C can not vanish simultaneously. Let us study74

what happens when one of them vanishes.75

Lemma 2.1. Let A(x3)x2
1 +B(x3)x2

2 +C(x3) = 0 be the implicit equation of a76

tubular surface. If AB = 0, and the surface is rational over R, then it is swung.77

Proof. By definition of tubular surface, we know that A,B cannot be simul-78

taneously zero. Let A = 0 but B �= 0. Let P (u, v) = (u,M(v), N(v)) be a79

proper real parametrization of the tubular surface B(x3)x2
2 + C(x3) = 0. We80

observe that M is not zero, because the surface is not a plane. Then, taking81

Q(s, t) = P (M(t)s, t) we get Q(s, t) = (M(t)s,M(t), N(t)) that is a swung82

proper parametrization (note that (M(t)s, t) is a birational map of R2 on R2)83

with profile curve (0,M(t), N(t)) and trajectory curve (s, 1, 0).84

Let A �= 0 but B = 0. Then, the same reasoning works. In this case85

if P (u, v) = (M(v), u,N(v)) then the profile curve is (0,M(t), N(t)) and the86

trajectory curve is (1, s, 0).87

Lemma 2.2. Let A(x3)x2
1 +B(x3)x2

2 +C(x3) = 0 be the implicit equation of a88

tubular surface. If C = 0 the surface is not swung.89

Proof. Assume that (φ1(t)ψ1(s),φ1(t)ψ2(s),φ2(t)) is a swung parametrization90

of the surface. Then91

φ1(t)
2(A(φ2(t))ψ1(s)

2 +B(φ2(t))ψ2(s)
2) = 0.92

Since φ1(t) is not zero, because otherwise the surface would degenerate to a93

curve, then94

A(φ2(t))ψ1(s)
2 +B(φ2(t))ψ2(s)

2 = 0.95

In addition, AB �= 0. So, A(φ2(t))B(φ2(t)) �= 0. On the other hand, we also96

have that not both rational functions ψi(s) can be zero; say ψ1(s) �= 0. Then97

A(φ2(t))

B(φ2(t))
= −ψ2(s)2

ψ1(s)2
.98
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This implies that A(φ2(t)) = λB(φ2(t)) for some λ ∈ R \ {0}. Thus, A(x3) =99

λB(x3). Moreover, since gcd(A,B,C) = 1 then A and B must be constants, and100

the equation of the tubular surface is λx2
1+x2

2 = (x2−
√
−λx1)(x2+

√
−λx1) = 0.101

But this is a contradiction, because a tubular surface is irreducible.102

Taking into account the previous lemmas we will assume that ABC �= 0.103

Theorem 2.3. Let A(x3)x2
1 +B(x3)x2

2 +C(x3) = 0 be the implicit equation of104

a real tubular surface, such that ABC �= 0, gcd(A,B,C) = 1. Then, the surface105

is a swung surface if and only if:106

1. B(x3)/A(x3) = k ∈ R is constant.107

2. One of the curves (or a component of) A(y)x2±C(y) is rational parametriz-108

able over R.109

Proof. Assume that A(x3)x2
1+B(x3)x2

2+C(x3) = 0 is swung. Then, there exists110

a swung parametrization (φ1(t)ψ1(s),φ1(t)ψ2(s),φ2(t)) of the surface. Hence111

A(φ2(t))φ1(t)
2ψ1(s)

2 +B(φ2(t))φ1(t)
2ψ2(s)

2 + C(φ2(t)) = 0.112

We observe that φ2(t) cannot be a constant, because the surface is not a plane.113

Also, note that φ1(t) cannot be zero, since otherwise the given variety would114

be a line. This, in particular implies that C(φ2(t))B(φ2(t))A(φ2(t))φ1(t) is not115

zero. So, manipulating the above expression, we get that116

ψ1(s)2

α(t)
+

ψ2(s)2

β(t)
− 1 = 0,117

where118

α(t) = − C(φ2(t))

A(φ2(t))φ1(t)2
�= 0, β(t) = − C(φ2(t))

B(φ2(t))φ1(t)2
�= 0. (1)119

Therefore (ψ1(s),ψ2(s)) parametrizes the conic, defined over R(t) by x2
1/α(t) +120

x2
2/β(t) = 1. However, since (ψ1(s),ψ2(s)) is over R, its implicit equation is121

over R. So, since x2
1/α(t) + x2

2/β(t) = 1 is irreducible as conic over R(t), we122

get that both implicit equations must be equal, and hence α(t),β(t) ∈ R \ {0}.123

Thus, α(t)/β(t) = (B/A)(φ2(t)) is constant. Hence, since φ2 is not constant,124

B(x3)/A(x3) = k ∈ R \ {0} is constant.125

Moreover, by equation (1), (φ1(t),φ2(t)) is a parametrization (of a compo-126

nent of) the curve defined by C(y) + αx2A(y) (recall that α(t) ∈ R \ {0}) and127

(φ1/
�
|α|,φ2) is a parametrization (of a component of) C(y) + sign(α)x2A(y).128

Assume now that we have a tubular surface129

A(x3)x
2
1 +B(x3)x

2
2 + C(x3)130

such that ABC �= 0, B/A = k ∈ R is constant and that (φ1(t),φ2(t)) is a real131

parametrization of (a component of) C(y)± x2A(y). We want to prove that it132

is swung. Consider the profile curve (0,φ1(t),φ2(t)). We have to construct a133

sliding curve adapted to the tubular surface.134
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Consider the conic x2
1 + kx2

2 = ±1. This will be our trajectory curve; note135

that k �= 0. Let (ψ1(s),ψ2(s)) be a parametrization of the conic (we will see136

below that the parametrization can be taken over R), we have to prove that137

(φ1(t)ψ1(s), φ1(t)ψ2(s), φ2(t)) parametrizes the surface. But138

A(φ2(t))φ1(t)
2ψ1(s)

2 +B(φ2(t))φ1(t)
2ψ2(s)

2 + C(φ2(t)) =139

140

A(φ2(t))φ1(t)
2
�
ψ1(s)

2 + kψ2(s)
2
�
+C(φ2(t)) = ±A(φ2(t))φ1(t)

2+C(φ2(t)) = 0.141

It only remains to prove that the corresponding conic x2
1+kx2

2 = ±1 is real, from142

where it follows that the parametrization (ψ1(s),ψ2(s)) can always be taken over143

R. For this purpose, we distinguish several cases. We first observe that, since144

gcd(A,B,C) = gcd(A,C) = 1, if C(y)± x2A(y) factors then it has two factors145

and they are linear in x, and hence both rational. Let C± be the curve defined146

by C(y) ± x2A(y). Furthermore, we note that C+ (resp. a component of it) is147

rational (over C) iff C− (resp. a component of it) is rational (over C).148

(i) Let C+ (or a component of it) be parametrizable over R. Then we have149

to parametrize x2
1 + kx2

2 = 1 that is always real, independently of the sign150

of k.151

(ii) Let C+ (nor a component of it) not be parametrizable over R. Then, by152

hypothesis, C− (or a component of it) is parametrizable over R. In this153

case, we have to parametrize x2
1+kx2

2 = −1. We prove that k < 0 and, so,154

the conic real. Let us assume that k > 0. No component of C+ is a real155

curve. Therefore, the curve C+ cannot have a real regular point. On the156

other hand, the tubular surface, that is defined by A(y)(x2
1+kx2

2)+C(y),157

is a real surface. Therefore, it contains a regular real point P = (α,β, γ).158

So,159

A(γ)(α2 + kβ2) + C(γ) = 0 (2)160

Observe that A(γ) �= 0, since otherwise C(γ) = 0 and gcd(A,B,C) �= 1
which is a contradiction. Now, since P is regular, we have that either
αA(γ) �= 0 or kβA(γ) �= 0 or A�(γ)(α2 + kβ2) + C �(γ) �= 0. That is (note
that k �= 0) either α �= 0 or β �= 0 or A�(γ)(α2 + kβ2) + C �(γ) �= 0. In
addition, since A(γ) �= 0 we have that

Q :=

�
±

�

−C(γ)

A(γ)
, γ

�
∈ C+.

We analyze each case.161

– Let α �= 0. We observe that C(γ) �= 0 because: if C(γ) = 0, since162

A(γ) �= 0, by (2), one has that α2 + kβ2 = 0 but this is impossible163

because α �= 0 and k > 0. But this implies that the square of the164

partial derivative w.r.t. x of C(y)+x2A(y) at Q is −4C(γ)A(γ) �= 0.165

Thus Q is a regular point of C+. Therefore, Q cannot be real. So166

C(γ)A(γ) > 0. But, from (2), we get then that α2 + kβ2 < 0 which167

is impossible since α �= 0 and k > 0.168
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– If β �= 0 the reasoning is above.169

– Let A�(γ)(α2 + kβ2) +C �(γ) �= 0. Because of the two previous cases,170

we can assume w.l.o.g. that α = β = 0. So, by (2), we have that171

C(γ) = 0. So Q = (0, γ). Then, the derivative w.r.t. y of C(y) +172

x2A(y) at Q is C �(γ). Therefore, since Q is real, we have that C �(γ) =173

0 which contradicts our assumption.174

175

Remark 2.4. Assume A(x3)x2
1+B(x3)x2

2+C(x3) = 0 is a tubular surface with176

a swung parametrization. Then by the previous result, B(x3)/A(x3) = k ∈ R.177

So, since C is not zero (see Lemma 2.2), all non-degenerated sections with the178

family of planes {x3 = c} will yield conics of the same type, either they are179

all ellipses or all hyperbolas. When A = 0 or B = 0, sections with x3 = c180

degenerate to a pair of lines.181

Lemma 2.1 and Theorem 2.3 show how to check whether a rational tubular182

surface is swung. Moreover, their proofs provide a method to find a swung183

parametrization of a swung tubular surface. More precisely, one has the follow-184

ing algorithm.185

(Parametrization) Algorithm Tubular/Swung186

Input: let A(x3)x2
1 + B(x3)x2

2 + C(x3) = 0, C �= 0, gcd(A,B,C) = 1, be the187

implicit equation of a rational tubular surface S.188

Output: decision on whether S admits a swung parametrization or not. If so, a189

swung parametrization of S is obtained.190

1. If A = 0, compute a real parametrization (M,N) of B(x3)x2
2 +C(x3) = 0191

(see [3]), and return (M(t)s,M(t), N(t)) as parametrization of the surface.192

2. If B = 0, compute a real parametrization (M,N) of A(x3)x2
1 + C(x3) =193

0 (see [3]), and return (M(t),M(t)s,N(t)) as a parametrization of the194

surface.195

3. Else (i.e. AB �= 0)196

(a) Compute k = B/A. If k is not constant then return that S is not197

swung.198

(b) [Profile curve computation] Apply algorithm in [3] to compute a real199

parametrization (ψ1(t),ψ2(t)) of (a factor of) one of the curves C ±200

x2A; if no component is parametrizable over R then return that S201

is not swung. Take � = 0 if (φ1(t),φ2(t)) parametrizes (a factor of)202

C + x2A and � = 1 if parametrizes (a factor of) C − x2A.203

(c) [Trajectory curve computation] Compute a real parametrization (ψ1(s),204

ψ2(s)) of the conic x2 + ky2 = (−1)�.205

3. From swung to tubular206

We now work the other way around, given a swung surface, detect if it207

is tubular. Of course, one could just implicitize the surface and check if the208
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implicit equation corresponds to a tubular surface, but we will provide a char-209

acterization based on the profile and trajectory curves, providing insight and210

not simply blind, costly, resultant or Gröbner bases implicitization algorithms.211

See Example 4.1.212

Theorem 3.1. Let (φ1(t)ψ1(s),φ1(t)ψ2(s),φ2(t)) be a parametrization of a213

swung surface different from the planes x1 = 0, x2 = 0. The surface is tubular214

if and only if215

1. The trajectory curve (ψ1(s),ψ2(s)) is either a conic in normal form x2
1/a+216

x2
2/b− 1 = 0 or a line of the form x1 = λ or x2 = λ, with λ �= 0.217

2. There exists a rational function h such that φ1(t)2 = h(φ2(t)).218

Proof. Assume that the surface is tubular. There exists A, B, C such that219

A(φ2)φ
2
1ψ

2
1 +B(φ2)φ

2
1ψ

2
2 + C(φ2) = 0220

We distinguish cases. Let AB �= 0. By Theorem 2.3, the surface is tubu-221

lar and swung, so B(x3) = kA(x3). Evaluating at a value t = t0, we get222

that (ψ1(s),ψ2(s)) parametrizes the curve x2
1/a + kx2

2/a − 1 = 0, where a =223

−C(φ2(t0))/(A(φ2(t0))φ1(t0)2). Now, manipulating the equation we get224

0 = A(φ2)φ
2
1ψ

2
1 +B(φ2)φ

2
1ψ

2
2 + C(φ2) =225

226

= A(φ2)φ
2
1(ψ

2
1 + kψ2

2) + C(φ2) =227

228

= A(φ2)φ
2
1a+ C(φ2)229

So, φ2
1 = −C(φ2)/(aA(φ2)) = h(φ2).230

Let A = 0, then BC �= 0. Evaluating at a value t = t0, we get that231

B(φ2(t0))φ1(t0)2ψ2(s)2 + C(φ2(t0)) = 0. So ψ2(s) is constant, say λ, and the232

trajectory curve is the line x2 = λ; note that, since ψ2 is real then λ ∈ R and233

since the surface is not x2 = 0 then λ �= 0. Moreover, φ2
1 = −C(φ2)/(λ2B(φ2)) =234

h(φ2). If B = 0 the reasoning is similar.235

Conversely, let us assume first that (ψ1,ψ2) parametrizes a conic x2
1/a +236

x2
2/b − 1 and that φ2

1 = C(φ2)/A(φ2) for some a, b ∈ R, C,A ∈ R[x3], with237

gcd(A,C) = 1 and C �= 0 (note that φ1 cannot be zero). We want to prove that238

the given surface is tubular. Consider the equation239

A(x3)x
2
1 + a/bA(x3)x

2
2 − aC(x3) = 0240

Substituting the parametrization, we get241

A(φ2)φ
2
1(ψ

2
1 + a/bψ2

2) + aC(φ2) = aA(φ2)φ
2
1 − aC(φ2) = 0242

so the surface is tubular. Note that, by construction gcd(A, a/bA,C) = 1 and243

the total degree w.r.t. {x1, x2} is 2 because C is no zero. Now, let us assume244

that (ψ1,ψ2) parametrizes a line x2 = λ, and that φ2
1 = C(φ2)/B(φ2) for some245
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λ ∈ R \ {0}, C,B ∈ R[x3], with gcd(B,C) = 1 and C �= 0. Then, the surface is246

the tubular surface of equation247

1

λ2
B(x3)x

2
2 − C(x3) = 0.248

If the trajectory curve is a line of the type x1 = λ, with λ �= 0, the reasoning is249

similar.250

251

Remark 3.2. In order to compute polynomials A and C such that φ2
1 =252

C(φ2)/A(φ2), we may use rational decomposition techniques [1]. In particu-253

lar if n = max{deg(numer(φ2)), deg(denom(φ2))}, m = max{deg(numer(φ1)),254

deg(denom(φ1))}, then the degree of A and C is bounded by 2m/n. If 2m/n is255

not an integer then there is no solution and the surface is not tubular. If 2m/n256

is an integer, we may take A and C as polynomials of degree 2m/n with un-257

determined coefficients, then evaluate the expression φ1(t)2C(φ2(t)) = A(φ2(t))258

at 4m/n+2 values of t where C(φ2(t)) �= 0 and, finally compute the coefficients259

of A and C by solving the resulting linear system of equations.260

Using the last argument in the previous remark, we get the following corol-261

laries of Theorem 3.1.262

Corollary 3.3. If the (implicit) profile curve of a swung surface has degree263

bigger than 2 w.r.t. the first variable, then it is not tubular.264

Using Theorem 4.2.1. in [5], one has the next result265

Corollary 3.4. Let (0,φ1,φ2), with φ2 �= 0, be a proper parametrization of the266

profile curve of a swung surface. If deg(φ2) > 2 then the surface is not tubular.267

We finish the section with an algorithm that decides whether a swung surface268

is tubular and, in the affirmative case, computes the implicit equation.269

(Implicitization) Algorithm Swung/Tubular270

Input: Let (φ1(t)ψ1(s),φ1(t)ψ2(s),φ2(t)) be a parametrization of a swung surface271

S different from the planes x1 = 0, x2 = 0.272

Output: decision on whether S is tubular or not. If S is tubular the implicit273

equation is also obtained274

1. Check whether (ψ1(s),ψ2(s)) is in one of the following cases275

(i) it is a conic in normal form x2
1/a+ x2

2/b− 1 = 0.276

(ii) it is a line of the form x1 = λ, with λ �= 0.277

(iii) it is a line of the form x2 = λ, with λ �= 0.278

If the answer is no, then return that S is not tubular.279

2. Use Remark 3.2 to check whether there exists a rational function h = C/A280

with gcd(A,C) = 1, C �= 0, such that φ1(t)2 = h(φ2(t)). If the answer is281

yes, then return282
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(a) If in Step 1, (i) holds then return that S is tubular and that A(x3)x2
1+283

a
bA(x3)x2

2 − aC(x3) is its implicit equation.284

(b) If in Step 1, (ii) holds then return that S is tubular and that 1
λ2A(x3)x2

1−285

C(x3) is its implicit equation.286

(c) If in Step 1, (iii) holds then return that S is tubular and that 1
λ2A(x3)x2

2−287

C(x3) is its implicit equation.288

If the answer is no, then return that S is not tubular else return that S is289

tubular.290

4. Examples291

We illustrate our results by some examples.292

Example 4.1. We consider the swung surface (see Fig. 1)293

�
4

�
t2 + t+ 1

� �
s2 − 1

�

(t3 + 2) (s2 + 1)
, 18

�
t2 + t+ 1

�
s

(t3 + 2) (s2 + 1)
, t

�
.294

Without any computation, it is elementary to see that the trajectory curve

Figure 1: Tubular, swung, surface in Example 4.1

295

is the ellipse (1/16)x2 + (1/81)y2 − 1 (step 1.i from the above algorithm); so296

a = 16, b = 81, and h =
�
z2 + z + 1

�2
/
�
z3 + 2

�2
(step 2). Therefore the surface297

is tubular and its implicit equation is (step 2.a)298

�
x3

3 + 2
�2

x1
2 +

16

81

�
x3

3 + 2
�2

x2
2 − 16

�
x3

2 + x3 + 1
�2

299

Example 4.2. Consider the swung surface defined by (see Fig. 2)300

�
t2
s2 − 1

s2 + 1
, t2

2s

s2 + 1
, t3

�
.301
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Figure 2: Non-Tubular, swung, surface in Example 4.2

Since t4 cannot be expressed as h(t3), the surface is not tubular (step 2). Observe
also that the profile curve is (0, t2, t3) that is proper and the degree of φ2 is 3 > 2
(see Corollary 3.4). However, for any value of t = t0, excluding 0, the curve

�
t20
s2 − 1

s2 + 1
, t20

2s

s2 + 1
, t30

�

is a circle. The implicit equation of the surface is x6
1+3x4

1x
2
2+3x2

1x
4
2+x6

2−x4
3 = 0.302

We may express this polynomial as303

�
x2
1 + x2

2 −
3

�
x4
3

��
x2
1 + x2

2 +
1− i

√
3

2
3

�
x4
3

��
x2
1 + x2

2 +
1 + i

√
3

2
3

�
x4
3

�
304

and notice that the pencil of conics
�
x2
1 + x2

2 − 3
�
x4
3

�
is not rational.305

Example 4.3. F ≡ (−36)x2 + (−32z)xy + (4z2 − 100)y2 + (16z2 + 144)x +306

(−4z3 + 164z)y + z4 − 82z2 + 81 = 0. This surface (See Fig. 3) is a pencil of307

conics and, can be transformed into a tubular surface. In fact, let us take the308

following R(z)-change of variables x1 = x+( 49z)y−
2
9z

2−2, y1 = y−1/2z. Then309

F is transformed into F ∗ ≡ −36x2
1 + (100/9z2 − 100)y21 + (−25z2 + 225) = 0310

(see Fig. 4 left). This surface is not in the hypotheses of Theorem 2.3, so it311

is tubular but not swung (step 3.a of the Tubular/Swung algorithm). Now,312

consider the new change of variables x2 = 1/x1, y2 = y1/x1, we get the surface313

F ∗∗ = (−25z2 + 225)x2
2 + (100/9z2 − 100)y22 − 36 (Fig. 4 right), where A =314

(−25z2 + 255), B = (100/9z2 − 100), C = −36. This tubular surface verifies315

the hypotheses of Theorem 3.1, since A/B = −9/4 = k (step 3.a) and the curve316

A(y)x2+C = −25x2y2+225x2−36 is parametrizable by the profile curve (step317

10



Figure 3: Surface F in Example 4.3

3.b):318 �
2

5

t2 + 1

t2 − 1
,

6t

t2 + 1

�
.319

Following that theorem, the trajectory curve is x2
2 − 4/9y22 − 1 = 0 that we can320

parametrize as
�

s2+1
s2−1 ,

3s
s2−1

�
(step 3.c). This provides the following parametriza-321

tion of the surface322 




x2 = 2
5
t2+1
t2−1 · s2+1

s2−1

y2 = 2
5
t2+1
t2−1 · 3s

s2−1
z = 6t

t2+1

323

Finally, reverting the change of variables, we get the following parametrization324

of the original surface325






X = − 4φ2ψ2

9ψ1
+ 1

φ1ψ1
+ 2

Y = 1
2 φ2 +

ψ2

ψ1

Z = φ2

326

with φ1 = 2
5
t2+1
t2−1 , φ2 = 6t

t2+1 , ψ1 = s2+1
s2−1 , ψ2 = 3s

s2−1 .327






X = 1
2
·(3ts−t+s−3)·(3ts+t−s−3)

(s2+1)·(t2+1)

Y = 3 ·(t+s)·(ts+1)
(s2+1)·(t2+1)

Z = 6t
t2+1

328
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Figure 4: Left: Tubular, non-swung, surface F ∗ in Example 4.3. Right: Tubular, swung,
surface F ∗∗ in Example 4.3
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