
POLITECNICO DI TORINO

III Facoltà di Ingegneria

Ingegneria delle Telecomunicazioni

Search for Improvements in Low
Density Parity Check Codes for
WiMAX (802.16e) Applications

Author:
Carlos Dirube García

Supervisor:
Prof. Guido Masera

July 2014



This thesis is dedicated to my parents.

For their endless love, support and encouragement

I



Acknowledgments

First and foremost, I have to thank my parents for their love and support throughout my
life. Also my aunt who always treated me like a son, and my brother and sister for getting
me to improve day by day.

I would like to sincerely thank my supervisor, Prof. Masera, for his guidance and
support throughout this study and for his confidence in me. And also to PhD student
Carlo Condo for his selfless help and patience.

To my classmates who made each day different, who helped me countless times and
made me push myself to the maximum.

I need to especially thank my friend Álvaro, who let me use his computer to run some
simulations for this thesis when my computer crashed.

Finally I would like to thank my Erasmus friends for making this exchange experience
one of the best years of my life, for motivating me, caring about me and supporting me in
my bad moments. I cannot list all the names here, but you will always be on my mind.

II



Contents

1 Introduction 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 5

2.1 Noisy channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Error-Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 QC-LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 WiMAX LDPC codes . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Sum Product Algorithm (SPA) . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Matrices modifications and simulations 19

3.1 Removing girth cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Removing girth 4 cycles . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Removing girth 4 and girth 6 cycles . . . . . . . . . . . . . . . . . . 35

3.2 Modifications on Base Matrix distribution (creation of new Base Matrices) 45

3.3 Modifications on the submatrix distribution . . . . . . . . . . . . . . . . . 52

3.3.1 Row-Column exchange . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Adding ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Special structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

III



CONTENTS

4 Conclusions 70

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Future lines of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Annex A. Attached material 73

Bibliography 81

Acronyms 83

IV



Figures List

2.1 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Transmission System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Encoding representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Tanner graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Example of QC-LDPC code H matrix . . . . . . . . . . . . . . . . . . . . . 10

2.6 Structure of a WiMAX LDPC H matrix . . . . . . . . . . . . . . . . . . . 11

2.7 Variable Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Check Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 QC-LDPC submatrix with shift_value = 4 . . . . . . . . . . . . . . . . . 17

2.10 QC-LDPC data path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Base Matrix of WiMAX LDPC code of N=576, R=1/2, p = 24 . . . . . . . 19

3.2 Girth 4 cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Girth 6 cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Flow chart of the proposed algorithm to detect girth4 cylces . . . . . . . . 23

3.5 Multiple girth4 cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Girth4 cycles removed by symmetric inversion . . . . . . . . . . . . . . . . 24

3.7 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
some girth4 cycles removed by symmetric inversion of some submatrices . . 25

3.8 FER simulation results plots of WiMAX code (N = 576, R = 1/2) with
some girth4 cycles removed by symmetric inversion of some submatrices . . 26

3.9 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with all
girth4 cycles removed by removing 1s . . . . . . . . . . . . . . . . . . . . . 27

3.10 Girth4 cycles removed by submatrix circular shift . . . . . . . . . . . . . . 28

V



FIGURES LIST

3.11 Flow chart of the proposed algorithm to remove girth4 cylces by changing
shift values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.12 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with all
girth4 cycles removed by changing shift values of some submatrices . . . . 30

3.13 FER simulation results plots of WiMAX code (N = 576, R = 1/2) with all
girth4 cycles removed by changing shift values of some submatrices . . . . 31

3.14 BER simulation results plots of WiMAX code (N = 1440, R = 1/2) with
all girth4 cycles removed by changing shift values of some submatrices . . . 32

3.15 BER simulation results plots of WiMAX code (N = 576, R = 3/4) with all
girth4 cycles removed by changing shift values of some submatrices . . . . 33

3.16 Flow chart of the proposed algorithm to detect girth6 cylces in a girth4 free
code matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.17 Flow chart of the proposed algorithm to generate a new H matrix girth4
and girth6 free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.18 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with all
girth4 and girth6 cycles removed by generating new shift values but with
two less submatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.19 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
all girth4 removed and almost all girth6 cycles removed by generating new
shift values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.20 Girth4 in Base Matrix of Yejun He and Jie Yang algorithm . . . . . . . . . 40

3.21 Girth6 in Base Matrix of Yejun He and Jie Yang algorithm . . . . . . . . . 40

3.22 Flow chart of the proposed algorithm to detect girth6 cylces in a girth4 free
code matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.23 BER simulation results plots of WiMAX code (N = 1440, R = 1/2) girth4
and girth6 free obtained with the algorithm of Figure 3.22 . . . . . . . . . 42

3.24 BER simulation results plots of WiMAX code (N = 2304, R = 1/2) girth4
and girth6 free obtained with the algorithm of Figure 3.22 . . . . . . . . . 43

3.25 Example of girth cycles existence . . . . . . . . . . . . . . . . . . . . . . . 45

3.26 Example of girth cycles existence 2 . . . . . . . . . . . . . . . . . . . . . . 45

VI



FIGURES LIST

3.27 Flow chart of the proposed algorithm to minimize girth4 and girth6 possible
cycles in the structure of Base Matrix . . . . . . . . . . . . . . . . . . . . . 46

3.28 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
weight of 4 in the left part. Girth 4 and girth 6 free . . . . . . . . . . . . . 48

3.29 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
weight of 5 in the left part. One girth4 free and another girth4 and girth6 free 49

3.30 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
weight -1 (girth4 and girth6 free) and +1 (girth4 free) . . . . . . . . . . . . 50

3.31 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
same weights than original but girth4 and girth6 free . . . . . . . . . . . . 51

3.32 Column and row exchange are equivalent in identity matrices . . . . . . . . 53

3.33 BER simulation results plots of WiMAX code (N = 576, R = 1/2) girth4
free with the same column exchanges for all submatrices . . . . . . . . . . 54

3.34 BER simulation results plots of WiMAX code (N = 576, R = 1/2) girth4
free with column shuffling common for all the submatrices of a column of
Base Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.35 Example of submatrix where the original diagonal has been divided in pieces
of size=2 and shuffled randomly . . . . . . . . . . . . . . . . . . . . . . . . 56

3.36 BER simulation results plots of WiMAX code (N = 576, R = 1/2) girth4
free with each submatrix structure divided in pieces and shuffled. The shuff-
ling is common for all the submatrices of a column of Base Matrix . . . . . 57

3.37 Example of submatrix after adding 1s randomly . . . . . . . . . . . . . . . 58

3.38 BER simulation results plots of WiMAX code (N = 576, R = 1/2) girth4
free with 1s added in each row of each non-empty submatrix . . . . . . . . 59

3.39 Example of submatrix after adding one full column in a random position . 60

3.40 BER simulation results plots of WiMAX code (N = 576, R = 1/2) after
adding one full column to each submatrix in H . . . . . . . . . . . . . . . 60

3.41 BER simulation results plots of WiMAX code (N = 576, R = 1/2) when
adding one full column in one submatrix of each row of submatrices . . . . 61

3.42 Example of a row of submatrices with two half columns added without girth4 62

VII



FIGURES LIST

3.43 BER simulation results plots of WiMAX code (N = 576, R = 1/2) when
adding two halfs of column in each row of submatrices without girth4 . . . 62

3.44 Example of submatrix and BER simulation results plots of WiMAX code
(N = 576, R = 1/2) when adding one inverse diagonal to each non-empty
submatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.45 Example of submatrix and BER simulation results plots of WiMAX code
(N = 576, R = 1/2) when adding one aditional diagonal to each non-empty
submatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.46 Example of submatrix of special structure1 . . . . . . . . . . . . . . . . . . 65

3.47 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
special structure 1 (Figure 3.46) . . . . . . . . . . . . . . . . . . . . . . . . 66

3.48 Example of submatrix of special structure2 . . . . . . . . . . . . . . . . . . 67

3.49 BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
special structure 2 (Figure 3.48) . . . . . . . . . . . . . . . . . . . . . . . . 67

VIII



Tables List

2.1 Properties of LDPC codes of IEEE 802.16e WiMAX standard . . . . . . . 12

3.1 Simulation results values of WiMAX code (N = 576, R = 1/2) with some
girth4 cycles removed by symmetric inversion of some submatrices . . . . . 26

3.2 Simulation results values of WiMAX code (N = 576, R = 1/2) with all
girth4 cycles removed by removal of 1s . . . . . . . . . . . . . . . . . . . . 27

3.3 Simulation results values of WiMAX code (N = 576, R = 1/2) with all
girth4 cycles removed by shifting some submatrices . . . . . . . . . . . . . 30

3.4 Summary of results of Section 3.1.1 (Removing girth 4 cycles), N = 576,
R = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Summary of results of Section 3.1.1 (Removing girth 4 cycles), N = 1440,
R = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Summary of results of Section 3.1.1 (Removing girth 4 cycles), N = 576,
R = 3/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Summary of results of Section 3.1.2 (Removing girth 4 and girth 6 cycles),
N = 576, R = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Summary of results of Section 3.1.2 (Removing girth 4 and girth 6 cycles),
N = 1440, R = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Summary of results of Section 3.1.2 (Removing girth 4 and girth 6 cycles),
N = 2304, R = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.10 Row weights of WiMAX original code for N = 576 and R = 1/2 . . . . . . 47

3.11 Summary of results of Section 3.2 (Modifications on Base Matrix distribution
(creation of new Base Matrices)), N = 576, R = 1/2 . . . . . . . . . . . . . 52

3.12 Summary of results of Section 3.3 (Modifications on the submatrix distribu-
tion), N = 576, R = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

IX



1
Introduction

In this chapter the reasons that have led to the proposal and development of this project
are introduced. Its objectives are also defined in base of this. Finally, in a third section,
the structure of the report will be explained, showing a brief explanation of each one of
the chapters in which it is divided.

1.1 Problem statement

Since some decades ago, human life is bound unconditionally to technology, specially for
communications, such as TV, Internet, etc. At present, almost all this technology and
devices are based on digital systems, that work with binary digits (bits). The transmission
of these bits between different devices is done along cables (phone line between modems...)
or electromagnetic waves (Wi-Fi, 3G...) and in both cases the transmission is affected by
environmental characteristics such as obstacles, temperature, rain, etc. To fix the pos-
sible errors in the transmission, error-correction codes are needed. These codes introduce
redundant bits in the transmitter to help the receptor to get the original information.

Low Density Parity Check (LDPC) codes are a type of forward error-correction codes,
first proposed in the 1962 PhD thesis of Robert G. Gallager at Massachusetts Institute of
Technology (MIT) [1]. This codes remained undiscovered during a few decades, due to the
computational demands of simulation. During those years structured algebraic block and
convolutional codes were used but they showed a significant gap to Shannon limit.

Shannon theory tells us that all “random” codes are “good codes”. Unfortunately
"random" codes are not easily decodable. For many years, researchers worked under the
assumption that they could not find structured codes with good decoding performance and
efficiency.

In 1993 structured “turbo codes” were proposed by Berrou, Glavieux and Thitimajshima
[2]. “Turbo codes” involved very little algebra and employed iterative and distributed al-

1



Chapter 1. Introduction

gorithms, but the most important point, they reduced the performance gap to Shannon
limit.

In 1997, McKay and Neal rediscovered LDPC codes while studying “turbo codes”
[7], [8], and demonstrated that LDPC codes could also show good Bit Error Rate (BER)
performance for low Signal to Noise Ratio (SNR) values, although not as good as “turbo
codes” at that moment. These developed codes showed similar properties than “turbo
codes”, but it was soon recognized that they were a rediscovery of Gallager’s codes [1].
Other researchers produced later new irregular LDPC codes which outperformed the best
turbo codes.

Nowadays LDPC are used in several radio and wired communication systems. The
Digital Video Broadcasting by Satellite - Second Generation (DVB-S2) uses them since, in
2003, they beat Turbo Code proposals using a much more efficient decoder architecture.
LDPC codes are also used for 10GBase-T Ethernet and are also part of the Wi-Fi (Institute
of Electrical and Electronics Engineers (IEEE) 802.11) standard as an optional part of
IEEE 802.11n and IEEE 802.11ac.

Quasi-Cyclic LDPC (QC-LDPC) codes are a special type of LDPC codes that consist
of Circulant Permutation Matrices (CPMs) and zero matrices of the same size. These
LDPC matrices are highly structured and can be characterized by the submatrix size and
the circular-shift value of each CPM. QC-LDPC codes are receiving significant attention
by researches since their structures ease the hardware implementation (parallel decoder
architectures with high decoding throughput) and have excellent error performance over
noisy channels.

In this thesis the research is focused on the QC-LDPC matrices used in standard IEEE
802.16e,Worldwide Interoperability for Microwave Access (WiMAX). The QC-LDPC codes
used in this technology use identity matrices as CPMs.

The simplicity of the structure of the previously mentioned WiMAX matrices, that
are formed by circularly shifted right smaller identity matrices, suggests the possibility of
generating alternative QC-LDPC matrices with no much more complex structure or de-
coding hardware than WiMAX ones but with better error performance. Besides, lots of
researchers have studied the properties of LDPC codes and they have also experimented
with them in some ways (most of them increasing minimum cycles level) in order to im-
prove the performance, but almost none of them has applied these modifications to this
specifically WiMAX technology.

Even if this WiMAX technology uses “simple” QC-LDPC codes because the CPM is
a simple identity matrix, these codes are characterized for using a structured right part
that limits the possible successful modifications over the code matrix. So, it is interesting
to see how some of the modifications from other research papers could be applied over
this special structured matrix. The motivations of this work are then the possibility of

2



Chapter 1. Introduction

implementing some of these modifications over this specific WiMAX technology and also
to test some new modifications such as submatrix modifications, barely seen in previous
works.

1.2 Project objectives

The main objective of this thesis is to make a wide study of the possibilities of generating
new LDPC matrices with good error performance by modifying WiMAX ones, changing
their structure or the internal distribution of their submatrices, without making the de-
coding hardware much more complex.

A wide range of modifications in the matrices will be analyzed, implemented and
simulated to see the error performance in transmission along noisy channel. The study
will be focused on the smallest matrices used in decoding of IEEE 802.16e (M=288 rows x
N=576 columns) with ratio R = 0.5, but some of the modifications will be also studied in
bigger matrices and matrices with different code ratio.

The environment used to develop the new matrices will be MATLABr 1 due to the
fact that it is an environment specially designed to work and operate over matrices and has
many special functions and features to do it. Besides it is also good to plot the results of
the simulation processes. Even so, for some of the algorithms developed during this thesis,
a faster compiled language as C could have been better in order to save some time.

To simulate the BER performance over SNR values, a MATLAB simulator is not
suitable since MATLAB does not show good performance when working with loops, so a
much faster C software developed by the Department of Electronics and Telecommunica-
tions (DET) of the Politecnico di Torino 2 will be used.

1.3 Structure of the report

In the next lines the structure of the report is presented, with a brief description of the
chapters it is composed of:

• In the Chapter 2 the main theoretical concepts needed to understand this report
will be described, as well as the principal bases that support the line of research of
interest to this work. Besides, some different scientific papers carried out previously

1MATrix LABoratory. http://www.mathworks.com/products/matlab
2http://www.det.polito.it/

3



Chapter 1. Introduction

by various researchers will be referenced to get an idea of the state of the art and
progress of the research in this field of study.

• The Chapter 3 will expose a wide sequence of modifications done over the WiMAX
original code matrices in order to get better BER performance and the BER sim-
ulation results will be exposed as well. The BER simulation results will be briefly
analyzed for each test and some ideas about the hardware cost will also be introduced.

• At the end, in the Chapter 4, the conclusions reached after the analysis and sim-
ulations will be presented. After that, a summary of the thesis and the processes
developed in it will be added and finally, a series of interesting future lines of research
will be exposed.

• Finally, in the Annex A a short explanation of each one of the MATLAB codes
developed to work over the matrices will be also incorporated.

4



2
State of the Art

This chapter contains the introduction of each of the principal elements of this thesis. In
this way, the reader can acquire the necessary knowledge that allows him to understand
and interpret correctly the different points covered through the following pages. Besides
the actual situation of this line of research will be presented and analyzed.

2.1 Noisy channel

All information carried through a channel is affected by noise. In radio communications,
it is easy to understand that environment can affect data by damaging the transmission
(white noise, rain...), but also in cable communications such as phone line, the signal can
suffer cross-talk interference with other lines. Because of that, every time some information
is transmitted there is a certain probability of not receiving exactly the same information
that was sent.

The Binary Symmetric Channel (BSC) model says that each transmitted bit has got
a probability 1-p of being transmitted correctly and a probability p of being transmitted
incorrectly.

0 0

1 1

p

1p

1p

Figure 2.1: BSC

5



Chapter 2. State of the Art

A possible solution would be using more or better physical resources to transmit our
signals (more transmitted power, more telephone cables), but these improvements usually
increase the cost of the communication channel. The advances in information theory and
coding theory give us another alternative that allows us to detect and correct some errors
introduced in the transmission by the channel. It basically consists on adding redundant
information to our message before sending and discarding it after receiving.

Encoder

Decoder

Noisy channel
p

Message t

t'Message'

Transmitter

Receiver

Figure 2.2: Transmission System

As shown in Figure 2.2 an encoder is added before sending the message through the
channel. This encoder introduces redundant information to the message by following some
coding theory, to get the transmitted message t. This message travels through the channel
which adds noise to the message and the transmitted message t becomes into t’. Then the
decoder works to recover the original message using the redundant information added by
the encoder. At the end, the message received may have some errors, but the BER will be
lower than the probability of error p of the channel.

2.2 Error-Correcting Codes

One of the most simplest error-correcting codes to introduce redundant information in the
message could be, for example, one that replicates each bit of the original information
several times. Even if this code would work, the relation between the improvement in
the BER and the decrease of the information throughput would not be very good, and
researchers soon noticed it could be much better.

To get better solutions, the redundant information is not applied to each particular
bit, but to blocks of bits. The codes that work over blocks are called block codes. These

6



Chapter 2. State of the Art

codes add parity-check bits in such a way that codewords (parts of the coded messages)
are sufficiently distinct, one from another, that the transmitted message can be correctly
inferred at the receiver, even when some bits in the codeword are corrupted during the
transmission over the channel.

Block codes convert pieces (sequences of bits) of size K into pieces of size N adding
N −K extra bits. These extra bits are the result of calculating the parity of some of the
bits in the information word. The bits included in each parity calculation are designed
by the code. Each code chooses some or other bits, so there are lots of different possible
codes. Also each code has got a size of information word K, a size of codeword N , and a
code rate that is R = K/N .

u1=1 u3=0

u2=0

c5=1

c6=0 u4=1 c7=1

Figure 2.3: Encoding representation

In Figure 2.3 a simple encoding is shown. The information word of K = 4 bits
[u1 u2 u3 u4] is coded with N − K = 3 redundant bits [c5 c6 c7] to get the codeword of
N = 7 bits [c1 c2 c3 c4 c5 c6 c7] where [c1 c2 c3 c4] = [u1 u2 u3 u4] and [c5 c6 c7] are the
result of the calculation to keep the parity in each circle. These bits are calculated with
the next parity-check equations (all the thesis work will be done over Galois Field of two
elements (GF(2))1):

c5 = u1 ⊕ u2 ⊕ u3
c6 = u1 ⊕ u2 ⊕ u4
c7 = u2 ⊕ u3 ⊕ u4

(2.1)

These linear codes exposed here, can be also written in terms of matrices. For the
previous example the encoder process would be:

1Galois Field of two elements means 0+0=0, 0+1=1, 1+0=1 and 1+1=0

7



Chapter 2. State of the Art

[c1 c2 c3 c4 c5 c6 c7] = [u1 u2 u3 u4]


1 0 0 0 1 1 0
0 1 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 0 1 1


︸ ︷︷ ︸

G

(2.2)

Where G is the generator matrix. As shown, the original string of information u
times the generator matrix G gives us the code word c:

c = uG (2.3)

The check process in the decoder would be:

 1 1 1 0 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1


︸ ︷︷ ︸

H



c1
c2
c3
c4
c5
c6
c7


=

 0
0
0

 (2.4)

Where H is called the parity-check matrix and can be obtained from G. Each row
of H corresponds to a parity-check equation and each column of H corresponds to a bit
in the codeword. The codeword t′ = [c1 c2 c3 c4 c5 c6 c7] is a valid codeword for the code
with parity-check matrix H if and only if it satisfies the matrix equation:

Ht′T = 0 (2.5)

Depending on the code rate, it means, the code N and K chosen, the code Hamming
distance (minimum number of bit positions in which two codewords differ) is greater or
lower. A code with minimum Hamming distance dmin can always detect t errors whenever:

t < dmin (2.6)

The number of bit flips that a decoder can correct depends on the strategy of decod-
ing. The most intuitive strategy is to compare the codeword received with all the codewords
accepted and choose the one with minimum binary distance to the one received. This is
called Maximum likelihood (ML) and in general it can always correct codewords with e bit
flips if:

8



Chapter 2. State of the Art

e 6 b(dmin − 1)/2c (2.7)

This decoding strategy requires to compare the codeword received with all accepted
codewords but for codes with thousands of message bits in a codeword it becomes too
computationally expensive. To reduce that complexity other decoding strategies were
developed. One of them is the one for LDPC codes.

2.2.1 LDPC Codes

Low Density Parity Check codes are, as their name suggests, block codes with parity-check
matrices that contain only a few number of non-zero entries. This property of LDPC codes
makes both the encoding and the decoding complexity increase only linearly with code
length.

The biggest difference between LDPC codes and classical block codes is how they are
decoded. Instead of using ML method, LDPC codes are decoded iteratively using graphical
representations of their parity-check matrix H.

A LDPC code is characterized by its row weight (wr) and its column weight (wc). In
regular codes this values are constant for all rows and columns respectively. If they are
not, the code is called irregular. As it is said in [3], LDPC codes are good codes, even their
simple construction, while wr/N goes to zero, because of their good Hamming distance.

bit nodes

check nodes

Figure 2.4: Tanner graph

LDPC codes are often represented in graphical form by Tanner graph. In this graph,
defined by H matrix, the bits of codeword received (called bit nodes) and the parity-check

9



Chapter 2. State of the Art

equations (called check nodes) are represented. An edge joins a bit node to a check node if
that bit is included in the corresponding parity-check equation and so the number of edges
in the Tanner graph is equal to the number of ones in the parity-check matrix.

In Figure 2.4 an example of Tanner graph is shown. It corresponds to a code of code
length N = 6 and parity check bits N −K = 4.

Researchers in LDPC codes look for good codes performance, but they also look for
code structures that allow to reduce the hardware and software encoding and decoding
complexity. In this line of research QC-LDPC appeared.

2.2.2 QC-LDPC Codes

A QC-LDPC code is a type of LDPC constructed with circulant permutation matrices of
size p x p [4]. These codes have the possibility of being encoded with shift registers in
linear time. An example of a QC-LDPC code is shown in Figure 2.5, where Ap(i,j) is the
matrix A, of size p x p, circularly shifted p(i, j) (mod p).


Ap(0,0) Ap(0,1) Ap(0,2) · · · Ap(0,N/p−1)
Ap(1,0) Ap(1,1) Ap(1,2) · · · Ap(1,N/p−1)

...
...

... . . . ...
Ap((N−K)/p−1,0) Ap((N−K)/p−1,1) Ap((N−K)/p−1,2) · · · Ap((N−K)/p−1,N/p−1)


Figure 2.5: Example of QC-LDPC code H matrix

2.2.3 WiMAX LDPC codes

The WiMAX standard (IEEE 802.16e) is a wireless communications standard used in
small to medium distances in urban areas (bellow 10 Km range). This standard uses
LDPC codes to encode and decode the signal. LDPC codes can be very demanding from a
computational perspective, so they are still implemented using dedicated hardware based
on Application-Specific Integrated Circuit (ASIC) solutions.

The Forward Error Correcting (FEC) system of WiMAX standard is based on a
special class of LDPC codes [IEEE P802.16e/D12, 2005] characterized by a sparse binary
block parity-check matrix H of the form shown in Figure 2.6.

10



Chapter 2. State of the Art

H(N−K)xN = [H1|H2] =

Ip(0,0) · · · Ip(0,K/p−1) Ip(0,K/p) I 0 0 0 0 · · · 0
Ip(1,0) · · · Ip(1,K/p−1) Ip(1,K/p) I I 0 0 0 · · · 0
Ip(2,0) · · · Ip(2,K/p−1) Ip(2,K/p) 0 I I 0 0 · · · 0
Ip(3,0) · · · Ip(3,K/p−1) Ip(3,K/p) 0 0 I I 0 · · · 0

... . . . ...
...

...
... . . . . . . ...

... . . . ...
... 0 0 · · · 0 I I 0

Ip((N−K)/p−2,0) · · · Ip((N−K)/p−2,K/p−1) Ip((N−K)/p−2,K/p) 0 0 · · · 0 0 I I
Ip((N−K)/p−1,0) · · · Ip((N−K)/p−1,K/p) Ip((N−K)/p−2,K/p) 0 0 · · · 0 0 0 I


Figure 2.6: Structure of a WiMAX LDPC H matrix

The H matrix of Figure 2.6 is composed of two differentiated parts: H1 and H2.
The H1 part is a sparse pseudo randomly designed matrix of (N −K) x K composed of
quasi-random circularly shifted right identity sub-matrices with dimension p x p, or zero
matrices of the same size. The distribution of zero and non-zero matrices, and also the shift
indices are collected in the Base-Matrix. The dimension of the identity matrices goes from
p = 24 in the smallest matrix of N = 576 to p = 96 in the biggest matrix of N = 2304.
This H1 matrix correspond to the information bits.

The H2 part is formed by an special column and a double-diagonal staircase struc-
tured matrix and correspond to parity bits. The special column, the one in the position
(i,K) is the first column of the parity-check bits and has got a weight of 3 for all WiMAX
LDPC matrices. It is formed of two identity matrices shifted by the same index in the first
and last row (positions (0, K) and ((N − K) − 1, K)) and another matrix in a position
between (1, K) and ((K −N)− 2, K) with an unpaired shift value. For more information,
see [6].

The special staircase structure of H2 simplifies the encoding process and allows to
encode with a simple accumulate process using the previous calculated values.

cn = cn−1 +
K∑
k=0

Hn,ksk (2.8)

Where cn is the desired parity-check value and cn−1 is the parity-check value calculated
before. Hn,k are the values of H matrix of row n and sk are the information bits of source
information word.

In the Table 2.1, the properties of all the 76 different IEEE 802.16e LDPC codes are
shown. The submatrices size grows 4 for each different H matrix size.

11



Chapter 2. State of the Art

Table 2.1: Properties of LDPC codes of IEEE 802.16e WiMAX standard

Code length (N) Submatrix size (p) Information bits (K)
R = 1/2 R = 2/3 R = 3/4 R = 5/6

576 24 288 384 432 480
672 28 336 448 504 560
768 32 384 512 576 640
864 36 432 576 648 720
960 40 480 640 720 800
1056 44 528 704 792 880
1152 48 576 768 864 960
1248 52 624 832 936 1040
1344 56 672 896 1008 1120
1440 60 720 960 1080 1200
1536 64 768 1024 1152 1280
1632 68 816 1088 1224 1360
1728 72 864 1152 1296 1440
1824 76 912 1216 1368 1520
1920 80 960 1280 1440 1600
2016 84 1008 1344 1512 1680
2112 88 1056 1408 1584 1760
2208 92 1104 1472 1656 1840
2304 96 1152 1536 1728 1920

2.3 Sum Product Algorithm (SPA)

TheWiMAX codes used in this thesis are decoded using the Sum-Product Algorithm (SPA).
This is a soft decision message-passing algorithm which accepts the probability of each
received bit as input.

The input bit probabilities are called a priori probabilities for the received bits be-
cause they were known before start decoding. The bit probabilities returned after the
decoding process are called a posteriori probabilities. In SPA both probabilities are ex-
pressed as Log Likelihood Ratio (LLR)s.

L(x) = loge

(
p(x = 0)

p(x = 1)

)
(2.9)

Where p(x = 0) is the probability of the bit received of being a 0 and p(x = 1) the

12



Chapter 2. State of the Art

probability of being a 1. The benefit of doing this is that when probabilities need to be
multiplied, log-likelihood ratios need only be added, reducing implementation complexity.

If p(x = 0) is greater than p(x = 1), L(x) is positive and the greater the difference
between the probabilities, the more sure of being a 0 and the bigger the positive value for
L(x). If p(x = 1) is greater than p(x = 0), L(x) is negative and the more sure of being a
1, the bigger the negative value of L(x).

From equation 2.9 it can be easily extracted:

eL(x) =
p(x = 0)

p(x = 1)
=

p(x = 0)

1− p(x = 0)
(2.10)

(1− p(x = 0))eL(x) = p(x = 0) (2.11)

eL(x) − p(x = 0)(1 + eL(x)) = 0 (2.12)

p(x = 0) =
eL(x)

1 + eL(x)
(2.13)

In the same way it is not difficult to get:

p(x = 1) =
e−L(x)

1 + e−L(x)
=

1

1 + eL(x)
(2.14)

The iterative algorithm send messages between variable nodes (or bit nodes) and
check nodes and make calculations in both of them. In the variable nodes the calculations
are these:

Lout = Lc +

j=dv−1∑
j=1

Lj (2.15)

Where Lout is the value sent from the variable node to the check nodes connected
to it. Lc is the log-likelihood ratio obtained from the channel for that variable, Lj are
the values received from the check nodes connected to it, and dv is the degree of the node
(the number of parity-check nodes connected to it). In the first iteration Lout = Lc. A
representation of it is shown in Figure 2.7.

13



Chapter 2. State of the Art

VN CN

L1

L2

L3

L(dv1)

...

Lc(channel)

Lout

Figure 2.7: Variable Node

The computation of the check node is more complex. Lets do a change of variable:

x̂ =

{
+1, x = 0
−1, x = 1

(2.16)

The parity check before the changing was:

x1 + x2 + x3 + ...+ xdc−1 + xout = 0 (2.17)

After the changing it is:

x̂1x̂2x̂3...x̂dc−1x̂out = 1 (2.18)

What is the same:

x̂1x̂2x̂3...x̂dc−1 = x̂out (2.19)

In terms of probabilities, the check node calculates the expected value:

E[x̂out] = E[x̂1x̂2x̂3...x̂dc−1] = E[x̂1]E[x̂2]E[x̂3]...E[x̂dc−1] (2.20)

14



Chapter 2. State of the Art

Then:

E[x̂] = (+1)p(x̂ = 1) + (−1)p(x̂ = −1) = p(x̂ = 1)− (1− p(x̂ = 1)) (2.21)

Using the results of equations 2.13 and 2.14:

E[x̂] = p(x̂ = 1)− (1− p(x̂ = 1)) =
eL − 1

eL + 1
=
eL/2 − e−L/2

eL/2 + e−L/2
= tanh

(
L

2

)
(2.22)

Using equation 2.20:

tanh

(
Lout

2

)
=

j=dc−1∏
j=1

tanh

(
Lj

2

)
(2.23)

So:

Lout = 2arctanh

j=dc−1∏
j=1

tanh

(
Lj

2

)
(2.24)

L1

L2

L3

L(dc1)

...

VNCN
Lout

Figure 2.8: Check Node

15



Chapter 2. State of the Art

A representation of this is shown in Figure 2.8, where Lout is the value sent from
the check node to the variable nodes connected to it. This value is different depending
the destiny of the Lout because the variable node which is going to receive the Lout is not
included in the calculation of the value Lout it receives. Lj are the values received from
the variable nodes connected to the check node (unless the one which it sends the Lout to),
and dc is the degree of the check node (the number of variable nodes connected to it unless
the one which it sends the Lout to).

The iterative process of decoding finishes because one of these events:

• Valid codeword. If all parity-check equations are satisfied, it means the codeword
sent has been found. The decoding process has been successfully.

• Fixed point. The iterative process gets stuck and the values don’t change anymore.
It means the process failed.

• Maximum iterations. The iterative process reaches the limit of maximum allowed
iterations and it fails.

In the simulations of this report, the iterative processing used will be a normalized
version of SPA with factor ρ = 0.75.

2.4 Previous work

Since MacKay and Neal rediscovered the Gallager’s LDPC codes [1] in the 1990s [7], [8],
and showed that they could approach very near the Shannon’s capacity2 outperforming
the best “turbo codes”, lots of researchers started to work with these codes.

Most LDPC code designs rely on random construction of the parity check matrix
[8]. However, these codes are not structured and that makes the code difficult to describe
efficiently and hard to implement.

Opposed to random construction of LDPC codes, structured QC-LDPC codes were
proposed in early 2000s by Tanner in [9] and [10]. This particular type of codes is of interest
because they provide good performance and are hardware friendly. It has been shown that
the regular quasi-cyclic LDPC codes can achieve comparable performance to randomly
constructed codes if the codeword length is less than 10000 bits [11]. Moreover, the de-
coder implementation of QC-LDPC codes significantly simplifies the wire interconnections
and memory address generation. These codes can also be partitioned and implemented
with partially parallel decoder architectures, which achieve an efficient trade off between

2Shannon’s theorem tells there is a maximum channel capacity C to be able to transmit information
through a channel with an acceptable BER

16



Chapter 2. State of the Art

Very Large Scale Integration (VLSI) complexity and decoding throughput.Because of these
reasons, nowadays lots of researchers are working with these special codes.

Some research work shows improvements in the performance of WiMAX codes by
modifying the decoder hardware or the decoding structures. Some other works also show
improvements in BER performance by modifying the shift values or distribution of the
WiMAX code Base Matrix [12] and also by modifying row and column weights [13].

1

1

1

1

1

1

1

1

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0

Figure 2.9: QC-LDPC submatrix with shift_value = 4

In this report, some of those ways would be explored but working specifically over
the WiMAX codes. Besides an study of the possible modifications of submatrices structure
will also be done. The submatrix distribution used nowadays is shown in Figure 2.9. The
distribution is an ordinary identity matrix of p x p circularly shifted right by some value
between 0 and p − 1. This structure has got a very simple pattern that matches the
information values stored in a memory M0,M1,M2... with the parity check nodes CN0,
CN1, CN2... The simplicity of this pattern allows to implement this match network in
hardware by simple barrel shifters3.

In Figure 2.10 a very simplified sketch of the data path of information bits to arrive
to the parity check nodes is shown. The mentioned barrel shifters would be the "Shift
Network" of the sketch.

In this thesis the submatrix distribution would be studied and several modifications in
its structure would be tested to try to outperform the actual WiMAX codes by transforming
that "Shift Network" of Figure 2.10 without making it much more complex than simply

3A barrel shifter is a digital circuit that can shift a data word by a specified number of bits in one clock
cycle

17



Chapter 2. State of the Art

MEM

Shift Network

M4 M5 M6 M7 M0 M1 M2 M3

M0 M1 M2 M3 M4 M5 M6 M7

CN0 CN1 CN2 CN3 CN4 CN5 CN6 CN7

Figure 2.10: QC-LDPC data path

barrel shifters. This specific line of research has not been extensively covered by researchers,
so the simulation results of these modifications are totally unknown.

18



3
Matrices modifications and simulations

This is the main chapter of this thesis and contains a sequence of studies of some of the
possible modifications that can be made on the submatrix distribution and Base Matrix
distribution of one of the smallest matrices of code length N = 576 and code rate R = 1/2
of the QC-LDPC codes of IEEE 802.16e (WiMAX) standard in order to outperform the
codes used nowadays for this technology. Some of the modifications that get successful for
code length of N = 576 and rate R = 1/2 would also be tested for other code lengths and
rates. A very simple explanation of the hardware modifications that would be needed to
get each matrix modification will be included.

The Base Matrix of the mentioned code that will be tested is the one on Figure 3.1
(the matrix values represent the shift index of each respective submatrix. The value -1
represents an empty submatrix)



−1 22 1 −1 −1 −1 −1 −1 7 11 −1 −1 7 0 −1 −1 −1
−1 3 −1 −1 −1 22 7 9 −1 −1 −1 12 −1 0 0 −1 −1
−1 −1 −1 0 22 9 −1 9 −1 −1 −1 0 −1 −1 0 0 −1
13 −1 23 −1 −1 −1 −1 −1 17 1 −1 −1 −1 −1 −1 0 −1
−1 −1 15 −1 −1 −1 12 −1 −1 17 0 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 22 16 −1 10 −1 −1 −1 7 0 −1 −1 −1 · · · −1
−1 −1 23 5 −1 −1 −1 −1 −1 14 18 −1 −1 −1 −1 −1 · · · −1
−1 11 1 −1 −1 −1 2 −1 −1 23 −1 −1 −1 −1 −1 −1 −1
12 −1 −1 −1 11 0 −1 19 −1 −1 −1 3 −1 −1 −1 −1 −1
−1 −1 7 17 −1 −1 −1 −1 15 1 −1 −1 −1 −1 −1 −1 0
19 −1 −1 −1 −1 18 −1 17 −1 −1 −1 2 7 −1 −1 −1 0


Figure 3.1: Base Matrix of WiMAX LDPC code of N=576, R=1/2, p = 24

The right part of the matrix prepared specifically to increase the encoding perform-

19



Chapter 3. Matrices modifications and simulations

ance (see Section 2.2.3) will not be touched by the modifications even if it reduces the
possibilities of being successful.

This chapter would be divided in the next sections:

• Removing girth cycles.

• Modifications on Base Matrix distribution (creation of new Base Matrices).

• Modifications on the submatrix distribution.

At the beginning of each one of these sections a brief introduction will be presented, so the
concepts and motivations of the exposed matrices modifications will be explained.

The results of the simulations will be exposed and compared to WiMAX original code
BER performance. The simulation parameters will be:

• Decoding approach: Normalized Sum Product Algorithm

• Scaling factor for Normalized SPA: 0.75

• Maximum number of iterations: 10

• Max number of frames simulated: 107

• Max number of wrong frames simulated: 106

• All simulations will be done with the same random seed

3.1 Removing girth cycles

The aim of this section is to remove the girth cycles of H matrix. So to begin with this
section, the concept of girth needs to be explained.

As mentioned in the section 2.3 when the check node updates its Lout value to send it
to the variable nodes, it does not include in the computation the L value received from the
variable node that is going to be the destiny. This makes that the extrinsic information
obtained from a parity check constraint in the first iteration is independent of the a priori
probability information for that bit (it does of course depend on the a priori probabilities of
the other codeword bits). The extrinsic information provided from check node to variable
node in subsequent iterations remains independent of the original a priori probability of
that variable node until the a priori probability is returned back to the variable node via
a cycle in the Tanner graph. The correlation of the extrinsic information with the original

20



Chapter 3. Matrices modifications and simulations

a priori bit probability is what prevents the resulting a posteriori probabilities from being
exact.

In other words, the more iterations the original a priori information of a variable
node takes to return to the same variable node because of a cycle in the Tanner graph, the
better the result is. These cycles are called girth cycles. The smallest cycle possible is a
cycle of 4 iterations, called a girth4 cycle, the next is a girth6 cycle, girth8 cycle, etc.

The representation of a girth4 cycle is shown in Figure 3.2.

1 1

11

VN0 VN1 VN2 VN3 VN4 VN5 VN6 VN7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0

(a) Girth 4 matrix

VN0 VN1 VN2 VN3 VN4 VN5 VN6 VN7

CN0 CN1 CN2 CN3 CN4 CN5 CN6 CN7

(b) Girth 4 Tanner graph

Figure 3.2: Girth 4 cycle

The representation of a girth 6 cycle is shown in Figure 3.3.

21



Chapter 3. Matrices modifications and simulations

1 1

11

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0

1 1

VN0 VN1 VN2 VN3 VN4 VN5 VN6 VN7

(a) Girth 6 matrix

VN0 VN1 VN2 VN3 VN4 VN5 VN6 VN7

CN0 CN1 CN2 CN3 CN4 CN5 CN6 CN7

(b) Girth 6 Tanner graph

Figure 3.3: Girth 6 cycle

Higher girth cycles will not be discussed in this thesis, but its structure can be easily
deduced. The cycles can appear into a submatrix or between different submatrices in the
whole H matrix. For the submatrices of WiMAX codes treated in this report, it is only
possible that girth cycles appear between different submatrices, because the submatrices
are formed of shifted identity matrices and they can not create any cycle by themselves.

There are lots of research reports that talk about girth cycles. It is well known that
increasing the minimum level of the girth cycles, the BER performance improves.

For the case of this thesis, the chances of finding a girth-free matrix are reduced
because of the special structured right half part of the H matrix presented in Section
2.2.3, that will not be touched because it would impact on the encoding algorithm. This
right part of the H matrix does not contain any girth4 or girth6 cycles but because of
its structure it is easy that it creates girth cycles when combined with the left part of H
matrix.

The first step is to develop an algorithm to detect if a H matrix has got girth4 cycles
or not. The proposed algorithm is shown in Figure 3.4.

This algorithm checks if there are two columns that have more than one common
column with value 1 in the H code matrix. If this is the case, the H matrix has girth4
cycles.

22



Chapter 3. Matrices modifications and simulations

Start

End

Generate all possible combinations of 2 rows

Check the common number of columns with ones
of a pair of 2 rows  

More than one common
column with ones?

All the combinations of
2 rows tested?

N

Y
H hasn't 
got girth4

Y
H has got girth4

N

Figure 3.4: Flow chart of the proposed algorithm to detect girth4 cylces

Running this algorithm over the WiMAX original H matrix (N = 576, R = 1/2), the
result obtained shows that this matrix contains girth4 cycles.

3.1.1 Removing girth 4 cycles

Taking a deeper look to the particular rows and columns involved in the girth4 cycles of the
WiMAX matrix it is easy to see that the fact of using identity matrices is a disadvantage
because if there is a girth4 cycle, it is common that there are more than one. An example
of this problem is shown in Figure 3.5, where all ones in the image are forming girth4
cycles.

The first approach used to try to remove as many girth4 cycles as possible is the total
symmetric inversion of some submatrices. As it can be seen in Figure 3.6, by inverting the
structure of a submatrix that forms the cycles in a horizontal symmetric way, lots of cycles
can be destroyed. In the Figure 3.6 it is shown that all the cycles have disappear, but not
always all of them are destroyed with this method.

23



Chapter 3. Matrices modifications and simulations

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

. . .

. . .

. . .

. . .

Figure 3.5: Multiple girth4 cycles

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

. . .

. . .

. . .

. . .

1

1

1

1

1

1

1

1

Figure 3.6: Girth4 cycles removed by symmetric inversion

24



Chapter 3. Matrices modifications and simulations

In terms of hardware complexity of this implementation in the decoder, this solution
would need a not very complex multiplexors network (p 2x1 multiplexors) working at the
output of each barrel shifter in order to redirect the LLR values to the new destiny check
nodes, and also a very small memory of a few bytes to store the positions of the submatrices
that would redirect the outputs.

The proposed idea is applied to the WiMAX original matrix, where the algorithm
inverts the left top submatrix of each group of submatrices that form one or more girth4
cycles, and the report shows that the number of rows involved in girth4 cycles has been
reduced from 96 in the original matrix to 44 in the new one. The simulation results of this
proposal over the WiMAX original code are shown in Figure 3.7 and Table 3.1. Also the
Frame Error Rate (FER) performance is shown in Figure 3.8.

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Some girth4 cycles removed by symmetric inversion

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−5

10
−4

10
−3

SNR(dB)

B
E

R

 

 

Some girth4 cycles removed by symmetric inversion

Original WiMAX code

(b) High SNR values zoom

Figure 3.7: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with some
girth4 cycles removed by symmetric inversion of some submatrices

25



Chapter 3. Matrices modifications and simulations

Table 3.1: Simulation results values of WiMAX code (N = 576, R = 1/2) with some girth4
cycles removed by symmetric inversion of some submatrices

SNR Original WiMAX code BER Modified matrix by inverting
0.00 1.36e-01 1.37e-01
0.50 9.93e-02 9.98e-02
1.00 5.39e-02 5.39e-02
1.50 1.72e-02 1.68e-02
2.00 2.68e-03 2.46e-03
2.50 2.11e-04 1.67e-04
3.00 1.55e-05 8.84e-06

0 0.5 1 1.5 2 2.5 3

10
−3

10
−2

10
−1

10
0

SNR(dB)

F
E

R

 

 

Some girth4 cycles removed by symmetric inversion

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−3

10
−2

10
−1

SNR(dB)

F
E

R

 

 

Some girth4 cycles removed by symmetric inversion

Original WiMAX code

(b) High SNR values zoom

Figure 3.8: FER simulation results plots of WiMAX code (N = 576, R = 1/2) with some
girth4 cycles removed by symmetric inversion of some submatrices

As seen, the results outperform a little the WiMAX original code for high SNR values
in BER and FER. For low SNR values the performance is a little bit worst, but almost
equal. Is not unreasonable to assume that the improvement is due to the removal of some
girth4 cycles. The results suggest that by removing all the girth4 cycles the performance
would be better.

26



Chapter 3. Matrices modifications and simulations

In order to remove more girth4 cycles, all of them if possible, another way is taken.
By removing one 1 of each girth4 cycle, it is sure all the girth4 cycles will be removed.
Working only over the left part of original WiMAX matrix the algorithm is developed and
applied. The results are shown in Figure 3.9 and Table 3.2.

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Some girth4 cycles removed by symmetric inversion

Girth4 cycle free by removal of 1s

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−5

10
−4

10
−3

10
−2

SNR(dB)

B
E

R

 

 

Some girth4 cycles removed by symmetric inversion

Girth4 cycle free by removal of 1s

Original WiMAX code

(b) High SNR values zoom

Figure 3.9: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with all
girth4 cycles removed by removing 1s

Table 3.2: Simulation results values of WiMAX code (N = 576, R = 1/2) with all girth4
cycles removed by removal of 1s

SNR Original WiMAX code BER Modified matrix by removal of 1s
0.00 1.36e-01 1.29e-01
0.50 9.93e-02 9.30e-02
1.00 5.39e-02 4.99e-02
1.50 1.72e-02 1.59e-02
2.00 2.68e-03 2.52e-03
2.50 2.11e-04 1.99e-04
3.00 1.55e-05 1.15e-05

27



Chapter 3. Matrices modifications and simulations

The results show a little improvement over the WiMAX original matrix, but not over
the previous symmetric inversion algorithm shown before. Besides the hardware require-
ments of this idea are higher because it would need a large memory to store all the positions
of the 1s to remove and a network working at the output of barrel shifters to select if each
value is used or not. New ideas to remove all the girth4 cycles can be found.

Looking at the submatrices in Figure 3.5 the idea of changing the shifting values
comes to the mind. By changing the shift value of one of the submatrices that form a
girth4 cycle, all the girth4 cycles between those submatrices are broken. It can be seen in
Figure 3.10, where the top left submatrix has changed its shift value from 4 to 5, destroying
all the previous cycles.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

. . .

. . .

. . .

. . .

1

1

1

1

1

1

1

1

Figure 3.10: Girth4 cycles removed by submatrix circular shift

The algorithm proposed to remove girth4 in the whole H matrix by changing sub-
matrices shift values is shown in Figure 3.11.

28



Chapter 3. Matrices modifications and simulations

Start

End

Find girth4 cycles and add the position of topleft
submatrix involved in each cycle to a list

Shift circularly right one position each matrix on the list.
If a submatrix has already been shifted in the actual

iteration don't do it again.

Girth4 eliminated in H?

Has the iterations limit
been reached?

N

Y
H still has got
girth4 cycles

Y
H is girth4 free

N

Figure 3.11: Flow chart of the proposed algorithm to remove girth4 cylces by changing
shift values

This proposed algorithm is applied to the WiMAX original matrix and the report
shows that all the girth4 cycles have been removed. The algorithms gets successful by
changing the shift values of only 7 submatrices. The simulation results of this proposal
over the WiMAX original code are shown in Figures 3.12 and 3.13 and Table 3.3.

29



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 Girth4 cycle free by shifting

Some girth4 cycles removed by symmetric inversion

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−5

10
−4

10
−3

SNR(dB)

B
E

R

 

 Girth4 cycle free by shifting

Some girth4 cycles removed by symmetric inversion

Original WiMAX code

(b) High SNR values zoom

Figure 3.12: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with all
girth4 cycles removed by changing shift values of some submatrices

Table 3.3: Simulation results values of WiMAX code (N = 576, R = 1/2) with all girth4
cycles removed by shifting some submatrices

SNR Original WiMAX code BER Modified matrix by shifting
0.00 1.36e-01 1.38e-01
0.50 9.93e-02 1.01e-01
1.00 5.39e-02 5.39e-02
1.50 1.72e-02 1.64e-02
2.00 2.68e-03 2.29e-03
2.50 2.11e-04 1.38e-04
3.00 1.55e-05 5.12e-06

30



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3

10
−3

10
−2

10
−1

10
0

SNR(dB)

F
E

R

 

 

Girth4 cycle free by shifting

Some girth4 cycles removed by symmetric inversion

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−3

10
−2

10
−1

SNR(dB)

F
E

R

 

 

Girth4 cycle free by shifting

Some girth4 cycles removed by symmetric inversion

Original WiMAX code

(b) High SNR values zoom

Figure 3.13: FER simulation results plots of WiMAX code (N = 576, R = 1/2) with all
girth4 cycles removed by changing shift values of some submatrices

The results presented in Figures 3.12 and 3.13 show an important improvement in the
BER and FER performance of the WiMAX code when the girth4 cycles are all removed.
This approach outperform in BER and FER the original WiMAX code and also the first
approach tested in this section (symmetric inversion). The improvement is almost 0 for
low SNR values but it is relevant for high SNR values where it improves the fall of BER
in almost 0.18dB for BER = 0.2E10−4 over WiMAX original code (see Figure 3.12b).

In terms of hardware complexity, this solution would not need additional hardware,
since this proposal only needs to modify the shift values of 7 submatrices in the whole H
code matrix. A modification in the values stored in the memory that stores the shift values
would be enough.

It has been shown that the relation of results between different approaches (better
or worst) is the same in BER results than in FER results so, from now, no more values
tables or FER graphics will be shown. If the reader is interested in reviewing the next
simulation results deeply, he can go to the summary at the end of each section or to the
attached material where the simulation output files are stored.

31



Chapter 3. Matrices modifications and simulations

The algorithm was also tested for the medium size WiMAX code of N = 1440 and
R = 1/2 and it got successful after shifting 4 submatrices. It was not tested in the biggest
code matrix because it does not contain girth4 cycles.

The results for the girth4 cycle free matrix of code size N = 1440 and R = 1/2 are
shown in Figure 3.14.

0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2 2.1 2.2 2.3 2.4 2.5

10
−5

10
−4

SNR(dB)

B
E

R

 

 

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.14: BER simulation results plots of WiMAX code (N = 1440, R = 1/2) with all
girth4 cycles removed by changing shift values of some submatrices

The results show that in this case the removal of girth4 cycles improves the BER
performance a little bit for medium SNR values, for high SNR values the performance is
almost equal tan WiMAX original code.

The algorithm is also tested for the small matrix of N = 576 but now of R = 3/4.
The BER results are shown in Figure 3.15.

32



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3

10
−2

10
−1

SNR(dB)

B
E

R

 

 

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2.4 2.6 2.8 3 3.2

10
−2

SNR(dB)

B
E

R

 

 

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.15: BER simulation results plots of WiMAX code (N = 576, R = 3/4) with all
girth4 cycles removed by changing shift values of some submatrices

The results show in this case that there is no improvement in the performance, but
neither a deterioration. This result is unexpected due to the fact that the algorithm
removed lots of girth4 cycles during the creation of the new matrix and the expected
results were better.

To finish this section, a summary of the results shown in previous figures is presented
in Tables 3.4, 3.5 and 3.6. In this summary the simulation values of each approach can be
seen and the arrows and colors show the relation to the WiMAX original code simulation
values. The down arrow and green color mean the result is better than original for that
SNR value, an up arrow and red color mean the value is worst than original. This exposition
also allows a quick comparison of the results between different approaches.

33



Chapter 3. Matrices modifications and simulations

Table 3.4: Summary of results of Section 3.1.1 (Removing girth 4 cycles), N = 576, R = 1/2

SNR(dB) Original WiMAX Some Inversions Girth4 free by Girth4 free by
N = 576, R = 1/2 Fig. 3.7 removing 1s Fig. 3.9 shifting Fig: 3.12

0.0 1.36e-01 ↑ 1.37e-01 ↓ 1.29e-01 ↑ 1.38e-01
0.5 9.93e-02 ↑ 9.98e-02 ↓ 9.30e-02 ↑ 1.01e-01
1.0 5.39e-02 ≈ 5.39e-02 ↓ 4.99e-02 ≈ 5.39e-02
1.5 1.72e-02 ↓ 1.68e-02 ↓ 1.59e-02 ↓ 1.64e-02
2.0 2.68e-03 ↓ 2.46e-03 ↓ 2.52e-03 ↓ 2.29e-03
2.5 2.11e-04 ↓ 1.67e-04 ↓ 1.99e-04 ↓ 1.38e-04
3.0 1.55e-05 ↓ 8.84e-06 ↓ 1.15e-05 ↓↓ 5.12e-06

The summary of the results of N = 576 and R = 1/2 shows all the approaches tested
improves the BER for high SNR values (higher than SNR=1.0). In these high values the
best approach is by far, the girth4 free matrix by changing shift indices. For low SNR
values the results are in all cases similar to the originals.

Table 3.5: Summary of results of Section 3.1.1 (Removing girth 4 cycles), N = 1440,
R = 1/2

SNR(dB) Original WiMAX Girth4 free by
N = 1440 R = 1/2 shifting Fig: 3.14

0.0 1.39e-01 ↓ 1.38e-01
0.5 1.03e-01 ↓ 1.02e-01
1.0 5.03e-02 ↓ 4.85e-02
1.5 8.00e-03 ↓ 7.19e-03
2.0 2.31e-04 ↓ 1.90e-04
2.5 2.41e-06 ↓ 2.32e-06

The summary of the results of N = 1440 and R = 1/2 shows that the approach
tested of removing girth4 cycles by shifting improves the BER values for all SNR values
but not enough.

34



Chapter 3. Matrices modifications and simulations

Table 3.6: Summary of results of Section 3.1.1 (Removing girth 4 cycles), N = 576, R = 3/4

SNR(dB) Original WiMAX Girth4 free by
N = 576 R = 3/4 shifting Fig: 3.15

0.0 1.19e-01 ≈ 1.19e-01
0.5 1.04e-01 ↑ 1.05e-01
1.0 8.83e-02 ↑ 8.86e-02
1.5 6.87e-02 ↑ 6.93e-02
2.0 4.18e-02 ↑ 4.23e-02
2.5 1.45e-02 ≈ 1.45e-02
3.0 2.13e-03 ↓ 2.01e-03

The summary of the results of N = 576 and R = 3/4 shows that the approach tested
of removing girth4 cycles by shifting only improves the original values for SNR=3.0 and
this improvement is very small. For the rest of SNR values it is worst but almost equal.

Once the girth4 cycles have been removed from the target small and medium WiMAX
matrices, the next step in this chapter would be about trying to eliminate girth6 cycles.

3.1.2 Removing girth 4 and girth 6 cycles

In the previous section, it was shown that the removal of girth4 cycles in some matrix
sizes and rates leads to an important improvement in BER and FER performance so, it is
encouraging that the improvement could be still better by removing girth6 cycles.

Even so, it is needed to point out that the possibilities of being successful are once
again drastically reduced due to the structured right part of the H matrix. This part does
not contain any cycle but it does easier that cycles appear when combining with left part.
This structure also makes it impossible to use most of the algorithms seen in some research
works to build large girth codes.

The first approach proposed in this report to eliminate girth6 cycles is to apply almost
the same algorithm of Figure 3.11, the one that was successful for girth4. Of course it needs
some modifications. First a girth6 detector is needed.

The proposed algorithm to detect girth6 is shown in Figure 3.16. This algorithm
works over an already girth4 free H code matrix.

35



Chapter 3. Matrices modifications and simulations

Start

End

Generate all possible combinations of 3 rows

Calculate common columns with 1s in each pair
of rows

All pairs have common
columns with 1s and

are different columns?

All the combinations
of 3 rows tested?

NY
H hasn't 
got girth6

Y
H has got girth6

N

Divide each group of 3 rows in the 3
possible pairs of rows

Figure 3.16: Flow chart of the proposed algorithm to detect girth6 cylces in a girth4 free
code matrix

The girth6 detector is used to detect girth6 cycles and to identify the submatrices
involved. Besides, instead of selecting the top left submatrix to be shifted, in this case,
one of the submatrix that form the girth6 cycle, and that is not part of the structured
right part, is selected randomly. The girth4 detector is also used so the algorithm does not
create girth4 cycles while trying to remove girth6 cycles.

Unfortunately, the algorithm presented gets stuck when trying to remove girth6
cycles, because most of the shifting changes that it does create girth4 cycles in the H
matrix, so the changes are reversed and the algorithm never gets successful. So, other
ways need to be explored in order to eliminate girth6 cycles. In the next attempts, the
algorithms designed to remove girth6 cycles will work over the girth4 matrix obtained with
shifting algorithm (Figure 3.12).

One possible idea would be to remove one 1 of each girth6 cycle in the H matrix, so
the girth6 cycle is broken, as it was done for girth4 removing in the test of Figure 3.9. This
proposal is tested over the mentioned girth4 free matrix of Figure 3.12 and the results show
a disaster in the BER performance. This is surely due to the high amount of 1s removed

36



Chapter 3. Matrices modifications and simulations

from the matrix. There are so many girth6 cycles that the algorithm removes too many 1s
and the row and column weights get unbalanced.

For the next algorithm tested, instead of changing the WiMAX original shift values,
new shift values will be designated. The Base Matrix of the WiMAX original matrix is
used to know the distribution and position of the non-empty submatrices and to replicate
the structured right part, but the algorithm designates new shift values in the left part in
order to create a H matrix that does not contain girth4 and girth6 cycles. The flow chart
of the algorithm is presented in Figure 3.17.

Start

End

Go through all the rows of Base Matrix from 1:end
and through all the columns from end:1

NColumn of the
element <= K?

Fill that submatrix of H matrix with
a submatrix circularly shifted by

the shift value of Base Matrix

Fill that submatrix of H matrix with
a submatrix circularly shifted by

a random value

All elements checked? 

Y
N

Y

Does this submatrix
create girth4 or
girth6 cycles?

Y

N

Figure 3.17: Flow chart of the proposed algorithm to generate a new H matrix girth4 and
girth6 free

First, it is run over the original WiMAX code of N = 576 and R = 1/2. The
algorithm finishes after a long time of processing and it shows that a new matrix has been
created without girth4 and girth6 cycles. Even so, two submatrices has not been placed
because any shift rotation was possible without creating girth6 cycles. So, two cases would
be simulated, the one without girth4 and girth6 cycles, but with two less submatrices
in H matrix, and another with those problematic submatrices filled with some shifted
submatrices that do not create girth4 cycles (although they create a few girth6 cycles).

As said, the first BER simulation is a code of N = 576 and R = 1/2 with same Base
Matrix distribution than WiMAX original code but different shift values, with two less
submatrices (positions: row=12,column=6 and row=12,column=8), but without girth4
and girth6 cycles. The BER results are exposed in Figure 3.18.

37



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 
Girth4 and girth6 free with 2 less submatrices

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−5

10
−4

10
−3

SNR(dB)

B
E

R

 

 
Girth4 and girth6 free with 2 less submatrices

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.18: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
all girth4 and girth6 cycles removed by generating new shift values but with two less
submatrices

The results show a little improvement over the WiMAX original code but not over
the girth4 free by shifting obtained in previous section. This can be due to those two less
matrices that unbalance the code weights. It will be check in the next simulation where
those two less matrices has been filled with shifted submatrices that do not create girth4.
The results can be seen in Figure 3.19.

38



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Girth4 free and few girth6

Girth4 and girth6 free with 2 less submatrices

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

10
−5

10
−4

SNR(dB)

B
E

R

 

 

Girth4 free and few girth6

Girth4 and girth6 free with 2 less submatrices

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.19: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with all
girth4 removed and almost all girth6 cycles removed by generating new shift values

As seen the results show an improvement over the previous case, even if the previous
case was girth6 free, because in this case the weights are the original of WiMAX. Seems to
be clear that the weight distribution is more important than the girth cycles. Anyway, this
case has worst performance than the girth4 free code of the previous section. It does not
make much sense that a code with all girth4 removed and almost all girth6 cycles removed
is not better than one with only the girth4 cycles removed.

The algorithm is also tested in the small submatrix of N = 576, R = 3/4 but it does
not converge well. The algorithm finishes but a huge amount of submatrices are empty
because the algorithm did not find any shift value that was good not to create girth cycles.
That was expected, because that small matrix has a high concentration of submatrices,
much more than the R = 1/2 treated before, so if the algorithm had some troubles (2
submatrices) with R = 1/2 it as expected it had more troubles for R = 3/4.

The algorithm could be tested on the bigger matrix of N = 1440 and the biggest one
of N = 2304 but the algorithm is too low and it would take ages. So another solution is
found.

39



Chapter 3. Matrices modifications and simulations

Reviewing some research papers on this field, an interesting algorithm is developed
by Yejun He and Jie Yang in [17]. In this work an algorithm to eliminate girth cycles is
proposed. The algorithm is based on the fact that the girth cycles can be detected very
easily analyzing the Base Matrix in the way explained in the next lines.

If there are four submatrices forming a girth4 cycle in the Base Matrix as shown in
Figure 3.20 (remember the value -1 represents an empty submatrix), there will exist a girth4
cycle in the H matrix that corresponds to that Base Matrix if the value of A−C +D−B
is equal to a multiple of p (size os submatrix).


−1 −1 −1 −1 −1 −1 −1
−1 −1 A −1 C −1 −1
−1 −1 −1 −1 −1 −1 −1
−1 −1 B −1 D −1 −1
−1 −1 −1 −1 −1 −1 −1


Figure 3.20: Girth4 in Base Matrix of Yejun He and Jie Yang algorithm

For girth6 cycles case, if there are 6 submatrices forming a girth6 cycle (see Fig-
ure 3.21), there will be a girth6 cycle in the H matrix if the value of A−C+D−E+F −B
is equal to a multiple of p.



−1 −1 −1 −1 −1 −1 −1
−1 A −1 C −1 −1 −1
−1 −1 −1 −1 −1 −1 −1
−1 −1 −1 D −1 E −1
−1 −1 −1 −1 −1 −1 −1
−1 B −1 −1 −1 F −1
−1 −1 −1 −1 −1 −1 −1


Figure 3.21: Girth6 in Base Matrix of Yejun He and Jie Yang algorithm

In Figure 3.22 their algorithm is presented with some modifications to adapt it to
this work.

40



Chapter 3. Matrices modifications and simulations

Start

End

Take a Base Matrix

Calculate the number of girth4 and girth6 cycles
in which each element of Base Matrix is involved 

All the values are zero?
That value has

 been changed p consecutive
times?

N

Y
Y
H is girth4 and girth6 free

N

Take the element with the
most cycle number

Increase that shift
value by 1 (mod p)

Change that value for an
empty submatrix (1)

Figure 3.22: Flow chart of the proposed algorithm to detect girth6 cylces in a girth4 free
code matrix

As seen, this algorithm needs a code to detect the number of girth4 and girth6 cycles
in which each element of Base Matrix is involved. Two codes are developed to carry out
this function. These codes go through all the elements in the Base Matrix, analyze all the
possible combinations that could create girth4 and girth6 cycles and apply the equations
seen a few lines before to detect if there will be girth cycles when the H matrix is created.
If the algorithm shifts the same submatrix p consecutive times, it means that submatrix
can not be there without creating girth cycles, so it is replaced with an empty submatrix.

The algorithm is run over all the submatrices treated before: N = 576 for R = 1/2
and R = 3/4, N = 1440 for R = 1/2 and N = 2304 for R = 1/2. For the first two cases
of different rates of N = 576, the algorithm does not converge. It was expected due to the
fact that the algorithm of Figure 3.17 could not find a combination to create a girth4 and
girth6 free code. Anyway, for N = 576 and R = 1/2 a solution without girth4 cycles and
only a few girth6 cycles was found. When run over the code of N = 1440 and R = 1/2,
the algorithm gets successful and gets a girth4 and girth6 free matrix. The BER results
are compared with the WiMAX original code for that size and rate and also the girth4 free
results of that code obtained in Figure 3.14. The results are shown in Figure 3.23.

41



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Girth4 and girth6 free

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2 2.1 2.2 2.3 2.4 2.5

10
−5

10
−4

SNR(dB)

B
E

R

 

 

Girth4 and girth6 free

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.23: BER simulation results plots of WiMAX code (N = 1440, R = 1/2) girth4
and girth6 free obtained with the algorithm of Figure 3.22

The results show an improvement in BER performance over both other cases. Besides
as it was said before, these modifications do not need any hardware alteration since they
are only shift values changes.

When the algorithm is run over the biggest matrix of N = 2304 and R = 1/2 it also
gets successful and it gets a girth4 and girth6 free matrix. The results are compared with
the WiMAX original code for that size and rate that was already girth4 free. The BER
simulation results can be seen in Figure 3.24.

42



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Original WiMAX code

Girth4 and girth6 free

(a) Complete plot

2.48 2.485 2.49 2.495 2.5

10
−6.36

10
−6.35

10
−6.34

10
−6.33

10
−6.32

10
−6.31

10
−6.3

SNR(dB)

B
E

R

 

 

Girth4 and girth6 free

Original WiMAX code

(b) High SNR values zoom

Figure 3.24: BER simulation results plots of WiMAX code (N = 2304, R = 1/2) girth4
and girth6 free obtained with the algorithm of Figure 3.22

On this occasion, the difference seen is almost non-existent. The zoom needed to see
any difference is too high. This was expected because this code matrix was already girth4
free, and the number of girth6 cycles was not high.

Lots of more algorithms could be developed and tested to eliminate higher girth cycles
but the right structure of the matrix makes it almost impossible, at least in the size of
matrix focused in this thesis (N = 576).

To finish this section, a summary of the results shown in previous figures is presented
in Tables 3.7, 3.8 and 3.9. In this case the obtained values are compared (the color and
arrows) to the WiMAX girth4 free matrix by shifting obtained in the previous section of
this chapter and that is the best result obtained until now, not the original WiMAX code.
But for the case of N = 2304 the original WiMAX code is already girth4 free so the results
are compared with that. As before, this exposition of the simulation values allows also to
compare the results between different approaches.

43



Chapter 3. Matrices modifications and simulations

Table 3.7: Summary of results of Section 3.1.2 (Removing girth 4 and girth 6 cycles),
N = 576, R = 1/2

SNR(dB) Original WiMAX Girth4 free by Girth4 and 6 free Girth4 and few
N = 576, R = 1/2 shifting Fig: 3.12 with 2 less submatrices girth6

Fig. 3.18 Fig. 3.19
0.0 1.36e-01 1.38e-01 ↓ 1.33e-01 ≈ 1.38e-01
0.5 9.93e-02 1.01e-01 ↓ 9.72e-02 ↓ 1.00e-01
1.0 5.39e-02 5.39e-02 ↓ 5.29e-02 ↓ 5.35e-02
1.5 1.72e-02 1.64e-02 ↑ 1.69e-02 ↓ 1.62e-02
2.0 2.68e-03 2.29e-03 ↑ 2.59e-03 ↓ 2.26e-03
2.5 2.11e-04 1.38e-04 ↑ 1.89e-04 ↑ 1.48e-04
3.0 1.55e-05 5.12e-06 ↑↑ 1.20e-05 ↑ 9.48e-06

The table shows again that none of the approaches can outperform the girth4 free
matrix obtained by shifting, even if they are girth6 free.

Table 3.8: Summary of results of Section 3.1.2 (Removing girth 4 and girth 6 cycles),
N = 1440, R = 1/2

SNR(dB) Original WiMAX Girth4 free by Girth4 and 6 free
N = 1440 R = 1/2 shifting Fig: 3.14 Fig. 3.23

0.0 1.39e-01 1.38e-01 ↑ 1.39e-01
0.5 1.03e-01 1.02e-01 ↑ 1.04e-01
1.0 5.03e-02 4.85e-02 ↑ 4.93e-02
1.5 8.00e-03 7.19e-03 ↓ 7.02e-03
2.0 2.31e-04 1.90e-04 ↓ 1.63e-04
2.5 2.41e-06 2.32e-06 ↓↓ 1.59e-06

The results of this case, as seen in the respective graph, show an important improve-
ment for high SNR values and almost any difference for low SNR values.

Table 3.9: Summary of results of Section 3.1.2 (Removing girth 4 and girth 6 cycles),
N = 2304, R = 1/2

SNR(dB) Original WiMAX Girth4 and 6 free
N = 2304 R = 1/2 Fig. 3.24

0.0 1.40e-01 ≈ 1.40e-01
0.5 1.05e-01 ≈ 1.05e-01
1.0 4.85e-02 ↓ 4.83e-02
1.5 4.20e-03 ↓ 4.12e-03
2.0 3.09e-05 ↓ 2.95e-05
2.5 4.38e-07 ↑ 4.42e-07

44



Chapter 3. Matrices modifications and simulations

The results show almost no difference with the WiMAX original code.

3.2 Modifications on Base Matrix distribution (creation
of new Base Matrices)

Until now, the shift values have been changed and also reset with random values, but the
original distribution and place of the full and empty submatrices has not been changed.
This section is about creating new Base Matrix distributions and test if the structure can
be improved to get better performance. Additionally some tests to try to improve the row
weight will be presented. This section will use, as target matrix to outperform, the best
BER results until now, the girth4 free WiMAX code matrix got by shifting submatrices
(Figure 3.12). The aim of this section is to outperform that matrix, so all the modifications
done will try not to create girth4 cycles.

Following the original idea of this field of research that less girth cycles lead to better
performance, the idea of the following algorithm is to create Base Matrix distributions
with few probabilities of creating girth cycles. It means, if the Base Matrix is the one in
Figure 3.25.

 −1 A −1 C −1
−1 −1 −1 −1 −1
−1 B −1 D −1


Figure 3.25: Example of girth cycles existence

There are possibilities that A,B,C andD form a girth4 cycle (see the theory explained
in the previous section). But if the structure of Base Matrix is like the one in Figure 3.26,
there is not any chance of a girth cycle appear, no matter what shift values A,B,C or D
are.

 −1 A −1 C −1
−1 −1 −1 D −1
−1 B −1 −1 −1


Figure 3.26: Example of girth cycles existence 2

So the next algorithm creates Base Matrices trying to minimize those structural cycles
that can lead to girth cycles in the H code matrix. If these structural cycles are minimized

45



Chapter 3. Matrices modifications and simulations

in number, the possibilities of being successful when selecting good shift values that do not
create girth cycles in H matrix are much higher. The algorithm can be seen in Figure 3.27.

Start

Go through next row

N

Generate all the possible combinations of locations
of wr (row weight) submatrices in one row

Choose one of those combinations randomly

Do these locations generate less girth
cycles than the best until now?

Calculate the girth4 and girth6 cycles now in H matrix

Y

Best until now = Actual combination of locations

All the rows done?
Y

End

All the combinations
checked?

Y

N

N

Iterate over all rows

Eliminate the placed
submatrices
of H matrix

Place the submatrices in those locations of H matrix

Final locations of this row =
 Best location until now

Place the submatrices
in the final location,

the best locations found

Figure 3.27: Flow chart of the proposed algorithm to minimize girth4 and girth6 possible
cycles in the structure of Base Matrix

This algorithm takes a vector of row weights for the left part of the H matrix and
in each row introduces the number of non-empty submatrices that the vector indicates for
that row.

Once the Base matrix is made with the less potential girth cycles as possible, the
algorithm presented in the previous section in Figure 3.17 can work to find shift values
that finally do not create girth cycles in H matrix. These algorithms also allows to test
the influence of the row weights by giving to it the vector with the desired row weights.

First of all, the row weights of the original WiMAX code for N = 576 and R = 1/2
are presented in Table 3.10.

46



Chapter 3. Matrices modifications and simulations

Table 3.10: Row weights of WiMAX original code for N = 576 and R = 1/2

Row Row weight of complete Row weight of left part
WiMAX H matrix of WiMAX H matrix

1 6 4
2 7 5
3 7 5
4 6 4
5 6 4
6 7 4
7 6 4
8 6 4
9 7 5
10 6 4
11 6 4
12 6 4

First the influence of the row weights will be tested. To do that, two trials will be
done, one with all the rows with 4 weight in the left part (see Table 3.10), and another
with 5. The values are selected because the original values are all in the interval [4,5], so
with these values, an approach above and below is tested.

So the first trial introduces 4 non-empty submatrices in each row of the left part of the
H matrix. Due to introducing these weights, the algorithm can get successful when trying
that the desired matrix is girth4 and girth6 free. The results are shown in Figure 3.28.

The results show an improvement over the WiMAX original code but not over the
girth 4 free WiMAX matrix, even if this last trial is girth4 and also girth6 free. Besides
there is a little deterioration for medium SNR values. It seems the uniform weight 4 is not
better than the actual weights of the WiMAX original code. The weights of the original
code are 4 on 9 of its 12 rows, so the proposed matrix is different only in the weights of 3
rows. Because of the difference is not big, the results are similar. With the next trial, the
difference is bigger, because there are only three rows in the original code with weight of
5, so the proposal code with all the rows with weight of 5 is different in 9 rows, much more
different than last one.

47



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Weight 4 Girth4 and 6 free

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−5

10
−4

10
−3

SNR(dB)

B
E

R

 

 

Weight 4 Girth4 and 6 free

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.28: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
weight of 4 in the left part. Girth 4 and girth 6 free

For the trial of weight 5 in all the rows, the algorithm is not able to remove all
the girth6 cycles and 10 submatrices are filled with empty submatrices. Two cases are
presented: the case with 10 less submatrices (so the weight definitely is not 5) but girth4
and girth6 free, and the case with weight 5 but girth6 cycles, so it is only girth4 free. The
results of both cases are presented in Figure 3.29.

The results show a high deterioration of the BER performance for both cases, not
only over the girth4 WiMAX code but over the WiMAX original matrix too. Between the
two cases presented, the one with the real weight of 5 but with girth 6 cycles show worst
performance than the one with irregular weights (it has 10 less non-empty submatrices)
but girt4 and girth6 free.

48



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Try of weight 5. Girth4 and girth6 free

Weight 5. Girth4 free

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−5

10
−4

10
−3

10
−2

SNR(dB)

B
E

R

 

 

Try of weight 5. Girth4 and girth6 free

Weight 5. Girth4 free

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.29: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
weight of 5 in the left part. One girth4 free and another girth4 and girth6 free

In the next case, two trials will also be presented. One of them is a code where the
row weights have been decreased by 1, so the weights will be 3 for 9 rows and 4 for 3 rows.
For this matrix it was possible to remove both girth4 and girth6 cycles. In the other trial,
the weights have been increased by 1, so the weights are 5 for 9 rows and 6 for 3 rows. In
this trial, it was possible to remove girth4 cycles but not girth6 cycles. The results of this
two trials are shown in Figure 3.30.

The results, once again, show a high deterioration on the BER performance for both
cases. For the trial of increasing the row weights by 1, at SNR=3 the BER is almost equal
to the WiMAX original code, but not for the rest of the SNR values. The trial of decreasing
the row weights by 1, it is curious that it outperform both girth4 free WiMAX and WiMAX
original codes for low SNR values, but after SNR=1.5 it becomes a performance disaster.

It is curious that the trial where the weights were increased by 1 (so there are lots
of rows with weight=5 and some of them with weight=6) has better performance than
the one of the previous cases where the weights where all 5. This tells us that maybe the
distribution and relation of weights is important, not only the value of the weights.

49



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Weights originals −1. Girth4 and girth6 free

Weights originals +1. Girth4 free

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−5

10
−4

10
−3

SNR(dB)

B
E

R

 

 

Weights originals −1. Girth4 and girth6 free

Weights originals +1. Girth4 free

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.30: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
weight -1 (girth4 and girth6 free) and +1 (girth4 free)

Once that the influence of row weights has been tested, the next objective is to test
some different randomly generated Base Matrix distributions for the same weights than the
original code. It means, the algorithm will take the same row weights than the WiMAX
original code has, but it will distribute the non-empty submatrices to get girth4 and girth6
free codes if possible.

After running the algorithm several times with the original weights, two different
girth4 and girth6 free codes are obtained. The results of these codes are shown in Fig-
ure 3.31.

The results show that these two cases can get the BER performance of the girth4
WiMAX code for high SNR values, they can even improve the performance a little bit.
But for medium SNR values the values are a little bit worst than original code.

50



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Original weights case 1. Girth4 and girth6 free

Original weights case 2. Girth4 and girth6 free

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2.85 2.9 2.95 3

10
−5

SNR(dB)

B
E

R

 

 
Original weights case 1. Girth4 and girth6 free

Original weights case 2. Girth4 and girth6 free

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.31: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with same
weights than original but girth4 and girth6 free

In hardware terms, all these modifications done on the weights and the Base Matrix
distributions would only require, depending on the case, some barrel shifters more or less
and some modifications on the data of the memories that store the behavior of the barrel
shifters.

As in previous sections, to finish this one, a summary of the results shown in previous
figures is presented in Table 3.11. In this case the obtained values are compared (the color
and arrows) again to the WiMAX girth4 free matrix by shifting obtained in the previous
section of this chapter and that is the best result obtained until now, not the original
WiMAX code. As before this exposition of the simulation values allows also to compare
the results between different approaches.

51



Chapter 3. Matrices modifications and simulations

Table 3.11: Summary of results of Section 3.2 (Modifications on Base Matrix distribution
(creation of new Base Matrices)), N = 576, R = 1/2

SNR(dB) Original WiMAX Girth4 free by Weight 4 Try of weight 5
N = 576, R = 1/2 shifting Fig: 3.12 girth4 and girth6 girth4 and girth6

free Fig. 3.28 Fig. 3.29
0.0 1.36e-01 1.38e-01 ↓ 1.35e-01 ↓ 1.35e-01
0.5 9.93e-02 1.01e-01 ↓ 1.00e-01 ↓ 1.00e-01
1.0 5.39e-02 5.39e-02 ↑ 5.69e-02 ↑ 5.68e-02
1.5 1.72e-02 1.64e-02 ↑ 1.92e-02 ↑ 1.97e-02
2.0 2.68e-03 2.29e-03 ↑ 3.05e-03 ↑ 3.65e-03
2.5 2.11e-04 1.38e-04 ↑ 2.01e-04 ↑↑ 4.76e-04
3.0 1.55e-05 5.12e-06 ↑ 6.61e-06 ↑↑ 1.04e-04

SNR(dB) Weight 5 Same weights -1 Same weights +1 Same weights case 1
girth4 free girth4 and girth6 girth4 free girth4 and girth6
Fig. 3.29 free Fig. 3.30 Fig. 3.30 free Fig. 3.31

0.0 ↑ 1.55e-01 ↓ 1.16e-01 ↑ 1.59e-01 ↑ 1.40e-01
0.5 ↑ 1.21e-01 ↓ 8.39e-02 ↑ 1.28e-01 ↑ 1.05e-01
1.0 ↑ 7.40e-02 ↓ 4.90e-02 ↑ 8.35e-02 ↑ 5.94e-02
1.5 ↑ 2.70e-02 ↑ 2.03e-02 ↑ 3.39e-02 ↑ 1.95e-02
2.0 ↑ 4.86e-03 ↑ 5.33e-03 ↑ 6.57e-03 ↑ 2.91e-03
2.5 ↑↑ 6.35e-04 ↑↑ 8.91e-04 ↑↑ 5.23e-04 ↑ 1.71e-04
3.0 ↑↑ 2.22e-04 ↑↑ 1.10e-04 ↑↑ 1.87e-05 ↓ 4.45e-06

As seen in this summary and previously analyzed during this section, some solutions
show better performance for low SNR values and one of them shows better performance
for high SNR values. Anyway, the improvements are not substantial in any case.

3.3 Modifications on the submatrix distribution

In the Section 2.4 of this work, the motivation to explore some modifications on submatrix
distribution was introduced. The idea is to alter the submatrix original structure in a way
that does not make the hardware implementation much more complex and so, break the
correlation between rows trying to randomize them in some way.

Some different types of modifications will be tested such as row-column exchange,
different types of adding ones, adding full or half columns, etc. The modifications will be
done over the girth4 free matrix obtained in the Section 3.1.1 and compared with its BER
graph showed in Figure 3.12, so these modifications will try to outperform that matrix
(the best results until now for N = 576 and R = 1/2).

52



Chapter 3. Matrices modifications and simulations

3.3.1 Row-Column exchange

Because of the fact that the submatrix is an identity matrix, a row exchange is the same
than a column exchange. An example can be shown in Figure 3.32. In Figure 3.32a the
columns M1 and M5 have been exchanged. In Figure 3.32b the rows CN1 and CN5 have
been exchanged. It is easy to see that the result is the same.

1

1

1

1

1

1

1

1

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0

(a) Column exchange

1

1

1

1

1

1

1

1

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0

(b) Row exchange

Figure 3.32: Column and row exchange are equivalent in identity matrices

An algorithm to do column exchanges in the submatrices is developed. This algorithm
exchanges the same columns of each submatrix. It means, if the exchanged columns are 5
and 12, the columns 5 and 12 are exchanged in all submatrices independently.

The changes of this algorithm would need, in terms of hardware a different redirection
of the outputs of the barrel shifter to the check nodes. This redirection would need a change
in the actual hardware, but it is not more complex than actual.

The algorithm is applied to the girth4 free WiMAX H matrix, obtained in the pre-
vious section, three times, exchanging different pairs of columns in each case. Also a case
with five exchanges is done. The BER simulation results can be seen in Figure 3.33.

53



Chapter 3. Matrices modifications and simulations

0.5 1 1.5 2 2.5 3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 Columns 5 and 17 exchanged

Columns 3 and 7 exchanged

Columns 16 and 20 exchanged

Columns 5 pairs of columns exchanged

Girth4 cycle free by shifting

(a) Complete plot

2.99 2.995 3

10
−5.3

10
−5.29

10
−5.28

10
−5.27

10
−5.26

SNR(dB)

B
E

R

 

 
Columns 5 and 17 exchanged

Columns 3 and 7 exchanged

Columns 16 and 20 exchanged

Columns 5 pairs of columns exchanged

Girth4 cycle free by shifting

(b) High SNR values zoom

Figure 3.33: BER simulation results plots of WiMAX code (N = 576, R = 1/2) girth4 free
with the same column exchanges for all submatrices

To see any difference in the results a huge zoom is needed so it can be said that
the results show no improvement in the BER performance, but not deterioration. The
results are too similar to the girth4 WiMAX code. This can be due to the fact that the
same exchanges are done in all the submatrices, so this changes do not break in any way
the correlation between different row or columns. Besides, because of the type of these
modifications, no girth4 cycles are created and so, the results does not show deterioration.

In the next trial, a more general case is tested. In this case, the algorithm shuffles the
columns of the submatrix and puts them in a random order. In contrast to the previous
case, in this one, the column exchange is not equal for all the submatrices. The column
exchange order is common to each column of submatrices, because these share the same
barrel shifter, so in terms of hardware, the network that redirects the output of the barrel
shifters to the check nodes does not change during the decoding process, and it is simpler.
So all the submatrices of a column of submatrices of H matrix have the same column
shuffling order. For the others columns of submatrices the order is different. In this way
the results are expected to be better because in this case, the correlation between different
columns of Base Matrix is broken. The results are shown in Figure 3.34.

54



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Columns of submatrices shuffled in random order

Girth4 cycle free by shifting

(a) Complete plot

2.99 2.995 3

10
−5.29

10
−5.28

10
−5.27

10
−5.26

SNR(dB)

B
E

R

 

 

Columns of submatrices shuffled in random order

Girth4 cycle free by shifting

(b) High SNR values zoom

Figure 3.34: BER simulation results plots of WiMAX code (N = 576, R = 1/2) girth4 free
with column shuffling common for all the submatrices of a column of Base Matrix

The results are once again, almost the same than girth4 free WiMAX code, so it
seems the column exchange is independent to the BER results.

Anyway some final checks will be done in this section. Another last algorithm is
developed. This code fractures the submatrices in pieces of a fixed size and shuffles them
as well as the previous example did with the columns. An example of this process is shown
in Figure 3.35.

55



Chapter 3. Matrices modifications and simulations

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

Figure 3.35: Example of submatrix where the original diagonal has been divided in pieces
of size=2 and shuffled randomly

This code is run twice over girth4 H matrix, one with a size of pieces of 4 and the
other of 12. The BER results are shown in Figure 3.36.

The results, as in the previous cases, do not show any improvement at all. To see
the difference between lines a very high zoom is needed. So any hardware change would
be justified to get that difference.

With this last trials, this section is concluded.

56



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 
Submatriz divided in pieces of size=4 and shuffled

Submatriz divided in pieces of size=12 and shuffled

Girth4 cycle free by shifting

(a) Complete plot

2.98 2.985 2.99 2.995 3 3.005

10
−5.29

10
−5.28

10
−5.27

10
−5.26

10
−5.25

10
−5.24

SNR(dB)

B
E

R

 

 
Submatriz divided in pieces of size=4 and shuffled

Submatriz divided in pieces of size=12 and shuffled

Girth4 cycle free by shifting

(b) High SNR values zoom

Figure 3.36: BER simulation results plots of WiMAX code (N = 576, R = 1/2) girth4 free
with each submatrix structure divided in pieces and shuffled. The shuffling is common for
all the submatrices of a column of Base Matrix

3.3.2 Adding ones

In this section the possibility of adding 1s to the submatrix in order to alter its structure is
introduced. The modification of row weights has been already analyzed in the Section 3.2,
but in that case it was made by modifying the whole matrix structure. In this case, the
weights are changed inside each one of the non-empty submatrices.

For some of the tests presented in the next pages, the hardware implementation would
be too complex and even if the results are good, it would not be a success. But if this
is the case, at least it would show to the researchers that this special tpye of submatrix
modifications should be deeply studied.

The first of this modifications is to add ones randomly. The algorithm developed
adds a 1 in each row of each non-empty submatrix in H. The position of this 1s in each
row is a random position that does not create a girth4 cycle in the H matrix. If there
is not any position to place an 1 without creating a girth4 cycle in H matrix, not 1s are

57



Chapter 3. Matrices modifications and simulations

added. In this way the row weight is doubled for most rows. An example of a submatrix
after adding 1s is shown in Figure 3.37.

1

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3.37: Example of submatrix after adding 1s randomly

After applying this algorithm to the girth4 free matrix the BER results obtained are
shown in Figure 3.38.

The results show a high deterioration in the BER performance comparing to both
girth4 free WiMAX code and original WiMAX code. Besides the hardware complexity of
this solution would be high because it would need a big memory of some kilobytes to store
the positions of all the ones added.

58



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 
One 1 added in each row of each submatrix. Girth4 free

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−5

10
−4

10
−3

SNR(dB)

B
E

R

 

 
One 1 added in each row of each submatrix. Girth4 free

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.38: BER simulation results plots of WiMAX code (N = 576, R = 1/2) girth4 free
with 1s added in each row of each non-empty submatrix

The next solutions are special cases of the last general random positioning of 1s,
because in the next cases 1s will be added following some special structures. So if this last
simulation did not show any improvement, the next proposals are not expected to do it
either.

In the next case, the code developed adds a full column in each submatrix. This full
column is placed in a random column. An example of submatrix can be seen in Figure 3.39.

The BER results of this solution can be shown in Figure 3.40. As seen they are much
worst than girth4 free WiMAX matrix. The most probably reason seems to be that this
solution creates lots of girth4 cycles that are bad for BER performance.

59



Chapter 3. Matrices modifications and simulations

1

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3.39: Example of submatrix after adding one full column in a random position

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 
Adding one full column to each submatrix

Girth4 cycle free by shifting

Original WiMAX code

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−4

10
−3

10
−2

10
−1

SNR(dB)

B
E

R

 

 
Adding one full column to each submatrix

Girth4 cycle free by shifting

Original WiMAX code

(b) High SNR values zoom

Figure 3.40: BER simulation results plots of WiMAX code (N = 576, R = 1/2) after
adding one full column to each submatrix in H

60



Chapter 3. Matrices modifications and simulations

The next idea is similar to the previous one. A full column is added but not in each
submatrix, but only in one submatrix of each row of submatrices. It means, the code
developed selects a non-zero submatrix of each row of the left part of Base Matrix and
adds a full column in a random position inside that submatrix. Then the code goes to the
next row of submatrices in the Base Matrix. The code looks for a position that does not
generate girth4 cycles. If there is not any valid position the codes does not add anything,
so the result matrix is girth4 free.

The results of this case are shown in Figure 3.41.

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

One full column added in a submatrix per row

Girth4 cycle free by shifting

(a) Complete plot

2.4 2.5 2.6 2.7 2.8 2.9 3

10
−5

10
−4

SNR(dB)

B
E

R

 

 

One full column added in a submatrix per row

Girth4 cycle free by shifting

(b) High SNR values zoom

Figure 3.41: BER simulation results plots of WiMAX code (N = 576, R = 1/2) when
adding one full column in one submatrix of each row of submatrices

These results show a little improvement for high SNR values and a little deterioration
for low SNR values. The hardware cost of this solution would imply a little memory of
some bytes to save the position of the columns added and a special network working at
the output of the barrel shifters with full columns, that joins a single variable node with
lots of check nodes.

The next trial is about adding not full columns, but half columns. The algorithm
tries to add two half columns in each row of submatrices. If it can not do it in any case,

61



Chapter 3. Matrices modifications and simulations

without creating girth4 cycles, it does not introduces anything, so the final H matrix is
girth4 free. An example of this is shown in Figure 3.42.

1

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0 1

1

1

1

1

1

1

1

1

1

1

M0 M1 M2 M3 M4 M5 M6 M7

1

1

1

1

1

1

1

1

1

1

1

M0 M1 M2 M3 M4 M5 M6 M7

1

1

1

1

1

1

1 1 1

...

...

Figure 3.42: Example of a row of submatrices with two half columns added without girth4

0 0.5 1 1.5 2 2.5 3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Half columns added (girth 4 free)

Full column added

Girth4 cycle free by shifting

(a) Complete plot

2.4 2.5 2.6 2.7 2.8 2.9 3

10
−5

10
−4

SNR(dB)

B
E

R

 

 

Half columns added (girth 4 free)

Full column added

Girth4 cycle free by shifting

(b) High SNR values zoom

Figure 3.43: BER simulation results plots of WiMAX code (N = 576, R = 1/2) when
adding two halfs of column in each row of submatrices without girth4

62



Chapter 3. Matrices modifications and simulations

The results of this trial can be seen in Figure 3.43. Comparing the results to the
previous one of adding full column and also the original WiMAX code girth4 free by
shifting, it can be seen this last case, as well as the full column one, outperform the WiMAX
girth4 free for high SNR values but not for low values. Besides comparing between last two
cases, this last case is only better than full columns case for SNR=3, for previous values
the case of full columns is better. But the results are very similar and also similar to the
WiMAX girth4 free by shifting. The improvement is too low.

In the following trial the developed code introduces a right circularly shifted inverse
diagonal of 1s in each non-empty submatrix. In Figure 3.44a an example of submatrix with
an inverse diagonal added can be seen. The inverse diagonal in that image has a circularly
right shift value of 5. In Figure 3.44b the BER results of simulation for three different shift
values of inverse diagonals are shown.

1

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0 1

1

1

1

1

1

1

1

1

1

1

1

1

(a) Example of submatrix with inverse diagonal of
shift=5 added

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Inverted diagonal added with shift=0

Inverted diagonal added with same shift than submatrix

Inverted diagonal added with same shift than submatrix + 12

Girth4 cycle free by shifting

(b) Results of some diferents shift values

Figure 3.44: Example of submatrix and BER simulation results plots of WiMAX code
(N = 576, R = 1/2) when adding one inverse diagonal to each non-empty submatrix

As seen, the results are pretty bad. This may be due to the fact that this inverse
diagonals introduce lots of girth4 cycles. Also the fact that row and column weights are
very different to the original probably affects.

63



Chapter 3. Matrices modifications and simulations

Another code is developed similar to the previous one but instead of adding an
inverse diagonal in each non-empty submatrix, in this code a right circularly shifted normal
diagonal is added, so the final structure is a double-diagonal structure. The results can
be seen in Figure 3.45b. Some different shift values are tested and with all of them the
results are very bad. As well as the previous one, lots of girth4 cycles are added and this
can cause the results go bad.

1

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(a) Example of submatrix with double diagonal of
shift=4 added

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 
Second diagonal added with same shift than submatrix + 12

Second diagonal added with same shift than submatrix + 1

Girth4 cycle free by shifting

(b) Results of two diferents shift values

Figure 3.45: Example of submatrix and BER simulation results plots of WiMAX code
(N = 576, R = 1/2) when adding one aditional diagonal to each non-empty submatrix

3.3.3 Special structures

Finally, in this section, two special submatrix structures will be tested in order to alter
more the submatrix structure.

The first of this structures is the one shown in Figure 3.46.

64



Chapter 3. Matrices modifications and simulations

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0 1

1

1

1

1

1

1

1

Figure 3.46: Example of submatrix of special structure1

This structure seems a simple column exchange as the ones done in Section 3.3.1
but it is different. When column exchanges were done, they were done in the same way
independent of the shift value, it means, if the exchange were between column 4 and 20,
it did not mind if the shift value was 0 or 20 for that submatrix, the exchange was done
between columns 4 and 20. This structure replaces the identity submatrix so it shifts in
the same way as the identity matrix does. It means that the column exchange is different
depending on the shift value.

In hardware this would translate to a multiplexors exchange network before the barrel
shifter and not after like in previous cases. Changing the way in which the data goes into
the barrel shifter can produce this structure and similar ones.

The code developed replaces the identity submatrices of non-empty submatrices with
circular right shifts of this structure using the same shift value that the submatrix had
previously. After this replacing of submatrices, some girth4 cycles are generated but it was
possible to remove them with the algorithm of Figure 3.11. The BER simulation results
can be seen in Figure 3.47.

65



Chapter 3. Matrices modifications and simulations

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Special structure 1

Girth4 cycle free by shifting

WiMAX original matrix

(a) Complete plot

2.8 2.85 2.9 2.95 3 3.05 3.1

10
−5

SNR(dB)

B
E

R

 

 

Special structure 1

Girth4 cycle free by shifting

WiMAX original matrix

(b) High SNR values zoom

Figure 3.47: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
special structure 1 (Figure 3.46)

Once again, this exchange of columns (even if it depends on the submatrix shift
value) does not show any improvement over the girth4 free WiMAX matrix, but not a
deterioration, the results are almost equal.

The next trial is similar to previous one. The submatrix structure is changed to the
one in Figure 3.48 and it also shifts with the shift value of the submatrix.

Because of the special structure of this case it is not possible to remove all girth4
cycles, so the results are not expected to be better than girth4 free WiMAX submatrix
obtained by shifting, few chapters before. The BER results can be seen in Figure 3.49

The results obtained are pretty bad, as said, because of the many girth4 cycles this
structure introduces.

66



Chapter 3. Matrices modifications and simulations

M0 M1 M2 M3 M4 M5 M6 M7

CN7

CN6

CN5

CN4

CN3

CN2

CN1

CN0 1

1

1

1

1

1

1

1

Figure 3.48: Example of submatrix of special structure2

0 0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 

Special structure 2

WiMAX original matrix

Girth4 cycle free by shifting

(a) Complete plot

2 2.2 2.4 2.6 2.8 3

10
−3

10
−2

SNR(dB)

B
E

R

 

 

Special structure 2

WiMAX original matrix

Girth4 cycle free by shifting

(b) High SNR values zoom

Figure 3.49: BER simulation results plots of WiMAX code (N = 576, R = 1/2) with
special structure 2 (Figure 3.48)

67



Chapter 3. Matrices modifications and simulations

Finally, the summary of the last section is presented in Table 3.12. In this case
the obtained values are compared (the color and arrows) again to the WiMAX girth4
free matrix by shifting obtained in the first section of this chapter and that is the best
result obtained until now, not the original WiMAX code. As before this exposition of the
simulation values also allows to compare the results between different approaches.

Table 3.12: Summary of results of Section 3.3 (Modifications on the submatrix distribu-
tion), N = 576, R = 1/2

SNR(dB) Original WiMAX Girth4 free by 5 pairs of Columns shuffled
N = 576, R = 1/2 shifting Fig: 3.12 columns exchanged. in random order.

Girth4 free Girth4 free
Fig: 3.33 Fig. 3.34

0.0 1.36e-01 1.38e-01 ≈ 1.38e-01 ≈ 1.38e-01
0.5 9.93e-02 1.01e-01 ↓ 1.00e-01 ↓ 1.00e-01
1.0 5.39e-02 5.39e-02 ≈ 5.39e-02 ≈ 5.39e-02
1.5 1.72e-02 1.64e-02 ≈ 1.64e-02 ≈ 1.64e-02
2.0 2.68e-03 2.29e-03 ↓ 2.28e-03 ≈ 2.29e-03
2.5 2.11e-04 1.38e-04 ↓ 1.37e-04 ↑ 1.39e-04
3.0 1.55e-05 5.12e-06 ↓ 5.01e-06 ↑ 5.14e-06

SNR(dB) Divided in pieces Divided in pieces Add 1s in each Add one full
of size=4 and of size=12 and row into each column into

shuffled. Girth4 shuffled. Girth4 submatrix. Girth4 each submatrix.
free Fig. 3.36 free Fig. 3.36 Fig. 3.38 free Fig. 3.40

0.0 ≈ 1.38e-01 ≈ 1.38e-01 ↑ 1.73e-01 ↑ 1.72e-01
0.5 ≈ 1.01e-01 ≈ 1.01e-01 ↑ 1.49e-01 ↑ 1.43e-01
1.0 ≈ 5.39e-02 ≈ 5.39e-02 ↑ 1.14e-01 ↑ 1.02e-01
1.5 ≈ 1.64e-02 ≈ 1.64e-02 ↑ 6.06e-02 ↑ 5.83e-02
2.0 ≈ 2.29e-03 ≈ 2.29e-03 ↑↑ 1.66e-02 ↑↑ 2.87e-02
2.5 ↑ 1.39e-04 ↑ 1.39e-04 ↑↑ 1.78e-03 ↑↑ 1.53e-02
3.0 ↑ 5.36e-06 ↓ 5.10e-06 ↑↑ 6.13e-05 ↑↑ 9.29e-03

68



Chapter 3. Matrices modifications and simulations

SNR(dB) Add one full Add two half Add inverted Add additional
column in each columns in each diagonal diagonal
row of subm. row of sub. offset=0 offset=same+1
Girth4 free Girth4 free Fig. 3.44b Fig 3.45b
Fig 3.41 Fig 3.43

0.0 ↑ 1.52e-01 ↑ 1.50e-01 ↑ 1.83e-01 ↑ 1.83e-01
0.5 ↑ 1.10e-01 ↑ 1.12e-01 ↑ 1.66e-01 ↑ 1.66e-01
1.0 ↑ 5.68e-02 ↑ 6.05e-02 ↑ 1.44e-01 ↑ 1.43e-01
1.5 ↓ 1.61e-02 ↑ 1.79e-02 ↑ 1.05e-01 ↑ 1.05e-01
2.0 ↓ 2.03e-03 ↑ 2.31e-03 ↑↑ 5.21e-02 ↑↑ 5.32e-02
2.5 ↓ 1.14e-04 ↓ 1.18e-04 ↑↑ 1.34e-02 ↑↑ 1.44e-02
3.0 ↓ 4.38e-06 ↓ 3.80e-06 ↑↑ 1.61e-03 ↑↑ 1.95e-03

SNR(dB) Special structure 1 Special structure 2
(Fig. 3.46) (Fig. 3.48)
Fig. 3.47 Fig. 3.49

0.0 ≈ 1.38e-01 ↓ 1.33e-01
0.5 ↓ 1.00e-01 ↑ 1.08e-01
1.0 ≈ 5.39e-02 ↑ 8.31e-02
1.5 ≈ 1.64e-02 ↑ 6.00e-02
2.0 ↓ 2.28e-03 ↑↑ 4.08e-02
2.5 ≈ 1.38e-04 ↑↑ 2.67e-02
3.0 ↑ 5.38e-06 ↑↑ 1.74e-02

As seen in this summary and previously analyzed during this section, it seems that
all the possible modifications done by exchanging columns do not modify the results in
a significant way. Most of the other approaches tested get very bad results, and only for
some of them like adding full or half columns the simulations get some improvements for
high SNR values. For the cases where several similar tests were done (different pairs of
columns, offset values...), only the best case has been introduced in this table.

69



4
Conclusions

In this chapter, the main ideas and conclusions obtained during the study on this work are
exposed, focusing on the results obtained during the simulations of Chapter 3. In a second
section, the possible future lines of research on this field of study will be introduced, to
continue with the work presented in this report.

4.1 Conclusions

Since the final of XX century, mankind is living a huge technology boom. Nowadays
almost all families have at home one wireless Internet connection and several wireless
devices. Also in Hospitals, Universities, etc. the technology has become necessary. During
last 20 years we all have experimented the improvements in these technologies, since in the
90’s a good home Internet connection had a speed of 56kbps, nowadays it is possible to
get a connection of several Mbps in the cell phone, or more than 100Mbps at home. This
progress in communications are due to lots of technology factors such as the insertion of
optic fiber, progresses in electronics etc. but one of the factors that leads to a increase in
the communication’s speed is the improvement of error-correcting codes. In this work, the
LDPC used in WiMAX technology have been studied.

LDPC codes are much older than most of technologies used nowadays. They were
discovered in the early 60’s but they remained unknown until the 90’s. The rediscovery
of these codes showed they could beat the best error-correcting codes used in those days.
Their good performance and their easy hardware implementation tell us that they could
be used for most of new communication technologies in the future. So, the study of these
codes is justified.

In the Chapter 3 of this work, a wide range of modifications has been tested over the
WiMAX original LDPC codes in order to outperform their BER and FER results without
making the hardware implementation much more complex.

70



Chapter 4. Conclusions

The idea that says that the higher girth free possible, the best BER performance
of the code, has been introduced by lots of researchers in the last few years so in the
Section 3.1, the objective of the modifications was exactly that, to remove as many girth
cycles as possible.

In Section 3.1.1 some different modifications were done in order to remove girth4
cycles of the WiMAX code and it was shown that by eliminating more girth4 cycles the
performance increased. When all the girth4 cycles were removed from the code of N = 576
and R = 1/2 without altering the code weights, the simulations showed a huge BER
improvement over the WiMAX original code. From that moment all the next trials would
try to outperform this last good result. The girth4 cycles were removed also for different
sizes and rates but the results did not show as good improvements for those cases.

In the Section 3.1.2 some different strategies were tested in order to remove girth6
cycles from the code matrix. This task was much more complex than before because the
structured right part of code matrix . For the mainly treated code in this thesis, almost
all the girth6 cycles were removed by shifting submatrices (the matrix was already girth4
free), but despite all predictions, these results did not show any improvement over the
girth4 free code. The girth6 removal was also carried out over codes of other sizes, showing
a good improvement for the size of N = 1440 and R = 1/2 and a little improvement for
the code of N = 2304 and R = 1/2.

This section was then concluded showing that the removal of girth cycles seems to
be important for low girth level and that the improvement is not homogeneous for all sizes
and rates.

In the Section 3.2, the Base Matrix structure was altered in order to generate: a)
girth free Code Matrices and b) different random Base Matrices distributions. First some
trials changing the row weights were done and the results showed that the both cases, with
higher row weights than original, and with less row weights than original, caused bad BER
results. This results showed that the original code weights were carefully selected, because
any change in those weights generate worst results than originals.

In this section, some trials were done conserving the same weights than original code,
but changing the non-empty submatrices distribution inside each row of Base Matrix. In
this way, it was possible to generate girth4 and girth6 codes of size N = 576 and R = 1/2
that had not been possible until that moment. The results showed very similar performance
than the girth4 free WiMAX code matrix obtained by shifting submatrices. They got a
very little improvement for high SNR values but not for medium and low values.

The final Section 3.3 was about altering the submatrix internal distribution in order
to randomize it and get better performance. All the trials done in this section by ex-
changing columns inside the submatrices did not get better performance but neither worst
perfromance, these changes seemed to be totally independent of the performance.

71



Chapter 4. Conclusions

In this section also some trials bout introducing more 1s to each submatrix were
tested. All the trials showed very bad performance but the trial about introducing full
columns and also half columns in each row of submatrices. These cases could outperform
the girth4 best code until now, a little bit. This improvement was not enough to make the
necessary hardware changes be beneficial.

Some main conclusions could be extracted such as it seems the good design of the
weights in the Base Matrix seems to be more important than girth cycles removal, at
least for girth levels higher than 4. Good Base Matrices with same row weights than
original WiMAX code and also girth6 free were developed and they did not outperform
the girth4 free WiMAX code by much. This tells us that the Base Matrix distribution was
carefully selected. On the other hand, some researchers studied this before [12] and got
some randomly generated Base Matrices that outperformed the original.

About the internal submatrix distribution, the main idea is that is not easy to create a
submatrix distribution different than the identity matrix and that is not potential generator
of girth4 cycles. Even if the submatrix structure is girth4 free it can generate lots of girth4
cycles when it is replicated in the full code matrix. Only by adding full columns the results
were not bad.

Lots of solutions that outperformed the WiMAX original code matrix were found,
but almost none that outperformed the girth4 free code obtained by shifting submatrices.

4.2 Future lines of research

After analyzing the results and the conclusions, it seems that the best line of research to
continue studying these type of codes would be in the field of generating different Base
Matrices, because even if it has been studied here, only the surface has been scratched.
This field offers innumerable possibilities that have not been studied in this thesis and that
could lead to better performance. The idea of generating random Base Matrices at the
same time that caring about the potential possible girth cycles seems interesting and a
wide research could be done on it.

About the submatrix distribution, it also offers lots of possibilities, but seeing the
cases studied here, it seems that the only cases that show a little improvement in the
performance would require several modifications in the hardware implementation. All the
rest of the trials do not show improvements or show high deterioration in the performance.

Finally as it is known, the girth removal is important but for this special codes, the
structured right part restricts the possibilities a lot, and the research on this field seems
not to be easy or fruitful.

72



A
Annex A. Attached material

This annex pretends to be a guide of reference to understand the attached material. This
material consists of the MATLAB programming codes used to modify the matrices in this
thesis and also the output files of the simulation processes. The MATLAB codes are listed
an briefly explained. This information will cover the explanation of its operation, as well
as a list of the input parameters and the output variables.

For the simulation results, more than 100 simulations were carried out during this
thesis, but only the most important where exposed. The attached folder contains these
important results where each file has its description in its name.

As said before, this chapter is a reference to understand and be able to use the
MATLAB codes attached. For each code the main idea of its function will be exposed,
and the input and output variables will be presented. All the codes but 1 were developed
specifically for this thesis, only LDPC_girth4a.m was not. The source of this code is
included in its description. More than 50 codes were developed during the period of work
on this thesis, here only the more relevant ones are presented. To use them with matrices
different of N = 576 and R = 1/2 some of them need modifications.

• convert.m
This code converts a matrix stored in MATLAB to a file of extension .txt that can
be used to generate the .pchk and .gen files needed to run a simulation with the
simulator provided by the DET of the Politecnico di Torino.

Input arguments:
H: Matrix to convert
nombre_archivo: Char string that will be the name of the file .txt at the output.

Output arguments:
Not output arguments in MATLAB. This code generates a .txt file.

• H = inverse_convert.m
This code takes .txt file with: the first row indicating the rows and columns of the

73



Chapter A. Annex A. Attached material

code and a row for each row of the code indicating the positions with 1s. The output
is the MATLAB H matrix of that .txt file.

Input arguments:
nombrefichero: Char string of the complete name of the file .txt to convert to a
MATLAB matrix.

Output arguments:
H: Resultant matrix of the conversion.

• encontrar_girth4_2.m
This code finds all the girth4 cycles and stores the top left position in an array.

Input arguments:
H: Matrix to detect.

Output arguments:
girth: Array of elements that are the top left position of each girth4 cycle in the H
matrix.

• LDPC_girth4a.m
This code finds if there is one or more girth4 cycles in the H matrix.

Input arguments:
H: Matrix to detect girth4.

Output arguments:
out: This variable is equal to 0 if there are not girth4 cycles in H matrix and equal
to 1 if there are girth4 cycles.

Source:
This code was developed by Yang XIAO, Beijing Jiaotong University (BJTU) on
July 22 of 2007.

• rotatotaldondehaygirth4.m
This code takes a code matrix and symmetrically inverts the top left submatrices
that form each girth4 cycle.

Input arguments:
H: Matrix to operate with.
tamano_submatrix: Size of the submatrix.

Output arguments:
H1: Resultant matrix of the operation over H matrix.

• elimina1dondegirth4.m
This code takes a code matrix, looks for its girth4 cycles and remove one 1 of each
cycle to remove all cycles.

Input arguments:
H: Matrix to operate with.

74



Chapter A. Annex A. Attached material

Output arguments:
H1: Girth4 free H matrix.

• rota1dondehaygirth4_cycle.m
This code takes a code matrix and rotates the top left submatrices that form each
girth4 cycle until all the girth4 is removed.

Input arguments:
H: Matrix to operate with.
tamano_submatrix: Size of the submatrix.

Output arguments:
H1: Resultant matrix of the operation over H matrix.

• girth6.m
This code takes a code matrix and detects if there is girth6 or not. It takes as
parameter a girth4 free matrix.

Input arguments:
H: Girth4 free matrix to detect girth6.

Output arguments:
It prints on the screen "There is girth6" if there are girth6 cycles or "There is not
girth6" if there are not.

• crearhconbasematrix.m
This code takes a Base Matrix (only uses the non empty positions for the left part)
and creates a H matrix without girth4 and girth6 by introducing submatrices and
rotating them. If for any submatrix, any shift value gets the objective, it is filled
with an empty submatrix. Some modifications can be done so it only tries to get a
girth4 matrix.

Input arguments:
Base_Matrix: Base Matrix to operate with.
tamano_submatrix: Size of the submatrix.

Output arguments:
H: Resultant code matrix.
fails: Positions of the submatrices that could not be filled without creating girth4
or girth6 cycles.

• encontrar_girth6_adaptadoparacrearhconbasematrix.m
This code takes a code matrix and detects the number of rows with girth6 cycles.

Input arguments:
H: H code matrix to detect.
combinaciones: A vector with all the possible combinations of three rows.
fila: Row until the code needs to check the girth6 (This code is used in an iterative
algorithm so with this system it takes less).

75



Chapter A. Annex A. Attached material

Output arguments:
numero: Number of rows involved in girth6 cycles in H matrix.

• Base_Matrix = busca_base_matrix(H, tamanosubmatrix).m
This code takes a code matrix and gets its Base Matrix of 0s and 1s (only the position
of non-empty matrices).

Input arguments:
H: H code matrix.
tamano_submatrix: Size of the submatrix.

Output arguments:
Base_Matrix: Base Matrix of 0s and 1s of that H matrix.

• busca_base_matrix_con_indices.m
This code takes a code matrix and gets its Base Matrix of shift values.

Input arguments:
H: H code matrix.
tamano_submatrix: Size of the submatrix.

Output arguments:
Base_Matrix: Base Matrix of shift values of each submatrix.

• crear_base_buena_a_partir_de_indices_paper.m
This code takes a Base Matrix with shift values and try to change them so it gets a
girth4 and girth6 free matrix. It uses other codes to detect the position on the Base
Matrix that is involved in more cycles and then changes its shift value.

Input arguments:
Base_Matrix1: Base Matrix to improve.
tamano_submatrix: Size of the submatrix.

Output arguments:
Base_Matrix: Base Matrix improved.

• encontrar_girth4_adaptadoparacrearhconbasematrix_paper.m
This code takes a Base Matrix with shift values and calculate the girth4 cycles in
which each element of the Base Matrix is involved.

Input arguments:
Base_Matrix1: Base Matrix to detect.
tamano_submatrix: Size of the submatrix.

Output arguments:
matrix_girth4: Matrix of the size of Base Matrix with the number of the girth4
cycles in which the element of that position in Base Matrix is involved.

76



Chapter A. Annex A. Attached material

• encontrar_girth6_adaptadoparacrearhconbasematrix_paper.m
This code takes a Base Matrix with shift values and calculates the girth6 cycles in
which each element of the Base Matrix is involved.

Input arguments:
Base_Matrix1: Base Matrix to detect.
tamano_submatrix: Size of the submatrix.

Output arguments:
matrix_girth6: Matrix of the size of Base Matrix with the number of the girth6
cycles in which the element of that position in Base Matrix is involved.

• crearh_con_base_buena_paper.m
This code takes a Base Matrix with shift values and creates its H correspondent
matrix.

Input arguments:
Base_Matrix1: Base Matrix.
tamano_submatrix: Size of the submatrix.

Output arguments:
H: Code matrix correspondent to the input Base Matrix.

• crear_base_buena_paper.m
This code takes a Base Matrix of 0s and 1s (1s in the non-empty submatrices) or a vec-
tor of row weights. If the argument is a Base Matrix it generates a Base Matrix of shift
values introducing random shift values on the positions of non-empty submatrices.
If the argument is a row weights vector, it places the non-empty submatrices in ran-
dom positions in each row according to the weight of that row stored in the argument
vector. Then this code uses crear_base_buena_a_partir_de_indices_paper.m to
try to remove girth cycles.

Input arguments:
Base_Matrix_de_1s_o_vector: Base Matrix of 0s and 1s or row weights vector.
tamano_submatrix: Size of the submatrix.

Output arguments:
Base_Matrix2: Base Matrix improved.

• generarbasematrixsingirth.m
This code takes a row weights vector and generates a Base Matrix of 0s and 1s with
those row weights placing the non-empty submatrices strategically with the minimum
girth4 and girth6 cycles possible.

Input arguments:
vector: Vector of row weights.

Output arguments:
Base_Matrix: New Base Matrix of 0s and 1s created.

77



Chapter A. Annex A. Attached material

It also prints the number of rows involved in girth4 and girth6 cycles that still exist
in the Base Matrix.

• encontrar_girth4_adaptadoparagenerarbasematrix.m
This code takes an H matrix and calculates the number of rows involved in girth4
cycles.

Input arguments:
H: H code matrix to detect.

Output arguments:
numero: Number of rows involved in girth4 cycles.

• swap.m
This code takes an H matrix exchanges the columns in the arguments for all the
submatrices.

Input arguments:
H: Code H matrix to modify.
columna1: Column 1 to exchange.
columna2: Column 2 to exchange.
tamano_submatrix: Size of the submatrix.

Output arguments:
H1: Modified H code matrix.

• romperentrozos.m
This code takes an H matrix, divides each submatrix in pieces and shuffles these
pieces. The shuffling order is equal for all the submatrices in a column of Base
Matrix.

Input arguments:
H: Code H matrix to modify.
tamano_submatrix: Size of the submatrix.
trozos: Number of pieces in which the submatrix is divided.

Output arguments:
H1: Modified H code matrix.

• mete1.m
This code introduces 1s in each row of each submatrix if it does not create girth4
cycles. If it creates girth cycles in all possible positions, it does not introduce any-
thing.

Input arguments:
H1: Code H matrix to modify.
tamano_submatrix: Size of the submatrix.

Output arguments:
H2: Modified H code matrix.

78



Chapter A. Annex A. Attached material

• add_columnas_enteras.m
This code introduces one full column of 1s in each submatrix in a random position
inside this.

Input arguments:
H: Code H matrix to modify.
tamano_submatrix: Size of the submatrix.

Output arguments:
H1: Modified H code matrix.

• add_1colxfila_entera.m
This code introduces one full column of 1s in a random position inside each row of
submatrices if it does not create girth4 cycles. If all possible positions create girth4
cycles no rows are added in that row of submatrices.

Input arguments:
H: Code H matrix to modify.
tamano_submatrix: Size of the submatrix.

Output arguments:
H1: Modified H code matrix.

• add_mediascolxfila.m
This code introduces two separated half columns of 1s in two random positions inside
each row of submatrices if it does not create girth4 cycles. If all possible positions
for a half column create girth4 cycles that half is not added.

Input arguments:
H: Code H matrix to modify.
tamano_submatrix: Size of the submatrix.

Output arguments:
H1: Modified H code matrix.

• meterdiagonalinversa.m
This code introduces an additional inverse diagonal in each submatrix. This diagonal
is shifted by the value of an argument.

Input arguments:
H: Code H matrix to modify.
tamano_submatrix: Size of the submatrix.
desplazamiento: The shift value of the inverse diagonal introduced.

Output arguments:
H1: Modified H code matrix.

• doble_diagonal.m
This code introduces an additional diagonal in each submatrix. This diagonal is
shifted by the value of an argument.

79



Chapter A. Annex A. Attached material

Input arguments:
H: Code H matrix to modify.
tamano_submatrix: Size of the submatrix.
desplazamiento: The shift value of the inverse diagonal introduced.

Output arguments:
H1: Modified H code matrix.

• forma_rara2_inversionespequenas.m
This code replaces each submatrix with the special structure of Figure 3.46.

Input arguments:
H: Code H matrix to modify.
tamano_submatrix: Size of the submatrix.

Output arguments:
H1: Modified H code matrix.

• forma_rara1_columnitasde2.m
This code replaces each submatrix with the special structure of Figure 3.48.

Input arguments:
H: Code H matrix to modify.
tamano_submatrix: Size of the submatrix.

Output arguments:
H1: Modified H code matrix.

80



Bibliography

[1] R.G. Gallager, Low-Density Parity-Check Codes, Cambridge, Massachusetts: M.I.T.
Press, 1963.

[2] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting
coding and decoding: Turbo-codes. 1”, IEEE International Conference on Commu-
nications (ICC), vol. 2, pp. 1064-1070, Geneva, May 1993.

[3] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms, Cam-
bridge, UK: Cambridge University Press, 2003.

[4] M. P. C. Fossorier, “Quasi-Cyclic Low Density Parity Check Codes From Circulant
Permutation Matrices”, IEEE Transactions on Information Theory, vol. 50, no. 8, pp.
1788-1793, Aug. 2004.

[5] Gabriel Falcao, Vitor Silva, Jose Marinho and Leonel Sousa,“LDPC Decoders for the
WiMAX (IEEE 802.16e)based on Multicore Architectures”, WIMAX New Develop-
ments, Upena D. Dalal and Y. P. Kosta (Ed.), ISBN: 978-953-7619-53-4, InTech,
DOI: 10.5772/8265, chap. 6, 2009.

[6] IEEE P802.16e/D12 (2005), Draft IEEE Standard for Local and Metropolitan Area
Networks, Part 16: Air Interference for Fixed and Mobile Broadband Wireless Access
Systems, Oct. 2005.

[7] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices”, IEEE
Transactions on Information Theory, vol. 45, no. 2, pp. 399-431, March 1999.

[8] D. J. C. MacKay and R.M. Neal, “Near Shannon limit performance of low density
parity check codes”, IEEE Electronics Letters, vol. 33, no. 6, pp. 457-458, March 1997.

[9] R. M. Tanner, D. Sridhara and T. Fuja, “A class of group-structured LDPC codes”,
ICSTA, Ambleside, U.K., July 2001.

[10] R. M. Tanner, D. Sridhara, A. Sridharan, T. Fuja and D. J. Costello Jr., “LDPC
block and convoluational codes based on circulant matrices”, IEEE Transactions on
Information Theory, vol. 50, no. 12, 2004.

[11] D. Sridhara, T. Fuja, and R. M. Tanner, “Low-density parity check codes from per-
mutation matrices”, in Proc. Conf. Information Sciences and Systems, Baltimore, MD,
March 2001.

[12] Sheng Tong, Qinghua Guo, Jiangtao Xi and Yu Yanguang, “Effects of base matrices on
iterative decoding performance of irregular QC-LDPC codes”, IEEE 7th International
Conference on Signal Processing and Communication Systems (ICSPCS), Dec. 2013.

81



BIBLIOGRAPHY

[13] I. E. Bocharova, B. D. Kudryashov, R. Johannesson, “Combinatorial optimization for
improving QC LDPC codes performance”, IEEE International Symposium on Inform-
ation Theory Proceedings (ISIT), July 2013.

[14] E. Boutillon, J. Castura and F. R. Kschischang, “Decoder-First Code Design”, 2nd
International Symposium on Turbo Codes and Related Topics, Brest, France, Sep.
2000.

[15] E. Boutillon, J. Castura and F. R. Kschischang, “Decoder-First Code Design”, Proc.
2nd International Symposium on Turbo Codes and Related Topics, Brest, France, Sep.
2000.

[16] Xiaoheng Chen, Shu Lin and V. Akella, “QSN-A Simple Circular-Shift Network for
Reconfigurable Quasi-Cyclic LDPC Decoders”, IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 57, no. 10, pp. 782-786, Oct. 2010.

[17] Yejun He and Jie Yang, “Construction of QC-LDPC codes with girth larger than
eight based on GPU”, IEEE International converence on Wireless Communications
and Signal Processing (WCSP), Oct. 2012.

[18] Sarah J. Johnson, Introducing Low-Density Parity-Check Codes, version 1.1, School of
Electrical Engineering and Computer Science, The University of Newcastle, Australia.

82



Acronyms

LDPC Low Density Parity Check

MIT Massachusetts Institute of Technology

QC-LDPC Quasi-Cyclic LDPC

CPMs Circulant Permutation Matrices

WiMAX Worldwide Interoperability for Microwave Access

DVB-S2 Digital Video Broadcasting by Satellite - Second Generation

IEEE Institute of Electrical and Electronics Engineers

BER Bit Error Rate

SNR Signal to Noise Ratio

BSC Binary Symmetric Channel

GF(2) Galois Field of two elements

ML Maximum likelihood

wr row weight

wc column weight

ASIC Application-Specific Integrated Circuit

FEC Forward Error Correcting

SPA Sum-Product Algorithm

LLR Log Likelihood Ratio

VLSI Very Large Scale Integration

FER Frame Error Rate

83


	Carlos Dirube - PFC

