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Abstract

Many special functions are solutions of first order linear systems
y′

n(x) = an(x)yn(x) + dn(x)yn−1(x), y′
n−1(x), = bn(x)yn−1(x) + en(x)yn(x) . We obtain

bounds for the ratios yn(x)/yn-1(x) and the logarithmic derivatives of yn(x) for solutions
of monotonic systems satisfying certain initial conditions. For the case dn(x)en(x) > 0,
sequences of upper and lower bounds can be obtained by iterating the recurrence
relation; for minimal solutions of the recurrence these are convergent sequences. The
bounds are related to the Liouville-Green approximation for the associated second
order ODEs as well as to the asymptotic behavior of the associated three-term
recurrence relation as n ® +∞; the bounds are sharp both as a function of n and x.
Many special functions are amenable to this analysis, and we give several examples
of application: modified Bessel functions, parabolic cylinder functions, Legendre
functions of imaginary variable and Laguerre functions. New Turán-type inequalities
are established from the function ratio bounds. Bounds for monotonic systems with
dn(x)en(x) < 0 are also given, in particular for Hermite and Laguerre polynomials of
real positive variable; in that case the bounds can be used for bounding the
monotonic region (and then the extreme zeros).
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1 Introduction
Many special functions, and in particular functions of hypergeometric type, satisfy first

order differential systems of the form

y′
n(x) = an(x)yn(x) + dn(x)yn−1(x),

y′
n−1(x) = bn(x)yn−1(x) + en(x)yn(x).

(1)

For the particular case of modified Bessel functions sharp bounds for function ratios

yn(x)/yn-1(x) and logarithmic derivatives y′
n(x)/yn(x) , as well as Turán-type inequalities

were recently obtained in [1]; the key ingredient in the analysis was the study of the

qualitative behavior of the solutions of the Riccati equation satisfied by hn(x) = yn(x)/

yn-1(x), together with the application of the three-term recurrence relation.

In this article, the ideas in [1] are generalized and applied to a much broader set of

functions. We analyze the qualitative behavior of the Riccati equation associated to the

ratio hn(x) = yn(x)/yn-1(x),
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h′
n(x) = dn(x) − (bn(x) − an(x))hn(x) − en(x)hn(x)2, (2)

in the general case in which the quadratic equation

en(x)λn(x)2 + (bn(x) − an(x))λn(x) − dn(x) = 0 (3)

has two distinct real roots λ±
n (x) . This case corresponds to monotonic systems, with

solutions which have one zero at most. As we will see, if the functions λ±
n (x) are

monotonic, they are bounds for the ratios hn(x) satisfying certain initial value

conditions.

The methods can be applied to many special functions, modified Bessel functions,

parabolic cylinder functions, Legendre and Laguerre functions among them. Ratios of

Bessel functions appear in a great number of applications, particularly as parameters of

certain probability distributions (see, for instance, the examples mentioned in [1]).

Parabolic cylinder ratios appear in the study of Ornstein-Uhlenbeck processes (see, for

instance [2]), and other special function ratios (Whittaker, Legendre, Gauss hypergeo-

metric functions) play similar roles as well [3-5]. In all these applications, a common

characteristic is that the functions are real and the variables lie inside a monotonic

region (region free of zeros). These are precisely the conditions under which our tech-

niques can be applied.

In addition to direct applications in several areas, particularly in statistics and stochas-

tic processes, the bounds on function ratios have implications in the construction of

numerical algorithms. These techniques provide bounds for the region of computable

parameters of a given function within the overflow and underflow limitations, and they

also provide bounds for the condition numbers of the functions (see Section 4.1.2 for

the case of parabolic cylinder functions). Additionally, as discussed for the particular

case of modified Bessel functions [1], the bounds are useful for accelerating the conver-

gence of certain continued fraction representations which are used in numerical algo-

rithms; for instance, the algorithms in [6,7] could be improved by using the bounds of

Sections 4.1.2 and 4.1.3 for accelerating the convergence.

We obtain upper and lower bounds for function ratios and logarithmic derivatives of

the solutions of systems (1) with dn(x)en(x) > 0. The bounds are accurate for large values

of the variable x and the parameter n. This is a consequence of the connection between

the bounds, the Liouville-Green approximation for the associated second order ODE

and the asymptotic behavior of the associated three-term recurrence relation. We also

give two examples of applications of the methods for the case dn(x)en(x) < 0 (Section

4.2) and use these results for bounding function ratios for Laguerre and Hermite polyno-

mials in the real axis (but outside the oscillatory region). These bounds can be used for

bounding the oscillatory region and, therefore, for bounding the extreme zeros.

The structure of the paper is as follows. In Section 2 we analyze the conditions which

guarantee that the roots of (3) are bounds for the ratios yn(x)/yn-1(x). The dependence

on n is analyzed in Section 3. The use of the three-term recurrence relation allows us to

obtain sequences of upper and lower bounds in the case dn(x)en(x) > 0; Turán-type

inequalities are also established, as well as bounds on the logarithmic derivatives. In Sec-

tion 4 the techniques are applied to parabolic cylinder, Legendre and Laguerre functions.

Examples for the cases dn(x)en(x) > 0 and dn(x)en(x) < 0 are provided.
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2 Qualitative behavior of riccati equations
We consider first order differential systems (1) with differentiable coefficients, for

which the ratio hn(x) = yn(x)/yn-1(x) satisfies the Riccati equation

h′(x) = d(x) − (b(x) − a(x))h(x) − e(x)h(x)2. (4)

The label n, which is common for h and the coefficients a, b, d and e, has been

dropped in (4) for simplicity. The analysis in this section is valid for any system,

depending or not on a parameter n. The explicit dependence on n will be recovered in

the next section.

We have h’(x) = 0 when h(x) = l±(x) with

λ±(x) = sign(e(x))R(x)
[
−η(x) ±

√
η(x)2 + s

]
,

R(x) =

√∣∣∣∣d(x)
e(x)

∣∣∣∣, η(x) =
b(x) − a(x)

2
√∣∣d(x)e(x)

∣∣ , s = sign(d(x)e(x)),
(5)

We consider the case with real roots l±(x). Two distinct situations may occur: either

d(x)e(x) > 0, or d(x)e(x) < 0 but |h(x)| > 1.

The condition d(x)e(x) > 0 generally holds in the whole maximal interval of continu-

ity of the functions because the coefficients d(x) and e(x) do not change sign under

very general conditions (see, for instance, [[8], Lemma 2.1]). Contrarily, when d(x)e(x)

< 0 the condition |h(x)| > 1 may hold only for a limited range of the variable x. In the

first case (d(x)e(x) > 0) h(x) may have one zero or one singularity, but not both ([[8],

lemma 2.4]), while in the second h(x) may have both a zero and a singularity [[9], The-

orem 2.1]. We analyze the case d(x)e(x) > 0, assuming that no change of sign of h(x)

occurs. For the case d(x)e(x) < 0, as the examples in Section 4.2 will show, similar

arguments can be applied.

In the sequel, we consider d(x)e(x) > 0. Without loss of generality, we take d(x) > 0, e

(x) > 0 and then l+(x) > 0 and l-(x) < 0; if d(x) < 0, e(x) < 0 we can consider the repla-

cement y ® -y or w ® -w. In the next results, (a, b) is an interval where h(x) and the

coefficients of the system are differentiable; a or b could be + ∞ or -∞. Depending on

the value of h(x) at a+ or b- different bounds can be established. First we consider h(a
+) > 0. We enunciate three results and give a common proof.

Lemma 1. If h(a+) > 0 then h(x) > 0 in (a, b)

Theorem 1. If h(a+) > 0, l+(x) is monotonic and h’(a+)l+’(a+) > 0 then (h(x) - l+(x))l
+’(x) < 0 in (a, b).

Theorem 2. If h(a+) > 0, l+(x) is monotonic and h’(a+)l+’(a+) < 0 then either h(x)

reaches one relative extremum at xe Î (a, b) (a minimum if l+’(x) > 0 and a maximum

if l+’(x) < 0) or (h(x) - l+(x)) l
+’(x) > 0 in (a, b).

Proof. If h(a+) > 0, then h(x) can not change sign continuously: it can not become

zero because h’(x) > 0 if 0 ≤ h(x) < l+(x). On the other hand, it can not change sign

discontinuously; for this, starting with h(a+) > 0, a value x∞ Î (a, b) should exist such

that h(x−
∞) = +∞ but this is not possible because h’(x) < 0 if h(x) > l+(x).

Now, we consider that l+(x) is monotonic. We take the case l+’(x) > 0; the case l+’(x) <
0 is analogous.
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Assume first that h’(a+) > 0; using (4) this means that 0 <h(a+) < l+(a+). And then,

necessarily h(x) < l+(x) in (a, b). Indeed, because l+(x) is monotonically increasing and

the graph of h(x) is below the graph of l+(x) close to x = a, the graph of h(x) may

touch the graph of l+(x) at x = xe only if the first one has a larger slope at xe, that is,

if h’(xe) > l+’(xe) > 0; but if h(xe) = l+(xe) then h’(xe) = 0.

Assume now that h’(a+) < 0. The graph of h(x) lies above the graph of l+(x) close to

x = a and there are two possibilities: either it remains above l+(x) in all the interval or

there is a point xe Î (a, b) where h(xe) = l+(xe) and h’(xe) = 0. The graph of h(x)

crosses the graph of l+(x), which is an increasing function, and h’(x) > 0 for all x >xe.

Therefore there is a minimum at xe.

Figure 1 illustrates the situations described in Theorems 1 and 2.

If, differently from Theorems 1 and 2, we have h(a+) < 0 then h(x) may change sign

once. But if it does not change sign and h(b-) < 0 we are in the previous situation.

Indeed, with the change of variable x ® -x and the change of function w(x) ® -w(x),

we have that the new ratio of functions h̃(x) = −y(−x)/w(−x) is such that h̃(α+) > 0

and the previous results hold in the interval [a, b] = [-b, -a]. Then, we can write a

common result for both cases. We only give the result corresponding to Theorem 1.

Theorem 3. Let h(x) be a solution of (4) with continuous coefficients and d(x) > 0, e

(x) > 0. Suppose that either h(a+) > 0 or that h(b-) < 0 and take s = +, c = a+ in the

first case and s = -, c = b- in the second. Then, h(x) does not change sign in (a, b), and

if the characteristic root ls(x) is monotonic and ls’(c)h’(c) > 0 then

(∣∣h(x)
∣∣ − ∣∣λs(x)

∣∣) dλs

dx
< 0 ∀x ∈ (a, b)

Remark 1. The condition ls’(c)h’(c) > 0 is equivalent to

(∣∣h(c)
∣∣ − ∣∣λs(c)

∣∣) dλs

dx
(c) < 0
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Figure 1 The characteristic root l+(x) divides the plane in two regions: h’(x) > 0 if 0 <h(x) < l+(x)
and h’(x) < 0 if h(x) > l+(x). The graph of h1(x) corresponds to the situation described in Theorem 1
while h2(x) corresponds to Theorem 2 when an extremum is reached.

Segura Journal of Inequalities and Applications 2012, 2012:65
http://www.journalofinequalitiesandapplications.com/content/2012/1/65

Page 4 of 17



3 Bounds for first order DDEs
Now, consider a first order difference-differential equation (1) and assume it holds for

n ≥ n0 and that it is possible to make the shift n ® n + 1 in (1). In this case the solu-

tions of (1) are also solutions of a three-term recurrence relation

en+1yn+1(x) + (bn+1(x) − an(x))yn(x) − dnyn−1(x) = 0. (6)

As in the previous section, we assume dn(x)en(x) > 0.

Let λ̄±
n be the roots of the algebraic equation

en+1λ̄
2
n + (bn+1 − an)λ̄n − dn = 0, (7)

that is

λ̄±
n = RnEn

(
−η̄n ±

√
1 + η̄2

n

)
,

Rn =
√

dn/en, En =
√

en/en+1, η̄n = (bn+1 − an)/
(

2
√

dnen+1

) (8)

If limn→+∞η̄n �= 0 then limn→+∞
∣∣λ̄+

n/λ̄−
n

∣∣ �= 1 , and if the coefficients are of algebraic

growth as a function of n, Perron-Kreuser theorem (see [[10], Theorem 4.5]) states

that independent pairs of solutions
{
y(1)

k , y(2)
k

}
exist such that

lim
n→+∞

1

λ̄+
n

y(1)
n

y(1)
n−1

= 1, lim
n→+∞

1

λ̄−
n

y(2)
n

y(2)
n−1

= 1. (9)

If η̄n > 0 the minimal solution is y(1)
n and y(2)

n is dominant, and therefore

limn→+∞y(1)
n /y(2)

n = 0 If hn < 0 the roles are reversed. In both cases we have, for suffi-

ciently large n, y(1)
n+1y(1)

n > 0 and y(2)
n+1y(2)

n < 0 .

Remark 2. The minimal solution satisfies η̄nyn/yn−1 > 0 for large n, while the domi-

nant solutions are such that η̄nyn/yn−1 < 0 for large n.

Notice that the roots (8) are closely related to the characteristic roots of the Riccati

equation (5):

λ±
n (x) =

√
dn(x)
en(x)

(
−ηn(x) ±

√
1 + ηn(x)2

)
, ηn(x) =

bn(x) − an(x)

2
√

dn(x)en(x)
. (10)

As we have shown in the previous section, when λ±
n (x) are monotonic they provide

bounds for some solutions. On the other hand, if limn→+∞λ̄±
n /λ±

n = 1 the function

ratios have these bounds as limits. This explains why the bounds (10) tend to be shar-

per as n becomes larger. Because of this, we refer to these bounds as Perron-Kreuser

bounds.

In Section 3.2 we will obtain additional upper and lower sharp bounds starting from

the bounds of Theorem 1 and using the three-term recurrence.

Before this, it is important to stress that for the Perron-Kreuser bounds to hold, it is

crucial that the characteristic roots are monotonic as a function of x. This, however, is

a quite general situation, as we next see.
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3.1 Monotonicity of the characteristic roots

The next result relates the monotonicity properties of the characteristic roots with the

monotonicity properties as a function of n.

Theorem 4. Let yk(x), k = n, n - 1, be solutions of second order ODEs

y′′
k(x) + Bk(x)y′

k(x) + Ak(x)yk(x) = 0 , with Ak(x), Bk(x) continuous in (a, b) and Bn(x) =

Bn-1(x). Assume that yn(x) and yn-1(x) satisfy a system (1) with dn(x)en(x) > 0 and differ-

entiable coefficients. Then, en(x)/dn(x) is constant as a function of x, and if An(x) ≠ An-1

(x) the characteristic roots λ±
n (x) (10) are monotonic in (a, b). Furthermore, dλ±

n (x)/dx

has the same sign as An-1(x) - An(x) and −η′
n(x) .

Proof. Differentiating the first equation of the system (1) and eliminating yn-1 and

proceeding similarly with the second equation we have

y′′
k(x) + Bk(x)y′

k(x) + Ak(x)yk(x) = 0, k = n, n − 1, (11)

with coefficients satisfying:

Bn(x) − Bn−1(x) =
e′

n(x)
en(x)

− d′
n(x)

dn(x)
,

An(x) − An−1(x) = b′
n(x) − a′

n(x) − bn(x)
e′

n(x)
en(x)

+ an(x)
d′

n(x)
dn(x)

(12)

Now, because we are assuming that Bn(x) = Bn-1(x) the first equation implies that dn
(x)/en(x) does not depend on x. Therefore, from the expression of the characteristic

roots (8) we see that dλ±
n (x)/dx has the same sign as −η′

n(x) . All that remains to be

proved is that An(x) - An-1(x) has the same sign as η′
n(x). But considering the second

equation of (12) and using that d′
n(x)/dn(x) = e′

n(x)/en(x) one readily sees that

An(x) − An−1(x) = 2
√

dn(x)en(x)η′
n(x) , which proves the theorem.

Remark 3. If en(x)dn(x) < 0 and hn(x)
2 > 1, it is also true that both roots are mono-

tonic if Bn(x) = Bn-1(x) and An(x) ≠ An-1(x), but λ+
n(x)λ−

n (x) > 0 and λ+′
n (x)λ−′

n (x) < 0

in this case.

The case described in Theorem 4 is, for instance, the situation for Bessel functions,

parabolic cylinder functions and the classical orthogonal polynomials when n is the

degree of the polynomials.

3.2 Perron-kreuser bounds

In the following, we assume that hn(x), η̄n(x), dn(x), en(x) and hn(x) = yn(x)/yn-1(x) do

not change sign for large enough n (say n ≥ n0). Notice that the sign condition for hn
(x) is satisfied for large enough n when Perron-Kreuser theorem holds. An immediate

application of Theorem 3 gives:

Theorem 5 (First Perron-Kreuser bound). Let dn(x) > 0, en(x) > 0 and hn(x) = yn(x)/

yn-1(x) with constant sign for n ≥ n0 and for any x Î (a, b). Let s = sign(hn(x)) and

λs
n(x) as in Equation (10). Then, if hn(a

+) > 0 and h′
n(a+)λs′

n(a+) > 0 or hn(b
-) > 0 and

h′
n(b−)λs′

n(b−) > 0 the following holds in (a, b):

(∣∣hn(x)
∣∣ − Fs

n(x)
)
λs′

n(x) < 0, n ≥ n0 (13)
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Fs
n(x) = Rn(x)

(
−sηn(x) +

√
1 + ηn(x)2

)
=

Rn(x)

sηn(x) +
√

1 + ηn(x)2 (14)

Further bounds can be obtained by iteration of (6), which we write:

yn(x)
yn−1(x)

= dn

(
bn+1 − an + en+1

yn+1(x)
yn(x)

)−1

. (15)

For minimal solutions we have that η̄n(x)yn(x)/yn−1(x) > 0 for large n. By substitut-

ing in the previous equation yn+1(x)/yn(x) by a lower (upper) bound we get an upper

(lower) bound for yn(x)/yn-1(x). The process can be iterated to produce sequences of

lower and upper bounds. We only give the first iteration.

Theorem 6 (Second Perron-Kreuser bound for minimal solutions). Under the condi-

tions of Theorem 5 and if sη̄n > 0 , s = sign(hn) then(∣∣hn(x)
∣∣ − Ss+

n

)
λs′

n(x) > 0, n ≥ n0 (16)

where

Ss+
n =

DnEnRn

s(2Dnη̄n − ηn+1) +
√

1 + η2
n+1

(17)

Dn =
√

dn/dn+1 En, Rn and η̄n given by (8) and hn by (10).

The second superscript of the notation Ss+
n stands for the sign of η̄nyn/yn−1 .

Notice that Theorem 6 may be true for n = n0 - 1 too, because Theorem 5 is used in

the proof with the shift n ® n + 1.

The similarity of the second expression of (14) with (17) indicates that for coeffi-

cients of algebraic growth we will generally have limn→+∞Fs
n/Ss+

n = 1 .

Further iterations are possible and this gives a convergent sequence of upper and

lower bounds under the conditions of Theorems 5 and 6 and provided that Perron-

Kreuser theorem holds (which implies that the recurrence admits a minimal solutions).

We don’t prove this result, but the convergence of the sequence of bounds for the

minimal solution follows immediately by using the same arguments considered in [1]

for the case of Modified Bessel functions of the first kind.

We can also obtain additional bounds for dominant solutions by writing

yn(z)
yn−1(x)

= −bn − an−1

en
+

dn−1

en

yn−2(z)
yn−1(z)

(18)

Differently from the case of minimal solutions, the sequence of bounds is not a con-

vergent sequence. We give an explicit formula for the first iteration:

Theorem 7 (Second Perron-Kreuser bound for dominant solutions). Under the con-

ditions of Theorem 5 and if sη̄n−1 < 0 , s = sign(hn),(∣∣hn(x)
∣∣ − Ss−

n

)
λs′

n(x) > 0, n ≥ n0 + 1 (19)

where

Ss−
n = Dn−1En−1Rn

(
−s(2E−1

n−1η̄n−1 − ηn−1) +
√

1 + η2
n−1

)
(20)
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Notice that the previous theorem can only be guaranteed to be true for n = n0 + 1,

because Theorem 5 is used in the proof with the shift n ® n - 1.

The similarity of the first expression in (14) with (20) is clear. For coefficients of

algebraic growth we will generally have limn®+∞ limn→+∞Fs
n/Ss−

n = 1.

3.3 Turán-type inequalities

Turán-type properties for special functions have received a considerable attention in

recent years; just to cite five different groups of researchers, we mention [1,11-14] (see

also references cited therein). Turán-type inequalities can be obtained from the bounds

on function ratios.

Indeed, because upper and lower bounds are available for |yn/yn-1| both when yn is a

minimal or a dominant solution (Theorems 5, 6 and 7), upper and lower bounds for

|yn/yn-1||yn/yn+1| become available. The modulus can be skipped if yn/yn-1 does not

change sign (as assumed earlier). With this:

ln ≤ Ln(x) <
yn(x)

yn+1(x)
yn(x)

yn−1(x)
< Un(x) ≤ un, (21)

where ln = minx{Ln(x)} and un = maxx{Un(x)}. Many new Turán-type inequalities are

found in Section 4 by using this simple idea.

3.4 Bounds of liouville-green type

Using the difference-differential system (1) and the Perron-Kreuser bounds, bounds on

the logarithmic derivatives can be established. We give the bounds obtained from the

first Perron-Kreuser bound.

Theorem 8. Under the hypothesis of Theorem 5 and if dλs
n/dx > 0 (s = sign(yn(x)/yn-1

(x))):

s
y′

n−1(x)

yn−1(x)
< s

an(x) + bn(x)
2

+
√

dn(x)en(x)
√

1 + ηn(x)2
< s

y′
n(x)

yn(x)
(22)

If dλs
n/dx < 0 the inequalities are reversed

Two consequences follow. First, we observe that the ratios y′
k(x)/yk(x) are mono-

tonic as a function of the discrete variable k. Second, because we are assuming that the

shift n ® n + 1 is possible, we have both an upper and a lower bound for y′
n/yn .

Upper and lower bounds could also be obtained by considering both the first and sec-

ond Perron-Kreuser bounds.

In the examples we will see that these bounds, after integrating the logarithmic deri-

vative, are related to the Liouville-Green approximation for solutions of second order

ODEs. In fact, using this analysis and by Liouville-transforming the first order system

associated to the ODE y″(x) + A(x)y(x) = 0, conditions can be established under which

the LG approximation for the solutions of the ODE y″(x) + A(x)y(x) = 0 are bounds

for some of the solutions. We leave this analysis for a future article.

4 Applications
We give a number of examples of application of the techniques described in the article.

We focus on the case dn(x)en(x) > 0, but examples of application for monotonic sys-

tems with dn(x)en(x) < 0 are also given.

Segura Journal of Inequalities and Applications 2012, 2012:65
http://www.journalofinequalitiesandapplications.com/content/2012/1/65

Page 8 of 17



0",1,0,1,0,0pc,0pc,0pc,0pc>4.1 Cases with dn(x)en(x) > 0

We analyze three families of functions, which have as particular cases some classical

orthogonal polynomials outside the interval of orthogonality In all cases Theorem 4

holds, with the exception of Laguerre functions of negative argument. In this case The-

orem 4 can not be applied but the characteristic roots are still monotonic and the

same analysis is therefore possible. Some monotonicity properties for the determinants

of some of the functions analyzed were considered in [15].

4.1.1 Modified bessel functions

These are solutions of x2y″ + xy’ - (x2 + ν2)y = 0. This was the case considered in detail

in [1], and most of the results obtained in that paper are direct consequences of the

more general results of the present one.

4.1.2 Parabolic cylinder functions

The parabolic cylinder function U(n, x) is a solution of the differential equation y″(x) -

(x2/4 + n)y(x) = 0, with coefficient A(x) = - (x2/4 + n) depending monotonically on the

parameter n (Theorem 4 holds).

Considering the DDE satisfied by U(n, x) [[16], 12.8.2-3] and defining yn(x) = eiπnU

(n, x) we have:

y′
n(x) =

x
2

yn(x) + yn−1(x),

y′
n−1(x) = − x

2
yn−1(x) + (n − 1/2)yn(x).

(23)

where n will be real and positive. For this system

ηn(x) = − x

2
√

n − 1/2
, η̄n(x) = ηn+1(x), λ±

n (x) =
−2

x ∓ √
4n − 2 + x2 (24)

From [[16], 12.9.1] we have hn(+∞) = 0- and h′
n(+∞) = 0+ and because λ−

n (+∞) = 0+

then Theorem 3 holds, as well as Theorems 5 and 6. Therefore

Theorem 9. For n > 1/2 and x ≥ 0 the following holds

2

x +
√

4n + 2 + x2
<

U(n, x)
U(n − 1, x)

<
2

x +
√

4n − 2 + x2
(25)

The lower bound also holds if n Î (-1/2,1/2) and it turns to an equality if n = -1/2.

The lower bound is obtained from the upper bound and the application of the three-

term recurrence relation: if Bm(n, x) is a positive upper (lower) bound for U(n, x)/U(n-

1,x),x > 0, then

Bm+1(n, x) = 1/(x + (n + 1/2)Bm(n + 1, x)) (26)

is a lower (upper) bound for the same ratio. The process can be continued as m ® + ∞

and the sequence is convergent (because U(n, x) is minimal).

Now, consider yn(x) = U(n, -x), which is also solution of (23). Using the values of U

(n, 0) and U’(n, 0) [[16], 12.2.6-7] it is easy to prove that hn(0
+) > 0, h′

n(0+) > 0 , n >

1/2, x ≥ 0 and then h′
n(0+)dλ+

n(0+)/dx > 0 and Theorem 1 holds. The corresponding

Perron-Kreuser bounds (Theorems 5 and 7), give:
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Theorem 10. For n > 3/2 and x ≥ 0 the following holds

x +
√

4n − 6 + x2

2n − 1
<

U(n, −x)
U(n − 1, −x)

<
x +

√
4n − 2 + x2

2n − 1
(27)

The upper bound is also valid if n Î (1/2, 3/2).

The upper bound in (25) has the same expression as (27) but with x replaced by -x.

Therefore:

Remark 4. Theorems 9 and 10 hold for all real x, but for x < 0 the lower bound of

Theorem 9 only holds for all x < 0 if n > 1/2. The lower bounds are sharper when

x s> 0.

The following Turán-type inequalities are obtained from Theorems 9 and 10:

Theorem 11. Let F(x) = U(n, x)2/(U(n - 1,x)U(n + 1,x)). Then, for all real x:√
n − 3/2
n + 1/2

<
n − 1/2
n + 1/2

F(x) < 1 < F(x) <

√
n + 3/2
n − 1/2

(28)

The first inequality holds for n > 3/2 and the rest for n > 1/2. For x < 0 the third

inequality also holds if n Î (-1/2, 1/2).

Finally, considering Theorem 8 and writing together the results for U(n, x) and U(n, -x)

we have the next result.

Theorem 12. For all real x and n ≥ 1/2 the following holds:

−
√

x2/4 + n + 1/2 <
U′(n, x)
U(n, x)

< −
√

x2/4 + n − 1/2 (29)

The left inequality also holds for n > -1/2.

These type of bounds are useful for studying the attainable accuracy of methods for

computing the functions. In [17], the following estimation for large x and/or n was

considered for the condition number with respect to x:

Cx(U(a, x)) =
∣∣xU′(a, x)/U(a, x)

∣∣ ∼ x
√

x2/4 + a, (30)

and similarly for V(a, x). The bounds (29) prove that this a good estimation because it

lies between the upper and lower bounds. From the previous discussion on the V(a, x)

function, one can prove that similar bounds are valid for moderate x (x > 1 is enough);

we consider later this function.

Integrating (29) we have

Fn+1/2(x)/Fn+1/2(y) <
U(n, y)
U(n, x)

< Fn−1/2(x)/Fn−1/2(y),

Fα(x) = exp
(

x
2

√
x2/4 + α

)(
x + 2

√
x2/4 + α

)α (31)

and, in particular,

Fn+1/2(x) <
U(a, x)
U(a, 0)

< Fn−1/2(x) (32)
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where

Fα(x) = exp

⎛
⎝− x

2

√
x2

4
+ α

⎞
⎠

⎛
⎝ x

2
√

α
+

√
x2

4α
+ 1

⎞
⎠

−α

(33)

The bounds (32) are useful for obtaining the range of parameters for which function

values are computable within the arithmetic capabilities of a computer (overflow and

underflow limits). These results confirms the estimations based on the Liouville-Green

approximation used in [18].

° Iterated coerror functions and Mill’s ratio: In particular, considering Theorem 9

and the relation of parabolic cylinder functions U(n + 1/2, x) with the iterated coerror

functions inerfc(x) [[16], 12.7.7], n Î N, the following follows:

Mn+1(x) <
inerfc(x)

in−1erfc(x)
< Mn(x), n = 1, 2, . . . ; Mn(x) =

(
x +

√
2n + x2

)−1
. (34)

These inequalities appear in [19].

Theorem 9 also gives bounds on Mill’s ratio (n = 1/2). From the lower bound in

Theorem (9) and the upper bound obtained by iterating with (26) we have

Theorem 13. Let r(x) = ex2/2
∫ +∞

x e−t2/2dt , then

2

x +
√

x2 + 4
< r(x) <

4

3x +
√

x2 + 8
(35)

The lower bound was obtained in [20] and the upper bound in [21]. In our case,

these results follow from a more general result. See also [22] for an alternative proof.

Further iterations (see (26)) give additional sharper bounds:

Theorem 14.

R2k+1 < r(x) < R2k(x) (36)

Rn(x) =
1
x+

1
x+

2
x+

. . .
n

Tn(x)
, Tn =

(
x +

√
4n + x2

)
/2 (37)

where, as usual we denote
1
a+

1
b+

· · · = 1/(a + 1/(b + · · · ))

° Hermite polynomials of imaginary variable: A similar analysis to that for U(n, -x)

can be carried for the PCF V(n, x). Indeed, yn(x) = V(n, x)/Γ(n + 1/2) is a solution of

(23) and hn(x) = yn(x)/yn-1(x) is such that hn(0
+) > 0. Two situations take place depend-

ing on the values of n. First, if n Î (2k - 1, 2k), k Î N, then h′
n(0+) > 0 the upper

bound of Theorem 10 holds for all x > 0 while the lower bound will hold for n Î (2k,

2k + 1). Contrarily, if n Î (2k, 2k + 1) then h′
n(0+) < 0 , while hn(+∞) > 0, and the

upper bound only holds for large enough x; a similar situation occurs with the lower

bound when n Î (2k -1, 2k).

We only consider the first case. Using the relation of V(n + 1/2,x), n Î N, with Her-

mite polynomials [[16], 12.7.3] we get:

Segura Journal of Inequalities and Applications 2012, 2012:65
http://www.journalofinequalitiesandapplications.com/content/2012/1/65

Page 11 of 17



Theorem 15.

V(n, x)
V(n − 1, x)

<
x +

√
4n − 2 + x2

2
, x > 0, n ∈ (2k − 1, 2k), k ∈ N (38)

x +
√

4n − 6 + x2

2
<

V(n, x)
V(n − 1, x)

, x > 0, n ∈ (2k, 2k + 1), k ∈ N (39)

−i
H2k+1(ix)
H2k(ix)

< x +
√

4k + 2 + x2 x > 0, k = 0, 1, 2 . . . (40)

i
H2k−1(ix)
H2k(ix)

<
(
x +

√
4k − 2 + x2

)−1
, x > 0, k ∈ N (41)

H2k(ix)2

H2k−1(ix)H2k+1(ix)
>

√
k − 1/2
k + 1/2

, k ∈ N, x ∈ R. (42)

Hermite polynomials of imaginary argument were also considered in [15]. The well-

known Turàn-type inequality for Hermite polynomials [23]Hn(x)
2 - Hn-1(x)Hn+1(x) > 0,

x Î ℝ, does not hold on the imaginary axis, but a similar property

Hn(ix)2 − √
(n − 1)/(n + 1)Hn−1(ix)Hn+1(ix) > 0 holds true for all x > 0 if n is even.

4.1.3 Oblate legendre functions

These are Legendre functions of imaginary argument, which are functions appearing in

the solution of Dirichlet problems in oblate spheroidal coordinates [6]. Denoting

pn(x) = e−inπ/2Pm
n (ix) (43)

and using the differential relations [[16], 14.10.4-5] we have

p′
n(x) =

1
1 + x2

{nxpν(x) + (n + m)pν−1(x)}

p′
n−1(x) =

1
1 + x2

{−nxpν−1(x) + (n − m)pν(x)}
(44)

and qn(x) = Qm
n (ix) , Qm

n being the second kind Legendre function, satisfies the same

system. We consider n > m and x > 0. This is again an example for which Theorem 4

holds. The roles played in this case by the functions Qm
n (ix) and Pm

n (ix) are very simi-

lar to the roles of U(n, x) and V(n, x) in the previous section. We omit details and

only summarize the main results.

Theorem 16. The following holds for x > 0 and real n >m > 0

0 < i
Qm

n (ix)
Qm

n−1(ix)
<

n + m
n

⎡
⎣x +

√
1 + x2 − m2

n2

⎤
⎦

−1

<

√
n + m
n − m

(45)

i
Qm

n (ix)
Qm

n−1(ix)
>

n + m

nx + (n + 1)

√
1 + x2 − m2

(n + 1)2

(46)
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1 <
n + m + 1

n + m
Qm

n (ix)
Qm

n−1(ix)Qm
n+1(ix)

<

√
(n + 2)2 − m2

n2 − m2
(47)

Theorem 17. The following holds for x > 0 and integer n, m, n > m:

0 < −i
Pm

n (ix)
Pm

n−1(ix)
<

n
n − m

⎡
⎣x +

√
1 + x2 − m2

n2

⎤
⎦ , n − m odd (48)

1
n − m

[
nx + (n − 1)

√
1 + x2 − m2

(n − 1)2

]
< −i

Pm
n (ix)

Pm
n−1(ix)

, n − m even (49)

Pm
n (ix)2

Pm
n−1(ix)Pm

n+1(ix)
< 1 +

1
n − m

, n − m odd (50)

For m = 0 we have Legendre polynomials. If n is odd, we have Pn(ix)
2 < 0 and there-

fore Pn(ix)
2 - (1 + 1/n)Pn-1(ix)Pn+1(ix) > 0. It appears, as numerical experiments show,

that in this case the same Turán inequality that holds in the real interval (-1,1) [24]

also holds in the imaginary axis if n is odd: Pn(ix)
2 - Pn-1(ix)Pn+1(ix) > 0; the same is

not true if m ≠ 0.

4.1.4 Laguerre functions of negative argument

Next we consider an example for which Theorem 4 can not be applied but the analysis

is possible because the characteristic roots are monotonic.

Consider the Laguerre functions yν,α(x) = Lα
ν (−x), x > 0 . Using well known recur-

rences and differentiation formulas, we have

y′
ν+1,α−1(x) = yν,α(x)

xy′
ν,α(x) = −(α + x)yν,α(x) + (v + 1)yν+1,α−1

(51)

and

(ν + 1)yν+1,α−1(x) = (α + x)yν,α(x) + xyν−1,α+1 (52)

Considering [[25], Theorem 2] it follows that yv,a is a dominant solution of the

recurrence (52) in the direction of increasing ν (and decreasing a).
With h(x) = yν,a(x)/yv+1,a-1(x), the positive characteristic root l+(x) of the associated

Riccati equation turns out to be increasing if ν > -1 and a > 0. On the other hand, it is

easy to check that for these values h(0+) > 0 and h’(0+) > 0. Theorem 1 holds and l+(x)
is a bound:

Theorem 18. For any a > 0, ν > -1 and x > 0 the following holds

0 <
Lα−1

ν+1 (x)
Lα

ν (−x)
<

α + x +
√

(α + x)2 + 4(ν + 1)x

2(ν + 1)
(53)

On the other hand, from the recurrence (52) we have

Lα
ν (−x)

Lα−1
ν+1 (−x)

=

(
α + x
ν + 1

+
x

ν + 1

Lα+1
ν−1(−x)

Lα
ν (−x)

)−1

(54)
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and from this we obtain the second Perron-Kreuser bound:

Theorem 19. For any a > -1, ν > 0 and x > 0 the following holds

Lα−1
ν+1 (−x)
Lα

ν (−x)
>

α + x − 1 +
√

(α + x + 1)2 + 4νx

2(ν + 1)
(55)

And from these bounds we get the following Turán-type inequalities:

Theorem 20. For any ν ≥ 0 and a ≥ 0, x > 0 the following holds:

ν

ν + 1
α

α + 1
<

Lα−1
ν+1 (−x)
Lα

ν (−x)

Lα+1
ν−1(−x)

Lα
ν (−x)

<
ν

ν + 1
(56)

A second independent solution of (51) which is a minimal solution of (52) as ν ®
+∞ follows from [[25], Theorem 2]. Bounds can be also obtained for this solution. We

omit the details.

Other bounds and inequalities can be obtained using other recursions or using rela-

tions between contiguous functions. For example, using [[16], 18.9.13], we have:

Lα−1
ν+1 (x)
Lα

ν (x)
= 1 +

Lα
ν+1(x)
Lα

ν (x)
(57)

and upper and lower bounds for Lα
n(−x)/Lα

n−1(−x) follow from the previous results.

As a consequence of this new bounds, one can prove the following

Theorem 21.

ν

ν + 1
<

Lα
ν−1(−x)

Lα
ν (−x)

Lα
ν+1(−x)
Lα

ν (−x)
<

ν

ν + 1
ν + α + 1
ν + α − 1

(58)

where the first inequality holds for ν > 0, a > -1 and the second for ν > 0, ν + a > 1.

For positive x, it is known that Lα
n−1(x)Lα

n+1(x)/Lα
n(x)2 < 1[23]. For negative argument

we have an upper bound greater that 1, which suggests that the Turán-type inequality

for positive x does not hold for negative x, as numerical experiments show.

4.2 Two examples with dn(x)en(x) < 0

The DDEs corresponding to a pair {pn(x),pn-1(x)} of classical orthogonal polynomials

satisfy dn(x)en(x) < 0 in their interval of orthogonality because this is a necessary condi-

tion for oscillation [[8], Lemma 2.4]. However, for values of the variable for which the

polynomials are free of zeros, one can expect that hn(x)
2 > 1 and that the DDE

becomes monotonic (hn(x)
2 < 1 is also a necessary condition for oscillation [[9], Theo-

rem. 2.1]). This is the case of Laguerre and Hermite polynomials for large enough x >

0. We consider these two examples.

4.2.1 Hermite polynomials

Hermite polynomials satisfy

H′
n(x) = 2nHn−1(x),

H′
n−1(x) = 2xHn−1 − Hn(x)

(59)

We have ηn(x) = x/
√

2n and hn(x) > 1 if x >
√

2n (monotonic case). The character-

istic roots are both of them positive
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λ±
n (x) = x ±

√
x2 − 2n. (60)

Defining hn(x) = Hn(x)/Hn-1(x) we have that hn(+∞) = +∞ and h′
n(+∞) > 0 because

the coefficient of degree n of Hn(x) is positive. Then hn(x) > λ+
n(x) for enough x > 0

because h′
n(x) > 0 only if hn(x) < λ−

n (x) or hn(x) > λ+
n(x) , but

hn(+∞) > λ−
n (+∞) = 0+ , and therefore hn(x) > λ+

n(x) for large x. And because

λ+′
n (x) > 0 if x >

√
2n , then, necessarily:

hn(x) =
Hn(x)

Hn−1(x)
> x +

√
x2 − 2n, x ≥

√
2n. (61)

We can iterate the recurrence relation. Contrary to the case en(x)dn(x) > 0, we will

not obtain sequences of lower and upper bounds, but only lower bounds. Writing

hn+1(x) = 2x − 2n/hn(x) (62)

and using (61) we get a lower bound for hn+1(x). We shift the parameter n and get

hn(x) > x +
√

x2 − 2(n − 1), x ≥
√

2(n − 1). (63)

This improves Eq. (61) and enlarges the range of validity of the bound with respect

to x, but reduces the range of validity with respect to n (n ≥ 2).

The next iteration gives a bound for n ≥ 3:

hn(x) > F(n, x), x ≥
√

2(n − 2)

F(n, x) = (n − 2)−1[(n − 3)x + (n − 1)
√

x2 − 2(n − 2)]
(64)

Because the largest zero of Hn(x) is larger than that of Hn-1(x), Eq. (64) implies that

the largest zero of Hn(x) is smaller than
√

2(n − 2) , n ≥ 3.

We consider just one more iteration and get

hn(x) ≥ 2x − 2(n − 1)/F(n − 1, x) = G(n, x), x >
√

2(n − 3) (65)

and if G(n,
√

2(n − 3)) > 0 then G(n, x) > 0 if x >
√

2(n − 3) , and the largest zero

will be smaller than
√

2(n − 3) ; this condition is met if n ≥ 7. A sharper bound has

recently appeared in the literature [26] valid for all n. However, our result is sharper

than previous results, like for instance those in [27], which is interesting given the sim-

plicity of the analysis. This reflects the fact that the bounds on function ratios (our

main topic) are sharp.

4.2.2 Laguerre polynomials

We give some results for Laguerre polynomials omitting details. Defining

hα
n(x) = −Lα

n(x)/Lα
n−1(x) , we have hα

n(+∞) = +∞ and hα′
n (+∞) = +∞ and, proceeding

similarly as before:

2nhα
n(x) >x − (2n + α) +

√
(x − 2n − α)2 − 4n(n + α),

x ≥ 2n + α + 2
√

n(n + α)
(66)
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and after the first iteration of the recurrence we have:

2nhα
n(x) > f (x), x ≥ 2n∗ + α + 2

√
n∗(n∗ + α), n∗ = n − 1,

f (x) = x − (2n + α) +
√

(x − 2n∗ − α)2 − 4n∗(n∗ + α).
(67)

This proves that the largest zero of Lα
n(x) is smaller than

x∗ = 2n + α − 2 +
√

(n − 1)(n − 1 + α) , provided that f(x*) > 0, which is true if a > (n

- 1)-1 - (n - 1), n ≥ 2; notice that values a < -1 are allowed for large enough n. The

bound in [28] is slightly sharper, and it is improved in [26].

Further iterations are possible, but not so easy to analyze. The next iteration will give

a bound

2nhα
n(x) > g(x), x ≥ 2(n − 2) + α + 2

√
(n − 2)(n − 2 + α) = x∗. (68)

x* is an upper bound for the largest zero provided that g(x*) > 0. This condition is

met for a larger range of values of a as n becomes larger. For n ≥ 10, this holds for

any a > -1. The bound (68) is of more limited validity in terms of n but numerical

experiments show that it is sharper than the bound in [26] for a ≤ 12

We expect that lower bounds for the smallest zero can be also obtained with a simi-

lar analysis.

The main message, as before, is that the bounds on function ratios are sharp for

large x because they give the correct asymptotic behavior as x ® +∞, but also for

moderate x given the sharpness of the bounds on the largest zero.
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