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Resumen

El objetivo de este trabajo es comenzar la clasificación de politopos reticulares de di-
mensión 3 con n puntos reticulares, para n pequeño, módulo equivalencia unimodular.
El punto de partida es la demostración de que, aunque el número de clases de equivalen-
cia para cada valor de n es infinito, solamente una cantidad finita de ellas tienen anchura
mayor que uno, y la clasificación de las de anchura uno es un problema relativamente
fácil.

Para n = 4 estamos hablando de tetraedros vaćıos, cuya clasificación es bastante
clásica (White, Howe) y tienen todos anchura 1. Para n = 5 demostramos que hay
exactamente 9 (clases de) politopos de anchura 2, y ninguno de anchura mayor. Para
n = 6 demostramos que hay 74 clases de anchura 2, dos clases de anchura 3, y ninguna
de anchura mayor.

Nuestra motivación proviene en parte del concepto de politopos con sumas distintas
(distinct-pair-sum, o dps) estudiado por Reznick. Es sabido que los 3-politopos dps
tienen como mucho 8 puntos reticulares. Entre las 9 + 74 + 2 clases mencionadas más
arriba exactamente 9 + 44 + 1 son dps. Una posible continuación de este trabajo,
que requeriŕıa quizá nuevas técnicas, seŕıa continuar la clasificación para n = 7 y 8,
restringida al caso dps.
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1. Introduction

A lattice polytope is the convex hull of a finite set of points in Zd (or in a d-dimensional lattice). A
polytope is d-dimensional if it contains d+ 1 affinely independent points. We call size of P its number
P ∩Zd of lattice points and volume of P its volume normalized to the lattice (that is, d+ 1 points form
a simplex of volume one if and only if they are an affine lattice basis).

Two such polytopes P and Q are said Z-equivalent or unimodularly equivalent if there is an affine
integer unimodular transformation f : Zd → Zd with f(P ) = Q. We call such a transformation a
Z-equivalence.

We are interested in the complete classification of such polytopes in dimension 3, for small size.
The same question in dimension 2 has a relatively simple, and fully algorithmic, answer. Once we

fix the size n of P , Pick’s Theorem implies that

(1) vol(P ) = n− 2 + i ≤ 2n− 5,

where i ≤ n− 3 is the number of lattice points in the interior of P . Also, every configuration contains
a unimodular triangle which we may identify, without loss of generality, with the standard unimodular
triangle {(0, 0), (1, 0), (0, 1)}. These two things together implies A ⊂ conv({(−2n+ 6,−2n+ 6), (−2n+
6, 4n − 11), (4n − 11,−2n + 6)}. This implies that the classification can a priori be done by simply
considering all the possible subsets of n points in this finite set.

By a simple constructive approach it is easy to compute the full list of 2-dimensional polygons with
up to five points, which we show in Figure 1.

Figure 1. The 2-dimensional polygons with up to five points

In dimension 3 the situation is completely different. In particular, there are empty tetrahedra with
arbitrarily large volume, so no analogue of Pick’s Theorem is possible. Here, an empty tetrahedron is
the same as a 3-polytope of size four: a tetrahedron with integer vertices and no other integer point.

However, the following three results are valid in arbitrary dimension. In the first one, a hollow lattice
polytope is one with no lattice point in its interior.

Theorem 1.1 (Nill-Ziegler [7, Thm. 1.2]). In each dimension d, there is only a finite number of hollow
lattice d-polytopes that do not admit a lattice projection onto a hollow lattice (d− 1)-polytope.

Theorem 1.2 (Hensley [4, Thm. 3.4]). For fixed positive integers k and d there is a number V (k, d)
such that every lattice d-polytope with k interior lattice points has volume bounded above by V (k, d).

Theorem 1.3 (Lagarias-Ziegler [6, Thm. 2]). A family of lattice d-polytopes (for any fixed d) with
bounded volume contains only a finite number of integral equivalence classes.

Since there is a unique hollow 2-polytope of width larger than one, we get the following in dimension
3, where the width of a lattice polytope is the minimum of maxx∈P f(x) − minx∈P f(x), among all
possible (non-constant) choices of an integer linear functional f : Zd → Z. In particular, P has width
one if its vertices lie in two consecutive parallel lattice hyperplanes.

Corollary 1.4. There are finitely many lattice 3-polytopes of width greater than one for each size n.

Proof. Once we fix n, every lattice 3-polytope P with n lattice points falls in one of the following (not
mutually exclusive) categories:

• It is not hollow. In this case it has a positive, but bounded by n, number of interior points,
so Theorem 1.2 implies a bound for its volume. This, in turn, implies a finite number of
possibilities via Theorem 1.3.
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• It is hollow, but does not project to a hollow 2-polytope. These are a finite family, by Theo-
rem 1.1.
• It is hollow, and it projects to a 2-polytope of width 1. This implies that P itself has width 1.
• It is hollow, and it projects to a hollow 2-polytope of width larger than one. The only such

2-polytope is the second dilation of a unimodular triangle. It is easy to check that only finitely
many (equivalence classes) of 3-polytopes of size n project to it:

Let P = conv{p1, ..., pn} be a 3-polytope of size n that projects onto T = conv{(0, 0), (2, 0), (0, 2)},
with T ∩ Z3 = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)}.

We must have at least one point projecting to each vertex of T . That is: there are p1 =
(0, 0, z1), p2 = (2, 0, z2) and p3 = (0, 2, z3) in P . The unimodular transformation

(x, y, z) 7→
(
x, y, z − z1 − x

⌊
z2 − z1

2

⌋
− y

⌊
z3 − z1

2

⌋)
allows us to assume that z1, z2, z3 ∈ {0, 1}. This implies that P ⊂ T × [1− n, n], so there are a
finite number of possibilities for P .

�

So, it makes sense to classify, for each size n, separately the 3-polytopes of width one and those of
width larger than one. Those of width larger than one are a finite list. Those of width one are infinite,
but easy to describe: they consist of two 2-polytopes of sizes n1 and n2 (n1 +n2 = n) placed on parallel
consecutive planes (without loss of generality, the planes z = 0 and z = 1). For each of the two sub
configurations there is a finite number of possibilities, but infinitely many ways to “rotate” (in the
integer sense, that is via an element of SL(Z, 2)) one with respect to the other.

For example, it is a now classical result that all empty tetrahedra have width one. From this, the
classification of empty tetrahedra (stated in Theorem 2.3 below) follows easily.

Theorem 1.5 (White [12, Thm. 1]). Every lattice 3-polytope of size four has width one with respect to
(at least) one of its three pairs of opposite edges.

The following generalization of this fact is very useful to us:

Theorem 1.6 (Howe, see [11, Thm. 1.3]). Every lattice 3-polytope with no lattice points other than
its vertices has width 1. In particular, all maximal 3-polytopes with that property consist of two empty
parallelograms in consecutive parallel lattice planes.

Our motivation comes partially from the notion of distinct pair-sum lattice polytopes, defined as
lattice polytopes in which all the pairwise sums a + b, a, b ∈ P ∩ Zd are distinct. Equivalently, they
are lattice polytopes containing no three collinear lattice points nor the vertices of a non degenerate
parallelogram [2, Lemma 1]. A dps d-polytope cannot have two lattice points in the same class modulo
(2Z)d. In particular, it cannot have more than 2d lattice points. Reznick [9] asks:

• What is the range for the volume of dps polytopes of size 2d in Rd?
• Is every dps d-polytope a subset of one of size 2d?
• How many “inequivalent” dps polytopes of size 2d are there in Rd?

In dimension 2 there are only two dps polytopes: a unimodular triangle, and a triangle of volume
three with a unique interior point, and only the second one is maximal.

Our ultimate goal would be to answer these questions in dimension three.
The results we have achieved are:

Theorem 1.7 (Corollary 3.10). There are exactly 9 3-polytopes of size 5 and width > 1, all of width
2. They are all dps (See Table 1).

Theorem 1.8 (Theorems 4.1–4.6). There are exactly 76 3-polytopes of size 6 and width > 1, 74 of
width 2 and 2 of width 3. 44 and 1 of those, respectively, are dps (See Tables 2–10)

In future work we hope to at least classify the dps polytopes of sizes 7 and 8. Since maximal polytopes
in dimension three have 8 lattice points, this would complete the classification of dps 3-dimensional
lattice polytopes, which should help us answer, among others, the question presented in [2, page 6]:

• Is every dps 3-polytope a subset of a dps 3-polytope of size 8?

Acknowledgment: We thank Bruce Reznick for useful comments and references on the topic of this
work.
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2. Preliminaries

2.1. Empty simplices. Lattices 3-polytopes of size four, that is, empty tetrahedra, are well classified
(see, e.g., [11, 8]). To review the classification we take Theorem 1.5 as a starting point. That is, the
fact that every empty tetrahedron has width one with respect to a functional that is constant in two
opposite edges.

Let T be an empty tetrahedron, of a certain volume q. For our purposes, rather than thinking of T
as having vertices in Z3 that span a sublattice of index q, we think of T as the standard tetrahedron,
with vertices o = (0, 0, 0), e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1), but lying in a superlattice Λ of
Z3 with Λ : Z3 = q. This is obtained by an affine change of coordinates. Clearly, two empty tetrahedra
that produce the same lattice are Z-equivalent.

Also, without loss of generality, suppose that T has width one with respect to the edges oe3 and
e1e2, that is, with respect to the functional x+ y. In these conditions, we have that

Λ ⊂ {(x, y, z) ∈ R3 : x+ y ∈ Z}.
Let Hi := {(x, y, z) ∈ R3 : x+ y = i}, for each i ∈ Z. The different slices Λ ∩Hi are obtained from

one another by integer translation, so understanding one of them is enough to understand Λ. We look
at the slice

Λ0 := Λ ∩H0 = {(x, y, z) ∈ Λ : x+ y = 0}.
Λ0 is a superlattice of Z3 ∩H0 with index q. In particular, the rectangle

R := conv{(0, 0, 0), (0, 0, 1), (1,−1, 0), (1,−1, 1)},
which is a fundamental rectangle (that is, of lattice area 2) with respect to Z3 ∩H0 has area 2q with
respect to Λ0. Moreover, Λ0 contains no non-integer points in the integer vertical and horizontal lattice
lines of Z3 ∩ H0, (in particular, on the edges of R), since each primitive integer segment along these
lines is a lattice translation of 0e3 or e1e2. Thus, by Pick’s Theorem ( 1), R contains exactly q − 1
lattice points of Λ0 in its interior. Finally, no two of these points can have one coordinate the same,
because then we would have a horizontal or vertical lattice segment in Λ0 of length smaller than one,
in contradiction to the fact that oe3 and e1e2 are primitive in Λ. As a conclusion:

Lemma 2.1. For each i = 1, . . . , q−1, R contains exactly one point of Λ0 with z = i/q and one (which
may or may not be the same) with x = −y = i/q.

As a consequence, knowing the value of p ∈ {1, . . . , q − 1} for which (p/q,−p/q, 1/q) ∈ Λ0 or the
value p′ ∈ {1, . . . , q−1} for which (1/q,−1/q, p′/q) ∈ Λ0 is enough to recover Λ0, and Λ. More precisely
we will have:

Λ = (p/q,−p/q, 1/q) + Z3 = (1/q,−1/q, p′/q) + Z3.

Observe that these two values are not independent. Indeed, if (a/q,−a/q, b/q) lies in Λ0 then pb ≡ a
(mod q) so, in particular, p and p′ are inverses modulo q (which also implies gcd(p, q) = 1, but that
was already necessary in order not to have any non-integer lattice points in vertical lines).

Definition 2.2. We call an empty lattice simplex T of type T (p, q), 1 ≤ p < q, if it has volume q and
there is an affine transformation sending its vertices to o = (0, 0, 0), e1 = (1, 0, 0), e2 = (0, 1, 0) and
e3 = (0, 0, 1) and sending the lattice Z3 to the lattice

Λ(p, q) := (p/q,−p/q, 1/q) + Z3.

We call R(p, q) := conv{(0, 0, 0), (0, 0, 1), (1,−1, 0), (1,−1, 1)} the fundamental rectangle of T (p, q).
Observe that all non-integer lattice points of Λ(p, q) lie in an integer translation of R(p, q).

Theorem 2.3 (Classification of empty tetrahedra, White [12], Howe [11]). Every empty lattice simplex
of volume q ≥ 2 is of type T (p, q) for some p ∈ {1, q − 1} with gcd(p, q) = 1. Moreover, if p′ ≡ p−1

(mod q), we have
T (p, q) ∼= T (p′, q) ∼= T (q − p, q) ∼= T (q − p′, q).

Remark 2.4. The choice of representative chosen in [10] for tetrahedron T (p, q) is:

T (p, q) = conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)}
which has width one with respect to the functional z.

If the tetrahedron is unimodular, i.e., if q = 1, then we choose p = 0.
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Figure 2 shows the lattice Λ0 in the fundamental square R, for all the equivalence classes of lattice
polytopes with q < 8. Observe how we go from T (p, q) to T (q− p, q) by reflection with vertical mirror,
and form T (p, q) to T (p−1, q) by reflection with diagonal mirror.

Figure 2. Classification of empty tetrahedra of volume up to seven. Only values of p ≤ q/2
are shown; T (q − p, q) is obtained from T (p, q) by reflection with vertical mirror. Observe
that T (2, 7) ∼= T (3, 7) by 90 degree rotation, expressing the fact that 3 · 2 ≡ −1 (mod 7)

Simplices of type T (1, q) are somehow special: they have all lattice points in the diagonal of the
fundamental rectangle, and they have width one with respect to two different pairs of opposite edges
(with our choice of coordinates they have width one not only with respect to the functional x+ y, but
also with respect to y + z, that is, with respect to the edges oe1 and e2e3). They are called tetragonal
in [10].
T (2, 1) is even more special: it has width one with respect to any of the three pairs of opposite edges.

For future reference we include the following statement which can be read as “no vertex of an empty
tetrahedron is more special than the others”.

Lemma 2.5. Let T = conv{o, e1, e2, e3} be the standard simplex. Let Λ(p, q) be the lattice of type
(p, q), for some 1 ≤ p < q. Then, for every i ∈ {1, 2, 3} there is a Z-automorphism fi of T sending
ei → o and sending Λ(p, q) either to itself or to Λ(p′, q), where p′ ≡ p−1 (mod q).

Proof.

• i = 1: The affine transformation x
y
z

 f1−→

 1− (x+ y + z)
z
y


exchanges (0, 0, 0) ↔ (1, 0, 0) and (0, 1, 0) ↔ (0, 0, 1), and maps (p/q,−p/q, 1/q) to (1 −
1/q, 1/q,−p/q). Then

f1(Λ(p, q)) = f1(Z3 + (p/q,−p/q, 1/q)) = Z3 + (1− 1/q, 1/q,−p/q) =

= Z3 + (1/q,−1/q, p/q) = Z3 + (p′/q,−p′/q, 1/q) = Λ(p′, q).

• i = 2: The affine transformation x
y
z

 f2−→

 z
1− (x+ y + z)

x


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exchanges (0, 0, 0) ↔ (0, 1, 0) and (1, 0, 0) ↔ (0, 0, 1), and maps (p/q,−p/q, 1/q) to (1/q, 1 −
1/q, p/q). Then

f2(Λ(p, q)) = f2(Z3 + (p/q,−p/q, 1/q)) = Z3 + (1/q, 1− 1/q, p/q) =

= Z3 + (1/q,−1/q, p/q) = Z3 + (p′/q,−p′/q, 1/q) = Λ(p′, q).

• i = 3: The affine transformation x
y
z

 f3−→

 y
x

1− (x+ y + z)


exchanges (0, 0, 0)↔ (0, 0, 1) and (1, 0, 0)↔ (0, 1, 0), and maps (p/q,−p/q, 1/q) to (−p/q, p/q, 1−
1/q). Then

f3(Λ(p, q)) = f3(Z3 + (p/q,−p/q, 1/q)) = Z3 + (−p/q, p/q, 1− 1/q) =

= Z3 + (p/q,−p/q, 1/q) = Λ(p, q).

�

Remark 2.6. Let us consider, as in the proof of this lemma, the standard tetrahedron T = {o, e1, e2, e3}
and the lattice Λ(p, q). The transformation f3 in the proof (exchanging o↔ e3 and e1 ↔ e2) is the only
affine map, other than the identity, sending T to itself and preserving Λ(p, q) for every p and q. The
other 22 symmetries of T are automorphisms of Λ(p, q) only for particular values of p and q.

This means that the sentence “no vertex of an empty tetrahedron is more special than the others”
is not true if we fix a particular class T (p, q) of simplices. If we want to stay within a particular class
T (p, q) and in this class p 6≡ p−1 (mod q), then vertices o and e3 are in one orbit and e1 and e2 in
another.

Among the methods we have used to elaborate the classification, we often need to check whether
certain tetrahedra are empty and to find their type (p, q). We implement a MATLAB program to do
this for us (see Appendix A).

Sometimes, we have an infinite list of tetrahedra of which we want to know whether they are empty
or not. Doing it computationally is no longer a viable method. A more analytical way is to use one of
the necessary conditions for a tetrahedron to be empty: its four facets have to be unimodular triangles,
which is usually easy to check. Now, if this happens, then there is an affine transformation sending the
first three points to (0, 0, 0), (1, 0, 0) and (0, 1, 0); let (a, b, q) be the image of the fourth point. (Note:
the transformation is not unique, but q is unique up to a sign, since it equals the volume of T , and a
and b are determined modulo q). Then, our problem reduces to knowing when

conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (a, b, q)}

is an empty tetrahedron. The following lemma gives us the answer:

Lemma 2.7. The lattice tetrahedron T = conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (a, b, q)} is empty (with
respect to the integer lattice Z3) if, and only, if, at least one of the following happens:

(i) a ≡ 1 (mod q) and gcd(b, q) = 1.
(ii) b ≡ 1 (mod q) and gcd(a, q) = 1.
(iii) a+ b ≡ 0 (mod q) and gcd(a, q) = 1.

Proof. Assume without loss of generality that q > 0.
Observe that T is an empty tetrahedron if, and only if, all its edges are primitive and its width

equals one with respect to one of the three pairs of edges. In our case, primitivity of edges is equivalent
to

(2) gcd(a, b, q) = gcd(a− 1, b, q) = gcd(a, b− 1, q) = 1

Let us examine the width with respect to the three pairs of edges, depending on the values of a and
b:
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(i) Width w.r.t.
−−−−−−−−−−→
(0, 0, 0)(0, 1, 0) and

−−−−−−−−−−→
(1, 0, 0)(a, b, q).

The parallel planes containing those segments have equations qx + (1 − a)z = 0 and qx +
(1− a)z = q, respectively. Width one is equivalent to the functional qx+ (1− a)z taking only
values that are multiples of q, which in turn is equivalent to a−1 ≡ 0 (mod q). If this happens,
the primitivity conditions (Lemma 2) become equivalent to

gcd(b, q) = 1.

(ii) Width w.r.t.
−−−−−−−−−−→
(0, 0, 0)(1, 0, 0) and

−−−−−−−−−−→
(0, 1, 0)(a, b, q).

The parallel planes containing those segments have equations −qy+ (b− 1)z = 0 and −qy+
(b − 1)z = −q, respectively. Width one is equivalent to the functional −qy + (b − 1)z taking
only values that are multiples of q, which in turn is equivalent to b − 1 ≡ 0 (mod q). If this
happens, the primitivity conditions (Lemma 2) become equivalent to

gcd(a, q) = 1.

(iii) Width w.r.t.
−−−−−−−−−−→
(0, 0, 0)(a, b, q) and

−−−−−−−−−−→
(1, 0, 0)(0, 1, 0) .

The parallel planes containing those segments have equations −qx− qy + (a + b)z = 0 and
−qx− qy + (a+ b)z = −q, respectively. Width one is equivalent to the functional −qx− qy +
(a + b)z taking only values that are multiples of q, which in turn is equivalent to a + b ≡ 0
(mod q). If this happens, the primitivity conditions (Lemma 2) become equivalent to

gcd(a, q) = 1.

�

2.2. Volume vectors. One basic property of Z-equivalence is that it preserves volume. This makes
the following definition useful for our classification:

Definition 2.8. Let {p1, p2, . . . , pn}, with n ≥ 4, be the set of lattice points in a 3-polytope P . The
volume vector of P is the vector

w = (wi,j,k,l)1≤i<j<k<l≤n ∈ Z(n
4)

where

(3) wi,j,k,l = det

(
1 1 1 1
pi pj pk pl

)
.

Observe that the definition of volume vector implicitly assumes a specific ordering for the n points
in P .

Remark 2.9. The volume vector encodes the unique (modulo a scalar factor) dependence among each
set of 5 points {pi, pj , pk, pl, pr}, which is:

wj,k,l,r · pi − wi,k,l,r · pj + wi,j,l,r · pk − wi,j,k,r · pl + wi,j,k,l · pr = 0

wj,k,l,r − wi,k,l,r + wi,j,l,r − wi,j,k,r + wi,j,k,l = 0.

The volume preserving property of Z-equivalences gives us the following:

Lemma 2.10. Let P = conv {p1, . . . , pn} and Q = conv {q1, . . . , qn} have respective volume vectors

wP = (wPj )j and wQ = (wQj )j, j ∈ [
(
n
4

)
] = {1, · · · ,

(
n
4

)
}.

If P and Q are Z− equivalent, then there exists a permutation σ in [
(
n
4

)
] such that

|wjP | = |w
σ(j)
Q |

for all j ∈ [
(
n
4

)
].

Another theorem gives us a sufficient, yet not necessary, condition:

Theorem 2.11. Let P = conv {p1, . . . , pn} and Q = conv {q1, . . . , qn} be two n-sized polytopes in Z3

and suppose they have the same, or opposite, volume vector

w = (wi,j,k,l)1≤i<j<k<l≤n

with respect to the given ordering of the points. Then:

(1) There is an affine map f : R3 → R3 with f(pi) = qi for all i = 1, . . . , n
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(2) det(f) = ±1
(3) If gcd(wi,j,k,l)1≤i<j<k<l≤n = 1 then f has integer coefficients. Hence, it is a Z-equivalence

between P and Q.

Proof. Let us prove parts (1) and (2) by induction on n:

• n = 4 : Then their volume vector is an integer

w = w1,2,3,4 = det

(
1 1 1 1
p1 p2 p3 p4

)
= ±det

(
1 1 1 1
q1 q2 q3 q4

)
6= 0

(1) If both P = conv{p1, p2, p3, p4} and Q = conv{q1, q2, q3, q4} are 3-dimensional polytopes,
then their sets of lattice points are affine basis of some 3-dimensional lattice in R3. Then
there is an invertible affine map f such that f(pi) = qi for i = 1, 2, 3, 4. That is, there exist
an invertible matrix M ∈ Q3×3 (basis have integer coefficients) and a translation vector
m ∈ Z3 such that

Mpi +m = qi ∀i = 1, 2, 3, 4

(2) Now, the previous argument implies that(
1 0
m M

)
·
(

1 1 1 1
p1 p2 p3 p4

)
=

(
1 1 1 1
q1 q2 q3 q4

)

and since the determinants of the two last matrices represent the volume of the tetrahedra
P and Q, which is w for both, up to a −1 factor, then |det(f)| = |det(M)| = 1.

• n > 4: Suppose that (1) and (2) hold true for 4 ≤ k < n, and let us see it holds for n. The
volume vector of P and Q is

w = (wi,j,k,l)1≤i<j<k<l≤n

Without loss of generality, we may assume that w1,2,3,4 6= 0. This means that polytopes
P ′ = conv {p1, . . . , pn−1} and Q′ = conv {q1, . . . , qn−1} are 3-dimensional polytopes of size
n− 1, and with volume vector (up to a −1 factor):

w′ = (wi,j,k,l)1≤i<j<k<l≤n−1

By induction hypothesis, there exists an affine map f : R3 → R3 with f(pi) = qi for all
i = 1, . . . , n− 1 and with det(f) = ±1. It remains to be checked that f maps pn to qn.

Let us now consider the 5-point configurations P1 = conv {p1, p2, p3, p4, pn} and Q1 =
conv {q1, q2, q3, q4, qn}, and denote

vi = (−1)i−1 · w{1,2,3,4,n}\{i} for i = 1, 2, 3, 4, n

Then, since w is the volume vector of both P and Q up to a -1 factor, we have the following
dependences: ∑

i=1,...,4

vipi + vnpn = 0 (∗)

∑
i=1,...,4

viqi + vnqn = 0 (∗∗)
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And with these two equations it is easy to check that f also maps pn to qn:

f(pn) = M · pn +m =
(∗)

M ·

 1

vn
(−

∑
i=1,...,4

vipi)

+m =

=
1

vn

− ∑
i=1,...,4

vif(pi) +m
∑

i=1,...,4

vi

+m =

=
1

vn

− ∑
i=1,...,4

viqi −mvn

+m =

= − 1

vn

∑
i=1,...,4

viqi =
(∗∗)

1

vn
vnqn = qn

For part (3), let d = gcd(wi,j,k,l)1≤i<j<k<l≤n. We have a unimodular affine map f that maps pi to
qi for all i = 1, . . . , n and want to check that f has integral coefficients, if d = 1.
T = {pi}i=1,...,n and T ′ = {qi}i=1,...,n respectively span 3-dimensional sublattices Λ(T ),Λ(T ′) ≤ Z3.

Since f maps T to T ′, then it maps Λ(T ) to Λ(T ′). The index Z3 : Λ(T ) is the minimal volume (with
respect to Z3) of a basis of Λ(T ). Thus the index divides wi,j,k,l for all 1 ≤ i < j < k < l ≤ n, and
therefore it divides d. In particular, if d = 1, then Λ(T ) = Z3 = Λ(T ′). This implies f maps Z3 to
itself, so it has integer coefficients. �

3. Polytopes with five lattice points

The five points A = {p1, p2, p3, p4, p5} in a 3-polytope of size five have a unique affine dependence.
The Radon partition of A is obtained by looking at the signs of coefficients in this dependence. We say
that P = convA has signature (i, j) if this dependence has i positive and j negative coefficients. The
five possibilities for (i, j) are (2, 1), (3, 1), (4, 1), (2, 2) and (3, 2). (Observe that (i, j) and (j, i) are the
same signature).

In order for the volume vector of P to encode its signature, and taking into account Remark 2.9, for
a size 5 polytope we modify its volume vector to be

(w2,3,4,5,−w1,3,4,5, w1,2,4,5,−w1,2,3,5, w1,2,3,4)

where wi,j,k,l is as in Equation 3.
In this way, the signature of P is just the number of positive and negative entries in the volume

vector, and the sum of coordinates in the volume vector vanishes.
To classify 3-polytopes of size five, we treat separately signatures (2, ∗) and (∗, 1) (the case (2, 1)

appears in both, but that is not a problem).

3.1. Polytopes of signature (2, ∗). Our starting point is that every polytope P of size five and
signature (2, ∗) have width one. The proof is based on the fact that if T is the tetrahedron of largest
volume in P then P is contained in the second dilation of T .

Theorem 3.1. If P is a lattice 3-polytope of size 5 and of one of the signatures (3, 2), (2, 2) or (2, 1),
then P has width one.

Proof. Let (v1, v2, v3, v4, v5) be the volume vector, reordered so that vi ≤ 0 < v4 ≤ v5, i = 1, 2, 3. Let
T5 = conv{p1, p2, p3, p4} which is a tetrahedron of volume v5. Without loss of generality we can assume
T5 to have width one with respect to the pair of edges p1p2 and p3p4. Hence we can assume T5 to be
the standard simplex, with p4 = o, p1 = e1, p2 = e2, p3 = e3. This change means we are considering
the lattice Λ(p, q) corresponding to the type of T5 (with q = v5).

The affine dependence ∑
vipi = 0

implies that p5 = −1
v5

(v1, v2, v3) and, since vi ≤ 0 for i ∈ {1, 2, 3}, p5 lies in the (closed) positive orthant.

Also, since v4 ≤ v5, and considering that
∑
vi = 0 we have 2v5 ≥ v4 + v5 = −(v1 + v2 + v3). Hence

p5 ∈ {(x, y, z) :
∑
xi ≤ 2. Putting these two things together, p5 lies in the second dilation of T5.
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Since we have the lattice Λ(p, q), the width of 2T5 is two with respect to the functional x + y, and
its lattice points are:

• x+ y = 0: o, e3 and 2e3.
• x+ y = 2: 2e1, 2e2 and e1 + e2.
• x+ y = 1: the translated fundamental rectangle with vertices (1, 0, 0), (0,1,0), (1, 0, 1), (0, 1, 1)

and its interior points, in particular the point (p/q, (q − p)/q, 1/q).
Then the width of P with respect to the functional x + y is at most two, and it equals two only if

p5 is one of (2, 0, 0), (1, 1, 0) or (0, 2, 0). In the first and last cases P has signature (2, 1) (since two of
the vi’s are zero). In the second case it has signature (2, 2). We claim that:

• If p5 = (2, 0, 0) then, in order for P not to contain more lattice points of Λ(p, q), we need p = 1.
But in this case T (p, q) has width one with respect to y + z.

• The case p5 = (0, 2, 0) is symmetric to the previous one, exchanging the roles of x and y.
• If p5 = (1, 1, 0) then, in order for P not to contain more lattice points we need q = 1. That is,
T5 is unimodular and P has width one with respect to, for example, the functional z.

To prove the claims, Figure 3 shows the intersection of P with the (translated) fundamental rectangle
of vertices (1, 0, 0), (0,1,0), (1, 0, 1) and (0, 1, 1). In both cases the upper vertex of the shaded triangle
is the mid-point of p5 and p3 = (0, 0, 1). The restrictions appear by considering the values of p and q
so that the point (p/q, (q − p)/q, 1/q) is not in the shaded area.

Figure 3. Intersection of P with the (translated) fundamental rectangle

�

Once we know this, the classification of these configurations, though infinitely many, is relatively
easy. We now go back to having Z3 as our lattice.

Theorem 3.2. Let A be a set of 5 lattice points. Then:

(1) P = conv {A} is a 3-polytope of size 5 and of signature (2, 1) if and only if A consists of two
non-parallel edges at lattice distance one, one of them primitive and the other one with a single
lattice point in the middle.

(2) P = conv {A} is a 3-polytope of size 5 and of signature (2, 2) if and only if A consists of an
emtpy 2-dimensional parallelogram and a fifth point at lattice distance one.

(3) P = conv {A} is a 3-polytope of size 5 and of signature (3, 2) if and only if A consists of a
unimodular triangle and a primitive edge at lattice distance one, and has no coplanarities.

Proof. The “if” part is trivial. For the only if part, by Theorem 3.1 the 5 lattice points of P lie in two
consecutive lattice planes. Say n0 points are at z = 0 and 5− n0 at z = 1. There are two possibilities:

• n0 = 4: P has four points in a lattice plane. Then these four points form one of the three
2-dimensional polytopes of size 4 displayed in the right top row of Figure 1, of signatures (2, 2),
(2, 1) and (3, 1) respectively, and P is of size 5 and of the same signature. The case (3, 2) is
not part of this statement, the case (2, 2) is as in part (2) of the statement, and the case (2, 1)
notice that the configuration has width one also with respect to two edges, the one consisting
of the three collinear points, and the one with the remaining two points.

• n0 = 3: P has three points in the lattice plane z = 0, and two in the next plane z = 1. There
are two possibilities:
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– If the three points at z = 0 are collinear, without loss of generality we can assume they are
(−1, 0, 0), (0, 0, 0) and (1, 0, 0). One of the points at z = 1 can be assumed to be (0, 0, 1)
and the fifth point has coordinates (p, q, 1). In order for P to be 3-dimensional, we need
q 6= 0 and without loss of generality q > 0. Also we need the edge at z = 1 to be primitive,
so gcd(p, q) = 1. The volume vector is (q,−2q, q, 0, 0). Notice that the previous case with
volume vector (1,−2, 1, 0, 0) is already considered with p = 0 and q = 1.

– If the three points at z = 0 are not collinear then they have to form a unimodular triangle,
and without loss of generality we assume they are (0, 0, 0), (1, 0, 0) and (0, 1, 0). One of the
points at z = 1 can be assumed to be (0, 0, 1) and the fifth point has coordinates (a, b, 1).
By the same argument as before, we need gcd(a, b) = 1 and by symmetries with respect
to the triangle at z = 0 we can assume 0 < p ≤ q.
Whenever the edge at z = 1 is not parallel to one of the edges of the triangle at z = 0, the
volume vector is (a+ b,−a,−b,−1, 1), so the signature is (3, 2).
Otherwise, the signature of the configuration is (2, 2), and P has width 1 with respect to
this parallelogram and the remaining vertex.

�

Remark 3.3. Observe that cases (2) and (3) of the Theorem are equivalent, respectively, to the volume
vector being equal (modulo reordering) to (1, 1, 0,−1,−1) and to

±(a+ b, 1,−1,−a,−b)
for some 1 ≤ a ≤ b with gcd(a, b) = 1. For the proof observe that, since the gcd’s in these volume vectors
are both 1, all configurations with those volume vectors are Z-equivalent to one another (Theorem 2.11).

In case (1) the volume vector is (modulo reordering) ±(q, q, 0, 0,−2q) for some q > 0, but this volume
vector alone does not imply P to be of size 5.

Let us check that this case study agrees with the configurations listed in the first three corresponding
blocks of Table 1. Signatures (2, 2) and (3, 2) are clear, by Remark 3.3. In signature (2, 1) the only
thing that is not obvious from Theorem 3.2 and Remark 3.3 is why we can assume 0 ≤ p ≤ q/2 and
why different values of p in the range 0 ≤ p ≤ q/2 give non-equivalent configurations. For this, let q be
fixed and let p1, p2 ∈ Z, with gcd(p1, q) = 1 = gcd(p2, q). Let P1 and P2 be two of these configurations
with the values (p1, q, 1) and (p2, q, 1) for the fifth point, respectively. Again by Theorem 2.11, all
the possible unimodular transformations that map P1 to P2 must verify that: (0, 0, 0) is a fixed point,
(1, 0, 0) and (−1, 0, 0) can be fixed or mapped into one another, and (0, 0, 1) and (pi, q, 1) can again be
fixed or mapped into one another. So we have four possible unimodular transformations mapping P1

to P2. The reader can check that these four transformations imply p1 ≡ ±p2 (mod q).

Another way to check whether a configuration is a lattice 3-polytope of size 5 and signature (2, 1) is
the following lemma:

Lemma 3.4. In signature (2, 1), a configuration with volume vector (q, q, 0, 0,−2q) is a 5-sized polytope
if and only if

• q = ±1, or
• |q| > 1 and, in coordinates for which the (2, 1) circuit is conv{o, e2,−e2} and the fourth point

is e1, the fifth point (a, b, q) verifies a ≡ 1 mod q and gcd(b, q) = 1.

Proof. Let us see what happens for the different values of |q| > 0 (if q = 0, the polytope is 2-
dimensional):

• |q| = 1: In this case the volume vector is (1, 1, 0, 0,−2). Since the signs correspond to a (2, 1)
signature, and the entries 1 imply that the two tetrahedra are empty, then the result follows.

• |q| > 1: Without loss of generality assume P = conv{p1, p2, p3, p4, p5}, with

p1 = (0, 0, 0), p2 = (0, 1, 0), p3 = (0,−1, 0), p4 = (1, 0, 0),

one of the facets that contains the (2, 1) circuit, and the fifth point is p5 = (a, b, q) for some
(a, b, q) ∈ Z3. Then P = T1 ∪ T2 where Ti = conv {Ci ∪ (a, b, q)}:

C1 = conv {(0, 0, 0), (1, 0, 0), (0, 1, 0)}
C2 = conv {(0, 0, 0), (1, 0, 0), (0,−1, 0)}
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To determine whether these two tetrahedra are empty, we use Lemma A.

– C1 = ∆2, and so (a, b, q) must verify at least one of the following:
(i) a ≡ 1 (mod q) and gcd(b, q) = 1.
(ii) b ≡ 1 (mod q) and gcd(a, q) = 1.
(iii) a+ b ≡ 0 (mod q) and gcd(a, q) = 1.

– ∆2 is the image of C2 by the unimodular transformation x
y
z

 −→
 x
−y
z


and we get that (a, b, q) must verify at least one of the following:

(i’) a ≡ 1 (mod q) and gcd(b, q) = 1.
(ii’) b ≡ −1 (mod q) and gcd(a, q) = 1.
(iii’) a− b ≡ 0 (mod q) and gcd(a, q) = 1

And the cases when at least one condition from each group holds true, can be reduce to one,
which is when a ≡ 1 mod q and gcd(b, q) = 1.

�

3.2. Polytopes of signature (∗, 1). Let (v1, v2, v3, v4, v5) be the volume vector of a polytope of sig-
nature (∗, 1), reordered so that v5 < 0 ≤ vi ≤ v4, i = 1, 2, 3. That is, point p5 lies in the interior
of conv{p1, p2, p3, p4}, and the tetrahedron T4 := conv{p1, p2, p3, p5} has the maximum volume among
the empty simplices in P . Also, without loss of generality, assume that T4 has width one with respect
to the pair of edges p1p2 and p3p5. That is, the affine change of coordinates that sends T4 to be the
standard simplex, with p5 = o, p1 = e1, p2 = e2, p3 = e3, sends Z3 to the lattice Λ(p, q) corresponding
to the type of T4.

The affine dependence ∑
vipi = 0

implies that p4 = −1
v4

(v1, v2, v3). Now, since vi ≥ 0 for i ∈ {1, 2, 3}, p4 lies in the (closed) negative

orthant. Also, considering that
∑
vi = 0, we have v4 = −(v1 + v2 + v3 + v5) and then p4 lies in the

cube [−1, 0]3. There are four possibilities for p4:

(a) If p4 ∈ {(−1, 0, 0), (0,−1, 0), (0, 0,−1)}, then P has signature (2, 1). In particular, it has width
one and has been analyzed in the previous section.

(b) If p4 ∈ {(−1,−1, 0), (0,−1,−1), (−1, 0,−1)}, then P has signature (3, 1) and volume vector
(q, q, q, 0,−3q).

(c) If p4 = (−1,−1,−1)}, then P has signature (4, 1) and volume vector (q, q, q, q,−4q).

(d) If p4 is not a vertex of the cube [−1, 0]3, then it must be an interior lattice point in the (trans-
lated) fundamental rectangle (−1, 0, 0), (0,−1, 0), (−1, 0,−1), (0,−1,−1). The signature is
again (4, 1) and the volume vector is (v1, v2, v3, v4,−(v1 + v2 + v3 + v4) with vi < v4 for at least
one of i = 1, 2, 3.

Cases (b) and (d) have a unifying feature that we will make use of. Case (c) will be treated separately.

Lemma 3.5. In cases (b) and (d), the configuration has width two. Moreover, it has width two with
respect to a functional that takes the values 1, 1, 0, 0,−1 (not necessarily in this order, but with these
multiplicities) in our five points.

Proof. The statement holds for the functional x + y in all cases except p4 = (−1,−1, 0). Thus, we
assume this to be the case for the rest of the proof. In particular, p0 = p5 is the centroid of p1, p2 and
p4:

p0 = (p1 + p2 + p4)/3
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Since the tetrahedron conv({p0, p1, p2, p3}) has width one with respect to the pair of edges p0p3 and
p1p2, we can, by an affine change of coordinates, send Λ(p, q) to Z3 in such a way that

p0 → (0, 0, 0), p3 → (1, 0, 0), p1 → (0, 1, 0), p2 → (p, 1, q).

Moreover, without loss of generality, p ∈ {0, . . . , q − 1}. Under this transformation we have p4 →
(−p,−2,−q). Now, Lemma 2.7 applied to the tetrahedron conv({p0, p3, p1, p4}) implies that in order
for this tetrahedron to be empty we need one of the following conditions:

(i) p = q − 1 and gcd(2, q) = 1.
(ii) −2 ≡ 1 (mod q) and gcd(p, q) = 1.
(iii) p = q − 2 and gcd(2, q) = 1.

In case (i) we take the functional x − z. In case (iii) we take x + y − z. In case (ii) we have q = 3
and p ∈ {1, 2}. If p = 1 this is a special case of (iii) and if p = 2 it is a special case of (i). �

In the light of Lemma 3.5, we can analyze these configurations as follows: taking the functional
of the lemma to be the z-coordinate, we assume without loss of generality that the first four points
are (0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1), and the fifth is and (a, b,−1) for some a, b ∈ Z. The question
whether the convex hull of these five points has no other lattice point is a two-dimensional question,
since all such extra points should have z = 0. Analyzing the possibilities for p and q we obtain:

Theorem 3.6. In case (d), there are only the following six distinct types: configurations with (0, 0, 0),
(1, 0, 0), (0, 0, 1) and with fourth and fifth vertices

• (1, 2, 1) and (−1,−1,−1), volume vector (−5, 1, 1, 1, 2).
• (1, 3, 1) and (−1,−2,−1), volume vector (−7, 1, 1, 2, 3).
• (2, 5, 1) and (−1,−2,−1), volume vector (−11, 1, 3, 2, 5).
• (2, 5, 1) and (−1,−1,−1), volume vector (−13, 3, 4, 1, 5).
• (2, 7, 1) and (−1,−2,−1), volume vector (−17, 3, 5, 2, 7).
• (3, 7, 1) and (−2,−3,−1), volume vector (−19, 5, 4, 3, 7).

Proof. Our configuration of points is P = conv{p1, p2, p3, p4, p5}, with

p5 = (0, 0, 0), p1 = (1, 0, 0), p2 = (0, 0, 1), p3 = (p, q, 1)

for some 0 ≤ p < q, gcd(p, q) = 1. And p4 = (a, b,−1).
The five points form a (4, 1) circuit, with either p5 or p1 the interior point. Without loss of generality

(by Remark 2.6) let p5 be this point. The volume vector of our configuration P = conv {p5, p1, p2, p3, p4}
is

(−(pb+ q(2− a)), pb− qa, q + b,−b, q)
Since we assumed the normalized volume of T4 = conv {p1, p2, p3, p5} to be the biggest, we have
0 < −b ≤ q, 0 < q + b ≤ q and 0 < pb− qa ≤ q.

Let us now consider the projection in the direction of functional z. The origin must be an interior
point of the intersection of P at z = 0. That is, the triangle of vertices (1, 0), (a/2, b/2) and ((a +
p)/2, (b+ q)/2) in the plane. Let c = a+ p and d = b+ q.

We now have to study the values of a, b, c, d ∈ Z such that (a/2, b/2), (c/2, d/2) 6∈ Z and (0, 0) ∈
int(conv {(1, 0), (a/2, b/2), (c/2, d/2)}). In particular this implies, since d > 0, that b < 0. By symmetry
we may also assume that |d| ≤ |b|. This also tells us that a and b cannot both be even, and the same
for c and d.

Fixing the value of d, we can consider the values of c (mod d). For d = 1 we take c = 0. For
d > 1, if we take into account that the point (0, 1, 0) cannot be in the convex hull of P , then (c/2, d/2)
cannot be in the segment symmetric to (0, 0, 0)(1, 0, 0) with respect to the point (0, 1, 0). That is,
c/2 6∈ [1 − d/2, 0], which is equivalent to c 6∈ [2 − d, 0], and the only remaining value for c (mod d) is
c = 1. Moreover, for d ≥ 4, the only possible values for (a, b), if there are any, are all with d > |b|.

Thus, we can assume that (c, d) ∈ {(0, 1), (1, 2), (2, 3)}. To study the possibilities for (a, b) we look
at the intersection of our configuration with the plane z = 0. Taking into account the constraints (i)
b < −d, (ii) p5 is in the interior of conv(P ), and (iii) conv(P ) ∩ {z = 0} does not contain any lattice
point other than p5 and p1, leaves a finite (and small) number of candidates for (a, b) for each of the
three possible values of (c, d). More precisely, p2p4∩{z = 0} must lie, respectively, in the white regions
of the pictures in Figure 4, so the candidates for (a, b) (or, equivalently, for p4 = (a, b,−1)) are in
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correspondence with the half-integer points in those regions, marked with crosses in the figure. This
gives a priori 16 possibilities for p4.

y

x

z = 0

p1p5

p3p4

b = −d = −1

z = 0 y

x
p5 p1

p3p4

b = −d = −2

b = −d = 3

z = 0 y

x
p5 p1

p3p4

(c, d) = (1, 0) (c, d) = (2, 1) (c, d) = (3, 1)

Figure 4. The case analysis in the proof of Theorem 3.6 for the three possibilities of (c, d).
Red squares represent the points p1 and p5 of P in the displayed plane z = 0. The red crossed
square is the intersection of p3p4 with that same plane. Black dots are the lattice points in
the plane and black crosses represent the possible intersection points of the edge p2p4 and the
plane z = 0.

Now, these 16 points reduce to only six possibilities by considering gcd(p, q) = 1, 0 ≤ p < q and
observing that, in order to have primitive edges, we must have

(4) gcd(a, b, 2) = gcd(p− a, q − b, 2) = 1.

The final list is:

c d a b p = c− a q = d− b p− a q − b

0 1 −1 −1 1 2 2 3
0 1 −1 −2 1 3 2 5
1 2 −2 −3 3 5 5 8

0 1 −3 −4 3 5 6 9
1 2 −4 −5 5 7 9 12
1 3 −3 −4 4 7 7 11

In order to get smaller coordinates for the configuration, whenever p > q/2 we apply the transfor-
mation

(x, y, z) 7→ (x− y + (q − p)z, qz − y, z)
This fixes p1 and p5, and exchanges the roles of p2 and p3 giving (q − p, q, 1) as the new p3. The new
parameters are the following, as stated:

a b p q

−1 −1 1 2
−1 −2 1 3
−1 −2 2 5

−1 −1 2 5

−1 −2 2 7
−2 −3 3 7

�

Theorem 3.7. In signature (3, 1), a configuration with volume vector (q, q, q, 0,−3q) is a 5-sized poly-
tope if and only if

• q = ±1, or
• q = ±3 and, in coordinates for which the (3, 1) circuit is conv{o, e1, e2,−e1−e2}, the fifth point

(a, b, q) verifies a ≡ −b ≡ ±1 (mod 3).
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Proof. Without loss of generality assume P = conv{p1, p2, p3, p4, p5}, with

p5 = (0, 0, 0), p1 = (1, 0, 0), p2 = (0, 0, 1), p3 = (p, q, 1)

for q 6= 0, gcd(p, q) = 1, and p4 = (a, b,−1). The value of p can be considered modulo q.
The five points form a (3, 1) circuit. The only possible way is that the barycenter is at z = 0 and

the vertices are all in different z-planes. Without loss of generality (by Remark 2.6) let p5 be the
barycenter, and p1, p2 and p4 the vertices of the triangle. Thus p4 = 2p5 − p1 − p2 = (−1, 0,−1).

Now we have the four coplanar points in the plane y = 0, so p3 must have q 6= 0. We may assume
q > 0, since the negative case is symmetric (and Z-equivalent to the positive case). Now, the edges
that join p3 with the points on the plane y = 0 must be primitive. That is:

gcd(p, q, 1) = gcd(p− 1, q, 1) = gcd(p, q, 0) = gcd(p+ 1, q, 2) = 1

and the previous holds if and only if q is odd. In summary, the convex hull has one point at z =
−1, the primitive edge (0, 0, 1)(p, q, 1) at z = 1 and the triangle of vertices (1, 0, 0), (−1/2, 0, 0) and
((p− 1)/2, q/2, 0) at z = 0. Figure 5 shows that the possibilities for p and q such that this triangle has
no more lattice points than p1 and p5 are:

• q = 1, p ∈ Z. All points at y = 1 give equivalent configurations by mapping x → x + αy and
z → z + βy.
• q = 3 and p ≡ 2 (mod 3). By mapping x → x + 3αy and z → z + 3βy we get that all points

(a, 3, b) with a ≡ −b ≡ −1 (mod 3) give equivalent configurations. Also, by considering all the
possible unimodular transformations in Z3 that are an automorphism between the points at
height z = 0, we see that the only remaining valid points at y = 3 are those with a ≡ −b ≡ 1
(mod 3), by reflection of the previous with respect to the plane x = z.

By simply applying the permutation of coordinates y ↔ z, the result follows.

z = 0y

xp1p5p2p4

Figure 5. The case analysis in the proof of Theorem 3.7. Red squares represent the points
p1 and p5 of P in the displayed plane z = 0. The red crossed square is the intersection of
p2p4 with that same plane. Black dots are the lattice points in the plane and black crosses
represent the possible intersection points of the edge p3p4 and the plane z = 0.

�

Finally, in case (c) we show that there are only two possibilities:

Theorem 3.8. There are only the following two configurations of signature (4, 1) with volume vector
(−4k, k, k, k, k): (0, 0, 0), (1, 0, 0), (0, 0, 1) and with fourth and fifth vertices equal to:

• (1, 1, 1) and (−2,−1,−2), volume vector (−4, 1, 1, 1, 1).
• (2, 5, 1) and (−3,−5,−2), volume vector (−20, 5, 5, 5, 5).

Proof. With previous notation, we have that our configuration is P = conv{p1, p2, p3, p4, p5} with
p5 = (0, 0, 0), pi = ei for i = 1, 2, 3 and p4 = (−1,−1,−1) and in the lattice Λ(p, q), for some 0 ≤ p < q,
with p prime with q. We apply the transformation that maps Λ(p, q)→ Z3 and

p5 → (0, 0, 0), p3 → (1, 0, 0), p1 → (0, 0, 1), p2 → (p, q, 1).

This transformation maps p4 = (−1,−1,−1)→ (−p− 1,−q,−2).
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Now the convex hull of the configuration consists of four thetrahedra glued together, all of normalized
volume q, where the new three tetrahedra are:

• T1 = {(0, 0, 0), (1, 0, 0), (0, 0, 1), p4}
• T2 = {(0, 0, 0), (1, 0, 0), (p, q, 1), p4}
• T3 = {(0, 0, 0), (0, 0, 1), (p, q, 1), p4}

It remains to check whether these tetrahedra are empty. If q = 1 then all tetrahedra are unimodular
and therefore empty. In this case, p3 = (1, 1, 1) and p4 = (−2,−1,−2). We consider q > 1 for the rest
of the proof.

Denote p4 = (a, b, c). We have Ti = conv (Ci ∪ p4), where:

• C1 = {(0, 0, 0), (1, 0, 0), (0, 0, 1)}
• C2 = {(0, 0, 0), (1, 0, 0), (p, q, 1)}
• C3 = {(0, 0, 0), (0, 0, 1), (p, q, 1)}

Let us use Lemma 2.7 to evaluate for which values of a, b and c these tetrahedra are empty.

• ∆2 is the image of C1 by the unimodular transformation x
y
z

 −→
 x

z
y


and so by the lemma it must happen at least one of the following
(i) a ≡ 1 (mod b) and gcd(b, c) = 1.
(ii) c ≡ 1 (mod b) and gcd(a, b) = 1.
(iii) a+ c ≡ 0 (mod b) and gcd(a, b) = 1.

• ∆2 is the image of C2 by the unimodular transformation x
y
z

 −→
 x− pz

z
y − qz


and again by the lemma at least at least one of the following must happen:
(i’) a− pc ≡ 1 (mod b− qc) and gcd(b, c) = 1.
(ii’) c ≡ 1 (mod b− qc) and gcd(a− pc, b− qc) = 1.

(iii’) a− (p− 1)c ≡ 0 (mod b− qc) and gcd(a− pc, b− qc) = 1.
• To describe a unimodular transformation that maps C3 to ∆2, we ought to know the Bezout

coefficients of p and q. Hence we evaluate directly the widths of T3 with respect to the three
pairs of edges: tetrahedron T3 is empty if and only if:

gcd(a, b, c) = gcd(a− p, b− q, c− 1) = gcd(a, b, c− 1) = 1

and at least one on the following values is 1:

1

gcd(a− p, b− q)
(bp− aq)

1

gcd(q(c− 1)− b, p(c− 1)− a, bp− aq)
(bp− aq)

1

gcd(c, bp− aq)
(bp− aq)

Let us now use the known coordinates of A:

(i) p ≡ −2 (mod q) and gcd(q, 2) = 1, i.e. q has to be odd and p = q − 2.
(ii) 3 ≡ 0 (mod q) and gcd(p+ 1, q) = 1, i.e. q = 3 has to be odd and p = 1.

(iii) p ≡ −3 (mod q) and gcd(p + 1, q) = 1, i.e. q has to be odd (if it were even, then either p or
p+ 1 would have a common factor 2 with q) and p = q − 3.

So tetrahedron T1 is emtpy if and only of q is odd and p = q − 2 (q > 2) or p = q − 3 (q > 3).

(i’) p ≡ 2 (mod q) and gcd(q, 2) = 1, i.e. q has to be odd and p = 2.
(ii’) 3 ≡ 0 (mod q) and gcd(p− 1, q) = 1, i.e. q = 3 has to be odd and p = 2.
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(iii’) p ≡ 3 (mod q) and gcd(p− 1, q) = 1, i.e. q has to be odd (if it were even, then either p or p− 1
would have a common factor 2 with q) and p = 3.

So tetrahedron T2 is emtpy if and only of q is odd and p = 2 (q > 2) or p = 3 (q > 3).

And then both thetraedra T1 and T2 are empty if and only if

q is odd ∧ (p = 2 ∨ p = 3) ∧ (p = q − 2 ∨ p = q − 3)

And the previous can only happen for q = 5 with p = 2 or p = 3.
We put q = 5, and consider p ∈ {2, 3}. Then we must have that one of the following is 1:

q

gcd(2p+ 1, 2q)
=

5

gcd(2p+ 1, 10)
= 1 ⇐⇒ p = 2

q

gcd(2p− 1, q)
=

5

gcd(2p− 1, 5)
= 1 ⇐⇒ p = 3

q

gcd(2, q)
=

5

gcd(2, 5)
= 5 6= 1 for p = 2, 3

And so in this case, the three tetrahedra are all empty only if q = 5, and p ∈ {2, 3}. The following
matrix represents a Z-equivalence between the two possible configurations: 1 −1 3

0 −1 5
0 0 1


Hence there is a unique equivalence class for q = 5. In this case, p3 = (2, 5, 1) and p4 = (−3,−5,−2).

�

Corollary 3.9. The convex hull P of a set of 5 lattice points is a 3-polytope of size 5 and of signature
(4, 1) if and only if the volume vector is equal (after adequate permutation of points) to one of the eight
possibilities in Theorems 3.6 and 3.8, and if the case is (−20, 5, 5, 5, 5), the type of the four subtetrahedra
must be T (2, 5).

Corollary 3.10. There are exactly nine 3-polytopes of size 5 and width two and none of larger width.
Eight of them have signature (4, 1), and one has signature (3, 1). All of them are dps.

The following Table 1 shows a choice of representative for each equivalence class of lattice 3-polytopes
of size 5. The configurations are grouped according to their signatures.

Signature Volume vector Width Representative

(2, 2) (−1, 1, 1,−1, 0) 1 (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0),(0, 0, 1)

(2, 1)
(−2q, q, 0, q, 0)

0 ≤ p ≤ q
2

with gcd(p, q) = 1
1 (0, 0, 0), (1, 0, 0), (0, 0, 1), (−1, 0, 0),(p, q, 1)

(3, 2)*
(a + b,−a,−b,−1, 1)

0 < a ≤ b with gcd(a, b) = 1
1 (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),(a, b, 1)

(3, 1)*
(−3, 1, 1, 1, 0)
(−9, 3, 3, 3, 0)

1
2

(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1,−1, 0),(0, 0, 1)
(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1,−1, 0),(1, 2, 3)

(−4, 1, 1, 1, 1) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 1, 1),(−2,−1,−2)
(−5, 1, 1, 1, 2) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 2, 1),(−1,−1,−1)
(−7, 1, 1, 2, 3) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 3, 1),(−1,−2,−1)

(4, 1)* (−11, 1, 3, 2, 5) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 1, 5),(−1,−2,−1)
(−13, 3, 4, 1, 5) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 5, 1),(−1,−1,−1)
(−17, 3, 5, 2, 7) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 7, 1),(−1,−2,−1)
(−19, 5, 4, 3, 7) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (3, 7, 1),(−2,−3,−1)
(−20, 5, 5, 5, 5) 2 (0, 0, 0), (1, 0, 0), (0, 0, 1), (2, 5, 1),(−3,−5,−2)

Table 1. Complete classification of lattice 3-polytopes of size 5. Those marked with an * are dps

Let us mention that part of these results were already known:

• Configurations of signatures (2, 2) and (3, 2) have width 1 by Howe’s Theorem (1.6).
• Configurations of signature (4, 1) were classified by Reznick [8, Thm. 7] and Kasprzyk [5], who

obtained exactly the same result as we do.
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4. Polytopes with six lattice points

Let A = {p1, . . . , p6} be a set of six lattice points in Z3. The volume vector of A is the following
vector w ∈ Z15:

w = (w1234, w1235, w1236, w1245, w1246, w1256, w1345,

w1346, w1356, w1456, w2345, w2346, w2356, w2456, w3456)

where

wijkl = det

(
1 1 1 1
pi pj pk pl

)
for 1 ≤ i < j < k < l ≤ 6.

We denote P = conv(A) and, for each i = 1, . . . , 6, P i = conv(A \ {pi}). The five components wjklr
such that i 6∈ {j, k, l, r} give us the volume vector of P i. For example, for i = 6, the volume vector of
P 6 (with the sign and ordering convention of Section 3) is (w2345,−w1345, w1245,−w1235, w1234).

If A = Z3 ∩ P , so that P has size 6, then for every vertex pi of P , P i is a lattice polytope of size 5.
The converse is also true: if for every vertex i of P we have that P i has size five then P has size six.

Remember that a polytope Q of size 5 has a unique circuit, consisting of a+ b points (a positive and
b negative ones). In what follows we call such a Q an (a, b)-polytope. This is not exactly the same as an
(a, b)-circuit C which consists only of the a+b ≤ 5 points and is not required to have C = conv(C)∩Z3.

In order to completely classify polytopes of size 6 we repeatedly use the classification of size 5; either
we start with a polytope of size 5 and look at the different ways to add a sixth point to it or we start
with two polytopes Q1 and Q2 of size five having four points in common and check whether Q1 ∪Q2 is
a polytope of size six (that is, whether no new lattice points arise in conv(Q1∪Q2)). More precisely, we
look separately at the following cases for a polytope of size 6, which clearly cover all the possibilities:

(1) Polytopes containing 5 coplanar points. Here the idea is to start with the six polygons of size
five (see Figure 1) and look whether there is a way to add a sixth point apart of the obvious
one, which is adding it at lattice distance one from the coplanarity.

(2) Polytopes containing a coplanarity of type (3, 1) (and no five coplanar points). Here the main
ingredient is: by the classification of polytopes of size five, the two extra points are at lat-
tice distance ±1 or ±3 from the (3, 1) coplanarity. This gives several cases that are treated
separately.

(3) Polytopes containing a coplanarity of type (2, 2) (and none of the above). Now, the extra two
points must be at lattice distance ±1 from the coplanarity, which makes this an even easier
case.

(4) Polytopes containing a collinearity of type (2, 1) (and none of the above). Polytopes of this
type can be obtained by taking a polytope Q of size five, together with a pair {pi, pj} of points
in it and checking whether Q∪{2pi− pj} contains extra lattice points. We need to consider all
the possible cases for i, j, but we can assume that Q is of signature (2, 1), (3, 2) or (4, 1) since
the other cases have been already dealt with.

(5) Polytopes with no coplanarities and with at least one interior point. An oriented matroid
argument shows that all these configurations have the following property: there are two vertices
pi and pj such that P i and P j are (4, 1)-polytopes. P i and P j clearly have a tetrahedron in
common and P = P i ∪ P j . Hence, our approach is to look one by one at the (finitely many)
ways of gluing to one another the eight different (4, 1)-polytopes obtained in Section 3.2.

(6) Polytopes with no coplanarities and with no interior points. By Howe’s Theorem 1.6 these
polytopes have width one, which makes them easy to classify: their vertices consist of two
unimodular triangles in consecutive parallel planes and the classification is basically depending
upon the SL(2,Z) motion sending one of the triangles to (a parallel copy of) the other one.

In some of the cases exhaustive searches of all the possibilities have been done with a computer.
In other cases we use the idea, already used in the case of size 5, that if we know our points to lie
in three parallel lattice planes then checking that their convex hull has no extra lattice points can be
transformed into a two-dimensional problem. We will refer to this as the parallel-planes method.
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As we go along the classification we will denote the different sub-cases with capital letters A to
Z. Often, but not always, this sub classification coincides with the classification by (dual) oriented
matroid. In the tables at the end we give both classifications.

4.1. Polytopes with 5 coplanar points. P has five points in a lattice plane (for example z = 0)
and the sixth has to be outside this plane for the polytope to be three dimensional. These five points
form one of the six 2-dimensional configurations displayed in the bottom row of Figure 1. Let the sixth
point be p6 = (a, b, q) ∈ Z3 with q 6= 0. Without loss of generality, q > 0, and the values of a, b can be
considered modulo q.

The main idea to deal with this case is that for each vertex pi of the base P 6 of the pyramid we need
to have P i to be a polytope of size 5. In some cases not all the possibilities for i need to be considered.

In all cases we take, without loss of generality, The first three points are p1 = o := (0, 0, 0),
p2 = e1 := (1, 0, 0) and p3 = e2 := (0, 1, 0).

• Case A: p4 = (−1, 0, 0) and p5 = (0, 2, 0).

4 1 2

3

5

A

Clearly, P = P 2 ∪ P 4, so we only need to check whether P 2 and P 4 are of size five.
P 2 = C ∪ {(a, b, q)}, with C = {o,−e1, e2, 2e2}, contains a (2, 1)-circuit. Hence P 2 has

signature (2, 1). The unimodular transformation x
y
z

 −→
 −x
−x+ y − 1

z


sends C to {o, e1, e2,−e2} and p6 to (−a,−a + b − 1, q). Now, by Lemma 3.4, P 2 is a (2, 1)-
polytope if and only if q = 1 or

q > 1, a ≡ −1 (mod q), gcd(b, q) = 1

Analogously, P 4 = C∪{(a, b, q)}, with C = {o, e1, e2, 2e2}, again has to be a (2, 1)-polytope.
In this case, the transformation is x

y
z

 −→
 x

x+ y − 1
z

 ,

p6 is sent to (a, a+ b− 1, q) and P 4 has size 5 if and only if q = 1 or

q > 1, a ≡ 1 (mod q), gcd(b, q) = 1.

If q = 1 we can assume p6 = (0, 0, 1), since a and b are considered only modulo q. This
gives the configuration

A.1


1 2 3 4 5 6

0 1 0 −1 0 0
0 0 1 0 2 0
0 0 0 0 0 1


If q > 1, then 1 ≡ a ≡ −1 (mod q) if and only if q = 2 and a = 1. Then, in order to have

gcd(b, q) = 1, we need b = 1.

A.2


1 2 3 4 5 6

0 1 0 −1 0 1
0 0 1 0 2 1
0 0 0 0 0 2


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• Case B: p4 = (−1, 0, 0) and p5 = (0,−1, 0).

4 1 2

3

5

B

As before, P = P 2 ∪P 4 and both P 2 and P 4 are of signature (2, 1). A similar analysis as in
the previous case leads to the following two possibilities:

If q = 1, then modulo unimodular transformation we get

B.1


1 2 3 4 5 6

0 1 0 −1 0 0
0 0 1 0 −1 0
0 0 0 0 0 1


If q > 1, then we need a, b ≡ 1 (mod q) with q = 2. We get, modulo unimodular transfor-

mation:

B.2


1 2 3 4 5 6

0 1 0 −1 0 1
0 0 1 0 −1 1
0 0 0 0 0 2


• Case C: p4 = (0, 2, 0) and p5 = (0, 3, 0).

1 2

3

4

5 C

As before, P = P 1 ∪ P 5 with both P 1 and P 5 of signature (2, 1).
P 1 = C ∪ {(a, b, q)}, with C = {e1, e2, 2e2, 3e2}. The unimodular transformation x

y
z

 −→
 2x+ y − 2

x
z


sends C to {o, e1, e2,−e2} and p6 is sent to (a, a+b−1, q). By the Lemma, P 1 is a (2, 1)-polytope
if and only if q = 1 or

q > 1, a ≡ 1 (mod q), gcd(b, q) = 1

Analogously, P 5 = C∪{(a, b, q)}, with C = {o, e1, e2, 2e2}, again has to be a (2, 1)-polytope.
In this case, the transformation is as for P 4 in case A, and P 5 has size 5 if and only if q = 1 or

q > 1, a ≡ 1 (mod q), gcd(b, q) = 1

– If q = 1, all points in this plane give equivalent configurations.
– If q > 1, then we get a = 1 and gcd(b, q) = 1.
Both cases can be summarize considering p6 = (1, p, q) with q ≥ 1 and gcd(p, q) = 1.

Remember that the value of p can be considered modulo q.

C


1 2 3 4 5 6

0 1 0 0 0 1
0 0 1 2 3 p
0 0 0 0 0 q


This gives us an infinite list of polytopes of size 6 depending on some parameters. For all

values of these parameters, the minimum width is 1 with respect to the functional x. Notice
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that if the list had width greater than 1, then there would only be a finite list of equivalence
classes, by Corollary 1.4.

This is what we will refer to as an infinite series, and we will perform further study on
Subsection 4.7.

• Case D: p4 = (1, 1, 0) and p5 = (0, 2, 0).

1 2

3 4

5 D

P = P 2∪P 5 with P 2 of signature (2, 1) and P 5 of signature (2, 2). P 5 will be a (2, 2)-polytope
if and only if q = 1.

On the other hand, P 2 = C ∪{(a, b, q)}, with C = {o, e2, e1 + e2, 2e2}. And with q = 1, then
P 2 is automatically a (2, 1)-polytope.

Then without loss of generality, p6 = e3:

D


1 2 3 4 5 6

0 1 0 1 0 0
0 0 1 1 2 0
0 0 0 0 0 1



• Case E: (cambiar dibujo x→ −x) p4 = (−1,−1, 0) and p5 = (0, 2, 0).

1 2

3

5

4

E

In this case, P = P 2∪P 4∪P 5, where P 2 and P 4 have signature (2, 1) and P 5 is of signature
(3, 1).
P 5 will be a (3, 1)-polytope if and only if q = 1 or q = 3 and a ≡ −b ≡ ±1 (mod 3). If

q = 1, both P 2 and P 4 are automatically (2, 1)-polytopes. This gives us, modulo unimodular
transformation:

E


1 2 3 4 5 6

0 1 0 −1 0 0
0 0 1 −1 2 0
0 0 0 0 0 1


Now let q = 3 and a ≡ −b ≡ ±1 (mod 3). P 2 = C∪{(a, b, 3)}, with C = {o, e2, 2e2,−e1−e2}.

The unimodular transformation x
y
z

 −→
 −x
−2x+ y − 1

z


sends C to {o, e1, e2,−e2} and p6 is sent to (−a,−2a + b − 1, 3). By the Lemma, P 2 is a
(2, 1)-polytope if and only if a ≡ −1 (mod 3) and gcd(b+ 1, 3) = 1.

Analogously, P 4 = C∪{(a, b, q)}, with C = {o, e1, e2, 2e2}, again has to be a (2, 1)-polytope.
In this case, the transformation is as for P 4 in case A, so P 4 has size 5 if and only if a ≡ 1
(mod 3) and gcd(b, 3) = 1.

But 1 ≡ a ≡ −1 (mod 3) is not possible, so q = 3 does not give configurations of size 6.
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• Case F: p4 = (1, 1, 0) and p5 = (−1,−1, 0).

1 2

3 4

5

F

P = P 4∪P 5 with P 4 of signature (2, 2) and P 5 of signature (3, 1). P 4 will be a (2, 2)-polytope
if and only if q = 1.

On the other hand, P 5 = C ∪ {(a, b, q)}, with C = {o, e1, e2,−e1 − e2}. And with q = 1,
then P 5 is automatically a (3, 1)-polytope.

Then without loss of generality, p6 = e3:

F


1 2 3 4 5 6

0 1 0 −1 1 0
0 0 1 −1 1 0
0 0 0 0 0 1


Let us now analyze the width of these configurations.

• Clearly A.1, B.1, D, E and F have width one with respect to the functional z, and C with
respect to the functional x.

• On the other hand, A.2 and B.2 both have an interior point in the subconfiguration at z = 0,
hence the only functional that could possibly give width 1 is z. But this functional gives width
2 for both cases.

In summary:

Theorem 4.1. Among the lattice 3-polytopes of size six with 5 coplanar points, there are exactly 2
equivalence classes of width two, and none of larger width, as shown in Table 2. Both are non-dps.

4.2. Polytopes containing a (3, 1)-circuit (and no five coplanar points). Without loss of gen-
erality, we assume they contain the standard (3, 1)-circuit: p1 = o, p2 = e1, p3 = e2 and p4 = −e1− e2.

We treat separately the case of the other two points lying on the same side or on opposite sides of
this circuit.

4.2.1. The other two points lie in opposite sides of the (3, 1) coplanarity. Then both p5 and p6 are
vertices and so P 5 and P 6 must be (3, 1)-polytopes. Then the fifth and sixth points are (ai, bi, qi) with
qi = ±1 or qi = ±3 and verifying ai ≡ −bi ≡ ±1 (mod 3).

� Case G: p5 = (0, 0, 1) and p6 = (a, b,−1), a, b ∈ Z.
We use the parallel-planes method. The configuration is contained in the three planes z ∈ {−1, 0, 1}.
There is one single point in the planes z = ±1, and at P ∩{z = 0} is the convex hull of the (3, 1)-circuit
and the intersection point (a/2, b/2, 0) of the edge p5p6 with the plane z = 0. Without loss of generality
(because of the S3-symmetries present in P 6) the intersection point can be assumed to be in the region
0 ≤ x ≤ y. In order for (1, 1, 0) and (0, 2, 0) not to be in P ∩ {z = 0}, the region is bounded by x < 1
and y < 3x+ 2 (non-shaded area in Figure 6). This gives ten possibilities for the pair (a, b).

All the options have automatically size 6 since no more points arise at P ∩ {z = 0} and the only
points at z = 1 and z = −1 are, respectively, p5 and p6. They all have different volume vectors (in
absolute value) as shown in Table 3, and so they give different equivalent classes.

Notice that the intersection point of the edge p5p6 with the plane z = 0 determines the (dual) ori-
ented matroid depending on whether it is contained or not in one or more straight lines spanned by
the edges in z = 0. The ten configurations in the table are separated according to their (dual) oriented
matroid.

� Case H: p5 = (0, 0, 1) and p6 = (a, b,−3) with a ≡ −b ≡ ±1 (mod 3).
Again we use the parallel-planes method. The configuration is contained between the hyperplanes z = 1
and z = −3. The intersection point of the edge p5p6 with z = 0 is (a/4, b/4, 0). Again without loss of
generality, the intersection point can be in the region 0 ≤ x ≤ y, and as before, bounded by x < 1 and
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z = 0

p2p1

p4

p3

x

y

Id. a b

G.1 1 4

G.2 0 3

G.3 1 2
G.4 1 3

G.5 1 5
G.6 1 6

G.7 0 2

G.8 0 1

G.9 1 1

G.10 0 0

Figure 6. The analysis of case G. Red squares represent the points p1, p2, p3 and p4 of P
in the displayed plane z = 0. Black dots are the lattice points in the plane and black crosses
represent the possible intersection points of the edge p5p6 and the plane z = 0.

y < 3x+ 2. This gives us 44 options for the pair (a, b), displayed in Figure 7 and separated according
to the dual oriented matroid.

z = 0

p2p1

p3

p4

y

x

a b

0 0

0 {1, 2, 3}
0 4

0 {5, 6, 7}
1 1

1 2

1 3

2 2

3 3

1 {4, 5}
2 {3, ..., 7}
3 {4, ..., 9}
1 6
2 8
3 10

1 {7, ..., 10}
2 {9, ..., 13}
3 {11, ..., 16}

Figure 7. The analysis of case H. Red squares represent the points p1, p2, p3 and p4 of P
in the displayed plane z = 0. Black dots are the lattice points in the plane and black crosses
represent the possible intersection points of the edge p5p6 and the plane z = 0. The circled
black crosses are the remaining possibilities after demanding conditions so that P 5 is a (3, 1)-

polytope.

After considering the restrictions on a and b so that P 6 is a (3, 1)-polytope (a ≡ −b ≡ ±1 (mod 3)),
we get just 7 possibilities:
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a b

1 2

1 5
2 {4, 7}
1 8
2 {10, 13}

On the other hand, we need the edge p5p6 to be primitive, so we need gcd(a, b, 4) = 1, which again
eliminates two possibilities:

a b

1 2

1 5
2 7

1 8
2 10

Notice that there may still be points at z = −1 and z = −2. We consider triangulations of the P ,
depending on the values of (a, b). When considering a tetrahedron Tijkl = conv{pi, pj , pk, pl}, we will
use the the empty.m MATLAB program to check whether it is empty or not.

If (a, b) = (1, 2), a triangulation is P = P 5 ∪ P 6, and since both P 5 and P 6 are (3, 1)-polytopes,
then P has size 6. If (a, b) = (1, 5) or (2, 7), a triangulation is P = P 5 ∪ P 6 ∪ T2356. T2356 is empty
for (1, 5), but not for (2, 7). If (a, b) = (1, 8) or (2, 13), a triangulation is P = P 5 ∪ P 6 ∪ T2356 ∪ T3456.
Both T2356 and T3456 are empty for (1, 8), but T2356 is not empty for (2, 13).

The three possibilities that give size 6 are displayed in Table 3.

� Case I: p5 = (1, 2, 3) and p6 = (a, b,−3) with a ≡ −b ≡ ±1 (mod 3).
In this case the configuration is contained between the hyperplanes z = 3 and z = −3, and the
intersection point of the edge p5p6 with z = 0 is (a′/2, b′/2, 0) = (a+1

2 , b+2
2 , 0). In this case, P 6

doesn’t have all the symmetries as before, and we can only assume without loss of generality that this
intersection point lies in x, y ≥ 0. This time, in order for (2, 0, 0), (1, 1, 0) and (0, 2, 0) not to be in
P ∩ {z = 0}, the region is divided in two: either x < 1 and y < 3x + 2, or y < 1 and x < 3y + 2.
This gives us 15 options for the pair (a′, b′), displayed in Figure 8 and separated according to the dual
oriented matroid.

z = 0

p1 p2

p3

p4

y

x

a′ b′

0 0

0 1
1 0

0 2
2 0

0 3
3 0

1 1

1 {2, 3}
{2, 3} 1

1 4
4 1

1 {5, 6}
{5, 6} 1

Figure 8. The analysis of case I. Red squares represent the points p1, p2, p3 and p4 of P
in the displayed plane z = 0. Black dots are the lattice points in the plane and black crosses
represent the possible intersection points of the edge p5p6 and the plane z = 0. The circled
black crosses are the remaining possibilities after demanding conditions so that P 5 is a (3, 1)-

polytope.
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After considering the restrictions on a and b so that P 6 is a (3, 1)-polytope (a ≡ −b ≡ ±1 (mod 3)),
we get just 4 possibilities:

a′ b′ a b

0 0 −1 −2

0 3 −1 1

2 1 1 −1

5 1 4 −1

On the other hand, we need the edge p5p6 to be primitive, so we need gcd(a − 1, b − 2, 6) = 1,
except for the case (a′, b′) = (0, 0), in which case the edge has the middle point p1 and we need
gcd(a− 1, b− 2, 6) = 2. This leaves us with two possibilities:

a′ b′ a b

0 0 −1 −2

0 3 −1 1

There may still be points at z = ±1 and z = ±2.
If (a′, b′) = (0, 0), a triangulation is P = P 5 ∪P 6 so P has automatically size 6. If (a′, b′) = (0, 3), a

triangulation is P = P 5 ∪ P 6 ∪ T2356 ∪ T3456. Both T2356 and T3456 are empty in this case.
The two possibilities are displayed in Table 3, and by the same argument as before they belong to

different equivalent classes.

4.2.2. The other two points lie in the same side of the (3, 1) coplanarity. Observe that a configuration
may contain more than one (3, 1)-circuit. If one of them leaves the other two points in opposite sides
we have already treated it, so we here assume that all the (3, 1) coplanarities leave the two other points
at the same side.

Without loss of generality, the two extra points are in the semispace z > 0, and p5 will have z-
coordinate less than or equal to the z-coordinate of p6. There are two options, either both p5 and p6
are vertices of the final polytope, or one of them is in the convex hull of the other five points.

� Suppose only one of them is a vertex, without loss of generality p6. In this case, P 6 must be a
(3, 1)-polytope and p5 ∈ P 5. In particular this means that p5 has z-coordinate strictly smaller than p6.

In order for P 6 to be a (3, 1)-polytope, without loss of generality p5 = (0, 0, 1) or p5 = (1, 2, 3).
On the other hand p5 ∈ P 5. Because of the rotation symmetries of the (3, 1)-circuit, we can assume

that p5 and p6 are so that p5 ∈ T1236. The position of the point inside of this tetrahedron can be,
considering that p5 6∈ P ∩ {z = 0}:

• Case J: In one of the edges. Without loss of generality, p5 ∈ p2p6, an exterior edge of P 5, or
p5 ∈ p1p6, the interior edge.

– p5 = (0, 0, 1) and p6 = 2p5−p2 = (0, 0, 2)−(1, 0, 0) = (−1, 0, 2). In this case, a triangulation
is P = P 6∪T3456. P 6 is a (3, 1)-polytope and T3456 is an empty tetrahedron for this values
of p5 and p6, so P has size 6:

J.1


1 2 3 4 5 6

0 1 0 −1 0 −1
0 0 1 −1 0 0
0 0 0 0 1 2


– p5 = (1, 2, 3) and p6 = 2p5 − p2 = (2, 4, 6) − (1, 0, 0) = (1, 4, 6). The triangulation is the

same as before: P = P 6 ∪ T3456, but in this case T3456 is not empty.

– p5 = (0, 0, 1) and p6 = 2p5−p1 = (0, 0, 2). In this case, a triangulation is P = P 6∪T2356∪
T2456 ∪ T3456. P 6 is a (3, 1)-polytope and all of T2356, T2456, T3456 are empty tetrahedra
for this values of p5 and p6, so P has size 6:

J.2


1 2 3 4 5 6

0 1 0 −1 0 0
0 0 1 −1 0 0
0 0 0 0 1 2





25

– p5 = (1, 2, 3) and p6 = 2p5 − p1 = (2, 4, 6). The triangulation is the same as before:
P = P 6 ∪ T2356 ∪ T2456 ∪ T3456, and again all three tetrahedra are empty:

J.3


1 2 3 4 5 6

0 1 0 −1 1 2
0 0 1 −1 2 4
0 0 0 0 3 6


• In one of the facets. Without loss of generality, p5 ∈ p1p2p6, an interior facet of P 5, or
p5 ∈ p2p3p6, the exterior facet.

In the first case, this facet contains a (3, 1)-circuit and leaves the other two points at opposite
sides. Hence it has been already considered.

In the second case we have two options. If the points p1, p4, p5 and p6 are in the same plane,
then they form a (2, 2)-circuit, which is impossible with lattice points since edges p1p4 and p5p6
are not parallel. If the points are not coplanar, then the configuration is dps, and this case is
not possible by the following result of Curcic:

Lemma 4.2 (Curcic [3, Lemma 3.1.1]). A dps polytope in R3 cannot contain two (3, 1)-circuits
sharing an edge or sharing the centroid and another vertex.

• Case K: In the interior. We have two options: if the points p1, p4, p5 and p6 are in the same
plane, then they form a (2, 2)-circuit, which is impossible with lattice points since edges p1p4
and p5p6 are not parallel.

If these four points are not coplanar, then P 4 must be a (4, 1)-polytope, sharing tetrahedron
T1235 with P 6, which is a (3, 1)-polytope. This means that tetrahedron T1235 will have volume
1 or 3. We do this computationally (see Algorithm 1 in Section A). There are 2 equivalence
classes in this case, displayed in Table 4.

� If both p5 and p6 are vertices, then both P 5 and P 6 have to be (3, 1)-polytopes. This means that
these two points have coordinates (ai, bi, qi) with qi = 1 or qi = 3 and ai ≡ −bi ≡ ±1 (mod 3).

• Case L. Both points at z = 1: without loss of generality p5 = (0, 0, 1) and p6 = (a, b, 1),
a, b ∈ Z. Because of the S3-symmetries present in P 6, we can assume that 0 ≤ a ≤ b. The
configuration has width 1 with respect to the functional z, so in order for P to have size 6, it
suffices to have gcd(a, b) = 1.

Now, depending on whether the edge at z = 1 is parallel or not to an or another edge in
z = 0, the configuration will correspond to a different dual oriented matroid:

– If p6 = (1, 1, 1) or p6 = (0, 1, 1), then p5p6 is parallel to p1p4 and p1p3, respectively. Since
both these edges are interior edges of the (3, 1)-circuit, and because of the S3-symmetries
present in P 6, they will give equivalent configurations. We choose p6 = (0, 1, 1):

L.1


1 2 3 4 5 6

0 1 0 −1 0 0
0 0 1 −1 0 1
0 0 0 0 1 1


– If p6 = (1, 2, 1), then p5p6 is parallel to p3p4, an exterior edge of the (3, 1)-circuit:

L.2


1 2 3 4 5 6

0 1 0 −1 0 1
0 0 1 −1 0 2
0 0 0 0 1 1


– If the edge at z = 1 is not parallel to any edge in z = 0, that is if 0 < a < b, and

(a, b) 6= (1, 2), then we get an infinite list of configurations of width 1, and further study
will be done in Section 4.7.
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L.3


1 2 3 4 5 6

0 1 0 −1 0 a
0 0 1 −1 0 b
0 0 0 0 1 1


• Case M. One point at each z = 1 and z = 3: p6 = (1, 2, 3) and p5 = (a, b, 1) for some a, b ∈ Z.

The configuration is contained between the hyperplanes z = 0 and z = 3 so we first use the
parallel-planes method to check which coordinates for p5 do not produce more lattice points
in the plane z = 1. The intersection points of edges p1p6, p2p6, p3p6 and p4p6 with z = 1
are, respectively, (1/3, 2/3, 1), (1, 2/3, 1), (1/3, 4/3, 1) and (−1/3, 0, 1). We want to check what
values of a, b leave p5 outside the convex hull of those four intersection points. Without loss of
generality, because of the rotation symmetries of P 5, we can assume that p5 lies in x ≥ 1/3,
y ≥ 2/3 (non-shaded area in Figure 9).

Suppose a > 1 or b > 1. Then the convex hull of P at z = 1 will enclose (1, 1, 1) as a seventh
lattice point. Hence the only possibility is that a = 1 = b, and p5 = (1, 1, 1).

It remains to check whether any lattice points at z = 2 lie inside P . A triangulation is
P = P 5∪T2356. We already know P 5 to be a (3, 1)-polytope, and T2356 is indeed empty. Hence
the configuration has size 6.

z = 1

x

y

p2p6p1p6

p4p6

p3p6

p5

M


1 2 3 4 5 6

0 0 −1 1 1 1
0 1 −1 0 1 2
0 0 0 0 1 3



Figure 9. The analysis of case M. The red crossed squares are the intersection of p1p6,
p2p6, p3p6 and p4p6 with the displayed plane z = 0. Black dots are the lattice points in the
plane and black squares represent the possible lattice points for p5.

It happens that configuration M has the same dual oriented matroid as L.3 (dual oriented
matroids change with coplanarities, but not with parallelism), so the points in M are ordered
according to the labels of the corresponding dual oriented matroid.

• Both points at z = 3: without loss of generality p5 = (1, 2, 3) and p6 = (a, b, 3) with a ≡ −b ≡
±1 (mod 3). In this case, all six points have the z-coordinate 0 or 3. So the volume of every
tetrahedra with vertices in those six points will have a factor 3.

On the other hand, because of the construction of the configuration, all P 2, P 3 and P 4 must
be (3, 2)-polytopes. But for this to happen we would need some unimodular tetrahedra in P .
Hence P will not have size 6.

We now analyze the width in cases G to M: in Table 3 and 4 we list functionals that give width 1, 2,
or 3 for each of the configurations obtained. To see that these functionals actually give the minimum
width we argue as follows:

• The only functional that can possibly give width one is the functional z: every other functional
is non-constant in the plane z = 0. Since the subconfiguration in this plane has an interior point,
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every non-constant functional takes at least three values on it. That is, the only configurations
giving width 1 are those in case L.
• For the rest, we have found functionals of width two for all cases except J.3, in which we give

one of width three. But the volume vector of J.3 has gcd equal to three, which implies its width
is a multiple of three.

In summary:

Theorem 4.3. Among the lattice 3-polytopes of size six with no 5 coplanar points but with some (3, 1)
coplanarity, there are exactly 20 equivalence classes of width two, 1 of width three, and none of width
larger than three, as shown in Tables 3 and 4. 13 of those are dps, all of them of width two.

4.3. Polytopes containing a (2, 2)-circuit (but no (3, 1)-circuit, and no five coplanar points).
These are clearly non-dps configurations. Without loss of generality, we assume they contain the stan-
dard (2, 2)-circuit: p1 = o, p2 = e1, p3 = e2 and p4 = e1 + e2.
Again, we treat separately the possibilities for which side of the coplanarity the other two other points
lie in.

4.3.1. Case N: The other two points lie in opposite sides of the (2, 2)-circuit. Then both p5 and p6 are
vertices and so P 5 and P 6 must be (2, 1)-polytopes. Then the fifth and sixth points must be a lattice
distance one from the (2, 2)-circuit. Without loss of generality p5 = e3, and p6 = (a, b,−1) for a, b ∈ Z.

The configuration is contained in the three planes z ∈ {−1, 0, 1}, so we use the parallel-planes method
to check when there are no more lattice points in the plane z = 0. There is one single point in the
planes z = ±1, and at P ∩ {z = 0} is the convex hull of the (2, 2)-circuit and the intersection point
(a/2, b/2, 0) of the edge p5p6 with the plane z = 0.

Without loss of generality (because of the symmetries present in P 6) the intersection point can be
assumed to be in the region 1/2 ≤ x ≤ y. In order for (1, 2, 0) and (2, 2, 0) not to be in P ∩ {z = 0},
the region is bounded and divided in two: either x < 1, or 2x − 2 < y < x + 1 (non-shaded area in
Figure 10). This gives an infinite number possibilities for the pair (a, b), separated according to its dual
oriented matroid in Figure 10.

z = 0

p1 p2

p3 p4

y

x

a b

1 1

1 2

2 2

2 3

3 3

3 4
4 5

1 ≥ 3

Figure 10. The analysis of case N. Red squares represent the points p1, p2, p3 and p4 of P
in the displayed plane z = 0. Black dots are the lattice points in the plane and black crosses
represent the possible intersection points of the edge p5p6 and the plane z = 0.

All the options have automatically size 6 since no more points arise at P ∩ {z = 0} and the only
points at z = 1 and z = −1 are, respectively, p5 and p6.



28

◦ If (a, b) = (1, 1), then the configuration has size 6 since P = P 5∪P 6 is a polyhedral subdivision
into two polytopes of size five and signature (2, 2):

N.1


1 2 3 4 5 6

0 1 0 1 0 1
0 0 1 1 0 1
0 0 0 0 1 −1


◦ If (a, b) = (2, 2) then (p5p6, p4) form a (2, 1)-circuit. This case is equivalent as p1 being the

middle point of this collinearity, so instead we choose p6 = (0, 0,−1):

N.2


1 2 3 4 5 6

0 1 0 1 0 0
0 0 1 1 0 0
0 0 0 0 1 −1


◦ If (a, b) = (1, 2), then (p3p4, p5p6) form a (2, 2)-circuit. Again the case is equivalent as having

(p1p3, p5p6) a (2, 2)-circuit, so instead we choose p6 = (0, 1,−1):

N.3


1 2 3 4 5 6

0 1 0 1 0 0
0 0 1 1 0 1
0 0 0 0 1 −1


◦ If (a, b) = (2, 3) or (3, 3), then (p2p5p6, p4) and (p1p5p6, p4), respectively, are (3, 1)-circuits, and

this case has already been dealt with.

◦ If (a, b) = (3, 4) or (4, 5), the two points correspond to the same dual oriented matroid, but
they have different volume vectors, as shown in Table 5.

N.4


1 2 3 4 5 6

0 1 0 1 0 3
0 0 1 1 0 4
0 0 0 0 1 −1

 N.5


1 2 3 4 5 6

0 1 0 1 0 4
0 0 1 1 0 5
0 0 0 0 1 −1


◦ If (a, b) = (1, b) for b ≥ 3 then we get an infinite list of configurations of width 1, and further

study will be done in Section 4.7.

N.6


1 2 3 4 5 6

0 1 0 1 0 1
0 0 1 1 0 b
0 0 0 0 1 −1



4.3.2. The other two points lie on the same side of the (2, 2)-circuit. Observe that a configuration may
contain more than one (2, 2)-circuit. If one of them leaves the other two points in opposite sides we
have already treated it, so we here assume that all the (2, 2) coplanarities leave the two other points at
the same side.

Without loss of generality, the two extra points are in the semispace z > 0, and p5 will have z-
coordinate less than or equal to the z-coordinate of p6. There are two options, either both p5 and p6
are vertices of the final polytope, or one of them is in the convex hull of the other five points.

� Suppose only one of them is a vertex, without loss of generality p6. In this case, P 6 must be a
(2, 2)-polytope and p5 ∈ P 5. In particular this means that p5 has z-coordinate strictly smaller than p6.

In order for P 6 to be a (2, 2)-polytope, without loss of generality p5 = (0, 0, 1).
On the other hand p5 ∈ P 5. Because of the symmetries of the (2, 2)-circuit, we can assume that p5

and p6 are so that p5 ∈ T1236. The position of the point inside of this tetrahedron can be, considering
that p5 6∈ P ∩ {z = 0}:
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• Case O: In one of the edges. Without loss of generality, p5 ∈ p1p6, that is, p6 = (0, 0, 2). Then
P has automatically size 6 since it has width 1 with respect to the functional x, and there are
only 2 and 4 lattice points, respectively, in the planes x = 1 and x = 0:

O


1 2 3 4 5 6

0 1 0 1 0 0
0 0 1 1 0 0
0 0 0 0 1 2


• In one of the facets. But then there would be a (3, 1)-circuit, and this case has been already

considered.

• Case P: In the interior. We have two options: if the points p1, p4, p5 and p6 are in the same
plane, then they form a (2, 2)-circuit, which is impossible with lattice points since edges p1p4
and p5p6 are not parallel.

If these four points are not coplanar, then P 4 must be a (4, 1)-polytope, sharing tetrahedron
T1235 with P 6, which is a (2, 2)-polytope. This means that tetrahedron T1235 has volume 1. We
do this computationally (see Algorithm 2 in Section A). There are 2 equivalence classes in this
case, displayed in Table 6.

� If both p5 and p6 are vertices, then both P 5 and P 6 have to be (2, 2)-polytopes. Then without
loss of generality p5 = (0, 0, 1) and p6 = (a, b, 1), a, b ∈ Z. Because of the symmetries present in P 6, we
can assume that 0 ≤ a ≤ b. The configuration has width 1 with respect to the functional z, so in order
for P to have size 6, it suffices to have gcd(a, b) = 1.

Now, depending on whether the edge at z = 1 is parallel or not to an or another edge in z = 0, the
configuration will correspond to a different dual oriented matroid:

• If p6 = (0, 1, 1), then p5p6 is parallel to p1p3:

Q.1


1 2 3 4 5 6

0 1 0 1 0 0
0 0 1 1 0 1
0 0 0 0 1 1


• If p6 = (1, 1, 1), then (p1p6, p4p5) will form a (2, 2)-circuit with the other two points at opposite

sides, but this case has already been considered.

• If the edge at z = 1 is not parallel to any edge in z = 0, that is if 0 < a < b, then we get an
infinite list of configurations of width 1, and further study will be done in Section 4.7.

Q.2


1 2 3 4 5 6

0 1 0 1 0 a
0 0 1 1 0 b
0 0 0 0 1 1


Let us analyze the width in cases N to Q:

• Clearly configurations N.1, N.2, N.3, N.6, O and Q have width 1 with respect to the functional
x, and Q with respect to z.

• In cases N.4 and N.5, the subconfiguration at z = 0 contains one interior point, so we use the
same argument as before to state that the width is at least 2. We have found functionals giving
width 2 for both cases.

• In cases P, a (4, 1)-polytope is a subpolytope of the configuration, so they have an interior point
and the width is at least 2. Again we have found functionals that give this width.

In summary:

Theorem 4.4. Among the lattice 3-polytopes of size six with no 5 coplanar points, no (3, 1) coplanarity,
but with some (2, 2) coplanarity, there are exactly 4 equivalence classes of width two, and none of larger
width, as shown in Tables 5 and 6. All of them are non-dps.
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4.4. Polytopes containing a (2, 1)-circuit (but no other coplanarity). Non-dps configurations
consisting of a lattice 3-polytope with one primitive edge extended. This polytope will be of sig-
nature (2, 1), (4, 1) or (3, 2), since the other cases have already been dealt with. Suppose that
R = conv{r1, r2, r3, u1, u2, u3} is a configuration of size 6, where r1r2r3 is an edge with three collinear
points. Then either r1 or r3 is a vertex. Suppose the latter holds, then R \ {r3} must be a (2, 1), (4, 1)
or (3, 2)-polytope.

• Case R: R \ {r3} is a (2, 1)-polytope. We take the representative of a (2, 1)-polytope:

p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (0, 0, 1), p4 = (−1, 0, 0), p5 = (p, q, 1)

with 0 ≤ p ≤ q
2 and gcd(p, q) = 1. The only way to extend an edge and not getting 5 coplanar points is

to extend p3p5. They have width 1, so by simple traslation, we can choose, without loss of generality,
p6 = (−p,−q, 1). Each configuration consists of two double non-parallel edges at lattice distance 1, so
they have automatically size 6. Again we get an infinite list of configurations of width 1, and further
study will be done in Section 4.7. Notice that in this case, both R\{r3} and R\{r1} are (2, 1)-polytopes.

R


1 2 3 4 5 6

0 1 0 −1 p −p
0 0 0 0 q −q
0 0 1 0 1 1



• R \ {r3} is a (4, 1)-polytope. There are three possible ways to extend an edge of a (4, 1)-polytope,
each of them corresponding to a different dual oriented matroid. Let r3 = 2r2 − r1:

∗ Case S: r1 is the interior point of the (4, 1)-polytope, and r2 is a vertex.
∗ Case T: r2 is the interior point of the (4, 1)-polytope, and r1 is a vertex.
∗ Case U: both r1 and r2 are vertices of the (4, 1)-polytope.

We do this computationally (see Algorithm 3 in Section A). There are 6, 6 and 5 equivalence classes,
respectively, displayed in Table 7.

In this case, R \ {r1} is, respectively, a polytope of signature (4, 1) but size 6, and a (3, 2)-polytope
in the last two cases.

• R \ {r3} is a (3, 2)-polytope. Now the case when R \ {r3} or R \ {r1} are (2, 1) or (4, 1)-polytopes
is covered. So we actually want both of them to be (3, 2)-polytopes. It is easy to check that with this
condition, r2 is in a boundary edge, and all other 5 points must be vertices of the configuration.

Let us consider the projection to a plane in the direction of the edge r1r2r3, and let us denote with r
the projection of this edge, and use ui for the projection of each other point. Considering what we said
above, and taking under account that we do not want 5 coplanar points, it is easy to see that u1, u2, u3
each lie in a different ray with vertex r, and that they are all contained in an open semispace defined
by a hyperplane passing through r. There are three options, as shown in the figure below:

r r r

u3

u2

u1

u3 u3

u2 u2

u1 u1

Now, R \ {ui} is a (2, 1)-polytope for each i = 1, 2, 3. This condition is verified if and only if r1r2r3
and uiuj are contained in parallel consecutive lattice planes for i, j ∈ {1, 2, 3}, i 6= j. In the projection,
this means that each uiuj must span a straight line at lattice distance 1 from r. Let us see each case
separately:

∗ In the first case, it is clear that u1u3 is not at lattice distance 1 from r, since u2 is in an
intermediate parallel line.
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∗ Case V: In the second case, u1, u2 and u3 must all lie in the same straight line at lattice
distance 1 from r, as shown in Figure 11. This means that they lie in a plane parallel to the
three collinear points r1r2r3. In order for R to have size 6, u1u2u3 must be a unimodular
triangle. Without loss of generality, these parallel planes are z = 0, 1, and the unimodular
triangle is p1 = (0, 0, 0), p2 = (1, 0, 0) and p3 = (0, 1, 0). The fourth point can be, also without
loss of generality, p4 = (0, 0, 1), and because of the symmetries of T1234, p5 = (a, b, 1) with
0 < a ≤ b (a > 0 so no new coplanarity arises) and p6 = (−a,−b, 1). In order for P = conv{pi}
to have size 6, we just need the edge to be double, that is, to have gcd(a, b) = 1.

p1

p2

p3

p4p5p6
V


1 2 3 4 5 6

0 1 0 0 a −a
0 0 1 0 b −b
0 0 0 1 1 1



Figure 11. The analysis of case V. The projection onto a plane in the direction of edge
p4p5p6 is displayed. The two straight lines represent the parallel lines in which the six points
of P lie in the projection. Black dots correspond to the projections of points of P , and grey
dots indicate the places where the presence of other lattice points in the projection is not
excluded. The circled dot represents the projection of the three collinear points

Notice that all the different values of (a, b) correspond to the same dual oriented matroid.
Further study on this infinite series is done in Section 4.7.

∗ Case W: In the third case, in particular we need to have lattice distance 1 from r to the line
spanned by u1 and u3. Besides, if the edge u1u3 were not primitive in the projection, then
either u1u2 or u2u3 would not be at lattice distance 1 from r. In particular this means that
the projection of u1u2u3 must be a unimodular triangle. And in that case u1u2u3 itself is a
unimodular triangle. Without loss of generality we can now assume that the double edge r is
p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (−1, 0, 0) (proyection in the direction of functional x) and u1
and u3 are, respectively, p4 = (0, 1, 0) and p5 = (0, 0, 1). The sixth point u2 will be p6 = (a, b, c).
Since its projection is (b, c), then we will need b, c > 0. And since P 6, with P = conv{pi}, is
symmetric with respect to the plane y = z, so we may also assume b ≥ c (non-shaded area
in Figure 12). P 6 is also symmetric with respect to x = 0, and since we do not want more
coplanarities, we may also assume a > 0.

y

xp4

p5

p1p2p3

Figure 12. The analysis of case W. The projection onto the plane x = 0 in the direction of
edge p1p2p3 is displayed. Red squares represent the points p1, p4 and p5 of P in the displayed
plane x = 0. And the double red square represents the projection of edge p1p2p3. Black
dots correspond to the projection of lattice points and black squares represent the possible
projections of the point p6 onto x = 0.

Suppose now that c > 1. Then the points (x, 1, 1) lie in an intermediate plane parallel to edges p5p6
and p2p3, so P 4 does not have width 1 with respect to this pair of edges and it is not a (2, 1)-polytope.
Hence we can only have c = 1.
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In this case, the configuration has width 1 with respect to the functional z. At z = 0 there are
only four points p1, ..., p4, and at z = 1, the edge p5p6. In order for this edge to be primitive, we need
gcd(a, b) = 1. Finally, we want to avoid (2, 2)-circuits. The only possibility for that is if a = 1 = b, and
this case is excluded if we consider two separate possibilites: either 0 < a < b, or 0 < b < a.

This is as well useful since it happens that for each of this conditions, the configuration gives a
different dual oriented matroid:

W.1


1 2 3 4 5 6

0 1 −1 0 0 a
0 0 0 1 0 b
0 0 0 0 1 1

, 0 < a < b and gcd(a, b) = 1

W.2


1 2 3 4 5 6

a 0 0 0 −1 1
b 0 1 0 0 0
1 1 0 0 0 0

, 0 < b < a and gcd(a, b) = 1

Further study will be done in Section 4.7.

Let us analyze the width in cases R to W.

• Clearly configurations R, V and W have width 1 with respect to the functional z.
• In cases S, T and U, since a (4, 1)-polytope is a subpolytope of the configuration, they all have

an interior point and the width is at least 2. We were able to find functionals giving width 2
to all of them.

In summary:

Theorem 4.5. Among the lattice 3-polytopes of size six with some (2, 1) coplanarity and no other
coplanarity, there are exactly 17 equivalence classes of width two, and none of larger width, as shown
in Table 7. All of them are non-dps.

4.5. Polytopes with no coplanarities and with at least one interior point. Since there are no
coplanarities, in particular these configurations are dps. Apart from that, they must have unimodular
triangles as facets and, since they have at least one interior point, they will have width > 1.

We explore the possible dual oriented matroids for a configuration with no coplanarities and at least
one interior point, and we see that there are exactly 2, modulo symmetries and rotation, displayed
below, along with the 6 circuits present in the configuration:

6.1* 6.2*

a

b
c d

e

f

a(bcde, a)

(abcd, f)

(abc, ef)

(abcd, f)

(def, ab)

(bcde, f)

(bcde, a)

(bcd, af)

(aef, bc)

(def, ab)

(cdef, a)

(def, bc)

b
cd

e

f

So in any such polytope P there are two vertices pi and pj such that both P i and P j are (4, 1)-
polytopes. Hence, the full classification of them can be done by an exhaustive exploration of all the
possible ways to glue together two of the eight (4, 1)-polytopes from Table 1:

• Case X: If the (4, 1)-polytopes share the same interior point, then the final configuration has 1
interior point. We do this computationally (see Algorithm 4 in Section A). There are 20 equivalence
classes, displayed in Table 8.

• Case Y: If they do not share the same interior point, then the interior point of one is a vertex of
the other and viceversa, and the final configuration has 2 interior points. We do this computationally
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(see Algorithm 5 in Section A). There are 12 equivalence classes, displayed in Table 9.

Since they all contain an interior point, the width is at least 2. All of them have exactly width 2
except for the one labeled Y.12. We leave to the reader to check that all sets of three parallel planes
containing the points of P are not consecutive planes, which means that the width is at least 3. And
indeed we find a functional that gives width 3.

In summary:

Theorem 4.6. Among the lattice 3-polytopes of size six with no coplanarities and at least one interior
point, there are exactly 31 equivalence classes of width two, 1 of width three, and none of larger width,
as shown in Tables 8 and 9. All of them are dps.

4.6. Polytopes with no coplanarities and with no interior points. Case Z
As before, these configurations are dps. Let P be a lattice 3-polytope of size 6, with no interior

points and with no coplanarities. This implies that every lattice point in P must be a vertex. By
Howe’s Theorem 1.6, P has width 1. Since there are no coplanarities, it consists of two unimodular
triangles in consecutive lattice planes, with no two parallel edges.

There are two possible dual oriented matroids for such a configuration, namely (the duals of) 6.3
and 6.4 of Figure 13. We are going to prove that 6.3 cannot be realized by a lattice point configuration
without extra lattice points in the convex hull

Lemma 4.7. Let P be a lattice 3-polytope of size 6, consisting of two unimodular triangles in consecutive
lattice planes, with no two parallel edges. Then its dual oriented matroid is 6.4 of Figure 13.

Proof. Let T = conv{p1, p2, p3} be a triangle with primitive edges in the plane z = 0. For i = 1, 2, 3,
let ti be the outward normal vector of the edge pjpk, where {i, j, k} = {1, 2, 3}, normalized so that
its endpoints are lattice points and so that it is primitive. (Each ti is the 90 degree rotation of the
corresponding edge vector). Clearly for each pair in i, j ∈ {1, 2, 3}, |det(ti, tj)| equals the normalized
volume of T .

Let now S = conv{qi} be another triangle with primitive edges in the parallel plane z = 1, with no
edges parallel to those in T . Let si be the corresponding normal vectors as before. We now have six
distinct normal vectors.

We claim that if the (dual) oriented matroid of P = conv(T ∪ S) was 6.3, then the sequence of the
six normal vectors, cyclically ordered according to their angle, should alternate one vector from each
triangle. For this, the following figure shows the dual oriented matroid 6.3 and the Schlegel diagram of
its dual (an octahedron):

α
α′

β β′

γ

γ′ α

β

γβ′

α′γ′

The six triangles in the region between the triangles αβγ and α′β′γ′ in the Schlegel diagram corre-
spond to the six normal vectors. The fact that the triangles alternate between using two vertices from
S and from T implies that the normal vectors alternate (to see this, observe that two points pi and pj
form a triangle with a point qk if and only if the normal vector of pipj belongs to the normal cone of
qk).

Suppose now that our triangles are unimodular and let us see that such an alternation of normal
vectors is impossible. We can now assume without loss of generality that the normal vectors for T are
t1 = (1, 0), t2 = (0, 1) and t3 = (−1,−1) and that each si is between tj and tk where {i, j, k} = {1, 2, 3}.
By symmetry, we assume that s2 = (a,−b) with a > 0, b > 0 (if s2 = −t2, a coplanarity arises). And
clearly s3 = (c, d) with c, d > 0.

Then in order for S to be unimodular we need det(s2, s3) = ±1. But det(s2, s3) = ad+ bc ≥ 2 since
a, b, c, d > 0. And the result follows. �
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Now we know that our configuration will have dual oriented matroid 6.4, and that the sequence of
the normal vectors must not alternate between T and S. Then this sequence contains two consecutive
s’s and two consecutive t’s. The next figure shows the dual matroid and its Schlegel diagram.

α

β

γ

β′

α′

γ′

α

β

γ

α′

β′

γ′

In terms of the vertex cones of the triangles, we can see that in T , the vertex cone in γ contains two
edge vectors of S, the vertex cone in α contains one edge vector of S, and the vertex cone in β does
not contain any edge vector. And respectively with the vertex cones of γ′, α′ and β′ in S.

We will now describe our configuration so that the vertex cone in p1 contains two edge vectors, and
so that the vertex cone in p3 contains one.

Without loss of generality, T is the standard unimodular triangle p1 = (0, 0, 0), p2 = (1, 0, 0) and
p3 = (0, 1, 0). Again without loss of generality, the unimodular triangle S is p4 = q1 = (0, 0, 1),
p5 = q2 = (a, b, 1) and p6 = q3 = (c, d, 1), with ad − bc = 1. Since two edge vectors of S must be
contained in the vertex cone of p1, then a, b, c, d > 0. And since the vertex cone in p3 must contain the
remaining edge vector, then c+ d > a+ b:

Z


1 2 3 4 5 6

0 1 0 0 a c
0 0 1 0 b d
0 0 0 1 1 1


Further study will be done in Section 4.7.

4.7. Infinite series.
In the previous discussion we have found several infinite lists of lattice 3-polytopes of size 6, expressed
depending on some parameters. The lists are disjoint pairwise, since the sections in which they were
derived were explicitly disjoint. On the other hand, different parameters within each case may give
equivalent configurations. In this section we work on each list and try to reduce the range of the
parameters so that each choice of parameters gives a different equivalence class.

Case C: The polytopes on the list have points

p1 = (0, 0, 0), p3 = (0, 1, 0), p4 = (0, 2, 0), p5 = (0, 3, 0)

p2 = (1, 0, 0), p6 = (1, p, q)

for some q ≥ 1, gcd(p, q) = 1. We already now that the value of p can be considered modulo q since it
gives equivalent configurations. So we assume 0 ≤ p < q.

Now, the volume vector of this configuration is(
0, 0, q, 0, 2q, 3q, 0, 0, 0, 0, 0, −q, −2q, −q, 0

)
so clearly different values of q give non-equivalent configurations.

Let P = {pi}i and P ′ = {p′i}i where p′i = pi except p′6 = (1, p′, q) for some 0 ≤ p′ < q with
gcd(p′, q) = 1.

Now, in P and P ′, p1p3p4p5 are four collinear points and p2p6 form and edge at lattice distance 1.
Then any unimodular transformation that maps P to P ′ will fix the following sets of points:

{p1, p5}, {p3, p4}, {p2, p6}

and p1 is fixed if and only if p3 is fixed. That gives us four possible unimodular transformations:
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• All points fixed (it is implied p6 7→ p′6): 1 0 0

0 1 p′−p
q

0 0 1

 x
y
z


• p2 7→ p′6 and p6 7→ p2:  1 0 0

p′ 1 −p+p
′

q

q 0 −1

 x
y
z


• p1 ↔ p5 and p3 ↔ p4:  1 0 0

−3 −1 p+p′

q

0 0 1

 x
y
z

+

 0
3
0


• p1 ↔ p5, p3 ↔ p4, p2 7→ p′6 and p6 7→ p2: 1 0 0

p′ − 3 −1 p−p′
q

q 0 −1

 x
y
z

+

 0
3
0


So p and p′ give equivalent configurations if and only if p′ ≡ ±p (mod q). This reduces the range of

the parameters to 0 ≤ p ≤ q
2 , and q ≥ 1.

Case L.3: The polytopes on the list have points

p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (0, 1, 0), p4 = (−1,−1, 0)

p5 = (0, 0, 1), p6 = (a, b, 1)

for some 0 < a < b, gcd(a, b) = 1 and (a, b) 6= (1, 2).
Now, the volume vector of this configuration is(

0, 1, 1, −1, −1, −b, 1, 1, a, −a+ b, 3, 3, a+ b, −a+ 2b, −2a+ b
)

Let P = {pi}i and P ′ = {p′i}i where p′i = pi except p′6 = (a′, b′, 1) for some 0 < a′ < b′, gcd(a′, b′) = 1
and (a′, b′) 6= (1, 2).

Now, in P and P ′, p1p2p3p4 form a (3, 1)-circuit (with p1 the barycenter point) and p5p6 form and
edge at lattice distance 1. Then any unimodular transformation that maps P to P ′ will fix the following
sets of points:

{p1}, {p2, p3, p4}, {p5, p6}
That gives us twelve possible unimodular transformations: the six unimodular transformations of

the (3, 1)-circuit (permutation of vertices), and for each of them, the possibility of fixing p5 or mapping
it to p′6.

Suppose we fix p5 = (0, 0, 1). The only transformation that maps (a, b) to a point in the region
0 < x < y is the one that fixes all points in the (3, 1)-circuit. And this transformation is the identity
and maps (a, b, 1) to itself.

Suppose now p5 = (0, 0, 1) is mapped to p′6 = (a′, b′, 1). Then (a, b, 1) ought to be mapped to (1, 0, 0).
Let us consider all six transformations of the circuit:

• p5 7→ p′6 and p6 7→ p5: 1 0 a′

0 1 b′

0 0 1

 a
b
1

 =

 a+ a′

b+ b′

1

 6=
 0

0
1


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• p1 ↔ p2, p5 7→ p′6 and p6 7→ p5: 0 1 a′

1 0 b′

0 0 1

 a
b
1

 =

 b+ a′

a+ b′

1

 6=
 0

0
1


• p1 ↔ p3, p5 7→ p′6 and p6 7→ p5: −1 0 a′

−1 1 b′

0 0 1

 a
b
1

 =

 −a+ a′

−a+ b+ b′

1

 6=
 0

0
1


• p2 ↔ p3, p5 7→ p′6 and p6 7→ p5:

 1 −1 a′

0 −1 b′

0 0 1

 a
b
1

 =

 a− b+ a′

−b+ b′

1

 =

 0
0
1

 ↔ b = b′, a′ = b− a

• p1 7→ p2 7→ p3 7→ p1, p5 7→ p′6 and p6 7→ p5: 0 −1 a′

1 −1 b′

0 0 1

 a
b
1

 =

 −b+ a′

a− b+ b′

1

 6=
 0

0
1


• p1 7→ p3 7→ p2 7→ p1, p5 7→ p′6 and p6 7→ p5: −1 1 a′

−1 0 b′

0 0 1

 a
b
1

 =

 −a+ b+ a′

−a+ b′

1

 6=
 0

0
1


So (a, b) and (a′, b′) with gcd(a, b) = gcd(a′, b′) = 1 and 0 < a < b, 0 < a′ < b′ give equivalent

configurations if and only if b = b′ and a′ = b − a. This reduces the range of the parameters to
0 < 2a ≤ b, but since (2, 1) is not a valid point, then 0 < 2a < b.

Case N.6:
The volume vector of this configuration is(

0, 1, −1, 1, −1, −a, −1, 1, 1, 1− a, −1, 1, a− 1, −1, −a+ 2
)

so clearly each value of a > 2 gives a different equivalence class.

Case Q.2: The volume vector of this configuration is(
0, 1, 1, 1, 1, −b, −1, −1, a, a− b, −1, −1, a+ b, a, −b

)
so clearly each pair (a, b) with 0 < a < b and gcd(a, b) = 1 gives a different equivalence class.

Case R:
The polytopes on the list have points

q1 = (1, 0, 0), q2 = (0, 0, 0), q3 = (−1, 0, 0)

q4 = (p, q, 1), q5 = (0, 0, 1), q6 = (−p,−q, 1)

for some 0 ≤ p ≤ q
2 , gcd(p, q) = 1.

Now, the volume vector of this configuration (for the original ordering of the points) is(
0, −q, q, 0, 0, 2q, −q, q, 0, −2q, −2q, 2q, 0, −4q, 0

)
so clearly different values of q give non-equivalent configurations.

Let P = {qi}i and P ′ = {q′i}i where q′i = qi except q′4 = (p′, q, 1) and q′6 = (−p′,−q, 1) for some
0 ≤ p′ ≤ q

2 with gcd(p′, q) = 1.
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Now, in P and P ′, q1q2q3 and q4q5q6 are two sets of three collinear points at lattice distance 1. Then
any unimodular transformation that maps P to P ′ will fix the following sets of points:

{q1, q3, q4, q6}, {q2, q5}
and q2 is fixed if and only if {q1, q3} is fixed. That gives us eight possible unimodular transformations:

• All points fixed (it is implied q5 7→ q′5 and q6 7→ q′6): 1 p′−p
q 0

0 1 0
0 0 1

 x
y
z


• q1q2q3 7→ q3q2q1:  −1 p′+p

q 0

0 1 0
0 0 1

 x
y
z


• q4q5q6 7→ q′6q5q

′
4:  1 −p

′+p
q 0

0 −1 0
0 0 1

 x
y
z


• q1q2q3 7→ q3q2q1 and q4q5q6 7→ q′6q5q

′
4: −1 −p

′−p
q 0

0 −1 0
0 0 1

 x
y
z


• q1q2q3 7→ q′4q5q

′
6 and q4q5q6 7→ q1q2q3: p′ 1−pp′

q 0

q −p 0
1 0 −1

 x
y
z

+

 0
0
1


• q1q2q3 7→ q′6q5q

′
4 and q4q5q6 7→ q1q2q3: −p′ 1+pp′

q 0

−q p 0
1 0 −1

 x
y
z

+

 0
0
1


• q1q2q3 7→ q′4q5q

′
6 and q4q5q6 7→ q3q2q1: p′ − 1+pp′

q 0

q −p 0
1 0 −1

 x
y
z

+

 0
0
1


• q1q2q3 7→ q′6q5q

′
4 and q4q5q6 7→ q3q2q1: −p′ pp′−1

q 0

−q p 0
1 0 −1

 x
y
z

+

 0
0
1


So p and p′ give equivalent configurations if and only if p′ ≡ ±p±1 (mod q). In order to remove

redundancies, we change p to the minimum of {±p,±p−1}, if needed.

Case V:
The volume vector of this configuration is(

1, 1, 1, −b, b, 2b, a, −a, −2a, 0, a+ b, −a− b, −2a− 2b, 0, 0
)

so clearly each pair (a, b) with 0 < a ≤ b and gcd(a, b) = 1 gives a different equivalence class.
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Case W.1:
The polytopes on the list have points

q1 = (1, 0, 0), q2 = (0, 0, 0), q3 = (−1, 0, 0)

q4 = (0, 1, 0), q5 = (0, 0, 1), q6 = (a, b, 1)

with 0 < a < b and gcd(a, b) = 1.

Now, the volume vector of this configuration (for the original ordering of the points) is(
0, 0, 0, 1, 1, −b, −1, −1, b, a, −2, −2, 2b, a+ b, a− b

)
so clearly different values of b give non-equivalent configurations.

Let P = {qi}i and P ′ = {q′i}i where q′i = qi except q′6 = (a′, b, 1) for some 0 < a′ < b with
gcd(a′, b) = 1.

Now, in P and P ′, considering their dual oriented matroid, any unimodular transformation that
maps P to P ′ will fix the following sets of points:

{q1}, {q2}, {q3}, {q6}, {q4, q5}
Then two possible transformations are the identity and the one that exchanges q4 and q5. The latter

one corresponds to the map y ↔ z. The image of q6 = (a, b, 1) is (a, 1, b) and q6 = (a′, b, 1) = (a, 1, b)
if and only if b = 1 and a = a′. But this implies b < a and we are in case W.2.

Case W.2:
The polytopes on the list have points and volume vector as the previous case W.1. Following the pre-

vious argument, two configurations P = {qi} and P ′ = {q′i} are equivalent if and only if (a′, b′) = (a, b).
So each pair (a, b) with 0 < a < b and gcd(a, b) = 1 gives a different equivalence class.

Case Z:
The polytopes on the list have points

p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (0, 1, 0),

p4 = (0, 0, 1), p5 = (a, b, 1), p6 = (c, d, 1),

with a, b, c, d > 0, ad− bc = 1 and c+ d > a+ b.
The volume vector of this configuration is(

1, 1, 1, −b, −d, b− d, a, c, −a+ c, 1, a+ b, c+ d, −a− b+ c+ d, 1, 1
)

All these configurations have the same dual oriented matroid, the one we labeled 6.4. The only
redundancy in this classification comes from the fact that this oriented matroid has a symmetry, (ex-
changing the triangle p1p2p3 with the the triangle p5p4p6, with vertices in this order). But it is not
easy to give an irredundant system of values for the parameters.
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4.8. Classification tables.

We here put together all the results of Section 4. Tables 2–10 collect all the lattice 3-polytopes of
size 6, with the same classification of the previous sections.

Each row in each table represents one configuration (except for Table 10 which collects infinite lists
of configurations). In each row we first give the identification of the dual oriented matroid (OM),
according to the list of Figure 13. The dual oriented matroid alone says whether the configuration is
dps; those which are dps are marked with an asterisk in the tables. Next there is the identification letter
plus number, referring to the classification in the previous sections, the volume vector and a functional
giving the width of the configuration.

After each table we list representatives for each configuration (given as matrices having with points
as columns). The volume vector and width functional in the table are both given according to these
representatives.

OM Id. Volume vector
Width

(functional)

3.2 A.1 0 0 1 0 0 2 0 1 0 −2 0 2 −1 −4 −1 1 (z)
A.2 0 0 2 0 0 4 0 2 0 −4 0 4 −2 −8 −2 2 (z)

3.3 B.1 0 0 1 0 0 −1 0 1 0 1 0 2 2 2 2 1 (z)
B.2 0 0 2 0 0 −2 0 2 0 2 0 4 4 4 4 2 (z)

4.3 D 0 0 1 0 1 2 0 −1 0 2 0 −1 −1 1 1 1 (z)

4.4 E 0 0 1 0 −1 2 0 1 0 −2 0 3 −1 −5 −1 1 (z)

4.5 F 0 0 1 0 −1 1 0 1 −1 0 0 3 −1 −2 2 1 (z)

A.1


1 2 3 4 5 6

0 1 0 −1 0 0

0 0 1 0 2 0
0 0 0 0 0 1



A.2


1 2 3 4 5 6

0 1 0 −1 0 1
0 0 1 0 2 1

0 0 0 0 0 2



B.1


1 2 3 4 5 6

0 1 0 −1 0 0
0 0 1 0 −1 0

0 0 0 0 0 1



B.2


1 2 3 4 5 6

0 1 0 −1 0 1

0 0 1 0 −1 1

0 0 0 0 0 2



D


1 2 3 4 5 6

0 1 0 1 0 0

0 0 1 1 2 0
0 0 0 0 0 1



E


1 2 3 4 5 6

0 1 0 −1 0 0

0 0 1 −1 2 0
0 0 0 0 0 1



F


1 2 3 4 5 6

0 1 0 −1 1 0
0 0 1 −1 1 0

0 0 0 0 0 1



Table 2. Lattice 3-polytopes of size 6 containing 5 coplanar points. They are all non-dps
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OM Id. Volume vector
Width

(functional)

3.8 G.7 0 1 −1 −1 1 −2 1 −1 0 2 3 −3 0 6 0 2 (z)

3.9 G.9 0 1 −1 −1 1 −1 1 −1 1 0 3 −3 0 3 −3 2 (z)

3.13 G.10 0 1 −1 −1 1 0 1 −1 0 0 3 −3 −2 2 −2 2 (z)
I.2 0 3 −3 −3 3 0 3 −3 0 0 9 −9 −6 6 −6 2 (x)

4.13* G.1 0 1 −1 −1 1 −4 1 −1 1 3 3 −3 3 9 0 2 (z)

4.17* G.2 0 1 −1 −1 1 −3 1 −1 0 3 3 −3 1 8 1 2 (z)
I.1 0 3 −3 −3 3 −9 3 −3 0 9 9 −9 3 24 3 2 (x)

4.18 G.8 0 1 −1 −1 1 −1 1 −1 0 1 3 −3 −1 4 −1 2 (z)

G.5 0 1 −1 −1 1 −5 1 −1 1 4 3 −3 4 11 1 2 (z)
5.10* G.6 0 1 −1 −1 1 −6 1 −1 1 5 3 −3 5 13 2 2 (z)

H.1 0 1 −3 −1 3 −8 1 −3 1 7 3 −9 5 19 2 2 (x)

5.11* H.2 0 1 −3 −1 3 −2 1 −3 1 1 3 −9 −1 7 −4 2 (x)

G.3 0 1 −1 −1 1 −2 1 −1 1 1 3 −3 1 5 −2 2 (z)
5.12* G.4 0 1 −1 −1 1 −3 1 −1 1 2 3 −3 2 7 −1 2 (z)

H.3 0 1 −3 −1 3 −5 1 −3 1 4 3 −9 2 13 −1 2 (x)

G.1


1 2 3 4 5 6

0 1 0 −1 0 1

0 0 1 −1 0 4

0 0 0 0 1 −1



G.2


1 2 3 4 5 6

0 1 0 −1 0 0
0 0 1 −1 0 3

0 0 0 0 1 −1



G.3


1 2 3 4 5 6

0 1 0 −1 0 1

0 0 1 −1 0 2
0 0 0 0 1 −1



G.4


1 2 3 4 5 6

0 1 0 −1 0 1
0 0 1 −1 0 3

0 0 0 0 1 −1



G.5


1 2 3 4 5 6

0 1 0 −1 0 1

0 0 1 −1 0 5
0 0 0 0 1 −1



G.6


1 2 3 4 5 6

0 1 0 −1 0 1

0 0 1 −1 0 6

0 0 0 0 1 −1



G.7


1 2 3 4 5 6

0 1 0 −1 0 0
0 0 1 −1 0 2

0 0 0 0 1 −1



G.8


1 2 3 4 5 6

0 1 0 −1 0 0

0 0 1 −1 0 1

0 0 0 0 1 −1



G.9


1 2 3 4 5 6

0 1 0 −1 0 1
0 0 1 −1 0 1

0 0 0 0 1 −1



G.10


1 2 3 4 5 6

0 1 0 −1 0 0

0 0 1 −1 0 0
0 0 0 0 1 −1



H.1


1 2 3 4 5 6

0 1 0 −1 0 1

0 0 1 −1 0 8

0 0 0 0 1 −3



H.2


1 2 3 4 5 6

0 1 0 −1 0 1

0 0 1 −1 0 2
0 0 0 0 1 −3



H.3


1 2 3 4 5 6

0 1 0 −1 0 1

0 0 1 −1 0 5

0 0 0 0 1 −3



I.1


1 2 3 4 5 6

0 1 0 −1 1 −1
0 0 1 −1 2 1

0 0 0 0 3 −3



I.2


1 2 3 4 5 6

0 1 0 −1 1 −1

0 0 1 −1 2 −2

0 0 0 0 3 −3


Table 3. Lattice 3-polytopes of size 6: configurations containing a (3, 1) coplanarity, with
the other two points on opposite sides; the dps ones are marked with * in the first column
(since dps is an oriented matroid property)
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OM Id. Volume vector
Width

(functional)

3.6 J.1 0 1 2 −1 −2 0 1 2 −1 1 3 6 0 0 3 2 (x)

3.11 J.2 0 1 2 −1 −2 0 1 2 0 0 3 6 1 −1 1 2 (x)
J.3 0 3 6 −3 −6 0 3 6 0 0 9 18 3 −3 3 3 (x)

4.7 L.2 0 1 1 −1 −1 −2 1 1 1 1 3 3 3 3 0 1 (z)

4.16 L.1 0 1 1 −1 −1 −1 1 1 0 1 3 3 1 2 1 1 (z)

5.4* K.1 0 1 5 −1 −5 1 1 5 −2 1 3 15 1 −4 7 2 (y)
K.2 0 1 7 −1 −7 1 1 7 −2 1 3 21 3 −6 9 2 (y)

5.6* M 0 1 3 −1 −3 −2 1 3 1 1 3 9 5 1 2 2 (x)

J.1


1 2 3 4 5 6

0 1 0 −1 0 −1
0 0 1 −1 0 0

0 0 0 0 1 2



J.2


1 2 3 4 5 6

0 1 0 −1 0 0

0 0 1 −1 0 0

0 0 0 0 1 2



J.3


1 2 3 4 5 6

0 1 0 −1 0 2
0 0 1 −1 0 4

0 0 0 0 1 6



L.1


1 2 3 4 5 6

0 1 0 −1 0 0
0 0 1 −1 0 1

0 0 0 0 1 1



L.2


1 2 3 4 5 6

0 1 0 −1 0 1

0 0 1 −1 0 2
0 0 0 0 1 1



K.1


1 2 3 4 5 6

0 1 0 −1 0 −2
0 0 1 −1 0 −1

0 0 0 0 1 5



K.2


1 2 3 4 5 6

0 1 0 −1 0 −2

0 0 1 −1 0 −1

0 0 0 0 1 7



M


1 2 3 4 5 6

0 0 −1 1 1 1
0 1 −1 0 1 2

0 0 0 0 1 3


Table 4. Lattice 3-polytopes of size 6: configurations containing a (3, 1) coplanarity, with
all (3, 1) circuits with the other two points on the same side, and containing no five coplanar
points; the dps ones are marked with * in the first column

OM Id. Volume vector
Width

(functional)

3.10 N.2 0 1 −1 1 −1 0 −1 1 0 0 −1 1 −2 −2 2 1 (x)

3.12 N.1 0 1 −1 1 −1 −1 −1 1 1 0 −1 1 0 −1 1 1 (x)

4.14 N.3 0 1 −1 1 −1 −1 −1 1 0 −1 −1 1 −1 −2 1 1 (x)

5.13 N.4 0 1 −1 1 −1 −4 −1 1 3 −1 −1 1 5 1 −2 2 (z)
N.5 0 1 −1 1 −1 −5 −1 1 4 −1 −1 1 7 2 −3 2 (z)

N.1


1 2 3 4 5 6

0 1 0 1 0 1

0 0 1 1 0 1
0 0 0 0 1 −1



N.2


1 2 3 4 5 6

0 1 0 1 0 0

0 0 1 1 0 0
0 0 0 0 1 −1


N.3


1 2 3 4 5 6

0 1 0 1 0 0

0 0 1 1 0 1

0 0 0 0 1 −1


N.4


1 2 3 4 5 6

0 1 0 1 0 3

0 0 1 1 0 4
0 0 0 0 1 −1



N.5


1 2 3 4 5 6

0 1 0 1 0 4

0 0 1 1 0 5

0 0 0 0 1 −1


Table 5. 3-polytopes of size 6 containing a (2, 2) coplanarity, with the other two points on
opposite sides, and containing no (3, 1) coplanarity nor five coplanar points. They are all

non-dps
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OM Id. Volume vector
Width

(functional)

3.4 Q.1 0 1 1 1 1 −1 −1 −1 0 −1 −1 −1 1 0 −1 1 (x)

3.5 O 0 1 2 1 2 0 −1 −2 0 0 −1 −2 1 1 −1 1 (x)

5.5 P.1 0 1 5 1 5 1 −1 −5 −2 −1 −1 −5 1 2 −3 2 (y)
P.2 0 1 7 1 7 2 −1 −7 −3 −1 −1 −7 1 3 −4 2 (x− y)

O


1 2 3 4 5 6

0 1 0 1 0 0
0 0 1 1 0 0
0 0 0 0 1 2



Q.1


1 2 3 4 5 6

0 1 0 1 0 0
0 0 1 1 0 1
0 0 0 0 1 1



P.1


1 2 3 4 5 6

0 1 0 1 0 −2
0 0 1 1 0 −1
0 0 0 0 1 5



P.2


1 2 3 4 5 6

0 1 0 1 0 −3
0 0 1 1 0 −2
0 0 0 0 1 7


Table 6. 3-polytopes of size 6 containing some (2, 2) coplanarity, with all (2, 2) circuits with
the other two points on the same side, and containing no (3, 1) coplanarity nor five coplanar
points; all non-dps
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OM Id. Volume vector
Width

(functional)

S.1 1 −1 −2 1 2 0 −1 −2 0 0 −4 −7 −1 1 −1 2 (y)
S.2 1 −2 −4 1 2 0 −1 −2 0 0 −5 −9 −2 1 −1 2 (z)

4.21 S.3 2 −1 −2 1 2 0 −1 −2 0 0 −5 −8 −1 1 −1 2 (x− z)
S.4 1 −3 −6 2 4 0 −1 −2 0 0 −7 −13 −3 2 −1 2 (z)
S.5 3 −2 −4 1 2 0 −1 −2 0 0 −7 −11 −2 1 −1 2 (x− z)
S.6 5 −3 −6 2 4 0 −1 −2 0 0 −11 −17 −3 2 −1 2 (x− z)

T.1 1 −1 1 1 −1 0 −1 1 0 0 −4 2 2 −2 2 2 (y)
T.2 1 −2 2 1 −1 0 −1 1 0 0 −5 3 4 −2 2 2 (z)

4.22 T.3 2 −1 1 1 −1 0 −1 1 0 0 −5 1 2 −2 2 2 (z)
T.4 1 −3 3 2 −2 0 −1 1 0 0 −7 5 6 −4 2 2 (z)
T.5 3 −2 2 1 −1 0 −1 1 0 0 −7 1 4 −2 2 2 (z)
T.6 5 −3 3 2 −2 0 −1 1 0 0 −11 1 6 −4 2 2 (z)

U.1 1 −1 −3 1 2 1 −1 −2 −1 0 −4 −8 −4 0 0 2 (y)
U.2 1 −1 −3 2 4 2 −1 −2 −1 0 −5 −10 −5 0 0 2 (z)

4.11 U.3 2 −1 −4 1 2 1 −1 −2 −1 0 −5 −10 −5 0 0 2 (x− z)
U.4 2 −1 −4 3 6 3 −1 −2 −1 0 −7 −14 −7 0 0 2 (x− z)
U.5 3 −1 −5 2 4 2 −1 −2 −1 0 −7 −14 −7 0 0 2 (x− z)

S.1


1 2 3 4 5 6

0 1 0 −2 1 2
0 1 0 −1 0 0

0 1 1 −2 0 0



S.2


1 2 3 4 5 6

0 1 0 −1 1 2

0 2 0 −1 0 0
0 1 1 −1 0 0



S.3


1 2 3 4 5 6

0 0 1 1 −1 −2

0 0 0 2 −1 −2

0 1 0 1 −1 −2



S.4


1 2 3 4 5 6

0 0 1 −1 1 2

0 0 3 −2 0 0
0 1 1 −1 0 0



S.5


1 2 3 4 5 6

0 0 1 1 −1 −2

0 0 0 3 −2 −4

0 1 0 1 −1 −2



S.6


1 2 3 4 5 6

0 1 2 0 −1 −2
0 0 5 0 −2 −4
0 0 1 1 −1 −2



T.1


1 2 3 4 5 6

0 1 0 −2 1 −1
0 1 0 −1 0 0

0 1 1 −2 0 0



T.2


1 2 3 4 5 6

0 1 0 −1 1 −1

0 2 0 −1 0 0
0 1 1 −1 0 0



T.3


1 2 3 4 5 6

0 0 1 1 −1 1
0 0 0 2 −1 1

0 1 0 1 −1 1



T.4


1 2 3 4 5 6

0 0 1 −1 1 −1

0 0 3 −2 0 0
0 1 1 −1 0 0



T.5


1 2 3 4 5 6

0 0 1 1 −1 1
0 0 0 3 −2 2

0 1 0 1 −1 1



T.6


1 2 3 4 5 6

0 1 2 0 −1 1

0 0 5 0 −2 2
0 0 1 1 −1 1



U.1


1 2 3 4 5 6

0 1 0 −2 1 4

0 1 0 −1 0 1
0 1 1 −2 0 2



U.2


1 2 3 4 5 6

0 0 −1 1 1 1

0 0 −1 2 0 −2

0 1 −1 1 0 −1



U.3


1 2 3 4 5 6

0 0 1 1 −1 −3
0 0 0 2 −1 −4

0 1 0 1 −1 −3



U.4


1 2 3 4 5 6

0 1 −1 0 1 2

0 0 −2 0 3 6

0 0 −1 1 1 1



U.5


1 2 3 4 5 6

0 1 1 0 −1 −2
0 0 3 0 −2 −4

0 0 1 1 −1 −3



Table 7. 3-polytopes of size 6 containing a (2, 1) coplanarity (but no other coplanarity).
All are non-dpsa
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OM Id. Volume vector
Width

(functional)

X.1 1 −1 −1 1 3 −2 −1 −2 1 1 −4 −7 3 5 −1 2 (y)

X.2 1 −1 −3 1 5 −2 −1 −4 1 1 −4 −13 1 7 −3 2 (y)
X.3 1 −1 −1 1 2 −1 −2 −3 1 1 −5 −7 2 3 −1 2 (z)

X.4 1 −1 −2 1 3 −1 −2 −5 1 1 −5 −11 1 4 −3 2 (z)
X.5 1 −2 −5 1 4 −3 −1 −3 1 1 −5 −13 1 7 −2 2 (x)
X.6 2 −1 −1 1 5 −2 −1 −3 1 1 −5 −11 3 7 −2 2 (x− z)

X.7 2 −1 −3 1 7 −2 −1 −5 1 1 −5 −17 1 9 −4 2 (x− z)
X.8 1 −2 −3 1 2 −1 −3 −5 1 1 −7 −11 1 3 −2 2 (z)
X.9 2 −1 −1 1 3 −1 −3 −5 1 2 −7 −11 2 5 −1 2 (z)

6.2* X.10 2 −3 −7 1 5 −4 −1 −3 1 1 −7 −17 1 9 −2 2 (z)
X.11 3 −2 −1 1 5 −3 −1 −2 1 1 −7 −11 5 8 −1 2 (z)
X.12 3 −1 −1 1 4 −1 −2 −5 1 1 −7 −13 2 5 −3 2 (x− z)

X.13 3 −1 −2 1 5 −1 −2 −7 1 1 −7 −17 1 6 −5 2 (x− z)
X.14 3 −2 −5 1 7 −3 −1 −4 1 1 −7 −19 1 10 −3 2 (x− z)
X.15 5 −2 −1 1 3 −1 −3 −4 1 1 −11 −13 3 4 −1 2 (z)
X.16 5 −2 −3 1 4 −1 −3 −7 1 1 −11 −19 1 5 −4 2 (x− z)

X.17 5 −3 −5 1 5 −2 −2 −5 1 1 −11 −20 1 7 −3 2 (x− z)
X.18 3 −4 −5 1 2 −1 −5 −7 1 1 −13 −17 1 3 −2 2 (z)
X.19 4 −5 −7 1 3 −2 −3 −5 1 1 −13 −19 1 5 −2 2 (z)

X.20 5 −3 −4 1 3 −1 −4 −7 1 1 −13 −19 1 4 −3 2 (x− z)

X.1


1 2 3 4 5 6

0 1 −2 0 1 4

0 1 −1 0 0 1

0 1 −2 1 0 3



X.2


1 2 3 4 5 6

0 1 −2 0 1 6

0 1 −1 0 0 1
0 1 −2 1 0 3



X.3


1 2 3 4 5 6

0 −1 1 0 1 1

0 −1 2 0 0 −1

0 −1 1 1 0 0



X.4


1 2 3 4 5 6

0 −1 0 1 1 3
0 −1 0 2 0 1

0 −1 1 1 0 0



X.5


1 2 3 4 5 6

0 0 1 −1 1 1

0 0 2 −1 0 −3

0 1 1 −1 0 −2



X.6


1 2 3 4 5 6

0 0 1 1 −1 −3
0 0 2 0 −1 −5

0 1 1 0 −1 −4



X.7


1 2 3 4 5 6

0 0 1 1 −1 −5

0 0 2 0 −1 −7
0 1 1 0 −1 −6



X.8


1 2 3 4 5 6

0 −1 0 1 1 2
0 −2 0 3 0 1

0 −1 1 1 0 0



X.9


1 2 3 4 5 6

0 −1 0 1 1 2

0 −2 0 0 3 5
0 −1 1 0 1 1



X.10


1 2 3 4 5 6

0 1 0 −1 1 2
0 0 0 −2 3 7

0 0 1 −1 1 1



X.11


1 2 3 4 5 6

0 0 1 1 −1 −2

0 0 0 3 −2 −1
0 1 0 1 −1 −1



X.12


1 2 3 4 5 6

0 1 1 0 −1 −3

0 3 0 0 −2 −5

0 1 0 1 −1 −2



X.13


1 2 3 4 5 6

0 1 1 0 −1 −4
0 3 0 0 −2 −7
0 1 0 1 −1 −3



X.14


1 2 3 4 5 6

0 0 1 1 −1 −4

0 0 0 3 −2 −5
0 1 0 1 −1 −3



X.15


1 2 3 4 5 6

0 0 1 2 −1 −1
0 0 0 5 −2 −1

0 1 0 1 −1 −1



X.16


1 2 3 4 5 6

0 0 1 2 −1 −2

0 0 0 5 −2 −3

0 1 0 1 −1 −2



X.17


1 2 3 4 5 6

0 2 1 0 −1 −3
0 5 0 0 −2 −5

0 1 0 1 −1 −2



X.18


1 2 3 4 5 6

0 −1 2 0 1 1

0 −1 5 0 0 −1
0 −1 1 1 0 0



X.19


1 2 3 4 5 6

0 1 2 −1 0 −1
0 0 5 −1 0 −2

0 0 1 −1 1 1



X.20


1 2 3 4 5 6

0 0 2 1 −1 −2

0 0 5 0 −1 −3
0 1 1 0 −1 −2



Table 8. Lattice 3-polytopes of size 6 with no coplanarities and 1 interior point. All dps
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OM Id. Volume vector
Width

(functional)

Y.1 1 −1 5 1 1 −6 −1 −2 7 −1 −4 1 19 5 −9 2 (x− 2y)
Y.2 1 −1 7 1 1 −8 −1 −2 9 −1 −4 3 25 7 −11 2 (x− z)
Y.3 1 −2 5 1 1 −7 −1 −2 9 −1 −5 1 23 6 −11 2 (x− y)
Y.4 1 −2 7 1 1 −9 −1 −2 11 −1 −5 3 29 8 −13 2 (x− z)
Y.5 2 −1 7 1 1 −4 −1 −3 5 −1 −5 1 17 3 −8 2 (x− z)

6.1* Y.6 2 −1 11 1 1 −6 −1 −3 7 −1 −5 5 25 5 −10 2 (x− z)
Y.7 2 −3 7 1 1 −5 −1 −3 8 −1 −7 1 23 4 −11 2 (x− z)
Y.8 2 −3 11 1 1 −7 −1 −3 10 −1 −7 5 31 6 −13 2 (x− z)
Y.9 3 −1 7 2 1 −5 −1 −2 3 −1 −7 1 16 3 −5 2 (x)
Y.10 3 −2 13 1 1 −5 −1 −4 7 −1 −7 5 27 4 −11 2 (x− z)
Y.11 3 −5 11 2 1 −9 −1 −2 7 −1 −11 5 32 7 −9 2 (x− z)
Y.12 5 −2 11 3 1 −7 −1 −2 3 −1 −11 3 23 4 −5 3 (x− z)

Y.1


1 2 3 4 5 6

0 1 0 −2 1 −12

0 1 0 −1 0 −7
0 1 1 −2 0 −13



Y.2


1 2 3 4 5 6

0 0 1 −2 1 −15
0 0 1 −1 0 −8

0 1 1 −2 0 −17



Y.3


1 2 3 4 5 6

0 1 0 −1 1 −7

0 2 0 −1 0 −9
0 1 1 −1 0 −8



Y.4


1 2 3 4 5 6

0 0 1 −1 1 −8

0 0 2 −1 0 −9

0 1 1 −1 0 −10



Y.5


1 2 3 4 5 6

0 0 1 1 −1 3

0 0 0 2 −1 7
0 1 0 1 −1 2



Y.6


1 2 3 4 5 6

0 1 0 1 −1 4
0 0 0 2 −1 11

0 0 1 1 −1 5



Y.7


1 2 3 4 5 6

0 0 1 −1 1 −4

0 0 0 −2 3 −7
0 1 0 −1 1 −5



Y.8


1 2 3 4 5 6

0 1 0 −1 1 −7
0 0 0 −2 3 −11

0 0 1 −1 1 −6



Y.9


1 2 3 4 5 6

0 0 1 1 −1 2

0 0 3 0 −2 −1

0 1 1 0 −1 −1



Y.10


1 2 3 4 5 6

0 0 1 1 −1 4
0 0 0 3 −2 13

0 1 0 1 −1 3



Y.11


1 2 3 4 5 6

0 1 2 −1 0 −5

0 0 5 −2 0 −9
0 0 1 −1 1 −4



Y.12


1 2 3 4 5 6

0 1 0 2 −1 4
0 0 0 5 −2 11

0 0 1 1 −1 2


Table 9. 3-polytopes of size 6 with no coplanarities and 2 interior points. All dps
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OM Id. Volume vector Parameters F.

4.1 C
(

0 0 q 0 2q 3q 0 0 0 0 0 −q −2q −q 0
) 0 ≤ p ≤ q

2
,

gcd(p, q) = 1
x

5.6* L.3
(

1 a b
)  0 1 1 −1 −1 0 1 1 0 0 3 3 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 1 −1 −2

0 0 0 0 0 −1 0 0 0 1 0 0 1 2 1

 0 < 2a < b,

gcd(a, b) = 1
z

5.15 N.6
(

1 a
) ( 0 1 −1 1 −1 0 −1 1 1 1 −1 1 −1 −1 2

0 0 0 0 0 −1 0 0 0 −1 0 0 1 0 −1

)
a > 2 x

5.8 Q.2
(

1 a b
)  0 1 1 1 1 0 −1 −1 0 0 −1 −1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 −1 0 0 0 −1 0 0 1 0 −1

 0 < a < b,

gcd(a, b) = 1
z

2.1 R
(

0 −q q 0 0 2q −q q 0 −2q −2q 2q 0 −4q 0
) 0 ≤ p < q,

gcd(p, q) = 1,

p = min{±p±1 mod q}
z

4.9 W.1
(

1 a b
)  0 0 0 1 1 0 −1 −1 0 0 −2 −2 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 −1 0 0 1 0 0 0 2 1 −1

 0 < a < b,

gcd(a, b) = 1
z

4.15 V
(

1 a b
)  1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 −2 0 1 −1 −2 0 0

0 0 0 −1 1 2 0 0 0 0 1 −1 −2 0 0

 0 < a ≤ b,
gcd(a, b) = 1

z

4.15 W.2
(

1 a b
)  0 0 0 0 0 0 1 −1 −2 0 1 −1 −2 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 −1 1 2 0 0 0 0 0 0 0 0 0

 0 < b < a,

gcd(a, b) = 1
z

6.4* Z ( 1 a b c d )


1 1 1 0 0 0 0 0 0 1 0 0 0 1 1

0 0 0 0 0 0 1 0 −1 0 1 0 −1 0 0

0 0 0 −1 0 1 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 1 1 0 0 1 1 0 0

0 0 0 0 −1 −1 0 0 0 0 0 1 1 0 0


a, b, c, d > 0,

ad− bc = 1,
c + d > a + b

z

C


1 2 3 4 5 6

0 1 0 0 0 1
0 0 1 2 3 p
0 0 0 0 0 q



L.3


1 2 3 4 5 6

0 1 0 −1 0 a
0 0 1 −1 0 b
0 0 0 0 1 1



N.6


1 2 3 4 5 6

0 1 0 1 0 1
0 0 1 1 0 a
0 0 0 0 1 −1



Q.2


1 2 3 4 5 6

0 1 0 1 0 a
0 0 1 1 0 b
0 0 0 0 1 1



R


1 2 3 4 5 6

0 1 0 −1 p −p
0 0 0 0 q −q
0 0 1 0 1 1



V


1 2 3 4 5 6

0 1 0 0 a −a
0 0 1 0 b −b
0 0 0 1 1 1



W.1


1 2 3 4 5 6

0 1 −1 0 0 a
0 0 0 1 0 b
0 0 0 0 1 1



W.2


1 2 3 4 5 6

a 0 0 0 −1 1
b 0 1 0 0 0
1 1 0 0 0 0



Z


1 2 3 4 5 6

0 1 0 0 a c
0 0 1 0 b d
0 0 0 1 1 1


Table 10. Infinite series of lattice 3-polytopes of size 6 and width 1; the dps ones are marked
with * next to their dual oriented matroid. To save space and improve readability, the volume
vector is sometimes expressed as a product of a parameter vector and a matrix
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2.1 3.1 3.2 3.3 3.4 3.5 3.6

3.7 3.8 3.9 3.10 3.11 3.12

3.13 4.1 4.2 4.3 4.4 4.5

4.6 4.7 4.8 4.9 4.10 4.11

4.12 4.13 4.14 4.15 4.16 4.17

4.18 4.19 4.20 4.21 4.22 5.1

5.2 5.3 5.4 5.5 5.6 5.7

5.8 5.9 5.10 5.11 5.12 5.13
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Figure 13. Oriented matroids dual to configurations of six different points in R3. Those
non-realizable with lattice polytopes of size 6 are in gray. Those that are dps are marked with
* next to their identification number. The first digit in the identification number equals the
number of cocircuits in the dual oriented matroid, that is, the number of circuits in the point

configuration
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4.9. Polytopes of size 6 and width 1. As a complement to the classification, we rework in this
section the classification of lattice 3-polytopes of width one. This includes all the infinite lists discussed
in Section 4.7, plus some sporadic configurations from the other cases.

The classification is based on the fact that the 6 lattice points of P lie in two consecutive lattice
planes, which we assume to be z = 0 and z = 1. We denote P0 and P1 the corresponding 2-dimensional
configurations in each plane. There are three possibilities depending on the sizes of P0 and P1.

• |P0| = 5, |P1| = 1. P0 is one of the six 2-dimensional polytopes of size 5 displayed in Figure 14.

Figure 14. 2-dimensional polytopes of size 5

The equivalence class of P depends only on P0, and not on the choice of the sixth point at z = 1.
The six choices of P0 produce, respectively, configurations A.1, B.1, C (with q = 1), D, E and F. All
these polytopes are non dps, since 5 points in the same plane cannot be dps

• |P0| = 4, |P1| = 2. P0 is one of the three 2-dimensional polytopes of size 4 displayed in Figure 15, or
it consists of four collinear points. We look at these four cases one by one.

Figure 15. 2-dimensional polytopes of size 4

◦ P0 is a (3, 1) circuit. Let P0 consist of 0, e1, e2 and −e1 − e2. The edge at z = 1 can be:
– Parallel to an interior edge of P0, for example {o, e1}: P1 = {e3, (0, 1, 1)}, which gives case

L.2.

– Parallel to an exterior edge of P0, for example {e1, e2}: P1 = {(1, 0, 1), (0, 1, 1)}, which
gives case L.3.

– Not parallel to any edge of P0: without loss of generality P1 = {e3, (a, b, 1)} with gcd(a, b) =
1, a 6= 0 and b/a 6∈ {−1, 0, 1/2, 1, 2}. This gives the infinite series L.1.

◦ P0 is a (2, 2) circuit. Let P0 consist of 0, e1, e2 and e1 + e2. The edge at z = 1 can be:
– Parallel to an exterior edge of P0, for example {o, e2}: P1 = {e3, (0, 1, 1)}, which gives case

Q.1.

– Parallel to an interior edge of P0, for example {o, e1 + e2}: P1 = {e3, (0, 1, 1)}, which gives
case N.3.
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– Non-parallel to any edge of P0: P1 = {(0, 0, 1), (a, b, 1)} with gcd(a, b) = 1, a 6= 0 and
b/a 6∈ {−1, 0, 1}. This gives the infinite series Q.2.

◦ P0 is a (2, 1) circuit. Let P0 consist of 0, e1, −e1 and e2. The edge at z = 1 can be:
– Parallel to an interior edge of P0, for example {o, e2}: P1 = {e3, (0, 1, 1)}, which gives case

N.2.

– Parallel to an edge of the (2, 1) circuit in P0, for example {o, e1}: P1 = {e3, (1, 0, 1)},
which gives case D.

– Parallel to an exterior edge in P0, not in the (2, 1) circuit, for example {e1, e2}: P1 =
{(1, 0, 1), (0, 1, 1)}, which gives case O.

– Non-parallel to any edge of P0: P1 = {e3, (a, b, 1)} with gcd(a, b) = 1, a 6= 0 and b/a 6∈
{−1, 0, 1}. This gives infinite series W.1 for |b| > |a| and W.2 for |b| < |a|.

◦ The four points are collinear. Let P0 consist of 0, e2, 2e2 and 3e2. The edge at z = 1 must be
non-parallel to this collinearity: P1 = {e3, (a, b, 1)} with gcd(a, b) = 1 and a 6= 0 . This gives
the infinite series C.

• |P0| = 3, |P1| = 3. Either P0 is the 2-dimensional polytope of size 3 (unimodular triangle), or the
points in P0 are collinear.

◦ If both sets of three points are collinear: without loss of generality P0 = {o, e1,−e1} and
P1 = {e3, (a, b, 1), (−a,−b, 1)} with gcd(a, b) = 1 and b 6= 0, which gives the infinite series R.
◦ If the points at z = 0 are not collinear, then they have to form a unimodular triangle: without

loss of generality P0 = {o, e1, e2}. We have two possibilities.
– The points at z = 1 are collinear: this double edge can be:

∗ Parallel to an edge of P0, for example {o, e2}: P1 = {e3, (0, 1, 1), (0,−1, 1)}, which
gives again case D.

∗ Non-parallel to any edge of P0: P1 = {e3, (a, b, 1), (−a,−b, 1)} with gcd(a, b) = 1,
a 6= 0 and b/a 6∈ {−1, 0}. This gives the infinite series V.

– The points at z = 1 are not collinear: they form a unimodular triangle. This triangle can
have collinear edges with the one in z = 0:
∗ 3 collinear edges: P1 = {e3, (1, 0, 1), (0, 1, 1)} gives case Q.1 and P1 = {(1, 0, 1),

(0, 1, 1), (1, 1, 1)} gives case N.1.

∗ 2 collinear edges: P1 = {e3, (1, 0, 1), (1, 1, 1)}, which gives case N.3.

∗ 1 collinear edge: P1 = {e3, (0, 1, 1), (−1, b, 1)}, with b 6∈ {0, 1, 2}, gives the infinite
series N.6 and P1 = {e3, (0, 1, 1), (1, b, 1)}, with b 6∈ {−1, 0, 1}, gives the infinite
series Q.2 for a = 1.

∗ No collinear edges: P1 = {e3, (a, b, 1), (c, d, 1)} with ad− bc = ±1, a, c, a− c 6= 0 and
b
a ,

d
c ,

b−d
a−c 6∈ {−1, 0}. This gives infinite series Z.
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Appendix A.
Computer programs

We include here the computer programs that have been used in the classification, all written in
MATLAB.

A.1. Common subroutines. There are two basic subroutines that we need to use over and over in
several parts:

• Test whether four given lattice points form an empty tetrahedron (file empty.m)
• Given n lattice points, output their volume vector (file volumevectors.m).

A.1.1. Test for the emptiness of a given tetrahedron.

The algorithm works as follows:
Our input is a generic lattice tetrahedron

T = {p1, p2, p3, p4}

We want to know whether this tetrahedron is empty, and the values of p and q such that T is
Z-equivalent to T (p, q).

We may assume the tetrahedron to have p1 at the origin, so we first perform the translation that
sends p1 to the origin:

T = {o, p2 − p1, p3 − p1, p4 − p1}
Whether T is empty or not is relatively easy to check. It suffices to see that:

• All its edges are primitive segments (the greatest common divisor of the coordinates of vector
must be one).

• Has minimum width 1. Since in empty tetrahedra the minimum width is always achieved with
respect to a pair of edges, we check the width with respect to all three pairs and the tetrahedron
will be empty if and only if (at least) one of the widths is 1.

Our outputs are:

• q: the normalized volume of the tetrahedron, which is computed from the vertex set. If this
volume is 1, then it automatically is empty.

• p is set to 0 as default.
• A variable k which is set to be:

k = −1: If some edge is not a primitive segment, in which case the algorithm does not
evaluate widths.
k = 0: If all edges are primitive segments, but none of the widths is 1.
k = 1: Both properties hold, in which case T is empty.

In the case of k = 1 (and q > 1), the algorithm proceeds to calculate (one of) the values 0 < p ≤ q
2

such that T is equivalent to T (p, q).

Suppose the widths are computed, and one of them is 1. Looking back at our T (p, q) tetrahedron
we have that: all three widths are 1 if and only if q = 2 and p = 1; exactly two widths are 1 if and only
if p = 1 and q > 2; only one of the widths (with respect to the pair (0, 0, 0)(1, 0, 0) and (0, 0, 1)(p, q, 1))
is 1 if and only if q > 3 and p > 1. Hence we have two cases:
• At least two widths are 1: set p = 1.
• Only one of the widths is 1. In this case we need to work further to find p.
We may assume the tetrahedron to have width 1 with respect to the edges p1p4 and p2p3 (use a

permutation of the order of the vertices if necessary).
Then we apply an affine transformation A mapping T = {p1, p2, p3, p4} to {o, e1, e2, e3}, in the spec-

ified order. This map will be linear since p1 = o. We are now in the superlattice Λ(p, q) of Z3, where p
is still unknown.

But it is easy to find p since the only point S0 = (x0, y0, z0) ∈ Λ(p, q) satisfying:

0 < x0, y0 < 1

z0 = 1/q
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will be S0 = (p/q, 1− p/q, 1/q).

Let us now look at a generic point S at height z = 1/q. Then the functional f(x, y, z) = z has value
1/q at this point. We also have that f(o) = f(e1) = f(e2) = 0 and f(e3) = 1.

With respect to T and the integer lattice, let g be the primitive functional that is constant at p1, p2
and p3. Then g(p4) − q(pi) = q for i = 1, 2, 3 (in an empty tetrahedron, all widths with respect to a
facet and a vertex are equal to its normalize volume). And hence S′ = A(S) will be a point satisfying
g(S′) = g(p1) + 1 = 1 (since p1 is the origin).

This functional g(x, y, z) = ax + by + cz with gcd(a, b, c) = 1 can be computed from the points pi.
And then finding a point S′ = (x′, y′, z′) ∈ Z3 such that g(S′) = 1 is easy by solving the double Bezout
identity:

ax+ by + cz = 1

Let now S′ be a solution of the previous equation. S can now be recovered by applying A−1 to S′.

Remember that S is a point in Λ(p, q) with z = 1/q. It suffices to take the positive fractional part
of coordinates x and y to have the initial point S0 = (p/q, 1 − p/q, 1/q). And then it is inmediate to
recover p.

function [k,p,q] = empty(p1,p2,p3,p4)
%El programa tiene como input los cuatro vertices (vectores fila) en Zˆ3 de
%un tetraedro reticular.
%Primero trasladamos p1 al origen:
p2=p2-p1;
p3=p3-p1;
p4=p4-p1;
p1=[0,0,0];
%Queremos que el programa nos diga si el tetraedro es vacio, y que nos de
%los valores de p y q para los cuales el tetraedro es equivalente a T(p,q).

p=0;
q=abs(det ([1,p1;

1,p2;
1,p3;
1,p4]));

q=round(q);

% k sera un marcador que valdra 1 cuando el tetraedro sea vacio, y 0 o -1
%si no lo es
k=-1;

%La primera condicion para que sea un tetraedro vacio es que sus aristas
%sean primitivas. Si no lo son, k=-1. Si si que lo son, cambiamos a k=0.
if gcd(gcd(p1(1)-p2(1),p1(2)-p2(2)),p1(3)-p2(3))==1

if gcd(gcd(p1(1)-p3(1),p1(2)-p3(2)),p1(3)-p3(3))==1
if gcd(gcd(p1(1)-p4(1),p1(2)-p4(2)),p1(3)-p4(3))==1

if gcd(gcd(p3(1)-p2(1),p3(2)-p2(2)),p3(3)-p2(3))==1
if gcd(gcd(p4(1)-p2(1),p4(2)-p2(2)),p4(3)-p2(3))==1

if gcd(gcd(p3(1)-p4(1),p3(2)-p4(2)),p3(3)-p4(3))==1

k=0;

end
end

end
end

end
end

%Si el tetraedro es de volumen 1, entonces es vacio y no hace falta seguir
%calculando nada
if q==1;
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%p=0 por defecto
k=1;

end

%A partir de ahora, analizaremos si q>1.

%Calculamos las anchuras respecto de los tres pares de aristas. El
%tetraedro T(p,q) tiene anchuras de la siguiente manera:

%- Par de aristas (000)(100) / (001)(pq1) : anchura siempre 1
%- Par de aristas (000)(001) / (100)(pq1) : anchura 1 sii p=1
%- Par de aristas (000)(pq1) / (100)(001) : anchura 1 sii p=q-1
%inicializamos a 0 las 3 variables en las que guardaremos las anchuras.

a1=0;%Anchura respecto de (p1p2)(p3p4)
a2=0;%Anchura respecto de (p1p3)(p2p4)
a3=0;%Anchura respecto de (p1p4)(p2p3)

%Luego pondremos ai=1 si esa anchura es 1, y ai=0 si es mayor que 1.
if k==0 %El tetraedro tiene aristas primitivas y tiene volumen q>1.

%Anchura respecto de (p1p2)(p3p4)
x=p1;
X=p1-p2;
y=p3;
Y=p3-p4;
A=X(2)*Y(3)-X(3)*Y(2);
B=-(X(1)*Y(3)-X(3)*Y(1));
C=X(1)*Y(2)-X(2)*Y(1);

if abs((A*(x(1)-y(1))+B*(x(2)-y(2))+C*(x(3)-y(3)))/gcd(gcd(A,B),C))==1
k=1;
a1=1;

end
clearvars x X y Y A B C

%Anchura respecto de (p1p3)(p2p4)
x=p1;
X=p1-p3;
y=p2;
Y=p2-p4;
A=X(2)*Y(3)-X(3)*Y(2);
B=-(X(1)*Y(3)-X(3)*Y(1));
C=X(1)*Y(2)-X(2)*Y(1);

if abs((A*(x(1)-y(1))+B*(x(2)-y(2))+C*(x(3)-y(3)))/gcd(gcd(A,B),C))==1
k=1;
a2=1;

end
clearvars x X y Y A B C

%Anchura respecto de (p1p4)(p2p3)
x=p1;
X=p1-p4;
y=p2;
Y=p2-p3;
A=X(2)*Y(3)-X(3)*Y(2);
B=-(X(1)*Y(3)-X(3)*Y(1));
C=X(1)*Y(2)-X(2)*Y(1);

if abs((A*(x(1)-y(1))+B*(x(2)-y(2))+C*(x(3)-y(3)))/gcd(gcd(A,B),C))==1
k=1;
a3=1;

end
clearvars x X y Y A B C

%Ahora podemos encontrarnos en 4 situaciones:
% a1+a2+a3=0 : el tetraedro NO es vacio,
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% a1+a2+a3=1 : el tetraedro es vacio, q>3 y 1<p<q-1
% a1+a2+a3=2 : el tetraedro es vacio, q>2 y p=1 o p=q-1
% a1+a2+a3=3 : el tetraedro es vacio, q=2 y p=1

if a1+a2+a3>1
k=1;

%En este caso puede ser p=1 o p=q-1, pero nos interesa el menor
%valor de p:
p=1;

elseif a1+a2+a3==1
%Ahora ya sabemos que el tetraedro es vacio, pero aun queda por
%calcular el valor de p. Queremos ordenar los puntos del tetraedro
%de manera que p1 sea el origen y que la anchura 1 sea respecto de
%el par de aristas p1p4 / p2p3
k=1;
if a1==1 %Anchura 1 respecto de p1p2/p3p4

%Realizamos la permutacion que lleva p2 a p4
aux=p2;
p2=p4;
p4=aux;

elseif a2==1 %Anchura 1 respecto de p1p3/p2p4
%Realizamos la permutacion que lleva p3 a p4
aux=p3;

p3=p4;
p4=aux;

end
%Ahora vamos a llevar nuestro tetraedro al tetraedro unimodular
%estandar. La aplicacion lineal que lleva el tetraedro de la base
%(o,e1,e2,e3) a (p1,p2,p3,p4) en ese orden, es:

A=[p2',p3',p4'];

%Y calculamos la inversa que es la que nos interesa.

%B=inv(A);

%Sea g=ax+by+cz el funcional primitivo que es constante en la
%cara {p1,p2,p3}. El valor del funcional sera 0 (pues p1 es el
%origen) y sera q en p4.

a=p2(2)*p3(3)-p2(3)*p3(2);
b=-p2(1)*p3(3)+p2(3)*p3(1);
c=p2(1)*p3(2)-p2(2)*p3(1);

%Queremos que el funcional sea primitivo, asi que dividimos entre
%el gcd de los coeficientes.
m=gcd(gcd(a,b),c)*sign(a*p4(1)+b*p4(2)+c*p4(3));

a=a/m;
b=b/m;
c=c/m;

%Ahora queremos encontrar un punto que al aplicarle B, nos de
%coordenada z=1/q. Para ello nos valdra con encontrar un punto
%(x,y,z) tal que g(x,y,z)=g(p1)+1=1;
%Es decir, resolver el siguiente sistema: ax+by+cz=1.
%Puesto que 1=gcd(a,b,c), entonces esto corresponde a la identidad
%de Bezout.

[gab,ai,bi]=gcd(a,b);
%Esto significa que gab=gcd(a,b)=a*ai+b*bi

[r,gi,ci]=gcd(gab,c);
%Esto significa que 1=gcd(c,gab)=gab*gi+c*ci
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%Es decir,
% 1=gab*gi+c*ci=(a*ai+b*bi)*gi+c*ci=(ai*gi)*a+(bi*gi)*b+ci*c
% y una solucion entera de nuestra ecuacion es (ai*gi,bi*gi,ci)

S=[ai*gi,bi*gi,ci];

%Aplicamos B=inv(A), que nos da el punto S con coordenada z=1/q;
S=A\(S');

%Este punto sera de la forma (x0 +p/q, y0 -p/q, 1/q) con x0, y0
%enteros. Y de aqui sacamos el valor de p:
p=S(1);
p=round(q*(p-floor(p)));

end

%Puesto que T(p,q) es equivalente a T(q-p,q), nos quedaremos con el
%menor valor de entre p y q-p:
if p > q/2

p=q-p;
end

end

A.1.2. Compute the volume vector of a set of n lattice points in dimension 3.
Our input is a set of n lattice points p1, ..., pn in dimension 3, given by a matrix A ∈ Z3×n with the

points as columns:
A = (p1 ... pn)

The algorithm computes the volume vector of P = conv{pi} as defined in Definition 2.8:

v = (vi,j,k,l)1≤i<j<k<l≤n ∈ Z(n
4)

where

vi,j,k,l = det

(
1 1 1 1
pi pj pk pl

)
Whenever n = 5, the output is a small variation of the volume vector, modified for this particular

case as in Section 3.

The second output of the algorithm is va, which consists of the absolute values of the coordinates
of volume vector v, ordered from smallest to largest.

By Lemma 2.10, to have the volume vector (both v and va) of a configuration will allow us in many
cases to determine whether two configurations can or not belong to equivalence classes.

function [v,va] = volumevectors(A,n)
% A es una matriz de 3 filas y n columnas, donde cada columna son las
% coordenadas de cada uno de los n puntos.
% La idea es calcular el vector de volumenes tal y como esta definido en la
% definicion general. Es decir.
% v= ( w {i,j,k,l}) donde el orden de los indices es lexicografico:
% 1 =< i < j < k < l =< n
% w {i,j,k,l}=det (A i,A j,A k,A l)

%Primero la matriz A tiene que tener una nueva fila de unos:
A=[ones(1,n);A];

%M sera una matriz en la que iremos guardando filas para calcular los
%determinantes 4x4:
M=zeros(4);

%v sera el vector de volumenes. En va iremos guardando las coordenadas de v
%en su valor absoluto.
v=[];
va=[];
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for i=1:(n-3)
M(:,1)=A(:,i);
for j=(i+1):(n-2)

M(:,2)=A(:,j);
for k=(j+1):(n-1)

M(:,3)=A(:,k);
for l=(k+1):n

M(:,4)=A(:,l);
v=[v,round(det(M))];
va=[va,abs(round(det(M)))];

end
end

end
end

%Ahora ordenamos va de menor a mayor.
va=sort(va);

%Ahora, en el caso de 5 puntos, queremos modificar el vector: si antes era
%v=(v1234,v1235,v1245,v1345,v2345), ahora queremos que sea:

%v=(v2345,-v1345,v1245,-v1235,v1234)

if n==5
vv=zeros(1,5);
for i=1:5

vv(i)=v(6-i);
end
v=vv;
v(2)=-v(2);
v(4)=-v(4);

end

end

A.2. Algorithms specific to parts of the classification.

Parts of the classification of lattice 3-polytopes of size 6 have been completed by computer. This
has always happened when a configuration of size 6 can be obtained as the union of two configurations
of size 5 with a tetrahedron in common, and one of the configurations being of signature (4, 1). As
a preparation for the gluing we first have a program that computes the (p, q)-types of all the empty
subtetrahedra of the (4, 1)-polytopes and asignes a number t ∈ {1, ..., 7} corresponding to one of the 7
non-equivalent (p, q)-types that arise in the eight configurations of signature (4, 1) (file tipos.m).

After that, there are five groups of files devoted to gluing different types of configuration:

• Algorithm 1: gluing a (4, 1) with a (3, 1) (files alg1.m, eval1.m, trans1.m, reord1.m).
• Algorithm 2: gluing a (4, 1) with (2, 2) (files alg2.m, eval2.m, trans2.m, reord2.m).
• Algorithm 3: gluing a (4, 1) with (2, 1) (files alg3.m, eval31.m, eval32.m, reord312.m,
eval33.m, reord33.m.

• Algorithm 4: gluing two (4, 1) sharing the same interior point (files alg4.m, eval4.m, trans4.m,
reord4.m).

• Algorithm 5: gluing two (4, 1), not sharing the same interior point (files alg5.m, eval5.m,
trans5.m, reord5.m).
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A.2.1. Types (p, q) of tetrahedra in (4, 1)-polytopes of size 5. The output of the algorithm are: A an
array containing all the points of the eight (4, 1)-polytopes; arrays P , Q and T containing the values
of p, q and t, respectively, of each subtetrahedron.

function [T,A,P,Q]= tipos

%A guarda los puntos de cada politopo (4,1)
A=zeros(8,5,3);
%Q(k,i), P(k,i) y T(k,i) son los valores q,p y t del tetraedro
%correspondiente a eliminar el vertice i en la configuracion k, donde cada
%valor de t representa un par (p,q) distinto.
Q=zeros(8,4);
P=zeros(8,4);
T=zeros(8,4);

A(1,:,:)=[1,0,0;0,0,1;1,1,1;-2,-1,-2;0,0,0]; %V(:,1,1)=[1;1;1;1;-4];
A(2,:,:)=[1,0,0;0,0,1;1,2,1;-1,-1,-1;0,0,0]; %V(:,1,2)=[1;1;1;2;-5];
A(3,:,:)=[1,0,0;0,0,1;1,3,1;-1,-2,-1;0,0,0]; %V(:,1,3)=[1;1;2;3;-7];
A(4,:,:)=[1,0,0;0,0,1;2,5,1;-1,-2,-1;0,0,0]; %V(:,1,4)=[1;3;2;5;-11];
A(5,:,:)=[1,0,0;0,0,1;2,5,1;-1,-1,-1;0,0,0]; %V(:,1,5)=[3;4;1;5;-13];
A(6,:,:)=[1,0,0;0,0,1;2,7,1;-1,-2,-1;0,0,0]; %V(:,1,6)=[3;5;2;7;-17];
A(7,:,:)=[1,0,0;0,0,1;3,7,1;-2,-3,-1;0,0,0]; %V(:,1,7)=[5;4;3;7;-19];
A(8,:,:)=[1,0,0;0,0,1;2,5,1;-3,-5,-2;0,0,0]; %V(:,1,8)=[5;5;5;5;-20];

for k=1:8
for i=1:4

PP=zeros(7,3);
for j=1:(i-1)

PP(j,:)=A(k,j,:);
end
for j=(i+1):4

PP(j-1,:)=A(k,j,:);
end
PP(5,:)=A(k,i,:);
PP(7,:)=[k,i,0];
%Ahora tenemos la configuracion (4,1) con P(4) el punto
%interior y el vertice escogido P(5)

[r1,p,q] = empty(PP(1,:),PP(2,:),PP(3,:),PP(4,:));
Q(k,i)=q; P(k,i)=p;

%Puesto que los valores de q en estos tetraedros van de 1 hasta 7,
%hay un numero finito de posibilidades para (p,q), y las ordenamos
%segun el siguiente convenio:

%T1= T(0,1) T2= T(1,2) T3= T(1,3) T4= T(1,4)
%T5= T(1,5) T6= T(2,5) T7= T(2,7)=T(3,7)
%El caso T(1,7) no se da

if q==1 | | q==2 | | q==3 | | q==4
T(k,i)=q;

elseif q==5
if p==1 %or p==4

T(k,i)=5;
else % p=2,3

T(k,i)=6;
end

elseif q==7
if p==2 | | p==3

T(k,i)=7;
end

end
end

end
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Once we have the full lists of configurations of each type that have exactly size 6, the specific ordering
of the points allows us to compare them pairwise to see how many of them are non-equivalent.

function [PP1,VV1,VV1a] = clases(PP)

%En PP tenemos la lista completa de todas las configuraciones de tamaño 6
%ordenadas univocamente
n=size(PP,3);
m=size(PP,1);
%En VV guardamos los vectores de volumenes de todas esas congifuraciones. Y
%en VVa los vectores ordenados y en valor absoluto.
VV=zeros(1,15,n);
VVa=zeros(1,15,n);

for i=1:n

B=PP(1:6,:,i)';
[v,va]=volumevectors(B,6);
%if v(1)<0
% v=-v;
%end
VV(:,:,i)=v;
VVa(:,:,i)=va;

end
clear i v B

%En PP1, VV1 y VV1a iremos guardando los datos de las
%configuraciones no repetidas de PP, VV y VVa, respectivamente
PP1=zeros(m,3,n);
VV1=zeros(1,15,n);
VV1a=zeros(1,15,n);
%s1 sera el contador que vaya añadiendo elementos a estas listas.
s1=0;

%La lista CC es una lista con todas las entradas 1. Cuando una
%configuracion es comparada a una inferior (menor indice en PP) y son
%iguales, este contador se pone a 0 para dicha configuracion. Al final
%CC sera una lista de 0's y 1's de manera que las posiciones de los 1's
%seran los primeros representantes de cada clase que aparecen.
CC=ones(1,n);

for i=1:n
if CC(i)==1

s1=s1+1;
PP1(:,:,s1)=PP(:,:,i);
VV1(:,:,s1)=VV(:,:,i);
VV1a(:,:,s1)=VVa(:,:,i);

for j=(i+1):n
if CC(j)==1

if VV(:,:,i)==VV(:,:,j)
CC(j)=0;

end
end

end
end

end
PP1=PP1(:,:,1:s1);
VV1=VV1(:,:,1:s1);
VV1a=VV1a(:,:,1:s1);
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A.2.2. Algorithm 1. Case K
This configuration consists of a (4, 1)-polytope with a sixth point that forms a (3, 1)-circuit with one

of its facets.

The dual oriented matroid of this configuration is the one we labeled 5.4*. Since this oriented matroid
has no symmetries, this provides a unique ordering for the points. We will organize the points 1 := p1
to 6 := p6 so that:

• 1 is the baricenter of triangle 234.
• 5 is the interior point of the base (4, 1)-polytope, namely that with vertex set 1236. This leaves

4 to be the point so that 5 ∈ int(P 4).
• 2 is such that the configuration contains the circuit (126, 45). This leaves 3 to be such that the

configuration contains the circuit (345, 16).

5.4* (234, 1)

(345, 16)

(126, 45)

(1236, 5)

(2346, 5)

4

12

3

5

6

With that ordering of the points, a triangulation of P is P = P 4 ∪ T1246 ∪ T1346. Since we chose P 4

to be a (4, 1)-polytope, P will have size 6 if and only if T1246 and T1346 are empty tetrahedra.

function [PP]= alg1

A=zeros(7,5,3);
V=zeros(7,5);
A(1,:,:)=[1,0,0;0,0,1;1,1,1;-2,-1,-2;0,0,0]; V(1,:)=[1;1;1;1;-4];
A(2,:,:)=[1,0,0;0,0,1;1,2,1;-1,-1,-1;0,0,0]; V(2,:)=[1;1;1;2;-5];
A(3,:,:)=[1,0,0;0,0,1;1,3,1;-1,-2,-1;0,0,0]; V(3,:)=[1;1;2;3;-7];
A(4,:,:)=[1,0,0;0,0,1;2,5,1;-1,-2,-1;0,0,0]; V(4,:)=[1;3;2;5;-11];
A(5,:,:)=[1,0,0;0,0,1;2,5,1;-1,-1,-1;0,0,0]; V(5,:)=[3;4;1;5;-13];
A(6,:,:)=[1,0,0;0,0,1;2,7,1;-1,-2,-1;0,0,0]; V(6,:)=[3;5;2;7;-17];
A(7,:,:)=[1,0,0;0,0,1;3,7,1;-2,-3,-1;0,0,0]; V(7,:)=[5;4;3;7;-19];
%A(8,:,:)=[1,0,0;0,0,1;2,5,1;-3,-5,-2;0,0,0]; V(8,:)=[5;5;5;5;-20];

s=0;
PP=zeros(7,3,48);
for k=1:7

for i=1:4
v=abs(V(k,i));
if v==1 | | v==3

P=zeros(7,3);
for j=1:(i-1)

P(j,:)=A(k,j,:);
end
for j=(i+1):4

P(j-1,:)=A(k,j,:);
end
P(4,:)=[-1,-1,0];
%P(5,:)=[0,0,0];
P(6,:)=A(k,i,:);
P(7,:)=[k,i,0];

%Ahora tenemos una configuracion (4,1) con P(5) el punto
%interior, el tetraedro P(1)P(2)P(3)P(5) de volumen 1 o 3, y el
%P(6) el vertice escogido del (4,1)

%Ahora la cara p1p2p3 va a ser la que extendamos a un circuito
%(3,1). Hay tres posibles maneras de hacer esto, que se
%corresponde con escoger el baricentro de dicho circuito.
%Para cada una de estas permutaciones, calcularemos la
%transformacion unimodular que lleva el tetraedro
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% P(1)P(2)P(3)P(5) a (000),(100),(010),(001)/(123),
%en ese orden. Los 6 puntos de nuestra configuracion seran la
%imagen de p1, p2, p3, p5 y p6, junto con p4 (inalterado).
%Luego ordenaremos los puntos de acuerdo a la matroide
%orientada, y evaluaremos si los dos tetraedros 1246 y 1346 son
%vacios.

%P(1):
[PP,s]=eval1(1,PP,s,P,v,1,2,3);

%P(2):
[PP,s]=eval1(2,PP,s,P,v,2,1,3);

%P(3):
[PP,s]=eval1(3,PP,s,P,v,3,2,1);

end
end

end
PP=PP(:,:,1:s);

function [PP,s]= eval1(M,PP,s,P,v,i,j,k)
%Permutamos los vertices segun los valores de i,j,k:
p1=P(i,:);
p2=P(j,:);
p3=P(k,:);

P(1,:)=p1;
P(2,:)=p2;
P(3,:)=p3;
P(7,3)=M;

%Ahora calculamos la transformacion unimodular y obtenemos los 6 puntos:
[P]=trans1(P,v);

%Ordenamos los puntos segun la matroide orientada:
[P]=reord1(P);

%Evaluamos si los tetraedros son vacios.
k1=empty(P(1,:),P(6,:),P(2,:),P(4,:));
k2=empty(P(1,:),P(6,:),P(3,:),P(4,:));
if k1+k2==2

%Si lo son, la configuracion es valida
s=s+1;
PP(:,:,s)=P;

end

function [P]= trans1(P,v)
%pi=P(i,:) son vectores fila:

%Queremos la transformacion (afin) unimodular que nos lleve
%p1-->000
%p2-->100
%p3-->010
%p5-->001 si v=1 o 123 si v=3

%Hacemos la traslacion que nos lleva el p1 al 000

for i=2:6
if i~=4

P(i,:)=P(i,:)-P(1,:);
end

end
P(1,:)=[0,0,0];
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if v==1
%La inversa de dicha matriz es
A=zeros(3,3);
A(:,1)=P(2,:)';
A(:,2)=P(3,:)';
A(:,3)=P(5,:)';
P(1,:)=round(A\P(1,:)')';
P(2,:)=round(A\P(2,:)')';
P(3,:)=round(A\P(3,:)')';
P(5,:)=round(A\P(5,:)')';
P(6,:)=round(A\P(6,:)')';

elseif v==3

%La matriz inversa sera una matriz A 4x4 con:
q2=P(2,:)';
q3=P(3,:)';

A=zeros(3,3);
A(:,1)=q2;
A(:,2)=q3;
%Y la ultima columna habra de ser acorde para que el determinante de A
%sea 1

%Entonces si la ultima columna es (x,y,z), se tiene que verificar que
%ax+by+cz=1, donde
a=q2(2)*q3(3)-q2(3)*q3(2);
b=-q2(1)*q3(3)+q2(3)*q3(1);
c=q2(1)*q3(2)-q2(2)*q3(1);

%Para que haya solucion entera a esta ecuacion se ha de verificar que
%gcd(a,b,c)=1. Pero de momento lo vamos a utilizar en casos en los que
%si se verifica esta condicion.

[gab,ai,bi]=gcd(a,b);
%Esto significa que gab=gcd(a,b)=a*ai+b*bi

[~,gi,ci]=gcd(gab,c);
%Esto significa que 1=gcd(c,gab)=gab*gi+c*ci

%Es decir,
% 1=gab*gi+c*ci=(a*ai+b*bi)*gi+c*ci=(ai*gi)*a+(bi*gi)*b+ci*c
% y una solucion entera de nuestra ecuacion es (ai*gi,bi*gi,ci)

A(:,3)=[ai*gi;bi*gi;ci];

P(5,:)=round(A\P(5,:)')';

%Queremos que p5 y p6 esten en el semiplano z>0
if P(5,3)<0

A(3,:)=-A(3,:);
end

P(1,:)=round(A\P(1,:)')';
P(2,:)=round(A\P(2,:)')';
P(3,:)=round(A\P(3,:)')';
P(5,:)=round(A\P(5,:)')';
P(6,:)=round(A\P(6,:)')';

%Ahora p5=(a,b,3) verificando a = -b = \pm 1 mod 3. Realizamos la
%transformacion unimodular que deja fijo el plano z=0 y lleva p5 al
%(1,2,3)
if mod(P(5,1),3)==1

A=eye(3);
A(1,3)=(P(5,1)-1)/3;
A(2,3)=(P(5,2)-2)/3;
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elseif mod(P(5,1),3)==2
A=zeros(3,3);
A(2,1)=1;
A(1,2)=1;
A(3,3)=1;
A(1,3)=round((P(5,1)-2)/3);
A(2,3)=round((P(5,2)-1)/3);

end

P(1,:)=round(A\P(1,:)')';
P(2,:)=round(A\P(2,:)')';
P(3,:)=round(A\P(3,:)')';
P(5,:)=round(A\P(5,:)')';
P(6,:)=round(A\P(6,:)')';

end

function [P]= reord1(P)
%Guardamos en B los puntos 12456, en ese orden.
B=zeros(5,3);
B(1:2,:)=P(1:2,:);
B(3:5,:)=P(4:6,:);
v=volumevectors(B',5);

%Ahora queremos que el vector tenga mas entradas (o igual) positivas que
%negativas
if v(1)+v(2)+v(3)+v(4)+v(5)<0

v=-v;
end

vv=zeros(1,5);
for i=1:5

vv(i)=sign(v(i));
end

%Para que P contenga el circuito (126,45), vv=++--+
%Si no lo contiene, entonces se intercambian los puntos 2 y 3
if vv(1)~=1 | | vv(2)~=1 | | vv(3)~=-1 | | vv(4)~=-1 | | vv(5)~=1

aux=P(2,:);
P(2,:)=P(3,:);
P(3,:)=aux;

end
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A.2.3. Algorithm 2. Case P
This configuration consists of a (4, 1)-polytope with a sixth point that forms a (2, 2)-circuit with one

of its facets.

The dual oriented matroid of this configuration is the one we labeled 5.5. This oriented matroid has
one symmetry. We will organize the points 1 := p1 to 6 := p6 so that:

• (14, 23) forms a (2, 2)-circuit.
• 5 is the interior point of the base (4, 1) polytope, namely that with vertex set 1236. The point

2 is such that 5 is also the interior point of the (4, 1)-polytope with vertex set 1246.
• Points 3 and 4 (and consequently 1 and 2) are ordered so that the volume of the corresponding

(4, 1)-polytopes P 3 and P 4 are ordered so that the one of P 3 is smaller or equal than that of
P 4.

The ambiguity comes from the fact that the roles of 2 and 3 can be exchanged, at the same time,
with those of 1 and 4, respectively. In terms of equivalence, the fact that the volume of P 4 is bigger
than that of P 3, gives a unique order of the points modulo equivalence.

5.5 (23, 14)

(146, 35)

(1246, 5)

(1236, 5)

(236, 45)
5

12

3

6

4

With that ordering of the points, a triangulation of P is P = P 4 ∪ T2346. Since we chose P 4 to be a
(4, 1)-polytope, P will have size 6 if and only if T2346 is an empty tetrahedron.

function [PP]= alg2

A=zeros(4,5,3);
V=zeros(4,5);
A(1,:,:)=[1,0,0;0,0,1;1,1,1;-2,-1,-2;0,0,0]; V(1,:)=[1;1;1;1;-4];
A(2,:,:)=[1,0,0;0,0,1;1,2,1;-1,-1,-1;0,0,0]; V(2,:)=[1;1;1;2;-5];
A(3,:,:)=[1,0,0;0,0,1;1,3,1;-1,-2,-1;0,0,0]; V(3,:)=[1;1;2;3;-7];
A(4,:,:)=[1,0,0;0,0,1;2,5,1;-1,-2,-1;0,0,0]; V(4,:)=[1;3;2;5;-11];
A(5,:,:)=[1,0,0;0,0,1;2,5,1;-1,-1,-1;0,0,0]; V(5,:)=[3;4;1;5;-13];
%A(6,:,:)=[1,0,0;0,0,1;2,7,1;-1,-2,-1;0,0,0]; V(6,:)=[3;5;2;7;-17];
%A(7,:,:)=[1,0,0;0,0,1;3,7,1;-2,-3,-1;0,0,0]; V(7,:)=[5;4;3;7;-19];
%A(8,:,:)=[1,0,0;0,0,1;2,5,1;-3,-5,-2;0,0,0]; V(8,:)=[5;5;5;5;-20];

s=0;
PP=zeros(7,3,33);
for k=1:4

for i=1:4
if abs(V(k,i))==1

P=zeros(7,3);
for j=1:(i-1)

P(j,:)=A(k,j,:);
end
for j=(i+1):4

P(j-1,:)=A(k,j,:);
end
P(4,:)=[1,1,0];
%P(5,:)=[0,0,0];
P(6,:)=A(k,i,:);
P(7,:)=[k,i,0];
%Ahora tenemos una configuracion (4,1) con P(5) el punto
%interior, el tetraedro P(1)P(2)P(3)P(5) de volumen 1, y el
%P(6) el vertice escogido del (4,1)

%Ahora la cara p1p2p3 va a ser la que extendamos a un circuito
%(2,2). Hay tres posibles maneras de hacer esto, que se
%corresponde con escoger cual sera la diagonal del circuito.
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%Para cada una de estas permutaciones, calcularemos la
%transformacion unimodular que lleva el tetraedro
% P(1)P(2)P(3)P(5) a (000),(100),(010),(001),
%en ese orden. Los 6 puntos de nuestra configuracion seran la
%imagen de p1, p2, p3, p5 y p6, junto con p4 (inalterado).
%Luego ordenaremos los puntos de acuerdo a la matroide
%orientada, guardando la posible ambiguedad explicada con la
% matroide, y evaluaremos si el tetraedro 2346 es vacio.

%P(1):
[PP,s]= eval2(1,PP,s,P,1,2,3);

%P(2):
[PP,s]= eval2(2,PP,s,P,2,1,3);

%P(3):
[PP,s]= eval2(3,PP,s,P,3,2,1);

end
end

end
PP=PP(:,:,1:s);

function [PP,s]= eval2(M,PP,s,P,i,j,k)
%Permutamos los vertices segun los valores de i,j,k:
p1=P(i,:);
p2=P(j,:);
p3=P(k,:);

P(1,:)=p1;
P(2,:)=p2;
P(3,:)=p3;
P(7,3)=M;

%Ahora calculamos la transformacion unimodular y obtenemos los 6 puntos:
[P]=trans2(P);

%Ordenamos los puntos segun la matroide orientada, y segun volumen:
[P]=reord2(P);

%Evaluamos si el tetraedro es vacios.
k1=empty(P(2,:),P(3,:),P(4,:),P(6,:));
if k1==1

%Si lo es, la configuracion es valida
s=s+1;
PP(:,:,s)=P;

end

function [P]= trans2(P)
%pi=P(i,:) son vectores fila:

%Queremos la transformacion (afin) unimodular que nos lleve
%p1-->000
%p2-->100
%p3-->010
%p5-->001

%Hacemos la traslacion que nos lleva el p1 al 000

for i=2:6
if i~=4

P(i,:)=P(i,:)-P(1,:);
end
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end
P(1,:)=[0,0,0];

%La inversa de dicha matriz es
A=zeros(3,3);
A(:,1)=P(2,:)';
A(:,2)=P(3,:)';
A(:,3)=P(5,:)';
P(1,:)=round(A\P(1,:)')';
P(2,:)=round(A\P(2,:)')';
P(3,:)=round(A\P(3,:)')';
P(5,:)=round(A\P(5,:)')';
P(6,:)=round(A\P(6,:)')';

function [P]= reord2(P)
%Guardamos en B los puntos 12456, en ese orden.
B=zeros(5,3);
B(1:2,:)=P(1:2,:);
B(3:5,:)=P(4:6,:);
v=volumevectors(B',5);

%Ahora queremos que el vector tenga mas entradas (o igual) positivas que
%negativas
if v(1)+v(2)+v(3)+v(4)+v(5)<0

v=-v;
end

vv=zeros(1,5);
for i=1:5

vv(i)=sign(v(i));
end

%Para que P contenga el circuito (1246,5), vv=+++-+
%Si no es asi, entonces se intercambian los puntos 2 y 3
if vv(1)~=1 | | vv(2)~=1 | | vv(3)~=1 | | vv(4)~=-1 | | vv(5)~=1

aux=P(2,:);
P(2,:)=P(3,:);
P(3,:)=aux;

end

%Ahora queremos que el (4,1) que corresponde a eliminar el vertice 4 tenga
%mayor o igual volumen al de eliminar el vertice 3:

%Guardamos en B los puntos 12456, en ese orden.
B3=zeros(5,3);
B3(1:2,:)=P(1:2,:);
B3(3:5,:)=P(4:6,:);
v3=volumevectors(B3',5);
%Ahora queremos que el vector tenga mas entradas (o igual) positivas que
%negativas
if v3(1)+v3(2)+v3(3)+v3(4)+v3(5)<0

v3=-v3;
end

VOL3=abs(v3(4));

%Guardamos en B los puntos 12356, en ese orden.
B4=zeros(5,3);



66

B4(1:3,:)=P(1:3,:);
B4(4:5,:)=P(5:6,:);
v4=volumevectors(B4',5);
%Ahora queremos que el vector tenga mas entradas (o igual) positivas que
%negativas
if v4(1)+v4(2)+v4(3)+v4(4)+v4(5)<0

v4=-v4;
end

VOL4=abs(v4(4));

if VOL3>VOL4
aux=P(2,:);
P(2,:)=P(3,:);
P(3,:)=aux;
aux1=P(1,:);
P(1,:)=P(4,:);
P(4,:)=aux1;

end
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A.2.4. Algorithm 3. These configurations consists of a (4, 1)-polytope with a sixth point that forms a
(2, 1)-circuit with one of its edges (interior or exterior).

• Case S. The dual oriented matroid of this configuration is the one we labeled 4.21. We will
organize the points 1 := p1 to 6 := p6 so that:

– (5, 16) forms a (2, 1)-circuit.
– 1 is the interior point of the base (4, 1)-polytope, namely the one with vertex set 2345.
– 2, 3 and 4 are chosen in increasing order of the absolute value of the volume of P i.
In terms of equivalence, the previous order is unique.

4.21 (2345, 1)

(16, 5)

(2346, 1)

(2346, 5)

234 6

5 1
With that ordering of the points, a triangulation of P is P = P 6 ∪ T2356 ∪ T2456 ∪ T3456.

Since we chose P 6 to be a (4, 1)-polytope, P will have size 6 if and only if T2356,T2456 and T3456
are empty tetrahedra.

• Case T. The dual oriented matroid of this configuration is the one we labeled 4.22. We will
organize the points 1 := p1 to 6 := p6 so that:

– (1, 56) forms a (2, 1)-circuit.
– 1 is the interior point of the base (4, 1)-polytope, namely the one with vertex set 2345.
– 2, 3 and 4 are chosen in increasing order of the absolute value of the volume of P i.
In terms of equivalence, the previous order is unique.

4.22 (2345, 1)

(234, 56)

(56, 1)

(234, 16)

234 1

5 6

With that ordering of the points, a triangulation of P is P = P 6 ∪ T2346. Since we chose P 6

to be a (4, 1)-polytope, P will have size 6 if and only if T2346 is an empty tetrahedron.

• Case U. The dual oriented matroid of this configuration is the one we labeled 4.11. We will
organize the points 1 := p1 to 6 := p6 so that:

– (5, 46) forms a (2, 1)-circuit.
– 1 is the interior point of the base (4, 1)-polytope, namely the one with vertex set 2345.
– 2 and 3 are chosen in increasing order of the absolute value of the volume of P i.
In terms of equivalence, the previous order is unique.

4.11
(2345, 1)

(46, 5)

(2346, 1)

(235, 16)

23
5

1

4

6

With that ordering of the points, a triangulation of P is P = P 6 ∪ T2356. Since we chose P 6

to be a (4, 1)-polytope, P will have size 6 if and only if T2356 is an empty tetrahedron.

function [PP1,PP2,PP3]= alg3

A=zeros(8,5,3);
V=zeros(8,5);
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A(1,:,:)=[1,0,0;0,0,1;1,1,1;-2,-1,-2;0,0,0]; V(1,:)=[1;1;1;1;-4];
A(2,:,:)=[1,0,0;0,0,1;1,2,1;-1,-1,-1;0,0,0]; V(2,:)=[1;1;1;2;-5];
A(3,:,:)=[1,0,0;0,0,1;1,3,1;-1,-2,-1;0,0,0]; V(3,:)=[1;1;2;3;-7];
A(4,:,:)=[1,0,0;0,0,1;2,5,1;-1,-2,-1;0,0,0]; V(4,:)=[1;3;2;5;-11];
A(5,:,:)=[1,0,0;0,0,1;2,5,1;-1,-1,-1;0,0,0]; V(5,:)=[3;4;1;5;-13];
A(6,:,:)=[1,0,0;0,0,1;2,7,1;-1,-2,-1;0,0,0]; V(6,:)=[3;5;2;7;-17];
A(7,:,:)=[1,0,0;0,0,1;3,7,1;-2,-3,-1;0,0,0]; V(7,:)=[5;4;3;7;-19];
A(8,:,:)=[1,0,0;0,0,1;2,5,1;-3,-5,-2;0,0,0]; V(8,:)=[5;5;5;5;-20];

%PP1 almacenara todas las configuraciones donde extendemos la arista que
%une el punto interior con uno de los vertices, hacia afuera
s1=0;
PP1=zeros(7,3,32);

%PP1 almacenara todas las configuraciones donde extendemos la arista que
%une el punto interior con uno de los vertices, hacia adentro
s2=0;
PP2=zeros(7,3,32);

%PP1 almacenara todas las configuraciones donde extendemos la arista que
%une dos de los vertices
s3=0;
PP3=zeros(7,3,96);

for k=1:8
for i=1:4

P=zeros(7,3);
v=zeros(1,4);
for j=1:(i-1)

P(j+1,:)=A(k,j,:);
v(j+1)=V(k,j);

end
for j=(i+1):4

P(j,:)=A(k,j,:);
v(j)=V(k,j);

end
%P(1,:)=[0,0,0];
P(5,:)=A(k,i,:);
P(7,:)=[k,i,0];
%Ahora tenemos la configuracion (4,1) con P(1) el punto
%interior y el vertice escogido P(5)
%v es un vector que contiene los volumenes asociados a los puntos
%p2, p3 y p4 (tiene 4 coordenadas, para simplificar)

%Ahora extendemos la arista correspondiente.
%Luego ordenaremos los puntos de acuerdo a la matroide
%orientada correspondiente, y evaluaremos los tetraedros que sea
%necesario

%Circuito (5,16)
[PP1,s1]= eval31(PP1,s1,P,v);

%------------------------

%Circuito (1,56)
[PP2,s2]= eval32(PP2,s2,P,v);

%------------------------

%Circuito (5,i6), para i=2,3,4

[PP3,s3]= eval33(1,PP3,s3,P,v,2,3,4);

[PP3,s3]= eval33(2,PP3,s3,P,v,2,4,3);

[PP3,s3]= eval33(3,PP3,s3,P,v,4,3,2);
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end
end
PP1=PP1(:,:,1:s1);
PP2=PP2(:,:,1:s2);
PP3=PP3(:,:,1:s3);

function [PP1,s1]= eval31(PP1,s1,P,v)

P(6,:)=2*P(5,:)-P(1,:);

%Comprobamos si los tetraedros son vacios
k11=empty(P(2,:),P(3,:),P(5,:),P(6,:));
k12=empty(P(2,:),P(4,:),P(5,:),P(6,:));
k13=empty(P(3,:),P(4,:),P(5,:),P(6,:));
if k11+k12+k13==3

s1=s1+1;
[P]=reord312(P,v); %ordenamos 234 segun el volumen
PP1(:,:,s1)=P;

end

function [PP2,s2]= eval32(PP2,s2,P,v)

P(6,:)=2*P(1,:)-P(5,:);

%Comprobamos si el tetraedro es vacio
k2=empty(P(2,:),P(3,:),P(4,:),P(6,:));
if k2==1

s2=s2+1;
[P]=reord312(P,v);%ordenamos 234 segun el volumen
PP2(:,:,s2)=P;

end

function [P]=reord312(P,v)

%Queremos ordenar los puntos p2,p3,p4 de manera que los volumenes asociados
%v2,v3,v4 esten ordenados de menor a mayor.

p2=P(2,:); v2=v(2);
p3=P(3,:); v3=v(3);
p4=P(4,:); v4=v(4);

if v2 < v3
if v2 < v4

P(2,:)=p2; v(2)=v2;
if v3 < v4 % v2<v3<v4

P(3,:)=p3; v(3)=v3;
P(4,:)=p4; v(4)=v4;

else % v2<v4<v3
P(3,:)=p4; v(3)=v4;
P(4,:)=p3; v(4)=v3;

end
else %v4<v2<v3

P(2,:)=p4; v(2)=v4;
P(3,:)=p2; v(3)=v2;
P(4,:)=p3; v(4)=v3;

end
else %v2>v3

if v2 > v4
P(4,:)=p2; v(4)=v2;
if v3 < v4 % v3<v4<v2

P(2,:)=p3; v(2)=v3;
P(3,:)=p4; v(3)=v4;
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else % v4<v3<v2
P(2,:)=p4; v(2)=v4;
P(3,:)=p3; v(3)=v3;

end
else %v3<v2<v4

P(2,:)=p3; v(2)=v3;
P(3,:)=p2; v(3)=v2;
P(4,:)=p4; v(4)=v4;

end
end

function [PP3,s3]= eval33(M,PP3,s3,P,v,i,j,k)
%Permutamos los vertices segun los valores de i,j,k:
p2=P(i,:); v2=v(i);
p3=P(j,:); v3=v(j);
p4=P(k,:); v4=v(k);

P(2,:)=p2; v(2)=v2;
P(3,:)=p3; v(3)=v3;
P(4,:)=p4; v(4)=v4;
P(7,3)=M;

P(6,:)=2*P(5,:)-P(4,:);
%Comprobamos si el tetraedro es vacio
k3=empty(P(2,:),P(3,:),P(5,:),P(6,:));
if k3==1

s3=s3+1;
[P]=reord33(P,v);%ordenamos 23 segun el volumen
PP3(:,:,s3)=P;

end

function [P]=reord33(P,v)

%Queremos ordenar los puntos p2,p3 de manera que los volumenes asociados
%v2,v3 esten ordenados de menor a mayor.

p2=P(2,:); v2=v(2);
p3=P(3,:); v3=v(3);

if v2 < v3
P(2,:)=p2; v(2)=v2;
P(3,:)=p3; v(3)=v3;

else %v2>v3
P(2,:)=p3; v(2)=v3;
P(3,:)=p2; v(3)=v2;

end
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A.2.5. Algorithm 4. Case X
The dual oriented matroid of this configuration is the one we labeled 6.2*. We will organize the

points 1 := p1 to 6 := p6 so that:

• 5 and 6 are the points so that P 5 and P 6 are (4, 1)-polytopes.
• 1 is the interior point of those (4, 1)-polytopes.
• 4 is such that the configuration contains the circuit (236, 45).
• 2 is such that the configuration contains the circuit (126, 45). This leaves 3 to be such that the

configuration contains the circuit (345, 16).

In terms of equivalence, the previous order is unique.

6.2*
1 (2345, 1)

(345, 16)

(126, 45)

(236, 15)

(2346, 1)

(236, 45)

5
43

2

6

With that ordering of the points, a triangulation of P is P = P 5 ∪ T2356. Since we chose P 5 to be a
(4, 1)-polytope, P will have size 6 if and only if T2356 is an empty tetrahedron.

function [PP]=alg4

[T,A,Px,Qx]=tipos;

%En esas tablas tenemos guardados los datos de todos los 32 subtetraedros
% T(p,q) de las 8 configuraciones (4,1) (4 tetraedros por cada
%configuracion):
%A: puntos
%Px: p
%Qx: q
%T: tipo del 1 al 7

%Entre dichos 32 tetraedros hay 7 tipos.
%Si hay n tetraedros de un tipo, entonces podremos pegar esos n tetraedros
%de (n sobre 2) + n maneras: formas de pegar dos de ellos + formas de pegar
%cada uno consigo mismo.
%Hay 32 maneras de pegar cada uno consigo mismo, una por cada tetraedro.

%Numero de tetraedros de cada tipo: 11,4,5,2,1,7,2, en total las formas de
%pegar dos distintos de cada tipo son, respectivamente: 55, 6, 10, 1, 0, 21
%y 1 = 94

%En total hay 32 + 94= 126 maneras de pegar dos (4,1) por un tetraedro del
%mismo tipo.

%Ahora, para cada una de estas maneras, tenemos que "pegar" dos tetraedros
%T(p,q) que son equivalentes. Es decir, existe un automorfismo que envia
%uno en el otro. En realidad existen 24 automorfismos, aunque solo algunos
%de ellos tendran coeficientes enteros. Ademas, en esta configuracion
%el punto interior de los dos (4,1) que pegamos es el mismo, asi que en
%realidad son 6 las posibilidades. Calcularemos estos automorfismos y
%comprobaremos si es entero en la funcion trans4.m

%Ahora vamos entonces primero a escoger la pareja de tetraedros que vamos a
%pegar.

%PP almacenara todas las configuraciones

s=0;
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PP=zeros(8,3,756);

for k=1:8
for i=1:4

P=zeros(8,3);
for j=1:(i-1)

P(j+1,:)=A(k,j,:);
end
for j=(i+1):4

P(j,:)=A(k,j,:);
end
%P(1,:)=[0,0,0];
P(5,:)=A(k,i,:);
P(7,:)=[k,i,0];
%Ahora tenemos la configuracion (4,1) con P(1) el punto
%interior y el vertice escogido P(5)

q=Qx(k,i);

for k1=1:8
for i1=1:4

t=0;
if T(k1,i1)==T(k,i)

if k1==k && i1>i
t=1;

elseif k1==k && i1==i
t=1;

elseif k1>k
t=1;

end
end

if t==1

Q=zeros(5,3);
for j=1:(i1-1)

Q(j+1,:)=A(k1,j,:);
end
for j=(i1+1):4

Q(j,:)=A(k1,j,:);
end
%Q(1,:)=[0,0,0];
Q(5,:)=A(k1,i1,:);
P(8,:)=[k1,i1,0];

%Ahora tenemos la configuracion (4,1) con Q(1) el punto
%interior y el vertice escogido Q(5)

%Ahora tenemos dos conf (4,1) P y Q que queremos pegar por los
%tetraedros P 1,2,3,4 y Q 1,2,3,4

%Consideramos las transformaciones unimodulares que envian Q(1) en
%P(1), es decir, que mantienen fijo el origen.
%Tenemos 6 posibilidades, que son las 6 posibles permutaciones de
%234.
%Para cada una de estas permutaciones, calcularemos la
%transformacion unimodular que lleva el tetraedro q1q2q3q4 al
%p1p2p3p4, en ese orden, y comprobamos que tenga coeficientes
%enteros.
%Luego ordenaremos los puntos de acuerdo a la matroide orientada,
%y evaluaremos si el tetraedro 2356 es vacio.

%Id

[PP,s]= eval4(1,PP,s,P,Q,q,2,3,4);
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%(23)
[PP,s]= eval4(2,PP,s,P,Q,q,3,2,4);

%(24)
[PP,s]= eval4(3,PP,s,P,Q,q,4,3,2);

%(34)
[PP,s]= eval4(4,PP,s,P,Q,q,2,4,3);

%(234)
[PP,s]= eval4(5,PP,s,P,Q,q,3,4,2);

%(243)
[PP,s]= eval4(6,PP,s,P,Q,q,4,2,3);

end
end

end
end

end
PP=PP(:,:,1:s);

function [PP,s]= eval4(M,PP,s,P,Q,q,i,j,k)
%Permutamos los vertices segun los valores de i,j,k:
q2=Q(i,:);
q3=Q(j,:);
q4=Q(k,:);

Q(2,:)=q2;
Q(3,:)=q3;
Q(4,:)=q4;
P(8,3)=M;

%Ahora calculamos la transformacion unimodular y obtenemos los 6 puntos:

[P,k0]= trans4(q,P,Q);
%k0=1 me dice que no hay ninguna coplanaridad y si la transformacion es
%entera
if k0==1

%Ordenamos los puntos segun la matroide orientada, y segun volumen:
[P]=reord4(P);
%Evaluamos si el tetraedro es vacio.
k2=empty(P(2,:),P(3,:),P(5,:),P(6,:));
if k2==1

s=s+1;
PP(:,:,s)=P;

end
end

function [P,k0]= trans4(q,P,Q)

k0=1;
%pi=P(i,:),qi=Q(i,:) son vectores fila

%Queremos la transformacion unimodular que lleve qi-->pi para cada
%i=1,2,3,4 (deja fijo el origen p1=q1)

%El output sera P, donde P(6,:) sera la imagen de q5 por esta
%transformacion unimodular

%A*(q i)=(p i)
%A1=(p i)
%A2=(q i)
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%A=A1*(A2)ˆ(-1)

A1=zeros(3,3);
A1(:,1)=P(2,:)';
A1(:,2)=P(3,:)';
A1(:,3)=P(4,:)';

A2=zeros(3,3);
A2(:,1)=Q(2,:)';
A2(:,2)=Q(3,:)';
A2(:,3)=Q(4,:)';

A=A1*inv(A2);

%Por el teorema del vector de volumenes, el indice de la aplicacion
%dividira al gcd de los volumenes. Si el tetraedro tiene volumen q,
%entonces A*q tiene numeros enteros. Queremos ver si tambien
%lo es A

A3=round(A.*q);

d=gcd(A3(1,:),gcd(A3(2,:),A3(3,:)));
d=gcd(d(1),gcd(d(2),d(3)));

if d<q
k0=0;

else
A=round(A);

end

P(6,:)=(A*Q(5,:)')';

%Ahora vamos a calcular el vector de volumenes de la nueva configuracion
%para comprobar que no haya puntos repetidos o coplanaridades.

B=P(1:6,:)';

[v,va]=volumevectors(B,6);
if k0==1 %Si la transformacion no es entera, no nos sirve de nada seguir

if va(1)==0
k0=0;

end
end

function [P]= reord4(P)

%P es una matriz de 8x3 entradas. No nos interesan las dos ultimas dos para
%nada (son meros indicativos para saber de que par de tetraedros se han
%pegado).
%Queremos coger los cinco vertices de P (filas de 2 a 6) y ordenarlos
%en el orden especificado de su matroide orientada dual.

R=P(2:6,:);

%Sabemos que el primer punto es el punto interior. Los otros 6 puntos p2 a
%p6 pasaremos a llamarles r1 a r5 para trabajar con ellos. Y luego les
%daremos su orden adecuado.
%Entonces ahora los puntos r1 a r5 (llamemos r0 al punto interior) estan
%organizados de manera que tanto r0r1r2r3r4 como r0r1r2r3r5 son
%configuraciones (4,1).
%Por otro lado, r1...r5 es una configuracion (3,2) no vacia. Primero
%queremos averiguar que puntos se encuentran el la 3-parte y cuales en la
%2-parte.
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B=R';
v=volumevectors(B,5);

vv=sort(v); %ordenamos para que quede --+++ o ---++
if vv(3)<0 %si tenemos ---++, queremos v con --+++ asi que cambiamos el

%signo
v=-v;

end

%Ahora ya tenemos que v es un vector con 3 entradas positivas y 2
%negativas. Una cosa que sabemos es que las dos entradas negativas seran un
%punto en (4,5) y otro en (1,2,3).

%Queremos reordenar la matriz de manera que tengamos ++--+ con los puntos
%(4,5) (no comunes a los tetraedros) aun en sus respectivas posiciones, y
%lo mismo con los puntos (1,2,3) (comunes a ambos

%De esta manera, el segmento r3r4 corta el triangulo de vertices r1,r2,r5
%Y el plano que contiene a este triangulo deja r3 y r0 a un lado, y
%r4 al otro. Es decir, que para que la configuracion solo tenga 6 puntos
%enteros, bastara con que el tetraedro r1,r2,r4,r5 sea vacio, lo cual
%comprobaremos luego (correspondera al p2,p3,p5,p6)

%Primero vamos a permutar los primeros 3 puntos para que sean ++- o --+

%Ahora mismo solo uno de 1,2,3 es negativo

r1=R(1,:);
r2=R(2,:);
r3=R(3,:);
r4=R(4,:);
r5=R(5,:);

if v(1)<0
R(3,:)=r1;
if v(3)<v(2)

R(1,:)=r3;
R(2,:)=r2;

else
if v(3)==v(2)

n=1;
end

R(1,:)=r2;
R(2,:)=r3;

end

elseif v(2)<0
R(3,:)=r2;
if v(3)<v(1)

R(1,:)=r3;
R(2,:)=r1;

else
if v(3)==v(1)

n=1;
end

R(1,:)=r1;
R(2,:)=r3;

end

elseif v(3)<0
R(3,:)=r3;
if v(2)<v(1)

R(1,:)=r2;
R(2,:)=r1;
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else
if v(1)==v(2)

n=1;
end

R(1,:)=r1;
R(2,:)=r2;

end

end

%Ahora mismo solo uno de 4,5 es negativo. Lo ponemos en r4

if v(4)<0
R(5,:)=r5;
R(4,:)=r4;

elseif v(5)<0
R(5,:)=r4;
R(4,:)=r5;

end

B=R';
v=volumevectors(B,5);
%Ahora nuestro vector deberia ser ++--+ o --++-. Queremos lo primero
vv=sort(v);
if vv(3)<0

v=-v;
end

P(2:6,:)=R;

%Ahora vamos a escoger el orden de 2 y 3, de manera que haya el circuito
%(126,45)
%Guardamos en R los puntos 12456, en ese orden.
B=zeros(5,3);
B(1:2,:)=P(1:2,:);
B(3:5,:)=P(4:6,:);
v=volumevectors(B',5);

%Ahora queremos que el vector tenga mas entradas (o igual) positivas que
%negativas
if v(1)+v(2)+v(3)+v(4)+v(5)<0

v=-v;
end

vv=sort(v);
for i=1:5

vv(i)=sign(v(i));
end

%Para que P contenga el circuito (126,45), vv=++--+
%Si no lo contiene, entonces se intercambian los puntos 2 y 3
if vv(1)~=1 | | vv(2)~=1 | | vv(3)~=-1 | | vv(4)~=-1 | | vv(5)~=1

aux=P(2,:);
P(2,:)=P(3,:);
P(3,:)=aux;

end
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A.2.6. Algorithm5. Case Y
The dual oriented matroid of this configuration is the one we labeled 6.1*. The oriented matroid

has one symmetry. We will organize the points 1 := p1 to 6 := p6 so that:

• 5 and 6 are the points so that P 5 and P 6 are (4, 1)-polytopes, and the volume of P 6 is smaller
or equal to that of P 5.
• 1 and 4 are the interior points of the (4, 1)-polytopes P 6 and P 5, respectively.
• 2 is such that the configuration contains the circuit (126, 45). This leaves 3 to be such that the

configuration contains the circuit (345, 16).

The ambiguity comes from the fact that the roles of 1, 2 and 6 can be exchanged, at the same time,
with those of 4, 3 and 5, respectively. In terms of equivalence, the fact that the volume of P 5 is bigger
than that of P 6, gives a unique order of the points modulo equivalence.

6.1*
(2345, 1)

(345, 16)

(126, 45)

(2356, 1)

(1236, 4)

(2356, 4)

1 4

6
2 3

5

With that ordering of the points, a triangulation of P is:

P = P 6 ∪ T1256 ∪ T1356 ∪ T1456 ∪ T2456 ∪ T3456
Since we chose P 6 to be a (4, 1)-polytope, P will have size 6 if and only if those five tetrahedra are

empty.

function [PP]=alg5

[T,A,Px,Qx]=tipos;

%En esas tablas tenemos guardados los datos de todos los 32 subtetraedros
% T(p,q) de las 8 configuraciones (4,1) (4 tetraedros por cada
%configuracion)
%A: puntos
%P: p
%Qx: q
%T: tipo del 1 al 7

%Entre dichos 32 tetraedros hay 7 tipos.
%Si hay n tetraedros de un tipo, entonces podremos pegar esos n tetraedros
%de (n sobre 2) + n maneras: formas de pegar dos de ellos + formas de pegar
%cada uno consigo mismo.
%Hay 32 maneras de pegar cada uno consigo mismo, una por cada tetraedro.

%Numero de tetraedros de cada tipo: 11,4,5,2,1,7,2, en total las formas de
%pegar dos distintos de cada tipo son, respectivamente: 55, 6, 10, 1, 0, 21
%y 1 = 94

%En total hay 32 + 94= 126 maneras de pegar dos (4,1) por un tetraedro del
%mismo tipo.

%Ahora, para cada una de estas maneras, tenemos que "pegar" dos tetraedros
%T(p,q) que son equivalentes. Es decir, existe un automorfismo que envia
%uno en el otro. En realidad existen 24 automorfismos, aunque solo algunos
%de ellos tendran coeficientes enteros.
%Vamos a pegar dos configuraciones (4,1) de manera que el punto interior de
%una sea un vertice de la otra y viceversa. Es decir, que de los 24
%automorfismos nos quedamos con 18. Calcularemos estos automorfismos y
%comprobaremos si es entero en la funcion trans5.m
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%PP almacenara todas las configuraciones
s=0;
PP=zeros(8,3,2268);

for k=1:8
for i=1:4

P=zeros(8,3);
for j=1:(i-1)

P(j+1,:)=A(k,j,:);
end
for j=(i+1):4

P(j,:)=A(k,j,:);
end
%P(1,:)=[0,0,0];
P(5,:)=A(k,i,:);
P(7,:)=[k,i,0];
%Ahora tenemos la configuracion (4,1) con P(1) el punto
%interior y el vertice escogido P(5)

q=Qx(k,i);
for k1=1:8

for i1=1:4
t=0;
if T(k1,i1)==T(k,i)

if k1==k && i1>i
t=1;

elseif k1==k && i1==i
t=1;

elseif k1>k
t=1;

end
end

if t==1

Q=zeros(5,3);
for j=1:(i1-1)

Q(j,:)=A(k1,j,:);
end
for j=(i1+1):4

Q(j-1,:)=A(k1,j,:);
end
%Q(4,:)=[0,0,0];
Q(5,:)=A(k1,i1,:);
P(8,:)=[k1,i1,0];

%Ahora tenemos la configuracion (4,1) con Q(4) el punto
%interior y el vertice escogido Q(5)

%Ahora tenemos dos conf (4,1) P y Q que queremos pegar por los
%tetraedros P 1,2,3,4 y Q 1,2,3,4

%Empezamos por considerar las transformaciones unimodulares que
%envian Q(4) (el origen) en P(4), es decir, p4 es el punto interior
%del segundo (4,1), y p1 es el punto interior del primero.

%Tenemos 6 posibilidades, que son las 6 posibles permutaciones de
%123.
%Para cada una de estas permutaciones, calcularemos la
%transformacion unimodular que lleva el tetraedro q1q2q3q4 al
%p1p2p3p4, en ese orden, y comprobamos que tenga coeficientes
%enteros.
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%Luego ordenaremos los puntos de acuerdo a la matroide orientada,
%y evaluaremos si los cinco tetraedros son vacios.

%RId
%QId
[PP,s]= eval5(1,PP,s,q,P,2,3,4,Q,1,2,3);

%Q(12)
[PP,s]= eval5(2,PP,s,q,P,2,3,4,Q,2,1,3);

%Q(13)
[PP,s]= eval5(3,PP,s,q,P,2,3,4,Q,3,2,1);

%Q(23)
[PP,s]= eval5(4,PP,s,q,P,2,3,4,Q,1,3,2);

%Q(123)
[PP,s]= eval5(5,PP,s,q,P,2,3,4,Q,2,3,1);

%Q(132)
[PP,s]= eval5(6,PP,s,q,P,2,3,4,Q,3,1,2);

%Ahora cambiaremos p2 por p4 y repetimos el proceso:

%R(24)
%QId
[PP,s]= eval5(7,PP,s,q,P,4,3,2,Q,1,2,3);

%Q(12)
[PP,s]= eval5(8,PP,s,q,P,4,3,2,Q,2,1,3);

%Q(13)
[PP,s]= eval5(9,PP,s,q,P,4,3,2,Q,3,2,1);

%Q(23)
[PP,s]= eval5(10,PP,s,q,P,4,3,2,Q,1,3,2);

%Q(123)
[PP,s]= eval5(11,PP,s,q,P,4,3,2,Q,2,3,1);

%Q(132)
[PP,s]= eval5(12,PP,s,q,P,4,3,2,Q,3,1,2);

%Ahora cambiaremos p3 por p4 y repetimos el proceso:

%R(34)
%QId
[PP,s]= eval5(13,PP,s,q,P,2,4,3,Q,1,2,3);

%Q(12)
[PP,s]= eval5(14,PP,s,q,P,2,4,3,Q,2,1,3);

%Q(13)
[PP,s]= eval5(15,PP,s,q,P,2,4,3,Q,3,2,1);

%Q(23)
[PP,s]= eval5(16,PP,s,q,P,2,4,3,Q,1,3,2);

%Q(123)
[PP,s]= eval5(17,PP,s,q,P,2,4,3,Q,2,3,1);

%Q(132)
[PP,s]= eval5(18,PP,s,q,P,2,4,3,Q,3,1,2);
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end
end

end
end

end
PP=PP(:,:,1:s);

function [PP,s]= eval5(M,PP,s,q,P,xp,yp,zp,Q,xq,yq,zq)
%Permutamos los puntos de Q segun los valores xq,yq,zq:

q1=Q(xq,:);
q2=Q(yq,:);
q3=Q(zq,:);

Q(1,:)=q1;
Q(2,:)=q2;
Q(3,:)=q3;

%Permutamos los puntos de P segun los valores xp,yp,zp:

p2=P(xp,:);
p3=P(yp,:);
p4=P(zp,:);

P(2,:)=p2;
P(3,:)=p3;
P(4,:)=p4;

P(8,3)=M;

%Ahora calculamos la transformacion unimodular y obtenemos los 6 puntos:

[P,k0]=trans5(q,P,Q);
%k0=1 me dice que no hay ninguna coplanaridad y si la transformacion es
%entera
if k0==1

P=reord5(P);
k21=empty(P(1,:),P(2,:),P(5,:),P(6,:));
k22=empty(P(1,:),P(3,:),P(5,:),P(6,:));
k23=empty(P(1,:),P(4,:),P(5,:),P(6,:));
k24=empty(P(2,:),P(4,:),P(5,:),P(6,:));
k25=empty(P(3,:),P(4,:),P(5,:),P(6,:));
if k21+k22+k23+k24+k25==5

s=s+1;
PP(:,:,s)=P;

end
end

function [P,k0]= trans5(q,P,Q)

k0=1;
%pi=P(i,:),qi=Q(i,:) son vectores fila

%Queremos la transformacion unimodular que lleve qi-->pi para cada
%i=1,2,3,4 donde p1 y q4 son el origen

%El output sera P, donde p6 sera la imagen de q5 por esta transformacion
%unimodular

%Hacemos entonces primero la traslacion que me lleva el politopo Q de
%manera que q1 va al origen (p1).

Q(2,:)=Q(2,:)-Q(1,:);
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Q(3,:)=Q(3,:)-Q(1,:);
Q(4,:)=Q(4,:)-Q(1,:);
Q(5,:)=Q(5,:)-Q(1,:);
Q(1,:)=Q(1,:)-Q(1,:);

%Ahora la aplicacion fija el origen y envia
%q1-->p1 (origen)
%q2-->p2
%q3-->p3
%q4-->p4

%A*(q i)=(p i)
%A1=(p i)
%A2=(q i)
%A=A1*(A2)ˆ(-1)

A1=zeros(3,3);
A1(:,1)=P(2,:)';
A1(:,2)=P(3,:)';
A1(:,3)=P(4,:)';

A2=zeros(3,3);
A2(:,1)=Q(2,:)';
A2(:,2)=Q(3,:)';
A2(:,3)=Q(4,:)';

A=A1*inv(A2);

%Por el teorema del vector de volumenes, el indice de la aplicacion
%dividira al gcd de los volumenes. Si el tetraedro tiene volumen q,
%entonces AA*q tiene numeros enteros. Queremos ver si tambien
%lo es A

A3=round(A.*q);

d=gcd(A3(1,:),gcd(A3(2,:),A3(3,:)));
d=gcd(d(1),gcd(d(2),d(3)));

if d<q
k0=0;

else
A=round(A);

end

P(6,:)=(A*Q(5,:)')';

%Ahora vamos a calcular el vector de volumenes de la nueva configuracion
%para comprobar que no haya puntos repetidos o coplanaridades.

B=P(1:6,:)';

[v,va]=volumevectors(B,6);
if k0==1

if va(1)==0
k0=0;

end
end
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function [P]= reord5(P)

%P es una matriz de 8x3 entradas. No nos interesan las dos ultimas dos para
%nada
%Los puntos p1 a p6 estan organizados de manera que:
%p1,p2,p3,p4 son los puntos comunes a los dos (4,1)

%p5 y p6 son los puntos no comunes

%p4 es el punto interior asociado a p6, y p1 el punto interior asociado a
%p5

%p1 y p4 estaran ordenados de manera que el volumen total del (4,1) de p1
%sea menor o igual que el de p4.
R=P(1:6,:);

%Solo queda por decidir el orden entre p2 y p3. Utilizando las matroides
%orientadas, se tienen que verificar que

%(45,a16)

%y

%(16,b45)

%son circuitos (3,2), donde a y b son p2 y p3, en algun orden.
%Vamos a escoger p2=a.

%Calculamos el vector de volumenes de p4,p5,p2,p1,p6:
B=zeros(3,5);
B(:,1)=R(4,:)';
B(:,2)=R(5,:)';
B(:,3)=R(2,:)';
B(:,4)=R(1,:)';
B(:,5)=R(6,:)';

v=volumevectors(B,5);

%Ahora queremos que el vector tenga mas entradas (o igual) positivas que
%negativas
if v(1)+v(2)+v(3)+v(4)+v(5)<0

v=-v;
end

%Ahora ya tenemos que v es un vector con 3 entradas positivas y 2
%negativas. Para que a=p2, tiene que ocurrir que este vector tiene signos
%--+++. SI esto no ocurre, entonces a=p3, y tenemos que permutar estos dos
%puntos.
vv=zeros(1,5);
for i=1:5

vv(i)=sign(v(i));
end

if vv(1)==-1 && vv(2)==-1 && vv(3)==1 && vv(4)==1 && vv(5)==1
P(2:3,:)=R(2:3,:);

else
P(2,:)=R(3,:);
P(3,:)=R(2,:);

end
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