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Abstract

The automatic determination of geometric loci is an important issue in Dynamic

Geometry. In Dynamic Geometry systems, it is often the case that locus de-

termination is purely graphical, producing an output that is not robust enough

and not reusable by the given software. Parts of the true locus may be miss-

ing, and extraneous objects can be appended to it as side products of the locus

determination process. In this paper, we propose a new method for the com-

putation, in dynamic geometry, of a locus defined by algebraic conditions. It

provides an analytic, exact description of the sought locus, making possible a

subsequent precise manipulation of this object by the system. Moreover, a com-

plete taxonomy, cataloging the potentially different kinds of geometric objects

arising from the locus computation procedure, is introduced, allowing to easily

discriminate these objects as either extraneous or as pertaining to the sought

locus. Our technique takes profit of the recently developed GröbnerCover al-

gorithm. The taxonomy introduced can be generalized to higher dimensions,

but we focus on 2-dimensional loci for classical reasons. The proposed method

is illustrated through a web–based application prototype, showing that it has

reached enough maturity as to be considered a practical option to be included

in the next generation of dynamic geometry environments.
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1. Introduction

In general, a geometric locus is a set of points satisfying some condition. For

instance, the set of points A at a given distance d to a specific point C is the

circle centered at C of radius d. For another simple example of a different kind,

let c be a given circle with center C, let Q be an arbitrary point on the circle5

and consider the locus of midpoints P of the segments CQ, as Q glides along

the circle c.

In Dynamic Geometry (DG), the term locus generally refers to loci of this

second kind: i.e. to the trajectory determined by the different positions of a

point (the tracer, as point P above), corresponding to the different instances10

of the construction determined by the different positions of a second point (the

mover, such as point Q above) along the path to which where it is constrained.

This is the case for the first standard DG systems developed in the late 80’s

(such as Cabri [1] and The Geometer’s Sketchpad [2]), but it is also true for

more recent ones, such as GeoGebra [3] or Java Geometry Expert [4].15

Note that even simple DG constructions can involve two-dimensional loci.

Consider, for instance, two circles, each one with a point moving on it. While the

locus of their midpoint is a circular region, no current DG environment would

return such set, since the corresponding locus command cannot manage two

independent mover points. Thus, our discussion is restricted to loci in construc-20

tions with exactly one degree of freedom. This approach includes standard DG

loci, and also constructions currently not covered by the locus function in inter-

active environments, such as a circle computed through its standard definition

as the locus set of points at a given distance to a given point.

There is a wide consensus among DG developers to consider locus compu-25

tation as one of the five basic properties in the DG paradigm (together with

dynamic transformation, measurement, free dragging and animation; see, for
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instance [5]).

In Section 2 we review the different approaches followed by DG environments

to address the computation of loci. We discuss the traditional numeric method,30

as well as some improvements aimed at providing a more detailed knowledge of

loci, including those coming from the field of symbolic computation. Limitations

and failures of these methods are emphasized, with a view towards providing a

benchmark to test the performance of our method, which is illustrated by the

examples in Section 5.35

Our approach considers a given locus as a certain subset of the projection set

of an associated algebraic variety (see Section 3). Many methods have been de-

veloped to obtain the Zariski closure of such projections (Gröbner bases, charac-

teristic sets, discriminant varieties, border polynomials,...). Our proposal takes

advantage of the specific features found in the recently developed GröbnerCover40

algorithm (see Section 4) to

• compute the projection set, yielding a constructible set (and not just the

algebraic set given by the Zariski closure), and

• automatically discriminate the relevant components, within the constructible

set, containing the given locus.45

The last property is achieved by developing an elaborated taxonomy for different

pieces of the aforementioned projection set, and by algorithmically assigning to

each one the corresponding label (see Section 3).

Following this taxonomy, we establish a protocol that yields a faithful sym-

bolic description of a given locus in terms of constructible sets, collecting pieces50

of the projection set featuring ‘good’ labels. In Section 4, a software tool im-

plementing our proposal is described. Finally, several examples illustrating the

method are discussed in detail in Section 5.

The provided examples show that our method overcomes limitations found

in previous proposals, and also that it allows the computation of generalized55

loci in the sense of [6], see Section 5.4.
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2. Locus Computation in Dynamic Geometry: Approaches and Lim-

itations

Sutherland’s Sketchpad [7], one of the first graphic interfaces, developed half

a century ago, already included some key concepts in the paradigm of dynamic60

geometry. Most remarkably, it introduced the use of a light pen to select and

dynamically interact with geometric objects displayed on a screen, in a way

almost identical to mouse dragging (or finger dragging on touchscreens).

In particular, for locus computation, the approach followed by Sketchpad is

basically the same as the one present in current standard DG systems, namely, it65

consists of building a set of sample locus points (a time exposure in Sutherland’s

words). Below, we briefly describe this ‘traditional’ method, as well as some

attempts towards its improvement.

2.1. The Traditional Method: Loci by Sampling

The standard approach followed by DG systems to obtain loci is based on70

sampling the path of the mover. Each sample point determines a position for

the tracer, and hence a point in the locus. This set of locus points can then be

shown as a collection of pixels on the screen, suggesting the sought locus.

On this list of locus points, most DG systems apply some simple heuristics

to join contiguous points, in order to return the locus as a continuous, (usually)75

one-dimensional object, on the screen. A first difficulty arises here, because

the applied heuristics can return aberrant loci, since small modifications in a

construction can sometimes produce significant changes of position in dependent

objects (see [8] for details).

A second problem, regardless of whether the locus is returned as a sequence80

of points or as a continuous curve, is the fact that the locus is simply a graph-

ical representation, preventing the system from working any further with such

output. For instance, since the equation of a curve (as a locus) is not available

if this locus is obtained by the traditional method, computing its tangent at a
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point becomes many times very imprecise, if not impossible altogether1.85

Another difficulty emerging from this numerical method is found when trying

to obtain the intersection of a locus with another element in the construction.

Although various solutions have been introduced in different systems, these are

essentially approximate, and they often add serious inaccuracies to the cons-

truction.90

2.2. Improvements to the Traditional Method

The search for more sophisticated ways to automatically obtain loci has led

different DG systems to consider different approaches. We summarize here the

most relevant.

2.2.1. Locus Recognition by Minimizing Distance to Algebraic Curves95

The first DG system to include a command to provide algebraic information

for a locus was Cabri. Since its release in 2003, Cabri Geometry II plus, the cur-

rent version of Cabri, incorporates a tool for computing approximate algebraic

equations for loci.

Although proper documentation of this feature is not provided by Cabrilog,100

the company behind Cabri, a schematic description of the algorithm used in the

back-end can be found in [9]. It is based on the random selection of one hundred

locus points and the computation of the best approaching polynomial curve (up

to degree six) to this collection of points. Let us point out that the limiting

factors of this approach come from sampling and fitting points to sufficiently105

high accuracy. Moreover, the number of monomials whose coefficients must be

found grows as the square of the degree.

This numerical procedure does not result, in our opinion, in a satisfactory

solution. In fact, simple locus constructions can easily give rise to algebraic

curves of degree higher that 6 (see, for instance, [10]), that would go undetected110

1See comment by the creator of The Geometer’s Sketchpad about the construction of

tangents to a locus set as the limit of secants in http://mathforum.org/kb/message.jspa?

messageID=1095049
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for Cabri. Moreover, no comment is attached to the locus output concerning

the (in)exactness of the algebraic information provided, hence inducing a non

expert user to take it as an accurate one (cf. [11], where Cabri is shown to

return a cubic as equation for the curve of Watt).

Likewise, in [12, 13], the authors consider also the rendering of some (many)115

sample points of a locus set constructed by ruler and compass as the initial data

of an algorithm to determine the degree and parameters of an algebraic curve

‘resembling’ the locus. In a second step, a collection of such curves, obtained

varying the position of basic construction points, is analyzed in order to get

more general knowledge about the involved locus.120

Although impressively precise in certain situations, the algorithm is prone

to inaccuracies for curves of high degrees ([12, p. 63]). Besides these problems,

the authors report other drawbacks in the method, that make it unsuited for

efficient implementation. In summary, we consider this a promising, but still

open approach to automated locus determination.125

2.2.2. Randomized Theorem Proving Techniques in Cinderella

In [14, 15], the authors (and developers of Cinderella [16]) review how their

software uses automatic theorem proving to add extra information to certain

elements in a geometric construction. In particular, Cinderella uses automated

deduction techniques based on randomized methods to improve the knowledge130

about some loci.

Roughly speaking, randomized theorem proving consists on checking a prop-

erty for a sufficient number of examples. Moreover, randomized theorem proving

could provide a valid certificate answer if tested on a sufficient number of ex-

amples related to the degrees of the involved polynomials. For instance, given a135

construction including three points A, B and C, the system will take as a fact

that the points are aligned if the line AB contains the point C for a large set

of instances obtained by randomly modifying the position of points A and B.

From then on, the system will take the elements line(A,B) and line(B,C) to

be identical.140
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In particular, for any locus in a diagram (i.e. a finite set of sample locus

points), the line defined by the first two sample points, is constructed. The

system then checks whether the rest of the sample points belong to this line,

not only for that particular instance of the diagram, but also for any instance

in a large set of random modifications of the diagram. In that case, the locus145

element is replaced by that line (together with its equation). If the locus is not

identified as a line, a similar process is followed using the circle defined by the

first three locus points. If not identified as circle either, the conic defined by

the first five interpolation points is taken as candidate.

This replacement, when successful, not only facilitates the rendering process150

of the locus, but also allows the system to use it for further constructions, such

as intersections with other objects.

Although approximate in nature, the method provides an effective way to im-

prove locus generation for many constructions. However, the current Cinderella

implementation can deal only with lines and conics, since there are no other155

locus objects defined by equations in this system. This makes this approach a

limited answer to the general question of locus implementation in DG.

Related to randomized theorem proving, but more sophisticated, is numer-

ical algebraic geometry, which also exploits the idea of drawing conclusions

about algebraic sets by numerically testing whether sample points satisfy al-160

gebraic conditions. Moreover, it uses sampling over the complex numbers, not

just real numbers, to strengthen its performance (see [17]). Although no DGS

has yet incorporated numerical algebraic geometry, it should provide a strong

numerical alternative for locus computation to the approaches mentioned in this

note.165

2.2.3. Locus Discovery with Algebraic Elimination Techniques

In many instances, a dynamic geometry construction concerning a locus

computation can be viewed as a set of polynomial equations, corresponding to

the analytic expression of the geometric objects involved in the description of

the mover and tracer points. Then, roughly speaking, computing a locus can170
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be understood as obtaining an equivalent set of polynomials, but only in the

variables corresponding to the tracer, i.e. as eliminating the remaining variables.

For this task, constructive elimination tools, such as Gröbner bases [18, 19]

and Wu’s method [20, 21], are crucial. Although some authors have used Wu’s

method for algebraic loci computation (e.g. [22], [23], [24], albeit with no GUI,175

and [25]) the use of Wu’s method for a true automatic generation of loci within

a DG system remains unexplored. On the other hand, Gröbner bases have been

widely used for automatic theorem proving [26], [27], [28]. In particular, in [29], a

method based on Gröbner bases for automatic discovery is described. Moreover,

linking Cabri, the most popular DG system at the time, and the Gröbner basis180

method for automatic discovery, in an intelligent program for learning Euclidean

geometry, is explicitly proposed. Specializing this approach, an algorithm for

automatic discovery of loci based on Gröbner bases was introduced in [30].

The elimination (using Gröbner bases) of some variables in the polynomial

ideal obtained as translation of the construction, leaves us with a set of polyno-185

mials in the tracer-point coordinates only. The zero set of these polynomials is,

in general, a superset of the sought locus set.

A problem with this algebraic approach is that the obtained algebraic set

may contain extra components, sometimes due to the fact that the method

returns only Zariski closed sets2, some other times due to degenerate instances190

of the construction.

For instance, let us consider the limaçon of Pascal, a conchoid that can be

constructed as a DG locus as follows. Let O be a fixed point on a circle c, let l

be a line passing through O and P (a general point on c). Let Q be a point on

l such that distance(P,Q) = k, where k is a constant. The limaçon of Pascal is195

the locus set traced by Q as P moves along c, as shown on Figure 1 (left).

We make the following assignment of coordinates: P (x1, x2), Q(x, y). For

example, if we consider that O is the point (0, 2), k = 1 and (0, 0) the center of c

2That is, the complete solution set of a system of polynomial equations. No missing points

are allowed (see 5.1).
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Figure 1: Limaçon of Pascal as the locus set traced by Q as P runs along the circle c (left)

and Limaçon with extra circle (right).

we get the ideal I = (x21+x22−4, (x1−x)2+(x2−y)2−1, x(x2−2)−x1(y−2)) whose

polynomials correspond, respectively, to the following geometric constraints:200

P is in the circle of center (0, 0) and radius 2, distance(P,Q) = 1 and Q ∈

Line(P,O). Eliminating variables x1 and x2, we obtain the following product

of two polynomials (x4 + 2x2y2 + y4 − 9x2 − 9y2 + 4y + 12)(x2 + y2 − 4y + 3).

While the first factor provides the implicit equation for the actual limaçon, the

second factor corresponds to a spurious circle associated to the degenerate case205

for which P = O, when the line l ceases to exist (see Figure 1, right).

Example 1 in Section 5 provides an example of locus for which this procedure

would return an algebraic set with extra points, due to the Zariski closedness

of the result.

Despite its limitations, this algebraic approach was a significant improve-210

ment, not only over the traditional method, but also over all other approaches

mentioned above. The provided analytical knowledge about general algebraic

loci, albeit sometimes incorrect, is a prerequisite for integrating loci as stan-

dard objects in DG environments. Thus, the approach attracted the attention

of developers, being this approach behind the LocusEquation command in the215

current version of GeoGebra3. Furthermore, it has also been implemented by

3See http://wiki.geogebra.org/en/LocusEquation_Command
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the DG system JSXGraph using remote computations on a server [31], an idea

previously developed in [32].

3. A Taxonomy of Loci as Projections

As described in Section 2, many dynamic geometry constructions in the220

plane can be viewed as polynomial systems on the variables corresponding to

the symbolic coordinates of the objects in the construction. While in standard

dynamic geometry loci always involve a mover point, our approach subsumes

these loci into a more general setting. In this way, simple loci as the circle

defined through a point and a radius, or loci where there is not a mover bound225

to a linear object (see 5.4), can be efficiently found.

We start by distinguishing the variables corresponding to the coordinates of

the tracer T (x, y) from the rest of variables, say x1, . . . , xn, corresponding to the

remaining points and objects in the construction; in particular the coordinates of

the mover if they are explicitly specified. Note that the consideration of a mover230

point comes from the constructive strategy followed in most DG environments

when considering loci. However, in a constraint-based geometric system, no

mover point is involved when searching for a locus, since more than one point

can be generally used to drag the construction. Thus, although for the sake of

clarity we talk about mover points when describing the examples, the reader235

should be aware that no algebraic preeminence is given to any point other than

the locus point.

The translation of the geometrical constraints defining the construction re-

sults in a system F of polynomial equations in the variables x1, . . . , xn with

coefficients given by polynomials in the parameters x, y.240

Our approach consist of detecting for which values of the parameters (x, y)

(tracer) there exist solutions of the system F . The set of equations is defined

over a computable field K, that we always take to be Q, whereas the values of

the variables (and parameters) must be considered over an algebraically closed

extension K of K, that we take to be C. Our approach involves the comparison245
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of dimensions of different algebraic varieties. Since the dimensions of complex

and real varieties are in general different, we have opted to work in the complex

framework, as customary in the field (see, for instance, [15, 21]).

Let us point out that the algebraic study of loci that we are developing

in dimension 2 for classical reasons, can be generalized in theory to higher250

dimensions. In fact Gröbner covers are not constrained to work only in the

2D case. Here, we focus on 2-dimensional loci since 3D DG environments are

not yet quite developed. Furthermore, there are specific issues concerning the

application of the theory of parametric polynomial systems to 3D DG. Thus,

we delay such a study to a future communication.255

Before giving our definition of locus, let us state some basic concepts about

locally closed sets and constructible sets.

A locally closed set L is a difference of algebraic varieties L = V(E) \

V(N). As explained in [33], for a locally closed set, a canonical P-representation

expressed in terms of prime ideals can be obtained:260

Prep(L) = {{pi, pij : 1 ≤ j ≤ ri, r} : 1 ≤ i ≤ r}

so that

L =

r⋃
i=1

V(pi) \

 ri⋃
j=1

V(pij)


As illustrative examples one can consider the following simple locally closed

sets:

S1 = V(x) \V(y(y − 1))

Prep(S1) = V(x) \ (V(x, y) ∪V(x, y − 1))

p1 =< x >, p11 =< x, y >, p12 =< x, y − 1 >

S2 = V(xy) V(x+ y − 1)

Prep(S2) = (V(x) V(x, y − 1)) ∪ (V(y) \V(x− 1, y))

p1 =< x >, p11 =< x, y − 1 >, p2 =< y >, p21 =< x− 1, y >

Each element V(pi)\
(⋃ri

j=1 V(pij)
)

is called a component of L and is repre-

sented by {pi, {pij : 1 ≤ j ≤ ri}}, that, by abuse of terminology, is also denoted265
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component whenever there is no ambiguity. In the canonical representation, the

irreducible varieties are expressed in terms of prime ideals on account of the

well known one-to-one correspondence between irreducible varieties and prime

ideals. Given a component as above, the variety V(pi) (or its representative

pi) is called the top of the component. Similarly, the varieties V(pij) (or their270

representatives pij) are called the holes. In particular, the dimension of each

hole variety is smaller than the dimension of its corresponding top variety.

A constructible set is a union of locally closed sets. In general, a union of lo-

cally closed sets is not locally closed, but we can also give a canonical description

in terms of disjoint embedded locally closed subsets and represent them canoni-275

cally in P-representations. Furthermore, we consider another representation for

constructible sets, the C-representation, defined as follows.

Proposition 3.1 (C-representation of constructible sets). Let S ⊂ K
m

be a constructible set. There exist uniquely determined radical ideals ((a(`), b(`)) :

1 ≤ ` ≤ s), such that280

• a(1) ⊂ b(1) ⊂ a(2) ⊂ b(2) ⊂ . . . ⊂ a(s) ⊂ b(s)

• S(`) = V(a(`)) \V(b(`)),

• S(`) = V(a(`)) where S(`) is the Zariski closure of S(`)

• S(`) \ S(`) = V(b(`))

• S =
⋃

` S
(`) is a disjoint union of embedded locally closed sets,285

• dim(a(1)) > dim(b(1)) > . . . > dim(a(s)) > dim(b(s)).

The set of pairs ((a(`), b(`)) : 1 ≤ ` ≤ s) is called the C-representation of S, and

S(`) is called the `th level of the constructible set S.

The canonical C-representation of a constructible set expresses the set as a

hierarchical and disjoint union of locally closed subsets given in C-representation.290

Proof: Let S be the closure of S. a(1) can be described canonically by S =

V(a(1)). If S is locally closed, then the complement of S wrt S will be closed,
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and in that case b can be canonically defined by V(b) = S \ S ⊂ S and so

S = V(a(1)) \ V(b). If S \ S is not closed, then b(1) can be defined by the

closure V(b1) = S \ S so that V(b(1)) ⊂ S = V(a(1)), and denote S(1) =295

V(a(1)) \V(b(1)). We have

S(1) = V(a(1)) \V(b(1)) = S \
(
S \ S

)
⊆ S \

(
S \ S

)
= S and

S \ S(1) = S \
(
S \V(b(1))

)
⊆ S \

(
S \V(b(1))

)
= V(b(1))

Thus S(1) ⊆ S and its complement S \ S1 wrt to S is again constructible and

included in V(b(1)). Particularly V(a(2)) = S \ S1 and V(a(2)) ⊆ V(b(1)). The

process can be continued until S(s+1) becomes empty.

To prove the strict inclusions

a(1) ⊂ b(1) ⊂ a(2) ⊂ b(2) ⊂ . . . ⊂ a(s) ⊂ b(s),

we have to consider the prime decomposition of the radical ideals

a(1), b(1), a(2), b(2), . . . , a(s), b(s),

and observe that, by construction, no prime ideal in the decomposition of one300

of those ideals can be equal to a prime ideal in the decomposition of the next

radical ideal in the chain, as we have always consider closures and complements.

From this result, as the dimension of an irreducible variety containing another

irreducible variety is strictly higher than the latter, the result of the descending

dimensions of the chain follows. �305

Note 3.2. Because of the strict decreasing dimension of the hierarchical de-

scription, a constructible set of dimension 1 is not only constructible, but is

also locally closed.

We can proceed now with the definition of a locus. As stated above, a

locus in DG is translated into a set of parametric polynomial equations F ⊆310

Q[u,x] where u = (x, y) are the parameters (representing the tracer) and x =

(x1, . . . , xn) the variables. Consider its solutions:

V(F ) = {(u,x) ∈ C2+n : ∀f ∈ F, f(u,x) = 0}

13



Denote by π1 and π2 the projections onto the parameter and variable space,

respectively:

π1 : C2+n −→ C2 π2 : C2+n −→ Cn

(u,x) 7→ u (u,x) 7→ x

We can now introduce a generic formal definition of a locus in algebraic315

terms.

Definition 3.3. The generic locus L associated to the parametric polynomial

system F (u,x), is the set L = π1(V(F )) ⊂ C2.

Roughly speaking, the locus is the set of points (x, y) satisfying the polyno-

mials in F . Looking at F as a parametric polynomial system, we will discuss320

this system attending to the number, finite or infinite, of solutions of x1, ...xn in

terms of parameters x, y. As a first step in the classification process at the base

of our taxonomy, we split the complex locus L = π1(V(F )) into two disjoint

subsets, regarding the dimension of the solution set for the variables correspond-

ing to a specific value of the parameters: the normal locus and the non-normal325

locus. This distinction comes from the fact that a point in a DG locus is usually

produced by a finite set of values of the variables.

Definition 3.4 (Normal and Non-normal locus). Normal points are those

points u ∈ C2 of the locus for which dim(π2(V(F ) ∩ π−1
1 (u))) = 0. The points u

of the locus for which dim(π2(V(F ) ∩ π−1
1 (u))) > 0 are called non-normal. The330

set of all normal points is called the normal locus and the set of all non-normal

points is called the non-normal locus.

Proposition 3.5. The normal and non-normal loci are constructible sets.

Proof: By Chevalley’s theorem [34, IV.13.1.3 and IV.13.1.5], we know that

the set {u ∈ C2 : dim(V(F ) ∩ π−1
1 (u)) < d} is open (in the Zariski topology)335

for any d ∈ N. In particular, for d = 1, we obtain that the normal locus is

constructible.
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For an arbitrary dimension d we have that

{u ∈ C2 : dim(V(F ) ∩ π−1
1 (u)) = d}

is equal to

{u ∈ C2 : dim(V(F ) ∩ π−1
1 (u)) < d+ 1}

minus

{u ∈ C2 : dim(V(F ) ∩ π−1
1 (u)) < d},

which is the difference of two open sets, and hence constructible. This im-

plies that the non-normal locus is a union of constructible sets and hence con-

structible. �340

Proposition 3.5 allows us to further subdivide the locus set by considering

the components associated to the canonical representations of the normal and

non-normal locus as constructible sets. Informally speaking, a part of the locus

is distinguished if it violates the one-to-one correspondence between the locus

points and the corresponding set of variable values.345

Definition 3.6 (Normal and Special components). A component Cs of the

normal locus is special if dim(Cs) > 0 and dim(π2(V(F ) ∩ π−1
1 (Cs))) = 0.

The remaining components of the normal locus are normal.

Definition 3.7 (Degenerate and Accumulation components). The com-

ponents Cd of the non-normal locus of dimension greater than 0 are considered350

degenerate components, whereas the zero-dimensional components are accumu-

lation points of the locus.

The geometric relevance of this algebraic classification of the different parts

of a locus is open to interpretation by the user. Dynamic Geometry systems

could present the collection of different parts (with the corresponding typology)355

of the computed locus, so the user would decide which pieces to discard or to

keep as pertinent in a particular context.

Based on our experience (see Section 5), we will discard the degenerate com-

ponents as geometrically irrelevant, as they usually correspond to degenerate
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instances of a construction, such as two coincident vertices in a triangle. How-360

ever, we consider the accumulation points as forming part of the (geometric)

locus, since they represent special points that are determined by infinitely many

values of the variables. Examples of both phenomena can be found in the bat-

tery of examples included in the web prototype described in Section 4.2 ([35],

Locus 7 and Locus 12 respectively).365

Finally, let us point out that the relevance of our proposal for a taxonomy

is that, in the many instances we have worked with so far, we have never had

to split one component (in the sense of Definitions 3.6 or 3.7) in order to keep

a part of that component as relevant and to throw away the other part as non

adequate for the locus computation.370

4. Algorithm and Web Implementation

In this Section we address the following problem: how to effectively and effi-

ciently compute the different components of a locus, according to Definitions 3.6

and 3.7 above. Here we propose the use of the recently developed GröbnerCover

algorithm to automatically detect the different components of a locus in a DG375

system. This algorithm, inscribed in the theory of parametric polynomial sys-

tems solving, has as input a finite set of parametric polynomials, and outputs a

finite partition of the parameter space into locally closed subsets together with

polynomial data, from which the reduced Gröbner basis for a given parameter

point can be directly determined.380

What follows is a summary of the main properties of this algorithm, whose

details can be found in [33].

Let I ⊂ Q[u][x] be a polynomial ideal for the parameters u = u1, . . . , um

and the variables x = x1, . . . , xn and consider V(I), the solution set of the

system given by I:385

V(I) = {(u,x) ∈ Cm+n : ∀f ∈ I, f(u,x) = 0}

Given the ideal I ⊂ Q[u][x] (and a monomial order in the variables), its
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Gröbner cover (GC) is a set of pairs {(Si, Bi) : 1 ≤ i ≤ s} of (segment, basis),

that classifies the parameter space Cm by the kind of solutions in the variables:

1. The segments Si ⊂ Cm are disjoint.

2. The segments Si are locally closed subsets of the parameter space Cm,390

expressed in the canonical P-representation, namely

Si =
⋃
j

(
V(pij) \

(⋃
k

V(pijk)

))
,

and (pij , (pijk : 1 ≤ k ≤ sij) is called the jth component of the ith GC-

segment.

3. Associated to each segment Si there is a basis Bi ⊂ Q[u][x] that specializes

to the reduced Gröbner basis of I for every point u ∈ Si of the segment.395

4. The kind of solution in the variables is given by the set of leading power

products (lpp’s) of the bases Bi, that are fixed for each GC segment Si

(and is also explicitly given by the algorithm). Thus, for all points in the

segment, the ideal I has the same number of solutions.

5. Moreover, if the ideal I is homogeneous, then the lpp’s sets are different on400

each segment. (The lpp’s of the homogenized ideal are also explicitly given

by the algorithm for each segment Si as they characterize the segments.)

4.1. The Locus Algorithm

Based on the output of the GröbnerCover algorithm applied to the system

F associated to a DG locus, the Locus algorithm in Table 1 computes and405

classifies the locus components.

Definitions 3.4, 3.6 and 3.7 allow us to assign to each segment of the Gröbner

cover a first locus taxonomy, regarding simply the set of leading power products

of the bases (lpp). We obtain segments of three types:

Type 1 Segments with basis {1} do not belong to the locus. In particular, the410

generic segment, which is the unique open segment in C2 (having thus

dimension 2) is expected to have basis {1}, so the locus components are

expected to have dimension less or equal to 1.
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Input: G = {(Si, Bi, lppi) : i ≤ i ≤ s} the Gröbner cover of an ideal

where Si = ∪jCij and Cij = {(pij , {pijk : 1 ≤ k ≤ rij}) : 1 ≤ j ≤ ri}.

Output: L = Locus(G), the components of the P-representation of the

locus

L = {{qi, {qij : 1 ≤ j ≤ si}, typei} : 1 ≤ i ≤ s}

begin

C1 = Select the segments of G with dim(lppi) = 0 # normal-segments

C1 = Specialize the basis on every component of C1 and mark the

component Normal if the basis continues to depend on the u’s and

Special if not

C2 = Select all the components of the segments of G with dim(lppi) > 0

# non-normal segments

L1 = LCUnion(C1);

marking the components of L1 as Normal or Special inheriting

the character of the full

L2 = LCUnion(C2);

Mark the components of L2 of dim(C) = 0 and dim(C) > 0

# respectively as Accumulation and Degenerate components

L = L1 ∪ L2

end

Table 1: Locus algorithm
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Type 2 Segments with a finite number of solutions correspond to the normal

locus.415

Type 3 Segments with an infinite number of solutions correspond to the non-

normal locus.

Inside the normal locus segments of type 2, specializing the basis over each

component allows us to refine the locus taxonomy. If the specialized basis

does not depend on the parameters u, then the component is labeled ‘Special’.420

Otherwise it is labeled ‘Normal’.

The non-normal locus segments of type 3 need not be previously classified.

To obtain the components of the constructible locus sets, the Locus algo-

rithm has to collect now separately the components of both kinds of locus: the

components of the normal segments of type 2 and of the non-normal segments425

of type 3. For this purpose, it uses the LCUnion algorithm (see [33]) which is

designed to compute the canonical P-representation of the addition of locally

closed components given in P-representation. LCUnion takes the components

to be added and outputs the canonical P-representation of the first level of the

resulting constructible set, and it also returns the components that have not430

been used because they belong to higher levels of the constructible set. To

build the whole constructible set one has to iterate LCUnion with the remain-

ing components. In fact, by Remark 3.2, the additions to be done are locally

closed, and so it suffices to use LCUnion only once.

For the normal locus, since the top varieties of the union are also tops of435

some component of the components of type 2 that are added, the label ‘Normal’

or ’Special’ is inherited from the tops in LCUnion.

For the non-normal locus, it suffices to add the components of type 3 using

LCUnion, and then label the resulting components as ‘Accumulation’ if the

resulting component of the constructible set has a finite number of points, and440

‘Degenerate’ if it contains infinitely many points.

The normal and the non-normal loci are disjoint, since a point in the param-

eter space cannot be normal and non-normal, and the GröbnerCover algorithm
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forms these subsets by adding segments that are disjoint. But the components

inside the normal locus can have non-empty intersection and in that case the445

intersection points will belong to both components.

However, ‘Accumulation’ and ‘Degenerate’ components of the non-normal

locus are disjoint, since ‘Accumulation’ points must be isolated points not ad-

herent to any higher dimensional component, for in that case it would be incor-

porated to the higher dimensional component when considering the union.450

4.2. Web implementation

The Locus algorithm detailed in the previous section provides four different

kinds of components for a locus set, namely, normal, special, degenerate and

accumulation components. Although all of them are algebraically meaningful,

only the normal and accumulation components of a locus have been considered455

true geometric parts of a dynamic geometry locus.

Following this criterion, a prototype web application that provides the ac-

curate algebraic and graphic description of a geometric locus in a DG system

has been developed. This prototype, freely accessible in [35] (where the code is

moreover available), includes a battery of 12 representative examples.460

The system consists of a drawing canvas, where the computed locus is dis-

played together with the initial elements. It is based on the free DG system

GeoGebra4 and the open source CAS Sage5.

More concretely, to obtain the algebraic description of a given locus, the al-

gebraic knowledge obtained from a construction introduced through a GeoGebra465

applet is automatically encoded and sent to a Sage server, where it is remotely

processed by Singular [36], a system bundled inside the Sage distribution.

Despite the technicalities of the remote interconnection of GeoGebra and

Sage, the web application is presented as a simple web page with a GeoGebra

applet, where to construct/upload a locus. Given a locus construction (specified470

4http://www.geogebra.org
5http://www.sagemath.org
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using a predetermined set of GeoGebra commands), the prototype provides the

algebraic description of the locus set by just pressing one button. The process

goes roughly as follows.

Despite the technicalities of the remote interconnection of GeoGebra and

Sage, the web application is presented as a simple web page with a GeoGebra475

applet, where to construct/upload a locus. Currently, there is a reduced list of

admissible GeoGebra commands involving points (Point, Midpoint), lines (Line,

PerpendicularLine) and circles (Circle), together with intersecting objects (In-

tersect) and the standard Locus command (see the prototype web page, where

links to the exact meaning of used commands are given). For a locus construc-480

tion, the prototype provides the algebraic description of the locus set by just

pressing one button. The process goes roughly as follows.

First, the XML description of the GeoGebra construction is sent to a sagecell

server [37]. On the server, the construction follows an algebraization process as

specified by a special library [38]. The obtained parametric polynomial system485

is then fed into an implementation in Singular of the GröbnerCover algorithm.

The results are finally returned to the user in text form as well as graphically

in the applet.

A screen capture of the web page with an accurate description of the limaçon

of Pascal discussed in Section 2.2 is shown in Figure 2. It provides its graph490

(thick dotted) together with its description as an algebraic set. Note that no

extra special component is included in the description, unlike the description

provided by standard algebraic methods, as discussed in Section 2.2.

Although only the normal and accumulation components of a locus, as pro-

vided by the algorithm, are used by the system when describing the locus, all495

four sets of components are provided when pressing the Show components (from

GC algorithm) button. The following is the textual information provided by the

prototype, showing the different components for the limaçon of Pascal, where

the extra circle mentioned in Section 2.2 is identified as special.

Components from GC algorithm:500
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Normal components: [[[x^4+2*x^2*y^2+y^4-12*x^3-8*x^2*y-12*x*y^2

-8*y^3+53*x^2+48*x*y+33*y^2-102*x-64*y+ 56]]]

Accumulation components: []

Special components: [[[x^2 + y^2 - 6*x - 8*y + 24]]]

Degenerate components: []505

Note that the goal is not to provide a system for a complete general use, but

to show a proof of concept of the feasibility of using sophisticated algorithms like

the GröbnerCover to supplement the symbolic capabilities of existing dynamic

geometry systems, as well as to show the advantage of connecting different

systems by using web services.510

5. Examples

5.1. Example 1: Sketchpad Classic Construction

We consider the original locus example by Sutherland in [7, p. 102]6 that

can be described as follows:

Let A(xa, ya), B(xb, yb) and C(xc, yc) be three fixed points, and a and b515

two lines passing respectively through A and B. Let c be the circle with center

C and radius r. Consider a point G on the circle c as the mover point. The

line CG intersects a in a point I and b in a point H. We take as tracer the

intersection point J of lines AH and BI (see Figure 3).

We revisit this example through a simple Gröbner based elimination ap-520

proach, as well as through our proposed method.

Assigning symbolic coordinates to H(x1, y1), I(x2, y2), G(x3, y3), J(x, y),

and considering that the equations of lines a and b can be written as m(X −

xa) − (Y − ya) = 0 and n(X − xb) − (Y − yb) = 0 respectively, it is easy to

establish the polynomials for the construction:525

6Available at http://www.cl.cam.ac.uk/techreports/
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Figure 2: A screen capture of the prototype web page.
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F = (x3 − xc)2 + (y3 − yc)2 − r2,

m(x2 − xa)− (y2 − ya), n(x1 − xb)− (y1 − yb),∣∣∣∣∣∣∣∣∣
x1 y1 1

x3 y3 1

xc yc 1

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
x2 y2 1

x3 y3 1

xc yc 1

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
x y 1

xa ya 1

x1 y1 1

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
x y 1

xb yb 1

x2 y2 1

∣∣∣∣∣∣∣∣∣ .
(1)

In order to minimize the number of parameters, we fix points A(0, 0), B(3, 0),

and the radius r = 5.

To determine the locus, we use basic elimination first. Computing the

Gröbner basis of the ideal F (xa = 0, ya = 0, xb = 3, yb = 0, r = 5) of for-

mula (1) to eliminate the variables x1, y1, x2, y2, x3, y3 (with the graded reverse530

lexicographical order grevlex(x1, y1, x2, y2, x3, y3), grevlex(xc, yc, n,m, x, y)) we

obtain

mnycx
2 + ((m+n)xc− yc− 3n)y2 + (mn(3− 2xc))xy− 3mnycx+ 3mnxcy (2)

that gives a parametric locus depending on the parameters (xc, yc,m, n).

Let us now compute the locus using our algorithm. We must manually

fix point C and the parameters m,n to have a concrete locus problem, as the535

algorithm does not efficiently deals with free parameters in its current version.

We choose C(1, 3), m = 1 and n = −1/2.

The specialized system is now:

F0 = (x3 − 1)2 + (y3 − 3)2 − 25,

x2 − y2, x1 − 3 + 2y1,

x1y3 − 3x1 + 3x3 − x3y1 + y1 − y3,

x2y3 − 3x2 + 3x3 − x3y2 + y2 − y3,

−xy1 + x1y,

−xy2 + 3y2 − 3y + x2y

(3)

In Singular we call:
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> LIB "grobcov.lib";7540

> ring R=(0,x,y),(x1,y1,x2,y2,x3,y3),dp;

> ideal F0= ---;

> locusdg(grobcov(F0));

where in F0= ---, the lines are to be substituted by equations (3) of the ideal.

We obtain:545

[1]:

[1]:

_[1]=(3x^2+xy-9x+2y^2+3y)

[2]:

[1]:550

_[1]=(y^2+8y+65)

_[2]=(7x-y-60)

[2]:

_[1]=(2y+5)

_[2]=(2x-1)555

[3]:

_[1]=(4y+7)

_[2]=(2x-7)

[3]:

Normal,1560

which, as expected, gives the conic of formula (2) specialized for the concrete

values of the parameters, from which two real points (1/2,−5/2), (7/2,−7/4)

and two complex points (8 + i,−4 + 7i), (8− i,−4− 7i), are excluded.

Once the locus equation is known, it is trivial to check that the conic is

tangent to lines AC and BC, a statement mentioned by Sutherland in [7].565

This locus is example 10 in our prototype [35]. By clicking the Find locus

button, we obtain the picture of Figure 3, where the description of the locus as

7Library available at http://www-ma2.upc.edu/montes/
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Figure 3: Description of locus in Example 1 as provided by the prototype.

a conic with two missing (real) points is provided.

It is instructive to analyze where the missing points come from. Dragging

the mover point G to make line CG parallel to line a, makes line BI change,570

approaching a limit position parallel to CG and a. Thus BI and a do not

intersect, I goes to infinity, and the system has no solution. This happens

for the missing point (1/2,−5/2). Things are analogous for the missing point

(7/2,−7/4).

5.2. Example 2: Offset of a Circle575

Although in this paper we focus on locus computation, our approach can be

efficiently used for computing other derived elements in a geometric construc-

tion, as it will be reported in a future note. Consider, for instance, the 1–offset

of a circle g centered at the origin with radius 1. The offset is described by

the system consisting of the equations of the base circle, the family f of circles580

enveloping the offset, and the expression ∂f
∂a

∂g
∂b −

∂f
∂b

∂g
∂a :
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F = a2 + b2 − 1,

(x− a)2 + (y − b)2 − 1,

4(y − b)a− 4(x− a)b,

(4)

Applying the GröbnerCover algorithm to the ideal

J = 〈a2 + b2 − 1, (x− a)2 + (y − b)2 − 1, 4(y − b)a− 4(x− a)b〉,

we obtain the following three segments:

Nr. Segment Basis lpp

1 C2 \
(
V(x2 + y2 − 4) ∪V(y, x)

)
{1} {1}

2 V(x2 + y2 − 4) {2b− y, 2a− x} {b, a}

3 V(y, x) {a2 + b2 − 1} {a2}

The Locus algorithm produces two disjoint components with different char-585

acter:

V(x2 + y2 − 4) Normal

V(y, x) \V(1) Accumulation

The normal component is the circle of radius 2, as expected. For the ac-

cumulation point (0, 0) we have π2(π−1
1 (0, 0)) = V(a2 + b2 − 1) and the whole

basic circle is part of the solution (a 1–dimensional set of points).

5.3. Example 3: Detecting Bad Mover Positions590

When illustrating the prototype (Figure 2) we considered the limaçon of

Pascal, showing that the extra circle x2 + y2 − 6x− 8y + 24 = 0 comes from a

degeneration due to the coincidence of points M and B. It can happen that a

degeneracy of the construction forces the GröbnerCover algorithm to consider

the whole space of parameters as solution. More concretely, the first segment of595

the GröbnerCover algorithm is called the generic segment. It is the unique open

segment in the whole parameter space, i.e. it consists of the whole parameter

space except a variety (of dimension less than the one of the parameter space

itself).
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Figure 4: Locus described by T (and P ) as M runs along its circle.

We assumed in the definition of the locus, that the generic segment has basis600

{1}, i.e. there is no solution of the system on it, as the locus is expected to be

of dimension less than the parameter space. Nevertheless, as mentioned above,

it could happen that a construction collapses for some values of the variables.

For these values, the number of constraints decreases and almost all points are

valid parameter values for the system having a solution.605

As an example, consider the following locus construction (see Figure 4). The

point M(y1, y2) runs over the circle with center at O(3, 1) and radius OA, where

A = (3, 4). We construct the line parallel to the line AM passing through O and

the line perpendicular to it passing through the point B = (3,−2). Both lines

intersect at point P (x1, x2). Construct the line AP and the circle with center610

M and radius MP . We define this intersection as the tracer point(s): T (x, y).

The polynomial system describing the problem is the ideal F given by

F = 〈(y1 − 3)2 + (y2 − 1)2 − 9,

(4− y2)(x1 − 3) + (y1 − 3)(x2 − 1),

(y1 − 3)(x1 − 3)− (4− y2)(x2 + 2),

(4− x2)x+ (x1 − 3)y + 3x2 − 4x1,

(x− y1)2 + (y − y2)2 − (y1 − x1)2 − (y2 − x2)2〉

(5)

28



When M coincides with A (i.e. y1 = 3, y2 = 4), the above system reduces to

F = 〈(3− 3)2 + (4− 1)2 − 9,

(4− 4)(x1 − 3) + (3− 3)(x2 − 1),

(3− 3)(x1 − 3)− (4− 4)(x2 + 2),

(4− x2)x+ (x1 − 3)y + 3x2 − 4x1,

(x− 3)2 + (y − 4)2 − (3− x1)2 − (4− x2)2〉

(6)

Thus, every point in the plane satisfies it. Note that since the line AM is

undefined, there are no constraints on T , which can be then placed anywhere615

in the plane. Since we are computing loci at most linear, the generic segment

can be discarded without losing solutions. This is the approach currently used

in the prototype.

Finally, the result consists of two irreducible normal components

V(x2 − 6x+ y2 + y + 7)

V(x4 − 12x3 + 2x2y2 − 13x2y + 236x2 − 12xy2 + 78xy − 1200x+ y4

−13y3 + 60y2 − 85y + 1495)

This locus is example 9 in our prototype [35]. By clicking the Find locus620

button, we obtain the locus description shown on Figure 5.

5.4. Example 4: Automatic Deduction of the Steiner–Lehmus Theorem.

In the previous locus examples, the mover point is constrained to a one

dimensional object, so to sample its path, the user/system has to perform a

bound dragging, as defined in [6]. There, Arzarello et al. introduce other types625

of dragging in order to analyze different kinds of student interactions with dy-

namic constructions. The process of searching for plausible geometric conjec-

tures is often closely related to dragging manipulations. One of these dragging

modalities, the dummy locus dragging, is defined as

...moving a basic point so that the drawing keeps a discovered630

property; the point which is moved follows a path, even if the users

do not realize this: the locus is not visible and does not ‘speak’ to
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Figure 5: Description of locus as provided by the prototype.

the students, who do not always realize that they are dragging along

a locus.

We show a non trivial illustration of this kind of locus: we use our locus635

algorithm to prove the classic Steiner-Lehmus theorem that establishes necessary

and sufficient conditions for a triangle to have two equal-length bisectors (we

refer the reader to [39] for details, where a detailed study of the theorem in

relation to the GröbnerCover algorithm is discussed).

More concretely, let us consider the locus set of points C for which the640

theorem is true; that is, given a triangle ABC, we search for the points C for

which one bisector at angle A is equal to one bisector at angle B (internal or

external bisectors, see Figure 6).

Setting points A and B as origin and unit respectively, and assigning coor-

dinates C(x, y), M(x1, y1), T (x2, y2), P (p, 0), R(r, 0), the construction leads to645
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Figure 6: One bisector at A (AM or AM ′) is equal to one bisector at B (BT or BT ′).

the following polynomial system:

x2 + y2 − p2,

yx1 − (x+ p)y1,

y(1− x1) + (x− 1)y1,

(x− 1)2 + y2 − (r − 1)2,

y(1− x2) + (x+ r − 2)y2,

xy2 − yx2,

x21 + y21 = (x2 − 1)2 + y22 .

The GröbnerCover algorithm applied to this system provides 9 segments, each

of them having specific properties concerning the number of solutions, and the

Locus algorithm group them into components. From the locus perspective we

are only interested in the normal and accumulation solutions. Applying the650

Locus algorithm to the grobcov output, we obtain two normal components
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and a degenerate one. In the description, the following curve appears:

C1 = V(8x10 − 40x9 + 41x8y2 + 76x8 − 164x7y2 − 64x7 + 84x6y4

+246x6y2 + 16x6 − 252x5y4 − 164x5y2 + 8x5 + 86x4y6

+278x4y4 + 31x4y2 − 4x4 − 172x3y6 − 136x3y4 + 20x3y2 + 44x2y8

+122x2y6 + 14x2y4 − 10x2y2 − 44xy8 − 36xy6 + 12xy4 + 9y10

+14y8 − y6 − 6y4 + y2)

The components, with their character, are:

C1 \
(
V(y, x) ∪V(y, x− 1) ∪V(y, 2x2 − 2x− 1)

)
Normal

V(2x− 1) \V(y, 2x− 1) Normal

V(y) Degenerate

In [39], the whole GröbnerCover algorithm output is analyzed, using the

sign of the variables p and q on the solutions, and a detailed study of which655

parts of the curves and special points correspond to which equalities between

bisectors of A and B. In particular, the second component corresponds to the

classical Steiner-Lehmus theorem, well know since the XIXth century, where the

inner bisector of A is equal to the inner bisector of B. The fact that the outer

bisectors are also equal over this component is a new result obtained as a side660

product.

It is worth remarking that the first component has only been known since

the development of computer algebra methods. The third component, as well

as the holes of the two normal components, correspond to degenerate triangles.

Figure 7 shows all three locus components.665

Using our approach, this kind of “dummy” locus computation in DG sys-

tems could be easily automated, so allowing students to tackle general what if

questions.

6. Conclusion

In this paper, a taxonomy for locus computation in dynamic geometry is670

proposed. By using the efficient GröbnerCover algorithm for parametric poly-

nomial systems solving, any interactive construction involving a linear locus is
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Figure 7: Locus of the Steiner-Lehmus theorem

automatically analyzed, and the locus solutions are grouped in such a way that

the geometrically relevant locus components are returned.

This taxonomy efficiently classifies the algebraic parts of loci, allowing users675

and systems to advance into a more reliable automatic description of geometric

constructions. Using this classification, a prototype web application based on a

well-known dynamic geometry system that automatically identifies the different

components of a locus has been implemented.

Although limited to the complex field, experimental results show that our680

approach is both effective and efficient from a practical point of view, making

this technology mature enough to be incorporated in forthcoming versions of

standard interactive environments. However, since most of these systems cur-

rently use a variety–oriented representation of geometric objects, an extension

of their data structure would be required for the systems to completely profit685

from our results.
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