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Abstract: We obtain estimates for convergence rates of the eigenelements
(λε, uε) for the Laplace operator in a domain Ω ⊂ R

3 periodically perforated
along a plane γ = Ω ∩ {x1 = 0}. The boundary conditions are of the Dirichlet
type on ∂Ω and of the Robin type, involving a large parameter O(ε−κ), on the
boundary of the cavities. The small parameter ε denotes the period while the
size of each cavity is O(εα). Here we consider the most significant case where
α = κ = 2.
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1. Introduction and Setting of the Problem

Let Ω be a bounded domain in R
3, with a smooth boundary ∂Ω. Assume that
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γ = Ω ∩ {x1 = 0} 6= ∅ is a domain on the plane {x1 = 0}. We denote by G0

the ball of radius 1 centered at the origin of coordinates. For a domain B, and
δ > 0, we denote by δB = {x | δ−1x ∈ B }, and we set

G̃ε =
⋃

z∈Z′

(aεG0 + εz) ≡
⋃

j∈Z′

Gj
ε,

where Z′ is the set of points of the form z = (0, z2, z3) with integer components
z2, z3; aε = C0ε

α, C0 is a fixed positive number, ε > 0 is a parameter that we
make converging towards zero, and α ≥ 1. We define

Gε =
⋃

j∈Υε

Gj
ε,

where Υε = {j ∈ Z
′

: Gj
ε ⊂ G̃ε, G

j
ε ⊂ Ω, ρ(∂Ω, G

j
ε) ≥ 2ε}. The number of Gj

ε

with index j ∈ Υε is |Υε| = O(ε−2).

Let Ωε be Ωε = Ω \ Gε, Sε = ∂Gε, ∂Ωε = ∂Ω ∪ Sε. Let H
1(Ωε, ∂Ω) be the

space completion with respect to the norm of H1(Ωε) of the set of functions
u ∈ C∞(Ωε), u vanishing in a neighborhood of ∂Ω.

Let us consider the eigenvalue problem





−∆uε = λεuε in Ωε,
uε = 0 on ∂Ω,
∂νu

ε + ε−κauε = 0 on Sε,
(1)

where ∂ν denotes the derivative along the unit outward normal vector ν to ∂Ωε

on Sε, a ≡ a(x) is a strictly positive continuously differentiable function in Ω
and κ ∈ R. Throughout this paper, we set the value of the parameters α and κ
at κ = α = 2.

The variational formulation of (1) is: to find λε, uε ∈ H1(Ωε, ∂Ω), u
ε 6= 0,

such that
∫

Ωε

∇uε∇v dx+ ε−κ

∫

Sε

auεv ds = λε
∫

Ωε

uεv dx, ∀v ∈ H1(Ωε, ∂Ω). (2)

For each fixed ε > 0, problem (2) is a standard eigenvalue problem in the couple
of spaces H1(Ωε, ∂Ω) ⊂ L2(Ωε), with a discrete spectrum. Let us consider
{λεk}

∞
k=1 the increasing sequence of eigenvalues, repeated according to their

multiplicities, and let {uεk}
∞
k=1 denote the associated eigenfunctions which are

assumed to form an orthonormal basis in L2(Ωε).



ON CORRECTORS FOR SPECTRAL PROBLEMS IN... 311

As stated in Gómez et al [1], for α = κ = 2, the homogenized spectral
problem of (1) is:





−∆u = λu in Ω− ∪ Ω+,
u = 0 on ∂Ω,
[u] = 0, [∂x1

u] = 4πC0hu on γ,
(3)

where h ≡ h(x) is the strictly positive continuously differentiable function de-
fined by

h(x) =
a(x)C0

1 + a(x)C0
, x ∈ Ω.

Problem (3) has a discrete spectrum; let us consider {λk}
∞
k=1 the increasing

sequence of its eigenvalues repeated according to their multiplicities, and let
{uk}

∞
k=1 denote the associated eigenfunctions which are assumed to form an

orthonormal basis in L2(Ω).
The convergence of the spectrum of (2) towards that of (3) has been proved

in Gómez et al [1]. This result in Gómez et al [1] does not provide bounds for
convergence rates of eigenvalues and the associated eigenfunctions, since it is
obtained from general convergence results for nonlinear stationary problems,
and convergence rates for the solutions of these stationary problems rely on the
assumption of smoothness of the solution of the limiting problem. Since we are
dealing with eigenvalue problems, such an assumption makes no sense.

The aim of this paper is to obtain precise bounds for discrepancies of the
eigenvalues of (1) and (3) and for the associated eigenfunctions in terms of
the eigenvalue number and the parameter ε. We emphasize that obtaining
these bounds proves to be essential in order to determine, e.g., estimates of
time in terms of ε. That is, the time in which certain solutions of the associ-
ated evolution problems can be approached through time-dependent functions
constructed from (3) (see Pérez [5] and Pérez [6] in this connection). Associ-
ated evolution problems arise, e.g., in Ecology: see Gómez et al [1] for further
references on the model and related works in the literature. For the proofs,
we use a strong result from the spectral perturbation theory (cf. Lemma 2)
for ε-dependent Hilbert spaces and operators, which provides convergence for
the spectrum when a certain convergence for associated stationary problems is
known.

In this paper, since we are dealing with a linear problem, we can obtain
the required smoothness for the solution of the stationary problem (8) (cf.
Lemma 3). Consequently, avoiding the assumptions on smoothness of solutions
in Gómez et al [1] we obtain lower order powers of ε in the bounds for the dis-
crepancies but in these bounds we can control the dependence on the data f in
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the norm of L2(Ω) which is a usual topology for the spectral problems here con-
sidered (cf. (13) and (14)). To prove the above mentioned smoothness, we use a
variant of results on interior estimates of Sobolev norms for solutions of second
order elliptic equations with Dirichlet boundary conditions (cf. Shaposhnikov
[7]), and Sobolev embedding theorems which also imply some restriction on the
dimension of the space under consideration.

It should be noted that the critical case here considered where k = α = 2
provides the most singular limiting problem among all the possible relations
between the parameters α and κ in Gómez et al [1]: it appears a nonlinear
dependence on the data a(x) on the transmission condition on γ (see (3)).
Also, it should be emphasized that the technique here developed extends, for a
three dimensional domain, to all the cases where α ≥ 1 and κ ∈ R. The cases
different from κ = α = 2 are considered in Gómez et al [2]. In these problems,
different test functions are used and different homogenized spectral problems
are obtained: either the average on γ depends linearly on a(x) or it does not
contain any dependence on a(x).

We note that the spectral problem here considered differs from others in the
literature: in this respect, we refer to Gómez et al [2] for comparison. Finally, we
mention that Section 2 contains some notations and preliminary results used to
prove the convergence in Section 3. Theorem 4 contains the convergence results
for the stationary problems and Theorem 5 contains the spectral convergence.

2. Preliminary Results

For the sake of the completeness, we introduce some lemmas bellow; in these
lemmas, and in what follows, C and Ck denote constants independent of ε.
Lemma 1 provides sharp general estimates for thin domains; Lemma 2 provides
results from the spectral perturbation theory. Lemma 3 provides bounds in
W 1,4 and L∞ norms for solutions.

Lemma 1. Let Πε be Πε = Ω ∩ {−ε/2 < x1 < ε/2}. Then, for all
w ∈ H1

0 (Ω), we have

‖w‖L2(Πε) ≤ Cε1/2‖∇w‖L2(Ω) and ‖w‖L4(Πε) ≤ Cε1/8‖∇w‖L2(Ω). (4)

Sketch of the proof. See, e.g., Lemma 2.6 in Gómez et al [1] for the first
inequality in (4). The second one can be obtained from the Hölder inequality

‖w‖L4(Πε) ≤ ‖w‖
1/4
L2(Πε)

‖w‖
3/4
L6(Πε)

, the first inequality in (4), and the embedding

of H1
0 (Ω) into L

6(Ω). We refer to Gómez et al [2] for further explanation.
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Lemma 2. Let Hε and H0 be two separable Hilbert spaces with the scalar
products (·, ·)ε and (·, ·)0 respectively. Let Aε ∈ L(Hε) and A0 ∈ L(H0). Let
W be a subspace of H0 such that ImA0 = {v

∣∣ v = A0u : u ∈ H0} ⊂ W. We
assume that the following properties are satisfied:

(C1) There exists an operator Rε ∈ L(H0,Hε) such that, for any f ∈ W,
‖Rεf‖ε → ‖f‖0 as ε→ 0.

(C2) Aε and A0 are positive, compact and self-adjoint operators on Hε and H0

respectively. Besides, the norms ‖Aε‖L(Hε) are bounded by a constant
independent of ε.

(C3) For any f ∈ W, ‖AεRεf −RεA0f‖ε → 0 as ε→ 0.

(C4) The family of operators Aε is uniformly compact, i.e., for any sequence
f ε in Hε such that supε ‖f

ε‖ε is bounded by a constant independent of
ε, we can extract a subsequence f ε

′

verifying ‖Aε′f ε
′

−Rε′w0‖ε′ → 0, as
ε′ → 0, for certain w0 ∈ W.

Let {µεi}
∞
i=1 ({µ

0
i }

∞
i=1, respectively) be the sequence of the eigenvalues of A

ε (A0,
respectively) with the usual convention of repeated eigenvalues. Let {wε

i }
∞
i=1

and ({w0
i }

∞
i=1, respectively) be the corresponding eigenfunctions which are as-

sumed to be an orthonormal basis in Hε (H0, respectively). Then, for each
fixed k there exist a constant Ck and a εk > 0 such that, for ε ≤ εk,

|µεk − µ0k| ≤ Ck sup ‖A
εRεu−RεA0u‖ε , (5)

where the sup is taken over all the functions u in the eigenspace associated with
µ0k, u such that ‖u‖0 = 1.

In addition, for any eigenvalue µ0k of A0 with multiplicity s (µ0k = µ0k+1 =
· · · = µ0k+s−1), and for any w eigenfunction corresponding to µ0k, with ‖w‖0 = 1,

there exists wε, wε being a linear combination of eigenfunctions {wε
j}

j=k+s−1
j=k

of Aε corresponding to {µεj}
j=k+s−1
j=k , such that

‖wε −Rεw‖ε ≤ Ck‖A
εRεw −RεA0w‖ε. (6)

We refer to Theorems 1.4 and 1.7 in Chapter III of Oleinik [4] for the proof
of Lemma 2.

Let us define Hε = L2(Ωε) and H0 = L2(Ω) with the usual scalar products.
Let us introduce the operators Aε : Hε → Hε and A0 : H0 → H0. For f ε ∈ Hε,
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we set Aεf ε = uε where uε ∈ H1(Ωε, ∂Ω) is the unique solution of

∫

Ωε

∇uε∇v dx+ ε−κ

∫

Sε

auεv ds =

∫

Ωε

f εv dx, ∀v ∈ H1(Ωε, ∂Ω). (7)

Consequently, the eigenelements of Aε are {((λεk)
−1, uεk )}

∞
k=1 with {(λεk, u

ε
k)}

∞
k=1

the eigenelements of (2). In the same way, for f ∈ H0, we set A0f = u where
u ∈ H1

0 (Ω) is the unique solution of

∫

Ω

∇u∇v dx+ 4πC0

∫

γ

huv dx̂ =

∫

Ω

fv dx, ∀v ∈ H1
0 (Ω), (8)

and, the eigenelements ofA0 are {((λk)
−1, uk)}

∞
k=1 with {(λk, uk)}

∞
k=1 the eigenele-

ments of (3). Above x̂ denotes x̂ = (x2, x3). We also set W = H1
0 (Ω).

Finally, we define Rε : L2(Ω) → L2(Ωε) the restriction operator; namely,
(Rεf)(x) = f(x) if x ∈ Ωε.

Let us introduce the extension operator Pε from H1(Ωε, ∂Ω) into H1
0 (Ω),

such that for w ∈ H1(Ωε, ∂Ω) we set Pεw = w̃ the function which satisfies:
w̃(x) = w(x) for x ∈ Ωε, and

‖w̃‖H1(Ω) ≤ C‖w‖H1(Ωε) and ‖∇w̃‖L2(Ω) ≤ C‖∇w‖L2(Ωε). (9)

This allows us to prove the estimates for uε = Aε(Rεf) (see Lemma 2.7 and
Theorem 2.1 in Gómez et al [1]):

‖∇uε‖L2(Ωε) + ε−κ/2‖uε‖L2(Sε) ≤ C‖f‖L2(Ωε),

‖ũε‖H1(Ω) ≤ C‖f‖L2(Ωε).
(10)

Lemma 3. Let u be the solution of (8) with f ∈ L2(Ω). Then,

‖u‖H1(Ω) ≤ C‖f‖L2(Ω),

‖u‖W 1,4(Ω) ≤ C‖f‖L2(Ω),

‖u‖L∞(Ω) ≤ C‖f‖L2(Ω).

(11)

Sketch of the proof. From the Poincaré inequality, taking v = u in (8),
we get the first estimate in (11). For the second estimate, we consider the
function ψ(x) = u(x) exp(g(x)) where u is the solution of (8) and g is defined
by g(x) = −4πC0h(0, x̂)x1 if x1 > 0 and g(x) = 0 otherwise. Then, we show



ON CORRECTORS FOR SPECTRAL PROBLEMS IN... 315

that ψ satisfies the equation −∂xi(c ∂xiψ+biψ) = f in Ω, for certain functions
c ∈ C0,1(Ω) and bi ∈ L∞(Ω), i = 1, 2, 3, and the Dirichlet condition ψ = 0 on
∂Ω. Then, using an adaptation of the proof in Theorem 1 in Shaposhnikov [7]
for n = 3, q = 4 and p = 12/7 (see also Section V.5 in Morrey [3]) we have
‖ψ‖W 1,4(Ω) ≤ C(‖ψ‖L1(Ω)+ ‖f‖L12/7(Ω)). We refer to Gómez et al [2] for further
explanation.

Consequently, by definition of ψ, the smoothness of h, the embedding of
the spaces Lr with 1 ≤ r ≤ ∞, and the first estimate in (11), we obtain the
second estimate in (11). The last estimate in (11) can be obtained directly
from the second estimate, namely the estimate for the W 1,4(Ω)-norm, and the
embedding of W 1,4(Ω) into L∞(Ω).

Finally, in order to prove the convergence, we introduce the test function
Wε. Let P

j
ε be the center of the ball Gj

ε and we denote by T j
ε the ball of radius

ε/4 with center P j
ε . Let us consider the functions wj

ε (j ∈ Υε) as the solutions
of the following problems

∆wj
ε = 0 in T j

ε \Gj
ε, wj

ε = 1 on ∂Gj
ε, wj

ε = 0 on ∂T j
ε . (12)

We define the function Wε ∈ H1(Rn) by extending by 1 for x ∈ Gε and by 0
for x ∈ R

n \
⋃

j∈Υε

T j
ε . As is well-known (see, e.g., Gómez et al [1]), the solution

of (12) can be constructed explicitly, 0 ≤ Wε ≤ 1, and the weak convergence
Wε ⇀ 0 in H1

0 (Ω), as ε→ 0, holds.

3. Convergence Results when α = κ = 2

Theorem 4. Let Wε and h be the functions defined by (12) and (3)
respectively. For f ∈ L2(Ω), let u be the solution of (8) and let uε be the
solution of (7) for f ε equal to the restriction of f to Ωε. Then, we have

‖uε − u+Wεhu‖
2
H1(Ωε)

+ ε−2‖uε − u+ hu‖2L2(Sε)
≤ Cε1/8‖f‖2L2(Ω) (13)

and
‖uε − u‖2L2(Ωε)

≤ Cε1/8‖f‖2L2(Ω). (14)

Proof. Let us consider (7) and (8) with v = uε − u+Wεhu ∈ H1(Ωε, ∂Ω)
and v = ũε − u +Wεhu ∈ H1

0 (Ω) as test functions, respectively. Subtracting
both equalities, we obtain

‖∇(uε − u+Wεhu)‖
2
L2(Ωε)

+ ε−2

∫

Sε

a (uε−u+ hu)2 ds = S1 + S2 + S3,
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where

S1 =

∫

Gε

∇u∇(ũε − u+Wεhu) dx, S2 = −

∫

Gε

f(ũε − u+Wεhu) dx,

S3 =

∫

Ωε

∇(Wεhu)∇(uε − u+Wεhu) dx

+4πC0

∫

γ

hu(ũε − u+Wεhu) dx̂

−ε−2

∫

Sε

a (1−h)u(uε − u+ hu) ds.

Now, considering the volume of Gε, the definition and the boundedness of Wε

in H1(Ω), the smoothness of h, (11), (10) and (4), we obtain

|S1| ≤ ‖∇u‖L4(Gε)|Gε|
1/4‖∇(ũε−u+Wεhu)‖L2(Ω) ≤ Cε‖f‖2L2(Ω) and

|S2| ≤ ‖f‖L2(Gε)ε
1/2‖∇(ũε−u+Wεhu)‖L2(Ω) ≤ Cε1/2‖f‖2L2(Ω).

Let us estimate S3. Using

∫

Ωε

∇(Wεhu)∇w dx =

∫

Ωε

∇Wε∇(huw) dx −

∫

Ωε

∇Wε∇(hu)w dx

+

∫

Ωε

Wε∇(hu)∇w dx

for w = uε − u +Wεhu, the Green formula in the first integral on the right
hand side above, and the definition of Wε we have that S3 = S3a + S3b + S3c
where

S3a =
∑

j∈Υε

∫

∂T j
ε

∂νw
j
εhu(uε − u+Wεhu)ds

+4πC0

∫

γ

hu(ũε − u+Wεhu) dx̂,
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S3b =
∑

j∈Υε

∫

∂Gj
ε

∂νw
j
εhu(uε − u+Wεhu)ds

−ε−2

∫

Sε

a (1−h)u(uε − u+ hu)ds ,

S3c = −

∫

Ωε

∇Wε∇(hu)(uε − u+Wεhu) dx

+

∫

Ωε

Wε∇(hu)∇(uε − u+Wεhu) dx.

Taking into account the explicit computation of the normal derivatives of
wj
ε, the estimate

∣∣∣
∑

j∈Υε

∫

∂T j
ε

w ds−
π

4

∫

γ

w dx̂
∣∣∣≤ Cε1/2‖∇w‖L2(Ω), ∀w ∈ H1

0 (Ω)

(see Lemma 2.5 in Gómez et al [1] for the proof), and the trace theorem in
H1(Ω), we have

|S3a| ≤ Cε1/2‖∇(hu(ũε − u+Wεhu))‖L2(Ω).

In addition, from the smoothness of h, the embedding theorem of H1
0 (Ω) into

L6(Ω), the boundedness of Wε in H1(Ω), (10) and (11), it follows that

|S3a| ≤ Cε1/2(‖∇u‖L4(Ω)‖ũε − u+Wεhu‖L4(Ω)

+ ‖u‖L∞(Ω)‖∇(ũε − u+Wεhu)‖L2(Ω)) ≤ Cε1/2‖f‖2L2(Ω).

Finally, by the definition of Wε and h, we can rewrite S3b as

S3b =
4

ε− 4C0ε2

∫

Sε

hu (uε − u+ hu) ds.

Thus, computing the area of Sε and using (11) and (10) we get

|S3b| ≤ Cε−1(‖u‖L∞(Ω)|Sε|
1/2‖uε‖L2(Sε) + ‖u‖2L∞(Ω)|Sε|)

≤ Cε‖f‖2L2(Ω).
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In a similar way,

|S3c| ≤ ‖∇Wε‖L2(Ω)‖∇(hu)‖L4(Πε)‖ũε−u+Wεhu‖L4(Πε)

+|Πε|
1/4‖∇(hu)‖L4(Πε)‖∇(ũε−u+Wεhu)‖L2(Πε),

and by the boundedness of Wε in H1(Ω), (11), (10) and (4) we get

|S3c| ≤ Cε1/8‖f‖2L2(Ω).

Now, gathering all the above estimates, we conclude that

‖∇(uε − u+Wεhu)‖
2
L2(Ωε)

+ ε−2‖uε − u+ hu‖2L2(Sε)

≤ Cε1/8‖f‖2L2(Ω). (15)

To obtain (13) from (15), we consider the Poincaré inequality for the H1-
extension of uε − u+Wεhu to Ω, Pε(uε − u+Wεhu) ∈ H1

0 (Ω), which satisfies
(9) for w = uε − u+Wεhu.

Finally, from (13), the definition of Wε, the smoothness of h, (4) and (11),
we can write

‖uε − u‖2L2(Ωε)
≤ ‖uε − u+Wεhu‖

2
L2(Ωε)

+ ‖Wεhu‖
2
L2(Ωε)

≤ C(ε1/8‖f‖2L2(Ω) + ‖u‖2L2(Πε)
)

≤ C(ε1/8‖f‖2L2(Ω) + ε‖∇u‖2L2(Ω)) ≤ Cε1/8‖f‖2L2(Ω).

Consequently, (14) holds and the theorem is proved.

Theorem 5. Let {λεk}
∞
k=1 and {λk}

∞
k=1 be the eigenvalues of problem

(1) and (3), respectively. Then, for each fixed k there exists a constant Ck

independent of ε such that

|λεk − λk| ≤ Ckε
1/16, (16)

holds for sufficiently small ε. In addition, for any eigenvalue λk of (3) with
multiplicity s (λk = λk+1 = · · · = λk+s−1), and for any u eigenfunction corre-
sponding to λk, with ‖u‖L2(Ω) = 1, there exists ũε, ũε a linear combination of

eigenfunctions {uεk}
r=k+s−1
r=k of (1) corresponding to {λεk}

r=k+s−1
r=k , such that

‖ũε − u‖L2(Ωε) ≤ Ckε
1/16. (17)
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Proof. On account of (10) and (14), it is self-evident that the properties
(C1)–(C3) of Lemma 2 are satisfied. Let us prove property (C4) in Lemma 2.
In order to do this, for the f ε ∈ L2(Ωε), as stated in property (C4), we consider
f̂ ε ∈ L2(Ω) the extension of f ε by zero inside Gε. We have that ‖f̂ ε‖L2(Ω)

is bounded by a constant independent of ε and consequently, there is a sub-
sequence ε′ → 0 and a certain f0 ∈ L2(Ω) such that f̂ ε

′

⇀ f0 in L2(Ω).
Considering uε′ = Aε′Rε′ f̂ ε

′

and w0 ∈ H1
0 (Ω) solution of (8) for f = f0, we

rewrite the proof in Theorem 4 with minor modifications, and we obtain that
‖uε′ − w0‖L2(Ωε) → 0, as ε′ → 0. Consequently, property (C4) also holds.

Now, applying Lemma 2, we have that for each fixed k,

∣∣(λεk)−1 − (λk)
−1

∣∣ ≤ Ck sup ‖uε,k − u0,k‖L2(Ωε) (18)

where the sup is taken over all the functions fk in the eigenspace associated
with (λk)

−1, fk such that ‖fk‖L2(Ω) = 1, uε,k and u0,k are uε,k = AεRεfk and
u0,k = RεA0fk respectively. But, (14) allows us to assert

‖uε,k − u0,k‖
2
L2(Ωε)

≤ Ckε
1/8‖fk‖

2
L2(Ω) ≤ Ckε

1/8 (19)

for Ck a certain constant independent of ε. From this last inequality, (18) reads
|(λεk)

−1 − (λk)
−1|2 ≤ Ckε

1/8 which ensures the boundedness of (λεk)
−1 by a

constant independent of ε and consequently the estimate for the eigenvalues
(16) holds.

Finally, let us note that the estimate for the eigenfunctions (17) also holds
applying (6) and (14).
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