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aSoftware Technologies, Ik4-Ikerlan Research Center, 20500, Mondragón, Spain
bSoftware Engineering and Real-Time Group, Universidad de Cantabria, 39005, Santander, Spain

Abstract

Dynamic scheduling techniques, and EDF (Earliest Deadline First) in particular, have demonstrated their ability to
increase the schedulability of real time systems compared to fixed-priority scheduling. In distributed systems, the
scheduling policies of the processing nodes tend to be the same as in stand-alone systems and, although few EDF
networks exist, it is foreseen that dynamic scheduling will gradually develop into real-time networks. There are some
response time analysis techniques for EDF scheduled distributed systems, mostly derived from the holistic analysis
developed by Spuri. The convergence of the holistic analysis in context of EDF distributed systems with shared
resources had not been studied until now. There is a circular dependency between tasks’ release jitter values, response
times and preemption level ceilings of shared resources. In this paper we present an extension of Spuri’s algorithm
and we demonstrate that its iterative formulas are non-decreasing, even in the presence of shared resources. This
result enables us to assert that the new algorithm converges towards a solution for the response times of the tasks and
messages in a distributed system.

Keywords: Real-Time, Schedulability Analysis, Response Time Analysis, Holistic Analysis, EDF, Distributed
Systems

1. Introduction

In the domain of on-line real-time scheduling and analysis there are two main lines of work: fixed and dynamic
priority techniques (in both cases we refer to task level priorities). Although fixed priority (FP) scheduling techniques
are more used in the industrial field due to their simplicity and predictability under overload conditions, dynamic
priority scheduling techniques, and concretely EDF (Liu and Layland, 1973), have been demonstrated to achieve more
efficient exploitation of the computation resources (Buttazzo, 2005). This advantage is very important in embedded
systems with cost restrictions.

Real-time systems can be deployed on different kind of topologies: single processor, distributed or multiprocessor
systems. Multiprocessor system scheduling can be differentiated in two types (Carpenter et al., 2004; Baker, 2005):
partitioned or global. In the partitioned systems the tasks are preallocated in a specific processor during the design
phase and each processor has its own scheduler. Even though in distributed systems communication overhead is bigger
than in partitioned systems, from the point of view of the real-time analysis, a partitioned system and a distributed sys-
tem where tasks are also statically allocated to processors have similar behaviour. On the contrary, in global systems
tasks are dynamically assigned to a processor at execution time by a single scheduler. In distributed and partitioned
systems, the scheduling policies of the processing nodes tend to be the same as in single processors and therefore
there is a trend towards dynamic priorities, which allow making better use of the available resources. Although few
EDF networks exist, it is foreseen that dynamic scheduling will gradually develop into real-time networks.

There are different techniques to analyse the schedulability of a real-time system, i.e., the ability of the system
to meet all its timing requirements. These techniques can be classified in different groups: utilization bound tests,
demand bound tests and response time analysis among others. Response time analysis techniques calculate upper
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bounds on the worst case response times of all the tasks in the systems and stipulate that the system is schedulable if all
of them meet their deadlines. Many authors (Audsley et al., 1993; Harter Jr, 1987; Joseph and Pandya, 1986; Palencia
et al., 1997, 1998; Palencia and González Harbour, 2003, 2005, 1998, 1999; Pellizzoni and Lipari, 2007; Spuri,
1996a,b; Tindell and Clark, 1994; Tindell et al., 1994b) have published different response time analysis techniques for
different system models and scheduling policies. The results of response time analysis provide a very intuitive way of
reasoning about the worst-case that can happen in a real-time system, allowing us to know whether the system is more
or less loaded and where the bottlenecks are. Since these techniques obtain as a result worst-case response time of all
the tasks, system analysts can know which tasks are overloaded or near to be overloaded. This is a big advantage over
other techniques, such as some utilization bound tests, which just provide a yes/no answer to the schedulability of the
system.

This work focuses on response time analysis for distributed systems and partitioned multiprocessor/multi-core
systems. In these systems the increasing need to make better use of the available resources is causing a shift towards
the use of dynamic priority scheduling policies, EDF in particular. Most work on the response time analysis for
EDF systems is based on Spuri’s analysis techniques (Spuri, 1996a,b). The first of these techniques (Spuri, 1996a)
is focused on EDF scheduling over single processors. The second technique (Spuri, 1996b), extends the response
time analysis to distributed or partitioned multi-processor systems, using the holistic analysis approach by Tindell et
al (Tindell and Clark, 1994). Holistic analysis calculates the response times of the tasks with an iterative process that
bases its convergence on the non-decreasing nature of the iterative equations. There is a circular dependence of the
response times of tasks in one resource with the response times in the other resources through the task’s input jitter
effect. The set of input jitters of the tasks, calculated from the response times obtained in the previous iteration, are
the inputs for each iteration. If an increase of a task jitter would result in a decrease of the response time of this
task or another task, the convergence of the iterative method would be jeopardized. Spuri’s work (Spuri, 1996b) was
published as a technical report and does not include a demonstration of the correctness of its convergence. The first
contribution of this paper is to demonstrate that an increase of the input jitter of a task cannot lead to decreasing the
response times, and thus proves the correctness of the method.

Real-time applications usually need to share resources among their tasks and therefore a resource sharing protocol
is needed. Most resource sharing protocols rely on mutual exclusion for consistency and use different techniques to
provide short predictable access times. In the case of single processor systems, we find, among others, non-preemptive
sections (Mok, 1983), Priority Inheritance Protocol (PIP) (Sha et al., 1990), Priority Ceiling Protocol (PCP) (Sha
et al., 1990; Chen and Lin, 1990) and its simpler emulation called Immediate Priority Ceiling (IPC) (Lampson and
Redell, 1980), Stack Resource Policy (SRP) (Baker, 1990, 1991), and Deadline-Floor Inheritance Protocol (DFP)
(Gutierrez et al., 2014). These protocols are also usable in partitioned multiprocessors and distributed systems when
the resource is local, i.e., it is only shared among tasks of the same processing node. For global resources shared
among tasks allocated to different processing nodes it is necessary to consider protocols that are capable of avoiding
remote blocking (Rajkumar et al., 1988). For this purpose, it is possible to increase the priority ceilings in the case of
PCP (Rajkumar et al., 1988) and IPC or, similarly, the preemption levels for SRP, avoiding this remote blocking effect
and keeping the access time to the shared resources short and predictable. For global resources in multiprocessors
under global scheduling new resource sharing protocols are required (Davis and Burns, 2011).

Spuri (Spuri, 1996a) based its single-processor EDF analysis of tasks with local resource sharing on the PCP
and SRP protocols. In the case of distributed or partitioned multiprocessor systems there is a problem that is not
mentioned in Spuri’s extended technique. The preemption levels on which the SRP technique is based should be
assigned as a function of the deadline minus the input jitter (Baker, 1991). The ceilings in shared resources scheduled
with dynamic PCP also depend on jitter. However, as the estimations of maximum jitter terms increase during the
iterative analysis (with the successive increases of response times) there is the possibility that preemption levels might
need to change. Since response times depend on preemption levels and jitter depends on response times, there is a
new circular dependency in the analysis in the presence of shared resources that could jeopardize the convergence of
the method. The second contribution of this paper is the study of this effect, the proposal of an extension to Spuri’s
algorithm dealing with the calculation of preemption levels, and the demonstration of the convergence conditions of
the new holistic algorithm for EDF in systems with shared resources.

Although there are techniques that increase the schedulability of the distributed system scheduled by FP (Gutiérrez
and González Harbour, 1996; Sun and Liu, 1996) or EDF (Serreli et al., 2010), by reducing or eliminating jitter of the
system, they need the modification of the usual scheduling rules. This can be difficult to implement in commercial
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operating systems and even more in standard network protocols. Consequently, in this paper we will use the technique
with jitters.

Response-time analysis techniques in distributed and partitioned systems are not only applicable to systems with
a monolithic scheduling policy, but can also be used in heterogeneous systems in which there is a mixture of different
scheduling policies (Rivas et al., 2011). For instance, a plausible implementation might use EDF in the processing
nodes and a CAN bus under fixed priorities as a communications network. The results of this paper are, therefore, of
direct applicability in actual distributed systems, as we will show through an example based on an industrial system.

The paper is organized as follows. In Section 2 we review the analysis technique derived by Spuri for periodic
tasks under EDF. Then, in Section 3 we demonstrate the correctness of Spuri’s technique in relation to the convergence
of the iterative method. In Section 4 we present an example of an industrial system to which we have applied Spuri’s
method in order to calculate the response times of the tasks of the system. Finally, in Section 5 we give our conclusions.

2. Spuri’s Analysis

2.1. System Model
The system considered in this analysis is a partitioned multiprocessor or distributed system (as mentioned before

both have similar behaviour from the point of view of the analysis) composed by n tasks in k processors. The tasks
are statically allocated and can communicate with other tasks in the same or other processor making up an end-to-end
flow. As can be seen in Fig. 1, an end-to-end (e2e) flow is a sequence of tasks and messages that are executed one after
the other. Each e2e flow, and therefore its tasks and messages, is composed by an infinite number of jobs or instances
that are released periodically or sporadically. The nominal release times of the jobs of the first task of e2e flow i are
separated by a minimum time or period Ti. For intermediate tasks and messages in the e2e flow the release time is the
completion time of the previous task or message. This release time can suffer a variation from job to job that is called
release jitter Ji. The maximum release jitter that a task/message τi can suffer is propagated from the response time
of the previous task/message τi−1and is calculated subtracting the best case response time to the worst case response
time (Ji = Ri−1 −Rb

i−1). For notational convenience, we do not distinguish between tasks and messages in the analysis,
and we treat messages in EDF networks as if they were tasks, making the transmission and execution time concepts
equivalent.

Figure 1: End-to-end flow diagram.

Each task will execute a bounded time of computation, with the bound called worst case execution time, Ci. This
computation should be completed by a relative deadline Di after its best-case arrival time. The ready task queue will
be ordered by the EDF (Liu and Layland, 1973) preemptive dispatching algorithm.

Tasks may locally share resources, locking and unlocking critical sections CS i according to a protocol like the
Stack Resource Policy (Baker, 1991) or Priority Ceiling (Sha et al., 1990). Those critical sections generate blocking
time B j in other tasks.

The network response time analysis depends on the protocol used in the network. Spuri in (Spuri, 1996b) proposed
a Time Token MAC protocol for the network messages, but any other protocol that allows response time analysis can
be used. The results of this analysis can be added to the holistic analysis.

The target of the analysis is to obtain the worst-case response time ri of the tasks (or an upper bound of the
response times).
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2.2. Response-time Analysis
Spuri in (Spuri, 1996b) proposed a holistic analysis for deadline scheduled real time distributed systems. This

holistic analysis is based on non-decreasing iterative equations which decouple the analysis of the system in k dif-
ferent subsystems corresponding to each processing node or communications network. We now summarize Spuri’s
technique. 

R(m+1)
1 = Red f

(
J(m)

1

)
. . .

R(m+1)
k = Red f

(
J(m)

k

)


J(m+1)
1 = P1

(
R(m+1)

1 , ...,R(m+1)
k

)
. . .

J(m+1)
k = Pk

(
R(m+1)

1 , ...,R(m+1)
k

)
(1)

where m is the iteration index, Red f is the response time for EDF obtained for one node in one iteration, Jm
i is the

vector of release jitters of the tasks in node i in iteration m, Rm
i is the vector of the response times of the tasks in node i

obtained in iteration m, and Pi is the function that obtains the release jitters from the response times in the predecessor
tasks: for each task i, Ji = Ri−1 − Rb

i−1, where task τi−1 is the predecessor task of τi in the e2e flow. The first task in
the e2e flow has no predecessor and thus its release jitter is zero.

As we can see, the response time of the tasks is calculated with the jitter got from the previous iteration. For
the first iteration, release jitter values are assumed to be zero. With the holistic algorithm, each subsystem can be
analysed independently using the single-processor EDF response time algorithm developed by Spuri in (Spuri, 1996a)
and summarized in (Spuri, 1996b). In this paper, we are only concerned about the analysis of EDF resources of
the system. If there are networks or any other resources scheduled with another protocol different from EDF, the
analysis of heterogeneous systems introduced in (Rivas et al., 2011) could be used. This technique allows analysing
each processor separately with the appropriate technique for the scheduling policy used in each processor and then
propagating the results to the tasks in other processors through the jitter.

For the single-processor EDF response time analysis, according to Lemma 4.1 in (Spuri, 1996a) it is sufficient to
study the schedule of the most demanding arrival pattern in the first busy period. The length L of the busy period can
be computed by means of a simple iterative formula:{

L(0) =
∑n

i=1 Ci

L(m+1) = W(L(m)), (2)

where W(t) is the cumulative workload at time t, i.e. the sum of the computation times of the task instances arrived
at or before time t:

W(t) =

n∑
i=1

⌈
t + Ji

Ti

⌉
Ci (3)

The worst-case response time computation is also based on Lemma 4.1 in (Spuri, 1996a) that says that the worst-
case response time of a task i is found in a busy period in which all other tasks are released synchronously at the
beginning of the period and then at their maximum rate and at the earliest possible time inside the busy period,
according to their maximum release jitter. Notice that the task under analysis is not necessarily released at the start of
the busy period. We set t = 0 at the start of the busy period, and we call a the time at which a job of the task under
analysis that is inside the busy period is released. The next formula calculates the interaction caused by all the other
tasks at time t on the job of task i released at a. Notice that only the tasks with an absolute deadline earlier that that of
the task job under analysis can cause interference.

Wi(a, t) =
∑

j,i,D j≤a+Di+Ji

min
{⌈

t + Ji

T j

⌉
, 1 +

⌊
a + Di + J j − D j

T j

⌋}
C j (4)

Then, the length Li(a) of the resulting busy period related to the activation at a can be computed with the next
iterative formula that takes into account the interaction from other task jobs with earlier deadlines, the own execution

4



of the jobs of task i that fall inside the busy period starting at or before a, and Bk(a+Di) which is the worst blocking
time caused on the task jobs inside the busy period by sharing resources with other task jobs with larger deadlines,
i.e., Dk − Jk ≤ a + Di:  L(0)

i (a) =
∑

j,i C j,

L(m+1)
i (a) = Wi

(
a, L(m)

i (a)
)

+
(
1 +

⌊
a+Ji

Ti

⌋)
Ci + Bk(a+Di).

(5)

According to the SRP and PCP protocols, the blocking time Bi that a task τi can suffer is limited to a unique
critical section cs. Hence, blocking is calculated with the maximum of the critical sections cs of the tasks that have a
preemption level π j lower than or equal to the task τi’s preemption level πi and the ceiling of the shared resource dse
is bigger than or equal to the preemption level πi:

Bi = max
{
cs j(s) : dse ≥ πi and π j ≤ πi

}
(6)

where the preemption order is assigned ordered by effective deadline (defined as the difference between the relative
deadline and the release jitter: Di − Ji) and the ceiling of the shared resources s is the maximum of the preemption
levels of the tasks (πi) that may lock that resource:

πi > π j ⇐⇒ Di − Ji < D j − J j

dse = max {πi : i may lock s}
(7)

Once the value of Li(a) has been determined, the worst-case response time relative to a is:

ri(a) = max {Ji + Ci + Bi, Li(a) − a} (8)

Finally, according to Lemma 4.1 in (Spuri, 1996a), the worst-case response time of task i is:

ri = max
a≥−Ji

{ri(a)} (9)

Fortunately, there is no need to calculate ri(a) for all a ≥ −Ji. L, the length of the first busy period, is the maximum of
the lengths of all busy periods and thus the significant values of a are in the interval [−Ji, L − Ji −Ci − Bi]. Moreover,
we only need to check the values of a that make a job of task i start at t = 0 or those values that make the absolute
deadline of the analysed job of task i coincide with the absolute deadline of another task.

3. Demonstration of Spuri’s Analysis Convergence

We will now demonstrate the convergence of Spuri’s iterative method to calculate an upper bound on the worst-
case response times of EDF tasks in a distributed real time system. Spuri already discussed the convergence of
this iterative method based on the fact that its iterative equations were non-decreasing: as the iteration progresses,
estimations on worst-case response times increase, and so do the estimated release jitters. However, this claim was
not formally proved. Moreover, in systems with shared resources there is a new circular dependence among release
jitters and preemption levels or priority ceilings. The convergence of the holistic analysis for EDF systems also needs
to be proven in the presence of shared resources. In this section we will first discuss the convergence conditions of
the EDF holistic analysis in a system without resource sharing. Then, we will do the same for systems with shared
resources.

3.1. System without Resource Sharing

In this subsection, we will demonstrate the correctness of the analysis method for systems without shared re-
sources. To simplify the presentation and provide some intuition on the proof mechanism, first we will analyse a
system with three tasks and then, we will generalise it to a system with n tasks.
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Figure 2: Preemption order change because of jitter increase.

3.1.1. Three Tasks System
In this subsection, we will assume three tasks without shared resources. The tasks are numbered in increasing

effective deadline, so D1 − J1 ≤ D2 − J2 ≤ D3 − J3. To symplify the demonstration, first, we will assume infinite
periods for the tasks. We will demonstrate that the response time of these tasks cannot decrease because of the
increase of the release jitter. To that end, we will analyse the response time of one task in two scenarios. The
first scenario corresponds to the situation before increasing the jitter. Then, we will create the second scenario by
increasing the release jitter of task τ3, up to a value J′3, so that its effective deadline lies between tasks 1 and 2:
D1 − J1 ≤ D3 − J′3 ≤ D2 − J2 (see Fig. 2). This change to the effective priority would apparently make τ3’s response
time smaller, but we will see that this is not true. To this end we will analyse the response time of the same task with
the new value of jitter. Finally we will demonstrate that the response time in the second scenario can never be lower
than in the first one. We have to repeat this process for the three tasks.

Fig. 2 allows us to visually compare the intervals of release jitter (light-shaded boxes) and scheduling deadline
(dark-shaded boxes). Initially we have chosen an infinite period to simplify the analysis. In this way, each task will
only have one job to be analysed. Later, in subsection 3.3 we will analyse what happens when the periods are smaller.

Lemma 3.1. Let τ be a group of three tasks with infinite periods and without shared resources, scheduled under EDF.
The response time of any of the tasks in τ cannot decrease by the effect of increasing the release jitter of any of the
tasks in τ.
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Proof. In the first analysis scenario, before increasing the release jitter, we have the following task attributes:

τ1 : C1,D1, J1,T1 = ∞,

τ2 : C2,D2, J2,T2 = ∞,

τ3 : C3,D3, J3,T3 = ∞,

where D3 − J3 ≥ D2 − J2 ≥ D1 − J1

(10)

For the second analysis scenario we will increase the release jitter of task τ3 (see Fig. 2) and the task attributes
will be:

τ1 : C1,D1, J1,T1 = ∞,

τ2 : C2,D2, J2,T2 = ∞,

τ3 : C3,D3, J′3,T3 = ∞,

where D2 − J2 ≥ D3 − J′3 ≥ D1 − J1

(11)

We start analysing task τ1, then we continue with τ2 and finish with τ3. According to Spuri’s analysis we need to
analyse two different situations, corresponding to different activation times in the first busy period. In the first situation
all the tasks are activated synchronously and with their maximum jitter (a = −Ji, see Fig. 3a). The second situation is
created when the deadline of τ1 coincides with some other task’s deadline (a = D2 − J2 − D1 and a = D3 − J3 − D1,
see Fig. 3b and Fig. 3c, respectively).

If we apply Spuri’s analysis to these situations we obtain the response time of τ1:

r1(−J1) = C1 − (−J1) (12)

r1(D2 − J2 − D1) = C2 + C1 − (D2 − J2 − D1) (13)

r1(D3 − J3 − D1) = C3 + C2 + C1 − (D3 − J3 − D1) (14)

Consequently, the worst case response time of the task τ1 is:

r1 = max {r1(−J1), r1(D2 − J2 − D1), r1(D3 − J3 − D1)}
= max {C1 − (−J1),C2 + C1 − (D2 − J2 − D1),C3 + C2 + C1 − (D3 − J3 − D1)}

(15)

After increasing the release jitter of task τ3 we need to calculate the response time for three activation times
(a = −J1, a = D2 − J2 − D1 and a = D3 − J3 − D1, see Fig. 4a, Fig. 4b and Fig. 4c, respectively). In this situation, we
get these response times:

r′1(−J1) = C1 − (−J1) (16)
r′1(D2 − J2 − D1) = C2 + C3 + C1 − (D2 − J2 − D1) (17)

r′1(D3 − J′3 − D1) = C3 + C1 − (D3 − J′3 − D1) (18)

Consequently, the worst case response time of task τ1 is:

r′1 = max
{
r1(−J1), r1(D2 − J2 − D1), r1(D3 − J′3 − D1)

}
= max

{
C1 − (−J1),C2 + C3 + C1 − (D2 − J2 − D1),C3 + C1 − (D3 − J′3 − D1)

} (19)

To conclude with task τ1, we need to demonstrate that r′1 ≥ r1. Using equations (15) and (19), we need to prove:

max
{
C1 − (−J1),C2 + C3 + C1 − (D2 − J2 − D1),C3 + C1 − (D3 − J′3 − D1)

}
≥

max {C1 − (−J1),C2 + C1 − (D2 − J2 − D1),C3 + C2 + C1 − (D3 − J3 − D1)}
(20)
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(a) (b)

(c)

Figure 3: First analysis scenario of task τ1. (a) Synchronous activation. (b) Synchronous deadline with task τ2. (c) Synchronous deadline with
task τ3.

Therefore, we need to demonstrate that all terms of the max function in the right side of the inequality have a
greater one in the left term of the inequality:

C1 − (−J1) ≥ C1 − (−J1) (21)
C2 + C3 + C1 − (D2 − J2 − D1) ≥ C2 + C1 − (D2 − J2 − D1) (22)

C2 + C3 + C1 − (D2 − J2 − D1) ≥ C3 + C2 + C1 − (D3 − J3 − D1) (23)

Inequality (21) is trivially true because both sides of the inequality are equal. Inequality (22) is also trivially true
because C3 is always positive. Resolving inequality (23), we obtain that D2 − J2 ≤ D3 − J3. Because of the condition
in equation (10), this inequality is true.

At this point, we have demonstrated that task τ1 cannot decrease its worst case response time because of the
increase of the release jitter of τ3. Now we will complete the same process with task τ2. First, we will analyse the
response time of task τ2 in the first scenario. In this case, we only need to analyse two activations, when all the tasks
are activated synchronously with the maximum jitter (a = −J2, see Fig. 5a) and when the deadline of τ2 coincides with
some other task’s deadline, in this case, τ3 (a = D3 − J3 − D2, see Fig. 5b). In this case, we don’t need to analyse the
response time when the deadline of task τ2 coincides with the deadline of task τ1. The reason is that it is impossible
to delay task τ2 to match its deadline with the deadline of task τ1. As we have selected an infinite period for task τ1,
it has only one job, and its deadline is previous to τ2’s job.

If we apply Spuri’s analysis, explained in section 2.2, to these activations we obtain these response times for τ2:
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(a) (b)

(c)

Figure 4: Second analysis scenario of task τ1. (a) Synchronous activation. (b) Synchronous deadline with task τ2. (c) Synchronous deadline with
task τ3.

r2(−J2) = C1 + C2 − (−J2) (24)
r2(D3 − J3 − D2) = C1 + C2 + C3 − (D3 − J3 − D2) (25)

r2 = max {r2(−J2), r2(D3 − J3 − D2)} (26)
r2 = max {C1 + C2 − (−J2),C1 + C2 + C3 − (D3 − J3 − D2)} (27)

Now we analyse the response time of task τ2 in the second scenario, after increasing the jitter of task τ3. In
this case we only need to analyse one situation: when all tasks are activated synchronously and with maximum jitter
(a = −J2, see Fig. 6). The reason is that it is impossible to delay task τ2 to match its deadline with other task’s
deadlines.

The worst case response time that we obtain is:

r′2 = r′2(−J2) = C1 + C3 + C2 − (−J2) (28)

To finish with task τ2, we must demonstrate that r′2 ≥ r2. From equations (27) and (28), we find that we must
prove:

C1 + C3 + C2 − (−J2) ≥ max {C1 + C2 − (−J2),C1 + C2 + C3 − (D3 − J3 − D2)} (29)
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(a) (b)

Figure 5: First analysis scenario of task τ2. (a) Synchronous activation. (b) Synchronous deadline with task τ3.

To demonstrate this, we need to check that the term in the left side of the inequality is greater than or equal to all
the terms in the right side:

C1 + C3 + C2 − (−J2) ≥ C1 + C2 − (−J2) (30)
C1 + C3 + C2 − (−J2) ≥ C1 + C2 + C3 − (D3 − J3 − D2) (31)

Inequality (30) is trivially true because C3 is always positive. Solving inequality (31) we obtain that D2 − J2 ≤

D3 − J3. As mentioned before, the condition in inequality (10) makes this inequality true.
At this point, we have demonstrated that tasks τ1 and τ2 cannot decrease their worst case response times because

of the increase of the release jitter of τ3. Now we will finish by analysing task τ3. First, we will analyse the response
time of task τ3 in the first scenario. In this case, we only need to analyse one activation, when all the tasks are activated
synchronously with the maximum jitter (a = −J3, see Fig. 7). In this case, we don’t need to analyse the response time
when the deadline of task τ3 coincides with the deadline of some other task. The reason is that it is impossible to
delay task τ3 to match its deadline with the others.

If we apply Spuri’s analysis to these activations we obtain a response time for τ3:

r3 = r3(−J3) = C1 + C2 + C3 − (−J3) (32)

Now we analyse the response time of task τ3 in the second scenario, after increasing its jitter. In this case we need
to analyse two situations: when all tasks are activated synchronously and with maximum jitter (a = −J′3, see Fig. 8a)
and when the deadline of task τ3 matches task τ2’s deadline (a = D2 − J2 − D3, see Fig. 8b).

If we analyse these situations, the worst case response time that we obtain is:

r′3 = max
{
r′3(−J′3), r′3(D2 − J2 − D3)

}
= max

{
C1 + C3 − (−J′3),C1 + C2 + C3 − (D2 − J2 − D3)

} (33)

To finish with task τ3, we must demonstrate that r′3 ≥ r3. From equations (32) and (33), we find that we must
prove:

max
{
C1 + C3 − (−J′3),C1 + C2 + C3 − (D2 − J2 − D3)

}
≥ C1 + C2 + C3 − (−J3) (34)

To demonstrate this, we need to check that there is a term in the left side of the inequality that is greater than or
equal to the term in the right side:

C1 + C2 + C3 − (D2 − J2 − D3) ≥ C1 + C2 + C3 − (−J3) (35)

10



Figure 6: Second analysis scenario of task τ2, synchronous activation.

Solving inequality (35) we obtain that D2 − J2 ≤ D3 − J3. As mentioned before, the condition in inequality (10)
makes this inequality true.

Consequently, we have evidenced that if the release jitter of task τ3, J3, is increased, the response times of the
tasks do not decrease their value. We can extend this statement to the increase of J1 or J2. Tasks that are initially
below the task that changes its jitter in the effective deadline order will keep the same effective deadline order after the
jitter increase and thus would not be affected by it. As an example suppose the previous task set but adding a fourth
task τ4, so that D3 − J3 ≤ D4 − J4. If we apply Spuri’s holistic response time algorithm before and after the increase
of J3, we obtain the same response time for τ4, that is r4 = r′4.

At this point, we have demonstrated that three tasks with infinite periods and without shared resources cannot
decrease their worst case response time because of the increase of their release jitters.

3.1.2. System with Any Number of Tasks
Now, we will generalise the analysis of the previous section to cover systems with any number of tasks.

Lemma 3.2. Let τ be a group of n tasks with infinite periods and without shared resources, scheduled under EDF.
The response time of any of the tasks in τ cannot be decreased by the effect of increasing the release jitter of any of
the tasks in τ.

Let us take a system with n + m + k tasks divided in three groups that would be affected in different ways by a
task that would increase its release jitter (see Fig. 9). In Fig. 9a, it can be seen that the group of tasks is ordered by
effective deadline:

Di − Ji ≤ Di+1 − Ji+1 (36)

The tasks are divided in (possibly empty) different groups: Group 1 (tasks from τ1 to τn) have effective deadlines
that are always less than those of the tasks from the other groups; Group 2 (tasks from τn+1 to τn+m) have effective
deadlines that are initially less than those of other groups except Group 1, but become greater than the effective
deadline of the task that increases its release jitter in scenario 2; Group 3( tasks from τn+m+2 to τn+m+k) have effective
deadlines that are always larger than those of the other groups; finally, task τn+m+1 is the one that changes its release
jitter. In Fig. 9b, we can see how task τn+m+1’s jitter has increased and the order of the effective deadlines of the tasks
has changed. Now the order is:

Dz − Jz ≤ Dn+m+1 − Jn+m+1 ≤ Dy − Jy ≤ Dx − Jx,where 1 ≤ z ≤ n, n + 1 ≤ y ≤ n + m, n + m + 2 ≤ x ≤ n + m + k (37)
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Figure 7: First analysis scenario of task τ3, synchronous activation.

(a) (b)

Figure 8: Second analysis scenario of task τ3. (a) Synchronous activation. (b) Synchronous deadline with task τ2.

In summary, task τn+m+1 is below Group 2 in Fig. 9a and is then positioned between groups 1 and 2 in Fig. 9b.
In order to demonstrate the lemma we will prove that any task in these groups cannot decrease its response time

when the system changes from the scenario shown in Fig. 9a to the one shown in Fig. 9b, that is, when the jitter of
task τn+m+1 is increased. When the jitter of task τn+m+1 is increased the preemption order of the task changes and this
could induce a reduction in the response time of this task or other tasks. We will prove that this cannot happen. To
fulfil this objective we will analyse the groups separately, starting with Group 1 and finishing with Group 3. We also
have to check the own task that changes its release jitter.

To start with Group 1, let τα ∈ (1 ≤ α ≤ n) be the task under analysis. First, we will analyse the response time of
the tasks in the first scenario (see Fig. 9a). Then, we will increase the release jitter of task τn+m+1 and we will do the
analysis of the second scenario (see Fig. 9b).Finally we will compare the results and demonstrate that the response
time cannot decrease. In the first scenario, the activations that have to be analysed occur when all the tasks are released
synchronously with their maximum jitter and when task τα’s deadline matches the deadline of some other task with
longer effective deadline. In the synchronous case the task under analysis, τα, is released at the beginning of the busy
period having experienced its maximum jitter. The set of the task activations that we have to check, including the
synchronous case, is: Ψ = ∪(Di − Ji − Dα) ∨ i ∈ n + m + k and Di − Ji ≥ Dα − Jα. We are going to separate Ψ in four
cases depending on which group does τi belong: A1 when α ≤ i ≤ n, A2 when n+1 ≤ i ≤ n+m, A3 when i = n+m+1

12



Proof.
(a)

(b)

Figure 9: System with any number of tasks. (a) System before increasing the release jitter of task τn+m+1. (b) System after increasing the release
jitter of task τn+m+1.

and A4 when n + m + 2 ≤ i ≤ n + m + k. For each case, let us define the activation time a as a(i) = Di − Ji −Dα. Then,
if we apply Spuri’s holistic algorithm, explained in section 2.2, to these activation cases, we obtain these response
times:

A1 : rα(a(i)) =

 i∑
j=1

C j

 − (Di − Ji − Dα) (38)

A2 : rα(a(i)) =

 n∑
j=1

C j

 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) (39)

A3 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (Dn+m+1 − Jn+m+1 − Dα) (40)

A4 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) (41)

In the second situation, after increasing the jitter of task τn+m+1 (Jn+m+1 → J′n+m+1), the activation cases to be
analysed are the same as in the first situation. The reason is that the position of group 1 in the effective deadline
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order remains the same. Now we will use the letter B to differentiate the cases: B1 when α ≤ i ≤ n, B2 when
n + 1 ≤ i ≤ n + m, B3 when i = n + m + 1 and B4 when n + m + 2 ≤ i ≤ n + m + k. The response times are:

B1 : rα(a(i)) =

 i∑
j=1

C j

 − (Di − Ji − Dα) (42)

B2 : rα(a(i)) =

 n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) (43)

B3 : rα(a(i)) =

 n∑
j=1

C j

 + Cn+m+1 −
(
Dn+m+1 − J′n+m+1 − Dα

)
(44)

B4 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) (45)

Now we need to demonstrate that the response time of a task τα in Group 1 cannot be larger in the first scenario
than in the second. Therefore, the next inequality has to be true:

max {r(A1) ∪ r(A2) ∪ r(A3) ∪ r(A4)} ≤ max {r(B1) ∪ r(B2) ∪ r(B3) ∪ r(B4)} . (46)

where r(X) is the set of response times in X.
It is sufficient to prove that each case in the left side of the inequality has a greater or equal one in the right side.

In that way, we can break the inequality down in four:

r(B1) ≥ r(A1) i∑
j=1

C j

 − (Di − Ji − Dα) , (α ≤ i ≤ n) ≥

 i∑
j=1

C j

 − (Di − Ji − Dα) , (α ≤ i ≤ n)
(47)

r(B2) ≥ r(A2) n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) , (n ≤ i ≤ n + m) ≥

 n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) , (n ≤ i ≤ n + m)

(48)

r(B2) ≥ r(A3) n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) , (n ≤ i ≤ n + m) ≥ n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (Dn+m+1 − Jn+m+1 − Dα)

(49)

r(B4) ≥ r(A4) n∑
j=1

C j

 +

 n∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) , (n + m + 2 ≤ i ≤ n + m + k) ≥

 n∑
j=1

C j

 +

 n∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) , (n + m + 2 ≤ i ≤ n + m + k)

(50)
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Inequalities (47) and (50) are trivially true because both sides have the same terms. From inequality (48), we
obtain Cn+m+1 ≥ 0 which is always true because execution times are positive. And finally, in inequality (49), if we
take i = n + m, we can obtain that Dn+m − Jn+m ≤ Dn+m+1 − Jn+m+1. This is always true because of the condition in
inequality (36).

In second place, we repeat this analysis with group 2. In the first scenario, the activation cases that have to be
analysed are: A1 when α ≤ i ≤ n + m, A2 when i = n + m + 1 and A3 when n + m + 2 ≤ i ≤ n + m + k. Thus, if we
apply Spuri’s holistic algorithm, described in section 2.2, to these activation groups, we obtain these response times:

A1 : rα(a(i)) =

 n∑
j=1

C j

 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) (51)

A2 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (Dn+m+1 − Jn+m+1 − Dα) (52)

A3 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Dn+m+1 − Jn+m+1 − Dα) (53)

In the second scenario, after increasing the jitter of task τn+m+1 (Jn+m+1 → J′n+m+1), the activation cases to be
analysed are only two. The reason is that the position of group 2 in the effective deadline order has changed. Now we
will use letter B to differentiate them: B1 when α ≤ i ≤ n + m and B2 when n + m + 2 ≤ i ≤ n + m + k. The response
times are:

B1 : rα(a(i)) =

 n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) (54)

B2 : rα(a(i)) =

 n∑
j=1

C j

 + Cn+m+1 +

 n+m∑
j=n+1

C j

 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) (55)

Now we need to demonstrate that the response time of a task τα with (n + 1 ≤ α ≤ n + m) cannot be larger in the
first scenario than in the second. Therefore, the following inequality has to be true:

max {r(A1) ∪ r(A2) ∪ r(A3)} ≤ max {r(B1) ∪ r(B2)} . (56)

It is sufficient to prove that each case in the left side of the inequality has a greater or equal one in the right side. In
that way, we can break the inequality down in three:

r(B1) ≥ r(A1) n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) , (α ≤ i ≤ n + m) ≥

 n∑
j=1

C j

 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) , (α ≤ i ≤ n + m)

(57)

r(B1) ≥ r(A2) n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) , (α ≤ i ≤ n + m) ≥ n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (Dn+m+1 − Jn+m+1 − Dα)

(58)
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r(B2) ≥ r(A3) n∑
j=1

C j

 + Cn+m+1 +

 n+m∑
j=n+1

C j

 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) , (n + m + 2 ≤ i ≤ n + m + k) ≥

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) , (n + m + 2 ≤ i ≤ n + m + k)

(59)

Inequality (59) is trivially true because both sides have the same terms. From inequality (57), we obtain Cn+m+1 ≥ 0
which is always true. And finally, in inequality (58), if we take i = n + m, we can obtain that Dn+m − Jn+m ≤

Dn+m+1 − Jn+m+1. This is always true because of the condition in equation (36).
In third place, we will repeat this analysis with task τn+m+1. In the first scenario, the activation cases that have to

be analysed are: A1 when i = n + m + 1 and A2 when n + m + 2 ≤ i ≤ n + m + k. Thus, if we apply Spuri’s holistic
algorithm, described in section 2.2, to these activation cases, we obtain these response times:

A1 : rn+m+1(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (−Jn+m+1) (60)

A2 : rn+m+1(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 n+m+k∑
j=n+m+2

C j

 − (Di − Ji − Dn+m+1) (61)

In the second scenario, after increasing the jitter of task τn+m+1 (Jn+m+1 → J′n+m+1), the activation cases to be
analysed are three. The reason is that the position of task τn+m+1 in the effective deadline order has changed. Now we
will use the letter B to differentiate the activation cases: B1 when n ≤ i ≤ n + m, B2 when i = n + m + 1 and B3 when
n + m + 2 ≤ i ≤ n + m + k. The response times are:

B1 : rn+m+1(a(i)) =

 n∑
j=1

C j

 +

 i∑
j=n+1

C j

 + Cn+m+1 − (Di − Ji − Dn+m+1) (62)

B2 : rn+m+1(a(i)) =

 n∑
j=1

C j

 + Cn+m+1 −
(
−J′n+m+1

)
(63)

B3 : rn+m+1(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dn+m+1) (64)

Thus, we need to demonstrate that the response time of task τα with (n + 1 ≤ a ≤ n + m) cannot be larger in the
first scenario than in the second. Therefore, the next inequality has to be true:

max {r(A1) ∪ r(A2)} ≤ max {r(B1) ∪ r(B2) ∪ r(B3)} . (65)

It is sufficient to prove that each group in the left side of the inequality has a greater or equal one in the right side. In
that way, we can break the inequality down in two:

r(B1) ≥ r(A1) n∑
j=1

C j

 +

 i∑
j=n+1

C j

 + Cn+m+1 − (Di − Ji − Dn+m+1) , (n ≤ i ≤ n + m) ≥

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (−Jn+m+1)

(66)

r(B3) ≥ r(A2) n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dn+m+1) , (n + m + 1 ≤ i ≤ n + m + k) ≥

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dn+m+1) , (n + m + 1 ≤ i ≤ n + m + k)

(67)
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Inequality (67) is trivially true because both sides have the same terms. From inequality (66), if we take i = n + m,
we can obtain that Dn+m − Jn+m ≤ Dn+m+1 − Jn+m+1. This is always true because of the condition in equation (36).

Finally, we will repeat this analysis with group 3. In the first scenario, we only need to analyse one set of
activations: A1 when n + m + 2 ≤ i ≤ n + m + k. Thus, if we apply Spuri’s holistic algorithm to this activation group,
we obtain this response time:

A1 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) (68)

In the second scenario, after increasing the jitter of task τn+m+1 (Jn+m+1 → J′n+m+1), there is also only one activation
case to be analysed. The reason is that the position of group 3 in the effective deadline order has not changed. Now
we will use letter B to differentiate them: B1 when n + m + 2 ≤ i ≤ n + m + k. The response times are:

B1 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) (69)

Now we need to demonstrate that the response time of task τα, α ∈ (n + 1 ≤ α ≤ n + m), cannot be bigger in the
first scenario than in the second. Therefore, the next inequality has to be true:

max {r(A1)} ≤ max {r(B1)} . (70)

It is sufficient to prove that the response times in case B1 are greater than or equal to those in A1. In that way, we
need to prove the validity of the inequality:

r(B1) ≥ r(A1) n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) , (n + m + 2 ≤ i ≤ n + m + k) ≥

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) , (n + m + 2 ≤ i ≤ n + m + k)

(71)

Inequality (71) is trivially true because both sides of the inequality have the same terms.
Consequently, we have evidenced that if the release jitter of task τn+m+1, Jn+m+1, is increased, the response times

of the tasks do not decrease their value. This statement can be extended to the increase of the release jitter of any task
or set of tasks. Through the task groups 1, 2 and 3 the demonstration takes into account all the roles that may occur in
relation with one task that changes its jitter. If there are several tasks that change their jitter we can make successive
changes with one task at a time, and observe that the response times never decrease.

At this point, we have demonstrated that a system with any number of tasks with infinite periods and without
shared resources cannot decrease their worst case response time because of the increase of their release jitters.

3.2. System with Resource Sharing
In this subsection, we will extend the analysis done in the previous section to include the use of shared resources.

Shared resources introduce a new dimension to the problem. Spuri’s proposal manages resources according to a
protocol like the Stack Resource Policy (Baker, 1991) or Priority Ceiling (Sha et al., 1990) and assigns the task’s
preemption levels πn and shared resource’s priority ceilings dse according to:

πi > π j ⇐⇒ Di − Ji < D j − J j

dse = max {πi : i may lock s}
(72)

So the task’s preemption levels and shared resource’s priority ceilings are ordered with the effective deadlines
and therefore depend on the release jitters. This fact can cause that an increase of the release jitter of one task could
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change the ordering of the preemption levels (and/or ceilings). This effect would change the blocking times and
thus the response times of the tasks could decrease. Consequently, it appears that this effect could cause the non-
convergence of the iterative EDF response time analysis. In order to demonstrate that this potential problem can never
occur, we will assume a system with any number of tasks, like the one presented in Fig. 9, but in this case, the tasks
can use any number of shared resources. As in the previous section we will demonstrate that the response times of
each task cannot decrease because of the increase of the release jitter.

Lemma 3.3. Let τ be a group of tasks with infinite periods scheduled under EDF and using shared resources under
the SRP or PCP protocol. The response time of any of the tasks in τ cannot decrease by the effect of increasing the
release jitter of any of the tasks in τ.

Proof. To prove the lemma, we will follow the same analysis schema as in subsection 3.1.2. We have separated the
tasks in three groups and a task that will increase its jitter: Group 1 (tasks from τ1 to τn), Group 2 (tasks from τn+1 to
τn+m), Group 3( tasks from τn+m+2 to τn+m+k), and the task that increases its jitter is τn+m+1. We start from an initial
scenario with specific values of release jitter and we then move to a second scenario where the release jitter of task
τn+m+1 has been incremented (see Fig. 9b). Each group will be analysed to demonstrate that in the second scenario
the response times are always greater than in the first scenario (see Fig. 9a). To reach this target we will analyse the
groups separately, starting with group 1, then doing group 2, the task that changes its jitter, and then finishing with
group 3.

To start with group 1, let τα with (1 ≤ α ≤ n) be the task under analysis. First, we will analyse the response time of
the tasks in the first scenario (see Fig. 9a). Then, we will increase the jitter of task τn+m+1 and we will do the analysis
for the second scenario (see Fig. 9b). Finally we will compare them and demonstrate that the response time cannot
decrease.

In the first scenario, the activations that have to be analysed occur when all the tasks are released synchronously
after having experienced their maximum jitter or when task τα’s deadline matches another task’s deadline. The set
of the task activations that we have to check, including the synchronous case, is: Ψ = { i | Di − Ji ≥ Dα − Jα}. We
are going to separate Ψ in four cases depending on which group does τi belong to: A1 when α ≤ i ≤ n, A2 when
n + 1 ≤ i ≤ n + m, A3 when i = n + m + 1 and A4 when n + m + 2 ≤ i ≤ n + m + k. If we apply Spuri’s holistic algorithm
to these activation cases, we obtain these response times:

A1 : rα(a(i)) =

 i∑
j=1

C j

 − (Di − Ji − Dα) + Bi,where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(73)

A2 : rα(a(i)) =

 n∑
j=1

C j

+
 i∑

j=n+1

C j

−(Di − Ji − Dα)+Bi,where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(74)

A3 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (Dn+m+1 − Jn+m+1 − Dα) + Bn+m+1,

where Bn+m+1 = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

} (75)

A4 :rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

} (76)

As we can see the difference with the analysis in section 3.1.2 is the blocking time terms generated by the critical
sections using resources of higher preemption level than the task under analysis and belonging to tasks that cannot
preempt the task job under analysis.

In the second scenario, after increasing the jitter of task τn+m+1 (Jn+m+1 → J′n+m+1), the activation cases to be
analysed are the same as in the first scenario. The reason is that the position of group 1 in the effective deadline order
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remains the same. Now we will use letter B to differentiate them: B1 when α ≤ i ≤ n, B2 when n + 1 ≤ i ≤ n + m, B3
when i = n + m + 1 and B4 when n + m + 2 ≤ i ≤ n + m + k. The response times are:

B1 : rα(a(i)) =

 i∑
j=1

C j

 − (Di − Ji − Dα) + Bi,where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(77)

B2 : rα(a(i)) =

 n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k and j , n + m + 1

} (78)

B3 : rα(a(i)) =

 n∑
j=1

C j

 + Cn+m+1 −
(
Dn+m+1 − J′n+m+1 − Dα

)
+ Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and n + 1 ≤ j ≤ n + m + k and j , n + m + 1

} (79)

B4 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

} (80)

We can see that the blocking times in B1 are the same as in A1 because the preemption level change only affects
tasks that are always below the levels of the tasks in group 1. Similarly, blocking times in B4 are the same as in A4
because the preemption levels of tasks in group 4 do not change. However, the blocking times may have changed
for the activations cases B2 and B3 in scenario 2, in relation with A2 and A3 in scenario 1. The blocking times for
the tasks in B2 may be smaller than in A2 because they are no longer influenced by the critical sections of τn+m+1.
Oppositely, the blocking time of the task in B3 may be larger than in A3 because it may now be affected by the critical
sections of the tasks in group 2.

Now we need to demonstrate that the response time of a task τα, (1 ≤ α ≤ n) cannot be bigger in the first scenario
than in the second. Therefore, the next inequality has to be true:

max {r(A1) ∪ r(A2) ∪ r(A3) ∪ r(A4)} ≤ max {r(B1) ∪ r(B2) ∪ r(B3) ∪ r(B4)} . (81)

It is sufficient to prove that each group in the left side of the inequality has a greater or equal one in the right side. In
that way, we can break the inequality down in four:

r(B1) ≥ r(A1) i∑
j=1

C j

 − (Di − Ji − Dα) + Bi, where (α ≤ i ≤ n) and Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
≥

 i∑
j=1

C j

 − (Di − Ji − Dα) + Bi, where (α ≤ i ≤ n) and Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(82)

r(B2) ≥ r(A2) n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) + Bi, where (n ≤ i ≤ n + m) and

Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k and j , n + m + 1

}
≥ n∑

j=1

C j

 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) + Bi, where (n ≤ i ≤ n + m) and

Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(83)
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r(B2) ≥ r(A3) n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) + Bi, where (n ≤ i ≤ n + m) and

Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k and j , n + m + 1

}
≥ n∑

j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (Dn+m+1 − Jn+m+1 − Dα) + Bn+m+1,

where Bn+m+1 = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

}
(84)

r(B4) ≥ r(A4) n∑
j=1

C j

 +

 n∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where (n + m + 2 ≤ i ≤ n + m + k) and Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
≥ n∑

j=1

C j

 +

 n∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where (n + m + 2 ≤ i ≤ n + m + k) and Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(85)

Inequalities (82) and (85) are trivially true because both sides have the same terms. From inequality (83), we
obtain:

Cn+m+1 + Bi, where (n ≤ i ≤ n + m) and

Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k and j , n + m + 1

}
≥

Bi, where (n ≤ i ≤ n + m) and Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

} (86)

The blocking time (Bi) in the right part of the inequality can only be bigger than the blocking time in the left part
when j = n + m + 1. In this case, Bi would be csn+m+1 which can never be bigger than Cn+m+1. Then, inequality (83)
is correct.

Finally, in inequality (84) it is sufficient to find an activation in B2 that it is greater than those in A3. Therefore,
we will take i = n + m to obtain:

− (Dn+m − Jn+m) + Bn+m, where Bn+m = max
{
cs j(s) : dse ≥ πi and n + m + 1 ≤ j ≤ n + m + k and j , n + m + 1

}
≥

− (Dn+m+1 − Jn+m+1) + Bn+m+1, where Bn+m+1 = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

}
(87)

Analysing the resulting inequality, we can say that the blocking time Bn+m+1 before increasing the jitter of the
task τn+m+1 is the same as the blocking time Bn+m after increasing the jitter. The reason is that tasks {n + m + 1 ≤
j ≤ n + m + k and j , n + m + 1} are the same as {n + m + 2 ≤ j ≤ n + m + k}. Then, the resulting inequality is
Dn+m − Jn+m ≤ Dn+m+1 − Jn+m+1, which is true because of the condition in equation (36). Then it is demonstrated that
the response time of tasks in the first group cannot be decreased by a jitter increase.

In second place, we will repeat this analysis with group 2: the task under analysis is τα with α ∈ [n + 1..n + m]. In
the first scenario the activation cases that have to be analysed are: A1 when α ≤ i ≤ n + m, A2 when i = n + m + 1 and
A3 when n + m + 2 ≤ i ≤ n + m + k. There are only three cases (not four, like in the previous case) because the task
τα cannot be delayed to coincide its deadline with the deadlines of the tasks in Group 1. Thus, if we apply Spuri’s
holistic algorithm to these activation cases, we obtain these response times:

A1 : rα(a(i)) =

 n∑
j=1

C j

+
 i∑

j=n+1

C j

−(Di − Ji − Dα)+Bi, where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(88)
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A2 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (Dn+m+1 − Jn+m+1 − Dα) + Bn+m+1,

where Bn+m+1 = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

} (89)

A3 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Dn+m+1 − Jn+m+1 − Dα) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

} (90)

In the second scenario, after increasing the jitter of task τn+m+1 (Jn+m+1 → J′n+m+1), the activation cases to be
analysed are only two. The reason is that the position of group 2 in the effective deadline order has changed. Now
we will use the letter B to differentiate them: B1 when α ≤ i ≤ n + m and B2 when n + m + 2 ≤ i ≤ n + m + k. The
response times are:

B1 : rα(a(i)) =

 n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and n + 1 ≤ j ≤ n + m + k and j , n + m + 1

} (91)

B2 : rα(a(i)) =

 n∑
j=1

C j

 + Cn+m+1 +

 n+m∑
j=n+1

C j

 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and n + 1 ≤ j ≤ n + m + k

} (92)

Now we need to demonstrate that the response time of a task τα, n + 1 ≤ α ≤ n + m, cannot be bigger in the first
situation than in the second. Therefore, the next inequality has to be true:

max {r(A1) ∪ r(A2) ∪ r(A3)} ≤ max {r(B1) ∪ r(B2)} . (93)

It is sufficient to prove that each group in the left side of the inequality has a greater or equal one in the right side.
In that way, we can break the inequality down in three:

r(B1) ≥ r(A1) n∑
j=1

C j

 + Cn+m+1 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) + Bi,

where (α ≤ i ≤ n + m) and Bi = max
{
cs j(s) : dse ≥ πi and n + 1 ≤ j ≤ n + m + k and j , n + m + 1

}
≥ n∑

j=1

C j

 +

 i∑
j=n+1

C j

 − (Di − Ji − Dα) , where (α ≤ i ≤ n + m)

and Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(94)

r(B2) ≥ r(A2) n∑
j=1

C j

 + Cn+m+1 +

 n+m∑
j=n+1

C j

 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where (n + m + 2 ≤ i ≤ n + m + k) and Bi = max
{
cs j(s) : dse ≥ πi and n + 1 ≤ j ≤ n + m + k

}
≥ n∑

j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (Dn+m+1 − Jn+m+1 − Dα) + Bn+m+1,

where Bn+m+1 = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

}
(95)
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r(B2) ≥ r(A3) n∑
j=1

C j

 + Cn+m+1 +

 n+m∑
j=n+1

C j

 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where (n + m + 2 ≤ i ≤ n + m + k) and Bi = max
{
cs j(s) : dse ≥ πi and n + 1 ≤ j ≤ n + m + k

}
≥ n∑

j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where (n + m + 2 ≤ i ≤ n + m + k) and Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(96)

Inequality (96) is trivially true because both sides have the same terms. Simplifying inequality (94), we obtain the
same as in inequality (86). Therefore, it can be solved in the same way. And finally, from inequality (95), we can get: i∑

j=n+m+2

C j

 − (Di − Ji) + Bi,where (n + m + 2 ≤ i ≤ n + m + k) and

Bi = max
{
cs j(s) : dse ≥ πi and n + 1 ≤ j ≤ n + m + k

}
≥

− (Dn+m+1 − Jn+m+1) + Bn+m+1, where Bn+m+1 = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

} (97)

We can divide this inequality in two new ones:

(Di − Ji) ,where (n + m + 2 ≤ i ≤ n + m + k) ≤ (Dn+m+1 − Jn+m+1) (98) i∑
j=n+m+2

C j

 + Bi,where (n + m + 2 ≤ i ≤ n + m + k) and Bi = max
{
cs j(s) : dse ≥ πi and n + 1 ≤ j ≤ n + m + k

}
≥

Bn+m+1, where Bn+m+1 = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

}
(99)

Inequality (98) is true for all the cases of i because of the condition in inequality (36). In inequality (99), it is
enough to find a value of i that ensures the correctness of the inequality. In this case, we will use i = n + m + k.
In that way, any critical section cs j of task j that can block task τn+m+1 in the right part of the inequality will have
its respective execution time C j in the summation of the left part of the inequality. As C j is always greater than cs j,
inequality (99) is correct. Therefore it is demonstrated that the response time of tasks in the second group can only be
increased when a jitter increase.

In third place, we will repeat this analysis with task τn+m+1. In the first scenario, the activation cases that have to
be analysed are: A1 when i = n + m + 1 and A2 when n + m + 2 ≤ i ≤ n + m + k. There are only two cases (not four,
like in the first case) because the task τα cannot be delayed to coincide its deadline with the deadlines of the tasks in
Group 1 and Group 2. Now if we apply the analysis to these activation cases, we obtain these response times:

A1 : rn+m+1(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (−Jn+m+1) + Bn+m+1,

where Bn+m+1 = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

} (100)

A2 : rn+m+1(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 n+m+k∑
j=n+m+2

C j

 − (Di − Ji − Dn+m+1) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

} (101)

In the second scenario, after increasing the jitter of task τn+m+1 (Jn+m+1 → J′n+m+1), the activation cases to be
analysed are three. The reason is that the position of task τn+m+1 in the effective deadline order has changed. Now
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we will use the letter B to differentiate them: B1 when n ≤ i ≤ n + m, B2 when i = n + m + 1 and B3 when
n + m + 2 ≤ i ≤ n + m + k. The response times are:

B1 : rn+m+1(a(i)) =

 n∑
j=1

C j

 +

 i∑
j=n+1

C j

 + Cn+m+1 − (Di − Ji − Dn+m+1) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k and j , n + m + 1

} (102)

B2 : rn+m+1(a(i)) =

 n∑
j=1

C j

 + Cn+m+1 −
(
−J′n+m+1

)
+ Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and n + 1 ≤ j ≤ n + m + k and j , n + m + 1

} (103)

B3 : rn+m+1(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dn+m+1) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

} (104)

Now we need to demonstrate that the response time of task τn+m+1 cannot be bigger in the first scenario than in the
second. Therefore, the next inequality has to be true:

max {r(A1) ∪ r(A2)} ≤ max {r(B1) ∪ r(B2) ∪ r(B3)} . (105)

It is sufficient to prove that each group in the left side of the inequality has a greater or equal one in the right side.
In that way, we can break the equation down in two equations:

r(B1) ≥ r(A1) n∑
j=1

C j

 +

 i∑
j=n+1

C j

 + Cn+m+1 − (Di − Ji − Dn+m+1) + Bi,

where (n ≤ i ≤ n + m) and Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k and j , n + m + 1

}
≥ n∑

j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 − (−Jn+m+1) + Bn+m+1,

where Bn+m+1 = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

}
(106)

r(B3) ≥ r(A2) n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dn+m+1) + Bi,

where (n + m + 1 ≤ i ≤ n + m + k) and Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
≥ n∑

j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dn+m+1) + Bi,

where (n + m + 1 ≤ i ≤ n + m + k) and Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(107)

Inequality (107) is trivially true because both sides have the same terms. In inequality (106) it is enough to find
a value for i that demonstrates that the left-hand side is greater than the right-hand side. If we take i = n + m and
simplify the equation, we can obtain:

− (Di − Ji − Dn+m+1) + Bn+m,where Bn+m = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

}
,≥

− (−Jn+m+1) + Bn+m+1, where Bn+m+1 = max
{
cs j(s) : dse ≥ πi and n + m + 2 ≤ j ≤ n + m + k

} (108)

23



Analysing inequality (108), we can say that the blocking time Bn+m+1 before increasing the jitter of the task τn+m+1
is the same than the blocking time Bn+m after increasing the jitter because the tasks with higher effective deadline that
may affect them are the same. Then we can simplify the equation to obtain Dn+m − Jn+m ≤ Dn+m+1 − Jn+m+1, which is
always true because of the condition in inequality (36). Then it is demonstrated that the response time of task τn+m+1
cannot be decreased by its jitter increase.

Finally, we will repeat this analysis with group 3: the task under analysis is τα, n + m + 2 ≤ α ≤ n + m + k. In
the first situation, we only need to analyse one set of activation cases: A1 when n + m + 2 ≤ i ≤ n + m + k. There is
only one cases (not four, like in the first case) because the task τα cannot be delayed to coincide its deadline with the
deadlines of the tasks in Group 1 and Group 2 and the task τn+m+1. Thus, if we apply Spuri’s holistic algorithm to this
activation case, we obtain this response time:

A1 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

} (109)

In the second scenario, after increasing the jitter of task τn+m+1 (Jn+m+1 → J′n+m+1), there is also one activation
case to be analysed. The reason is that the position of group 3 in the effective deadline order has not changed. Now
we will use the letter B to differentiate this case: B1 when n + m + 2 ≤ i ≤ n + m + k. The response times are:

B1 : rα(a(i)) =

 n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

} (110)

Now we need to demonstrate that the response time of a task τα, n + m + 2 ≤ α ≤ n + m + k, cannot be bigger in
the first situation than in the second. Therefore, the next inequality has to be true:

max {r(A1)} ≤ max {r(B1)} . (111)

It is sufficient to prove that the maximum response time in case B1 is greater than or equal to that of A1. In that way,
we need to prove the validity of the inequality:

r(B1) ≥ r(A1) n∑
j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
≥ n∑

j=1

C j

 +

 n+m∑
j=n+1

C j

 + Cn+m+1 +

 i∑
j=n+m+2

C j

 − (Di − Ji − Dα) + Bi,

where Bi = max
{
cs j(s) : dse ≥ πi and i + 1 ≤ j ≤ n + m + k

}
(112)

Inequality (112) is trivially true because both sides have the same terms.
Recapitulating, we have evidenced that if the release jitter of task τn+m+1, Jn+m+1, is increased, the response times

of the tasks do not decrease their values. This statement can be extended to the increase of the release jitter of any task
or set of tasks. Through the task groups 1, 2 and 3, the demonstration takes into account all the roles that may occur in
relation with one task that changes its jitter. If there are several tasks that change their jitter we can make successive
changes with one task at a time, and observe that the response times never decrease.

At this point, we have demonstrated that a system with any number of tasks with infinite periods and with shared
resources cannot decrease their worst case response time because of the increase of their release jitters.
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3.3. System with Finite Periods

In previous sections, we have analysed sets of tasks with their periods restricted to an infinite value. In this section,
we will explain why this restriction can be removed without invalidating the above demonstrations.

Theorem 3.1. Let τ be a group of tasks scheduled under EDF and possibly using shared resources under the SRP or
PCP protocol. The response time of any of the tasks in τ cannot decrease by the effect of increasing the release jitter
of any of the tasks in τ.

Proof. Let us start from a system like τ but with infinite periods. According to Lemma 3 the response times can only
increase when moving from an initial scenario with specific release jitter values to a second scenario with increased
jitters. Now let us gradually reduce the period of one of the tasks so that its second job preempts the task under
analysis in scenario 2. If the response time of that particular task is larger in scenario 2 than in scenario 1, the new
job brought into the busy period will enlarge it, thus causing the response time of the task under analysis in scenario
2 to become even larger than it was in scenario 1. If the response times of that particular task are the same in scenario
2 as in scenario 1, the new job brought into the busy period will enlarge it, causing the same effect on the response
times of the task under both scenarios. Therefore, there is no decrease when moving from scenario 1 to 2. We can
now continue reducing the period of the task introducing new jobs in the busy period with the same effect. We can do
the same with other tasks. Therefore, the response times never decrease.

Theorem 1 allows us to conclude that the holistic analysis defined in (Spuri, 1996b) does not suffer from con-
vergence problems due to the use of shared resources, as long as the preemption levels of the tasks and the ceilings
of the shared resources are always kept in a coherent order in relation to the varying effective deadlines of the tasks.
This latter requirement does not appear explicitly in (Spuri, 1996b) and leads to an extension of the response-time
algorithm in which the preemption levels are recalculated at each step (Algorithm 1).

begin
Initialize jitters;
repeat

calculate preemption levels and resource ceilings;
for each task, calculate worst-case response times;
for each task, calculate jitter=worst-case response - best-case response;

until stable solution reached or deadlines are not met;
end

Algorithm 1: Extended holistic EDF worst-case response time analysis algorithm

4. Industrial Example

In this section we will analyse an industrial example with the technique described in the previous sections. The
chosen task model is part of an elevator system, concretely the door operator subsystem. This module is responsible
for the opening and closing of the elevator’s doors. Furthermore, it has to comply with some temporal restrictions.
The most important restriction occurs when the system is closing the doors and an obstacle (usually a person) gets in
the way of the door. The system must complete the action of stopping the door closing operation and start opening
the door in a specified interval of time, in order not to cause damage to a person standing in the way of the door.

As we can see in the task deployment model (see Fig. 10), it is a real-time distributed system integrated by two pro-
cessors (operator and maneuver) connected by a CAN bus. The operator processor manages the door opening/closing
mechanical tasks, while the maneuver processor takes the decisions about all the system. We can also see the seven
transactions or end-to-end flows, ten tasks and two messages that compound the door control and whose parameters
are described in Table 1, Table 2 and Table 3, respectively. As we can see, there is a sporadic end-to-end flow called
obstacle. For the purpose of worst-case analysis, it has been modelled as a periodic end-to-end flow with a period equal
to its minimum inter-arrival time (MIT). The scheduling policy applied in both processors is EDF and the technique
described in (Spuri, 1996a), extended with Algorithm 1 described in this paper, has been used to calculate response
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Figure 10: Door operator system’s task model

times of the tasks. To calculate the response times of the messages in the CAN bus we have used the non-preemptive
fixed priority technique introduced in (Tindell et al., 1994a) and revised in (Davis et al., 2007). As the scheduling
policy is different in the network and the processors, the analysis technique for heterogeneous systems analysis has
been used (Rivas et al., 2011).

Table 1: End-to-end flows of the system.

e2e flow Name Task type T / MIT (ms)

e2eF1 obstacle sporadic 1000.00
e2eF2 door power periodic 1000.00
e2eF3 op vss periodic 200.00
e2eF4 man vss periodic 100.00
e2eF5 pdo transmission periodic 100.00
e2eF6 man reports periodic 500.00
e2eF7 op reports periodic 500.00

The system also has shared resources represented in Table 4. The use of these resources by the tasks can be seen
in Table 5.

All these elements give us a complete model to be analysed with the holistic analysis technique. After applying
this technique we get the results collected in tables 7 and 6. In Table 7 we can see the upper bounds for the worst case
response time bound obtained for each task. It can be noted that all the tasks have a worst case response time that is
less than the corresponding deadline. Therefore, we can conclude that the system is schedulable. In addition, Table 6
provides an overview of the processor utilizations. The low utilization in the CAN bus is due to the fact that the
number of messages sent through the network is very low. The utilizations of the Operator and Maneuver processors
(62% and 52% respectively) reveal that the system could afford more processing load.

The results obtained in this analysis allow us to show that the holistic analysis technique can be used to analyse
real industrial systems and that we can apply tools that implement it.
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Table 2: Tasks of the system.

Task Name C (ms) D (ms) proc

t11 op obstacle isr 0.01 0.10 op
t12 op obstacle task 1.00 10.00 op
t21 man powersafe timer 1.00 10.00 man
t31 op vss machine task 120.00 200.00 op
t33 man comm task 1.0 200.00 man
t41 man vss machine task 50.00 100.00 man
t51 man periodic send task 1.00 100.00 man
t53 op comm task 1.00 100.00 op
t61 man reporter task 5.00 500.00 man
t71 op reporter task 5.00 500.00 op

Table 3: Messages of the system.

Message Name C (ms) Priority Network

m32 msj sdo server 0.40 2 can
m52 msj pdo server 0.40 1 can

Table 4: Shared resources in the system.

Resource Name

R1 man events fifo
R2 man reports fifo
R3 op events fifo
R4 op reports fifo

Table 5: Shared resources utilization by the tasks.

Task R1 (ms) R2 (ms) R3 (ms) R4 (ms)

t11 - - - -
t12 - - 0.07 -
t21 0.07 - - -
t31 - - 0.06 1.0
t33 0.07 - - -
t41 0.06 1.00 - -
t51 - - - -
t53 - - 0.07 -
t61 - 0.01 - -
t71 - - - 0.01

5. Conclusions

In this paper we have presented an analysis of Spuri’s holistic technique for schedulability analysis of real-time
distributed systems with EDF scheduling. We have proven the correctness of the analysis by demonstrating that its
iterative formulas are non-decreasing with and without the use of shared resources. In addition, we have applied this
technique to the door opening/closing management subsystem of an industrial elevator. The results obtained assure
the schedulability of the system and the fulfilment of the time restrictions.

One interesting conclusion of this work is that since the preemption levels of shared resources depend on release
jitter terms that are only known after the analysis has been completed, the preemption levels need to change during
the analysis and their final values are a result of the analysis process. This represents an extension of the original
algorithm presented by Spuri.

Prototype tools implementing the techniques used in this paper have been developed to analyse the system pre-
sented in the case study section. The holistic analysis is implemented in the MAST tool suite (MAST, 2013), but it
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Table 6: Processors utilization.

processor U(%)

Operator 62.10
CAN bus 0.60
Maneuver 52.60

Table 7: Task response time bounds.

Task/Message Name D (ms) R (ms)

t11 op obstacle isr 0.10 0.08
t12 op obstacle task 10.00 1.16
t21 man powersafe timer 10.00 1.06
t31 op vss machine task 200.00 123.00
m32 msj sdo server 200.00 123.82
t33 man comm task 200.00 153.06
t41 man vss machine task 100.00 53.01
t51 man periodic send task 100.00 54.00
m52 msj pdo server 100.00 54.80
t53 op comm task 100.00 56.87
t61 man reporter task 500.00 58.00
t71 op reporter task 500.00 128.00

is restricted to not using shared resources because before the studies presented in this paper the applicability of the
holistic technique to these systems was questioned. In this article, the correctness of the technique including the use
of shared resources has been demonstrated. Thus, in the future, MAST will be extended to cover it. The extended
holistic algorithm presented here will have an impact on the architecture of the MAST analysis tools, which used to
have preemption levels as an input.
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