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Abstract

Dynamic geometry systems are computer applications allowing the exact on–
screen drawing of geometric diagrams and their interactive manipulation by
mouse dragging. Whereas there exists an extensive list of 2D dynamic ge-
ometry environments, the number of 3D systems is reduced. Most of them,
both in 2D and 3D, share a common approach for the management of geo-
metric constructions, using numerical data for the present diagram instance
and elementary methods for computing derived objects.

This paper deals with a parametric approach for automatic management
of 3D Euclidean constructions. An open source library, implementing the
core functions in a 3D dynamic geometry system, is described here. The
library deals with constructions by using symbolic parameters, so allowing
a full algebraic knowledge about objects such as loci and envelopes. This
parametric approach is also a prerequisite for performing automatic proof,
and basic functions are defined for symbolically checking the truth of state-
ments. Using recent results coming from the theory of parametric polynomial
systems solving, the bottleneck in the automatic determination of geomet-
ric loci and envelopes is solved. As far as we know, there is no comparable
library in the 3D case, except the paramGeo3D library (designed for comput-
ing equations of simple 3D geometric objects, but it lacks specific functions
for finding loci and envelopes).

Keywords: 3D Dynamic Geometry, automated deduction, Gröbner bases,
parametric polynomial systems, degenerated conditions

1. Introduction

A method for mechanical theorem proving in geometries was proposed by
Wu [28, 29] during the eighties, and, almost simultaneously, a novel applica-
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tion for the algorithm of Buchberger [8], also related with automated deduc-
tion, was studied (see, for instance, [15]). Ending this decade two learning
environments for geometry appeared in the educational software market, The
Geometer’s Sketchpad, GSP, [38] and Cabri [32]. These programs marked
the birth of the dynamic geometry (DG) paradigm, and formed the core of
mathematical sofwtare used in schools.

A first implementation of the algorithm of Wu was done by Chou [9], fol-
lowed by the work of Wang [26], and a DG environment using Wu’s method,
Geometry Expert, GEX, was developed [13]. Regarding the DG paradigm,
the novel approach in GEX relied on using formal proving methods rather
than the visual convincement offered by Cabri or GSP. Some authors tried to
remedy this shortcoming of popular DG software through intercommunica-
tion with Computer Algebra Systems (CAS). For example, Roanes–Lozano
et al. [21] use GSP constructions to perform proving tasks by means of a
Maple library with a simple implementation of Wu’s method. Botana and
Valcarce [1, 3] develop a DG environment that communicates with CoCoA
[10] and Mathematica, and where Gröbner bases are used for loci finding and
automated proof and discovery. Botana has also implemented a Mathematica
based web application [4] for remotely dealing with 3D geometric construc-
tions, and Roanes–Lozano et al. [22] have replied this approach using Maple
with local access only.

In this paper we deal with a parametric description of 3D Euclidean
constructions and the involved algorithms to perform automatic discovery
processes in 3D DG systems. In Section 2 we state what a parametrical
description of a geometric construction is and we review the state of the
art concerning these approaches in 3D. Section 3 describes an open source
library implementing our parametric setting, extends an elimination based
approach for the automatic finding of new objects (loci and envelopes) in
geometric constructions, and illustrates the proposal through selected exam-
ples. Section 4 discusses some drawbacks of the elimination techniques and
introduces a new application of the theory of parametric systems solving for
overcoming these limitations.

2. Parametric description of dynamic geometry constructions

2.1. Issues in 2D

Most DG systems incorporate an option that allows users to see the con-
structive steps of constructions. Although there is no a common terminology
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for it, standard systems such as the above cited Cabri and GSP, or the
emerging educational standard GeoGebra [35], can exhibit an almost natural
language description of the steps in a construction. For instance, consider a
circle in the plane defined by its center O(0, 0) and passing through A(0, 2).
Define a point P lying on the circle and a new circle centered at P with
radius 1. Drawing a line through A and P , define a common point X on
the line and the last circle. Finally, ask for the locus of X when P moves
along the basic circle. Figure 1 shows this construction and its step–by–step
description in GeoGebra.

Figure 1: A GeoGebra construction and its construction protocol (bottom).

Although primarily introduced for didactic purposes, this kind of descrip-
tions has been used to capture the ordered constructive steps for other goals.
Being the first standard DG systems, GSP and Cabri, proprietary software,
their code was not released and their constructions were encrypted or, at
least, specified through a not easily accessible grammar. These were the main
reasons why this option of exporting the construction protocol was used for
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further processing. The appearance of the GeoGebra open source system
which specifies its constructions by using XML (a decision also adopted by
other systems), has made unnnecesary recurring to the protocol of construc-
tions. In any case, we assume here that the constructive part of a DG diagram
can be easily read. We do not give here the details of such an approach, refer-
ring to [6], where a prototype reading GeoGebra constructions is described.
Indeed, the European project Intergeo [37] had among its goals the specifi-
cation of a common format for file exchange between DG systems. Although
this format is currently unfinished, some experiments about embedding it in
an automated deduction environment are reported in [7].

Going back to the GeoGebra construction, note that the first three steps
consist of defining points O and A and the circle c. Whereas the points do not
have any text on the Definition field of the Construction protocol, the circle
is recorded via its constructive statement. At the same time, the Algebra
field shows the coordinates of the points and the equation of the circle. As
it is well–known, if the user drags, let us say, A, the present position of
the point changes and so they do accordingly the trace and equation of the
circle. We can interpret this behaviour as a parametric one: the value of
the variable (the circle c) is refreshed whenever its parameters (the points
O,A) are updated. Nevertheless, DG developers usually rely on numeric
assignments, that is, once moved A the system recomputes the equation of
c and gets this numeric expression as the whole algebraic knowledge about
the circle. Now, placing a point P on c is again a parametric issue: given
the position of the pointer on the screen and the equation of c, compute P
coordinates satisfying both requirements and with a predetermined numeric
precision. Thus, refreshing the drawing when some element is dragged is
just a problem of moving through the data structure that encompasses the
construction. So, any question involving a generic point P placed on c cannot
be generally answered. This numeric approach faces its limitations when
computing the last object in the considered example. In order to compute
the locus of X when P moves along circle c, the standard strategy in DG
consists of sampling the path of P and getting for each sample element a
position for X. Joining the X positions, a line on the screen is returned
as the sought locus. This method has two inherent limitations: no algebraic
knowledge about the locus is obtained, and, since the sampling strategy must
be a general one, returned loci sometimes exhibit anomalous behavior (see
[2] for an in–depth study of this issue).

Using any of the above cited methods for geometric theorem proving
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this locus can be easily computed. Nevertheless, since both are based on
coordinates, the construction must be rewritten, for instance, as follows:

Point O(0,0); Point A(0,2); Circle(c,O,A); PointOn(P,c)

Circle(d,P,1); Line(a,A,P); Intersection(X,d,a); Locus(loc1,X,P)

Once done, each item can be used to extract algebraic knowledge about it:
Circle(c,O,A) gives x2 + y2 − 4, PointOn(P,c) defines a point on c, so it
can be represented as P (x1, x2) where x2

1 + x2
2 − 4 = 0, and so on. Thus, a

parametrical description of the construction is

• Point O: coordinates (0, 0)

• Point A: coordinates (0, 2)

• Circle c: equation x2 + y2 − 4 = 0

• Point P : coordinates (x1, x2), constraints x
2
1 + x2

2 − 4 = 0

• Circle d: equation (x− x1)
2 + (y − x2)

2 − 1 = 0

• Line a: equation x(x2 − 2)− x1(y − 2) = 0

• Point X: coordinates (x3, x4), constraints (x3−x1)
2+(x4−x2)

2− 1 =
0, x3(x2 − 2)− x1(x4 − 2) = 0

• Locus loc1: equation (x4 +2x2y2 + y4 − 9x2 − 9y2 +4y+12)(x2 + y2 −
4y + 3) = 0

In this list, all items except the last one are characterised in an elementary
way. If the item is a point, assign it the coordinates given by the user if it is
a basic point, or two symbolic coordinates and its definitory constraints. If
the item is not a point, take its algebraic description (note that the scope of
this approach is then limited to an algebraic realm. Segments, for instance,
cannot be properly described). The Locus item is not an elementary one,
and it can be computed through the procedure described in [3]. We shortly
recall the method for this case. Collecting all the information we have about
points we get the following polynomials:

x2
1 + x2

2 − 4, (x3 − x1)
2 + (x4 − x2)

2 − 1, x3(x2 − 2)− x1(x4 − 2).

An algebraic description for loc1 can then be computed, roughly speaking,
through the elimination of variables x1, x2. This elimination returns (after
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substituting X coordinates by the generic x, y ones) a polynomial which
factors to

(x4 + 2x2y2 + y4 − 9x2 − 9y2 + 4y + 12)(x2 + y2 − 4y + 3).

We take the 0–set of the above polynomial as the set defining the locus. As
it is well–known, the equation of this limaçon of Pascal includes only the first
factor. The second factor, a circle centered at A with radius 1 appears due
to the degeneration of line a when P and A coincide. So, the locus equation
must be understood as a superset of the true locus.

This locus computation illustrates the advantages of working with a para-
metric description of the geometric construction. It should be noted that
replacing the numeric coordinates of basic points O,A with symbolic ones,
the procedure would return a polynomial in six variables. Any valuation
of the basic points coordinates would solve a specific instance of the locus
problem. This approach, optional when computing derived objects, such as
loci and envelopes, is necessary when performing general deduction tasks.
While some standard DG systems offer integrated checkers testing the cor-
rectness of statements about a construction, they are usually limited to test
it numerically.

Besides the algebraic limitation of the parametric approach, there are
other sources of imprecision in the translation between standard construc-
tions and parametrized ones. One refers to quadratic objects: while DG
software usually defines two different points when intersecting, say a circle
and a line, a coherent parametric setting just defines one, delaying the com-
putation of the present value of common points, in a kind of lazy evaluation.
This strategy is more general than a literal translation, and it is able to
cope with intersection of curves with higher degrees. The second source of
imprecision deals with different results in both approaches. Whenever a de-
pendent point with one degree of freedom is used to define a new element,
DG developers use its present numeric coordinates, whereas in the paramet-
ric view the symbolic coordinates of the point are considered. So, it may
happen that both descriptions refer to different constructions. The finding
of a conchoid (Fig. 2) will illustrate this issue. Consider the points A(0, 2),
B and C moving on the x and y axes, respectively. The trace of the point
X lying on the line AB and on the circle centered at B and with radius AC
is returned by GeoGebra as a conchoid branch (note that in order to get the
whole conchoid it would be necessary tracing the other intersection point).
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Figure 2: Tracing a conchoid.

A parametric description is

• Point A: coordinates (0, 2)

• Point B: coordinates (x1, x2), constraints x2 = 0

• Point C: coordinates (x3, x4), constraints x3 = 0

• Line AB: equation (y − x2)x1 − x(x2 − 2) = 0

• Circle B,AC: equation (x− x1)
2 + (y − x2)

2 − x2
3 − (2− x4)

2 = 0

• Point X: coordinates (x5, x6), constraints (x6 − x2)x1 − x5(x2 − 2) =
0, (x5 − x1)

2 + (x6 − x2)
2 − x2

3 − (2− x4)
2 = 0

• Locus loc1: equation 0 = 0

where the last equation, computed through elimination, means that the locus
is (or is contained in) the whole plane, that is, the elimination ideal Ix1,x2,x3,x4

of

〈x2, x3, (x6 − x2)x1 − x5(x2 − 2), (x5 − x1)
2 + (x6 − x2)

2 − x2
3 − (2− x4)

2〉

is 〈0〉, and the generated variety is C2. The reason behind this surprising
answer is that C is defined as a moving point on the y axis without other
constraints (i.e. x4 can have any value). So, despite the graphical intuition,
the circle is not a specific one, but it sweeps the entire plane, as consequently
the point X also does.
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2.2. State of the art in 3D

While the list of DG systems in 2D can be impressive, there are just a
few systems implementing the DG paradigm for 3D: Cabri3D [33], Calques3D
[34], Archimedes3D [31] and a beta version of GeoGebra 5.0 [36], to mention
the most known ones. As their 2D counterparts, they allow some mechanism
to inspect their constructions (via the XML specification of constructions
or any ad–hoc procedure, as for the 2D case). We do not study here the
problem of getting the textual specification of 3D geometric constructions.
Our interest here is reviewing past work on the parametric description of
their configurations.

As far as we know, there are just two published proposals about dealing
parametrically with 3D DG constructions: LD–3D[4] and paramGeo3D[20].
They are libraries written in Mathematica and CoCoA (LD–3D) and Maple
(paramGeo3D) where the user can introduce basic and constructed 3D ge-
ometric objects, in such a way that the obtained data are parametrically
expressed. The main interest of these libraries comes from their working
implementation of Wu and Gröbner methods for performing automatic de-
duction. Both authors have also explored the integration of their libraries
with the same 3D DG system, Calques3D (which runs under Windows only).
To this end, the author of Calques3D extended its system after our request,
allowing the textual export of its constructions in a Mathematica–like sin-
tax in 2002, and to Maple sintax some years after. Nevertheless, there are
not significative differences between both formats, being a trivial task the
translation between them.

LD–3D offered a web–based access to solve loci finding tasks (although
some kind of automatic proof was also included). Uploading the Calques3D
specification of a locus problem, a remote server returned the equation of
the locus and an applet with the graphical representation of the object. On
its side, paramGeo3D offers only local access while incorporating a more
general approach to automatic proof, based on well-known stablished ap-
proaches. The mechanism is quite similar: the user loads, in a Maple session,
the paramGeo3D library, a translator procedure and the Calques3D textual
specification. Once done, the user must interact with Maple in order to get
the sought results. This is the key difference between both approaches: the
main goal of LD–3D was automating loci computations. That is, enriching
the expressive power of Calques3D by means of symbolic techniques in such
a way that no further human intervention is necessary.
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Some words must be said concerning the open/proprietary character of
the libraries and the ways to access them. There are economic and scientific
issues involved.

Once deployed the 3D–LD server, its sustainability required paying a
yearly fee, an important point in current times of budget cuts in non-profit
institutions. Furthermore, choosing a proprietary CAS as development plat-
form, one can be forced to use algorithms under commercial patents or,
even worse, undocumented ones. There are also intercommunication issues:
whereas 3D–LD used CoCoA for efficiently computing Gröbner bases, we
have moved to Singular [12] since it gives, at least, a similar efficiency, and
currently only Singular has implementations for other algorithms required in
our field of work.

Concerning the ways of accessing the libraries, we think that it is un-
fair, from an non–profit scientific institution point of view, distributing DG
systems or related materials requiring the use of expensive CAS. From an
educational perspective, it is necessary that the libraries could be remotely
used, since they involve huge pieces of code, currently without easy installa-
tion in present educational hardware.

3D–LD and paramGeo3D share some of the above criticism: they are
developed under commercial CAS, so making their incorporation hard to
3D DG environments. Although 3D–LD offers remote access, it is mainly
focused to loci finding, forgetting other derived objects in dynamic geome-
try and without general abilities in automatic deduction. The paramGeo3D
library was designed for local work, and, although it can be used for auto-
matic proof, it shows a strong lack of automatism when finding loci, and
does not compute other important objecs such as envelopes. Furthermore,
the symbolic approach carried on by these libraries can be outperformed by
the application of recent results concerning the automatic management of
degenerated conditions and refinement of results.

3. The library

3.1. Rationale of the library

Trying to answer the above critics, we have developed an open source
library for automatic discovery in 3D dynamic geometry. We are not aware
of any other attempt of linking such a library with a 3D DG system (apart
from the ones above discussed). We will not focus on connecting the library
with some given environment, since there are few candidates and we think
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that it exists a kind of universal grammar for describing elementary 3D con-
structions. The arguments in preceding sections show that interfacing DG
software with the library is more a development issue than a scientific one.
So, a short description of the library is given in this section. Ongoing work
such as a 3D version of GeoGebra [36] or the completion of porting the In-
terGeo common file format to 3D will open new lines of development, given
the previsible spread of this new version of GeoGebra and the intercommu-
nication possibilities opened by a common 3D DG specification.

The AutDed3D library is a Sage [23] piece of code implementing a para-
metrical approach for describing elementary 3D geometric constructions. It
uses a Gröbner–based elimination process to compute important objects in
the DG paradigm such as loci and envelopes and to perform automatic proof.
Regarding the constructed objects, the aim of AutDed3D is to compute au-
tomatically (i.e., without any human intervention) their exact algebraic de-
scription, so assisting an eventual 3D DG system to get a deeper knowledge of
these objects. Regarding the proof, the library can return the truth of some
elementary statements. In this paper, our main interest concerns loci and en-
velopes, so the general proving part is included for the sake of completeness,
and it will thoroughly studied in the future.

AutDed3D heavily relies on using specialized software such as Singular.
In fact, the Sage ability for integrating software has been one of the reasons
for selecting it as platform development. Since Sage and all the other soft-
ware needed by the library are open source, there are no restrictions for non
commercial uses of the library. Furthermore, the pythonic character of Sage,
the possibility of using Sage as a Python library and the ongoing work about
a Simple Compute Server [39], open ways for remotely using the library (i.e.,
via connecting it with DG environments).

3.1.1. Using the library

There are two ways of accessing the library, both via the main Sage server.
The library textfile can be downloaded from http://sagenb.org, locating
the published worksheet AutDed3D [40]. For testing purposes, one should
copy it. Once done, one can follow the standard procedure using either the
Sage notebook, or the terminal. The timings for all the examples described
in this paper are in the worksheet, showing that the algorithms are adequate
for connecting the library with a 3D DG system. Another way for access-
ing the library consists of using the experimental Simple Compute Server
http://aleph.sagemath.org. This server accepts anonymous requests and
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its technology will be used to automate remote communication between 3D
DG systems and the AutDed3D library. Detailed instructions about this way
of accessing the library can be found in [41].

3.2. Data structure

Each library object is described by a dictionary detailing its character-
istics. Among them, we have its type (basically, points, lines and surfaces),
its parents, its coordinates or equation and a string containing the com-
mand used for constructing it. For instance, there are two types of points,
FreePoint and BoundedPoint. A free point, in turn, can be constructed
twofold: by using the function FreePoint(<name>,#,#,#) which defines the
point name with given numerical coordinates, or by SymbPoint(<name>),
which defines a point with symbolic coordinates (u1, ui+1, ui+2). A point
constructed by the user with coordinates, say (1, 2, 3), is described by

{’hist’: [’FreePoint’, ’a’, 1, 2, 3], ’parents’: {}, ’eq’: {},

’coords’:(1, 2, 3), ’type’: ’FreePoint’}

while a sphere centered at a symbolic point b with coordinates (u1, u2, u3)
and radius 1 is

{’radius2’: 1, ’center’: ’b’, ’type’: ’Surface’,

’eq’: {(Z - u3)^2 + (Y - u2)^2 + (X - u1)^2 - 1},

’parents’: {’b’}, ’hist’: [’Sphere’, ’sph’, ’b’, 1]}

All the construction objects are encoded similarly as dictionaries, and the
whole construction is itself a dictionary called All. Any construction ele-
ment or element item can then be easily accessed via the standard key:value
structure.

3.3. Basic and auxiliary functions

The library has a list of functions for defining the usual basic 3D ele-
ments. Free points (points without constraints can be defined via FreePoint
or SymbPoint), whereas points with constraints use BoundedPoint. Other
elementary functions are Line, Plane, Sphere, Surface, MidPoint, and the
standard ones involving parallelism and perpendicularity (ParallelLine,
ParallelPlane, ...). Points on objects are defined through PointOnObject,
simply valuating the object equations by the point coordinates. For instance,
assuming there is a sphere as above, the function PointOnObject(’p’,’sph’)
introduces in the construction the value
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{’hist’: [’PointOnObject’, ’p’, ’sph’], ’parents’: {’sph’},

’eq’: {(u3 - x3)^2 + (u2 - x2)^2 + (u1 - x1)^2 - 1},

’coords’: (x1, x2, x3), ’type’: ’BoundedPoint’}

Multiple constraining of points is allowed by adding new expressions to
the eq value of points. Concerning intersections, a single function takes care
of them. IntersectionObjectObject creates a point (or updates an existing
one) constraining it with the equations of both parents. Since a parametric
treatment of geometric constructions is the reason of this library, we are not
forced to compute, at defining times, all present possibilities of intersections.
A lazy evaluation is behind this strategy. As an illustration, consider inter-
secting two spheres: a point lying on both of them is algebraically described
by two equations which can have as solutions a circle, a point or no real
solution. Our interest is a general description of the common points, and it
is accomplished just by the system of equations.

There is also an extensive list of auxiliary functions (for moving across
the construction graph, housekeeping tasks, ...). They are not designed for
normal user access, so not being described here.

3.4. Loci functions

In [22] the authors illustrate their proposal by computing an ellipsoid as
a locus using a natural extension of the gardener’s method. In our setting,
and using their element names and values, the construction is

FreePoint(’Pt1’,0,0,0); FreePoint(’Pt2’,1,0,0)

FreePoint(’Pt3’,0,2,0); Line(’L13’,’Pt1’,’Pt3’)

PointOnObject(’Pt5’,’L13’); Sphere(’Sph8’,’Pt1’,’Pt1’,’Pt5’)

Sphere(’Sph9’,’Pt2’,’Pt3’,’Pt5’)

IntersectionObjectObject(’Cr10’,’Sph8’,’Sph9’)

They state that “paramGeo3D has automatically obtained as locus (without
the user having to type anything)” when, asking for Cr10, the system returns

[4x22 + 432 + 48k12 + 9− 48k1, 2x1 + 3− 8k1],

that is, the intersection circle of the two spheres is the intersection of a
cylinder and a plane, both depending on a parameter. Two more Maple
commands are needed in order to get the final ellipsoid polynomial yet

12x2
1 − 12x1 + 16x2

2 + 16x2
3.
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This approach, although finally successfull, can hardly be incorporated for
non expert use, since it involves a deep knowledge of what is going on. If the
goal is automating the process of obtaining the ellipsoid using a 3D gardener’s
method, it should be enough the traditional method in DG. That is, once
the spheres intersection is created, selecting a Locus tool with arguments
this intersection and the moving point, the system should just return the
ellipsoid.

As recalled in Section 2.1, there is a simple procedure for computing the
algebraic description of a locus. In the library the Locus function deals with
loci tasks. Regarding the ellipsoid, just executing Locus(’l’,’Cr10’,’Pt5’)
a new object is added to the construction, being

{’type’: ’Surface’, ’tracer’: ’Cr10’, ’mover’: ’Pt5’,

’hist’: [’Locus’, ’L’, ’Cr10’, ’Pt5’],

’parents’: {’Pt5’, ’Cr10’}, ’implicit’: False,

’eq’: {12*X^2 + 16*Z^2 + 16*Y^2 - 12*X - 9}}

Note that this function fully automates the task, being able to be directly
incorporated to any standard 3D DG system.

3.4.1. A difference between standard and parametric approaches

In Section 2 we used a conchoid to illustrate a difference between the stan-
dard approach taken in DG and the parametrical one proposed here. Here
we consider another case, showing a wrong Calques3D locus. Furthermore,
this construction proves that a specific Locus command is needed, since some
elementary objects can only be obtained this way.

A Bohemian dome can be constructed as follows. Given a circle C and a
plane E perpendicular to the plane containing C, move a circle K through
space such that its center lies on C and remains parallel to E. The wrong
answer returned by Calques3D is shown in Fig. 3. The authors of param-
Geo3D chose to define specific intersections for elementary algebraic objects,
not including the case of planes and spheres, as it is needed here. Even if a
Circle function was available, computing the envelope of a family of circles
would be necessary (a function also absent in paramGeo3D). On its side, the
library Locus function directly returns as equation the quartic

x4 + 2x2y2 + 2x2z2 − 4x2 + y4 − 2y2z2 + z4,

shown in Fig. 4 (for the sake of brevity, we do not include here the construc-
tion description, referring to the Sage worksheet for studying it).
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Figure 3: A wrong Bohemian dome (bold) as drawn by Calques3D.

3.4.2. Implicit and general loci

The constructive philosophy of dynamic geometry prevents studying cases
where some element is unknown, thus disallowing user discovery. Consider
Simson’s theorem stating the equivalence between the alignment of the pro-
jections from a point to the sides of a triangle and the membership of the
point to the circumcircle of the triangle. Whereas it is very easy to check the
alignment of projections in a DG system, if a point is placed on the circumcir-
cle, the other way is harder (if one does not know the theorem!). One could
ask about the 3D analogous case: which is the locus of space points such
that their orthogonal projections on the (extended) faces of a tetrahedron
are coplanar? Since a general point in this locus is not easily constructible,
3D systems do not offer any answer. This case illustrates situations where
the constraints are imposed after the point is constructed. These loci have
been called a posteriori or implicit ones. Given the lazy strategy in our para-
metric approach, there is no substantial difference with the standard locus
approach. A generic locus point is defined via the SymbPoint function and
it is constrained a posteriori. Since there is not a mover point, that is, the
locus point is not parametrically determined by its ancestors, but by its de-
scendants, we consider all variables appearing on them as parameters. The
usual elimination process can then be applied to get the locus. In the case of
the 3D version version of Simson’s theorem, the Locus function returns, for
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Figure 4: A true Bohemian dome.

a tetrahedron with vertices the origin and the three unit points, the cubic

x2y + x2z + xy2 + xz2 + y2z + yz2 − xy − xz − yz,

shown in Fig. 5.
In this implicit locus, we are reasoning about a specific tetrahedron (that

is, having its free points numeric coordinates), therefore losing generality.
The Locus function also accepts general constructions (where their basic
points are now defined via SymbPoint). Thus, the loci obtained this way are
not objects in the affine space anymore, being statements about geometric
elements in a n–dimensional space. For instance, replacing the fourth vertex
(0, 0, 1) of the tetrahedron by a symbolic point with coordinates (u1, u2, u3),
the locus will be expressed as

x2zu2
2u

4
3+x2zu6

3−2xyzu1u2u
4
3−2xz2u1u

5
3+y2zu2

1u
4
3+y2zu6

3−2yz2u2u
5
3+

z3u2
1u

4
3+z3u2

2u
4
3+x2yu5

3−x2zu2u
4
3+xy2u5

3+xz2u5
3−xzu2

2u
4
3−xzu6

3−y2zu1u
4
3+

yz2u5
3 − yzu2

1u
4
3 − yzu6

3 − z3u1u
4
3 − z3u2u

4
3 + z2u2

1u2u
3
3 + z2u1u

2
2u

3
3 + z2u1u

5
3 +

z2u2u
5
3 − xyu5

3 + xzu2u
4
3 + yzu1u

4
3 − z2u1u2u

3
3.

Nevertheless, given the cost of the involved algorithms, results about gen-
eral constructions in the automated approach discussed here can be some-
times out of scope for current computational devices.
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Figure 5: The cubic in a 3D version of Simson’s theorem.

3.5. Envelopes

While most 2D DG systems can suggest envelopes of families of curves by
tracing an element family, no 3D system exists yet offering a similar ability.
In [5] we gave an algorithm for automatically computing envelopes of plane
curves, and we showed its efficient integration into a 2D DG environment.
Here we extend this algorithm to deal with envelopes of families of general
surfaces. Its implementation in our parametrical setting is illustrated through
different examples. Regarding paramGeo3D and 3D–LD, the former does
not include any way of calculating them, while the second can only compute
a restricted type of canal surfaces (those where the spheres move along a
straight line).

Finding envelopes can be seen as an elimination problem. Rougly speak-
ing, the envelope of a family of surfaces [24] is a surface that is tangent at
each of its points to a surface of the family. Suppose that the family of
surfaces is given by the system

f(x, y, z, α1, . . . , αn) = 0
g1(α1, . . . , αn) = 0

...
gn−1(α1, . . . , αn) = 0


Then the envelope can be computed by adjoining this system to the equation
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∣∣∣∣∣∣∣∣∣
∂f
∂α1

∂f
∂α2

. . . ∂f
∂αn

∂g1
∂α1

∂g1
∂α2

. . . ∂g1
∂αn

...
...

...
∂gn−1

∂α1

∂gn−1

∂α2
. . . ∂gn−1

∂αn

∣∣∣∣∣∣∣∣∣ = 0,

after eliminating the parameters α1, . . . , αn. The library function Envelope

incorporates this procedure, allowing the computation of an extensive list of
envelopes. The simple case of the envelope of moving spheres centered at the
plane xy and with radius 1 is described by

FreePoint(’o’,0,0,0);FreePoint(’i’,1,0,0);FreePoint(’j’,0,1,0)

Plane(’xy’,’o’,’i’,’j’); PointOnObject(’p’,’xy’)

Sphere(’s’,’p’,1); Envelope(’env’,’s’,’p’)

being the envelope the parallel planes z = 1 and z = −1:

{’eq’: {Z^2 - 1}, ’hist’: [’Envelope’, ’env’, ’s’, ’p’],

’parents’: {’p’, ’s’}, ’mover’: ’p’, ’type’: ’Surface’,

’tracer’: ’s’}

In a similar way, we compute the 1-offset of a paraboloid. Although the
paraboloid is defined, in the Sage worksheet, in a constructive way, here we
introduce it in the construction using the Surface function, which allows to
directly define algebraic surfaces. With the input

Surface(’parab’,[z-x^2-y^2-1]); PointOnObject(’P’,’parab’)

Sphere(’s’,’P’,1); Envelope(’offset’,’s’,’P’)

the offset is returned as the sextic shown in Fig. 6.
Another illustration of the computation of envelopes deals with the case

where the elements of the family are computed as loci. Since in our approach
a locus is a geometric element obtained by eliminating all parameters involved
in its definition, there is no way to get the expression of a parametric family
of loci (even the use of symbolic points is excluded for this case). Consider,
for instance, the ellipsoid in 3.4. Replacing one of its foci by a moving point
along the x axis, the computed locus would be the whole space, since the
constraints define a three dimensional part of the space. In order to skip
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Figure 6: The 1–offset of the paraboloid z = x2 + y2 + 1, with equation 16x6 + 48x4y2 +
16x4z2+48x2y4+32x2y2z2+9x4+54x2+16y6+16y4z2−72x4z−144x2y2z−32x2z3−72y4z−
32y2z3+18x2y2+96x2z2+9y4+96y2z2+54y2+16z4−90x2z−90y2z−104z3+225z2−162z =
0.

this restriction, we use a function similar to Locus, but allowing to specify
a bounded point, which will be used as parameter for the family of surfaces.
The strategy followed here is to exclude the coordinates of this point when
eliminating parameters in the finding of the locus. So, redefining the point
Pt2 in the ellipsoid construction to be a moving point on the x axis, the
call Locus2(’ellips’,’Cr10’,’Pt2’,’Pt5’) returns as equations for this
object

x2 = 0
x3 = 0

4x2x2
1 − 4xx3

1 − 16x2 + 16xx1 − 16y2 − 16z2 + x4
1 − 8x2

1 + 16 = 0

 ,

being x1, x2, x3 the coordinates of the parameter point Pt2. So, we have a
mono–parametric family of objects defined as special loci, and its envelope
can then be computed (note that forcing Pt2 to lie on a 2–dimensional object
we could obtain a bi–parametric family). Finally, the envelope is returned as
the surface defined by the equation

(x2 + y2 + z2)(x4 − 8x2 − 16y2 − 16z2 + 16) = 0.

A plot of this surface is shown in Fig. 7.
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Figure 7: A surface that envelopes a family of ellipsoids.

Two things must be noted concerning this envelope. The point (0, 0, 0)
returned as part of the surface is not tangent to an element of the family and
it should be dropped out (it appears when an ellipsoid of the family degen-
erates. Currently, we do not have any test to detect such cases). Regarding
the rest of the surface, it is clear that only the central part envelopes the
ellipsoids. There is a notable difference between our aim and the given alge-
braic specification. While we talked about a family of ellipsoids, its algebraic
description, i.e. the 0–set of

4x2x2
1 − 4xx3

1 − 16x2 + 16xx1 − 16y2 − 16z2 + x4
1 − 8x2

1 + 16,

taking x1 any real value, refers to more objects than the ellipsoids. This
family describes ellipsoids if −2 < x1 < 2, degenerated quadrics if x1 = ±2
and hyperboloids of two sheets in other case. So, the returned surface also
envelopes the hyperboloids.

3.6. Automatic proof

The library includes, for the sake of completeness, some procedures re-
lated to automatic proof. Since current 3D DG systems offer limited abilities
(if any!) for this subject, we restrict here to test the correction of simple
statements. There are two functions for performing automatic proof. The
first one, prove_sat, applies the protocol in [11] returning a boolean that in-
forms if the statement is generally true or false. The second one, prove_deg,
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derived from [19], can also find degenerated conditions in case of truth (al-
though in a non complete way).

Using these functions is straightforward. Once a geometric constructions
is specified, they are called with the statement to prove as argument. As an
illustration, we study the concurrency of the segments joining the midpoints
of the three pairs of opposed edges in an arbitrary tetrahedron. Defining the
tetrahedron and the segments by

FreePoint(’a’,0,0,0); FreePoint(’b’,1,0,0),

SymbPoint(’c’); SymbPoint(’d’); MidPoint(’mab’,’a’,’b’)

MidPoint(’mac’,’a’,’c’); MidPoint(’mad’,’a’,’d’)

MidPoint(’mbc’,’b’,’c’); MidPoint(’mbd’,’b’,’d’)

MidPoint(’mcd’,’c’,’d’); Line(’ab-cd’,’mab’,’mcd’)

Line(’ac-bd’,’mac’,’mbd’); Line(’ad-bc’,’mad’,’mbc’)

(points a, b can be set as origin and unit without loss of generality) and we
define a common point of a pair of segments

IntersectionObjectObject(’12’,’ab-cd’,’ac-bd’)

Testing the membership of this point to the remaining segment with

prove_sat(are_aligned(’12’,’mad’,’mbc’))

True is obtained since the points are aligned. Using the other function,
prove_deg, the answer is

[u3*u5-u2*u6, u3*u4-u1*u6+u6, u2*u4-u1*u5+u5]

meaning that the statement is True under the above conditions of degen-
eration. Note that FreePoint could be used, instead of SymbPoint, when
defining points c and d as follows:

FreePoint(’c’,u1,u2,0); FreePoint(’d’,u3,u4,u5)

since c can be restricted to this plane without loosing generality. In this case,
the degenerated conditions are more simple

[u2*u5, u1*u5-u5, u2*u3-u1*u4+u4]
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Besides the collinearity condition, the library includes a list of geometric
statements (parallel, perpendicular, ...). This list, although reduced, can
be easily extended. Furthermore, if a statement cannot be easily expressed
with them, it can be also passed as argument. In order to check that the
concurrency point is the midpoint of each segment, we can use a polynomial
condition involving point coordinates (which are obtained with the functions
xc, yc, zc)as follows:

prove_sat([(xc(’12’)-xc(’mab’))^2+(yc(’12’)-yc(’mab’))^2

+(zc(’12’)-zc(’mab’))^2-(xc(’12’)-xc(’mcd’))^2

-(yc(’12’)-yc(’mcd’))^2-(zc(’12’)-zc(’mcd’))^2,

[’12’,’mab’,’mcd’]])

where it must be noted that the function argument is a list containing the
polynomial condition plus the involved geometric elements (since knowing
these elements is necessary for moving across the construction graph and
hence correctly defining the polynomial ring).

4. Refining the algebraic descriptions of loci and envelopes

The symbolic determination of the equations of loci and envelopes and
its implementation in DG environments has been an important step through
the automatic management of knowledge in geometric systems. Nevertheless,
the elimination–based approaches, such as the described here, suffer draw-
backs coming from two sources: there is no a general theory about geometric
degeneracy, and the used elimination can introduce extraneous parts in the
obtained equations. In this Section we use some recent results related to the
theory of parametrical polynomial systems that solve both problems for most
geometric constructions.

As an illustration of the rol of degeneracy we recall the limaçon of Pascal
in Section 2. The locus returned there includes a circle appearing since a line
defined through two points collapses when the points coincide. An identical
situation occurs when generalizing this limaçon to 3D: Given a sphere with
center at the origin and passing through A(0, 0, 2), let us consider a point B
on it, a second sphere centered at B and with radius 1. The locus of points
C lying on the line AB and on the second sphere, computed through the
Locus function, consists of the sphere

x2 + y2 + z2 − 4z + 3 = 0
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and the quartic

x4 + 2x2y2 + 2x2z2 − 9x2 + y4 + 2y2z2 − 9y2 + z4 − 9z2 + 4z + 12 = 0.

Here again, the spheric part of the locus is returned since line AB is undefined
when A = B. One could explicitly remove this case by stating somehow that
A 6= B. If the system accepts this kind of statements, a dummy new variable
should be included in the elimination, and the sphere would not appear.
Nevertheless, this procedure also relies in an efficient discovery by the user
of all cases of degeneracy, so being an unsafe process.

Another source of imprecision of results comes from the own elimination
process. Since this process returns the Zariski closure of the sought objects,
it can happen that the adherence contains superfluous parts. A pedal surface
illustrates this case. Since the pedal surface of a given surface with respect to
a point is the locus of points intersecting the normal lines to tangent planes
of the surface with these planes, a simple function for computing such pedals
is included in the library as PedalSurface. The construction

FreePoint(’o’,0,0,0);Surface(’e’,[x^2+y^2+20*z^2-1])

PedalSurface(’ped’,’e’,’o’)

computes the pedal surface of the ellipsoid x2+y2+20z2−1 = 0 with respect
to the origin. The returned equation is

20x4 + 40x2y2 + 40x2z2 − 20x2 + 20y4 + 40y2z2 − 20y2 + 20z4 − z2 = 0.

Since it contains the origin, it cannot be a correct description of the sought
pedal (Fig. 8). Trying to get the pedal of this pedal, with the above equation,
with respect to the origin, we would obtain the whole space. It is necessary to
exclude the point (0, 0, 0) from the equation for getting a sound second pedal.
This fact highlights the need of substituting the current description of objects
in parametrical DG in terms of equations (i.e., varieties) by constructible sets
(i.e., union of differences of varieties).

In this Section, we will use recents algorithms coming from the field of
parametric polynomial systems solving for a new approach to automatically
detect degeneracies in loci and envelopes, and also to remove superfluous
parts on them.

The search for loci and envelopes in our parametrical approach always
involves solving parameterized polynomial systems. We search for solutions
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Figure 8: An ellipsoid and its pedal (light) wrt the origin.

of the system in terms of parameter values, and if a solution exists, we are
interested in its structure (dimension, number, ...). Looking at the coordi-
nates of bounded points as parameters and those of the locus or envelope as
variables, a parametric polynomial system over Q is a finite set of polyno-
mials p1, . . . , pr ∈ Q[ā, x̄] (that is, the geometric constraints) in the variables
x̄ = x1, . . . , xn and parameters ā = a1, . . . , am. The goal is studying the
solutions of the algebraic system {p1(a, x̄), . . . , pr(a, x̄)} ⊂ Q[x̄] which are
obtained by specializing the parameters to concrete values ā ∈ Cm.

The main computational approach for studying these systems is based
on the method of Gröbner bases. Several articles about applicating it to
the parametrical case are [27, 25, 17, 18, 16], just to mention a few. In this
paper we employ the GröbnerCover (GC) algorithm proposed in [18], since
it can be efficiently used for solving both mentioned tasks for most geometric
constructions.

Recalling the 3D limaçon, the polynomial constraints are (where B is a
bounded point with coordinates (x1, x2, x3) and the locus point is C(x, y, z))

• x2
1 + x2

2 + x2
3 − 4, B lies on the sphere ((0, 0, 0), 2)

• (x3 − z)2 + (x2 − y)2 + (x1 − x)2 − 1, C lies on the sphere (B, 1)

• x1y− x2x, (z − 2)x1 − (x3 − 2)x, (z − 2)x2 − (x3 − 2)y, A,B,C aligned

Solving the above system GC outputs 5 segments as follows:
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• Segment 1

– segment: C3 \ (V(x2 + y2 + z2 − 4z + 3)∪V(x4 + 2x2y2 + 2x2z2 −
9x2 + y4 + 2y2z2 − 9y2 + z4 − 9z2 + 4z + 12))

– basis: {1}

• Segment 2

– segment: (V(x2 + y2 + z2 − 4z + 3) \ (V(2z − 3, 4x2 + 4y2 − 3)) ∪
(V(x4 + 2x2y2 + 2x2z2 − 9x2 + y4 + 2y2z2 − 9y2 + z4 − 9z2 + 4z +
12) \ (V(2z − 3, 4x2 + 4y2 − 3) ∪ V(z − 2, x2 + y2))

– basis: {(2x2 +2y2 +2z2 − 4z)x3 + (−x2z− 2x2 − y2z− 2y2 − z3 +
2z2− 3z+6), (2x2+2y2+2z2− 4z)x2+(−x2y− y3− yz2+4yz−
3y), (2x2 + 2y2 + 2z2 − 4z)x1 + (−x3 − xy2 − xz2 + 4xz − 3x)}

• Segment 3

– segment: V(z − 2, x2 + y2) \ V(z − 2, y, x)

– basis: {1}

• Segment 4

– segment: V(z − 2, y, x) \ V(1)
– basis: {4x3 − 7, 16x2

1 + 16x2
2 − 15}

• Segment 5

– segment: V(2z − 3, 4x2 + 4y2 − 3) \ V(1)
– basis: {x2 + 2yx3 − 4y, x1 + 2xx3 − 4x, x2

3 − 3x3 + 2}

Segment 1 expresses that out of the sphere and the quartic (the factors
of the locus previously obtained), there is no solution since the basis is {1}.
Segment 2 guarantees that the sphere minus the points simultaneously lying
on the circle given by the plane 2z−3 = 0 and the cylinder 4x2+4y2−3 = 0,
and the quartic minus the same circle plus the point (0, 0, 2) satisfy the locus
constraints (that is, a solution in terms of x1, x2, x3 can be computed via the
given basis). Segment 3 must be rejected, since it introduces a difference
between imaginary points, so not being relevant here. Finally, segments 4
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and 5 state that the points on the above circle and the point (0, 0, 2) can also
be solved in terms of the parameters.

The structure of the space of solutions returned by GC is a key step
when solving the problems studied here. Nevertheless, the compactness of
the GC output produces that sometimes the solutions in a segment cannot
be described by a Gröbner basis. In such cases, the algorithm uses regular
functions [30]. We do not have currently a strategy for dealing with such GC
outputs, so we will study using other algorithms in a future work.

4.1. Removing degenerated components

The problem tackled here deals with removing degenerated components
in loci and envelopes. Thus, we assume that their algebraic description is
known, that is, that we have a variety describing the general locus. Since
each component in the variety comes from a value assignment of the param-
eters, the key idea is examining the corresponding dimensions of the space
of parameters (for this valuation) and the space of variables (for the stud-
ied component). Our heuristic is that a component is degenerated if its
dimension is greater than the corresponding one for the space of parame-
ters, provided that the parameter set is 0–dimensional. This heuristic has
been incorporated in the library function deg_comp, which returns a list of
degenerated components for a previously computed locus or envelope.

Recalling the 3D limaçon, its locus contains two components, the de-
generated sphere and a quartic that constitutes the true locus. In order to
remove the sphere, we proceed as follows. We locate the GC segment where
this locus factor appears as a minuend in the constructible set description
of the segment. Once done, the dimension of the space of parameters is cal-
culated. This space is determined by eliminating all variables (except those
of relevant parameters) in the ideal formed by the segment basis plus the
locus factor. Finally, this dimension is compared with the factor dimension
and the above heuristic is applied. Since the sphere is 2–dimensional and
the space of parameters here is the point (0, 0, 2), the sphere is declared as
a degeneracy, and hence it should be excluded from the locus. The function
call deg_comp(’loc’) prints

The component x4^2 + x5^2 + x6^2 - 4*x6 + 3 is degenerated

for [x3 - 2, x2, x1] !

and returns a list containing the component (note that currently the found
components are expressed using the coordinates of the locus point, instead

25



the generic variable names x, y, z). The quartic is of course not degenerated
since its dimension and the one corresponding to its parameters space are
both equal to two.

If the GC output uses regular functions, as it happens when finding the
following pedal surface (for the sake of brevity, we use again the option of
defining an ellipsoid directly as a surface)

Surface(’ellips’,[12*x^2 + 16*y^2 + 16*z^2 - 12*x - 9])

FreePoint(’P’,1/2,0,0)

PedalSurface(’ped’,’ellips’,’P’)

the strategy implemented in the deg_comp function changes the roles of vari-
ables and parameters, trying to see if no regular functions appear this time.
This is the case for the above pedal, getting as answer

Regular functions. Variables and parameters change!

[]

meaning that the strategy had to be followed and that no degeneracy was
found. This pedal also illustrates a heuristic to be used when incorporating
these technique to a 3D DG system. If a locus is irreducible, there is no need
for testing degeneracy, since the locus is not empty (otherwise it would be
detected) and so it cannot contain a degenerated component.

4.2. Finding spurious parts

The structure of the space of variables in the GC algorithm can also be
used to detect wrong parts of loci and envelopes that are introduced through
the elimination process. Recalling the pedal surface shown in Fig. 8, we got
it as the variety

V(20x4 + 40x2y2 + 40x2z2 − 20x2 + 20y4 + 40y2z2 − 20y2 + 20z4 − z2),

and we noted that it contains the origin as extra point. If the locus is to be
determined by an equation, there is no way to reject this point. Nevertheless,
turning out to a representation of the object as a constructible set, it can be
described by

V(20x4+40x2y2+40x2z2−20x2+20y4+40y2z2−20y2+20z4−z2)\V(x, y, z).

The variable space is partitioned in four segments by the GC algorithm,
having {1} as basis all segments except the following:
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• Segment 2

– segment: V(20x4+40x2y2+40x2z2−20x2+20y4+40y2z2−20y2+
20z4 − z2) \ V(z, x2 + y2)

– basis: {(20x2+20y2+20z2)x3− z, (x2+ y2+ z2)x2− y, (x2+ y2+
z2)x1 − x},

meaning that all the points in the quartic with the exception of the origin
are exactly those which satisfy the construction constraints. Thus, this one
is the exact locus of the pedal. The remove_deg_comp function takes care of
this issue, returning the sought pedal as a constructible set (where x4, x5, x6

must be understood as the coordinates of a generic pedal point)

[20*x5^4 + 40*x5^2*x6^2 + 20*x6^4 + 40*x5^2*x4^2 + 40*x6^2*x4^2

+ 20*x4^4 - 20*x5^2 - x6^2 - 20*x4^2] \ [x6, x5^2 + x4^2]

It should be noted that this approach for removing spurious parts would
not work if regular functions in the GC output have been found when solving
the structure of the space of variables. Even if the structure of the parameters
space is known, we ignore how to exploit this information for concluding
anything about spurious parts in the variables space.

A final remark deals with exploiting the kwnoledge about the structure
of the variables space for solving difficult problems in CAD. For instance,
detecting self intersections in offsets is a non trivial problem. Let us consider
the offset of a paraboloid shown in Fig. 6. There is a part of the offset that
appears due to self intersections produced by the moving spheres. Fig. 9
shows the analogous plane case and the self intersection part of the paraboloid
offset.

It must be noted that the self intersection part of the paraboloid offset
is limited by a point (top) and a circle (bottom), which are exactly found in
the GC segment partition: the segment V(4z − 9, x, y) \ V(1), that is, the
point (0, 0, 9/4), and the segment

V(64z3 − 144z2 + 108z − 135, 12x2 + 12y2 + 16z2 − 36z + 9) \ V(1),

which is a circle. Following [14], each point between both parts can be
dropped out when removing self intersections. Other future application of
these ideas will deal with trimming bisectors from an implicit description of
the involved surfaces.
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Figure 9: Self intersections in the offsets of a parabola and the given paraboloid.

5. Conclusion

The main interest of this work is to provide an open source library allow-
ing the automatic management of parametric descriptions of 3D geometric
constructions. Besides the usual basic functions, it provides efficient imple-
mentations of functions for automatic proof and automatic discovery of loci
and envelopes. Since loci (and envelopes, although in a lower degree) are
essential objects in any DG environment, no parametric library can be con-
sidered complete if lacking such ability. Furthermore, the library does not
depend on any expensive CAS, it is not bound to any specific 3D DG system,
and it can be easily linked to forthcoming systems and protocols, in a local
or remote access basis.

We would like to underline that our solution for current drawbacks re-
lating imprecisions coming from elimination or degeneracies is, as far as we
know, completely new for the 3D DG case. The extensive list of considered
examples should make clear that the standard use of equations for objects
must be replaced by a richer description as constructible sets.

There are two main lines for future work. On the one hand, deploying a
web server incorporating the library for allowing remote access of users of any
compliant 3D DG system, and disseminating the developed technology for
it. On the other hand, we plan extending the library for CAD tasks related
to offsets, blends, equidistance surfaces, ...
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[21] E. Roanes-Lozano, E. Roanes-Maćıas, M. Villar Mena, A bridge between
dynamic geometry and computer algebra, Mathematical and Computer
Modelling 37 (9–10) (2003) 1005–1028.

[22] E. Roanes-Lozano, N.v. Labeke, E. Roanes-Maćıas, Connecting the 3D
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