Rhodococcus response to starving stress:
Transcriptomic Analysis.
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The genus Rhodococcus have a very versatile metabolism that allow to growth in several environments and conditions. These bacteria are able to degrate different
contaminant compounds like aliphatic and aromatic hydrocarbons, oxygenated and halogenated compounds, nitroaromatics, heterocyclic compounds, nitriles, and various
pesticides. Among the metabolic characteristics, Rhodococcus can store, under specific conditions, compounds like wax or triacylglycerol, that can be used later as carbon
sources [1]. Therefore, Rhodococcus are microorganisms with special interest in bioremediation, biotrasformation, biocatalysis and other biotechnological aplications. We
are focused on Rhodococcus jostii, a non-pathogenic bacteria, isolated from soil with a large chromosome (7.8 Mb) and three endogenous plasmids (1.1 Mb, 44 Kb and 33
Kb). In this study, we want to understand how Rodococcus jostii, under starving stress, modify its transcriptome to store triacylglycerol. For this purpose we sequenced two
transcriptomes by RNA-Sequencing with a Illumina's Genome Analyzer; one of these sequences obtained from bacteria grown standard conditions and another under
starving conditions. This work revealed how Rhodococcus is able to modify its metabolism in the absence of nitrogen and sulfites, replacing its main carbon souce (in this
case Gluconate), to store triacylglycerols.
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j medium (Standard Media, S.M.) and then in mineral salts medium M9 (Starving
Media, S.M.) according to Sambrook et al. 1989 . Sodium gluconate (20% w/v)

were used as sole carbon source in S.M. N-limiting conditions were specified, the
concentration of ammonium chloride in the M.M. was reduced to 10 mM to allow
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First R. jostii strain RHA1l was cultivated aerobically at 30°C in Streptomyces We made 3 sets of pseudo-replicates selecting randomly a 70% of the total sequences. The reads g
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were alignment with Bowtie [3], with the defaults parameters, against references genomes
(Genbanks CP000431-4, Chromosome and 3 plasmids). First, we calculated the reads per kilobase in ¥ -
each gene. Then we did quantile normalization according [4] using the R software and the /imma
package . The differential expresion was computed with the package DESeq.
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lipid accumulation [1] . Cells were grown in S.M., 25ml of cultive and harvested
during exponential (D.O. 0.6) and stationary growth phases. The pellet in
stationary growth phase was washed with M.M. solution and then moved into
25ml of that medium for several hours.
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In this kind of representation, width of the bars represent the relative expression between
isoenzimes whereas colour represent the differential expression of this isoenzime

Discussion

In overview, we can observe that the anabolism of Rhodococcus is downregulate. In addition, the oxidative
phosphorilation machinery are upregulate to supply system the reductive power necessary to produce fatty
acid. Some of the pathways involved in the catabolism of mainly metabolites are dowregulated. We observed
that, Rhodococcus modifies its transcriptome, upregulation of the pathways related with pyruvate where
acetate is involved. In the other hand, the Entner-Doudoroff pathway is heavily upregulate. The change of
the carbon sources may be the reason for this activation, but data no present in this poster suggest that this
event may be implicated in starving conditions. Finally, we observed that, in the Kennedy's pathway, main
route of synthesis of triacylglycerols, the upregulation of WS/DGAT could be enough to stimulate the
production of these fatty acids.

We used the information of the pathways described in KEGG data base to analyse our results.
We focused on pathways implicated in the biosynthesis and storage of triacylglycerols. We are
interested in key metabolic intermediates, such as pyruvate, acetyl-CoA, and glycerol-3-
phosphate. To represent the expression of the isoenzimes, we developed a method which
represent, at the same time, the relative expression between the isoenzimes and the differential
expression between conditions.
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