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Abstract

A symbolic tool based on open source software that provides robust alge-
braic methods to handle automatic deduction tasks for a dynamic geometry
construction is presented. The prototype has been developed as two different
worksheets for the open source computer algebra system Sage, correspond-
ing to two different ways of coding a geometric construction, namely with
the open source dynamic geometry system GeoGebra or using the common
file format for dynamic geometry developed by the Intergeo project. Locus
computation algorithms based on Automatic Deduction techniques are re-
called and presented as basic for an efficient treatment of advanced methods
in dynamic geometry. Moreover, an algorithm to eliminate extraneous parts
in symbolically computed loci is discussed. The algorithm, based on a recent
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ponents and extraneous adherence points in loci, both natural byproducts of
general polynomial algebraic methods. Several examples are shown in detail.
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1. Introduction

Automated Deduction in Geometry, understood as the study and devel-
opment of computer programs designed to prove geometry theorems, can
be traced back almost five decades to the influential work of Gelernter in
the field of Artificial Intelligence [1]. However, the real flourishing of the
field came in the early 1980’s with the development by Wu of an algebraic
method based on Ritt’s characteristic set for proving a restricted set of geom-
etry theorems [2]. Impressive results by several authors using Wu’s method
(e.g. [3, 4, 5, 6]) encouraged researchers to consider other algebraic meth-
ods, among which those based on Gröbner bases [7] proved to be the most
relevant (see [8, 9, 10]).

Directly related to automatic proving is the concept of automatic dis-
covery, more closely related to the work presented in this article. While
automatic proving deals with verifying geometric statements, automatic dis-
covery tries to find complementary hypotheses for statements to become true
or, as stated in [11], to “finding the missing hypotheses so that a given con-
clusion follows from a given incomplete set of hypotheses”. A systematic
use of algebraic methods based on Gröbner bases to address the question of
automatic discovery in geometry was thoroughly developed in [12].

From the appearance of the very first prototypes of automatic provers it
was clear the need to develop accompanying graphic interfaces. Almost at the
same time appeared the first stable dynamic geometry systems (DGS) with
great acceptance, specially in the field of education. Let us recall that a DGS
is a computer application that allows the exact on-screen drawing of geomet-
ric diagrams and their interactive manipulation by mouse dragging. Also,
computer algebra systems (CAS), whose core functionality is the manipula-
tion of mathematical expressions in symbolic form, reached a very high level
of development and started becoming available in most teaching and research
institutions. Several authors since then have postulated a deeper cooperation
between DGS and CAS in order to enhance the abilities of dynamic geometry
programs with algebraic proving and discovering algorithms. In particular,
in [12] one can read that their method can be regarded as “the core of a
future program [...] that allows, when linked simultaneously with a tool for
displaying geometric constructions and a symbolic computation package, the
interactive exploration of geometric properties”.

Considerable attention and efforts have been dedicated since then to these
emerging new tools which can be termed symbolic - dynamic geometry envi-
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ronments, a synthesis of DGS and CAS. In particular, two main approaches
have been followed. Some DGS incorporate their own code to perform sym-
bolic computations (e.g. [13]), while others choose to reuse existing Computer
Algebra Systems (e.g. [14, 15, 16, 17]).

In this article we present an efficient solution in this second direction
strictly based on open source software applications. In particular, the de-
veloped prototype symbolically computes equations of geometric loci and
determines the validity of geometric statements specified in an open source
DGS. Moreover, an extension of the prototype has been developed that ac-
cepts, as input, the description of a geometric locus specified using a common
DGS file format developed in an European project and accepted by most Eu-
ropean DGS. Finally, complementing the symbolic computation of geometric
loci, a tool to detect degenerate components as well as extraneous adherence
points in the returned loci has been developed based on the recent Gröbner
Cover algorithm for solving parametric systems in [18]. It is illustrated with
several examples of loci and envelopes. To the best of our knowledge, the
described approach is the first to implement in a completely automatic way
(i.e. with no user interaction at all) the removal of extraneous parts (degen-
erate components in particular) from objects computationally generated in
a DGS. We feel this is an important step in the solution of one of the main
current bottlenecks in the development of dynamic geometry environments.
We are confident that this method will be integrated in coming versions of
these environments.

Following are a few words on the main building blocks of our system,
namely the open source applications GeoGebra and Sage and the DGS com-
mon file format Intergeo.

1.1. GeoGebra

GeoGebra is an open source DGS with algebraic capabilities, establishing
a direct relationship between the objects in the different windows: graphics,
algebra, and spreadsheet. It was created in 2001 by Markus Hohenwarter as
part of his Master in Mathematics Education at the University of Salzburg,
Austria, winning him the 2002 European Academic Software Award (EASA)
in the category of Mathematics. Since then, the tool, using the word of
mouth and Internet, spread rapidly throughout the world, and has become a
collaborative project with impressive figures: users in 190 countries, versions
in 62 languages and almost a million visitors to its web site every month.
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It is worth mentioning the ongoing creation of a network of International
GeoGebra Institutes (IGI) that serves as a platform from which teachers and
researchers from around the world work together to promote activities and
research related to GeoGebra and its applications. Currently there are 180
official IGIs in 80 countries.

1.2. Sage

Sage (http://sagemath.org) is a free open source CAS designed to be
a viable multi-platform free open source alternative to proprietary - and
expensive - systems such as Mathematica, Maple or Matlab. Besides being
open source, the integration of multiple tools and the possibility of remote
access via the Internet make their most notable features.

Built out of nearly 100 open-source packages (including Singular, Ax-
iom, Maxima,...), Sage features a unified interface that takes the form of a
notebook in a web browser or the command line. Using the notebook, Sage
connects either locally to your own Sage installation or to a Sage server on
the network. Inside the Sage notebook you can create embedded graphics,
beautifully typeset mathematical expressions, add and delete input and share
your work.

Sage was created in 2004 by William Stein (http://wstein.org), pro-
fessor at the University of Washington, motivated, among other things, by
several disagreements over some accessibility issues with the developers of
Magma, a highly specialized commercial CAS in whose development he had
collaborated.

1.3. Intergeo

The Intergeo (i2g) file format is an XML-based specification designed to
describe any construction created with a DGS. It is based on OpenMath
[19], a standard for representing mathematical objects with their semantics
and was developed as part of the Intergeo project (http://i2geo.net), an
eContentplus European project in which the authors took part dedicated to
the sharing of interactive geometry constructions across systems.

An i2g file takes the form of a compress file package. The file intergeo.xml
provides a textual description of the construction in two parts, one with the
elements of the construction that describes the (static) initial configuration
and one where the geometric constraints among the elements are included.
A detailed specification of the file format can be found at http://i2geo.

net/xwiki/bin/view/I2GFormat/, where several examples are provided.
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Figure 1: (one branch of) The conchoid of Nichomedes as the locus set traced by T as M
runs along the line a.

2. Automatic Discovery and locus equations

Given a dynamic geometry construction, a locus generally refers to the
set of points determined by the different positions of a point, the tracer or
tracing point, as a second point in which the tracer depends on, called the
mover or moving point, runs along the one dimensional object to which the
mover is restrained (see Figure 1).

Some DGS allow higher dimensional tracing elements, making possible
the construction of more involved geometric objects such as envelopes (curves
that are tangent to a family of lines). Being the algebraic treatment of
envelopes very similar to that of loci determined by points, almost everything
in this work can be easily generalized towards the computation of envelope
equations.

Most systems implement loci generation just from a graphic point of view,
returning a locus as a set of points in the screen with no algebraic information.
Two main strategies have been followed to determine the implicit equation
of a locus in a DGS. On one hand, there is the numerical approach, based
on a set of sample points in the locus. This is the method followed by the
commercial systems Cabri and Cinderella that apply direct interpolation. It
has the advantage of being relatively easy to implement within the system but
its numerical nature makes it prone to inaccuracies (see [20] for an in-depth
study of this standard approach). A slightly different method is presented in
[21] where an algorithm based on the analysis of eigenvalues and eigenvectors
to determine the degree and coefficients of the “closest” algebraic curve to a
set of sample points of a locus constructed by ruler and compass is analyzed.
Although impressively precise in certain situations, the method shows some
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weaknesses (Our algorithm makes a false degree guess more often for curves
of relatively high degree. They may be recognized as curves of lower degree
[21, p. 63]), making it a promising, but still open approach to automated
loci determination.

On the other hand there is the symbolic approach followed in this work.
Given a dynamic geometry construction with algebraic (i.e. polynomial) el-
ements, a locus can be viewed as the solution of a parametric polynomial
system where the parameters correspond to the semi–free symbolic coordi-
nates of the moving point (recall that the moving point is constrained to a
linear object, thus having one degree of freedom). In other words, the goal
is discovering the algebraic properties (i.e. in terms of equations) that the
(coordinates of the) tracing point must satisfy in order for the construction
to keep its constraints while the moving point varies its position along its
path. In this sense, the determination of loci can be viewed as a particular
instance of automatic discovery in geometry.

The algorithm for automatic discovery of loci followed in this work was
first proposed by the first author [20] and it derives from an earlier proposal
for automatic discovery in elementary geometry via algorithmic commutative
algebra and algebraic geometry using Gröbner bases in [12]. This same algo-
rithm has recently been implemented by the DGS JSXGraph to determine
the equation of a locus set using remote computations on a server [22], an
idea previously developed by the authors in [17].

A different symbolic approach to loci discovery based on Wu’s method
[2] has been suggested by Chou [23] and implemented by Roanes-Maćıas
and Roanes-Lozano in some particular situations [24]. However their im-
plementation is purely algebraic with no graphical environment for diagram
construction.

Roughly speaking, the procedure for automatic discovery goes as follows.
A statement is considered where the conclusion does not follow from the
hypotheses. Two types of points are considered in a construction: free and
bounded points. A free point has two degrees of freedom while a bounded
point is one subject to constraints. Depending on its number of constraints,
the degree of freedom of a bounded point will be 0 or 1. Symbolic coordi-
nates are assigned to the points of the construction (where every free point
gets two new free variables ui, ui+1, and every bounded point gets up to two
new dependent variables xj, xj+1) so the hypotheses and thesis are rewritten
as polynomials h1, . . . , hn and t in Q[u, x]. Eliminating the dependent vari-
ables in the ideal (hypotheses, thesis), the vanishing of every element in the
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Figure 2: Limaçon of Pascal as the locus set traced by Q as P runs along the circle c.

elimination ideal (hypotheses, thesis)∩Q[u] is a necessary condition for the
statement to hold.

The problem of finding the equation of a locus for a particular geometric
construction can be viewed as a particular case of this general setting with
numerical coordinates for the free points, free variables corresponding to the
tracing point and dependent variables to all other bounded points. The elim-
ination (using Gröbner bases) of the dependent variables in the polynomial
ideal obtained as translation of the construction leaves us with a set of poly-
nomials in the independent variables. The zero set of these polynomials is a
superset of the sought locus set. This algebraic set may contain extra com-
ponents due sometimes to the algebraic nature of the method (it returns only
Zariski closed sets) and due sometimes to some degenerate positions in the
construction.

For instance, let us consider the limaçon of Pascal, a locus set that can
be described as a conchoid as follows. Let O be a fixed point on the circle c
and l be a line passing through O and P (any point on c). Let Q be a point
on l such that distance(P,Q) = k, where k is a constant. The limaçon of
Pascal is the locus set traced by Q as P moves along c as shown in Figure 2
(where k is given by the length of segment AB).

Treating the moving point P as the parameter for the locus construction
we make the following assignment of coordinates: P (a, b), Q(x, y). If we
consider that O is the point (0, 2) and distance(A,B) = 1 we get the ideal
I = (a2+ b2−4, (x−a)2+(y− b)2−1, x(b−2)−a(y−2)) whose polynomials
correspond, respectively, to the following geometric constraints: P is in the
circle of center (0, 0) and radius 2, distance(P,Q) = 1 and Q ∈ Line(P,O).
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Figure 3: Limaçon of Pascal with extra circle.

Eliminating variables (parameters) a and b we obtain the following product of
two polynomials (x4+2x2y2+y4−9x2−9y2+4y+12)(x2+y2−4y+3). While
the first factor provides the implicit equation for the actual limaçon, the
second factor corresponds to a spurious circle corresponding to the degenerate
case for which P = O when the line l ceases to exist (see Figure 3).

The relevance of degeneracy conditions was pointed out from the very
first works in Automatic Deduction in Geometry (see, for instance, [25, 26]).
While an automatic procedure to identify general degeneracy conditions is
still to be done, a method to efficiently treat the case of degeneracy conditions
in the particular case of geometric loci is presented in section 4.

3. Connecting GeoGebra and Sage: an Automatic Deduction En-
vironment

Besides communication through a standard command window, one can in-
teract with Sage (either locally or remotely) using the Sage notebook working
on a worksheet. In a Sage worksheet, one can write code using Sage, Python,
and any other software included in Sage. Since the notebook presentation is
done through a standard web browser, HTML code is also accepted.

The developed automatic deduction environment prototype consists of a
Sage worksheet in which two different tasks are performed over GeoGebra
constructions. Algebraic automatic deduction techniques based on Gröbner
bases are used to either compute the equation of a geometric locus in the case
of a locus construction or to determine the truth of a general geometric state-
ment included in the GeoGebra construction as a Boolean variable. The Sage
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worksheet includes a GeoGebra applet that allows the direct construction of
a diagram or the upload of a previously designed GeoGebra construction.

More precisely, once a geometric diagram has been input in the applet,
a JavaScript method provided by GeoGebra is used to obtain the GeoGebra
XML description of the construction as a string inside a JavaScript variable.
However, Sage does not include any standard way to transfer the content of
a JavaScript variable to a Sage variable. The solution to this critical point
comes from tampering with the code of Sage itself, using the following code
(inside HTML) to control the cell flow.

code = "myxml = " + " \’\’\’" + document.applets[0].getXML()

+ " \’\’\’ ";

\$("#cell_input_17").val(code);

evaluate_cell(17);

Once the XML description of the GeoGebra construction is available to
Sage as a string, a first parsing process takes place in which the different
GeoGebra elements in the construction are read, creating an algebraic coun-
terpart for each element. This is done with an ad-hoc programming in Python
involving several hundred lines of code (see [27] for details). As an example,
the following snippet generates the polynomial equation of the line through
two points.

def Line(n,p,q):

"""Constructs the line $n$ that goes through the points

$p$ and $q$."""

vdir=(x(q) - x(p), y(q) - y(p))

eq=Set([(absc - x(p))*(y(q) - y(p)) -

(orde - y(p))*(x(q) - x(p))])

After all the algebraic structures in the construction have been set up,
the appropriate variables are initialized and the ideal corresponding to the
task (locus or proof) is generated. Singular (a CAS with special emphasis on
commutative algebra included in Sage) is then called to basically compute
a Gröbner basis for this ideal. Each generator is factored and a process of
logical expansion is performed on the conjunction of the generators in order
to remove repeated factors.
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Finally, the answer is presented to the user. In the case of a locus task,
besides providing the locus equation, the graph corresponding to this equa-
tion is included in the GeoGebra applet together with the original locus
construction.

Let us remark that the use of JavaScript to establish the direct communi-
cation between Sage and the GeoGebra applet is the key step in making the
user experience completely automatic. This has made possible to circumvent
the question/answer nature of Sage to generate what amounts to a one-click
add-on for GeoGebra.

The system is presented in a prototype state and currently accepts a lim-
ited (easy to expand) set of construction primitives, namely Free points, Mid-
point (point-point), Point (on Circle and on Line), Segment (point-point),
Line (point-point, point-parallelLine), OrthogonalLine, Circle (center-radius,
center-point, center-radiusAsSegment), Intersect (object-object), Locus and
RelationBetweenTwoObjects (parallelism, perpendicularity).

Let us underline the fact that the system is solely based on Open Source
software in contrast with other DGS-CAS implementations based on propri-
etary applications (e.g. [15] with Mathematica, [16] with Maple, [28] with
Maple and/or Mathematica).

We illustrate the use of the prototype with two examples: the proof of
a basic theorem specified in GeoGebra using a boolean variable and the
computation of the equation of a classical locus. Both examples are pre-
sented as teaching scenarios where the idea is to complete the sequence con-
struct/experiment/conjecture with a completely reliable answer, helping a
student understand the difference in reliability between a numerical and a
symbolic computation based on deep algebraic structures.

(only for electronic version) The following video shows a demonstration
of use of the Sage worksheet SymbComp GeoGebra.sws.

(only for electronic version) [link to video 1]

Access to the full code is available by request to the authors or by
downloading the virtual machine (431 MB) available in [29], adapted from
[30]. Once installed the virtual appliance, it is accessible through https:

//localhost:8000.

3.1. A GeoGebra example of proof

We consider the basic theorem that states that the three altitudes of
a triangle meet at the orthocenter. This result can be easily reproduced in
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terms of a boolean variable in a GeoGebra construction. Given triangle ABC,
it suffices to consider the intersection point P of the altitudes a and b (through
vertices A and B respectively). The boolean statement encompassing the
theorem is line(C,P )⊥line(A,B) as shown in Figure 4 (see boolean variable
g in algebra window).

Figure 4: (numerically) True: the three altitudes of a triangle meet at the orthocenter.

The true provided by GeoGebra based on numerical computations is sym-
bolically corroborated by Sage as shown in Figure 5.

Figure 5: (symbolically) True: the three altitudes of a triangle meet at the orthocenter.

Notice that, unlike the answer provided by GeoGebra, the answer pro-
vided by Sage is not only based on symbolic computations but also completely
general. Symbolic variables (u1 to u6) are used as generic coordinates for the
three vertices, what makes the answer a general statement about any generic
triangle. Degenerate situations (such as that of two vertices being the same)
are excluded, hence the words “generally true” in the statement.

3.2. A GeoGebra example of locus

In the second example we consider the construction of the classical con-
choid of Nichomedes. In Figure 6 we can see how GeoGebra plots only part
of the curve in many instances.
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Figure 6: (partial) Current representation of the conchoid of Nichomedes in GeoGebra.

Figure 7 shows the equation of the locus set as given by Sage.

Figure 7: Equation of locus set as given by Sage.

Moreover, the complete graph of the given equation is automatically in-
cluded in the GeoGebra applet together with the original (partial) represen-
tation of the locus set (figure 8).

3.3. Opening the System to any Intergeo Compliant System

The system presented above is specifically designed for a particular DGS
(GeoGebra). To make it available to other systems a variation of the proto-
type has been developed that admits locus constructions specified using the
Intergeo common file format. In this case, no graphic interface is provided
and the (Intergeo) XML-description of the locus has to be directly included
in a text area. After that, the system proceeds as the one described in Section
3 providing the equation of the locus and its graph.

Among the list of elements covered by the i2g format, we find several def-
initions of locus. However, no analogue of the GeoGebra boolean statement
is considered (yet) by the format. This is the reason why the developed Sage
worksheet does not accept true/false queries.
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Figure 8: (complete) Representation of the conchoid of Nichomedes in GeoGebra.

Other works related to interactive web mathematics and automatic provers
using OpenMath include [31, 32]. As noted in section 1.3, OpenMath is the
standard for representing mathematical objects with their semantics that was
taken as basis for the i2g file format.

To generate an i2g locus description, one can use any of the DGS sup-
porting the i2g format (see [33] for a list of softwares and their current im-
plementation status). As an example, we consider the construction pro-
vided in the Intergeo web site as an example of a construction with the
locus_defined_by_point_on_circle element. It is the construction, in
the DGS JSXGraph (http://jsxgraph.de), of a cardioid as the locus set
traced by the point P as the point X runs along a circle (see [34]).

As a sample, the following is the encoding of the locus element in the i2g
description of the construction:

<locus_defined_by_point_on_circle>

<locus out="true">L</locus>

<point>X</point>

<point>P</point>

<circle>c</circle>

</locus_defined_by_point_on_circle>

Figure 9 shows the equation and graph of the locus as provided by Sage.
Let us observe that although JSXGraph has implemented a remote tool

to determine the equation of a locus [22], it is based on a remote server not
readily available to the general user.

(only for electronic version) The following video shows a demonstration
of use of the Sage worksheet SymbComp Intergeo.sws.
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Figure 9: Equation and graph of cardioid as given by Sage.

(only for electronic version) [link to video 2]

Access to the full code is available by request to the authors or by down-
loading the virtual machine available in [29].

4. Using Gröbner Systems to Detect Degenerate Components

As recalled in section 2, the numerical approximation to the generation
of loci has limitations such as the lack of adequate heuristics for an efficient
interpolation of sample points and the impossibility of knowing a reliable
algebraic description. The latter makes loci (in general, thus including en-
velopes) a special data structure in DGS that requires specific treatment.
For example, construction of points in a locus is only possible in sophisti-
cated versions of software (possible in GeoGebra only now in recent version
4.0). Another example, discussed below, is the computation of tangents to
loci: Since you do not have an algebraic description, the system may not, in
general, draw the tangent to a locus.

The symbolic approach solves these problems providing a polynomial
characterization of a locus. However, it introduces two new problems. On
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the one hand, the translation to polynomial equations of the geometric de-
scription of the locus can introduce extra algebraic constraints unrelated to
the original geometric construction. On the other hand, extraneous solutions
can also be introduced due to the elimination procedure. We will address
both kind of problems in this section.

Recalling the limaçon of Pascal in section 2, eliminating a, b in the ideal
generated by the hypotheses we get the equation of the limaçon and an extra
circle due to the coincidence of P and O. This circle, although meaningful
from an algebraic point of view (since the locus of Q when P and O coin-
cide is constrained just by the condition distance(Q,P ) = 1, so giving the
circle), is clearly a rejectable solution. No current DGS would return such a
locus component and a common user would not expect it. This degenerate
condition could be explicitly excluded by the user (as in GDI [35]) stating
that points P and O must be different. In such a case, the ideal would have
an extra generator (a2 + (b − 2)2)t − 1, and after eliminating a, b and t the
true equation of the limaçon would be returned. Nevertheless, relying on
the user to exclude degenerate conditions is an unsafe approach, since these
conditions can be extremely difficult to find. Moreover, the educational uses
of DG software advise against this approach.

Regarding extraneous solutions introduced through the elimination pro-
cedure, a simple illustration is the locus in figure 10.

Figure 10: Given a moving point A on the hyperbola xy = 1, draw a perpendicular line
to the x-axis and find the locus of points B on this line and on the unit circle.

The elimination procedure returns the unit circle x2 + y2 = 1, whereas
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the true locus is the projection of the hyperbola on the unit circle, that is,
the circle without the points (0,±1). Being I the ideal generated by the con-
struction polynomials, V = V(I) the variety generated by I, Ix,y the ideal
that eliminates all variables but those of the locus point, and πx,y(V ) the
sought projection, we have that πx,y(V ) ⊆ V(Ix,y). So, through elimination
we get the smallest variety containing the locus, or, in others words, the
Zariski closure of the projection. In order to handle this adherence in an
automatic way, we tried the approach developed in [36], where the author
gives alternative proofs to the Extension and Closure theorems of elimination
theory for affine varieties. His proofs are algorithmic in essence, so they could
be easily integrated in our system. And, with our implementation, remov-
ing the spurious points in the projection of the hyperbola was immediate,
returning the locus as a constructible set, V(⟨x2 + y2 − 1⟩)\V(⟨x, y2 − 1⟩).
Nevertheless, with most elementary constructions our code was not able to
remove the extraneous parts. For instance, computing the pedal of the ellipse
36x2 + 100y2 = 225 with respect to (0, 0) (see figure 11), the locus returned
is 4x4 + 8x2y2 − 25x2 + 4y4 − 9y2 = 0. Since this variety contains the origin,
it cannot be the sought pedal. It contains some extra part to be removed
that was not possible to determine with this method.

Figure 11: Pedal of the ellipse 36x2 + 100y2 = 225 with respect to the origin.

The pedal example deserves more attention. It illustrates a current limi-
tation of standard DGS. If we want to compute in GeoGebra the pedal of the
pedal with respect to a given point, we need to compute the tangent by this
point to the first pedal. Since for GeoGebra this first pedal is just a list of
pixels, no internal method is available and the Locus command does not trig-
ger. The symbolic approach will also fail in this case, since the polynomial
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description of the pedal is erroneous.
Both kind of situations (removing degenerated parts and returning loci

as constructible sets, rather than varieties) can be efficiently solved in the
field of dynamic geometry by using the theory of parametric polynomial sys-
tems (see [37] for a description of related issues in the context of automatic
discovery in geometry). The variables occurring in the equations which de-
scribe a construction can be naturally divided into a set of parameters and
a set of unknowns. The parameters correspond to the coordinates of the
bounded points (recall that, since we are searching for the locus equation,
the coordinates of the free points are their actual numerical values), while the
unknowns (variables from now on), correspond to the coordinates of the locus
point. Thus, the parametric polynomial system is formed by the polynomial
geometric constraints. We seek then solutions of the parametric system in
terms of the variable values, and the structure of the solution space.

The study of parametric polynomial systems via Gröbner bases was initi-
ated by [38]. Since then, many improvements to this theory have been made
(e.g. [39], [40], [41], [18], [42], to mention a few). Although most of the
proposed algorithms can be used to solve the problems raised here, in this
paper we primarily use the GröbnerCover algorithm (GC) proposed in [18],
deferring a thorough study of other algorithms to a future work. Previous
works where related theoretical approaches have been proposed are [43] and
[44] in the contexts of automatic proving and discovery, respectively.

More formally, a parametric polynomial system over Q is a finite set of
polynomials p1, . . . , pr ∈ Q[ā, x̄] in the variables x̄ = x1, . . . , xn and param-
eters ā = a1, . . . , am. The goal is studying the solutions of the algebraic
systems {p1(a, x̄), . . . , pr(a, x̄)} ⊂ Q[x̄] which are obtained by specializing
the parameters to concrete values a ∈ Cm.

We briefly recall here the main characteristics of the GC algorithm using
Q as field and C as its algebraically closed extension. Given a parametric
ideal I ⊂ Q[ā, x̄] generated by p1, . . . , pr and homogeneous in the x̄ variables,
and fixed a monomial order ≻x̄ on the variables, let Ia ⊂ C[x̄], for a ∈ C, be
the ideal generated by all p(a, x̄) ∈ C[x̄] for p ∈ I. The canonical Gröbner
cover is a set {(S1, B1), . . . , (Ss, Bs)} of pairs such that

• The Si’s are pairwise disjoint, locally closed subsets of Cm with Cm =∪
Si.

• For a, b ∈ Cm, lpp(Ia)=lpp(Ib) if and only if there exists an i such that
a, b ∈ Si.
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• The Bi’s are finite subsets of monic polynomials of O(Si)[x̄], where
O(Si) denotes the ring of regular functions on Si.

• For a ∈ Si, lpp(Bi) is the minimal generating set of lpp(Ia), and eval-
uating every element of Bi at a ∈ Si we get the reduced Gröbner basis
of Ia with respect to ≻x̄.

If the ideal I is not homogeneous, GC will return a similar result but with
the second condition not always satisfied. It can be proved that the Gröbner
cover of a system does not depend on the algorithm to compute it. The cover
only depends on the ideal and the monomial order.

Concerning the geometric aspects of the GC algorithm, it should be
noted that a Gröbner cover groups together all the values of the parameters
for which the system of equations has the same type of complex solutions
(counted with multiplicities) [18, p. 1393]. Discriminant varieties have been
successfully used to study parametric polynomial systems (cf. [41]). They
deal with the implicit description of the variables as a function of the pa-
rameters. Roughly speaking, a discriminant variety determines a partition
of the space of parameters Cm such that over each open subset not intersect-
ing the discriminant variety, the system has a constant number of solutions.
While Gröbner covers depend on arbitrary choices, such as monomial order-
ings, discriminant varieties are intrinsic objects [41, p. 638]. The authors
of this work define the notion of minimal discriminant variety, propose an
algorithm to compute it, and discuss the state of the art for these varieties
and parametric polynomial systems solving. One of the listed approaches
consists of using comprehensive Gröbner bases, where the GC algorithm can
be classified. Besides discriminant varieties, the notion of border polynomial
should be cited as an alternative way to discuss parametric systems (see [45]
for the relations between both concepts for triangular systems).

The GC algorithm puts the emphasis on obtaining a canonical descrip-
tion of the parametric system, while other algorithms using comprehensive
Gröbner systems focus on effectiveness and speed. Using GC authors’ own
words, the main focus [...] is not on the efficiency of the algorithm but on
computing a Gröbner system that has as few segments as possible and sat-
isfies some additional nice properties, so that the compact output allows an
easy interpretation and the algorithm is easy to use in applications [18, p.
1392]. Although the algorithm in [42] (which substantially improves the
Suzuki-Sato algorithm (SS)) is generally more efficient, GC offers a compact
discussion of the system, in general canonical. However, compactness in the
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description comes at the price of using sometimes regular functions instead of
polynomials (see [18, p. 1394]). A satisfactory approach in these situations
has not been found so far, and thus in such cases we fall back to using SS.
This limits the applications to just the detection of degenerate components
in these cases.

There are two practical reasons for the use of GC (and SS). Since GC
is a very sophisticated algorithm, the availability of an implementation is
a compelling reason. Moreover GC’s implementation is written in Singu-
lar, which provides an efficient incorporation in Sage, our main development
tool. The SS algorithm, although mainly developed in Risa/Asir, also has an
implementation in Singular available in [46]. Furthermore, its open source
character will allow its installation on a web server to provide free remote
processing of DGS tasks.

Our use of GC (and occasionally SS) exchanges the roles commonly as-
signed to parameters and variables. Since in this section we assume that the
algebraic description of the locus or envelope is known (either by the algo-
rithm in [35] or the implementation for envelopes in [47]), we focus on the
use of the algorithms to remove degenerate components and spurious parts
in the adherence.

4.1. Degenerate components

Rougly speaking, a degenerate component in a locus is one whose dimen-
sion is greater than that of the ideal defined by the values of the parameters
that generate that component. For example, in the case of the limaçon in
section 2, the circle x2 + y2 − 4y+3 = 0 (variety of dimension 1) is obtained
associated to a = 0 and b = 2 (parameter set of dimension 0), so we declare
this component as degenerate. Our use of GC departs from the traditional
way: we study the structure of the space of variables (x, y, the coordinates
of the locus) so we exchange the roles of parameters and variables. GC
determines in this case four segments:

• Segment 1

– segment: C2 \ (V(x2 + y2 − 4y + 3) ∪ V(x4 + 2x2y2 − 9x2 + y4 −
9y2 + 4y + 12))

– basis: {1}

• Segment 2
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– segment: (V(x2 + y2 − 4y + 3) \ (V(2y − 3, 4x2 − 3)) ∪ (V(x4 +
2x2y2−9x2+y4−9y2+4y+12)\ (V(2y−3, 4x2−3)∪V(y−2, x))

– basis: {(2x2+2y2−4y)b+(−x2y−2x2−y3+2y2−3y+6), (2x2+
2y2 − 4y)a+ (−x3 − xy2 + 4xy − 3x)}

• Segment 3

– segment: V(y − 2, x) \ V(1)
– basis: {4b− 7, 16a2 − 15}

• Segment 4

– segment: V(2y − 3, 4x2 − 3) \ V(1)
– basis: {a+ 2xb− 4x, b2 − 3b+ 2}

Our strategy is to examine, for each locus factor, the dimension of the
ideal generated by the values of the parameters for the segment in which that
factor appears as minuend. Thus, for the circle x2 + y2 − 4y + 3 = 0 the
parametric ideal is ⟨a, b−2⟩, of dimension 0, so that component is declared as
degenerate. For the second factor of the locus the dimension of the parametric
ideal is 1, equal to the dimension of the component of the locus which is
determined then to be non-degenerate.

The following is a detailed scheme of the algorithm:

• Algorithm deg-comp

– Input: factloc - the factors of the locus; pols - polynomials de-
scribing the construction; vars - the locus coordinates; paras - the
mover coordinates.

– Output: a list deg containing the degenerated components

• Code

– begin

– gc = GröbnerCover(pols)

– for f in factloc:

∗ df = dimension(⟨f⟩)
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∗ gbf = the Gröbner basis of the segment where f appears as
minuend

∗ If = ⟨gbf,f⟩
∗ SIf = saturation(If, ⟨subtrahends of expressions with f in the
segment⟩)

∗ de = dimension(elimination(SIf, paras))

∗ if de < df then append(deg, f)

– return deg

– end

(only for electronic version) The following document, offered as supple-
mentary material, shows the trace of the execution of the program for the
detection of degenerate components in the Sage worksheet DetectingDeg.sws.

(only for electronic version) [link to supplementary document
DetectingDeg.pdf]

Access to the full code is available by request to the authors or by down-
loading the virtual machine available in [29].

4.2. Removing extraneous parts from the adherence

The GC algorithm can also be used to remove spurious parts of the loci
introduced by the algebraic process of variable elimination. We have seen
above how neither the numerical nor the symbolic approach to computing
loci is adequate to determine the pedal of a pedal of an ellipse. The numeric
approach does not allow the computation of tangent lines to the first pedal
and the standard symbolic approach returns an extra point, also preventing
the correct computation of the second pedal. A Gröbner cover for this con-
struction, where (a, b) are the coordinates of the moving point on the ellipse,
is composed of three segments

• Segment 1

– segment: C2 \ V(4x4 + 8x2y2 − 25x2 + 4y4 − 9y2)

– basis: {1}
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• Segment 2

– segment: V(4x4 + 8x2y2 − 25x2 + 4y4 − 9y2) \ V(y, x)
– basis: {(4x2 + 4y2)b− 9y, (4x2 + 4y2)a− 25x)}

• Segment 3

– segment: V(y, x) \ V(1)
– basis: {1}

The basis {1} for the third segment tells us that the point (0, 0) can not
be described in terms of any parameter values so it must be removed from
the locus whose algebraic description is then given by V(4x4+8x2y2−25x2+
4y4−9y2)\V(y, x). The computation of the second pedal is now possible. It
is given by the following equation that again includes the extra point (0, 0)
(see both pedals together with the original ellipse in Figure 12).

262144x12+1572864x10y2+3932160x8y4+5242880x6y6+3932160x4y8+
1572864x2y10 + 262144y12 − 1472512x10 − 7759872x8y2 − 16314368x6y4 −
17108992x4y6 − 8951808x2y8 − 1869824y10 − 1010556x8 + 2991888x6y2 +
13457944x4y4+13898000x2y6+4442500y8−164025x6−1366875x4y2−3796875x2y4−
3515625y6 = 0.

Figure 12: Ellipse 36x2 + 100y2 = 225, pedal of the ellipse with respect to the origin and
pedal of the pedal with respect to the origin.

This example shows how for the effective parametric treatment of dynamic
geometry constructions, description in terms of constructible sets, rather
than equations, has to be adopted.
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Putting together this observation that allows to remove spurious elements
in loci that are detected when the Gröbner basis for the segment is 1, with
the suppression of degenerate components seen above, a simple procedure
can be defined to perform both tasks. We have included a test to detect
when a segment belonging to the true locus is contained in another segment.
The first segment in then eliminated.

4.3. An example of failure

It was said above that the GC algorithm provides, among the ones that
compute Gröbner systems, a compact description for a parametric system
and to do that it sometimes has to replace ordinary polynomials by regu-
lar functions. The following example illustrates this situation, showing two
possible solutions. We consider the deltoid as the envelope of the Simson
lines. More concretely, given the triangle A(−1, 0), B(1, 0), C(0, 1) and a
point D(a, b) on its circumcircle, we consider the orthogonal projections of D
to the sides AB and BC. The line joining these projections is a Simson line,
and when D moves along the circumcircle the envelope of this family of lines
generates the Steiner deltoid, x4+2x2y2+10x2y−x2+y4−6y3+12y2−8y = 0.
However, when X coincides with B the Simson line is undefined, introducing
in the equation of the envelope a degeneracy condition, namely x+y−1 = 0.
Similarly to what has been done for the limaçon above, an inequality condi-
tion can be defined to avoid this situation, as in [47]. If that condition is not
detected (or is not made available in the option list provided to the user),
the approach described here fails due to the existence of regular functions in
the Gröbner basis corresponding to the following segment

(V(x+y−1)\ (V(y, x−1)∪V(4y2−4y−1, x+y−1)))∪ (V(x4+2x2y2+
10x2y − x2 + y4 − 6y3 + 12y2 − 8y) \ (V(y, x− 1) ∪ V(4y2 − 4y − 1, x + y −
1) ∪ V(4y + 1, 16x2 − 27) ∪ V(y − 2, x)))

For a correct description of the reduced Gröbner basis of this segment
we need a regular function given by (4xy + x + 4y2 − 3y − 1)b + (−x3 −
x2y + x2 − xy2 − 3xy + x − y3 − 2y2 + 4y − 1) when x + y + 1 ̸= 0 and
(2x2y+ x2 +2y3 − y2 − y− 1)b+ (4x2y+ x2 − 4y3 +7y2 − 2y− 1) otherwise,
so the basis is given by

{{(4xy+x+4y2−3y−1)b+(−x3−x2y+x2−xy2−3xy+x−y3−2y2+4y−1),
(2x2y + x2 + 2y3 − y2 − y − 1)b+ (4x2y + x2 − 4y3 + 7y2 − 2y − 1)},
(2x2+4xy+x−2y2+5y−2)a+(−x3−x2y−x2−xy2−3xy+x−y3+4y2−4y)}
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(A simple example with regular functions can be found in [18], p. 1393.)
A first solution consists of obtaining a GröbnerCover of the space of pa-

rameters a, b corresponding to the moving point, rather than the approach
followed so far studying the structure of the space of coordinates of the lo-
cus. That is, we simply exchange the roles of coordinates of the tracing and
moving points. For this deltoid, the segments are

• Segment 1

– segment: C2 \ V(a2 + b2 − 1)

– basis: {1}

• Segment 2

– segment: V(a2 + b2 − 1) \ V(b, a− 1)

– basis: {(y + (−b2 − b), y + (a ∗ b− a)}

• Segment 3

– segment: V(b, a− 1) \ V(1)
– basis: {x+ y − 1}

Applying the algorithm deg-comp to this GröbnerCover it follows that
the component of the locus given by x + y − 1 = 0 is degenerate (it is
one-dimensional while the segment is just one point) and the segment 2
corresponds to a non-degenerate component (the deltoid described above) of
dimension 1, the same as the segment, which is the circumcircle minus the
point (1, 0).

We do not know the relationship, if any, between the structures of the
spaces of variables and parameters, so it can not be determined which should
be studied first. Since this article uses the solution of parametric systems
to remove unwanted elements in loci whose description is previously known,
preference has been given to the space of variables, but the alternative study
of the parameter space has, in our view, similar doses of plausibility.

However, although infrequently, there are geometric constructions in which
GC does not provide any solution (or does not do so in a reasonable time).
For these cases we use the algorithm proposed in [48]. It generally performs

24



with a higher speed but the returned segments are generally not disjoint.
This loss of compactness is the cause that our approximation is limited to
the detection of degenerate components (which may appear several times)
and does not consider the problem of removing spurious parts in loci.

For the curve y2 = x3, its 1–offset (envelope of the circles with radius 1
and centered on the curve) is a curve of degree 14 which factors into

(x2+ y2− 1)3(729x8+729x6y2+216x7− 1458x5y2− 1458x3y4− 2900x6−
2619x4y2 + 729x2y4 − 2376x5 − 4892x3y2 − 4158xy4 + 3870x4 − 297x2y2 +
4072x3 + 5814xy2 − 1188x2 + 729y6 − 1685y4 + 427y2 − 1656x+ 529)

The GC algorithm is not able to find a partition for the space in a reason-
able time, so we use a variation of the deg-comp algorithm on the partition
into segments returned by SS. The component x2 + y2 − 1 (provided by the
singular point of the base cubic) is found to be degenerate. Figure 13 shows
both the initial cubic and the (correct) offset as provided by Sage.

Figure 13: 1–offset for the cubic y2 = x3.

Concerning time, and with the exception of the above 1–offset, all the
examples considered in this paper are computed in a few seconds (see the
DetectingDeg supplementary document for exact times). For instance, our
algorithm finds that the component x2+ y2−1 of the 1–offset is degenerated
in 0.2 seconds. It should be noted that these times are estimated using the
canonical Sage server sagenb.org. The corresponding times using a Pentium
4 machine could be incremented by a factor of 10, what can result in a
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significant loss of interactivity, intrinsic to dynamic geometry environments.
The complexity of both the algorithms and systems involved in the prototype
call for an implementation through a client-server architecture where optimal
user experience can be achieved. In this case, the times of this approach make
it suitable for an interactive use.

5. Conclusions

This article presents an interactive environment joining a dynamic geom-
etry system and a computer algebra system in which automatic tasks can
be processed following algorithms of automatic discovery based on Gröbner
bases. This initial idea, also found in other authors, has in this presentation
two main innovations. On the one hand, at the technical level, the system
consists of an efficient complete integration of two different open source ap-
plications via a bidirectional communication between the applications. On
the other hand, at the theoretical level, an algorithm to automatically re-
move unwanted elements in an automatically computed locus is presented.
The described method, effective in most situations, removes degenerate com-
ponents and extra adherence points in a locus, tackling two subtle problems
inherent to the nature of algebraic polynomial methods. The algorithm is
based on the study of parametric systems.

Although the system is based on readily available tools, we understand
that a general DGS user can feel intimidated by the use of different new
applications. To make the system more accessible it is our idea to develop
a dedicated web application based on the remote Sage server capabilities in
which all tasks are processed away from the user.
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