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Abstract

The availability of the implicit equation of a plane curve or of a 3D surface can
be very useful in order to solve many geometric problems involving the considered
curve or surface: for example, when dealing with the point position problem or
answering intersection questions. On the other hand, it is well known that in most
cases, even for moderate degrees, the implicit equation is either difficult to compute
or, if computed, the high degree and the big size of the coefficients makes extremely
difficult its use in practice.

We will show that, for several problems involving plane curves, 3D surfaces and
some of their constructions (for example, offsets), it is possible to use the implicit
equation (or, more precisely, its properties) without needing to explicitly determine
it. We replace the computation of the implicit equation by the evaluation of the
considered parameterizations in a set of points and its use, in order to deal with
the considered geometric problems, is translated into one or several generalized
eigenvalue problems on matrix pencils (depending again on several evaluations of
the considered parameterizations).

This is the so called “Polynomial Algebra by Values” approach where the huge
polynomial equations coming from Elimination Theory (e.g., using resultants) are
replaced by big structured and sparse numerical matrices. For these matrices there
are well known numerical techniques allowing to provide the results we need to
answer the geometric questions on the considered curves and surfaces.

Key words: Bézout matrix of two polynomials, Offsets, Topology computations,
Computations in the Lagrange Basis, Intersection problems for curves and
surfaces.
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Introduction

Using algebraic and symbolic technics for dealing with the so called position
and intersection problems for algebraic curves and surfaces in Computer Aided
Design is not new. Resultants and other notions coming from Elimination The-
ory and Algebraic Geometry are very useful to determine implicit equations,
in order to compute intersection points and curves, etc. However, when the
degrees of the polynomials involved in the curve or surface representation be-
come high, the polynomials produced have a very high degree and often, their
coefficients have huge size. Thus, using them becomes a complicated task.
Moreover, in many cases, it is required to compute the determinant of a poly-
nomial matrix, that from the symbolic and numerical point of views is not an
easy and safe (regarding stability and accuracy) task.

The main purpose of this paper is to show how to use the properties of the
objects coming from Elimination Theory to deal with several cases of the
point position and intersection problems for curves and surfaces, avoiding the
computation of the determinant of any polynomial matrix and requiring only
the knowledge of the evaluation at several nodes of the polynomials involved
in the curves and surfaces representation. To avoid the computation of the
determinant of a polynomial matrix when dealing with intersection problems
between curves was already introduced in [29] and [30]: the polynomial matrix
is replaced by a matrix pencil whose generalized eigenvalues are the roots
of the determinant of the considered polynomial matrix (this is called the
linearization of the polynomial matrix).

We show here how to use this approach when the curves and surfaces are
given by values and how to deal also with offsets (for parametric curves)
and including also topological questions. For example, we will show how to
compute the topology of the offset of a given parametric plane curve when this
curve is presented by values: the offset of a parametric plane curve is a real
algebraic plane curve (in general not rational) whose defining polynomial has
degree much higher than the degree of the original curve, and it is usually quite
dense. We are replacing the polynomial equations with huge coefficients or high
degree coming from Elimination Theory (when using, for example, resultants)
by big, structured and sparse numerical matrices. For these matrices there
are well known numerical technics allowing to provide the results we need to
answer the geometric questions on the considered curves and surfaces.

The methods to be presented here are based on the possibility of performing
many operations on polynomials, such as differentiation or Bézout matrices
construction, working directly with Lagrange interpolation data, and avoiding
the transformation into monomial basis, which is a source of numerical insta-
bility. In addition, the special structure of the nullspace of the Bézout matrix,
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and the ability of computing the roots of the determinant of a Bézout matrix
whose coefficients are polynomials by using generalized eigenvalues, will play
an important role.

The paper is organized in the following way. The first section introduces the
basic tools for dealing with the Polynomial Algebra by Values approach: how
to compute the Bézout matrix of two polynomials presented in the Lagrange
Basis (i.e., by values) and how to determine the companion matrix pencil for
a polynomial matrix when this matrix is also presented in the Lagrange Ba-
sis. The second section summarizes the results in [10] in order to compute the
topology of the curve f(x, y) = 0 when it is presented by values. The third sec-
tion shows how to solve “by values” six geometric problems for plane curves:
the point position problem for parametric plane curves and their offsets, the
intersection of two parametric curves, the self-intersections of a parametric
curve, the intersections of a parametric curve and the offsets to another curve,
and the determination of the topology of the offset to a given parametric plane
curve. The fourth section shows how to solve “by values” the point position
and intersection problems for ruled and ringed surfaces, and surfaces of revo-
lution, and how to determine the intersection curve between one these surfaces
and an arbitrary parametric surface. The last section introduces briefly some
topics that, in our opinion, deserve special attention to improve the algorithms
introduced here.

Basic notation

In what follows, vectors and matrices are denoted by bold letters. We denote
the vector space of polynomials of degree at most n by Pn. For bivariate
polynomials of degree at most m in the first variable, and degree at most n
in the second, the associated vector space is denoted by Pm,n. For a bivariate
polynomial p(z, t), degz(p(z, t)) (resp. degt(p(z, t))) denotes the degree of p
when considered as a polynomial in z (resp. t) with polynomial coefficients in
t (resp. z).

1 Polynomial Algebra by values: the Bézout matrix and the lin-
earization of matrix polynomials in the Lagrange basis

In this section, we present the main mathematical tools which help us to re-
place the algebraic manipulation of polynomials (and their roots) by compu-
tations with numerical matrices (and their eigenvalues). This is a well-studied
approach in the familiar monomial basis. Here, the main focus is on provid-
ing the necessary tools to carry out such an approach when the monomial
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description of the polynomials is not available or is costly to be computed.
Instead, we have, or can deduce, the evaluations of the given polynomials at
some sample points as well as degree bounds for the polynomials.

To replace a given polynomial problem by values with a so-called generalized
eigenvalue problem by values, we introduce two main matrix constructions: a
symmetric definition of the Bézout matrix from Elimination Theory and a pair
of matrices associated with such a Bézout matrix, known as the companion
matrix pencil.

1.1 The Bézout matrix of two polynomials

Standard definitions of the Bézout matrix make explicit reference to the mono-
mial or power basis (see, e.g., [5]). However, all constructions of the Bézout
matrix make use of the so-called Cayley quotient which makes no reference to
any particular basis in which the given polynomials are represented.

Definition 1 Let p(t) and q(t) be two univariate polynomials, and assume
that n = max(deg(p(t)), deg(q(t))). The Cayley quotient of p(t) and q(t) is the
function Cp,q of degree at most n− 1 defined by

Cp,q(t, z) =
p(t)q(z)− p(z)q(t)

t− z
. (1)

If Φ(t) = [φ1(t), . . . , φn(t)]T is a polynomial basis for Pn−1, the Bézout matrix
in the basis Φ is the n× n symmetric matrix B such that

Cp,q(t, z) = Φ(t)T B Φ(z). (2)

The proof of the following lemma can be found in [4].

Lemma 1 Let p(t), q(t) ∈ Pn such that n = max(deg(p(t)), deg(q(t))). Sup-
pose that t∗ ∈ C is a common zero of p(t) and q(t). If B is the Bézout matrix
of p(t) and q(t) in the basis Φ of Pn−1, then Φ(t∗) is a null vector of B.

Remark 1 When d = deg(p) > deg(q), the principal coefficient ad of p(t)
appears as a factor of every element of the first row of the Bézout matrix B,
so it will be a factor of det(B). If p(t) is expressed in the Lagrange basis, as
in definition 2, its principal coefficient can be computed using the formula

ad =
d+1∑
i=1

ωi(τ)pi.

If the polynomials are bivariate, p(s, t) and q(s, t), the entries of the Bézout
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matrix of p and q, with respect to t, B(s), will be polynomials in s. If degt(p) >
degt(q) the principal coefficient ad(s) of p(s, t), as a polynomial in t, will be a
factor of det(B(s)). Some authors ([22],[39]) use a different definition of the
Bézout matrix, with the same properties of Lemma 1, which is not symmetric,
and whose determinant has not the factor ad when degt(p) > degt(q), (see
[12], page 237, and Example 1).

Example 1 Let p(s, t) = (s3 − 6)t4 + (−12 + s6)t2 − 9 + 2s3, and q(s, t) =
(−s+ 2)t3 + st2 − 4t+ s2.

Then the Bézout matrix with respect to t, B(s), takes the following form

− (s3 − 6) (−s+ 2) − (s3 − 6) s 4 s3 − 24 − (s3 − 6) s2

− (s3 − 6) s . . . . . . . . .

4 s3 − 24 . . . . . . . . .

− (s3 − 6) s2 . . . . . . . . .


If we call B̂(s) the non-symmetric version of the Bézout matrix, it turns out
that det(B(s)) = (s3 − 6) det(B̂(s)).

The construction of the Bézout matrix using the Cayley quotient in the mono-
mial basis (i.e., power basis) is classic (see [5]). In this work, we do not intend
to give the details of such a well-known derivation of the Bézout matrix. Our
primary focus will be on the application of the Bézout matrix in analyzing
several geometric problems involving curves and surfaces which are described
by their values at some given nodes (i.e., in the Lagrange polynomial basis).

The construction of the Bézout matrix associated with a pair of univariate
polynomials specified in the Lagrange polynomial basis (i.e. given by values)
has been introduced and fully studied in [35] and [36].

1.2 The Bézout matrix in the Lagrange basis

There are several applications of Bézout matrices for bivariate polynomials
given by samples in each variable (see for example [4]). The natural basis is the
tensor product of the Lagrange basis in each variable. Before discussing some
applications we review some facts about the Lagrange interpolation problem.
We consider the so-called barycentric representation of the Lagrange poly-
nomial basis which is known to have numerical advantages over the familiar
standard definition (see [6,32]).
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Definition 2
Let τ = (τ1, . . . , τd+1) ∈ Cd+1 be a vector whose numerical entries are all
distinct. We define

`(t; τ) =
d+1∏
j=1

(t− τj) , ωi(τ) =

d+1∏
j=1
j 6=i

(τi − τj)


(−1)

, (3)

where the ωi(τ) are called the barycentric weights. Then, the associated barycen-
tric Lagrange polynomials are given by

Li(t; τ) =
ωi(τ)`(t; τ)

t− τi
, (1 ≤ i ≤ d+ 1) , (4)

and if p(t) ∈ Pd,

p(t) = `(t; τ)
d+1∑
i=1

ωi(τ)pi
t− τi

, (5)

where pi = p(τi), 1 ≤ i ≤ d+ 1. Moreover, we call

L(t; τ) = [L1(t; τ), . . . , Ld+1(t; τ)]T ∈ [Pd]d+1 (6)

the Lagrange polynomial basis.

Definition 3 A polynomial p(t) ∈ Pd is said to be given by values if for a set
of d+ 1 nodes (τ1, . . . , τd+1), the values pi = p(τi), 1 ≤ i ≤ d+ 1, are known.

A bivariate polynomial p(s, t) ∈ Pm,n is said to be given by values if for a
rectangular grid {(σi, τj) : 1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1}, the values pi,j =
p(σi, τj), 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1, are known.

Remark 2 For computing purposes, once the nodes (τ1, . . . , τd+1) are known
or chosen, the barycentric weights are computed only once. If a polynomial p(t)
is given by values, it can easily be evaluated at a particular value of t = t0, by
evaluating the polynomials of the Lagrange basis Li(t0; τ), 1 ≤ i ≤ d + 1. The
whole evaluation of p(t0) requires 2d + 1 additions/substractions and d2 + d
products. Note that p(t) is not constructed by interpolation for this evaluation.

Using barycentric representation of the Lagrange polynomial basis, we now
introduce the Bézout matrix by values. The following results has been proved
in [36].

Theorem 1 Let p(t) and q(t) ∈ Pd, such that d = max(deg(p(t)), deg(q(t))).
Suppose τ = (τ1, . . . , τd+1) ∈ Cd+1 consists of distinct numerical values. Let
p = (p1, . . . , pd+1) and q = (q1, . . . , qd+1) be numerical data such that p(τi) =
pi and q(τi) = qi, 1 6 i 6 d + 1. Let τ̃ = (τ1, . . . , τd) ∈ Cd consist of all the
nodes in τ except τd+1. Let p′i = p′(τi) and q′i = q′(τi) denote the values of
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the derivatives of p(t) and q(t) (1 6 i 6 d). Then, the Bézout matrix in the
Lagrange basis L(t; τ̃) ∈ [Pd−1]d is the d×d matrix Bezp, q = [bi,j], with entries
given by

bi,j =
piqj − pjqi
τi − τj

, 1 ≤ i ≤ d, 1 ≤ j ≤ d, i 6= j, (7)

bi,i = p′i qi − pi q′i , 1 ≤ i ≤ d. (8)

Corollary 4 With the notation in Theorem 1,

Cp,q(t, z) = L(t; τ̃)T Bezp, q L(z; τ̃). (9)

To compute the diagonal entries of the Bézout matrix in the Lagrange basis in
Theorem 1, we need to have a systematic way of computing all the derivatives
of the polynomial interpolant on the given sample points. From [2,37], we have
that

p′i =
1

ωi(τ)

d+1∑
j=1
j 6=i

ωj(τ)(pj − pi)
τi − τj

, (10)

with 1 ≤ i ≤ d+ 1.

Remark 3 Note that τd+1 is needed for computing p′i and q′i (despite (7) and
(8) do not show τd+1 explicitly). However, degz(Cp,q) = degt(Cp,q) ≤ d − 1,
and this explains the need for introducing τ̃ . In what follows, τ̃ will denote the
set of nodes τ with the last element removed.

The common roots of two polynomials p(t) and q(t), can be obtained from the
nullspace of the Bezp, q, using a method called taking moments. In the case of
a simple common root, the nullspace has dimension 1, and the method works
according to the following results, whose proofs are presented in [10].

Lemma 2 Let p(t), q(t) ∈ Pd, such that d = max(deg(p(t)), deg(q(t))). We
assume that p(t) and q(t) are specified in the Lagrange basis, by data τ , p,
and q, as in Theorem 1. Suppose that t∗ ∈ C is a simple common zero of p(t),
and q(t). If Bezp, q is the Bézout matrix in the Lagrange basis L(t; τ̃) ∈ [Pd−1]d,
then L(t∗; τ̃) is a null vector of Bezp, q.

Theorem 2 Let p(t) and q(t) be univariate polynomials as described and spec-
ified in Lemma 2. To compute t∗, the simple common root of p(t), and q(t), we
may use any vector U = [u1, u2, . . . , ud]

T in the nullspace of the corresponding
Bézout matrix in the Lagrange basis L(t; τ̃) ∈ [Pd−1]d. This is done by means
of a procedure that, in what follows, will be referred to as “taking moments”.
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That is,

t∗ =

d∑
i=1

τiui

d∑
i=1

ui

. (11)

For the case of a multiple common root of p(t) and q(t), with multiplicity k, we
use the especial structure of the nullspace of the Bézout matrix that has been
presented in [24], adapted to the Lagrange basis case and using Vandermonde
matrices. This leads to a linear system of k equations and k unknowns, from
which the common root is obtained efficiently. For full details, see [10].

1.3 Companion matrix pencils by values

As already mentioned, for the solution of some of the geometric problems
addressed in this paper we consider two bivariate polynomials p(s, t), q(s, t)
(see, for instance section 3.3), and we need to determine the roots of the
determinant of the Bézout matrix, with respect to one of the variables, say t,
of p and q. This Bézout matrix is a polynomial matrix in s. In what follows,
we will call the roots of det(B(s)) the polynomial eigenvalues of B(s). To
avoid the computation of the determinant we apply a method of linearization.
Before, we recall the definition of generalized eigenvalue, which is a well known
concept in the field of Numerical Linear Algebra, and then we show how to
construct appropriate companion matrix pencils in the Lagrange basis.

Definition 5 Given a pair of matrices M,N of size n× n, a number λ ∈ C
is called a generalized eigenvalue of (M,N) if there exists a non null vector v
of dimension n such that

Mv = λNv.

The vector v is called a generalized eigenvector, and the pair (M,N) is called
a matrix pencil.

The generalized eigenvalues are the roots of det(M − λN). If deg(det(M −
λN)) < n, it is said that ∞ is a generalized eigenvalue with multiplicity n −
deg(det(M− λN)).

To learn more about generalized eigenvalues see [11] and [27].

For a given matrix polynomial B(s) specified in the Lagrange basis L(s; τ) we
can construct a block matrix pencil (C0,C1) whose finite generalized eigen-
values agree with the polynomial eigenvalues of B(s). The process of trans-
forming the matrix polynomial B(s) to the matrix pencil (C0,C1) is called
the linearization of B(s), for reasons that will be clear in Theorem 3 below.
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Definition 6 Consider a square matrix polynomial of size r× r and degree d,

B(s) =
d+1∑
j=1

BjLj(s; τ) , (12)

where, for 1 6 i 6 d+ 1, Bi is a r × r constant matrix such that B(τi) = Bi.
The companion pencil for the matrix polynomial B(s) is given by the pair of
matrices (C0,C1) of size r(d+ 2)× r(d+ 2), defined by:

C0 =



τ1I B1

τ2I B2

. . .
...

τd+1I Bd+1

−ω1I −ω2I · · · −ωd+1I 0


, C1 =



I

I
. . .

I

0


, (13)

where I and 0 are the r × r identity and zero matrices, respectively.

A proof of the following theorem can be found in [9].

Theorem 3 If (C0,C1) is the companion matrix pencil associated to the poly-
nomial matrix B(s), given in definition 6, then

det B(s) = det (sC1 −C0).

If deg(B(s)) = d, and the size of B(s) is r, then deg(det B(s)) ≤ dr.

The solutions of det (sC1 −C0) = 0 are the generalized eigenvalues of the
matrix pencil (C0,C1). The multiplicity of ∞ as a generalized eigenvalue for
the matrix pencil (C0,C1) is bigger or equal than 2r, and it is equal to the
multiplicity of 0 as a generalized eigenvalue of the matrix pencil (C1,C0).

Remark 4 In the present paper, we do not discuss algorithms for computing
generalized eigenvalues; we assume that robust software exists to solve this
problem whenever they occur. See [11,2,3,9,8] for specific details.

2 Topology determination of a real algebraic plane curve f(x, y) = 0
when f is presented by values

The idea of solving a polynomial eigenvalue problem by values corresponding
to a polynomial matrix given by values, presented in Section 1, can be used
to develop a new family of methods for determining the topology of a real
algebraic plane curve presented either parametrically or defined by its implicit
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equation. In [10], we give full details of the theory and of the algorithms for
solving such problems. Here, we only give a brief overview of how to determine
the topology of f(x, y) = 0 by values which will be used in the sections that
follow. As a preliminary step, we present a method for solving a system of two
bivariate polynomial equations, given by values.

2.1 Bivariate polynomial solver

Our methodology to compute the common roots of a pair of bivariate polyno-
mials p(s, t) and q(s, t) in Pm,n, specified by values, has two principal steps: the
elimination and the eigenvalue computation. The algorithm we provide here
for solving such a polynomial problem is therefore a hybrid of resultant-based
and eigenvalue techniques. First, we eliminate the variable t, constructing the
Bézout matrix B(s), with respect to t, of p(s, t) and q(s, t) (as defined in
Theorem 1). Then, the finite generalized eigenvalues of the companion pencil
of Definition 6 are the roots of the determinant of B(s). If s∗ is a general-
ized eigenvalue, then there exists t∗ such that p(s∗, t∗) = 0 and q(s∗, t∗) = 0,
whence t∗ can be recovered from the nullspace of B(s∗) by “taking moments”
according to Theorem 2.

2.2 Computing the topology of f(x, y) = 0

Let us assume that f(x, y) is a squarefree polynomial. The typical strategy for
computing the topology of f(x, y) = 0, with f presented in any given basis, is
to determine the number of intersections of the curve with the vertical lines
{(x, y) ∈ R2 : x = const.}, (see, for instance [21] or [14]). This number may
change at the critical points, see the following definition.

Definition 7 Consider the algebraic curve C defined by f(x, y) = 0. Let
fx(x, y) and fy(x, y) denote the partial derivatives of f(x, y) with respect to x
and y, respectively.

A point (α, β) is a critical point of C if f(α, β) = 0, and fy(α, β) = 0.

A point (α, β) is a singular point of C if f(α, β) = 0, fx(α, β) = 0, and
fy(α, β) = 0.

A point (α, β) is a regular point of C if f(α, β) = 0, and fy(α, β) 6= 0.

The output of the algorithm is a graph representing the topology of the curve,
together with the data generated during the process, which includes the co-
ordinates of the critical points. The graph in figure 1 represents the topology
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of a curve of degree 8 in x and y; the circled dots are the critical points. The
typical method consists of three main steps:

(1) Find the x–coordinates of the critical points of f(x, y) = 0; suppose there
are r of them, and let us call them α1 < α2 < . . . < αr. The vertical lines
{(x, y) ∈ R2 : x = αi} are called critical lines.

(2) For each αi, 1 ≤ i ≤ r, find the y–coordinates of the critical points and of
the other points on the curve on the critical line {(x, y) ∈ R2 : x = αi}.

(3) For each point on a critical line, determine the number of segments of the
curve connecting the point to points on the closest critical line, to the
left side and to the right side. If the point is regular, it will be exactly
one curve segment on each side; otherwise, the number could be zero or
bigger than one.

Definition 8 Let f(x, y) be a squarefree polynomial. The real algebraic plane
curve defined by f is in generic position if the following two conditions are
satisfied:

(a) The leading coefficient of f with respect to y (which is a polynomial in x)
has no real roots.

(b) For every α ∈ R the number of distinct complex roots of

f(α, y) = 0, fx(α, y) = 0,

is 0 or 1.

When the curve f(x, y) = 0 is in generic position there are no vertical asymp-
totes, and there is exactly one critical point of the curve on each critical line.
If the curve is in generic position the algorithms are greatly improved by
adapting the previous strategy in the following way:

(2’) For each αi, find the y–coordinate βαi
of the unique critical point over

αi, and find the other points of the curve in the same critical line, which
are regular.

(3’) For each pair αi, αi+1, choose an intermediate value αi < α∗i < αi+1, find
the curve points with x−coordinate equal to α∗i , and determine the edges
of the topological graph representing the curve segments.

Assuming that f(x, y) is a polynomial in Pm,n described by values, it is possible
to compute the evaluation of f(x, y) and its partial derivatives with respect
to y at any given point and this data is all what we need to determine the
topology of f(x, y) = 0. Next we describe very briefly the approach introduced
in [10] to determine the topology of f(x, y) = 0, assuming also that f(x, y) = 0
is in generic position.
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Fig. 1. Graph representing the topology of an implicit curve of degree 8.

The x–coordinates of the critical points of the curve f(x, y) = 0 (step (1)) are
determined by computing the real generalized eigenvalues of the matrix pencil
associated with B(x) where B(x) is the Bézout matrix of f(x, y) and fy(x, y)
with respect to y (with dimension n− 1).

For each such eigenvalue α (step (2’)), by using the vectors in a basis of
Nullspace(B(α)), the corresponding y–coordinate βα of the critical point can
be obtained by “taking moments”(see Theorem 2). Since f(x, y) is in generic
position, the rest of the roots of f(α, y) are simple. If βα has multiplicity k as a
root of f(α, y), one can obtain the Lagrange representation of the polynomial
(see [21,10])

Fα(y) =
f(α, y)

(y − βα)k
,

and then easily compute the real roots of Fα(y).

The same approach as above can be used in order to compute the simple
roots of f(α∗, y) where α∗ is an arbitrary real number between two consec-
utive x–coordinates of critical points (step (3’)). It is worth to mention here
that, due to the generic position hypothesis, the way the edges connecting the
computed points are determined follows from an easy combinatorial reason-
ing (see [21,20]). The topology graph in figure 1 has been obtained from the
implicit equation of a curve of degree 8 (in each variable), given by values.
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3 Solving by values some geometric problems for algebraic plane
curves

In this section we present methods for the solution of the following important
geometric problems for algebraic plane curves, assuming that they are given
by values:

• The point position problem for a parametric plane curve.
• The point position problem for the d-offset to a parametric plane curve.
• Computing the intersection of two algebraic plane curves.
• Computing the self-intersections of a parametric plane curve.
• Computing the intersection of a parametric plane curve and the d-offset to

another parametric plane curve.
• Determining the topology of the d-offset to a parametric plane curve.

3.1 Solving by values the point position problem for parametric plane curves

Given (ξ, η) ∈ R2, we wish to determine if (ξ, η) lies on a prescribed algebraic
curve γ ⊂ R2, when γ is a parametric curve presented by values.

Suppose that the explicit parametrization (x, y) = (P (t), Q(t)) describing γ is
known only by the data τ , P, Q ∈ Rn+1 such that (Pi, Qi) = (P (τi), Q(τi)),
1 ≤ i ≤ n+ 1, where P (t) and Q(t) are assumed to be polynomials of degree
at most n. As such, the data P and Q are the coefficients of P (t) and Q(t),
respectively, using the Lagrange basis L(t; τ) in definition 2.

Defining p(t) := P (t)− ξ and q(t) := Q(t)− η, the coefficients of the polyno-
mials p(t) and q(t) in the Lagrange basis L(t; τ) are p := (P1−ξ, . . . , Pn+1−ξ)
and q := (Q1 − η, . . . , Qn+1 − η). By definition of p(t) and q(t), (ξ, η) ∈ γ iff
the polynomials p(t) and q(t) admit a common root. According to Lemma 1,
p(t) and q(t) admit a common root only when the associated Bézout matrix
admits nontrivial null vectors. Thus, we can set up Bezp, q = BezP (t)−ξ,Q(t)−η
in the Lagrange basis L(t; τ̃) as in Theorem 1, and determine its nullspace.
That is, working directly from the prescribed data (ξ, η), τ , P, and Q, we can
determine whether the given point (ξ, η) lies on the prescribed curve γ.

It is possible that the real point (ξ, η) = (P (t∗), Q(t∗)) ∈ R2 might lie on the
curve γ for some complex argument t∗ ∈ C\R. Such a point is called a geomet-
ric extraneous component (see [17]). For most curve intersection problems, we
discard such solutions, keeping only intersections with real arguments.

Whenever we need to determine the nullspace of Bezp, q or its rank (for in-
stance, when applying Theorem 2), we use Singular Value Decomposition
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(SVD). Computing the smallest singular value of B gives the distance to the
nearest singular unstructured matrix (i.e., if B is symmetric or has some other
particular structure, then the nearest singular matrix need not have that same
structure), whence it is only a lower bound on the distance to the nearest poly-
nomially parametrized curve that goes through (ξ, η), or to the nearest point
(ξ̂, η̂) which is on the curve γ. Therefore, this method is reliable only in decid-
ing when (ξ, η) is not on the curve. However, in practice, we expect that (as
in the Example 2, below) a small singular value will indicate that the point is
close to one that is truly on the curve.

3.1.1 Extension to Rational Parametrization

We can generalize the method previously presented from polynomial curves
to rational curves. Let γ be a planar curve with parametrization (x, y) =
(P (t), Q(t))/R(t) where P , Q, and the common denominator R are all poly-
nomial functions with n = max(deg(P ), deg(Q), deg(R)). The functions are
not known but the vectors P = (P1, . . . , Pn+1), Q = (Q1, . . . , Qn+1), and
R = (R1, . . . , Rn+1) specify the values of the functions P , Q, and R, respec-
tively, at the values τ = (τ1, . . . , τn+1), such that R(τi) 6= 0, for 1 ≤ i ≤ n+ 1.

To determine whether (ξ, η) lies on the rational curve γ, the procedure is as
before, with a minor alteration; we define p(t) := P (t) − ξR(t) and q(t) :=
Q(t) − ηR(t) and compute the corresponding Bézout matrix Bezp, q in the
basis L(t; τ̃). Again, Lemma 1 implies that at any simple common zero t∗ of
p and q, the vector L(t∗; τ̃) is a null vector of Bezp, q. Taking moments gives
the desired value of t∗ (see Theorem 2).

3.2 Solving by values the point position problem for the offset to a parametric
plane curve

The d-offset to a plane curve γ is the locus of the points which are at constant
distance d > 0 from the curve along its normal line (see [25,28,31,16,38]). For
each t, there are two points in the offset at distance d from γ(t), one on each
side of γ. The offset to an algebraic curve is an algebraic curve, but it is not
rational in general.

Given (ξ, η) ∈ R2, we wish to determine if it lies on one of the offsets γd ⊂ R2,
d > 0, to a prescribed parametric plane curve, given in the Lagrange basis. If
the point (ξ, η) lies on γd, the offset to γ at distance d, then there exists t ∈ R
such that

F (ξ, η; t) = 0 , G(ξ, η; t) = 0,
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where

F (ξ, η; t) := (ξ − P (t))2 + (η −Q(t))2 − d2,

G(ξ, η; t) := P ′(t)(ξ − P (t)) +Q′(t)(η −Q(t)).
(14)

Assuming that γ := {(P (t), Q(t)) : t ∈ R} the required data is, in this case,
(Pi, Qi) = (P (τi), Q(τi)), 1 ≤ i ≤ 2n + 1, where n = max(deg(P ), deg(Q)).
The computation of the Bézout matrix BezF,G in the basis L(t; τ̃), with
τ = (τ1, . . . , τ2n+1), together with its singular values provides the needed in-
formation to determine if (ξ, η) ∈ γd. If this is the case then the computation
of the nullspace of BezF,G allows also to determine the footpoints in γ for
(ξ, η) (i.e. the point in γ producing (ξ, η) in γd).

Example 2 Let γ = (P (t), Q(t)) be the curve with n = 3, defined by the data

k 1 2 3 4 5 6 7

τk −3 −2 −1 0 1 2 3

P (τk) −39 −6 3 0 −3 6 39

Q(τk) −48 −15 0 3 0 −3 0

Only four nodes are needed here to deal with γ but we need 2n + 1 values of
P (t) and Q(t) for working with the offsets of γ. In order to determine if the
point A = (0, 0) lies on γ1 (the offset at distance d = 1), we compute the
matrix BezF (A;t), G(A;t)



−6010226 −709236 21828 6904 5178 124884

−709236 −82322 4452 1446 964 12654

21828 4452 214 −48 −24 268

6904 1446 −48 46 0 534

5178 964 −24 0 −170 1068

124884 12654 268 534 1068 −5906


by using the formula in Theorem 1 applied to F (A; t) and G(A; t) (only the
evaluations of P (t) and Q(t) and their derivatives at the nodes τk are needed
here). Since the smallest singular value of BezF (A;t), G(A;t) is 54.4184723 we
conclude that A 6∈ γ1.

The same approach used before but applied to the point B = (0.5, 2.065403766)
makes the smallest singular value of BezF (B;t), G(B;t) to be 2.227512514 · 10−8

concluding that B ∈ γ1. The computation of the nullspace of BezF (B;t), G(B;t)

(of dimension 1) and “taking moments” according to Theorem 2 provides the
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value of t, t∗, generating the footpoint C = (−0.1376920296, 2.970197663) in
γ after determining P (t∗) and Q(t∗).

Figure 2 shows the curve γ and the offset γ1, together with the points A, B
and C.

A

B

C

Fig. 2. Curves γ and two-sided offset γ1, together with the points A 6∈ γ1, B ∈ γ1
and its footpoint C ∈ γ.

3.3 The intersection problem for parametric plane curves

We suppose that the curves γ and γ̂ have parametric representations (x, y) =
(P (t), Q(t)) and (x, y) = (P̂ (s), Q̂(s)), respectively. We assume that all the
parametric functions are polynomials, and that both n = max(deg(P ), deg(Q))
and n̂ = max(deg(P̂ ), deg(Q̂)) are known. The functions P and Q are spec-
ified in the Lagrange basis L(t; τ) by their values P = (P1, . . . , Pn+1) and
Q = (Q1, . . . , Qn+1) at some distinct parameter values τ = (τ1, . . . , τn+1).
Similarly, P̂ , and Q̂ are known by their values P̂ = (P̂1, . . . , P̂n̂+1) and Q̂ =
(Q̂1, . . . , Q̂n̂+1), at distinct parameter values σ̂ = (σ̂1, . . . , σ̂n̂+1).

In order to determine if there are any intersections between the curves γ
and γ̂, and if so, to compute them, we have to solve the system of equations
P (t) = P̂ (s) and Q(t) = Q̂(s).

Following the standard practice in the monomial basis, we use Theorem 1 to
form the Bézout matrix for the polynomials P (t) − P̂ (s) and Q(t) − Q̂(s) in
the Lagrange basis L(t; τ̃) (treating s as a symbolic parameter):

B(s) = BezP (t)−P̂ (s), Q(t)−Q̂(s) =
n̂+1∑
k=1

BkLk(s;σ), (15)
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where the coefficients are the n̂+ 1 constant matrices of size n× n:

Bk := BezP (t)−P̂k, Q(t)−Q̂k
, 1 ≤ k ≤ n̂+ 1. (16)

The motivation for the preceding construction is as follows. Each point of
intersection (ξ, η) of γ and γ̂ gives rise to a pair of numerical values s∗ and t∗

such that (ξ, η) = (P (t∗), Q(t∗)) = (P̂ (s∗), Q̂(s∗)). Since P (t)− ξ and Q(t)− η
have a common root then BezP (t)−ξ,Q(t)−η, computed in the basis L(t; τ̃),
is singular: the matrix B(s∗) is singular so s∗ is a polynomial eigenvalue of
B(s). Thus, having computed the coefficients of B(s) in the basis L(s;σ), the
corresponding polynomial eigenvalues are candidates for parameter values s∗

where the curves γ and γ̂ cross.

3.3.1 Computing the intersection between γ and γ̂ by using the implicit equa-
tion of γ

We consider the previous intersection problem using a slightly different ap-
proach. First, we construct a symbolic n × n Bézout matrix B(x, y) in the
parameters x and y by using the data associated with the curve γ. Next, we
substitute x = P̂ (s) and y = Q̂(s) in B(x, y) to obtain a matrix polynomial
in s. This matrix polynomial plays the same role as the implicit equation as-
sociated with γ; in particular, the point (ξ, η) lies on γ if B(ξ, η) is a singular
matrix.

Specifically, we define the n× n Bézout matrix B(x, y) by

B(x, y) := BezP (t)−x,Q(t)−y , (17)

in the Lagrange basis L(t; τ̃), treating x and y as symbolic parameters. It is
easy to prove that the entries of B(x, y) are linear in x and y; in particular,
for the off–diagonal entries where i 6= j,

[B(x, y)]i,j =

(
Q(τj)−Q(τi)

τi − τj

)
x+

(
P (τj)− P (τi)

τi − τj

)
y

+

(
P (τi)Q(τj)− P (τj)Q(τi)

τi − τj

)
,

and for the diagonal entries,

[B(x, y)]i,i = (P ′(τi)Q(τi)− P (τi)Q
′(τi))−Q′(τi)x− P ′(τi)y .

Thus, B(x, y) = xU + yV + W where U = −BezQ(t), 1, V = −Bez1, P (t) and
W = BezP (t), Q(t), with all the Bézout matrices computed in the Lagrange
basis L(t; τ̃).
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Having computed the Bézout matrices U, V, and W, the intersection problem
is solved by the substitution x = P̂ (s) and y = Q̂(s) in B(x, y) to obtain the
matrix polynomial in s, B(s) := B(P̂ (s), Q̂(s)). As before, the intersection
points of γ and γ̂ are polynomial eigenvalues of B(s), so the solution of the
associated polynomial eigenvalue problem leads to the potential intersections.
If needed, the value of t giving the intersection point provided by s∗ can be
determined by computing the nullspace of B(s∗) and by “taking moments”
(see Theorem 2).

3.4 Computing the self–intersections points of γ

The previous approach can be used to determine the self–intersection points of
a given curve γ: it is enough to define (P̂ (s), Q̂(s)) := (P (s), Q(s)). However,
instead of solving by values the system of equations P (t) = P (s) and Q(t) =
Q(s), we analyze the following system of equations

F (t, s) := P (t)−P (s)
t−s = 0,

G(t, s) := Q(t)−Q(s)
t−s = 0,

(18)

because det(B(s)) would be identically zero if we had chosen to define B(s) =
BezP (t)−P (s), Q(t)−Q(s). Observe that F (t, s) and G(t, s) are the Cayley quotient
of P (t) and 1, and Q(t) and 1, respectively. If max(deg(P ), deg(Q)) = n then
max(deg(F ), deg(G)) = n−1. The resultant of F (t, s) and G(t, s), with respect
to t, is called the D-resultant or Taylor resultant of P (t) and Q(t) (see [15] and
[1]). In addition, we suppose that the parametrization of the curve is proper
[33,34]. Recall that a parametrization is said to be proper if it is injective
for almost all the points of the curve, which implies that there is at most a
finite number of points of the curve generated by more than one value of the
parameter t. If the parametrization is not proper, then B(s) is identically zero.

As a consequence of the special form of F (t, s) and G(t, s), the degree of B(s)
is n− 2.

Proposition 9 Let F and G be defined by equations (18), where P and Q are
univariate polynomials, with n = max(deg(P ), deg(Q)). If B(s) = BezF,G,
then deg(B(s)) = n− 2.

Proof. If P (t) =
∑n
j=0 ajt

j, and Q(t) =
∑n
j=0 bjt

j, then F (t, s) =
∑n−1
j=0 Ajt

j,

G(t, s) =
∑n−1
j=0 Bjt

j, where Aj =
∑n−j−1
i=0 aj+i+1s

i, Bj =
∑n−j−1
i=0 bj+i+1s

i.

Apply the following formula from [26], page 276, for the coefficients Ckl of the
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Bézout matrix in the power basis:

Ckl = D0,k+`+1 +D1,k+` + · · ·+Dk,`+1, Du,v = An−vBn−u − An−uBn−v.

The proposition follows after a lengthy computation. 2

By hypothesis, we only have the vectors P = (P1, . . . , Pn+1), Q = (Q1, . . . , Qn+1)
specifying the values of the polynomials P (t) and Q(t) at the values τ =
(τ1, . . . , τn+1). Then

B(s) = BezF,G =
n−1∑
k=1

BkLk(s; ˜̃τ), ˜̃τ = (τ1, . . . , τn−1),

where Bk = B(τk), 1 ≤ k ≤ n− 1, (see Definition 6). Since F (τk, τk) = P ′(τk)
and F ′(τk, τk) = P ′′(τk)/2 (the same for G(t, s)), and every Bk is symmetric,
according to Theorem 1, the entries of Bk are given by the following equalities,
for 1 ≤ i, j ≤ n− 1:

bi,j =
[P (τi)− P (τk)][Q(τj)−Q(τk)]− [P (τj)− P (τk)][Q(τi)−Q(τk)]

(τi − τk)(τj − τk)(τi − τj)
,

if i 6= j , i 6= k , j 6= k ,

bi,j =
−P ′(τk)[Q(τj)−Q(τk)] +Q′(τk)[P (τj)− P (τk)]

(τk − τj)2
, if i 6= j , i = k ,

bi,i =
P ′(τi)[Q(τi)−Q(τk)]−Q′(τi)[P (τi)− P (τk)]

(τi − τk)2
, if i 6= k ,

bi,i =
P ′′(τk)Q

′(τk)− P ′(τk)Q′′(τk)
2

, if i = k .

Consequently the values of the first and second derivatives of P (t) and Q(t)
at ˜̃τ are required. For this purpose, equation (10) is applied.

Example 3 Let γ be the curve used in the Example 2. In order to determine
the self–intersections points of γ, since n = 3, we need four nodes which will
be τ = (τ1, τ3, τ4, τ5). First we determine the matrix B(s) which happens to
be of degree 1. Next we determine the matrix pencil associated to B(s) which
requires only two nodes; we consider for example (τ3, τ4). Then the matrix
pencil whose generalized eigenvalues are going to provide the parameter values
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for the self–intersection points is

C0 =



−1 0 0 0 −42 −27

0 −1 0 0 −27 −18

0 0 0 0 −27 −18

0 0 0 0 −18 −15

1 0 −1 0 0 0

0 1 0 −1 0 0


, C1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Its generalized eigenvalues are

s1 =
1 +
√

37

4
, s2 =

1−
√

37

4

together with ∞ with multiplicity 4. Evaluating (P (s), Q(s)) in s1 (or s2) we
get the unique self–intersection point of γ: (2.249999988,−2.624999998) . Fig-
ure 3 shows the curve γ together with its self–intersection point.

Fig. 3. Curve γ together with its self–intersection point.

We should mention that second derivatives must be avoided if possible. More
concretely, if it is not difficult to obtain values of P (t) and Q(t) at different
sets of nodes, we can compute the matrix B(s) without computing second
derivatives. Suppose that for two disjoint sets of nodes, τ = (τ1 < . . . < τn+1)
and σ = (σ1 < . . . < σn−1) (see Remark 3), we have the values of P (t) and
Q(t). Then we can compute B(s) in the following way:

B(s) = BezF,G =
n−1∑
k=1

BkLk(s;σ),

with B(σk) = Bk, 1 ≤ k ≤ n − 1. Thus, the entries of Bk are given, for
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1 ≤ i, j ≤ n− 1, by

bi,j =
[P (τi)− P (σk)][Q(τj)−Q(σk)]− [P (τj)− P (σk)][Q(τi)−Q(σk)]

(τi − σk)(τj − σk)(τi − τj)
,

if i 6= j ,

bi,i =
P ′(τi)(Q(τi)−Q(σk))−Q′(τi)(P (τi)− P (σk))

(τi − σk)2
, otherwise.

(19)

Example 4 We consider the same example as before but we determine the
matrix pencil associated to B(s) from a new set of nodes disjoint with τ ,
σ = (τ2, τ6). In this case, the matrix pencil is

C0 =



−2 0 0 0 −57 −36

0 −2 0 0 −36 −21

0 0 2 0 3 0

0 0 0 2 0 −9

1/4 0 −1/4 0 0 0

0 1/4 0 −1/4 0 0


, C1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Obviously, its generalized eigenvalues are the same as before.

In the following example we obtain the self-intersection at a triple point ap-
plying the formula (19) to a parametric curve of degree 4.

Example 5 Let (P (t), Q(t)) be a curve such that deg(P ) ≤ 4, deg(Q) ≤ 4.
To find the self-intersections we need the values of P and Q at two disjoint
sets of nodes τ and σ, with five and three elements, respectively. We use the
following,

i 1 2 3 4 5

τi −1.5 −0.5 0.5 1.5 2.5

P (τi) −3.875 2.375 1.625 −0.125 3.125

Q(τi) 14.125 −0.875 2.125 −0.875 14.125

k 1 2 3

σk 0 1 2

P (σk) 2.5 0.5 0.5

Q(σk) 1 1 1

Using the formula (19) we obtain the matrices of size 3, Bk, 1 ≤ k ≤ 3. Then,
the companion matrix pencil is of size 12, with ∞ as eigenvalue of multiplicity
6, and the eigenvalues −1, 1 and 2, each with multiplicy 2. This three values
of t correspond to the same point (0.5, 1). The data corresponds to the curve
in figure 4

21



Fig. 4. Curve of degree 4 with triple self–intersection point.

If γ is presented by a rational parameterization (P (t)/R(t), Q(t)/R(t)) then,
to compute the self–intersection points of γ, the same strategy is to be applied
but using now the following equations

F (t, s) := P (t)R(s)−P (s)R(t)
t−s = 0

G(t, s) := Q(t)R(s)−Q(s)R(t)
t−s = 0

instead of those in equation (18). As in section 3.1.1, we must avoid to use
nodes that anihilate R(t). This is again the D-resultant or Taylor resultant of
(P (t)/R(t), Q(t)/R(t)), according to the definition presented in [23].

3.5 Computing the intersection between γd and γ̂.

Assume that the curves γ and γ̂ are given by values, as in section 3.3. To
determine the intersection points between γ̂ and γd, the offset at distance d
from γ, we need to solve by values the system of equations F (s, t) = 0 and
G(s, t) = 0 where:

F (s, t) := (P̂ (s)− P (t))2 + (Q̂(s)−Q(t))2 − d2,

G(s, t) := P ′(t)(P̂ (s)− P (t)) +Q′(t)(Q̂(s)−Q(t)) .
(20)

We start by computing the Bézout matrix of F (s, t) and G(s, t), with respect
to t

B(s) = BezF (s,t), G(s,t),

which is a polynomial matrix in s obtained by evaluating F (s, t) and G(s, t) in
τ, according to the formula in Theorem 1. Next, the polynomial eigenvalues of
B(s) are obtained through the computation of the generalized eigenvalues of
the pencil in (13), requiring the evaluation of B(s) in σ̂. The footpoints in γ of
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the intersection points in γd can be determined after computing the nullspace
of B(s∗), for each polynomial eigenvalue s∗ of B(s), by “taking moments”
according to Theorem 2.

Example 6 Let γ be the curve used in the Example 2 and γ̂ = (P̂ (s), Q̂(s))
be the curve defined by n̂ = 3 and the data

k 1 2 3 4

σk −1 −0.5 0 0.5

P̂ (σk) 0 1.125 1 0.375

Q̂(σk) 2 0 0 0.5

(21)

We want to determine the intersection points between γ1 and γ̂.

We start by computing by values the matrix B(s) = BezF (s,t), G(s,t). Since the
degrees of F and G, with respect to t, are bounded by 6 we obtain that B(s) is
a 6 × 6 matrix of degree 9 whose entries depend on P̂ (s) and Q̂(s). We need
10 nodes to represent B(s) in the Lagrange Basis in order to formulate the
corresponding generalized eigenvalue problem, and the new set of s nodes is
chosen to be {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5}. The values of P̂ (s) and
Q̂(s) at the new nodes are determined by using the values in (21).

The linearization of B(s) produce a matrix pencil of dimension 66 whose real
generalized eigenvalues are:

s1 = 1.765213073, s2 = 1.548450950,

s3 = 1.535848157, s4 = 1.255746313,

s5 = −0.996791271, s6 = −1.205950879.

Each si produces a different intersection point (P̂ (si), Q̂(si)) between γ1 and
γ̂ that can be visualized in Figure 5. Computing the nullspace of B(si) and
“taking moments” produce the values of t corresponding to the footpoints in γ
for the intersection points in γ1.

3.6 Computing by values the topology of the offset to a given plane curve

Following standard terminology on offsets, we shall call the initial curve the
generator curve. We start presenting the method for a generator curve para-
metrized by polynomials, and then we extend it to the case where the para-
metrization uses rational functions.
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Fig. 5. Curves γ, γ1 and γ̂, together with the intersection points (left). Zoom area
where two intersection points are very close to a self–intersection of γ1 (right).

For algebraic properties of offsets the reader is referred to the papers [16] and
[38], and the references therein.

3.6.1 Polynomial case

Assume that the generator curve, γ, is parametrized by (P (t), Q(t)) where
P (t) and Q(t) are polynomials in R[t] with degrees bounded by m1 and m2,
respectively, and let n = max(m1,m2). A point (x, y) ∈ R2 is in the offset γd
to distance d > 0 of (P (t), Q(t)) if there exists t ∈ R such that (see [16])

F (x, y; t) := (x− P (t))2 + (y −Q(t))2 − d2 = 0,

G(x, y; t) := P ′(t)(x− P (t)) +Q′(t)(y −Q(t)) = 0.
(22)

Note that γd is not a rational curve in general, but it is always an algebraic
curve. The degrees of F andG, with respect to t, are 2n and 2n−1, respectively,
whence the degree of the implicit equation of γd is δ(γ) = 4n − 2 (see [16],
Corollary 2.3).

Assume we know the values of P (t) and Q(t) at a collection τ = (τ1 < τ2 <
. . . < τ2n+1) of real values of the parameter t. Let B(x, y) be the Bézout matrix
of F (x, y; t) and G(x, y; t), with respect to t, computed in the Lagrange basis
L(t; τ̃) (here τ̃ = (τ1 < τ2 < . . . < τ2n)),

B(x, y) =


b1,1(x, y) . . . b1,2n(x, y)

...
...

b1,2n(x, y) . . . b2n,2n(x, y)

 .
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According to Theorem 1, the entries in B(x, y) are computed as:

bi,j =
F (x, y; τi)G(x, y; τj)− F (x, y; τj)G(x, y; τi)

τi − τj
,

bi,i =
dF (x, y; t)

dt

∣∣∣∣
t=τi

G(x, y; τi)− F (x, y; τi)
dG(x, y; t)

dt

∣∣∣∣
t=τi

,

requiring only the evaluations of P (t) and Q(t). The derivatives of F and G
at t = τi depend only on the derivatives of P (t) and Q(t) at t = τi and these
are computed by using formula (10). Notice that

B(x, y) = U1x
3 + U2x

2y + U3xy
2 + U4y

3+

+V1x
2 + V2xy + V3y

2 +W1x+W2y +W3,

where the matrices Ui, Vj, and Wk are of size 2n and depend on t only.

The implicit equation of the offset curve γd is

f(x, y) = det(B(x, y)) = 0. (23)

In order to determine its topology we adapt the method presented in [10] that
was summarized in Section 2. To accomplish this goal we need the description
of f(x, y) “á la Lagrange”: choose a collection of δ(γ) + 1 real numbers as
y–nodes, and a collection of 2δ(γ) + 1 real numbers as x–nodes:

σ := (σ1 < σ2 < . . . < σδ(γ)+1),

ρ := (ρ1 < ρ2 < . . . < ρ2δ(γ)+1).

The corresponding description by values of f(x, y) is given by

f(ρk, σi) = det(B(ρk, σi)),

with 1 ≤ k ≤ 2δ(γ) + 1 and 1 ≤ i ≤ δ(γ) + 1.

Example 7 Let γ be the curve used in Example 2. We want to determine
the topology of the offset curve at distance d = 1. The polynomial f(x, y)
in equation (23) is of degree 10 in x and y. The matrices (C0,C1) in the
companion matrix pencil have size 220. The topology graph is displayed in
figure 6.

There are two extraneous isolated points (see Figure 7) with coordinates

(−1.968105008837924, 0.308333749431888),

(1.553604112963281, 1.632520632499762).

25



Fig. 6. The topology of the offset at distance 1 in Example 7.

These points are solutions of the implicit equation corresponding to complex
and non real values of the parameter t producing real points (see [17] and
section 3.1).

Fig. 7. Zoom of extraneous isolated points in the offset curve of Example 7.

The method explained in this section produces as output, in addition to the
graph representing the topology of the offset curve, the list of the critical
points, which includes the singular points. This can be very useful for offset
trimming, and for plotting purposes.
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3.6.2 Rational case

Assume now that the generator curve is parametrized by

(
P (t)

R(t)
,
Q(t)

R(t)

)
,

where P (t), Q(t) and R(t) are polynomials in Pn, and gcd(P (t), Q(t), R(t)) =
1. The equations for the d-offset are in this case

F (x, y; t) := (R(t)x− P (t))2 + (R(t)x−Q(t))2 − d2R(t)2 = 0,

G(x, y; t) := (R(t)P ′(t)−R′(t)P (t))(R(t)x− P (t))

+ (R(t)Q′(t)−R′(t)Q(t))(R(t)y −Q(t)) = 0.

In this case, 3n + 1 nodes τi are necessary, and the degree of the offset is
bounded by 6n − 4. In addition, we must ask that R(τi) 6= 0 and the values
R(τi)P

′(τi)−R′(τi)P (τi), R(τi)Q
′(τi)−R′(τi)Q(τi), cannot be simultaneously

zero. Note that the number of values of t not satisfying these conditions is
finite.

Once these conditions are verified, we construct B(x, y), the Bézout matrix of
F (x, y; t) and G(x, y; t) (with respect to t), analogously to the previous case.
The implicit equation of the offset curve will be defined again by the equation
(23). The remaining steps of the method are similar, using the new bound
δ(γ) ≤ 6n− 4.

4 Solving by values the point position and intersection problems
for ruled and ringed surfaces, and surfaces of revolution

The point position problem for a surface asks if a given point (ξ, η, ζ) ∈ R3 lies
on a prescribed rational surface T . We analyze here how to solve this problem
when the surface is presented by values and T is either a surface of revolution,
a ruled surface or a ringed surface. We discuss also how to intersect a space
curve or a rational surface with these type of surfaces when all objects are
presented by values.
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4.1 Is a point (ξ, η, ζ) in a surface of revolution? How to intersect a surface
of revolution with a space curve

Let S be a surface of revolution with parametric equations:

S(s, u) =

(
ϕ(s)

1− u2

1 + u2
, ϕ(s)

2u

1 + u2
, ψ(s)

)
, (24)

where the parametric equations of the generating curve

ϕ(s) =
nϕ(s)

dϕ(s)
, ψ(s) =

nψ(s)

dψ(s)
,

are rational functions, whose numerators and denominators are known by
values.

A point (ξ, η, ζ) ∈ R3 is in S, if and only there exists s ∈ R such that (see
[7,18])

ξ2 + η2 = ϕ2(s) =

(
nϕ(s)

dϕ(s)

)2

,

ζ = ψ(s) =
nψ(s)

dψ(s)
,

whence,

f(ξ, η; s) := d2ϕ(s)(ξ2 + η2)− n2
ϕ(s) = 0,

g(ζ; s) := dψ(s)ζ − nψ(s) = 0.
(25)

If the degrees of nϕ(s), dϕ(s), nψ(s) and dψ(s) are bounded by n, then, by
computing the Bézout matrix B of f(ξ, η; s) and g(η; s) with respect to the
s-nodes σ = (σ1, . . . , σ2n+1), we can determine if (ξ, η, ζ) lies on S or not: it is
enough to determine the singular values of B. The nodes must be chosen such
that dϕ(σi) 6= 0, dψ(σi) 6= 0, for 1 ≤ i ≤ 2n+ 1.

If we want to intersect S with a space curve C given by the parameterization
(P (t)/D(t), Q(t)/D(t), R(t)/D(t)) (with P (t), Q(t), R(t) and D(t) polynomi-
als also known by values) then it is enough to consider the equations (see
[18])

f(t; s) := d2ϕ(s) (P (t)2 +Q(t)2)− n2
ϕ(s)D(t)2 = 0,

g(t; s) := dψ(s)R(t)− nψ(s)D(t) = 0.

Evaluating f(t; s) and g(t; s) in the s-nodes in σ allows to determine B(t) =
Bezf(t;s), g(t;s). Using now the t-nodes and the values of P (t), Q(t), R(t) and
D(t) we solve the corresponding polynomial eigenvalue problem for B(t). For
each eigenvalue t∗, we obtain the corresponding value of s∗ by taking moments
(see Theorem 2).
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If degs(f) 6= degs(g), and a(t) is the principal coefficient of the polynomial with
higher degree (f or g) as a polynomial in s, then some generalized eigenvalues
can be produced by the roots of a(t) (see Remark 1). Thus, we check whether
each (t∗, s∗) is a true real solution of f(t; s) = 0, g(t; s) = 0 (i.e., an intersection
point between S and C) or not (see the Example 8).

Example 8 Let S be the surface of revolution parametrized by (24), with

ϕ =
2s2 + 4

s2 + 1
, ψ = s3,

and the space curve

C(t) =

(
t2 + t− 3

t− 2
,
−t3 − 1

t− 2
,
2t2 + 3t− 5

t− 2

)
.

In this example, degt(f) + degt(g) = 8, and max(degs(f), degs(g)) = 4, so
we chose nodes (−4,−3,−2,−1, 0, 1, 2, 3, 4) for t, and (−2,−1, 0, 1, 2) for s.
The size of the companion matrix pencil is 32. There are four generalized real
eigenvalues:

[−2.58974079576,−2.09173222969, 0.918128416693, 1.13850625658].

Only the first and the fourth eigenvalues give real intersection points; the other
two are roots of the principal coefficient of f. The corresponding points, lifted
using the parametrization of C(t), are:

(−0.24337247857285,−3.5663807492767,−0.14037663995668),

( 0.65618264955832, 2.8737618116269, −1.1699583079099 ).

See the figure 8.

4.2 Is a point (ξ, η, ζ) in a ruled surface? How to intersect a ruled surface
with a space curve

Consider the ruled surface R given by:

R(u, s) = C(u) + s a(u),

where C = (Cx, Cy, Cz) and a = (ax, ay, az) are vector valued functions with
rational components, whose numerators and denominators are known by val-
ues. Assuming that a is not identically zero, and without loss of generality,
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Fig. 8. Intersection of a surface of revolution and a space curve.

that az(u) 6≡ 0, it follows that

f(ξ, ζ;u) := az(u)(ξ − Cx(u))− (ζ − Cz(u))ax(u) = 0,

g(η, ζ;u) := az(u)(η − Cy(u))− (ζ − Cz(u))ay(u) = 0.

If the degrees of C(u) and a(u) are bounded by n, then by computing the
Bézout matrix B of f(ξ, ζ;u) and g(η, ζ;u) with respect to the u-nodes σ =
(σ1, . . . , σ2n+1), we can determine if (ξ, η, ζ) lies on R or not: it is enough to
determine the singular values of B.

If we want to intersect R with a space curve C given by the parameterization
(P (t)/D(t), Q(t)/D(t), R(t)/D(t)) (with P (t), Q(t), R(t) and D(t) polynomi-
als, also known by values) then it is enough to consider the equations

f(t;u) := az(u)(P (t)−D(t)Cx(u))− (R(t)−D(t)Cz(u))ax(u) = 0,

g(t;u) := az(u)(Q(t)−D(t)Cy(u))− (R(t)−D(t)Cz(u))ay(u) = 0.

Evaluating f(t;u) and g(t;u) in the u–nodes in σ allows to determine B(t) =
Bezf(t;u), g(t;u). Using now the t–nodes and the values of P (t), Q(t), R(t) and
D(t) we solve the corresponding polynomial eigenvalue problem for B(t) whose
real and finite generalized eigenvalues produce the values of t at the intersec-
tion points between R and C.

As in section 4.1, if the degu(f) 6= degu(g), there might be eigenvalues pro-
duced by the roots of the principal coefficient of the polynomial with highest
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degree in s, (see Remark 1). Thus, we must check that each obtained point
belongs to the surface R.

Remark 5 The same approach used in this section to solve the point position
problem for surfaces of revolution and ruled surfaces (or for intersecting them
with space curves) can be applied to rational ringed surfaces. A rational ringed
surface A is determined by the directrix

C(u) =

(
C1(u)

C0(u)
,
C2(u)

C0(u)
,
C3(u)

C0(u)

)
,

the normal

N(u) =

(
N1(u)

N0(u)
,
N2(u)

N0(u)
,
N3(u)

N0(u)

)
,

and the radius

r(u) =
r1(u)

r0(u)
,

where Ci(u), Ni(u) and ri(u) are polynomials. A point (ξ, η, ζ) lies on A if
and only if there exists u ∈ R such that(

ξ − C1(u)

C0(u)

)
N1(u)

N0(u)
+

(
η − C2(u)

C0(u)

)
N2(u)

N0(u)
+

(
ζ − C3(u)

C0(u)

)
N3(u)

N0(u)
= 0,

(
ξ − C1

C0

)2

+

(
η − C2(u)

C0(u)

)2

+

(
ζ − C3(u)

C0(u)

)2

=

(
r1(u)

r0(u)

)2

.

4.3 Computing by values the section of a parametric surface

By using an example we analyze how to determine the topology of the inter-
section between a parametric surface and a plane, by using only the evaluation
of the equations in the parameterization.

The parametric equations of the bicubic surface B are:

x(u, v) = 3v(v − 1)2 + (u− 1)3 + 3u,

y(u, v) = 3u(u− 1)2 + v3 + 3v,

z(u, v) = −3u(u2 − 5u+ 5)v3 − 3(u3 + 6u2 − 9u+ 1)v2

+ v(6u3 + 9u2 − 18u+ 3)− 3u(u− 1).

The implicit equation of B has the following structure:

HB(x, y, z) = z9 +
9∑
i=1

ri(x, y)z9−i.
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The technique presented in [19] determines the coefficients of HB(x, y, z) in
non expanded form: for example, the first two coefficients in HB(x, y, z) are:

r1(x, y) = − 233469x
2048

+ 188595y
2048

− 112832595
262144

− 81x2

64
+ 135xy

32
− 81y2

64
,

r2(x, y) = − 54187594407
16777216

x2+ 48101467761
8388608

xy− 38812918311
16777216

y2

− 20972672709381
536870912

x+ 17975329363179
536870912

y+ 1215
2048

x3y− 4779
4096

x2y2

+ 14456151
65536

x2y+ 1215
2048

xy3− 13181049
65536

xy2− 729
8192

x4− 4105971
65536

x3

− 729
8192

y4+ 3129597
65536

y3− 22656991982391171
137438953472

+ 1
2
r1(x,y)2.

showing that r1(x, y) appears again in r2(x, y). The same happens with many
other subexpressions in the remaining coefficients of the implicit equation of
the surface B.

If we want to intersect B with another parametric surface A given by the
parameterization

x =
X(s, t)

W (s, t)
, y =

Y (s, t)

W (s, t)
, z =

Z(s, t)

W (s, t)
,

then we must analyze the real algebraic plane curve defined by

f(s, t) = HB
(
X(s, t)

W (s, t)
,
Y (s, t)

W (s, t)
,
Z(s, t)

W (s, t)

)
= 0. (26)

If we apply to this problem the approach introduced in this paper, we avoid
the expansion of the expression in (26), which is probably very complicated,
and we avoid computing the discriminant of f(s, t) with respect to t, which
will be a polynomial in s with a very high degree.

Fig. 9. The surface B and the plane z = 1

Thus, computing the intersection between B and the plane z = 1 (see Figure
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9) requires the topological analysis of the curve

g(x, y) = HB(x, y, 1) = 0,

which is a polynomial of degree 18 in x and of degree 18 in y. In this case, the
Bézout matrix B(x) of g(x, y) and gy(x, y) (with respect to y) has dimension
18 and degree 38 (as a polynomial matrix in x). Thus, the x–coordinates of the
critical points for g(x, y) = 0 are the real and finite generalized eigenvalues of
the matrix pencil determined by B(x) by using Definition 6 (with dimension
equal to 684).

For this concrete example, the discriminant of g(x, y) (with respect to y) has
degree 234 and 22 different real roots. The approach here presented produces
the topology presented in Figure 10 (by using Maple) where several isolated
points can be easily visualized (corresponding to extraneous components, since
they appear as real points of B attained when x and y take complex and non
real values, but producing a point with real coordinates; see [17]).

Fig. 10. The topology of the intersection curve of the surface B and the plane z = 1,
from section 4.3 (see figure 9).

4.4 Computing by values the intersection of a parametric surface and a struc-
tured surface

We show here how to analyze the intersection of a parametric surface T given
by the parameterization

x =
X(u, v)

W (u, v)
, y =

Y (u, v)

W (u, v)
, z =

Z(u, v)

W (u, v)
,
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and a structured surface S (i.e., of revolution, ruled or ringed). We analyze
only the case of S being a surface of revolution since the other two cases are
very similar to the case we are going to consider here.

If S is the surface of revolution in (24) (replacing u by t) then, according to the
equations in (25), (u, v) ∈ R2 produces an intersection point between T and
S if and only if there exists s ∈ R such that f(u, v; s) = 0 and g(u, v; s) = 0
where

f(u, v; s) := d2ϕ(s) (X(u, v)2 + Y (u, v)2)− n2
ϕ(s)W (u, v)2,

g(u, v; s) := dψ(s)Z(u, v)− nψ(s)W (u, v).

Let n be an upper bound for the degrees of nϕ(s), dϕ(s), nψ(s) and dψ(s)
and σ = (σ1 < σ2 < . . . < σ2n+1) a collection of 2n + 1 nodes (since the
degree in s of f(u, v; s) and g(u, v; s) is bounded by 2n). Then the Bézout
matrix of f(u, v; s) and g(u, v; s), B(u, v) = Bezf(u,v;s), g(u,v;s) (with respect to
s) is determined by evaluating nϕ(s), dϕ(s), nψ(s) and dψ(s) in σ. The matrix
B(u, v) depends on X(u, v), Y (u, v), Z(u, v) and W (u, v) and can be evaluated
easily by evaluating these polynomials.

The curve defined by the implicit equation h(u, v) = det(B(u, v)) = 0 is a
representation of the intersection curve between T and S in the uv domain,
that must be lifted to R3 by using the parametrization of T . A first step
into this direction is to determine the topology of h(u, v) = 0 and this is
accomplished by using the method described in Section 2. If m1,m2 are bounds
for the degrees in u and v of det(B(u, v)), respectively, then we need 2m1 + 1
nodes for u and m2 + 1 for v

τ := (τ1 < τ2 < . . . < τ2m1+1),

ρ := (ρ1 < ρ2 < . . . < ρm2+1),

to get the corresponding Lagrange description of h(u, v), given by

h(τi, ρk) = det(B(τi, ρk)),

with 1 ≤ i ≤ 2m1 + 1 and 1 ≤ i ≤ m2 + 1. This is all the data we need in
order to determine by values the topology of h(u, v) = 0 by using the method
presented in Section 2 (see [10] for more details).

In the case we are considering here, of a surface of revolution, we can take

m1 = 2nmax(2 degu(X(u, v)), 2 degu(Y (u, v)), 2 degu(W (u, v)), degu(Z(u, v))),
m2 = 2nmax(2 degv(X(u, v)), 2 degv(Y (u, v)), 2 degv(W (u, v)), degv(Z(u, v))).

Example 9 Consider the torus given as a surface of revolution, with para-
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Fig. 11. The topology of S ∩ T in example 9.

metrization

S(s, t) =

(
ϕ(s)

1− t2

1 + t2
, ϕ(s)

2t

1 + t2
, ψ(s)

)
, (27)

where

ϕ(s) =
s2 + 6

s2 + 1
, ψ(s) =

4s

s2 + 1
. (28)

We compute the topology of the intersection curve of S with the following ruled
surface:

T (u, v) = (u2, 3u+ v + 1, 2v),

by using the method of Section 2. The degrees of the bivariate function h(u, v) =
det(B(u, v)) are degu(h) = 8, and degv(h) = 4, so we use 17 nodes for u and
5 nodes for v. The algebraic curve defined by h(u, v) = 0 has the following
four critical points:

(−1.9406563931821103492, 0.29394335943779257963),
(−0.58539520958661413941,−0.35709273559911053741),
(−0.064196535862312867021, 0.37138871973471026866),
( 1.5556926523873762013,−.34217143375501427059),

which are obtained by solving a generalized eigenvalues problem with compan-
ion matrix pencil of size 72, and taking moments. The figure 11 shows the
surfaces and the graph representing the topology of the curve h(u, v) = 0 in
the uv-plane.

As part of the output of the method used to determine the topology of the
intersection curve, we get the coordinates and parameter values of the critical
points, the simple points in the critical lines, and the curve points in interme-
diate non-critical lines (see Section 2). This information can be very useful,
for example, as a starting point for plotting the intersection curve.
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5 Further work

We are currently considering how to extend this approach to answer questions
involving the elimination of two parameters from three equations. This is
the case, for example when dealing with the question: is (ξ, η) ∈ γd when
γ := {(α, β) ∈ R2 : f(α, β) = 0}? If the considered real algebraic plane curve
γ is presented by its implicit equation f(x, y) = 0 then a point (ξ, η) lies on
γd, the offset to γ at distance d, if and only if there exists (x, y) ∈ R2 such
that

(ξ − x)2 + (η − y)2 − d2 = 0,

f(x, y) = 0,

fx(x, y)(ξ − x)− fy(x, y)(η − y) = 0,

(29)

where fx(x, y) and fy(x, y) denote the partial derivatives of f, with respect
to x and y, respectively. An approach based on the so-called Dixon resultant
(see [13]), can provide a matrix formulation by values, allowing to eliminate
two parameters from three equations.

It is worth studying the possibility of constructing by values other versions of
the Bézout matrix, such as the one mentioned in Remark 1, together with the
analysis of the advantages and disadvantages of working with such a version
of Bézout matrix.

Numerical aspects deserve some further consideration; one problem is related
to the proper application of numerical technics to take full advantage of the
matrix structure, and another is how to proceed with singular situations when
dealing with the computed generalized eigenvalues (how to deal with clusters
of generalized eigenvalues is a relevant question here).
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Verlag, 398–409.

[8] Corless, R.M., 2007. On a Generalized Companion Matrix Pencil for Matrix
Polynomials Expressed in the Lagrange Basis. In D. Wang and L. Zhi, editors,
Symbolic-Numeric Computation, Trends in Mathematics, Birkhaäuser, 1–15.
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