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Abstract. We study the notion of singular tropical hypersurfaces of any di-

mension. We characterize the singular points in terms of tropical Euler deriva-

tives and we give an algorithm to compute all singular points. We also describe
non-transversal intersection points of planar tropical curves.

1. Introduction

The concept of a singular point of a tropical variety is not well established
yet. A natural definition is the following. Let K be an algebraically closed field
of characteristic 0 with a valuation val : K∗ → R. We say that a point q in a
tropical variety V ⊂ Rd is singular if there exists a singular algebraic subvariety
of the torus (K∗)d, with tropicalization V , with a singular point of valuation q
(see Definition 2.1). This definition of singularity in terms of the tropicalization of
classical algebraic varieties has been considered in [10] in the case d = 2 of planar
curves, and indirectly in [4] and [13], in the general hypersurface case. Thus, in
principle, one should study all the preimages of V under the valuation map to
decide whether V is singular. We present an equivalent formulation when V is a
hypersurface defined by a tropical polynomial with prescribed support A and the
residue field of K has also characteristic 0 (but our approach can be extended if
this hypothesis is relaxed).

Recall that given a finite set A ⊆ Zd, Gel’fand, Kapranov and Zelevinsky [7] de-
fined and studied the main properties of the A-discriminant ∆A associated to the
family of hypersurfaces with support A. Let ∇0 be the variety of Laurent polynomi-
als F with coefficients in K and support in A which define a singular hypersurface
{F = 0} in the torus (K∗)d. If ∇0 has codimension one, then there exists a unique
(up to sign) polynomial ∆A ∈ Z[ai|i ∈ A] such that if F =

∑
i∈A aix

i has a singular

point in (K∗)d then ∆A((ai)i∈A) = 0. This polynomial is called the A-discriminant
and its locus coincides with the dual variety X∗A of the equivariantly embedded
toric variety XA rationally parametrized by the monomials with exponents in A.
If codim(∇0) > 1 (in which case XA is said to be defective), the polynomial ∆A is
defined to be the constant polynomial 1, and we call in this case A-discriminant the
ideal of X∗A . The varieties XA and X∗A, as well as the A-discriminant, are affine
invariants of the configuration A.

A tropical polynomial f =
⊕

i∈A pi�wi with coefficients in R defines a singular
tropical hypersurface precisely when its vector of coefficients p lies in the tropi-
calization T (X∗A) of the A-discriminant. The concept of singularities of tropical
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varieties, as well as the concept of tropical tangency, can thus be addressed via

the tropicalization of the A-discriminant described in [4]. We call Ã ∈ Zd×A the
integer matrix with columns (1, i), i ∈ A. Theorem 1.1 in [4] states that the tropical

discriminant equals the Minkowski sum of the co-Bergman fan B∗(Ã) and the row

space of the matrix Ã. The co-Bergman fan B∗(Ã) is the tropicalization of the ker-

nel of Ã, or equivalently, the tropicalization of the space of affine relations among
the vectors i ∈ A. Following the notations in Section 2 (cf. also the discussion in
Section 4), we can give an equivalent appealing definition of singular point of the
tropical hypersurface defined by f =

⊕
i∈A pi�wi. Let φ(x) =

∑
i∈A xi be the lin-

ear form with all coefficients equal to 1, and denote by Φ the tropical hypersurface
Φ := T (Trop(φ)) consisting of those vectors v ∈ RA for which the minimum of the

coordinates of v is attained at least twice. Clearly, B∗(Â) ⊆ Φ. We then have

T (f) = {w ∈ Rd : w ·A+ p ∈ Φ},

and the singularities sing(T (f)) ⊆ T (f) are described by

sing(T (f)) = {q ∈ Rd : q ·A+ p ∈ B∗(Â)}.

Deciding whether a given tropical polynomial defines a singular tropical hy-
persurface, amounts with this approach to finding a way of writing its vector of

coefficients p as the sum of an element in B∗(Ã) plus an element in the rowspan of

Ã. This is particularly involved when XA is defective, and there was no algorithm
known in the general case (cf. [13], where an algorithm is presented under some
geometric assumptions, or the arguments in the proof of [10, Lemma 3.12]).

Instead, we give in Theorem 2.9 a direct characterization of tropical singular
points in terms of analogs of Euler derivatives of tropical polynomials, which allows
us to recover Theorem 1.1 in [4]. Our tropical approach translates into an algorithm
to decide whether the tropical variety associated to f is singular and to detect all
the singular points.

Note that, given a Laurent polynomial F =
∑
i∈A aix

i, if the vector of valuations
q = (val(ai))i∈A defines a non singular tropical hypersurface, we get a “certificate”
that F defines a non singular hypersurface in the torus (K∗)d. However, it is not
possible to find a simple combinatorial formula to describe all singular points be-
cause the situation is not, as one could expect, completely local (cf. Proposition 3.6,
and the concept of ∆-equivalence by Gel’fand, Kapranov and Zelevinsky). We give
several combinatorial conditions which characterize singular tropical hypersurfaces.

In [11] or [3], tropical smooth curves are defined in terms of coherent subdivisions
where all points in A are marked, and which define primitive triangulations of the
convex hull N(A) of A (cf. also the concept of singular tropical curves of maximal
dimensional type in [10]). If the dual subdivision of N(A) induced by a tropical
curve T (f) is a primitive triangulation, T (f) will always be a smooth curve in our
sense too. But our definition allows for certain non primitive triangulations which
correspond to smooth tropical hypersurfaces, that is, tropical hypersurfaces that
cannot be the tropicalization of an algebraic hypersurface with a singularity in the
algebraic torus (K∗)2 (see Examples 3.2, 3.3 and Proposition 3.5). When A does
not admit a unimodular triangulation or if not all the lattice points in the convex
hull of A are marked, we can have smooth points at facets where the weight (as it
is currently defined, see [12]) is > 1. Note that we concentrate on affine singular
points, that is points in the “torus” R of the tropical semifield.
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Our study includes all coherent subdivisions of A. Thus, we refine the definition
in [11] and we explore the whole A-discriminant. Our method also generalizes
trivially to hypersurfaces in arbitrary dimension. In the last section, we apply our
tools to define and study the non-transversal intersections of two tropical curves
with fixed monomial support, that is, the tropicalization of mixed discriminants of
bivariate polynomials.

2. Tropical singularities through Euler derivatives

We fix throughout the text a finite lattice set A in Zd of cardinality n. We
will assume without loss of generality that the Z-linear span of A equals Zd. The
R-affine span of a subset S in Rd will be denoted by 〈S〉.

We consider the tropical semifield (T,⊕,⊗), where T = R∪{∞} and the tropical
operations are defined by w ⊕ w′ = min{w,w′}, w � w′ = w + w′. Our object of
study are tropical polynomials f =

⊕
i∈A pi �w�i ∈ T[w1, . . . , wd] with support A,

that is pi ∈ R for all i. To simplify the notation, we will write w�j = wj = 〈j, w〉.
The tropical hypersurface defined by a non zero tropical polynomial f with sup-

port A, is the set

(1) T (f) = {w ∈ Rd : ∃i1 6= i2 ∈ A such that f(w) = 〈i1, w〉 + pi1 = 〈i2, w〉 + pi2}.

Any tropical hypersurface is a rational polyhedral complex. For any q ∈ T (f), its
associated cell σ∗ is the closure of all the points q′ ∈ T (f) for which f(q) and f(q′)
are attained at the same subset σ of A. Each cell σ∗ comes with a marking, given
by the subset σ. So, a tropical hypersurface associated with a tropical polynomial
with fixed support A will be a marked rational polyhedral complex. This marking
will be transparent in the notation. We refer to the beginning of section 4 for
further details.

We will also work with Laurent polynomials F with support A and coefficients
in an algebraically closed field K of characteristic 0, that is

(2) F (x) =
∑
i∈A

aix
i ∈ K[x±1

1 , . . . , x±1
d ].

We will assume that the field K is provided with a rank-one non-archimedean
valuation val : K → R, and that the residue field k of K is also of characteristic
zero. The tropicalization of a non zero polynomial F as in (2) is the tropical
polynomial

(3) f = Trop(F ) =
⊕
i∈A

val(ai)� wi.

When the valuation group is not the whole of R, we will suppose that the coeffi-
cients pi of a tropical polynomial f =

⊕
i∈A pi � w�i or a tropical point q that we

want to lift lie in the image of the valuation map. To accompany our notions in
the classical and tropical settings, the elements of K,Kd and Kn will be denoted
systematically by the letters a, b, c, x, y, z and the elements of T,Td and Tn by the
letters p, q, w, v, l. We will denote by t a fixed element of K of valuation one. The
elements of A ⊂ Zd with be denoted by the letter i.

We introduce now the notion of singular point of a tropical hypersurface.

Definition 2.1. Let A ⊆ Zd as before. Let f =
⊕

i∈A pi�wi ∈ R[w1, . . . , wd] be a
tropical polynomial. Let q be a point in the tropical hypersurface T (f). Then, q is
a singular point of T (f) if there is a polynomial F =

∑
i∈A aix

i ∈ K[x±1
1 , . . . , x±1

d ]
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and a point b ∈ (K∗)d such that val(ai) = pi, val(b) = q and b is a singular point
of the algebraic hypersurface V (F ) defined by F . If T (f) has a singular point, we
call it a singular tropical hypersurface.

For instance, if A = {0, . . . ,m} ∈ Z, with m ≥ 2, and f =
⊕m

j=0 0 � wj , then

q = 0 is always a singular point of T (f) since for all m there exist univariate
polynomials of degree m with coefficients of valuation 0 and multiple roots with
valuation 0 (just consider F = (x− 1)m which has a multiple root at 1).

Let L(w) be an integral affine function on Rd,

(4) L(w) = j1w1 + . . .+ jdwd + β,

where (j1, . . . , jd) ∈ Zd and β ∈ Z. The Euler derivative of a tropical polynomial f
with support in A with respect to L is defined as follows.

Definition 2.2. Let f =
⊕

i∈A pi � wi and L = j1w1 + . . . + jdwd + β be an
integral affine function. The Euler derivative of f with respect to L is the tropical
polynomial

∂f

∂L
=

⊕
i∈A,L(i) 6=0

pi � wi.

We also have the standard Euler derivative of classical Laurent polynomials.

Definition 2.3. Let F =
∑
i∈A aix

i ∈ K[x±1
1 , . . . , x±1

d ] and L = j1w1 + . . . +
jdwd + β be an integral affine function. We associate to L the Euler vector field
LΘ = j1Θ1 + . . . + jdΘd + β, where Θj = xj

∂
∂xj

for all j = 1, . . . , d. The Euler

derivative of F with respect to L is the polynomial

∂F

∂L
:= LΘ(F ) = j1x1

∂F

∂x1
+ . . .+ jdxd

∂F

∂xd
+ βF.

It is clear that for any singular point b ∈ (K∗)d of V (F ), it holds that ∂F
∂L (b) = 0

for all integral affine functions L. Note that if L is the constant function 1, then
∂F
∂L = F .

We relate the derivative of F with respect to L with the derivative with respect
to L of its tropicalization.

Lemma 2.4. Given a tropical polynomial f with support A and an integral affine
function L, the equality

∂f

∂L
= Trop

(
∂F

∂L

)
holds for any polynomial F with support A such that Trop(F ) = f .

Proof. Take any F with Trop(F ) = f . Note that the Euler derivative of F with
respect to L equals ∂F

∂L =
∑
i∈A L(i)aix

i. From our assumption that the residue
field of K is also of characteristic zero, it follows that val(L(i)) = 0 whenever
L(i) 6= 0 and val(L(i)) = ∞ otherwise. The result is then a direct consequence of
Definition 2.2 of the Euler derivative with respect to L in the tropical context. �

As A is finite, the set
{
∂f
∂L |L

}
, with L ranging over all possible integer affine

linear functions, is finite for any f with support A.
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Example 2.5. Consider the tropical conic f = 1 ⊕ 0 � w1 ⊕ 0 � w2 ⊕ 0 � w1 �
w2 ⊕ 1�w2

1 ⊕ 1�w2
2. Let L1 = w1, L2 = w2 and let F = a(0,0) + a(1,0)x+ a(0,1)y+

a(1,1)xy+a(2,0)x
2+a(0,2)y

2 be any polynomial with tropicalization f . The associated
A discriminant ∆A equals 1/2 of the determinant of the matrix

(5)

2a(2,0) a(1,1) a(1,0)

a(1,1) 2a(0,2) a(0,1)

a(1,0) a(0,1) 2a(0,0)

 ,

which is non zero since 2a(1,0)a(1,1)a(0,1) is the only term in the expansion of the
determinant with lowest valuation 0. Thus, as one could expect, T (f) is a non
singular tropical hypersurface according to Definition 2.1. It is straightforward to
verify that ∂F

∂L1
= x∂F∂x = a(1,0)x + a(1,1)xy + 2a(2,0)x

2, ∂F
∂L2

= y ∂F∂y = a(0,1)y +

a(1,1)xy + 2a(0,2)y
2, and ∂f

∂L1
= 0 � w1 ⊕ 0 � w1 � w2 ⊕ 1 � w2

1, ∂f
∂L2

= 0 � w2 ⊕
0 � w1 � w2 ⊕ 1 � w2

2, correspond to the standard partial derivatives. Note that
q = (0, 0) ∈ T (f) is non singular but it also lies in the intersection of the tropical

hypersurfaces T ( ∂f
∂L1

) and T ( ∂f
∂L2

). Consider now the affine form L3 = w1 − 1.

Then, ∂f
∂L3

= 1 ⊕ 0 � w2 ⊕ 1 � w2
1 ⊕ 1 � w2

2 and q = (0, 0) does not lie in the

associated tropical hypersurface T ( ∂f
∂L3

) since the minimum of the linear forms
associated to the 4 terms is attained only once at q.

The main result in this section is Theorem 2.9, which characterizes singular
tropical hypersurfaces (with a given support) in terms of tropical Euler derivatives.
As we saw in Example 2.5, it is not enough to consider the d Euler derivatives
corresponding to the coordinate axes. It is not difficult to solve this problem by
appealing to the notion of a tropical basis [2], which we now recall.

Definition 2.6. Let I ∈ K[x±1
1 , . . . , x±1

d ] be an ideal. Then, Trop(I) consists of

all those weights w ∈ Rd which satisfy the following: w ∈ T (Trop(F )) for every
nonzero F ∈ I. By [5, 14], Trop(I) coincides with Trop(V (I)), that is with (the
closure of) the image under the valuation map of the zeros VK∗(I) of I in the torus
(K∗)d. A tropical basis of I is a finite set of polynomials F1, . . . , Fr generating I
such that Trop(I) = ∩ri=1T (Trop(Fi)).

Given a finite lattice set A ⊆ Zd with n elements, we will identify in what follows
the space of polynomials with coefficients in K and support A with (K∗)n. Denote

by 1 the point (1, . . . , 1) ∈ (K∗)d. The subvariety

H1 = {F ∈ (K∗)n|F is singular at 1}
of polynomials with support A and a singularity at 1 is a linear space. Its closure
in Pn−1(K) equals the dual space to the tangent space at the point 1 of XA. See
the discussion of this space and the following results in Section 4.

Denote by L the set of integer affine functions L = j1w1 + . . . + jdwd + β such
that gcd(j1, . . . , jd) = 1 and dim〈{L = 0} ∩A〉 = d− 1.

Proposition 2.7. Let (v1, . . . , vn) be variables. The finite set of tropical linear
polynomials

P1 :=

 ⊕
i∈A−{L=0}

0� vi |L ∈ L


is a tropical basis of Trop(H1).
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Proof. Let F =
∑
i∈A yix

i ∈ K[x±1
1 , . . . , x±1

d , yi(i ∈ A)] be the generic polynomial
with support A. Note that as L runs over all integer affine functions, the Euler
derivatives ∂F

∂L are precisely all integral linear combination of F, x1
∂F
∂x1

, . . . , xd
∂F
∂xd

.

H1 is the linear space (in the variables (y1, . . . , yn)) defined by the linear equations
F (x = 1), xj

∂F
∂xj

(x = 1) = 0, 1 ≤ j ≤ d. We know that the linear forms vanishing

on H1 form a tropical basis of H1 [14], and it is enough to consider linear forms with
rational (and a fortiori, integer) entries. Now, Trop(∂F∂L (x = 1)) =

⊕
i∈A−{L=0} 0�

vi. Moreover, by [2], the set of linear forms in H1 that have minimal support define
a tropical basis of Trop(H1). This set corresponds to the affine functions L such
that {L = 0} ∩A spans an affine space of maximal dimension d− 1. �

We have defined a tropical basis of the set of polynomials with a singularity at
1. If we have another point a ∈ (K∗)d, we can easily provide a tropical basis of the
variety Ha of hypersurfaces with a singular point at a by considering a diagonal
change of coordinates. Explicitly, if F =

∑
i∈A aix

i is a Laurent polynomial with

coefficients in (K)∗ with a singularity at 1 and such that val(ai) = pi � qi11 � . . .�
qidd = pi+〈i, q〉, then the polynomial F1 =

∑
i∈A ait

−q1i1−...−qdidxi has a singularity

at (tq1 , . . . , tqd) and val(ait
−q1i1−...−qdid) = pi. We can easily deduce the following.

Proposition 2.8. Let A ⊆ Zd with Z-linear span Zd. As before, identify (K∗)n
with the space of polynomials with support A. Consider the incidence variety H =
{(F, u) ∈ (K∗)n × (K∗)d|F is singular at u}. Let F =

∑
i∈A yix

i be the generic
polynomial with support A, where (x1, . . . , xd) and (yi)i∈A are variables. Then the
finite set

P ′ = {Trop(∂F
∂L

) with 〈{L = 0} ∩A〉 of maximal dimension d− 1},

is a tropical basis of Trop(H).

We have now the tools to prove the following tropical characterization of singular
tropical hypersurfaces with fixed support.

Theorem 2.9. Let f =
⊕

i∈A pi�wi be a tropical polynomial with support A. Let
q ∈ T (f) be a point in the hypersurface defined by f . Then, q is a singular point

of T (f) if and only if q ∈ T ( ∂f∂L ) for all L.
Thus, f defines a singular tropical hypersurface if and only if⋂

L

T (
∂f

∂L
) 6= ∅.

This intersection is given by a finite number of Euler derivatives of f ; for instance,
we can take only the affine linear functions L ∈ L defined before Proposition 2.7.

Proof. One implication is trivial. If q is a singular point of T (f) there exists a
polynomial F =

∑
i∈A aix

i, val(ai) = pi with a singularity at a point b with

val(b) = q. Then, ∂F
∂L (b) = 0 for all L, and so val(b) = q ∈ T ( ∂f∂L ) for all L.

For the converse, let q be a point in
⋂
L T ( ∂f∂L ). In particular, q ∈ T (f). Then,

for any integer affine function L, the minimum mini∈A,L(i)6=0{pi + 〈q, i〉} is at-
tained at least twice. This happens if and only if for all L the point (p, q) ∈
T (
⊕

i∈A−{L=0} vi � wi). It follows from Proposition 2.8 that (p, q) belongs to

the incidence variety Trop(H). So, by Kapranov’s theorem [5], there is a point
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Figure 1. The curve f (bold) and ∂f
∂(w1+w2) (pointed) in Example 2.10

(F, b) ∈ V (H) such that F is an algebraic polynomial with support in A and a
singularity at b such that Trop(F ) = f and Trop(b) = q. �

We present two examples that illustrate Theorem 2.9.

Example 2.10. Let A = {(0, 0), (1, 0), (2, 0), (1, 1), (2, 2), (0, 2)}. Consider the
tropical polynomial f = 0⊕0�w1⊕0�w2

1⊕0�w1�w2⊕0�w2
1�w2

2⊕6�w2
2. Let us

compute its singular points. Let L1 = w2−2, ∂f
∂L1

= 0⊕0�w1⊕0�w2
1⊕0�w1�w2,

L2 = w2, ∂f
∂L2

= 0�w1�w2⊕0�w2
1�w2

2⊕6�w2
2. The intersection set of these three

curves is the segment S whose ends are (0, 0), (3,−3). Consider now L3 = w1 −w2

that contains all the monomials dual to S (cf. the beginning of Section 4 for a

more precise explanation of this duality). Then, ∂f
∂L3

= 0� w1 ⊕ 0� w2
1 ⊕ 6� w2

2.
The intersection of this tropical curve with the segment S is the set of points
{(0, 0), (2,−2)} (See Figure 1). Let us check that these two points are valid singular
points. The polynomial F1 := −1 + 4x+ (−2 + t6)x2 + (−2− 2t6)xy + x2y2 + t6y2

has support A. It defines a curve with a singularity at (1, 1) and Trop(F1) = f . On
the other side, F2 = (1− t2 + t4) + (2− 2t2)x+ x2 + (−2− 2t2)xy + x2y2 + t6y2 is
a polynomial with support A. F2 defines a curve with a singularity at (t2, t−2) and
such that also Trop(F2) = f . It is not difficult to see that it is not possible to find
a single polynomial F with two singular points with valuations (0, 0) and (2,−2).

Example 2.11. Let A = {(0, 0), (1, 0), (2, 0), (1, 1), (2, 2), (0, 2)} be as in Exam-
ple 2.10 and let A′ = A∪ {(2, 10), (0, 1), (1, 2)}, so that A′ are all the lattice points
in the convex hull of A. Consider the tropical polynomial f ′ = 0⊕0�w1⊕0�w2

1⊕
0�w1 �w2 ⊕ 0�w2

1 �w2
2 ⊕ 6�w2

2 ⊕ 0�w2
1w2 ⊕ 3�w2 ⊕ 3�w1w

2
2 with support

in A′. That is, the coefficients of the 3 new points are given by interpolation of
the linear functions defining the subdivision associated to the polynomial f in the
previous example. Note that all points in A′ are thus marked. It is easy to check
that all points in T (f ′) are singular. Indeed, in this case f ′ can be lifted to the
polynomial F = (1 + x+ xy + t3y)2.

We now present Theorem 2.9 into action in a defective example, where the
tropical A-discriminant can be explicitly computed.
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Example 2.12. Let A ⊂ Z3 be the configuration A = {α1 = (0, 0, 0), α2 =
(1, 0, 0), α3 = (2, 0, 0), α4 = (0, 0, 1), α5 = (0, 1, 1), α6 = (0, 2, 1)}. Thus, A is
the union of two one dimensional circuits and the convex hull of A is the lattice
tetrahedron with vertices {α1, α3, α4, α6}. Note that A does not contain any circuit
of full dimension 3. The zero set of any integer affine function L such that the affine
span of {L = 0}∩A is equal to 2, consists of one of the circuits plus one more point.
Consider a tropical polynomial f = ⊕6

`=1pαi
�wαi with support in A. Thus, there

exists a singular point q ∈ T (f) if and only if

(6) 2pα2 = pα1 + pα3 , 2pα5 = pα4 + pα6 .

This corresponds to the fact that this configuration is self-dual; indeed, the dual
variety X∗A ⊂ P5(K) has (projective) dimension 3, it is isomorphic to the toric
variety XA and it is cut out by the binomials y2

2 − 4y1y3 = 0, y2
5 = 4y4y6, where

(y1 : · · · : y6) are homogeneous coordinates in P5(K). The tropicalization of this
binomial ideal is the rowspan of the associated matrix A in R6, which is defined by
the equations (6).

3. Marked tropical hypersurfaces and tropical singularities

Given a tropical polynomial f = ⊕i∈Api�wi with support A, most of the (finite)

Euler derivatives ∂f
∂L do not provide relevant information to detect singular points

of T (f). In this section we give further conditions and characterizations to detect
singular points.

We need to recall the following duality [7]. The vector of coefficients p = (pi)i∈A
of f defines a coherent marked subdivision Πp of the convex hull N(A) of A. That
is, p defines a collection of subsets of A (called marked cells) which are in one-to-
one correspondence with the domains of linearity of the affine function cutting the
faces of the lower convex hull of the set of lifted points {(i, pi), i ∈ A} in Rd+1.
Assume that a lower face Γϕ equals the graph of an affine function ϕ(w1, . . . , wn) =
〈qϕ, w〉+ βϕ. The corresponding marked cell σϕ of the subdivision of N(A) is the
subset of A of all those i for which pi = ϕ(i).

The marked subdivision Πp is combinatorially dual to the marked tropical variety
T (f). As we saw, this is a polyhedral complex which is a union of dual cells σ∗ϕ,
where we also record the information of the dual cell σϕ, and not only of the
geometric information of the vertices of σϕ. More explicitly, the dual cell σ∗ in
T (f) of a given cell σ of Πp equals the closure of the union of the points qϕ for
all ways of writing σ = σϕ, and we also record the information of all the points in
σ, that is, of all the points at which the minimum f(qϕ) is attained for any point
qϕ in the relative interior of σ∗ (which is the marking of the cell). The sum of the
dimensions of a pair of dual cells is d. In particular, vertices of T (f) correspond to
marked cells of Πp of maximal dimension d.

We now prove that Πp is a (coherent) triangulation, then the tropical hypersur-
face associated to f is non singular, as expected. As we will see, the converse to
this statement is not true and involves a complicated combinatorial study. Recall
that a point configuration is a pyramid, if all but one of its points lie in an affine
hyperplane.

Lemma 3.1. Let q ∈ T (f) lying in the relative interior of a cell σ∗ such that the
dual cell σ in Πp is a pyramid. Then, q is non singular. In particular, if Πp is a
coherent triangulation, then the tropical hypersurface T (f) is non singular.
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Figure 2. The subdivision of Example 3.3

Proof. If σ is a pyramid, let L be a linear functional such that {L = 0} intersects

σ in a facet and leaves out one point. This means that the minimum of ∂f
∂L at q

is attained at exactly one monomial. Hence, q /∈ T ( ∂f∂L ) and q is not a singular
point. �

Example 3.2 (Example 2.5, continued). Consider the same configuration A of
Example 2.5, that is, the six lattice points of the 2-simplex in the plane and the
tropical conic g = 0 ⊕ 1 � w1 ⊕ 1 � w2 ⊕ 1 � w1 � w2 ⊕ 0 � w2

1 ⊕ 0 � w2
2. Then

the associated marked subdivision has only one cell σ = {(0, 0), (2, 0), (0, 2)} and
it is not singular by Lemma 3.1, even if there are points in A that do not occur
in the subdivision and this single cell has lattice volume bigger than one. Also,
it is straightforward to check that any polynomial G = a(0,0) + a(1,0)x + a(0,1)y+

a(1,1)xy + a(2,0)x
2 + a(0,2)y

2 ∈ K[x, y] with the given valuations is non singular,
because this time the only term in the expansion of the determinant of the matrix
(5) with smallest valuation 0, is the diagonal term 8a(2,0)a(0,2)a(0,0).

Example 3.3. Consider the tropical polynomial f = 0 ⊕ 0 � w1 ⊕ 0 � w2 ⊕ 1 �
w3 ⊕ 0� w1 � w3 ⊕ 0� w2 � w3. We read the support A from f . The coefficients
of f induce the coherent marked subdivision depicted in Figure 2, which has two
cells of dimension 3 and it is not a triangulation. One of these top dimensional
cells is a unimodular 3-simplex. The second top dimensional cell contains a circuit
Z = {(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)} of dimension d− 1 = 2 and it is a pyramid
over the point (0, 0, 0). The affine integer function L = 1 − w1 − w2 verifies that

Z ⊂ {L = 0}. Computing ∂f
∂L , we check that f defines a non singular tropical

surface.

We now analyze some further conditions that a point q ∈ T (f) must satisfy in
order to be a tropical singular point.

Theorem 3.4. Let f =
⊕

i∈A pi � wi be a tropical polynomial and q ∈ T (f) lying
in the interior of a cell σ∗. Then, q is a singular point if and only if the dual cell σ
is not a pyramid and we have that q ∈ T ( ∂f∂L ) for all affine linear functions L such
that dim〈{L = 0} ∩ A〉 = d − 1 and σ ⊆ {L = 0}. So, in the particular case of a
vertex q of T (f), q is singular if and only if σ is not a pyramid.
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Proof. If q is a singular point, σ is not a pyramid by Lemma 3.1. As q ∈ T ( ∂f∂L ) for
any L by definition, in particular this happens for those L of the form described in
the hypotheses. Suppose now that q is not a singular point and let L′ be an affine
integer function such that q /∈ T ( ∂f∂L′ ). Let i ∈ A−{L′ = 0} be the unique point of

A at which T ( ∂f∂L′ )(q) is attained. Then, if σ is not contained in {L′ = 0}, we have
that i ∈ σ and it is the unique point of σ outside {L′ = 0}, and so σ is a pyramid.
Otherwise, take any integer hyperplane {L = 0} such that A∩{L′ = 0} ⊆ A∩{L =
0}, A ∩ {L = 0} spans an affine space of dimension d− 1 and i /∈ L. For any such

L we have that q /∈ T ( ∂f∂L ), as wanted. �

As a consequence, we can easily describe the polynomials that define singular
hypersurfaces in the case of 1 and 2 variables. Recall that, if A is not defective,
then T (Trop(∆(A))) is a subfan of the secondary fan of A. In the simplest case
of one variable, A ⊆ Z, it holds that T (Trop(∆A)) equals the union of the non
top dimensional cones in the secondary fan (since the only proper faces of A are
vertices). Hence, a univariate polynomial is singular if and only if the induced
marked subdivision is not a triangulation. With our notation, this is a simple case
of Theorem 3.4, because all circuits of A are of maximal dimension 1.

The following result, in the smooth case, appears in [7, Prop. 3.9, Ch. 11].

Corollary 3.5. Let A ⊆ Z2 with n elements. Suppose p ∈ Rn induces a coherent
marked subdivision Πp in A that is not a triangulation. Then p is in T (Trop(∆A))
(equivalently, the polynomial f = ⊕i∈Api �wi defines a singular tropical hypersur-
face) in exactly the following situations:

i) There exists a marked cell of Πp which contains a circuit of dimension 2.
ii) All circuits contained in a cell of Πp have affine dimension 1 and there

exists a marked cell σ of Πp of dimension 1 and cardinality |σ| ≥ 3 with the
following property: Let L be an integer affine function such that σ ⊂ {L =

0}. Then, σ∗ ∩ T ( ∂f∂L ) 6= ∅.

The first item is contained in Theorem 3.4. With respect to the second item, note
that σ contains a circuit Z (of dimension 1) and for any integral affine function L,
Z ⊂ {L = 0} if and only if σ ⊂ {L = 0}. The result follows again by Theorem 3.4.

In case item ii) of Proposition 3.5 holds, σ∗ ∩ T ( ∂f∂L ) 6= ∅ if and only if there is
a cell σ′ of dimension 2 containing σ, such that σ′ ∩ {L 6= 0} = {i1} consists of a
single point i1 ∈ A and, assuming L(i1) > 0, there exists another point i2 ∈ A− σ′
with L(i2) < L(i1). This is a particular case of the following more general result.
Recall that we always assume that the convex hull of our exponent set A is full
dimensional.

Proposition 3.6. Let A ⊆ Zd. Let p ∈ Rn such that Πp contains a top dimensional
cell σ′ which contains a circuit Z of dimension d − 1 and it is a pyramid over a
point i1. Let L be an affine integer function such that Z ⊂ σ′ ∩ {L = 0} and
L(i1) > 0. Then, there exists a singular point q ∈ T (⊕i∈A pi � wi) ∩ {(σ′ ∩ {L =
0})∗} with 〈q, i1〉 > 0 if and only if there exists another point i2 ∈ A not in σ′

such that L(i2) < L(i1). In particular, if Z intersects the interior of N(A), then
T (⊕i∈A pi � wi) is singular.

Proof. We can assume that L(w) = j1w1 + · · ·+ jdwd + β, with j1, . . . , jd coprime.
To make the notation easier, we apply an invertible affine linear transformation to
our configuration A so that L(w) = w1. Denote by ϕ(w) = ϕ1w1 + · · · + ϕdwd
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the linear form which interpolates p over the cell σ′, that is ϕ(i) = pi for all
i ∈ σ′ and ϕ(i) < pi for all i /∈ σ′. Thus, p′ ∈ Rn defined by p′i := pi − ϕ(i)
defines the same marked subdivision. So we can assume that pi = 0 for all i ∈ σ′
and pi > 0 otherwise. Therefore, q = (0, . . . , 0) is the vertex of T dual to σ′,

which is not singular since it does not lie in T ( ∂f∂L ). There will be a singular point
q = (q1, 0, . . . , 0) in (σ′∩{L = 0})∗ with 〈q, i1〉 > 0 if and only if there exists q1 > 0
and two points i2, i3 in A such that

q1L(i2) + pi2 = q1L(i3) + pi3 ≤ q1L(i) + pi,

for all i ∈ A with L(i) 6= 0. Note that as σ′ is a pyramid over i1, for any point i2
in A for which L(i1) = L(i2) it holds that i2 is not in σ′, or equivalently, pi2 > 0.
Assume first that there is a point i in A′ := A−σ′ with L(i) < L(i1) and let i2 with
these properties and such that moreover

pi2
L(i1)−L(i2) = mini∈A′

pi
L(i1)−L(i) . Then, it

is enough to take q1 =
pi2

L(i1)−L(i2) and i3 = i1. Reciprocally, assume there exists a

singular point q = (q1, 0, . . . , 0) with q1 > 0. As q ∈ T ( ∂f∂L ), there exist two points
i2 6= i3 such that q1L(i2) + pi2 = q1L(i3) + pi3 ≤ q1L(i1). Assume i2 6= i1. Then,
0 < pi2 ≤ q1(L(i1) − L(i2)). Therefore, L(i2) < L(i1), as wanted. The condition
that Z intersects the interior of N(A) guarantees the existence of a point i2 ∈ A−σ′
with L(i2) < L(i1). �

Note that the point i2 in the statement of Proposition 3.6 does not need to
belong to any cell in Πp.

4. Weight classes and the co-Bergman fan of Ã

In this section, we relate our definitions to the results and definitions in [1, 4, 10].
As before, f =

⊕
i∈A pi � w�i ∈ R[w1, . . . , wd] denotes a tropical polynomial with

support A.

Definition 4.1. Let q be in the interior of a cell σ∗ ⊆ T (f). We define the flag
of f with respect to q as the flag of subsets F(q) of A defined inductively by:
F0(q) = σ ( F1(q) ( . . . ( Fr(q), dim〈Fr(q)〉 = d, and for any `: F`+1(q)−F`(q) is
the subset of A−〈F`(q)〉 where the tropical polynomial

⊕
i∈A−〈F`(q)〉 pi�wi attains

its minimum at q. The weight class of the flag F(q) are all the points q′ ∈ T (f) for
which F(q) = F(q′)

Theorems 2.9 and 3.4 provide an algorithm to decide if q ∈ T (f) is singular or
not, which is similar to the method presented in [13] but which works without any

restrictive hypothesis on A. The algorithm returns an L such that q /∈ T ( ∂f∂L ) or “q
is a singular point”. First, we compute F0(q) = σ. If σ is a pyramid, there exists
i ∈ F0(q) such that i /∈ 〈F0(q) − {i}〉 and we can compute an L defining the facet

〈F0(q) − {i}〉 of F0(q), which verifies q /∈ T ( ∂f∂L ). If this is not the case and the
dimension of 〈F0(q)〉 < d, we compute F1(q) and we iterate the procedure. We stop
when we find an L that certifies that q is not singular or when F` spans an affine
dimension d, in which case q is singular.

Number the elements i1 . . . , in ofA and callA ∈ Zd×n matrix with these columns.

Let Ã, as in the Introduction, be the integer matrix with columns (1, ik), k =

1, . . . , n. Thus, the vector 1 = (1, . . . , 1) lies in the row span of Ã. In fact, as
the A-discriminant is an affine invariant of the configuration A, we could assume
without loss of generality that A has this property, but we prefer to point out the
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fact the we are interested in affine properties of the configuration A, equivalent to

linear properties of Ã.
Let L(w) = j1w1 + . . .+ jdwd + β be an affine linear function. We can associate

to L the linear form `L(x1, . . . , xn) =
∑n
k=1 L(ik)xk. Then, the support of `L is

precisely A − {L = 0}. Moreover, the coefficient vector (L(ik))nk=1 lies in the row

span of Ã, as it is obtained as the product (β, j1, . . . , jd) · Ã, and all linear forms in

the row span of Ã (which span the ideal of ker(Ã)), are of this form. Let B ⊂ Zc be

a Gale dual configuration of Ã. The linear forms in the row span of Ã with minimal
support correspond to the circuits in B and to the affine linear forms L such that
dim〈A ∩ {L = 0}〉 = d− 1.

Denote by v1, . . . , vn (tropical) variables. The tropicalization Trop(`L) equals:

Trop(`L)(v) =
⊕

L(ik)6=0

0� vk.

We recover the fact that H1 is an incarnation of ker(Ã) and so Trop(H1) equals the

co-Bergman fan B∗(Ã) (cf. Proposition 2.7). The flag of sets F(q) and the weight
classes in Definition 4.1 coincide for instance with those occurring in [1, Page 3].

Our previous algorithm can be modified to decide whether f =
⊕

i∈A pi �
wi contains a singular point, that is, to decide whether p lies in the tropical A-
discriminant, and in this case, to compute all the singular points. Just notice that,

as weight classes induce a fine subdivision on the co-Bergman fan B∗(Â), they also
induce a finer polyhedral subdivision of T (f). Two points q and q′ ∈ T (f) belong
to the relative interior of the same cell of the fine subdivision if and only if q, q′

belong to the same weight class. If σ is a cell of the fine subdivision of T (f), then
either every point of σ is singular or all points are regular. Since the number of
cells in this subdivision is finite and computable, we can derive an algorithm to
compute all singular points of T (f) that uses this information.

Proposition 4.2. The (finitely many) weight classes associated to a tropical poly-
nomial f =

⊕
i∈A pi�wi with support A, are relatively open polyhedral cells which

refine the polyhedral structure of T (f) dual to the marked coherent subdivision Πp.
If C is a cell in this new subdivision, then all points in C are singular or all of them
are regular. The previous algorithm applied to any of the points in C, allows us to
decide if C is a set of singular or regular points.

We can thus reprove [4, Theorem 1.1]: a point p = (pi)i∈A lies in the tropical-
ization Trop(X∗A) of the A-discriminant if and only if there exists a singular point
q ∈ T (

⊕
i∈A pi � wi). This happens if and only if the n-th dimensional vector

v = (vi)i∈A = p+ 〈q, ·〉 defined by the equalities

vi = pi + 〈q, i〉, i ∈ A,

lies in B∗(Â), by the characterization given in Theorem 2.9 (expressed by the pre-
vious algorithm). Equivalently, if and only if

(7) p = v + 〈−q, ·〉

with v in B∗(Â) and q ∈ Rd. That is, if and only if p lies in the Minkowski sum

of B∗(Â) and the row span of A, which equals the Minkowski sum of B∗(Â) and

the row span of Ã, since the vector 1 ∈ B∗(Â). It follows that if p ∈ T (X∗A), the
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Figure 3. Newton subdivision and singular curve of Example 4.3
(in bold) and ∂f

∂(w1−2) (pointed)

singular points of T (
⊕

i∈A pi � wi) are those q which occur in a decomposition of
the form (7).

We end this section with some examples that exhibit different interesting features
of these objects. The next example shows a tropical polynomial f whose coefficients
lie in a codimension one cone of the secondary fan of A, for which T (f) has two
singular points.

Example 4.3. Let f = 0�w2
1 ⊕ 0�w2

1 �w2⊕ 0�w2
1 �w2

2 ⊕ 7�w2⊕ 4�w1�w2

⊕7�w4
1�w2. The subdivision induced by f in its Newton Polygon is a triangulation

except for the circuit of exponents in {w2
1, w

2
1w2, w

2
1w

2
2}. The A-discriminant of the

support of f is (with the obvious meaning of the variables aij)
256a2

01a
8
21−192a4

11a20a
4
21a22 −4096a2

01a20a
6
21a22− 6144a01a

2
11a

2
20a

3
21a

2
22+ 24576a2

01a
2
20a

4
21a

2
22 − 1024a4

11a
3
20

a3
22+ 8192a01a

2
11a

3
20a21a

3
22− 65536a2

01a
3
20a

2
21a

3
22+ 65536a2

01a
4
20a

4
22+ 216a6

11a
3
21a41− 2016a01a

4
11a

4
21a41 +

5632 a2
01a

2
11a

5
21a41− 4096a3

01 a6
21 a41+ 2592 a6

11 a20a21a22a41− 20736a01a
4
11a20a

2
21a22a41+ 28672a2

01a
2
11a20

a3
21 a22a41+ 16384a3

01 a20a
4
21a22a41+ 4608a01a

4
11a

2
20a

2
22a41− 204800a2

01a
2
11a

2
20 a21 a2

22a41+ 65536a3
01 a2

20

a2
21a

2
22a41− 262144a3

01a
3
20a

3
22a41+ 729a8

11a
2
41− 7776 a01 a6

11a21a
2
41+ 27648a2

01 a4
11 a2

21 a2
41− 38912a3

01a
2
11

a3
21a

2
41 + 24576a4

01a
4
21a

2
41 − 55296 a2

01a
4
11a20a22a

2
41+ 122880 a3

01 a2
11a20a21a22a

2
41+ 65536 a4

01a20a
2
21a22a

2
41

+393216a4
01a

2
20a

2
22a

2
41− 13824a3

01 a4
11a

3
41+ 73728a4

01a
2
11a21a

3
41 −65536a5

01 a2
21 a3

41 −262144a5
01a20a22a

3
41+

65536 a6
01 a4

41+ 768a4
11a

2
20a

2
21a

2
22+ 16a4

11a
6
21− 128a01a

2
11a

7
21 = 1536a01a

2
11a20a

5
21a22.

The minimum valuation of the terms in the A-discriminant is attained for any
choice of coefficients aij with valuations prescribed by the coefficients of f , in
the five underlined monomials of the A-discriminant. Three of these monomi-
als a2

01a
2
20a

4
21a

2
22, a

2
01a20a

6
21a22, a

2
01a

3
20a

2
21a

3
22 lie in the convex hull of the other two

a2
01a

8
21, a

2
01a

4
20a

4
22. Hence, the exponents of the monomials of the A-discriminant

where the minimum is attained lie on an edge, and the vector of coefficients of f
belongs to a maximal cell of the tropicalization of the A-discriminantal variety. The
singular points of this curve are (3, 0), (−1, 0) (See Figure 3). Two lifts of the curve
and the singular point are: t7x4y+x2y2+(−3t13+t−2)x2y+x2+(2t16−2t4)xy+t7y
with a singularity at (t3, 1), and t7x4y + x2y2 + (t9 − 3t5 − 2)x2y + x2 + (−2t8 +
2t4)xy + t7y with singularity at (1/t, 1).

Our next example shows that for two vectors of coefficients inducing the same
coherent subdivision of A, the associated flags need not coincide.

Example 4.4. Let A = {α1 = (0, 0), α2 = (0, 1), α3 = (0, 2), α4 = (2, 0), α5 =
(1, 2), α6 = (−2, 0)} and pv = (0, 0, 0, 0, v1, v2), with v = (v1, v2) ∈ R2

>0 arbitrary.
In this case, pv defines the curve given by fv = 0⊕ 0�w2⊕ 0�w2

2 ⊕ 0�w2
1 ⊕ v1�

w1 � w2
2 ⊕ v2 � w−2

1 . The marked subdivision Π induced by any pv contains three
maximal cells: σ1 = {α1, α2, α3, α4}, σ2 = {α3, α4, α5}, σ3 = {α1, α2, α3, α6}. We
claim that all these curves are singular, with a singular point in the cell dual to
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−4v1 + v2 < 0 (left), −4v1 + v2 = 0 (center), −4v1 + v2 > 0 (right)

Figure 4. Cases of Example 4.4

the marked edge {α1, α2, α3}. However, as we will see, the number and locations
of the singular points vary.

Cell σ1 is dual to the point (0, 0) in the curve and σ3 is dual to the point
(v1/2, 0). By Theorem 3.5 there is a singularity if there is a point in the segment

[(0, 0), (v2/2, 0)] that also belongs to the partial derivative gv = ∂fv
∂(w1=0) = 0�w2

1⊕
v1 � w1 � w2

2 ⊕ v2 � w−2
1 . In the segment, gv attains its minimum at (0, 0) on the

linear form associated to α4 and gv attains its minimum at (v2/2, 0) on the linear
form associated to α6. Since gv is a continuous function, there must be a point
(q, 0) where the minimum of gv is attained twice, so this point will be a singularity
of f (cf. [10]). This reasoning works for any hypersurface in dimension d with a
circuit in the interior of A of dimension d− 1.

• If −4v1 + v2 < 0 there is a singular point at q = (v2/4, 0), the flag with
respect to q is: {α1, α2, α3} ( {α1, α2, α3, α4, α6} ( A.

• If −4v1 + v2 = 0 there is a singular point at q = (v2/4, 0), the flag with
respect to q is: {α1, α2, α3} ( A

• If −4v1 + v2 > 0 we get two different singular points:
– q = (v1, 0) with flag with respect to q:
{α1, α2, α3} ( {α1, α2, α3, α4, α5} ( A.

– q = ((v2 − v1)/3, 0) with flag with respect to q:
{α1, α2, α3} ( {α1, α2, α3, α5, α6} ( A.

Thus, we can take different values of v, v′ ∈ R2
>0 such that, while keeping Π = Πpv =

Πpv′ invariant, it is not possible to find singular points qv, qv′ in T (fv), T (fv′) for
which the flags coincide F`(qv) = F`(qv′) for all `.

It is worthwhile to note that the set of singular points in a hypersurface is not,
in general, a tropical variety.

Example 4.5. Let f = 0 ⊕ 0 � w2 ⊕ 0 � w2
2 ⊕ 0 � w1 ⊕ 0 � w1 � w2 ⊕ 1 � w2

1

represents a tropical conic. So, if it is singular, it is a pair of lines. It happens that
this conic is the union of the lines 0 ⊕ 0 � w1 ⊕ 0 � w2 and 0 ⊕ 1 � w1 ⊕ 0 � w2.
The intersection of these two lines is the ray (0, 0) + p(1, 0), p ≥ 0. This is not a
tropical variety. However, any of its points is a valid singular point of the conic.
We can take any point q in the intersection set and lift the whole configuration, as
it is an acyclic configuration (see [15]). In fact, for the point (p, 0), p ≥ 0 we can
take the lift F = (1 +x− (1 + tp)y)(1 + tx− (1 + tp+1)y) = 1 + (1 + t)x+ (−2− tp−
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tp+1)y + tx2 + (−1− t− tp+1)xy + (1 + tp + tp+1 + t2p+1)y2 that has a singularity
at (tp, 1).

5. Tropical curves with non transversal intersection

We fix two finite subsets A1, A2 of Z2 with |A1|, |A2| ≥ 2 and such that ZA1 +
ZA2 = Z2. In this section we define and study non transversal intersections of two
tropical curves associated to tropical polynomials with respective supports A1, A2.
As in Definition 2.1, we will say that the intersection is non transverse when it comes
from the tropicalization of a classical non transverse intersection of two curves. In
this case, we will see that the standard definitions do not have a straightforward
translation to the tropical setting.

Definition 5.1. Let f =
⊕

i∈A1
p1
i � wi, g =

⊕
i∈A2

p2
i � wi be two tropical

polynomials in R[w1, w2]. Let q be a point in the intersection of the tropical curves
T (f)∩T (g). Then q is a non-transversal (or non-smooth) intersection point of T (f)
and T (g) if there exists two Laurent polynomials F =

∑
i∈A1

a1
ix
i, G =

∑
i∈A2

a2
ix
i

in K[x1, x2], with respective supports A1, A2 and a point b ∈ (K∗)2 which is a non-
transversal intersection of {F = 0} and {G = 0} such that Trop(F ) = f (that is,
val(a1

i ) = p1
i for all i ∈ A1), Trop(G) = g and val(b) = q.

Recall that b ∈ {F = 0} ∩ {G = 0} is a non-transversal intersection point if
moreover the Jacobian JF,G vanishes at b. This Jacobian is the determinant of
the Jacobian matrix (or the matrix of the differential of the map (F,G)), and also

of its transpose MF,G =

(
Fx1

(b) Gx1
(b)

Fx2(b) Gx2(b)

)
. The condition that JF,G(b) = 0 is

obtained from elimination of variables from the following equivalent fact: {F = 0}
and {G = 0} intersect non transversally at b if and only if their tangent lines
coincide, or equivalently, the matrix MF,G has a non trivial kernel, that is, there
exists a non trivial vector (y1, y2) which is a solution of the system

(8) Fx1
(b)y1 +Gx1

(b)y2 = Fx2
(b)y1 +Gx2

(b)y2 = 0.

Given two Laurent polynomials F =
∑
i∈A1

a1
ix
i, G =

∑
i∈A2

a2
ix
i in K[x1, x2],

with respective supports A1, A2 ⊂ Z2, the mixed discriminant of F and G is the
A-discriminant associated to the polynomial y1F + y2G ∈ K[x1, x2, y1, y2] with
support in the Cayley configuration (cf. [7])

e1 ×A1 ∪ e2 ×A2 ⊂ Z4.

In fact, this is a three dimensional configuration lying in the plane defined by the
sum of the two first coordinates equal to 1. This mixed discriminant vanishes
at the vectors of coefficients ((a1

i )i∈A1
, (a2

i )i∈A2
) whenever F and G have a non-

transversal intersection at a point b ∈ (K∗)2 for which the system (8) has a solution
(y1, y2) ∈ (K∗)2. In particular, note that horizontal and vertical tangents are not
necessarily reflected in the mixed discriminant (cf. [6, Section 3] for a more general
definition of discriminants which takes into account different supports). Hence, we
do not take cover these extremal cases and will only describe the non-transversal
intersection points for which the system (8) has a solution (y1, y2) ∈ (K∗)2.

Lemma 5.2. Let f, g ∈ R[w1, w2] be two tropical bivariate polynomials with re-
spective supports A1, A2. The tropical plane curves that f and g define intersect
non-transversally at an intersection point q = (q1, q2) ∈ R2 if and only if there
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exists l ∈ R such that q = (q1, q2, l) belongs to the tropical discriminant associ-
ated to the polynomial f ⊕w3 � g ∈ R[w1, w2, w3] with support in the configuration
C(A1, A2) = A1×{0}∪A2×{1} ⊂ Z3, that is if q is a singular point of T (f⊕w3�g).

Note that the configurations C(A1, A2) ⊂ Z3 and the Cayley configuration
e1 × A1 ∪ e2 × A2 ⊂ Z4 are affinely equivalent. Therefore, the associated sparse
discriminants coincide (up to the names of the variables).

Proof. Suppose that there is an element l ∈ R such that (q1, q2, l) belongs to
the tropical discriminant of f ⊕ w3 � g. So, (f ⊕ w3 � g, (q1, q2, l)) belongs to
the incidence variety Trop(H) associated to A = C(A1, A2). Then, there are
algebraic polynomials F,G ∈ K[x1, x2] and a point (b1, b2, b3) ∈ K3 such that
(F (x)+x3G(x), (b1, b2, b3)) lies in the incidence varietyH, Trop(F ) = f , Trop(G) =
g, val(b1, b2, b3) = (q1, q2, l). Hence (b1, b2, b3) is a singular point of F + x3G, and
so the partial derivatives must vanish:

Fx1(b1, b2) + b3Gx1(b1, b2) = 0, Fx2(b1, b2) + b3Gx2(b1, b2) = 0, G(b1, b2) = 0.

It follows that F (b1, b2) = 0 and b = (b1, b2) is a non-transversal intersection point
of {F = 0} and {G = 0}. To prove the converse, suppose (q1, q2) is a non transversal
intersection point of f and g. There exists F,G ∈ K[x1, x2] with respective supports
A1, A2 such that Trop(F ) = f, Trop(G) = g and b = (b1, b2) as in Definition 5.1.
Then F (b) = 0, G(b) = 0, and let (y1, y2) be as in (8). It follows that (b1, b2, y2/y1)
is a singular point of the surface defined by F+x3G, so (F+x3G, (b1, b2, y2/y1)) ∈ H
and (f ⊕w3� g, (q1, q2, val(y2/y1))) ∈ Trop(H). Therefore, (q1, q2, val(y2/y1)) is a
non-transversal intersection point of f ⊕ w3 � g. �

Example 5.3. Let f = 0 ⊕ 0 � w1 ⊕ 0 � w2 and g = 1 ⊕ 0 � w1 ⊕ 0 � w2 be
two tropical lines. These lines intersect at an infinite number of points (all the
points in the ray {w1 = w2 ≤ 0}). However, two algebraic lines intersect non-
transversally if and only if they are the same, and we expect that this also happens
in the tropical setting. Since f 6= g, let us check that they intersect transversally
according to our definition. Consider the surface defined by f ⊕ w3 � g = 0 ⊕
0 � w1 ⊕ 0 � w2 ⊕ 1 � w3 ⊕ 0 � w1 � w3 ⊕ 0 � w2 � w3. Both lines have the
same support A1 = A2 = {(0, 0), (1, 0), (0, 1)}. The associated mixed subdivision
of C(A1, A2) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)} is precisely the
marked subdivision occurring in Example 3.3 and depicted in Figure 2, so f⊕w3�g
is indeed non singular according to Lemma 5.2.

We now revisit Example 2.12.

Example 5.4. Let A1 = {(0, 0), (1, 0), (2, 0)}, A2 = {(0, 0), (0, 1), (0, 2)}. So, f
and g are in fact univariate polynomials in different variables. The associated
configuration C(A1, A2) is just the configuration A occurring in Example 2.12. In
this case, the mixed discriminant has codimension bigger than 1 and a point of
intersection q = (q1, q2) is non-transversal if and only if q1 is a singular point of
T (p1 ⊕ p2 �w1 ⊕ p3 �w2

1) and q2 is a singular point of T (p4 ⊕ p5 �w2 ⊕ p6 �w2
2),

which is the translation of the fact that q is singular if and only if it lies in the
rowspan of A.

Since we are looking for the singular points (q1, q2, l) in T (f ⊕w3� g), we could
use the known tropical basis of the discriminant of this surface to compute them, as
in the discussion above. However, we would like to obtain a method that involves
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only f and g and no new variables. Just checking if the Jacobian matrix is singular
will not work.

Example 5.5. Let f = 0 ⊕ 0 � w1 ⊕ 0 � w2 ⊕ 0 � w1 � w2 ⊕ 0 � w2
2 ⊕ 1 � w2

1,
g = 0⊕ 1�w1⊕ 0�w2. Consider the intersection point q = (0, 0). If we would like
to use a kind of tropical Jacobian matrix, a natural choice would be the matrix ∂f

∂{w1=0}
∂f

∂{w2=0}
∂g

∂{w1=0}
∂g

∂{w2=0}

 =

(
0 � w1 ⊕ 0 � w1 � w2 ⊕ 1 � w2

1 0 � w2 ⊕ 0 � w1 � w2 ⊕ 0 � w2
2

1 � w1 0 � w2

)
.

When we evaluate at q, we get the matrix

(
0 0
1 0

)
which is nonsingular because

0�0 6= 0�1. However, take F = (1−t)+2x+2y+2xy+y2+x2t, G = (1+t)+tx+y,
b = (−1,−1) is an intersection point and Trop(F ) = f , Trop(G) = g, val(b) = (0, 0)
and

(1, 2)

(
Fx(b) Fy(b)
Gx(b) Gy(b)

)
= (1, 2)

(
−2t −2
t 1

)
= (0, 0)

So the tropical point (0, 0) is a non-transversal intersection point. The problem
is that in general, given a polynomial J ∈ K[x1, . . . , xn] and a point b ∈ (K∗)n,
Trop(J)(val(b)) 6= val(J(b)). In our case J is the Jacobian JFG = 2−2t+y(2−2t)
and b = (−1,−1). We have that Trop(JFG)(val(b)) = (0⊕ 0�w2)(0, 0) = 0, while
val(JFG)(b) =∞.

We now show another phenomenon that occurs.

Example 5.6. Let F = G = 1 + x1 + x2. f = Trop(F ) and g = Trop(G)
equal 0 ⊕ 0 � w1 ⊕ 0 � w2 and intersect non transversally at any point of T (f) =
T (g). The toric Jacobian x1x2JFG is the determinant of the 2× 2 matrix M with
columns the Euler derivatives of F and G with respect to L = w1, w2, and so
it is identically zero. If we consider the matrix Trop(M) obtained by taking the
tropicalization of each of the entries of M , we get the 2× 2 matrix with two equal
rows [0� w1 0� w2]. The tropical determinant of Trop(M) equals the permanent
(0�w1)� (0�w2)⊕ (0�w1)� (0�w2). If we forget the fact that we have twice
the term (0 � w1) � (0 � w2) = 0 � w1 � w2, we lose information. We just get a
monomial, which defines an empty tropical curve.

We deal now with two easy cases.

Proposition 5.7. Let f , g be two tropical bivariate polynomials with respective
supports A1, A2. Let q = (q1, q2) be a tropical point that is a vertex in both T (f)
and T (g). Then q is a non-transversal intersection point of f and g.

Proof. Set l := f(q)− g(q) ∈ R. We claim that q = (q1, q2, l) is a singular point of
the tropical surface T (f ⊕ w3 � g). To see this, note that the points in C(A1, A2)
where the minimum in q is attained are of the form (i, 0) ∈ A1×0, for all i such that
f(q) attains its minimum and those of the form (i, 1) ∈ A2 × 1, for all i where g(q)
attains its minimum. Since q is a vertex of both T (f) and T (g), the minimum of
f(q) is attained in a 2-dimensional cell σ1 in A1 and the minimum of g(q) is attained
in a 2-dimensional cell σ2 in A2. Let L = j1w1 + j2w2 + j3w3 + β be any integer
affine function in three variables, L 6= j3w3 + β. Then {L = 0} cannot contain σ1

nor σ2, so there are at least two different points of C(A1, A2) where the minimum

of f ⊕ w3 � g is attained at q. It follows that q ∈ T
(
∂(f⊕w3�g)

∂L

)
. In case L is of

the form j3w3 + β, {L = 0} is disjoint from C(A1, A2) unless β = −j3− 1, 0, and in
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this case either all the monomials corresponding to the points in A1 × 0 or A2 × 1
occur in the Euler derivative with respect to L of f +w3 � g. So, by Theorem 2.9,
q is a singular point of f ⊕w3 � g and q is a nontransversal intersection point of f
and g. �

Proposition 5.8. Let f, g be tropical polynomials with respective supports A1, A2.
Suppose that q is a vertex of T (f) and lies on a segment or ray of T (g). Moreover,
suppose that, locally, p is the only local intersection point in T (f) ∩ T (g). Then q
is a non-transversal intersection point of f and g.

Proof. The minimum of f at q is attained in at least three non-collinear monomi-
als associated to the points {α1, α2, α3} and the minimum in g is attained in at
least 2 monomials associated to the points {β1, β2}. Take again l := f(q) − g(q).
Then, (q1, q2, l) of f ⊕ w3 � g is attained at the monomials corresponding to C =
{(α1, 0), (α2, 0), (α3, 0), (β1, 1), (β2, 1)}. By construction, {(α1, 0), (α2, 0), (α3, 0),
(β1, 1)} is a simplex. Since the intersection of T (f) and T (q) around q is just
the point q, it follows that the line through (β1, 1) and (β2, 1) is not coplanar with
any line generated by two different points among {(α1, 0), (α2, 0), (α3, 0)}. In other
words, C is a circuit of dimension 3. By Theorem 3.4, (q1, q2, l) is a singular point
of f ⊕ w3 � g and thus q is a non-transversal intersection point of f and g. �

In order to deal with the general case, we introduce some notation. Let L′ =
j1w1 + j2w2 + cw3 + β be an integer affine function in 3 variables. Call L =
j1w1 + j2w2 + β ∈ R[w2, w2], so that

(9) L′ = L+ cw3.

We clearly have:

(10)
∂(f ⊕ w3 � g)

∂L′
=
∂f

∂L
⊕ w3 �

∂g

∂(L+ c)
.

Lemma 5.9. Let q ∈ R2 be an intersection point of T (f) and T (g) and let L′ be
an integer affine function in 3 variables. There exists l ∈ R such that q = (q1, q2, l)

is a point in the tropical surface T (∂(f⊕w3�g)
∂L′ ).

Proof. Define L as in (9). It is enough to take l = ∂f
∂L (q)− ∂g

∂(L+c) (q). �

In fact, keeping the notations of the previous Lemma, we can make a finer
classification of the affine linear forms L′ into 4 types and describe all possible
choices of l in each case. We say that L′ is of type 1 if the minimum of ∂f

∂L at

q is attained at least twice and exactly once in ∂g
∂(L+c) . In this case, we can take

any l ≥ ∂f
∂L (q) − ∂g

∂(L+c) (q). We say that L′ is of type 2 if instead the minimum

at q is attained at least twice in ∂g
∂L+c and once in ∂f

∂L . In this case, we can take

any l ≤ ∂f
∂L (q) − ∂g

∂(L+c) (q). The integer affine linear function L′ is said to be of

type 3 if the minimum is attained at least twice in both ∂f
∂L and ∂g

∂(L+c) . In this

case, we can take any l ∈ R. Finally, we say that L′ is of type 4 if the minimum
is attained once in both ∂f

∂L and ∂g
∂(L+c) . In this case, the only possible choice is

l = ∂f
∂L (q)− ∂g

∂(L+c) (q).

We now present the main result in this section.
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Theorem 5.10. Let f , g be two tropical bivariate polynomials with respective sup-
ports A1, A2 and q an intersection point of T (f) and T (g). Consider the set
A(q) = {(L1, L2, c1, c2)} of all 4-tuples where L1, L2 are integer affine functions
in two variables and c1, c2 ∈ R, for which q belongs to at least one of the tropical
curves associated to ∂f

∂L1
, ∂f
∂L2

, ∂g
∂(L1+c1) , ∂g

∂(L2+c2) . Let B(q) = {(L1, L2, c1, c2)} be

the set of 4-tuples for which q does not belong to any of these four tropical curves.
Then, q is a non-transversal intersection point of f and g if and only if

• For all (L1, L2, c1, c2) ∈ A(q), q belongs to the tropical curve associated to
the tropical polynomial

∂f

∂L1
� ∂g

∂(L2 + c2)
⊕ ∂f

∂L2
� ∂g

∂(L1 + c1)
.

• The following equalities hold for all (L1, L2, c1, c2) ∈ B(q):

∂f

∂L1
� ∂g

∂(L2 + c2)
(q) =

∂f

∂L2
� ∂g

∂(L1 + c1)
(q).

It is enough to check these conditions for a finite number of 4-tuples.

Proof. By Theorem 2.9, a point q ∈ R2 is a non-transversal intersection point if
and only if there is an l such that (q1, q2, l) belongs to all the partial derivatives
∂(f⊕w3�g)

∂L′ . Assume first that q ∈ R2 is a non-transversal intersection point and let

l ∈ R such that (q1, q2, l) belongs to all the partial derivatives ∂(f⊕w3�g)
∂L . Let L1, L2

be integer affine functions of 2 variables and c1, c2 ∈ R. Call L′1 = L1 + c1w3, L
′
2 =

L2 + c2w3. Then, by (10), we have that the minimum at ∂f
∂Li

(q)⊕ l� ∂g
∂(Li+ci)

(q) is

attained twice for i = 1, 2. It is not difficult to see that the two conditions in the
statement of the Theorem hold, separating the arguments for the different types of
functions L′. Reciprocally, assume that these conditions hold for all 4-tuples of the
form (L1, L2, c1, c2) and let q be an intersection point. Then, any (q1, q2, l) belongs

to the tropical surfaces defined by f ⊕ w3 � g and ∂(f⊕w3�g)
∂(w3+β) for all constants β.

Hence, it remains to check the Euler derivatives when L′ for which L 6= 0.
Let l1 be the maximum of ∂f

∂L (q) − ∂g
∂(L+c) (q) for all L′ = L + w3c of type 1. If

there are no L′ of type 1 set l1 = −∞. Let l2 be the minimum of ∂f
∂L (q)− ∂g

∂(L+c) (q)

for all L′ = L + w3c of type 2. If there are no L′ of type 2, set l2 = ∞. Finally,
let L′1, . . . , L

′
r be the integral affine functions of type 4 whose supports represent

all possible supports with this type, and write L′i = Li + ci. Call l4(L′i) = ∂f
∂Li

(q)−
∂g

∂(Li+ci)
(q). Then, it is clear that there exists an l such that (q1, q2, l) belongs to

all partial derivatives if and only if

l1 ≤ l4(L′1) = l4(L′2) = . . . = l4(L′r) ≤ l2
We have to translate these conditions into Jacobian like equations.

Let L′1 = L1 + w3c1, L′2 = L2 + w3c2 be two integral affine linear functions.
If L1 and L2 are of the same type 1 or 2, or if one of the types is 3, then it
always happens that q is a point in the curve ∂f

∂L1
� ∂g
∂(L2+c2) (q)⊕ ∂f

∂L2
� ∂g
∂(L1+c1) (q),

because we are adding two polynomials for which q is a “zero”. If L′1 is of type

1 and L′2 is of type 2 then: ∂f
∂L1

and ∂g
∂(L2+c2) attain its minimum at least twice

in q, and ∂f
∂L2

and ∂g
∂(L1+c1) attains its minimum once in q. Hence q is a point in

∂f
∂L1
� ∂g
∂(L2+c2)⊕

∂f
∂L2
� ∂g
∂(L1+c1) if and only if ∂f

∂L1
� ∂g
∂(L2+c2) (q) ≤ ∂f

∂L2
� ∂g
∂(L1+c1) (q).
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This is equivalent to ∂f
∂L1

(q) + ∂g
∂(L2+c2) (q) ≤ ∂f

∂L2
(q) + ∂g

∂(L1+c1) (q). So, ∂f
∂L1

(q) −
∂g

∂(L1+c1) (q) ≤ ∂f
∂L2

(q) − ∂g
∂(L2+c2) (q). This happens for every pair of integral affine

functions L1 of type 1 and L2 of type 2 if and only if l1 ≤ l2. Let L′1 be of type

1 and L′2 of type 4. Then q is a point in ∂f
∂L1
� ∂g

∂(L2+c2) ⊕
∂f
∂L2
� ∂g

∂(L1+c1) for all

L′1 of type 1 if and only if l1 ≤ l4(L′2). Let L′1 be of type 2 and L′2 of type 4.

Then q is a point in ∂f
∂L1
� ∂g

∂(L2+c2) ⊕
∂f
∂L2
� ∂g

∂(L1+c1) for all L′1 of type 2 if and

only if l4(L′2) ≤ l2. Finally, if both equations are of type 4, then the condition

l4(L′1) = l4(L′2) translates into: ∂f
∂L1

(q) − ∂g
∂(L1+c1) (q) = ∂f

∂L2
(q) − ∂g

∂(L2+c2) (q). We

deduce that ∂f
∂L1
� ∂g

∂(L2+c2) (q) = ∂f
∂L2
� ∂g

∂(L1+c1) (q), which ends the proof. �

Note that in the last equality of the above proof, there is only one monomial
on each side of the equality where the minimum is attained. If this monomial
happens to be the same on both sides, we cannot ensure that q is on the variety
∂f
∂L1
� ∂g

∂(L2+c2) ⊕
∂f
∂L2
� ∂g

∂(L1+c1) . Both items in the statement of Theorem 5.10 are

similar but the first one concerns tropical varieties, while the second one needs to
deal with equalities of the values taken by two tropical polynomials, that do not
represent tropical varieties. A more homogeneous approach can be given if we use
the supertropical algebra introduced by Izhakian and then developed by Izhakian
and Rowen, to unify both conditions.

Recall that one can consider an extended tropical semiring (T′,⊕′,�′) con-
structed from our tropical ring (T,⊕,�) [8]. This semiring structure has a partial
idempotent addition that distinguishes between sums of similar elements and sums
of different elements. Set theoretically, this bigger semiring T′ is composed from the
disjoint union of two copies of R, denoted R and Rν , plus the neutral element for
the sum ∞. There is a natural bijection ν : R → Rν and the operation ⊕′ verifies
a⊕′ a = ν(a), for all a ∈ R. The elements in Rν are called ghosts, so a⊕′a is a ghost
element. This terminology reflects the idea that in a field K with a valuation, if
two elements have the same valuation, we cannot predict in general the valuation of
their sum. We refer to [8, 9] for further details, in particular for the full definition
of the operations in this supertropical algebra.

An element q ∈ T′d lies in the variety T ′(h) defined by a supertropical polynomial
h =

⊕′
i∈A pi �′ wi with a finite support set A ∈ Zd, when h(q) is a ghost element.

Given A1, A2 as before and two supertropical polynomials f, g with respective sup-
ports in A1, A2 and coefficients in R (the so called tangible elements of T′), we can
mimic our previous definitions. Thus, a point q ∈ R2 is said to be a non-transversal

intersection of f and g if there exists l ∈ R such that (∂(f⊕′w3�′g)
∂L′ )(q1, q2, l) is a

ghost element for any integer affine linear form L′ in 3 variables.
We can translate Theorem 5.10 in the following terms:

Theorem 5.11. Let f, g be two supertropical bivariate polynomials with respective
supports A1, A2 and let q ∈ T ′(f)∩T ′(g). Then q is a non-transversal intersection
point if and only if for all 4-tuples (L1, L2, c1, c2), it holds that q lies in the variety

defined by the supertropical polynomial ∂f
∂L1
�′ ∂g

∂(L2+c2) ⊕
′ ∂f
∂L2
�′ ∂g

∂(L1+c1) ; that is,

the value of this polynomial at q is a ghost.

Acknowledgments: This work started during our stays at the Mathematical Sci-
ences Research Institute (MSRI) during the Special Semester on Tropical Geometry,
where we enjoyed a wonderful working atmosphere. AD is grateful for the support



SINGULAR TROPICAL HYPERSURFACES 21

of the Simons Foundation during that period. We thank Cristian Czubara for useful
remarks and Antonio Laface for stimulating questions. We also thank the referees
for insightful remarks.

References

[1] Federico Ardila and Caroline J. Klivans. The Bergman complex of a matroid and phylogenetic
trees. J. Combin. Theory Ser. B, 96(1):38–49, 2006.

[2] T. Bogart, A. N. Jensen, D. Speyer, B. Sturmfels, and R. R. Thomas. Computing tropical

varieties. J. Symbolic Comput., 42(1-2):54–73, 2007.
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