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Abstract 

In this article, we present a cross-layer adaptive algorithm that dynamically maximizes 

the average utility function. A per stage utility function is defined for each link of a 

carrier sense multiple access-based wireless network as a weighted concave function of 

energy consumption, smoothed rate, and smoothed queue size. Hence, by selecting 

weights we can control the trade-off among them. Using dynamic programming, the 

utility function is maximized by dynamically adapting channel access, modulation, and 

coding according to the queue size and quality of the time-varying channel. We show that 

the optimal transmission policy has a threshold structure versus the channel state where 

the optimal decision is to transmit when the wireless channel state is better than a 

threshold. We also provide a queue management scheme where arrival rate is controlled 

based on the link state. Numerical results show characteristics of the proposed adaptation 

scheme and highlight the trade-off among energy consumption, smoothed data rate, and 

link delay. 

Keywords: adaptive control; dynamic programming; wireless channel; CSMA. 
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1. Introduction 

In wireless networks, mobile devices are usually battery powered with a limited 

amount of energy. Therefore, minimization of energy consumption while maintaining the 

quality of service in the network is crucial. This must be accomplished by adapting the 

transmission parameters to the system dynamics and to the time-varying channel of the 

links. In this article, we present a cross-layer adaptive algorithm that dynamically 

maximizes the average utility function of a carrier sense multiple access (CSMA)-based 

wireless link. 

Benefits of such adaptation schemes are shown in some prior works in terms of energy 

efficiency [1–8]. In such works various control algorithms have been proposed that trade-

off among different goals such as energy consumption, average delay, packet dropping 

probability and bit error rate, and dynamically adapt the transmission parameters to the 

channel and system state. The aforementioned works assume point-to-point links with 

dedicated channels. However, in data transmission networks, where data are generated at 

random time instances, random access schemes are used to efficiently exploit channel 

resources. In such systems, there are more users than available channels, and at any given 

time only a subset of users can access the channels. Therefore, the optimality of channel 

access decision is crucial in random access networks. Random access is widely used in ad 

hoc networks as it can be implemented in a distributed manner. Wireless local area 

networks (WLAN) and practical personal or sensor networks usually use random access 

control in their ad hoc operation mode [9, 10]. On the other hand, it is shown recently that 

CSMA protocols can achieve maximum stable throughput [11] while keeping bounded 

queuing delay [12], and it can achieve a collision free WLAN [13]. 

Optimization of random access networks was first proposed in order to achieve single 

hop proportional fairness for slotted ALOHA networks [14]. Different types of fairness 

are also considered and random access control is modeled as a utility maximization 

problem in [15]. In addition, the cross-layer optimization problem of random access 

control and transmission control protocol is solved as a network utility maximization 

problem [16]. Newton-like algorithms are also provided for energy and throughput 

optimization with end-to-end delay constraint in multi hop random access network [17]. 

However, in the aforementioned articles static transmission probability was used and 

opportunity of time varying and adaptive control was ignored. 



3 

 

On the other hand, queue-based random access algorithms were studied in [18], where 

access probabilities are assumed to be adapted based on queue sizes. Stability of the 

proposed algorithms was verified and their delay performance was shown to surpass fixed 

optimization algorithms. Also a heuristic differential queue-based scheduling algorithm is 

proposed in [19] which shows superior performance compared to 802.11 through 

experimental results. However, such queue-based algorithms are inappropriate for fading 

channels and prioritize links with low channel quality, which results in low energy 

efficiency [20]. 

In this article, we propose cross-layer adaptive algorithms; derived from dynamic 

programming, for distributed optimization of the links in CSMA-based wireless networks 

operating in mobile environments. As a performance metric, we define the per stage 

utility of the link as a weighted concave function of energy consumption, smoothed data 

rate, and smoothed queue size in the link, where the weights are assigned based on the 

desired tradeoff among them. The algorithms maximize the average utility by dynamically 

adapting the channel access decision and transmit data rate (by selecting different 

modulation and coding schemes) according to the queue size of the link and the 

availability and quality of the time-varying channel (channel state is assumed to be known 

at the transmitter). Both, finite-time horizon (FTH) and infinite-time horizon (ITH) 

problems are considered. In the first case, the utility sum is maximized for a finite time 

period, whereas in the second case, the long-term average utility is maximized. 

We consider a mobile environment with frequency-flat time-varying channel response. 

This requires suitable models of the wireless channel dynamics. Here, we use finite-state 

Markov chains (FSMC) to model channel dynamics, such that channel time-correlation at 

network links is partially exploited by the proposed algorithms. Although the physical 

wireless channel is inherently non-Markovian, it has been shown that stationary Markov 

chains can capture the essence of the channel dynamics [21]. Many transmission 

adaptation algorithms are based on first-order Markov channel models [1, 2]. Here, we 

consider first- and second-order Markov chains to model characteristics of network links. 

The numerical simulations show the benefits of the proposed adaptation algorithms in 

terms of energy efficiency, and highlight the trade-off among energy consumption, 

smoothed data rate, and delay in links of a CSMA network. They also show that the use of 

suitable Markov model for the wireless channel improves performance of the adaptation 
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algorithm, mainly for slow fading channels. Algorithms based on uncorrelated, first- and 

second-order Markov models are considered and their performance is compared through 

simulations. 

The rest of the article is organized as follows. Section 2 presents the system model and 

in particular it describes the model of the network links as well as wireless channel 

models. In Section 3, per stage utility of the links is defined. Consequently, the utility sum 

maximization for a finite time period is formulated as an optimal finite-horizon control 

problem. Similarly, the long-term average utility maximization is formulated as an optimal 

infinite-horizon control problem. Section 4 uses dynamic programming to compute the 

optimal adaptation policies for the problems formulated in Section 3. We have 

investigated structural properties of the optimal solution in Section 5. Numerical results 

and comparisons are described in Section 6. Finally, Section 7 concludes the article. 

 

2. System model 

In this section, we describe the model of the random access links as well as wireless 

channel models. 

 

2.1. Link model 

We consider an ad hoc network where links use CSMA protocol similar to the one 

provided in [22] which prevents collision among links and also resolves hidden and 

exposed node problems which exist in wireless networks [23]. As shown in Figure 1, we 

assume a slotted transmission model where each timeslot, of duration , contains both a 

data slot and a number of control mini slots. When the link has a packet to transmit, it 

should wait for a random value of W control mini-slots, and if no other link has reserved 

the channel earlier, it will send a short request to send packet to reserve the channel. Then, 

the potential receiver which also perceives that the channel is idle will response with a 

clear to send (CTS) packet that allows the transmitter to transmit and informs possible 

interfering nodes that the channel will be used. Once the transmitter receives the CTS, it 

sends its packet in the data slot. 
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Timeslot k is defined as the time interval . We use  to denote the 

channel access, where  indicates that the link has decided to access the channel at 

the kth timeslot. The control policy adapts  in each slot based on the system and channel 

state. Also  indicates that the link should delay its transmission because the channel 

is already occupied by another link. We model  as a Bernoulli process where 

 is the channel occupancy probability. The Bernoulli distribution is widely 

used to model the statistics of  in CSMA networks [24]. 

The link has a queue of maximum size L. Let  denote the number of packets in the 

queue at the kth timeslot, which is assumed to be known at the transmitter. Obviously, 

 when . denotes the controlled number of packets that arrive the queue in 

slot k, which we will call arrival rate hereafter. The value of  should be chosen both to 

provide suitable rate for source data and to prevent delay due to backlog through adapting 

source rate to the link state [25]. To avoid buffer overflow the arrival rate is constrained 

by . The queue update equation is 

      

  (1) 

Where  indicates the maximum number of packets that can be transmitted during the 

kth data slot.  depends on the channel state, and it is assumed to be known at the 

transmitter at the beginning of each timeslot. We call the data that the physical layer 

transmits in one time slot a frame and the link consumes a constant energy  for 
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transmission of frame in the data slot. Thus, the energy consumed in the kth timeslot will 

be . 

We also consider the exponentially weighted moving average (EWMA) of the queue 

occupancy  and of the arrival rate  as the link state variables which are defined as 

follows 

     (2) 

     (3) 

Note that  and  can be viewed as ―smoothed‖ measures of the delay and data rate 

in the link. The parameters  and  determines the time scale over which the smoothing 

is performed. The smaller the value of  or , the shorter the time period of moving 

average (smoothing). Values of  and  are determined based on the tolerance of the 

applications to the delay and data rate variations in the link. Random early detection 

protocol has used the EWMA of the delay ( ) as a criterion for congestion control [26]. 

In addition, the EWMA of the rate (or smoothed rate),  has been used in [27, 28] as a 

measure of the quality of service. EWMA is also used as a metric in statistical quality 

control [29]. 

 

2.2. Channel model 

We consider a frequency-flat block-fading channel, where the channel remains constant 

during each timeslot, and can change for consecutive timeslots. Therefore, we assume that 

the duration of each timeslot ( ) is less than the coherence time of the channel. Hence, 

channel responses at different timeslots can be correlated. The channel power gain at the 
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kth timeslot is denoted by . Since we assume constant transmit power, the received 

signal-to-noise ratio (SNR) in the link for the kth timeslot will be proportional to . The 

fading range  is partitioned into M disjoint regions so that the jth region is defined as 

, where  and . The channel for the kth timeslot 

is in state j if  Also the values of  are selected according to the adaptive 

modulation and coding as follows. Consider that transmitter has a set of modulation and 

coding schemes  to select from in each time slot. We select 

 such that if channel is in state j, transmitter can use  and ensures that 

the frames transmitted with this scheme have error probability less than  which is a 

target threshold for frame error rate (FER). 

Let  denote the set of number of transmit packets associated with 

the set of channel states, if   then  where  is the number of packets that 

can be transmitted in the kth timeslot. Note that packet error rate will be below the same 

threshold, i.e., , since (a) adaptive algorithm applies different  schemes 

so that transmitter ensures the same error threshold for all frames, and (b) if a frame 

transmission was unsuccessful all packets in the frame will be lost. Therefore, the ratio of 

the lost packets to the total number of packets equals the ratio of the erroneous frames to 

the total number of frames, regardless of the channel state. 

 

Subsequently, we consider three models for the random process , with diverse 

degrees of complexity. 
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1. Uncorrelated model 

In this model, the channel response at different timeslots are assumed uncorrelated so 

, where  is the probability of the channel state . This 

simple model may be accurate for fading channels that exhibit high time-variability. It is 

also the fitting model when there is no prior information about the channel time 

correlation. 

2. First-order markov model 

To model the time correlation of the channel we use an M-state FSMC [30] with time 

discretized to  and transition probabilities as . 

Accordingly, the random process  will be modeled with the same M-state FSMC so: 

     (4) 

The transition probabilities depend on the normalized Doppler frequency  which 

determines the rate of variation of the channel with respect to the timeslot duration, where 

 is the channel Doppler frequency. Although the physical wireless channel is inherently 

non-Markovian, it has been shown that an FSMC can capture the essence of the channel 

dynamics when the number of regions/states (M) is low and the channel fades slow 

enough (see for example [21] and references therein). Note that the uncorrelated model 

can be viewed as a particular case of FSMC where . 

3. Second-order Markov model 

In order to model dynamics of  more accurately, we also consider second-order 

FSMC channel models. They are more accurate than the first-order FSMC since  

depends on both  and . 
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  (5) 

In this article, we use the so-called Cartesian product method [21] for the second-order 

models. We will investigate the effect of the FSMC order on the performance of the 

resulting algorithm through numerical results. Note that the formulation of the first-order 

Markov model can be considered as a special case of the second-order model with 

 for any . 

 

3. Problem formulation 

We consider a wireless link in a CSMA network which desires to optimize its 

transmission rate, energy consumption, and delay. We distinguish two dynamic 

optimization problems: FTH and ITH problems. In the FTH problem, the performance of 

the link is optimized over a finite number of timeslots, whereas in the ITH problem the 

link performance is optimized considering an infinite number of timeslots. Next, they are 

formulated as dynamic programming problems. 

 

3.1. Finite time horizon 

We define a utility maximization problem over  timeslots or stages as follows: 

     (6) 

where the expectation is taken over the random process . The function  is the 

utility per stage and is a measure of the quality of service of the link at each timeslot. It 

depends on the action vector  and on the system state vector. We consider a 

second-order Markov model for  and include component  in the state vector 

. Note that the first-order model can be considered as a special 
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case with . Considering  as the state update function we can 

write: . In (6)  is the final stage utility which depends 

only on the final state of the system,  and it can include some limitations or penalties 

on the final state of the system. 

Here we consider a special format for utility per stage function in order to clarify how it 

controls system performance: 

        (7) 

where , and are suitable continuous, concave functions, and parameters  and 

 control the tradeoff between rate, energy, and delay in the utility function. A similar 

formulation for per stage utility is used in [27, 28] for multi-period utility maximization 

while queue management and thus queue sizes were not considered. 

The number of packets remaining in the queue at the final stage can be penalized with a 

price of  as follows: 

     

 (8) 

 

3.2. Infinite time horizon 

In this case we maximize the average utility per stage which is defined by 

     (9) 
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where the action and state vectors as well as the per stage utility function are defined 

similar to the FTH problem. We consider both the first- and second-order models for the 

channel state by applying appropriate format of . 

 

4. Optimal adaptive control 

To maximize FTH or ITH utility functions the controller should decide optimal actions 

 at the beginning of each timeslot as a function of the system state . Note that the 

decision must be causal since future system states are unknown due to the randomness of 

the channel state  and occupancy . In this section, by using the DP algorithm 

[31], we derive algorithms that compute the optimal control functions for the FTH and 

ITH problems. It is important to remark that the resulting optimal control functions are 

computed and stored offline. Then, they will be used online to dynamically adapt the 

actions to the system state. As described earlier, the system state definition can support 

uncorrelated, first- and second-order channel models so we do not limit the solution to any 

specific channel model. 

 

4.1. Per stage adaptation to maximize FTH utility 

The optimal control policy is the sequence of control functions (one for each timeslot) 

 that maximize (6). Note that the control functions 

provide the optimal action for each of the possible system states at different stages. Using 

the DP algorithm, the optimal policy  is obtained from the following backward 

recursion for : 

        

   (10) 
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     (11) 

    (12) 

The function  is the maximum expected accumulative utility, achieved under 

optimal decision, when the system is in state  at the kth stage. Thus,  is the 

expected total utility for N stages when the initial state is . 

The application of the DP algorithm requires computation of function  for all 

possible system states  at each stage and necessitates the system state space to be 

finite. Since the state components , and can take values from continuous spaces, we 

discretize them using finite grids , and . Then, 

we can express each non-grid value as a linear interpolation of the nearby grid values: 

     (13) 

      (14) 

where  and  are non-negative weights and . It 

can be shown that if Lipschitz condition holds for the functions , , and 

, and for the state update functions (1–3), the DP solution of the discretized 

problem converges to the optimal policy for the original continuous problem, as the 

density of the grid increases [32]. For the problem in hand the utility and the state update 

functions are continuous and thus satisfy the Lipschitz condition. We select  and  

to be suitable continuous functions of the state variables which are chosen on the basis of 
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geometric considerations as suggested in [31] and each state will be described by two 

nearby discrete states: 

   (15) 

The DP algorithm for the discretized state space  and 

 will be 

        

 (16) 

   (17) 

  (18) 

where  is the estimation of  by its values at discretized states and is 

given by: 

  (19) 

In the above equation, we have  and 

. Furthermore  and  are given by (1), 

(2), and (3), respectively. We consider the second-order Markov model by using both 

 and  in the state vector. The other channel models can be considered as its special 

case. The solution provided in Equations (17)-–(19) is valid for any concave and 

continuous function of . 
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Next we replace  in (17) and (18) with its format provided in (7) and calculate 

the expectation, , using the channel transition probabilities, 

 and channel occupancy probability, . The expected 

accumulative utility and the optimal control functions for  will be 

           

 (20) 

           

       (21) 

Since  and  are independent of the decision in the kth timeslot,  

do not affect the maximization in (21). Also the summations in (20) and (21) are over all 

M channel states and two possible channel occupancy conditions. 

The discrete DP algorithm can be executed offline and the resulting optimal policy can 

be stored in a look-up table available at the transmitter. Then, it will be used online to 

dynamically adapt the action to the system state. 

 

4.2. State-based adaptive control to optimize average utility per stage 

To solve the ITH problem of (9) we first define the average utility per stage when using 

policy  and starting from the initial state  as 

  (22) 
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We denote the optimal policy as  which produces the maximum average utility per 

stage . Both  and  are independent of the initial state since the influence of the 

utility of the early stages on the average utility reduces to 0 as . Moreover, since 

the utility per stage, the transition probabilities (4), and the state update Equations (1)–(3) 

are all stationary, the optimal policy will be stationary (does not change from stage to 

stage). Therefore, it is a single function, , that maps the system states to actions 

regardless of the stage. 

, together with the so-called relative value function , should satisfy the 

following Bellman’s fixed point equation [31] for every state: 

      (23) 

where  indicates the successor state of the current state . Considering  as the state 

update function . The expectation in Equation (23) is over the random 

processes  and . 

We use a modified relative value iteration algorithm to solve the ITH problem [31]. 

First, we define a variant of the Bellman operator over any function f as 

      (24) 

where parameter  is a scalar. Then, the following iterative algorithm is used in 

order to calculate  for all states of the state space in the iteration : 

  (25) 
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where  is some fixed state. We initialize this algorithm with 

. Convergence of (25) is guaranteed since queue and channel 

states are recurrent [31]. The decision will also be updated and will finally converge to the 

optimal decision as : 

     

  (26) 

The practical application of (24) requires the state space to be discrete, so we use the 

same discretization procedure as in Section 4.1. This results in the following modified 

Bellman operator: 

 (27) 

Therefore, we apply (27) and compute  for all possible discrete states. For the 

uncorrelated and first-order channel models there are  discrete states 

and for the second-order channel model this number should be multiplied by . 

 

5. Structural properties of the optimal solution 

In the previous section, we provided DP algorithms that can be applied to find optimal 

decisions through numerical calculations. In this section, we investigate some structural 

properties of the solution. We use the following practical assumptions throughout this 

section. 

Assumption 1: Per stage utility function has a format of (7) and (8) with , and as 

increasing functions. 
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Assumption 2: Consider  as the channel state in the previous and 

current slot, respectively, and  as other possible channel states in these two slots, 

where  and . We assume that there exists a  such that the following 

inequality holds for channel transition probabilities: 

 

where  is the probability of going from channel states  to the next state 

 as defined for second order Markov model. 

Assumption 2 is valid in practice for Markov channels since  is supposed to be 

lower than  and each side of the inequality calculates the probability of going to 

the first j states with lowest rates. For example, if  then the inequality will 

be true for  and assumption 2 holds. If the inequality turns out to be true for any 

value of j then the assumption is correct. Based on this assumption we provide the 

following lemma: 

Lemma 1: If  and  are two increasing functions, ,  is the next 

channel state, and similar to Assumption 2  and  then we have 

   (28) 

Proof is provided in the Appendix. 
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5.1. Structural properties of FTH solution 

The following theorem indicates monotonicity of  versus the state variables. 

Theorem 1:  is a decreasing function of  and , and an increasing function of  

and  for all values of . 

Proof: In order to prove the theorem we show through induction that for  

we have  for any vector  that increase  and , and decrease  

and . 

Based on Equation (11) for optimal decision in the kth stage, we define  as: 

      

   (29) 

Thus,  where  is optimal decision for state . Also we define 

 for any value of  such that 

 is an element of the state space. 

For  we have  and using 

assumption 1 it is clear that . Assuming  is a 

monotonic function we show  is also monotonic for  which completes 

the proof. 
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We define  as optimal decision for state  in stage k, so we can write 

, however  is not an optimal decision for state  so we 

have: 

       

 (30) 

Using Assumption 1 it is clear that  is a monotonic function of the state variables 

       

  (31) 

We consider  as the state update function and define two possible next states 

 and . For known values 

of  and  we can use (1)–(3) and easily show that  in which 

 for some . Thus . 

We define  and  since  is 

independent of the system state thus we have  and since  is an 

increasing function of , then  and  are increasing functions. Applying Lemma 1 

with , , , and  we find that 

     

  (32) 

Combining (31), (32) and considering definition of  in (29) we get 
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  (33) 

Equation (30) together with (33) prove the theorem by showing: .

         

Assuming uncorrelated channel model the following theorem indicates the ―threshold 

structure‖ of the optimal transmission policy versus the channel state. 

Theorem 2: If the optimal access decision in state  is  then 

for another possible state  in the same slot with improved channel 

state  we have . 

Proof: Assume but  as the optimal decision 

for  and  , respectively. According to the definition of  in the proof of Theorem 1, 

 maximizes  and we have 

       

  (34) 

On the other hand since  and  differs only in the channel state, we have 

 and by using  for both states, queue size will 

modify similarly for , and  which results in the same next state, . Also for 

uncorrelated channel model the averaging over next channel state does not depend on the 

current state, thus  and 
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  (35) 

By applying decision  and since transmission with better channel 

state will decrease  and  which increase  according to Theorem 1, we have 

       

  (36) 

Combining (34), (35), and (36) results in 

 

which is in contrast to optimality of the . Thus, we should have 

        

       

Note that Theorem 2 may be incorrect when channel state is time correlated. For 

example, consider two possible channel states  and , with  and assume that 

optimal decision is to transmit for a state with . Also assume that probability of going 

from  to a better channel state and from  to a worse channel state is high. So, we can 

argue heuristically that in this condition it may be optimal to transmit data when channel is 

in state  but not to transmit when it is in state . 

 

5.2. Structural properties of ITH solution 

We provide structural properties of ITH solution in this section through the following 

theorems. First we show that relative value function, , is a monotonic function in 
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Theorem 3 and then prove the threshold structure of access decision versus channel state 

in Theorem 4. 

Theorem 3: , is a decreasing function of  and , and an increasing function of  

and . 

Proof: We define  with  and show that 

. We also define on function  as 

       

   (37) 

Assuming  as the decision that maximizes  and according to the Bellman equation 

(24) we have 

 

Taking into account , we prove through induction for every 

iteration n, . For  we define  

which according to Assumption 1 it is clear that . We assume that 

 is monotonic and show  is also monotonic. First, we show that 

 is monotonic. Using (26) for states  and  and assuming  and , 

respectively, as maximizing actions we have 

      

    (38) 
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From definition of  it is clear that . We can use the similar 

approach as the proof of Theorem 1 and apply Lemma 1 to show that 

    

  (39) 

which results in 

     

  (40) 

Combining (38) and (40) we find that . Using Equation 

(25) and taking into account that  is independent of the state vector, it can be 

easily shown that  is a monotonic function.     

    

Assuming uncorrelated channel model the following theorem indicates existence of a 

threshold for channel state that the link should decide to transmit when channel state is 

better than or equal to that threshold. 

Theorem 4: There exists a threshold, , that for  with any  

and , we have . Also for any  with   and  we have . 

Proof: Assume in timeslot  we have  and , transmission at this 

time has the energy cost of  but it will reduce  by  which will reduce  by 

 and also will reduce the future costs related to the queue size. However, 

transmission of theses  packets at any later time slot requires the same amount of 

energy. Thus, it is better to transmit these packets at state  to reduce the queue size as 
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early as possible and reduce the future costs related to the queue size. We conclude that: 

―if  and  then ‖ which proves existence of . 

In order to prove the second part of the theorem we assume 

 and consider optimal decisions  

and  for states  and  , respectively. If  we can show 

similar to the proof of Theorem 2 that it cannot be an optimal transmission policy. 

    

 

6. Numerical results 

For numerical analysis of the adaptive control algorithms provided in Section 4 we 

consider a lightweight sensor in a wireless network that may transmit its status using few 

bits. In each timeslot the sensor may send its own packet or forward packets of other 

sensors. We assume a Rayleigh flat fading channel, and use a set of simple Modulation 

and Coding schemes. Note that our adaptive algorithm only requires the FSMC model 

which can be found for many practical fading channels [21] and do not depend on 

Rayleigh fading assumption or Modulation schemes. However, in this section we consider 

the following types of modulations joint with Reed-Solomon (RS) coding: 

 : No transmission since link is in deep fade. 

 : BPSK with  

 : QPSK with . 

 : 16-QAM with . 

Note that in each time slot one frame will be transmitted and the time duration of the 

frames is identical for different schemes. Figure 2 illustrates FER of the aforementioned 

schemes. Setting 0.01 as the FER threshold, we find SNR thresholds  for the fading 
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regions which ensure the required FER limit for ( ) as . 

For example, we will use while SNR is between  and . 

Assuming a Rayleigh fading channel, we use the Markov model proposed in [21, 30] to 

obtain the transition probabilities for a given normalized Doppler frequency. Unless 

otherwise indicated we assume the average SNR at the receiver is  and 

normalized Doppler frequency is . Each frame that will be transmitted in the 

data slot contains a coded block. Considering the packet length of 47 bits, 0, 1, 2, or 4 

packets can be transmitted in a frame based on the channel state so . 

Regarding the per stage utility function (7) we use , and 

 to avoid very small rates and large queue sizes. Logarithmic utility is used 

to provide proportional fairness in the network [14] and prevent selfish rate maximization 

of the link. Also it provides fairness among multiple flows over a single link [27]. 

Recently, it has been shown, based on experimental results and Weber-Fechner 

psychophysical law, that user experience and satisfaction follows logarithm laws, and 

quality of experience (QoE) versus rate is formulated as [33]. In 

the utility function, energy and queue sizes are used with negative weights to minimize 

energy consumption and delay. Remember that the energy consumed at the kth timeslot is 

given by . Therefore 

    (41) 

We also use the following parameters for simulations unless otherwise 

indicated: . Using these 

parameters, Figure 3 shows the selected per stage utility which is an increasing function of 

 and decreasing function of . Our selected parameters result in a utility function which 
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is negative; however, behavior of this function versus system state is such that by 

maximizing it we will maximize rate while minimizing energy and delay. 

As described in Section 4, continuous state variables,  and , should be discretized 

in order to achieve a finite state system and dynamic programming solution. We set 

, and  for discretization. It is shown in our simulations that enhancement 

achieved by selecting greater values for , and  is insignificant. Also the maximum 

queue size is assumed to be  and the number of arrival packets at each stage  is 

limited by 4. 

 

6.1. FTH results 

As indicated earlier for FTH problem we use (8) as the final stage utility function with 

 as the price for packets remaining in the queue where , and 

. We assume that the initial state of the link is  and 

consider a flat fading Rayleigh channel. The recursive algorithm (16)–(18) is used to 

obtain the optimal control policy (over the discretized state space) for different values of  

. The transition probabilities of the Markov models are computed as described earlier. 

The optimal control policies are then used in Monte Carlo simulations, over the 

channel response  and the channel occupation  processes, to maximize , the 

sum of the utilities of the  stages. Figure 4 illustrates the , as a function of the 

number of timeslots , for different channel correlation models and two values of average 

SNR. This figure shows that the performance is enhanced by exploiting the channel 

correlation through the FSMC models, mainly for large values of . It also shows that the 

use of second-order FSMC is not worthwhile in these cases. For ,  varies 
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almost as a linear function of  where the slope depends on the channel correlation model 

and the average . 

We have also investigated the dependence of performance on the initial state of the 

link. Figure 5 illustrates the average utility, , versus the initial EWMA rate  for 

different values of . As expected the higher initial EWMA rate, the higher average 

utility. It also shows that sensitivity to the initial state decreases as the number of slots 

increases. 

Size of the grid used for discretization,  and , can affect performance of the 

system. In Table 1 we provide FTH performance of the algorithms that have used different 

values of  and  for . We can see that enhancement achieved by selecting 

values greater than , and  is negligible. 

 

6.2. ITH results 

We use the modified relative value iteration algorithm (25), with , in order to 

find the optimal control policies for the infinite time horizon problems. Unless otherwise 

indicated, in the following results we have considered the first-order FSMC channel 

model. In each iteration the algorithm computes new values of  and  for all 

possible states and finally it converges to the optimal control policy (for the discretized 

problem) . Figure 6 illustrates the convergence of the iterative 

algorithm, by showing the percentage of decisions, , which are modified 

in each iteration in comparison with the previous iteration. Apart from the optimal control 

policy, the algorithm also provides the optimal relative value function, . Figure 7a,b 
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illustrates , and  versus some elements of the state vector while fixing the 

others. They show interesting properties of the optimal policy and relative value function 

with respect to the system state. For example, Figure 7a shows that the arrival rate should 

be reduced as the channel goes to the fade state or as the EWMA of rate increases. 

Figure 7b indicates that the relative utility function decreases as the queue size increases 

or the channel goes to the fade state. 

Figure 8 demonstrates the optimal actions for a particular realization of the channel 

process in a period of 200 timeslots. Note that when the channel goes to a deep fade 

during timeslots  to  the link does not access the channel ( ) so there is not 

energy consumption in this period ( ). Also, new packet arrivals are reduced to 

prevent high queue backlog but kept at a minimum rate to prevent  from very 

negative values. After the deep fade finishes the link starts to transmit backlogged packets 

while keeping slow arrival rate until timeslot . 

Based on the selected format of the per stage utility (7), we can reduce the energy 

consumption by increasing . However, this is achieved at the cost of reducing the 

transmission rate and increasing the delay as shown in Figure 9. In other words, the figure 

shows the tradeoff between energy, rate, and delay as a function of . Here, the average 

delay is calculated using the little’s low:  [34]. 

Figure 10 shows the performance of the optimal policies, obtained from different 

channel correlation models, as a function of the time variability of the channel. In 

particular, it shows the resulting average utility per stage, as a function of the normalized 

Doppler frequency , for the first- and second-order FSMC models and different values 

of the EWMA parameters for packet arrivals and queue occupancy. It shows that average 

utility is higher for fading channels with higher  since channel remains for a short 
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time in deep fades. For , which corresponds to larger averaging time of 

rate and queue size, both channel models exhibit similar performance. However, for 

 we see that the more accurate second-order FSMC model enhances 

the performance of the link compared to the first-order FSMC model. 

 

7. Conclusions 

We addressed the problem of optimal channel access and rate adaptation in the links of 

CSMA wireless networks. We defined a utility function that trades off the energy 

consumption and the average packet transmission rate and delay. By using dynamic 

programming, we derive algorithms and optimal policies that maximize the average utility 

by adapting the arrival packet rate and channel access as functions of the queue 

occupancy, channel state, and smoothed rate. The optimal policies can be computed and 

stored offline. Then, they can be used online for dynamic access control and queue 

management of the link. The proposed algorithms exploit the time correlation of the 

channel by means of different FSMC models. Both FTH and ITH problems were 

addressed. In the first case, the average utility is optimized for a finite time period, 

whereas in the second case, the long-term average utility is maximized. Structural 

properties of the optimal solution are investigated and it is shown that optimal 

transmission policy has a threshold structure versus the channel state. For the ITH 

problem we proved the existence of a channel state that the link should always transmit 

when the channel is in that state or in a better one. Numerical results show that the overall 

performance of the link can be enhanced by increasing the order of the FSMC channel 

model. However, it increases the complexity of the algorithms and the memory required to 

store the optimal policies. 
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Appendix 

Proof of Lemma 1 

The difference between right- and left-hand of inequality (28) can be calculated using 

the channel transition probabilities: 

 

We partition the summation and rewrite it as 

 

the first inequality is a result of  and the second one considers 

, , and  Since 

 we have  

thus 
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where the second inequality is a result of Assumption 2.   

 

Competing interests 

The authors declare that they have no competing interests 

 

 

 

References 

[1] AK Karmokar, DV Djonin, VK. Bhargava, Optimal and suboptimal packet 

scheduling over time-varying fading channels. IEEE Trans. Wirel. Commun. 5(2), 

446–457 (2006) 

[2] DV Djonin, V Krishnamurthy, MIMO transmission control in fading channels—a 

constrained Markov decision process formulation with monotone randomized 

policies. IEEE Trans. Signal Process. 55(10), 5069–5083 (2007) 

[3] H Wang, NB Mandayam, A simple packet-transmission scheme for wireless data 

over fading channels. IEEE Trans. Commun. 52(7), 1055–1059 (2004) 

[4] E Uysal-Biyikoglu, B Prabhakar, AE Gamal, Energy-efficient packet transmission 

over a wireless link. IEEE/ACM Trans. Netw. 10(4), 487–499 (2002) 

[5] H Wang, NB Mandayam, Opportunistic file transfer over a fading channel under 

energy and delay constraints. IEEE Trans. Commun. 53(4), 632 (2005) 

[6] R Berry, R Gallager, Communication over fading channels with delay constraints. 

IEEE Trans. Inf. Theory 48(5), 1135–1149 (2002) 

[7] M Goyal, A Kumar, V Sharma, Power constrained and delay optimal policies for 

scheduling transmission over a fading channel, in Proc. INFOCOM, San 

francisco, USA, 2003, pp. 311–320 



32 

 

[8] D Rajan, A Subharwal, B Aazhang, Delay and rate constrained transmission 

policies over wireless channels, in Proc. IEEE GLOBECOM Conference, 2001, 

pp. 806–810 

[9] IEEE, Wireless LAN medium access control (MAC) and physical layer (PHY) 

specifications. IEEE standard 802.11, June 2006 

[10] IEEE, Wireless medium access control (MAC) and physical layer (PHY) 

specifications for low-rate wireless personal area networks (WPANs). IEEE Std 

802.15.4. September 2006 

S Rajagopalan, D Shah, J Shin, Network adiabatic theorem: an efficient 

randomized protocol for contention resolution, in Proceedings of ACM 

Sigmetrics, Seattle, WA, USA, June 2009, pp. 133–144 

[11] L Jiang, M Leconte, J Ni, R Srikant, J Walrand, Fast mixing of parallel 

Glauber dynamics and low-delay CSMA scheduling. arXiv.org:1008.0227v1, 

2010 

[12] J Barcelo, B Bellalta, C Cano, A Sfairopoulou, M Oliver, K Verma, 

Towards a collision-free WLAN: dynamic parameter adjustment in 

CSMA/E2CA. EURASIP J. Wirel. Commun. Netw. 2011. 

doi:10.1155/2011/708617 

[13] K Kar, S Sarkar, L Tassiulas, Achieving proportional fairness using local 

information in Aloha networks. IEEE Trans. Autom. Control 49(10), 1858–1862 

(2004) 

[14] AH Mohsenian-Rad, J Huang, M Chiang, VWS Wong, Utility-optimal 

random access: optimal performance without frequent explicit message passing. 

IEEE Trans. Wirel. Commun. 8(2), 898–911 (2009) 

[15] X Wang, K Kar, Cross-layer rate control in multi-hop wireless networks 

with random access. IEEE J. Sel. Areas Commun. 24(8), 1548–1559 (2006) 

[16] M Khodaian, BH Khalaj, Delay constrained utility maximization in 

multihop random access networks. IET Commun. 4(16), 1908–1918 (2010) 

[17] J Liu, A Stoylar, M Chiang, HV Poor, Queue based random access in 

wireless networks: optimality and stability. IEEE Trans. Inf. Theory 55(9), 4087–

4098 (2009) 



33 

 

[18] A Warrier, S Janakiraman, S Ha, I Rhee, DiffQ: practical differential 

backlog congestion control for wireless networks, in Proceedings of IEEE 

INFOCOM, Rio de Janeiro, Brazil, 2009, pp 262–270 

[19] B Nardelli, J Lee, K Lee, Y Yi, S Chong, E Knightly, M Chiang, 

Experimental evaluation of optimal CSMA, in Proceedings of IEEE INFOCOM, 

Shanghai, China, 2011, pp. 1188–1196 

[20] P Sadeghi, RA Kennedy, PB Rapajic, R Shams, Finite state Markov 

modeling of fading channels. IEEE Signal Process. Mag. 57, 57–80 (2008) 

[21] J Ni, B Tan, R Srikant, Q-CSMA: queue-length based CSMA/CA 

algorithms for achieving maximum throughput and low delay in wireless 

networks, in Proceedings of IEEE INFOCOM Mini-Conference, San Diego, CA, 

USA, 2010, pp 1–5 

[22] V Bharghavan, A Demers, S Shenker, L Zhang. MACAW: a media access 

protocol for wireless LAN’s, in Proceedings of ACM SIGCOMM, London, UK, 

1994, pp 212–225 

[23] G Bianchi, Performance analysis of the IEEE 802.11 distributed 

coordination function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2000) 

[24] B Vandalore, W Feng, R Jain, S Fahmy, A survey of application layer 

techniques for adaptive streaming of multimedia. Real-Time Imag. 7(3), 221–235 

(2001) 

[25] S Floyd, V Jacobson, Random early detection gateways for congestion 

avoidance. IEEE/ACM Trans. Netw. 1(4), 397–413 (1993) 

[26] D ONeill, E Akuiyibo, SP Boyd, AJ Goldsmith, Optimizing adaptive 

modulation in wireless networks via multi-period network utility maximization, in 

IEEE International Conference on Communications, Cape Town, South Africa, 

May 2010, pp 1–5 

[27] E Akuiyibo, SP Boyd, Adaptive modulation with smoothed flow utility. 

EURASIP J. Wirel. Commun. Netw. 2010. doi:10.1155/2010/815213 

[28] DC Montgomery, Introduction to Statistical Quality Control, 3rd edn. 

(John Wiley & Sons, New York, 1996) 

[29] HS Wang, N Moayeri, Finite-state markov channel—a useful model for 

radio communication channels. IEEE Trans. Veh. Technol. 44, 163–171 (1995) 



34 

 

[30] DP Bertsekas, Dynamic Programming and Optimal Control, vol. I, 3rd 

edn. (Athena Scientific, Belmont, 2005) 

[31] DP Bertsekas, Convergence of discretization procedures in dynamic 

programming. IEEE Trans. Autom. Control 20, 415–419 (1975) 

[32] P Reichl, B Tuffin, R Schatz, Logarithmic laws in service quality 

perception: where microeconomics meets psychophysics and quality of 

experience. Telecommun. Syst. 47, 2011. doi:10.1007/s11235-011-9503-7 

[33] D Bertsekas, R Gallager, Data Networks, 2nd edn. (Prentice Hall, 

Englewood Cliffs, NJ, 1992) 

 

Table 1. Performance versus discretization grid size 

   

4 5 –2.3 

6 10 –1.39 

13 21 –1.213 

13 30 –1.203 

20 30 –1.201 

 

Figure 1. System and timing diagrams. 

Figure 2. FER versus SNR for different modulations and RS coding schemes. 

Figure 3. Sample of per stage utility. 

Figure 4. FTH utility versus Maximum slot number for different SNRs and channel 

models. 

Figure 5. Average utility versus initial EWMA rate for and 

. 

Figure 6. Convergence of modified relative value iteration algorithm. 

Figure 7. DP optimal policy: (a) Optimal arrival rate versus channel state and EWMA 

of packet arrival. (b) Relative utility versus queue state and channel state. 
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Figure 8. Time variations of control and state variables. 

Figure 9. Energy-(rate, delay) tradeoff. 

Figure 10. Average utility per stage as a function of the normalized Doppler 

frequency for different channel correlation models and EWMA smoothing factors. 
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