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Marı́a de los Ángeles Cavia Soto3

1 Institute of Production Engineering, Tampere University of Technology, Korkeakoulunkatu 6, 33101 Tampere, Finland
2 E.T.S. de Ingenieria Industrial, Univerisdad de Vigo, 36310 Vigo, Spain
3 Departamento de Ingenieria Electrica y Energetica, Universidad de Cantabria, 39005 Santander, Spain

Correspondence should be addressed to Jose Luı́s Martı́nez Lastra, lastra@ieee.org

Received 1 February 2007; Revised 18 June 2007; Accepted 5 November 2007

Recommended by Valeriy Vyatkin

Agent-based technologies in production control systems could facilitate seamless reconfiguration and integration of mechatronic
devices/modules into systems. Advances in embedded controllers which are continuously improving computational capabilities
allow for software modularization and distribution of decisions. Agent platforms running on embedded controllers could hide the
complexity of bootstrap and communication. Therefore, it is important to investigate the messaging performance of the agents
whose main motivation is the resource allocation in manufacturing systems (i.e., conveyor system). The tests were implemented us-
ing the FIPA-compliant JADE-LEAP agent platform. Agent containers were distributed through networked embedded controllers,
and agents were communicating using request and contract-net FIPA interaction protocols. The test scenarios are organized in
intercontainer and intracontainer communications. The work shows the messaging performance for the different test scenarios
using both interaction protocols.
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1. INTRODUCTION

Rapid reconfiguration of manufacturing systems in response
to continuous changing conditions is one of the challenges
identified by the survey on visionary manufacturing de-
signed to forecast manufacturing challenges in 2020 [1]. The
survey identified strategic technology areas such as (a) adapt-
able integrated equipment, process, and systems that can be
readily reconfigured, (b) technologies to convert information
into knowledge for effective decision making, and (c) soft-
ware for intelligent collaboration systems.

Agent paradigm is one of the main players in the devel-
opment and/or merging of these strategic technologies. An
agent in the context of this work is a software entity which
has information about its own environment and that is able
to request information from other agents. It is also capable of
independent or collaborative actions. The use of agent tech-
nologies and multiagent systems through many fields in pro-
duction systems has proved their value in different applica-
tions through different fields [2].

Decision mechanisms implemented with agents and con-
trol algorithms can be distributed through networked em-
bedded controllers in production lines as suggested in [2, 3].
Therefore, agents would need an organized and standard-
ized way to interact. The Foundation for Intelligent Physical
Agents (FIPA) has developed guidelines for the development
of agent platforms which include an abstract architecture and
a set of interaction protocols (IPs) [4].

Key points in the development of multiagent systems are
the design of behaviors, the bootstrap, and the interactions.
The IPs used in this work are of request and contract-net
types are shown in Figures 1 and 2, respectively. The request
protocol can be used for peer-to-peer interactions with other
agents, that is, to obtain information or to request the exe-
cution of a task to other agents. The contract-net protocol
is used for decentralized task allocations; it is a distributed
negotiation model based on the notion of call for bids on
markets [5]. The novelty of the work stems from the effective
distribution of negotiating peers through devices which have
very small footprint.
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Figure 1: FIPA request interaction protocol [6].

The main motivation to study the messaging perfor-
mance is given by the limitations of the embedded devices.
Even though the interaction protocols represent an orga-
nized and meaningful way to interact, they impose more
constraints on the timely flow of information, and conse-
quently on the execution time of tasks in manufacturing
systems. Therefore, the study of the messaging time per-
formance under different test scenarios provides informa-
tion about the feasibility to coordinate agents which are dis-
tributed within the embedded controllers.

This work is organized as follows Section 2 includes a
description of related work. Section 3 explains the FIPA in-
teraction protocols utilized in the messaging performance.
Section 4 provides a short description of the JADE-LEAP
and the pointe controller (the software and hardware plat-
forms). Section 5 describes the test scenarios and shows the
results of the messaging performance. A short discussion
is presented in Section 6, and finally the conclusions are in
Section 7.

2. RELATED WORK

Traditional centralized control systems are inadequate
for complex production facilities exposed to continuous
changes. It has been stated in [3, 5] that distribution of con-
trol algorithms and decision mechanisms could bring bene-
fits such as system scalability and robustness. Agents could
be distributed providing logical intelligence through pro-
duction lines. There have been agent-based control appli-
cations for different industrial environments. These are dis-
tributed solutions applied in areas such as real-time manu-
facturing control, complex operations management (plan-
ning, scheduling, bootstrap, monitoring), and coordinating
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Figure 2: FIPA contract-net interaction protocol [7].
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Figure 3: A cross-conveyor is a shared resource in which an agent
could coordinate by means of the contract-net protocol to which
the attached conveyors will send a pallet.

virtual enterprises [2]. Simulation testbeds as in [8], indus-
trial applications like in [9–11], or the rod steel produc-
tion and navy chilled water system prototype [12] have been
proved to be the benefits and possibilities of agent technol-
ogy.

There are some works which have studied the scalabil-
ity and performance of agent platforms and agent-based ap-
plications, respectively. A benchmark on message transport
system is documented in [13]. The agent platform used is
JADE, and it was running on personal computers, with mi-
croprocessors at 800 MHz and 256 MB of RAM, and con-
nected via 100 Mbps Ethernet LAN. The general scenarios are
the intercontainer and intracontainer messaging for different
quantities of agent pairs. The round trip time was similar in
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Figure 4: JADE-LEAP front end and back end containers.
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Figure 5: First scenario with the request interaction protocol; ini-
tiator and participant are running in the same front-end container.

the intra- and intercontainer; it oscillates around 12 millisec-
onds.

Vrba presented a message sending speed benchmark of
Java-based agent platforms [14]; the messages were single
round tripe and the hardware running the different plat-
forms was a PC. It is shown in the benchmark that the fastest
platform in delivering messages was JADE. In addition, the
Java files of the agents were the smallest among the other
tested platforms. Vrba and Hrdonka in [15] proposes an ap-
proach to solve problems related to material handling sys-
tems using multiagent systems and ontologies. The simula-
tion developed to prove the concept was implemented with
JADE.

Laukkanen et al. in [16] investigated the performance of
the agent platform MicroFIPA-OS running on handled de-
vices and wireless transmission media at 9600 bps. The work
shows the timing response of the request interaction protocol
and the performance of searches in the directory facilitator
(DF); the simple request takes around 861 (±484) millisec-
onds and a search could take 7765 (±568) milliseconds. Ac-
cording to [3], it is expected that agents’ response times (in
the high-level control layer) oscillate between 100 millisec-
onds and 10 seconds.

A previous work of the authors [17] measured the aver-
age round trip time (aRTT) of single inform messages. The
purpose of the test was to observe the scalability in terms of
pairs of agents. The agent platform used was LEAP running
in split configuration on embedded controllers. The test sce-
narios included were intracontainer and intercontainer mes-
saging. For the first case, the aRTT obtained was around 8
milliseconds (5 pairs of agents), and for the second case, the
time for one pair of agents was 465 milliseconds.
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Figure 6: Second scenario for the request interaction protocol;
agent initiator and agent participant are running in different front-
end containers.
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Figure 7: Second scenario for testing the contract-net interaction
protocol; initiator and participant agents are hosted in different
front-end containers.

3. FIPA INTERACTION PROTOCOLS

Agent communication language (ACL) is a declarative lan-
guage; it is sufficiently expressive to enable communication
of all sorts of information (i.e., states, definitions, assump-
tions, rules, data). ACL is a language with well-defined se-
mantics, syntax, and pragmatics; its two main components
are the communicative act and the content of the message.
Agents can use an ACL in order to encode the messages [7].
The ACL is composed from the interaction protocols (IPs)
standardized by the Foundation for Interoperability of Phys-
ical Agents (FIPA).

The collection of FIPA standards promotes interoperabil-
ity of heterogeneous agent platforms; it provides a set of spec-
ifications and an abstract architecture. The former includes
different interaction protocols for agent communication; the
latter is a reference architecture to promote interoperability
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Figure 8: FIPA request interaction protocol; initiator and partici-
pant are in the same PTC.
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Figure 9: Performance of request interaction protocol; initiator and
participant are in different controllers.

among different platforms. In peer-to-peer agent interac-
tions, protocols such as request, query, and contract-net pro-
tocols provide an organized and meaningful way to exchange
information via the contents of the messages. IPs favor coor-
dination and promote interoperability among agents.

3.1. Contract-net interaction protocol

In contract-net interaction protocol, the relation between
agent clients (managers) and agent suppliers (bidders) is cre-
ated in a call for bids and an evaluation of the proposal sub-
mitted by the bidders to the managers [18]. Thus, an agent
requests that other agents submit their proposals with ap-
propriate bids to the task. The manager agent reviews the
bids and chooses the bidder with the best proposal. The ne-
gotiation process is carried out in four steps (also shown in
Figure 2).

(a) The agent acting as manager sends calls for bids to the
agents which would be able to perform certain task(s).

(b) The bidders use the description of the task to build a
proposal that they will send to the manager.

(c) The manager receives and evaluates the proposal and
assigns the task to the best bidder.

(d) During the last step, the bidder to which the task is
assigned sends the manager a message to confirm its
intention to do the request task.

LEAP provides API to directly use the FIPA IPs such as
request and contract-net.

Figure 3 shows a scenario in which the contract-net pro-
tocol coordinates the interaction between a cross-conveyor
and three attached conveyors. The central conveyor has an
agent which is the manager or the initiator; it sends a CFP
message in order to know the availability of the other convey-
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Figure 10: Performance of contract-net interaction protocol; agent
initiator and agent participants are running in the same controller.
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Figure 11: Messaging performance of the contract-net interaction
protocol; initiator and participants are in different controllers.

ors, by means of the proposals. The central conveyor could
decide which proposal best suits its own goals.

4. MULTIAGENT PLATFORM FOR NETWORKED
EMBEDDED DEVICES

The use of networked embedded controllers to distribute de-
cision mechanisms by means of software agents improves
qualitative attributes such as scalability and reconfigurability
of modular systems. Agents running on networked embed-
ded devices could deal better with distributed problems (i.e.,
resource allocation). Agent platforms provide basic services
for administrating the life cycle of agents, the communica-
tion media, and some other services.

4.1. Networked embedded controllers

Advantages of networked embedded controllers compared
to traditional programmable logic controllers are the en-
hanced connectivity infrastructure, communication proto-
cols, and new programming paradigms. The need to simplify
the point-to-point wiring connections in order to facilitate
changes and maintenance is just one of the reasons to use
distributed systems.

C, C++, and Java are the most popular and widespread
languages for programming industrial networked embedded
devices. Traditionally, C code has been more efficient than
the code generated by the other two languages. Neverthe-
less, state-of-the-art controllers which directly execute Java
virtual machine byte code had shown similar execution effi-
ciency.

The garbage collector (GC) of Java is one of the main
functional differences compared to C and C++. The GC is
responsible for freeing memory of Java processors by erasing
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unnecessary objects, as opposed to C and C++ for which the
programmers have to explicitly take care of the memory. The
GC in devices such as personal computers could pass unno-
ticed in most of the cases, but for embedded devices it could
have serious effects on the performance. In order to mini-
mize the effects, direct Java CPUs such as the microprocessor
AJ-100 [19] have been designed with dual heaps; one of the
heaps is meant for time critical operations and the other heap
for noncritical operations. The heap which does not generate
garbage ensures that processes such as gathering I/Os, real-
time control, and communications are not interrupted. Ap-
plications running on the heap which generates garbage are
preempted during the GC execution.

The pointe controller or PTC5800 is an embedded con-
troller that offers more functionality than traditional pro-
grammable logic controllers (PLCs). The processing unit is
an aJile microprocessor at 100 MHz; it directly processes na-
tive Java virtual machine (JVM) byte code. The PTC uses the
connected limited device configuration (CLDC) which out-
lines the most basic set of libraries and virtual machine fea-
tures that must be present in each implementation of Java 2
Microedition (J2ME) environment on resource-constrained
devices. The connectivity features of these controllers are
Modbus TCP/IP, TCP/IP Ethernet, and a serial port.

4.2. The multiagent platform

An agent platform is a middleware which provides a set of
normative and optional services for the deployment and ex-
ecution of peer-to-peer applications. FIPA has proposed a
reference architecture and interaction protocols to facilitate
interoperability among different agent platforms. The set of
normative services includes a life cycle management, white
and yellow pages, and message transport service.

There are many agent platforms available (the reader in-
terested in a detailed list should refer to [14]). The Java Agent
DEvelopment Framework (JADE) is a middleware fully com-
pliant with the FIPA specifications. The elements that JADE
includes from the FIPA abstract architecture are an agent di-
rectory, a directory service, a message transport, and agent
communication language.

The standard version of JADE is too big to be executed by
embedded devices with small footprint. Nevertheless, there
is a light version of JADE called light-weight and extensible
agent platform (LEAP) which can be used for devices with
limited capabilities.

4.3. The JADE-LEAP platform

The LEAP platform is a light version of JADE; it is meant
for devices with limited capabilities which use either CLDC
or the connected device configuration (CDC) version of
Java microedition (J2ME). The LEAP run-time environment
must be active on the device before agents can be executed.
Each instance of the LEAP run-time is called container and
a group of containers composes a platform. A container pro-
vides basic functionality for agents hosted within it. The de-
ployment of multiagent systems on embedded controllers
such as the pointe controller requires a container running on

Table 1: Main features of the embedded controllers used in the ex-
periments.

Device components Characteristics

Embedded controller PTC-5800

Microprocessor AJ-100 at 100 MHz

RAM 2 MB

Flash 4 MB

Java virtual machine Profile: CLDC 1.0.3, J2ME

Connectivity Ethernet TCP/IP (10 BaseT)

the embedded controller. LEAP was not thought for any de-
vice in particular; instead, it was developed as a framework.
The LEAP’s API can be modified to fulfill different families of
devices. LEAP can be deployed according to a set of profiles
identifying the functionality available on each particular de-
vice. A MIDlet has to be created from the LEAP source code
in order to deploy agents on the pointe controller.

LEAP’s run-time environment could be implemented ei-
ther as a stand-alone or a split configuration. In the stand-
alone execution mode, the entire container’s functionality is
executed on the target device. On the other hand, in the split
execution mode, a container is separated into a front end
(running on the embedded device) and a back end (running
on a host with J2SE). The front end and back end maintain
communication through a permanent connection. The split
execution mode is better for constrained devices since the
front end is more lightweight than a complete container, the
bootstrap phase is faster, and less amount of bytes is trans-
mitted over the network.

The agent management system (AMS) and the directory
facilitator (DF) are provided by the platform’s main con-
tainer. The front end is able to detect a disconnection with
the back end. Thus, if that happens, it keeps trying to connect
again for a period of time. The back end is a dispatcher for
messages sent by other containers within the same platform
whose destinations are agents on the front end [20]. LEAP
internal message transport protocol (IMTP) is based on a
proprietary protocol called JICP (JADE intercontainer pro-
tocol) [6]. The LEAP IMTP has a command dispatcher which
is responsible for serializing and deserializing JADE horizon-
tal commands, assigning the proper intercontainer protocol
(ICP) to serialized commands, and routing commands re-
ceived from the ICPs to the local container. The selection of
a communication depends on the location of the sender and
receiver agents.

(1) Communication between agents hosted on different
containers which belong to the same platform uses
IMTP (see Figure 4).

(2) If agents are in the same container, the message is sent
using event passing. Naturally, the message is not seri-
alized, but cloned, and the object reference is passed to
the agent receiver [13].

The main features of the embedded controllers used dur-
ing the tests are shown in Table 1.
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5. MESSAGING PERFORMANCE

The goal of these tests is to study the messaging performance
during the agent communication. Request and contract-net
are the IPs used in the different test scenarios. Two sce-
narios are presented regarding the allocation of the sender
and receiver agents. The first scenario is the intracontainer
communication; in this case, agents are running on the same
front-end container. The second scenario is the intercon-
tainer communication, and agents are distributed in two
front-end containers.

The physical message passing among the logical con-
trollers is based on the TCP/IP protocol. The PTCs were
connected through an IEEE 802.3/Ethernet 10 Base-T multi-
port repeater. The length of each FIPA message is around 282
characters. This value can change; it depends on the content
of the message. For the purpose of the tests, only the agents’
threads were running within soft real-time heap of the AJ-
100 microprocessor. In addition, the length of the messages
was held constant. In the case of the request protocol, the
amount of sent and received messages was 500, and in the
contract-net case, the amount was 180 messages.

5.1. Messaging performance of the request
interaction protocol

The first scenario is illustrated in Figure 5. There are two
agents, initiator, and participant which are running in the
same front end.

Figure 8 shows the time performance of the request inter-
action protocol with continuous sending of messages in the
same front-end container. Without considering the garbage
collection, the highest peaks are below 35 milliseconds. There
are two peaks which exceed 7000 milliseconds; they are the
consequence of rescheduled messages due to garbage collec-
tion procedures.

The second test was set up using two controllers, the
agent initiator was running in one controller, and the agent
participant on the other (see Figure 6). Figure 9 shows the re-
sults of the experiments. It can be seen without considering
the peaks that it takes around 790 milliseconds to complete
the interaction protocol.

5.2. Messaging performance of contract-net
interaction protocol

The first test scenario with contract-net protocol was per-
formed with one agent initiator and three agent participants;
all were running on the same controller. The average time in-
terval for the round trip time (RTT) was 80–130 milliseconds
(see Figure 10). Nevertheless, the peaks due to the garbage
collection procedure are within the interval of 5700–6000
milliseconds.

In the second test, two controllers were used, one with
an initiator agent and the other with 3 participants (see
Figure 7). The results are shown in Figure 11. The average
RTT is around 1610 milliseconds.

Table 2: Transferring times for a cross-conveyor to its adjacent con-
veyors, and between two single conveyors.

Origin Destination Time (ms)

Center cross Right cross 3820

Center cross Left cross 3820

Center cross Middle conveyor 2500

Left cross Left conveyor 3730

6. DISCUSSION

The garbage collection in PTC-5800 is scheduled automati-
cally when it is needed; it could happen every 10 minutes or
20 seconds or at any time. When it occurs, it preempts non-
critical threads for a few seconds. Two kinds of threads are
classified according to their priority in critical threads and
noncritical threads within the PTC. Agents within a front-
end container, hosted in the PTC, are scheduled as noncriti-
cal threads; this means that they could be affected by the ex-
ecution of the garbage collection thread.

The behavior of the two agents within the same container
and for both interaction protocols shows how the RTT in-
creases in intervals of 70–80 RTTs. This is due to the fact that
every sent message is received on the private queue of the
receiver agent. Therefore, this together with the creation of
message objects (which is the most demanding processing
protocol) deteriorates the messaging performance until the
activation of GC.

The RTT of agents in different containers is naturally big-
ger than that of agents within the same container; the ACL
messages are marshaled prior to sending and unmarshaled at
the destination. The most demanding IP was the contract-
net for obvious reasons; it has to deal with more messages,
and the interaction implies analysis of the received bids. Nev-
ertheless, the messaging performance measurements have
demonstrated that even for the most time-demanding inter-
action, the RTT is still below the maximum limit stated in the
literature and the transferring times shown in Table 2.

The results presented in this work are proportionally sim-
ilar (considering the number of messages and the number of
agent pairs) compared to the results obtained in a previous
work [17].

Table 2 shows the transferring times for two types of con-
veyors, the cross-conveyor like the one shown in Figure 3,
and the single conveyors. According to these transferring
times, agents would have time to negotiate in advance the
next action to be taken. This assumption still will need some
experimentation to be proved.

7. CONCLUSION

This work has shown the messaging performance of two
FIPA interaction protocols: request and contract-net. This
work has been conducted through different test scenarios
using a Java-based controller and an adapted JADE-LEAP
platform. The results showed the round trip time of the en-
tire interaction protocols; this is from the beginning of the
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interaction ending with the inform-done message. The mes-
saging performance is affected by the garbage collection
which preempts the execution of any other thread.

The transferring times to move a pallet from a central
conveyor to one of the attached conveyors could allow co-
ordinating/negotiating in advance the next movement. This
will be part of future work.
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