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Abstract  

During the last decade, the increasing complexity of new processors, as well as their high cost 

and energy consumption, has reoriented the industry towards the introduction of multiple cores 

into the chip, i.e. Chip Multiprocessors (CMPs). This reorientation attempts to exploit thread-

level parallelism; it limits each core’s complexity and reduces the energy required to perform 

any task. However, besides their advantages, CMPs also present new challenges that have to be 

faced, such as the bandwidth-wall.  

In order to mitigate this problem, one of the steps taken consists of using complex memory 

hierarchies within the chip, thus reducing the number of off-chip accesses. This raises the 

possibility of having multiple copies of the same data and therefore, the necessity of having to 

maintain the coherence among them. This coherence can be maintained via software, leaving all 

the responsibility to the programmers/compilers, at the expense of their productivity, or 

otherwise in hardware, freeing them from such an arduous task.  

In this thesis, firstly an analysis has been done of the problems associated with cache coherence 

in the field of CMPs. The main existing solutions, both in real machines and from a purely 

academic perspective, have been summarized, along with the characteristics of the 

interconnection networks that have been or may be introduced into such systems. This analysis 

has enabled the detection of a set of needs and opportunities, which have been incorporated into 

two new proposals. 

On the one hand, considering a medium-term future in which the number of processors in the 

chip will be a few tens and with a view to fully exploiting the high bandwidth availability due to 

the use of point-to-point networks and scalable cache architectures, a new coherence protocol 

denominated LOCKE is proposed. This proposal uses a broadcast-based approach, which focuses 

on improving the reactiveness of the on-chip memory hierarchy, as well as the system stability 

against the effects of contention.  

On the other hand, considering the long-term future, large-scale CMPs will include hundreds or 

thousands of processors, and it should be noted that the interconnection network will not be able 

to support such high numbers of messages. Therefore, MOSAIC is proposed, which provides a 

scalable hybrid coherence protocol (broadcast- and directory-based). It uses the CMP bandwidth 

availability in a controlled way, significantly reducing the maintenance costs of other existing 

protocols.  
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Resumen  

Durante la última década, la creciente complejidad de diseño de nuevos procesadores, así como 

su elevado coste y consumo energético ha reorientado la industria hacia la introducción de 

múltiples cores dentro del chip, i.e. Chip Multiprocessors (CMPs). Dicha reorientación tiene 

como finalidad explotar el paralelismo a nivel de thread, limitar la complejidad de cada core, y 

reducir la energía requerida para llevar a cabo cualquier tarea. No obstante, además de ventajas, 

los CMPs también presentan nuevos retos a superar, como el bandwidth-wall.  

Una de las soluciones adoptadas para mitigar este problema consiste en usar jerarquías de 

memoria complejas dentro del chip, logrando así reducir el número de accesos al exterior. Sin 

embargo, ello lleva consigo la potencial existencia de múltiples copias de un mismo dato y por 

lo tanto la necesidad de mantener la coherencia entre todas ellas. Dicha coherencia debe 

mantenerse bien vía software, delegando en el programador/compilador toda responsabilidad en 

detrimento de su productividad, o por el contrario vía hardware, liberándole de tal ardua tarea. 

En este trabajo, en primer lugar se ha llevado a cabo un análisis sobre la problemática asociada 

a la coherencia cache en el ámbito de los CMPs. Extrayendo las principales soluciones 

existentes actualmente, tanto implementadas en máquinas reales, como soluciones propuestas 

desde el punto de vista puramente académico, así como las características de las redes de 

interconexión que han sido o pueden ser introducidas en este tipo de sistemas. Este análisis ha 

permitido detectar un conjunto de necesidades y de oportunidades, que se han materializado en 

dos nuevas propuestas. 

Por un lado, considerando un futuro a medio plazo en el que el número de procesadores dentro 

del chip será de pocas decenas y buscando explotar plenamente la alta disponibilidad de ancho 

de banda, como consecuencia de la utilización de redes punto-a-punto y de la utilización de 

arquitecturas de cache escalables, se propone un protocolo de coherencia, denominado LOCKE. 

Esta propuesta utilizando una aproximación basada en broadcast, se centra en mejorar la 

reactividad de la jerarquía de memoria on-chip y estabilidad del sistema antes los efectos 

derivados de la contención.  

Por otro lado, poniendo la mira a largo plazo, sobre CMPs de gran escala que incluirán cientos o 

miles de procesadores, se debe tener en cuenta que la red de interconexión no podrá soportar 

cantidades tan elevadas de mensajes. Por esta razón, se propone MOSAIC, un protocolo escalable 

hibrido broadcast-directorio que, usando de forma controlada la disponibilidad de ancho de 

banda del CMP, logra disminuir significativamente el coste del mantenimiento de la coherencia 

característico en otras soluciones existentes.  
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Chapter 1. Introduction 

Nowadays, thousands of millions of transistors are available in a single-die and the best known 

way of taking full advantage of this is to include multiple processing cores. Since Gordon 

Moore’s prediction in 1965 [1], advances in technology allowed to duplicate the number of 

transistors that can be integrated into the chip to be doubled approximately every 18 months. 

However, performance improvement kept growing at that rate up until the end of the last 

century. From that point, the additional hardware required to exploit instruction level 

parallelism (ILP) only allowed the performance to grow as the square root of the number of 

transistors needed [2]. This happened because the substantial amount of logic that had to be 

placed in the chip in order to be able to support a large number of instructions in-flight increases 

the energy consumption considerably. Moreover, as transistor size shrinks, wire delay does not 

decrease and so the relative distance between processing units also increases. Additionally, 

higher complexity causes another negative effect, which is the appearance of difficulties in the 

verification of the whole system, implying consequences that have to be taken into account 

(economics, time-to-market, etc.). 

On the other hand, although frequency has been constantly increased, power has been limited 

thanks to the voltage scaling [3]. The power consumed by a chip has a linear dependency on the 

frequency (and capacity), but a quadratic one on the voltage, i.e. P∝ C*V2*f. For the last 30 

years, voltage has gone from 12V to less than 1V, which means a reduction of more than 150X. 

However, under 1V it is physically difficult, to keep on decreasing the power threshold of the 

transistor and so an increment of the frequency means an increment in the power that cannot be 

countered by reducing the supply voltage. 

During the last decade, this performance loss of the transistor has reoriented the industry to 

introduce multiple cores inside the same chip, i.e. Chip Multiprocessors (CMPs) or multicore 

processors [4][5][6][7]. Although they have some limitations that cannot be ignored, their 

benefits are much greater. Firstly, the complexity of each of the cores that form the CMP limits 

the complexity of the whole chip. Secondly, if it is possible to take advantage of each core’s 

performance, it is possible to reduce the power consumption that is required to finish a task. 

Thus, a task may be accomplished by two cores with half the frequency needed when only one 

core is present in the chip (assuming ideal parallelism). However, lowering the frequency allows 

the transistor power threshold to be decreased, which means that it is possible to reduce the 

supply power, and therefore to decrease quadratically the energy required to carry out that task.  
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Obviously, this new paradigm with multiple cores also presents some new challenges. Among 

them, we can consider the most crucial one to be the one denominated bandwidth-wall [8]. This 

obstacle is due to the limited growth of the number of pins and of the operating frequency due 

to physical and packaging cost restrictions. The off-chip communication necessities grow as the 

number of cores and their complexity increase. However, the available off-chip bandwidth does 

not increase at the same rate, becoming a bottleneck of the whole CMP. Some studies [9] 

predict that this problem will limit the number of cores that can be introduced inside the chip. 

Fortunately, there are a wide variety of solutions that are able to mitigate the problem. Among 

them, the one that appears to have most benefits is the introduction of large amounts of memory 

inside the chip. This solution aims to require the cores to have to go outside the chip to find the 

requested information less often. In this way, based on the spatial and temporal locality of the 

applications, the memory hierarchy will help to keep the most useful data closer to the 

processing units of the CMP.  

Therefore, if we place enough memory within the chip so that the majority of the applications’ 

working sets fit inside, external memory accesses will decrease and so the performance will not 

be limited by the off-chip bandwidth restrictions. However, the efficient organization and 

management of large amounts of memory associated to each of the cores is not a 

straightforward task. There is a consensus among computer architects which assigns some cache 

memory to each of the cores in a stepped way at different levels. From the performance point of 

view, there cannot be “steps” with excessive difference in capacity among them [10]. So it is 

established that there should be one very small first level of private cache memory, with tens of 

KB and with low associativity, in order to provide fast access time to data close to the 

processors. Nowadays, it also seems clear that a second private cache memory level is also 

convenient, larger than the first one and capable of absorbing a large percentage of the miss 

accesses that happen in the first level. Concerning the last level of the cache hierarchy inside the 

chip, commonly referred to as LLC (Last Level Cache), there is much less unanimity about its 

distribution and characteristics. Some distribute it as a private cache and others design it to be 

shared among some or all the cores in the chip. This decision will have a significant effect on 

the CMP usage. In almost all the CMPs implemented so far, the LLC is shared among the cores 

in the chip (Bulldozer [5], Haswell [6], Sparc T5 [7]), because it seems that a better utilization 

of the memory is possible. Other companies are tending to maintain the LLC as local caches for 

each core although all the banks are used as victim cache by the rest (Power7 [4]). Although the 

most common number of levels used nowadays is three [4][11], there are already some new 

commercial systems which include more levels, such as the IBM z196 [12] which includes a 

fourth level (although it is outside the chip in order to mitigate the time access gap between the 
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LLC and the off-chip memory). As soon as the technology allows it, with mechanisms such as 

3D stacking [13], it will not take long to see more levels introduced inside the chip.  

In any case, from the moment there are multiple copies of the same block in the system, 

coherence has to be enforced. Therefore, it is important to decide how it will be managed: via 

hardware and/or via software. There are numerous works analyzing the advantages of exposing 

to the programmer-compiler the capability of handling the data coherence of the blocks 

allocated in the private caches [14][15]. However, most of those studies are focused on 

performance comparison, i.e. execution time, and only considering a very specific type of 

applications. When taking into account general purpose applications, with the large amounts of 

memory in a multi-level hierarchy, coherence management is not a trivial task. For this reason, 

programming parallel applications without the hardware support to do this might hinder the 

productivity of programmers because they will have to pay too much attention to this duty. 

Finally, as in [16]’s discussion, we believe that for the next few years, data coherence 

maintenance should be done by hardware and the search for efficient solutions for this has been 

the main target of this thesis.  

1.1 Objectives. Coherence in CMPs 

The main aim of this thesis was to search for efficient mechanisms to maintain the coherence of 

data present in a CMP memory hierarchy. As long as the off-chip bandwidth limitation exists 

and, due to the increasing number of cores inside the chip, the cache capacities will grow 

gradually. For this reason, the more memory that can be placed inside the chip, the greater the 

number of levels and therefore it will be more difficult to control all the copies of a certain 

block in order to keep the system coherent.   

The first step of this work was to analyze in detail the state of the art of the most important 

proposals for improving coherence protocols in multiprocessor systems, with special emphasis 

on chip multiprocessor systems (CMPs). This analysis focused on those works that appear to 

have more future either because of their performance improvements, their scalability 

characteristics or both.    

The second objective was to fully design and implement a coherence protocol which is able to 

exploit the large on-chip bandwidth availability while improving cache-coherent CMP 

performance and maintaining its efficiency. The whole proposal is based on the idea that the 

coherence protocol should use all the on-chip network bandwidth availability to avoid adding 

extra latency produced by indirections. Although bandwidth demand is still a concern, with a 
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suitable interconnection network design, it is possible to increase the whole system performance 

by improving the coherence protocol behavior, without paying a significant energetic cost. 

The third target was to design a new coherence protocol which addressed the challenges of 

complex multilevel cache hierarchies in future many-core systems. This really entails a search 

through some coherence mechanisms that enable the number of cores and the number of cache 

levels in the system to be increased, while limiting the overhead caused by the hardware 

coherence maintenance. In the long term, with the advent of 3D stacking or beyond-CMOS 

technologies, the tendency of increasing the amount of private cache per core will be 

accentuated. Under these conditions, the amount of precise sharing information required by 

coherence protocols will be increased and therefore, it is necessary to look for new scalable 

ones. 

The last objective, transversal to the others, was the acquisition of the necessary expertise of the 

simulation tools required for a trustworthy validation of the proposals made. For an acceptable 

confidence level, it is essential to use powerful tools that emulate the behavior of a full CMP 

executing a realistic workload in detail. The use of these tools is highly complex but it is 

essential both for this work and for future research in the area where this thesis is located. 

1.2 Thesis contributions 

The main contributions of this thesis are directly related to the achievement of the goals that 

have been outlined in the previous section. Next, we give a brief description of each of them:  

 An insight into the most relevant related work on cache coherence protocols for CMPs. 

This step was absolutely necessary in order to contextualize the two main proposals 

presented in this work. Obviously, the number of research works related to this topic is 

very high, so the work done has been to analyze those considered to be the most relevant 

ones from the point of view of their impact and which can be considered the basis of 

current developments.  

 The full design and implementation of a new coherence protocol suitable for medium-scale 

CMPs, named LOCKE (LOCator of toKEns). Considering that an interconnection network is 

suitably designed to support multicast traffic and that the protocol maximizes the potential 

advantages that direct coherence brings, we demonstrate that a multicast-based coherence 

protocol could reduce energy requirements of a CMP memory hierarchy. The protocol 

establishes a suitable level of on-chip network throughput to accelerate synchronization by 

two means: avoiding the protocol serialization, inherent to any directory-based coherence 

protocol, and reducing average access time of other snoop-based coherence protocols, 
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especially when shared data is highly contended. LOCKE is developed on top of a Token 

coherence performance substrate [17], with a new set of simple proactive policies that 

speeds up data synchronization and eliminates the passive token starvation avoidance 

mechanism. 

 A brand new coherence protocol called MOSAIC, suitable for large-scale CMPs, which 

successfully addresses the challenges of complex multilevel cache hierarchies in future 

many-core systems. The design and implementation of MOSAIC introduces a new approach 

to tackle the inclusiveness problem in the memory hierarchy. In energy terms, the protocol 

scales like a conventional directory coherence protocol, but relaxes the inclusiveness 

needed for the directory information, overcoming the performance implications of a 

reduction in directory size and associativity. Contrary to the common assumption about 

inclusiveness being inescapable while attempting to maintain complexity constrained, 

MOSAIC is even simpler than a conventional directory. 

 A thorough evaluation of every proposed implementation is provided. This basically meant 

an exhaustive exploration of the whole set of full-system simulation tools used. In order to 

be able to perform full system evaluation, we used the Simics [18] functional simulator in 

conjunction with the processor and memory hierarchy timing models from GEMS [19] and 

the detailed network simulator TOPAZ [20]. The implementation of the proposals was 

done using the domain specific language SLICC (Specification Language for Implementing 

Cache Coherence).  

Both coherence protocol proposals presented, LOCKE and MOSAIC, were published during the 

development of this thesis with the following references:  

 L.G. Menezo, V. Puente, P. Abad, J.A. Gregorio, Improving Coherence Protocol 

Reactiveness by Trading Bandwidth for Latency, ACM International Conference on 

Computing Frontiers (CF’12), July 2012. 

 L.G. Menezo, V. Puente, J.A. Gregorio, The Case for a Scalable Coherence Protocol for 

Complex On-Chip Cache Hierarchies in Many Core Systems, IEEE/ACM International 

Conference on Parallel Architectures and Compilation Techniques (PACT), Edinburgh, 

September 2013. 

These two publications entailed large previous analysis work that originated indirect 

publications in different conferences and journals, mainly related to the interconnection network 

and its interrelation with coherence protocol design and performance:  
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  P. Abad, P. Prieto, L.G. Menezo, A. Colaso, V. Puente, J.A. Gregorio, Interaction of NoC 

design and Coherence Protocol in 3D-stacked CMPs, Euromicro Conference on Digital 

System Design (DSD), September 2013. 

 P. Abad, V. Puente, L. G. Menezo, J.A. Gregorio, Adaptive-Tree Multicast: Efficient Multi-

destination Support for CMP Communication Substrate. IEEE Transactions on Parallel and 

Distributed Systems. Vol. 23, no. 11, pp. 2010 – 2023, Nov 2012. 

 P. Abad, P. Prieto, L.G. Menezo, A. Colaso, V. Puente, J.A. Gregorio, TOPAZ: An Open-

Source Interconnection Network Simulator for Chip Multiprocessors and Supercomputers, 

IEEE/ACM International Symposium on Networks on Chips (NoCS), Denmark, 2012.  

 L.G. Menezo, A. Colaso, V. Puente, J.A. Gregorio, Beneficios del uso de la Red de 

Interconexión en la Aceleración de la Coherencia, XXII Jornadas de Paralelismo, La 

Laguna (Spain), September 2011. 

 L.G. Menezo, A. Colaso, V. Puente, J.A. Gregorio, Exploring Coherence Protocol 

Acceleration through the Interconnection Network, Advanced Computer Architecture and 

Compilation for High-Performance and Embedded Systems (ACACES), Italy, July 2011. 

 J. Merino, L.G. Menezo, P. Abad, P. Prieto, V. Puente, Arquitectura Cache Adaptativa 

para CMPs, XXI Jornadas del Paralelismo dentro del marco del III Congreso Español de 

Informática (CEDI 2010), Valencia, September 2010. 

 P. Abad, P. Prieto, J. Merino, L.G. Menezo, V. Puente, Impact of Interconnection Network 

resources on CMP performance, 4th Workshop on Interconnection Network Architectures: 

On-Chip, Multi-Chip (INA-OCMC 2010), Pisa-Italia, January 2010.  

 J. Merino, L.G. Menezo, V. Puente, Needs of CQoS for future, many-core CMPs to support 

server consolidation and cloud computing, XX Jornadas de Paralelismo, La Coruña, 

September 2009.  

 J. Merino, L.G. Menezo, V. Puente, Needs of CQoS for many-core CMPs: a case study, V 

International Summer School on Advanced Computer Architecture and Compilation for 

Embedded Systems (ACACES), La Mola (Barcelona), July 2009. 
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1.3 Thesis overview 

The remainder of this thesis is organized as follows.  

Chapter 2 presents the foundations needed to contextualize the rest of this memory. The 

coherence definition, and how coherence is achieved in a multiprocessor system will be 

analyzed, and the two main types of coherence protocols will be explained. To end the chapter, 

the special role of the interconnection network in coherence will be studied.  

In Chapter 3 we will provide a general overview of the state of the art of cache coherence. We 

will analyze the main problems that cache coherence protocol designers face nowadays and how 

their concerns are being solved so far. Last, we try to predict the evolution of the different 

aspects of coherency.  

In Chapter 4 we introduce LOCKE, beginning with the motivation for trading bandwidth for 

latency in order to improve coherence protocol reactiveness. We describe the proposal itself, 

explaining the foundations of the coherence protocol, and we provide insight into LOCKE 

performance and efficiency when compared with other alternatives. 

In Chapter 5, we describe the new scalable coherence protocol for large architectures, MOSAIC. 

From a conceptual approach to all the implementation details, and through a complete 

performance evaluation, the proposal is fully described. This chapter finalizes with a scalability 

analysis of the coherence protocol.  

This document also includes an Appendix A with a summary of the simulations tools used to 

evaluate both coherence protocol proposals made in this thesis.  

Finally, Chapter 6 will finish this thesis with several conclusions summarizing the 

contributions of this work, and with an outlook of future research lines. 
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Chapter 2. Coherence protocols 

The extended Von Neumann model established the existence of three main blocks in any 

machine: processor, memory and input/output systems. As was mentioned before, Moore’s Law 

indicates that the number of transistors that can be put into an integrated circuit has doubled 

every 18 months. This has facilitated an increment in the processor frequency during the last 

decades. As processors became faster, too much difference appeared between the processor 

speed and the speed of access to memory. This difference was alleviated by including a multi-

level memory hierarchy. The smallest but faster level resides close to the processor (lower 

levels in this document) and the biggest but slower ones are farther away (upper levels in this 

document). Thus, the increasing difference between the speed of the processors and the speed of 

memory access is concealed. With various levels of memory and only one processor, it becomes 

relatively simple to control possible multiple copies of a datum. The architecture 

implementation of the caches itself solves this problem with write-through and write-back 

policies. Whenever a data block is written in the closest level to the processor, it has to be 

updated in the farther levels. Depending on the update implementation this is done at the same 

time on all of them (write-through) or it is only done when a block is being removed from one 

level, then updating the next one (write-back).  

At the beginning of the previous decade, the translation of Moore’s prediction into performance 

improvement started to become progressively harder. The reason for this was the diminishing 

returns obtained with instruction level parallelism and the end of power scalability. The most 

cost-effective and energy-efficient solution seemed to be putting many simple cores into the 

chip.  Thus, it was possible to maintain the pace of performance improvement achieved until 

that time by exploiting the thread level parallelism that this new architecture enabled. 

In most cases, all these cores inside the chip share a common address space. If this space is 

maintained in one shared structure, its access becomes a bottleneck, degrading the performance 

of the whole system. In order to avoid it and to achieve faster data accesses, private levels are 

added to the memory hierarchy and so each processor will have its own cache space to hold the 

most recently accessed memory blocks. Under these circumstances, several copies of the same 

datum may appear in the system necessitating some kind of mechanism in charge of 

guaranteeing the same view of the whole address space to all the processors. This is the duty of 

the coherence protocol.  
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The definition of coherence will be analyzed in section 2.1 and the methodology for achieving 

hardware coherence will be dealt with in section 2.2. The way coherence protocols are specified 

will be described in section 2.3. Next, the two main types of coherence protocols will be 

explained in detail. Section 2.4 will be dedicated to snoopy protocols and section 2.5 to those 

based on a directory. Advantages and disadvantages will be analyzed in 2.6 and, finally, section 

2.7 will close the chapter with an analysis of the special role that the interconnection network 

has in the coherence.  

2.1 What is memory coherence?  

There are multiple alternatives to define coherence in any system. An intuitive definition 

determines three invariants that must be fulfilled in order to have a coherent memory system 

[2]:  

 If processor P1 writes in address X and then reads in the same address, it should read the 

written value.  

 If processor P1 writes in address X and then another processor P2 reads in the same address, 

it should read the previously written value if both reads are sufficiently separated in time.  

 Writes to the same location are serialized, i.e. two writes to the same location by any two 

processors are seen in the same order by all processors. 

However, in this definition, the concept of ‘sufficiently separated in time’ in invariant 2 is 

ambiguous since it does not explicitly say when the value written in a memory location is 

propagated to others, as this has to do with the memory consistency model used.  

To achieve these 3 invariants it is mandatory to fulfill the following three conditions: 

Condition 1: memory access should be done in order (as expected of a uniprocessor 

system). 

Condition 2: write propagation: the awareness of a write operation has to eventually get to 

the other processors. Note that precisely when it is propagated is not established by the 

definition of coherence.  

Condition 3: write serialization. 

The important thing is that any core has to read the last valid value for any memory location. 

There are two important related concepts: coherence, which concerns what to read and write in 

the same memory location and consistency, where it matters when any modified value is seen 

by others, determining the behavior of reads and writes in relation to other memory locations. 
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Principally, for a system to be coherent there always has to be a single writer of a location 

and there may be multiple readers of that same location [21]. 

2.2 How is hardware coherence achieved?  

Coherence protocols are implemented by state machines called coherence controllers. Each 

storage element of the memory hierarchy has a controller specially dedicated to the task of 

acting as an interface with other components of the memory hierarchy and the processors. These 

are in charge of sending and receiving the messages needed to achieve the invariants mentioned 

in the previous section, integrating all of them as a distributed system.  

Figure 2-1. Representation of three types of coherence controllers:  

cache, last level cache (LLC) and memory controllers. 

As figure 2-1 shows, coherence controllers are always connected to the interconnection network 

receiving and sending messages through it. The first level cache coherence controllers are the 

only ones which will receive load and stores from the core connected to them and they will 

check whether the requested data address is located in the cache alongside them or not. They 

may use the interconnection to issue a request to other controllers of the cache hierarchy or to 

main memory, always depending on the specific implementation of each protocol, as will be 

seen in the following sections. For this reason, coherence controllers will also have to deal with 

requests received by other coherence controllers.  
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Although it may be too strict to absolutely classify the existing coherence protocols into 

different types, as nowadays the hybridization of different approaches is quite usual, the 

consensus defines two different types of protocols: snooping and directory protocols. In the 

following sections, the two types will be described in detail. 

2.3 Specifying coherence protocols 

Before describing the two main types of coherence protocols, it is necessary to define how to 

specify them. As was mentioned before, the main aim of the coherence protocols is to regulate 

how and when a core may access any memory location. Although cores may perform load and 

store operations at various granularities, coherence protocols are usually specified at cache 

block granularity, i.e. each block will have specific permissions assigned in order to be read, 

written or neither.  

In order to specify a coherence protocol, and considering that the coherence controller is 

represented as a state machine, it is necessary to define four important sets: states, events, 

actions and transitions. With all of them it is possible to determine the situation of a cache 

block, its access permission and the tasks that have to be performed after receiving any 

message.  

2.3.1 States 

The coherence protocol states may be divided into two different subsets: stable and transient 

states. As their names indicate, the difference between them lies in whether the controller is in 

the middle of a transition between two stable states or not. In a naïve multicore system where it 

is not possible to have multiple copies of the same block (i.e. not sharing blocks), the simplest 

coherence protocol has three states. Intuitively it needs just two stable states: valid (V) and 

invalid (I), indicating whether the block is present or not. However, when a private controller 

receives a request from the processor and it confirms that the block is not available, it issues a 

request for that block. In this case, the block needs to be in some state that represents this 

transitional situation of being requested although still not present. For this reason, the protocol 

needs a third transient state indicating this circumstance (I_V).  

When adding optimizations to the coherence protocol, it becomes more complex and so the 

number of stable and transient states increases. For example, to reduce memory bandwidth 

consumption, the valid state (V) may be divided into two different ones depending on whether 

the block has been modified (M) or not. In this way it is possible to know whether the data block 

needs to be written back to a higher level or can be silently replaced. Moreover, increasing the 
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number of cores in the system gives the protocol designer the possibility of adding new states to 

improve its performance. For instance, it is possible to distinguish when a core has the cache 

block in an exclusive (E) way and no other core has it so as to avoid subsequent upgrade misses; 

or also, if the cache block is shared (S) among some cores and can only be read but not 

modified. Additionally, in order to transform memory-to-cache transfers into cache-to-cache 

ones, from all the possible sharing copies of the block, one of them might be set as the Owner 

(O) of the block, becoming responsible for solving other core requests.  

Summarizing, a coherence protocol can be designed to have each cache block in five main 

situations that will be determined with the following five states:  

 Invalid (I):  the block does not have a valid copy of the datum. 

 Shared (S): there are various copies of a data block distributed throughout the system. Its 

holders can only read the datum and they will have to ask for permission if they want to 

modify it.  

 Modified (M): the block has been modified (known as ‘dirty’) and it is the only copy in the 

system. 

 Exclusive (E): the block is the only private copy of the data block so its holder may read 

and write in it. 

 Owner (O): the cache holding this block is in charge of dealing with other coherence 

controller requests as it has the ownership of the block. If the block was replaced, the 

ownership would be given to another coherence controller.  

Depending on the specific characteristics of each coherence protocol, the number of states and 

their particular meaning may differ, because the protocol designer uses these block states to 

determine all the characteristics of the blocks present in the system.  

Moreover, it is important to make clear that coherence controllers at different levels may not 

have the same list of possible block states, because not all controllers have the same duty in the 

coherence protocol used in the system.  

2.3.2 Events 

According to the messages received, the coherence controller will trigger specific events for 

each of them. Most of the protocols have two different types of events: the ones being triggered 

because of a data block request and the ones triggered because of lack of space in the cache.   

Table 2-1 lists the most common events triggered by a coherence controller that are usually 

present in any coherence protocol. However, it is important to recall that these are generic ones 
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and a coherence protocol may require variations of these states. Moreover, there are many other 

possible events that may occur depending on the specific behavior of each coherence controller. 

The first three events are operations ordered by the processor attached to the controller so they 

will only happen in the L1 cache controllers. The next three events are triggered when one 

controller receives a request from another one. Notice the subtle difference between the 

GetExclusive and the Upgrade events, which only differ in whether the requestor has a copy of 

the data block requested or not. The last four events listed in table 2-1 are used when it is 

necessary to evict a block from a cache and to send it to higher levels of the hierarchy.  

Events  Description 

Load Processor read request 

Ifetch Processor instruction fetch request 

Store Processor write request 

GetS (GetShared)  
Read request from another controller asking for a 

copy of the block 

GetX  (GetExclusive) 

Write request from another controller asking for a 

copy of the block and for the invalidation of the rest 

of them 

Upgrade 

Write request from another controller that has a 

copy of a data block and asks for the invalidation of 

the rest of the copies 

PutS (PutShared) The controller replaces a shared block 

PutE (PutExclusive) The controller replaces an exclusive block 

PutO (PutOwned) The controller replaces an owned block 

PutM (PutModified) The controller replaces a modified block 

It is important to have a clear definition and differentiation of the coherence protocol events, 

because they will guide the coherence controller through the different state transitions 

performing the necessary actions in each of them.  

2.3.3 Transitions and actions 

When a cache block is in a certain state and the coherence controller receives a message, 

triggering a specific event, that cache block may suffer a transition to another state. Each 

transition implies the execution of one or more actions in the system. For example, when a 

coherence controller receives a ‘load’ message from the processor, it triggers a Load event. If 

Table 2-1. Main events triggered by a coherence controller. 
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the requested block is not present in the cache, its state goes from an invalid state I to a transient 

state between invalid and valid (I_V). During this transition the coherence controller performs 

the action of sending a message requesting the data block needed by the processor. When the 

requested data block arrives, the cache block will suffer another transition to a valid state V and 

it will execute the action of writing in cache the data block received.  

2.3.4 Notation 

When designing the coherence protocol, the four sets that specify its controllers (states, events, 

transitions and actions) have to be organized in order to make the whole process of constructing 

it easier for the designer. Next, we will detail two ways of representing a coherence protocol, 

one of which is used throughout this document.  

One way of representing coherence protocol controller behavior consists of using a state 

diagram, such as the one shown in figure 2-2. Each of the circles represents a possible state of 

the coherence protocol. In this case, three states are considered: invalid (I), shared (S) and 

modified (M). Each of the arrows in the diagram represents a state transition and they are tagged 

with the event that triggers them. When the arrow line is solid it means the event has been 

triggered by its own coherence controller (load or store in figure 2-2). When the line is dashed, 

the transition occurs because of a message coming from another coherence controller (‘others 

store’ in this case). However, this apparently simple representation becomes hard to understand 

when the number of stable and transient states increases. Besides, it does not provide the 

possibility to represent clearly the actions that have to be taken for each transition. Although not 

entirely concise, it is one of the most popular methods of representation because of its simplicity 

and easiness of understanding. 

Many designers prefer to specify coherence protocols using a clearer method, such as the table-

based technique [22], which facilitates the representation of the four main sets of a coherence 

protocol (states, events, transitions and actions). In the example given in table 2-2, a simplified 

version of a coherence controller specification using this technique is shown. The states are the 

 

Figure 2-2. Example of a coherence controller specification using a state diagram. 
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ones shown in the first column of the table. Here again, the three states I, S and M are 

considered. The events triggered by the coherence controller are represented in the first row of 

the table: load, store and write-permission request from other controller. The rest of the cells in 

the table represent a transition from the state in that row to another one, including the actions to 

be carried out in each of them. Some of the cells also include in the bottom right corner the state 

to which the cache block will have to be changed to after that transition. If omitted, then no state 

change is performed.  

Throughout this document, this last representation is the one chosen to explain the coherence 

protocols proposed as it facilitates a higher detail level.  

2.4 Snooping coherence protocols 

Snooping protocols can be understood as the first coherence protocols that were commercially 

used [23]. Their basis is that all cores in the system see the requests from others through a 

shared medium interconnection. If they do have a copy of the requested block, they perform a 

set of actions according to the policies of the designed protocol. These executed actions depend 

on whether the protocol is an update type or an invalidation type [21]. The former updates every 

copy of a data block whenever this is written. This means that this approach needs to broadcast 

Table 2-2. Simplified example of a coherence controller specification using the table-based technique.  

Shaded cell indicates a potential erroneous transition  

(depending on the coherence protocol it may occur or not).  
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every new written value to every other cache in the system holding a copy of the modified 

block. The bandwidth and energy requirements for this type of systems become quickly 

unattainable when the number of processors increases. It is because of this poor scalability that 

current systems use the second type of protocol design, in which all the copies of a block that 

will be written have to be invalidated before being able to write it. Thus, the single-writer policy 

seen in the first section is ensured and only the written blocks are transferred after a subsequent 

miss or a replacement.  

When the number of cores in the system is low, the interconnection network used to connect all 

of them might be a bus or a similar shared medium technology. In this way, as every request 

from any core is sent through this bus, the rest of the cores may snoop them and be aware of the 

actions taken by other coherence controllers. In this type of protocols, the bus interconnection 

network works as a serialization point for every request sent to the same address, providing a 

total ordering to all of them.  

2.4.1 Baseline snooping protocol in a CMP 

Figure 2-3 shows an example of how a simplified snooping protocol works. The diagram shows 

two private caches (P0 and P1) and the last level cache (LLC). The private cache coherence 

controllers have three different stable states for their data blocks: I, S and M, while the LLC 

controller only needs two different states: V(alid) and I(nvalid). Initially, the LLC is holding the 

only copy of the block in a valid state (V). Firstly, P0 misses a load in its private cache so its 

controller issues a GetS requesting a copy of the block, which travels through the bus. When P1 

controller snoops the request, it just ignores it because it does not have a copy of the block. 

When LLC sees the request for a block that it has available, it sends a copy to the requestor. 

When P0 receives that copy, it writes the value in its L1 cache and its core may proceed with the 

load. Secondly, P1 executes a store miss. It sends a GetX request through the bus in order to get 

a copy of the data block and to invalidate the rest of the copies in the system. P0 controller 

snoops the GetX request for that block which is located in its cache and invalidates it. LLC 

snoops the same request and sends a copy of the block invalidating its own copy too. After P1 

receives the data block, it finishes the write request. The same process starts again with another 

load miss at P0. In this case, the data block is only at P1 so it is responsible for sending a copy of 

the block to the requestor. P1 also has to send a copy of this modified block to the LLC in order 

to have a valid copy located there for future requests. After this, the block in P1 changes its state 

to S, becoming a sharer of the block.  

Each of the colors in figure 2-3 represents a memory transaction. One way of simplifying the 

coherence protocol is to consider each transaction as atomic. This means that if there is a 
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request for a certain block in flight, there cannot be any other request for the same block until 

the first one is solved. If we consider that transactions are atomic, the store miss of P1 may not 

issue a GetX until P0’s request has finalized, i.e. its response is seen on the bus. This premise is 

easy to fulfill when the interconnection network used is an atomic bus and not straightforward 

for other types of networks – pipelined (non-atomic bus), split transaction bus or point-to-point 

networks. For cases where the interconnection network does not act as the ordering point, it is 

necessary to include some mechanism in the coherence protocol and use the information 

provided by the transient states. This will prevent races that would appear because processors 

could receive requests in different order.  

Even though using such a simplified protocol would provide the system with the coherence it 

needs, it is possible to introduce some optimizations in order to obtain better performance. 

These optimizations come with the addition of the states exclusive (E) and owner (O) which will 

change the system’s behavior substantially.  

 

Figure 2-3. Simple MSI snooping protocol example. Shows three different transactions in the coherence 

protocol for the same data block: a load miss in P0 processor, a store miss in P1 processor and another load 

miss in P0 after the modification done by P1.  
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2.4.1.1 Optimization with Exclusive state  

In many important applications, a core frequently first reads a block and then writes it. If the 

coherence protocol used is a MSI such as the one shown before, all of these situations will 

imply two misses: the initial read miss (issuing a GetS message) and then a write miss, called an 

upgrade miss, (issuing a GetX message). This (common case) upgrade miss occurs even though 

the requestor is the only sharer of the block. Under these circumstances, and in order to avoid 

this extra latency problem, it seems interesting to improve the protocol by adding a new state 

exclusive (E).  

In the previous example, if P0 issues its first GetS to solve the load miss, and after that it needs 

write permission for that block, it would need to issue another request, a GetX. This would 

invalidate any other copies of the block that in most cases do not even exist as the requestor is 

the only sharer (like in this case). On the contrary, if the new state exclusive (E) is used, this 

extra message is avoided, because the controller knows that it is the only copy of the block and 

it can modify it without asking for permission (figure 2-4).  

After issuing a read request, in order to know when the coherence controller has to change the 

block state to S or to E, there are at least two possibilities:  

 Modifying the bus signals: wired-OR sharer signal. When a sharer snoops the request, it 

asserts the GetS message so that the requestor knows there are more sharers. [24] 

 

Figure 2-4. Simple MESI snooping protocol example. Shows first a load miss in P0, and then two consecutive 

store hits without needing to issue any request for write permission. 
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 Adding an extra state in the LLC indicating that there are no more sharers in the private 

caches. In the previous example, LLC states only indicate whether the data block is valid 

(V) or invalid (I) with no additional information about the sharers. If LLC knows when 

there are no sharers, it can send a copy of the data block requested in an exclusive way. So 

when the requestor receives it, it knows it has to change its state to E (and not to S). This 

last situation is shown figure 2-4. 

2.4.1.2 Optimization with Owner state  

Another important optimization that might be added to the MSI protocol is the addition of the 

Owner (O) state. Its main advantage occurs when a private cache has the block in a modified 

(M) state, i.e. it is the only sharer (it could also be in exclusive state (E)) and receives a GetS 

request from another core. In the MSI protocol, a copy of the block must be sent to the requestor 

and to the LLC controller as the ownership of the block is being transferred to the latter. 

However, in a MOSI protocol when a cache has a block in M state and receives a GetS from 

another core it keeps the ownership of the block after sending a copy to the requestor. The 

introduction of the owner state (O) avoids sending an extra update message to the LLC (figure 

2-5) and it favors cache-to-cache transfers for the shared data blocks. It also means that the 

LLC, at least for this reason, does not have to include all the data blocks that are shared in the 

private caches.  

Snooping protocols might be used not only with buses as interconnection network, but with any 

other type of networks as long as requests are broadcast to all the cores. As will be shown next, 

there are new coherence protocols based on the snooping coherence concept, but more suitable 

for cases when cores are connected with an unordered network, such as point-to-point meshes. 

However, the use of non-totally ordered networks, although it improves the system scalability, 

will introduce new challenges for the coherence protocol designer. 

 

Figure 2-5. Simple MOSI snooping protocol example. Shows a load miss in P0 and how the ownership stays at 

P1 after it receives P0’s request. 
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2.4.2 Token Coherence 

Token Coherence is a type of broadcast-based coherence protocol [17] which differs from the 

snooping protocols explained in previous sections. It uses token counting to ensure that data are 

read and written coherently and even in unordered networks.  

The token counting method consists of assigning a fixed number of T tokens to each of the data 

blocks in the system. When a processor wants to read a data block, it needs to have a copy of 

the block with at least one of its tokens. If the processor wants to write in a block, it has to 

collect all the tokens assigned to that block, ensuring that there is no core either reading or 

writing. Among all the tokens there is a distinct one called the owner token. The core holding 

the owner token is in charge of replying to other requests with a copy of the data (in a similar 

way to the owned state optimization). Moreover, when the owner holder needs to replace the 

data block, it has to send the data value to LLC along with its tokens, while the rest of the token 

holders just need to replace the tokens they have (without data). By using token counting, token 

coherence does not need a total ordered interconnection network. Instead, tokens are allowed to 

move throughout the system as long as these four invariants are always maintained:  

 Each block has T tokens in the system. One of them is the owner token.  

 Only if a block has all the T tokens may the processor write on it.  

 Only if a block holds at least one token and has valid data may the processor read a block. 

 If the owner token is sent by a coherence controller, data has to be sent with it.  

Token coherence has three (although many others are possible) different performance policies: 

TokenB, TokenD and TokenM. After a miss, TokenB always broadcasts its request to find data 

directly in any component in the system that might hold a copy. TokenD pursues a more 

efficient bandwidth usage and uses a directory to receive all the private requests. If it does not 

include the data block requested, then it broadcasts the request to the rest of the components. 

Finally, TokenM tries to combine the low latency of TokenB with the bandwidth efficiency of 

TokenD by including information about the sharers next to each entry in the directory. Thus, 

when the data block is found, the invalidation does not have to be broadcast, but only sent to the 

current sharers of the block. Among the three of them, the TokenB mechanism is the one that 

provides better performance results and for this reason we will focus our attention on it.  

Figure 2-6 shows an example of how TokenB works in a system with 4 processors. In this case, 

the maximum number of tokens is set to 4, as there are 4 processors, i.e. a core needs at least 

one token to read a block and it needs to collect 4 tokens to write in that data block.  
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Initially, the LLC controller is the owner of a specific block so it holds the two tokens including 

the owner. P0 and P3 have a copy of that block with one token each. P1 processor is the one 

missing in a load and it has to broadcast a GetS message requesting a copy of the data block. 

The owner of the data block is responsible for replying to this request, which in that moment is 

LLC and so other coherence controllers will just ignore the request (whether they have a copy 

or not). TokenB favors cache-to-cache transfers by forcing LLC to send all the tokens it has to 

the private cache levels. Thus, if the data block came with all the tokens, the requestor would 

know that it had the block in an exclusive state and would be able to modify it. However, in our 

example, LLC sends the copy of the data block with only the two tokens it has (including the 

owner) and so P1 automatically becomes the owner after receiving them. In this way, subsequent 

requests to the same block will find the owner in the private levels reaching it faster without 

needing to wait for LLC to respond.    

After this transaction finishes, P2 also misses with a load request and needs to broadcast another 

 

Figure 2-6. TokenB coherence protocol example with two load misses from different processors and a store 

miss that collects all the tokens for the requested block.  



Coherence protocols 

 

23 

GetS message. This time P1, as the owner, is responsible for solving the request, and the rest of 

the coherence controllers, including LLC, will ignore the request. Finally, P2 wants to write in 

the same block, which it has in a shared state, so it needs to send a broadcast GetX asking for 

the rest of the tokens assigned to the data block. This time, all the coherence controllers with a 

copy of the block will forward their tokens to the requestor. The owner token (P1) is in charge of 

sending the copy of the data block in which P2 will write in.  

The main advantage of token-based protocols is that they separate correctness from 

performance. The existence of tokens guarantees the invariants mentioned in section 2.1 

independently of the token interchange mechanism used. However, the main problem is the 

fully distributed nature of the system, because races may appear. For example, these will occur 

when simultaneous requests for the same address are broadcast and the tokens needed to 

perform each operation in each processor do not suffice (for example two GetX). In this case, 

the pending operations will starve, deadlocking the system. Token coherence includes a 

mechanism based on persistent requests to ensure that every read and write request succeeds in 

order to have a starvation-free system. When a coherence controller detects that it might be 

starving, it issues a persistent request which tries to solve the starvation situation by 

broadcasting that information to the rest of the cores. All the nodes in the system remember all 

the activated persistent requests and they forward all the tokens of the requested block (the ones 

they hold and the ones that may come in the future). This continues until the requestor collects 

sufficient tokens to deal with the request and deactivates its persistent request informing all the 

cores. 

In figure 2-7, both P1 and P2 issue a GetX request trying to collect all the tokens from the same 

data block. It is possible to see how both requests only get to collect half of the needed tokens (2 

 

Figure 2-7. Example of a deadlock situation due to two simultaneous requests of the same address.  
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tokens) and both ignore the request from each other, because both have pending operations. 

This originates a starvation situation which will trigger the persistent request method.  

When the timeout threshold established is reached, both coherence controllers will broadcast a 

persistent request notifying that their request was not finished (figure 2-8). It is mandatory to 

include some priority ordering. For example, if we statically consider that the coherence 

controller P1 has higher priority than P2, P2 does not ignore the persistent request and it forwards 

its tokens. When P1 completes its request, it will broadcast the deactivation of its persistent 

request. Although not shown in the figure, then P2’s persistent request will become active and 

the rest of the coherence controllers will forward their tokens.  

This starvation problem could also occur when the broadcast request coincides with another 

operation such as an eviction. For example, in figure 2-9, P2 has the data block with all the 

tokens, but needs to replace it. If, at the same time, P3 processor misses after a store request and 

broadcasts a GetX message, the broadcast message might be ignored by all the components in 

the system: LLC will not have received the data block with the tokens yet and P2 has already 

sent the data block with the tokens so it does not have it anymore. P3 will wait for a response 

until the specific timeout and if no response comes, it will issue a persistent request. This type of 

request will find the missed data block in LLC. Notice that this is a simplified example, but after 

the timeout, data could be anywhere in the system because of another request or the previous 

situation may be repeated again if LLC has to replace the data block.  

 

Figure 2-8. Example of a persistent request triggering issued by two coherence controllers in a deadlock 

situation.  
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The problems related to this mechanism will be discussed in detail in chapter 4, but it should be 

noted that they could affect the whole system stability since the timeout may lead to the 

coherence controllers making incorrect assumptions. The controllers might consider that a 

deadlock situation, like the ones described previously, might happen and so they will issue 

persistent requests in order to deal with them. However, if the interconnection network or the 

memory controllers are highly contended and it is for this reason that requests are not being 

dealt with, the coherence controllers themselves might participate in the creation of more traffic, 

thus increasing network and memory controllers’ contention even more.  

Nevertheless, Token Coherence offers a very elegant solution in order to use a snooping 

protocol with point-to-point interconnection networks, achieving low latency and high 

performance in optimal situations.  

However, as the number of cores increases, the snooping protocol methodology of broadcasting 

every request causes negative effects in the system. Under specific circumstances, the 

interconnection network might become a bottleneck because of all the requests that are being 

sent. For this reason, it is necessary to maintain systems coherent with some other solutions that 

are more bandwidth conservative and offer more scalability, such as the directory-based 

coherence protocols introduced next.  

 

Figure 2-9. Example of a persistent request triggering situation in a TokenB coherence protocol due to a data 

block replacement and a request issued simultaneously. 
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2.5 Directory coherence protocols 

The alternative developed to overcome the limitations of snoopy protocols is the directory-

based coherence protocol. In this type of protocol there is a structure working as a directory 

with information about the blocks kept in the private caches. This information varies depending 

on the design of the protocol, but basically it specifies which private caches hold a copy of the 

block and, if the block is dirty (written), which cache has the modified copy. Therefore, 

broadcasts are removed and instead, requests are unicast and sent to the directory.   

2.5.1 Baseline directory protocols 

When a private cache misses a request, it sends a request message to the directory. Depending 

on the information that the directory has for the requested block, it will proceed accordingly. In 

every request there are typically two steps (a unicast request followed by a unicast response) or 

three steps (a unicast request, K forwarded requests and K responses (where K≥1 and 

K=number of sharers). 

Figure 2-10 shows four of the most common situations of a MSI directory-based coherence 

protocol. It is important to notice that now the directory state indicates the situation of the block 

in the private caches: shared (S), modified (M) or not present (I). The rest of the coherence 

controllers maintain the state of the block they have allocated in the cache.  

After a load miss in P0, it issues a unicast request to the directory. The directory’s state indicates 

there are no sharers for that block (state I) so it just sends a copy of the data block. The way the 

directory obtains the data block depends on the specific implementation, but to simplify the 

example, we will consider for now that it is immediate. After sending a copy of the block, the 

directory allocates a new entry for that address information. It adds P0 as a new sharer and 

becomes the owner of the block. After this transaction, P1 issues a GetX after a store miss. When 

the directory receives its request, it has to send an invalidation message to all the sharers of the 

block (in this case the only one is P0) in order to let P1 modify it. The directory also sends the 

requestor a copy of the data block and the number of invalidation acknowledgements that it has 

to wait for before writing in the block. After this request, the directory has to change its state to 

M, to indicate that the block is modified in one of the private caches and change the ownership 

of the block to this last write requestor. P0 invalidates its copy and sends an acknowledgement 

to P1 which will finish its request after receiving it. 

After the invalidation, if P0 needs the data block again for another load, it issues another GetS 

request to the directory. This time, the directory is not the owner of the data block, so it 

forwards the request to the actual owner, P1, which is the only one with an updated copy of the 
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block. P1 sends a copy to both, the directory and the requestor and becomes another sharer of 

the block passing its ownership to the directory.  

In this type of protocols, silent evictions are not possible as the directory needs to have accurate 

information about the block sharers. The last transaction shown in the example in figure 2-10 

corresponds to a replacement of the shared block allocated in P1. It sends a PutS request to the 

directory, asking for permission to replace it. The directory removes P1 from the sharer list and 

acknowledges the replacement. If the replaced block has been modified, the Put request should 

include the data being replaced.  

In the same way as the snoopy protocols were optimized with the exclusive state and the owner 

state, the directory-based ones may also be modified to improve the block access time.  

 

Figure 2-10. Simple MSI directory protocol example. Shows four different transactions in the coherence 

protocol for the same data block: a load miss in processor P0, a store miss in processor P1, another load miss in 

P0 after the modification done by P1 and a data block replacement by P1. 

 

 



Chapter 2 

 

28 

2.5.1.1 Optimization with the Exclusive and Owner states 

When adding the exclusive state, private caches may silently write in a block when they are the 

only sharer. This situation causes the directory to be unable to ensure whether the block is dirty 

or not, because the block could have been requested initially for a load and it could have been 

written without informing. The owner state allows a private cache with a block in modified state 

(M) to send a copy of the data block to a GetS requestor without writing back the modified 

value to the LLC, and so maintaining the ownership of the block.  

The use of the exclusive (E) and owned (O) states is shown in figure 2-11, which corresponds to 

the same transactions as in figure 2-10 but with the new states. Initially, P0 will become the only 

sharer of the block after its GetS so it receives the data block in an exclusive state. Thus, even 

though it issued a read request, it could modify the block silently. Now when the directory 

receives the GetX request from P1, the directory is not able to know whether P0 has written in 

the block or not, so it has to forward the request to the exclusive sharer. This exclusive sharer 

will send a valid copy of the data block to the requestor.   

There is another difference when P0 issues its second GetS. This request is forwarded to the 

owner as before, but when P1 receives it, it will only send a copy of the block to the requestor, 

but not to the directory, which will only change its state to O indicating that there is more than 

one sharer for the block and that one of these sharers is the owner. It will keep the ownership 

assigned to P1 to forward any future requests.  

Lastly, if P1 maintains the ownership of the block, it is also responsible for updating the 

modified value. This will be done when it has to replace the block. For this reason, it has to 

attach the modified data block along with a specific PutO request transferring the ownership to 

the directory.  

2.5.2 Directory organization 

After reviewing the main aspects of directory behavior, it is also important to analyze its 

organization. Up to now, it has been assumed that in the directory there is space for all the 

coherence information needed. However, this is not a realistic assumption, because as the 

number of cores increases, it becomes quickly unfeasible from a hardware point of view to hold 

the information about all their private caches. Next, we will analyze what is included in each of 

the entries of the directory, mainly how the sharers are represented, and the different 

possibilities when designing the directory.  
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2.5.2.1 Sharers representation 

The information associated with a certain address may vary from one coherence protocol to 

another, because each of them will need specific fields in order to work correctly. However, a 

directory will always need to have three main basic fields: the block state, the owner of the data 

block and the sharers of the block. The way of representing these sharers will be an important 

decision to make when implementing a directory-based coherence protocol, because the space 

dedicated to this purpose might mean a significant cost overhead. When there is a limited 

number of private caches, a full-map bit vector may be used [25][26]. This means that for each 

 

Figure 2-11. Simple MOESI directory protocol example. Shows four transactions in the coherence protocol for 

the same data block: a load miss in processor P0, a store miss in processor P1, another load miss in P0 after the 

modification done by P1 and a data block replacement by P1. The modifications due to the addition of the 

exclusive and owner states are highlighted in bold.  
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of the entries in the directory, there will be a set of P bits, where P is the number of cores in the 

system.  

Nevertheless, this method does not scale as the number of processors increases. For example, a 

multiprocessor system with 8 cores needs 8 additional bits per address tagged. Considering a 

directory with 1024 entries, the sharers dedicated space is 8KB (8bits x 1024 entries).  If the 

multiprocessor size increases to a 1024 cores, maintaining a 1024-entry directory (which would 

be unpractical) the total sharer space will be 1MB (1024 bits × 1024 entries). For this reason, it 

is necessary to represent the increasing number of sharers, providing the same information but 

using fewer bits. There are two options to achieve this: to have a coarse directory or a limited 

pointer directory.  

In a coarse directory [27] each bit represents a group of private caches. When a bit is set, it 

means that one or more of the private caches in that group holds a copy. Using the previous 

1024-core example, it would be possible to use 16 bits per entry if each of the bits, instead of 

being associated with one core, represents 64 cores of the whole system. However, this solution 

implies that when a block needs to be invalidated, there will be extra invalidation messages sent 

to some caches that may not have the block. This has two negative implications: an increase in 

bandwidth usage and added protocol complexity.  

The limited pointer directory is based on a common case observed in parallel applications. 

Usually a block is shared by a few private caches or by all of them. So, instead of having a 

complete bit vector, the sharers are defined by using pointers. Each pointer will need       bits 

to point to the right private cache holding the block copy. In a multiprocessor with 1024 cores, 

to include 3 pointers in each entry will mean 30 bits (10 bits each). However, this representation 

needs to add some additional mechanism to handle situations in which there are more sharers 

than those the limited vector is prepared for. Options could include broadcasting whenever there 

are more sharers than pointers available or invalidating one of the sharers to free space for a 

new one. A thorough review of the state-of-the-art of the sharer organization will be presented 

in the next chapter.  

2.5.2.2 Directory designs 

The possibilities of how to organize a directory are not finite. Originally, the directory controller 

was integrated with the memory controller, having an entry per existing cache line in the 

address space. To decrease its latency and the power overhead entailed by each access, 

designers started to use a separate directory cache structure with a subset of blocks being 

tracked inside, leaving the rest of the directory information in DRAM [26][25]. However, even 

with this directory cache, each access entails an unacceptably high latency especially in current 
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CMPs where the cost of each off-chip access is very high compared to any on-chip access and 

the bandwidth-wall is always present. 

For this reason, in today’s CMPs the trend is to introduce as much coherence information inside 

the chip as possible in order to avoid the off-chip bandwidth limitations and to take advantage 

of the large LLC sizes inside the chip that keep on increasing. Although in the next chapter the 

most novel proposals of directory organizations will be presented, it is important to bear in mind 

two important directory implementations in CMPs. 

2.5.2.2.1 LLC in-cache directory  

One of the possibilities consists of adding its necessary coherence information to each of the 

blocks in the LLC. For this directory implementation to work, any existing data block in the 

lower levels of the hierarchy needs to be allocated in the LLC so it can hold its sharing 

information. This introduces a new property that has to be fulfilled called inclusiveness. The 

inclusion property indicates that any data block in the private levels of the hierarchy must be 

present in the upper level (LLC). Moreover, if a block is not present in the upper level, it cannot 

be present in the lower ones. So, when a request misses in the LLC, it can be assumed that the 

data block is not in any of the private levels. This inclusiveness property that has to be met by 

this organization causes three main drawbacks: first, whenever the LLC needs to replace a data 

block, it is forced to send invalidation requests, called Recall messages, to all the existing copies 

in the private levels; second, the space dedicated in each entry to tracking the sharers must be 

present in the LLC independently of the block being shared or not; and finally, the aggregate 

size of the cache is lower if the inclusiveness condition has to be fulfilled.    

However this additional storage and the inclusiveness property facilitate the coherence protocol 

designer’s work notably, because the LLC has a real knowledge of the situation of all the blocks 

cached in the private levels and it knows exactly when it has to access off-chip memory. 

2.5.2.2.2 Stand-alone directory 

In order to remove the inclusiveness property and the extra storage overhead from the LLC, an 

especially dedicated structure for directory information can be introduced next to the LLC. This 

stand-alone directory might be designed to include all the tags of the blocks allocated in the 

private levels. To achieve this, instead of using the directory state with the sharers of a block, it 

duplicates all the existing tags in the private caches. Therefore, in order to hold all those tags, 

the directory needs to have as many sets as there are in all the private caches and its 

associativity has to be the associativity of the private levels times the number of cores in the 

system (figure 2-12).  



Chapter 2 

 

32 

This duplicate-tag directory has a significant implementation cost, especially because of the 

large associativity needed. It could be suitable for small scale CMPs with limited private cache 

capacity such as Niagara [28], but for large scale or large private caches the cost becomes 

unsustainable. This happens because, as the CMP includes more cores, the directory 

associativity will grow linearly with the core count (adding as many ways per core as the private 

cache associativity). 

In order to limit this large associativity, the duplicate-tag directory may be modified and 

reduced by assuming that the worst-case scenario will not occur, i.e. all the tags of all the 

private caches will not be different. Using the example in figure 2-12, the reduced directory 

would have an associativity A (with A< [C cores*2-ways]), not permitting more than A entries 

that map to a given cache set allocated in the chip. As there is not a specific place for each of 

the tags present in the private levels, it is necessary to define  which sharers have a copy of that 

block for each tag in the directory, using a solution like the ones described in section 2.5.2.1 

(bit-vector, pointers…). When the directory receives a request for a block whose tag is not 

present in the directory (which means it is not in any of the private levels) and there are no free 

entries available, the directory controller needs to replace one of the existing tags, invalidating 

all its sharers with a Recall message like the ones used in the in-cache directories. However, 

these Recall messages do not have the same impact in the system, because they do not mean a 

replacement in the LLC and so any following request for that data block might find it in the 

LLC and not in off-chip memory, in a similar way to the in-cache design. Nevertheless, if the 

size of the directory is not well chosen, these Recall requests could be too frequent and make 

performance suffer because the invalidations remove data that are being used by the cores. A 

rule of thumb proposed is to establish a directory cache size to cover at least twice the number 

of cached lines in the private levels [29] in order to prevent unacceptable performance loss. 

Even so, pathological cases could arise.  

 

Figure 2-12. Duplicate-tag directory representation for a C core system with 2-way private levels and S sets. 
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In any case, even though directory-based coherence protocols were created to overcome the 

existing problems in snooping protocols, especially concerning their scalability, the truth is that 

when considering a large number of cores in the system directories, they are not trouble-free. 

Next, we will finish this chapter with a brief analysis of the main advantages and disadvantages 

of both types of protocols.  

2.6 Qualitative Comparison 

Apparently, of the two options seen, the snoopy coherence protocols seem much more simple, 

manageable and cost-effective than the directories, because of their distributed nature. They do 

not require any centralized structure, but instead all the nodes in the system have to contribute 

so that the whole system works correctly. However, in some cases this might increase the 

difficulties in designing the protocol, because the number of cases that the controller has to 

handle is much higher. The complexity is even higher especially if the interconnection network 

used does not naturally provide request ordering (like it occurs in a bus).  

Another advantage of this type of protocols is indirection avoidance, since every request is sent 

to the rest of the cores in the system and not to a centralized structure. This favors cache-to-

cache message transfers and avoids sending a unicast request to a directory, which in some 

cases might be far away from the requestor. However, when the number of processors 

connected to the bus network is medium-to-large, this acts against the snoopy protocols. All the 

broadcasts issued by the cores in the system may saturate the interconnection network, which in 

fact is the main reason for their lack of scalability.  

During recent years, some alternatives have appeared based on this type of protocols but trying 

to overcome their limitations, such as the Token Coherence protocol presented in this chapter. 

This one does not need a centralized interconnection network like a bus and it can work in any 

distributed networks, such as meshes or torus. Besides, it has to be remembered that a suitable 

in-network multicast traffic management is key for avoiding the negative impact that it might 

have on the system’s performance or energy requirements.  

On the other hand, directory-based protocols completely solve the excessive traffic problems 

that snoopy protocols have, because requests are unicast and the directory is the only component 

in the system which has to solve the problem.  

However, this type of protocols moves the scalability problem to the storage needed in the 

directory where all the coherence information is kept. On the one hand, an important issue is 

sharer support. As the number of processors in the system grows, the more sharers a data block 

will have, which increases the difficulties of tracking all of them. On the other hand, the 
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aggregate cache capacity of the whole system grows as the number of processors and their 

private caches increase. This means that the inclusiveness property that has to be fulfilled by the 

directory, to ensure that all the private blocks are being tracked, directly affects its size (both in 

the in-cache and stand-alone designs).  

Lastly, after seeing how both types of protocols perform it is reasonable to think that neither 

option is better than the other. It all depends on the characteristics of the system to which the 

designer wants to add coherence to. Additionally, and most importantly, the possibility of 

having hybrid coherence protocols that try to exploit the best characteristics of both types 

should not be excluded.  

2.7 Interconnection networks and coherence 

Although the interconnection network and the coherence protocols might seem to be two 

separate concepts, the fact is that they have a close interrelation. In fact, on many occasions the 

coherence protocol requires the network to have specific characteristics in order to achieve a 

correct system. Moreover, the interconnection network can provide an additional support to the 

coherence protocol adding functionalities to improve the whole system performance. 

One of the most important points in common between the network and the coherence protocol is 

the necessity for message-dependent deadlock avoidance. Even though a network can be 

considered anomaly free [30] as it is prepared to prevent deadlock, starvation and livelock 

situations, to ensure correctness of the whole system, it has to guarantee the complete avoidance 

of this type of deadlock. This situation occurs when there are resources shared among different 

message types which have some dependencies among them. This situation can be dealt with by 

adding different physical networks for each type of message [25]. However, this solution 

becomes too costly and inefficient when the number of message classes is larger and so 

solutions such as the use of virtual networks are more cost-effective [26][31].  

Another example of how the interconnection network can help the coherence protocol so that 

better performance results are obtained is seen when on-network multicast support is included 

[32]. This consists of adding the functionality to the routers so that multicast messages are only 

replicated at the routers where it is necessary in order to reach different destinations. This way, 

any multicast message is initially sent as a unicast one and when it reaches a router where it 

would need to take more than one path to reach all its destinations, it replicates. Similar 

mechanism can be introduced to work in reverse direction, i.e. gathering multiple messages that 

go to the same destination into only one [33]. As will be shown in the next chapter, these simple 

mechanisms significantly decrease the average link utilization, decreasing the energy 
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requirements, especially in snooping coherence protocols where the use of broadcast traffic is 

common.  

Finally, the coherence protocols often need to have the interconnection network to deliver its 

messages in order, i.e. two messages sent from the same point to the same destination have to be 

consumed in the same order. A network using non-deterministic routing will not fulfill this 

protocol requirement, which may result in incorrect behavior of the system.  

Summarizing, the collaboration between the interconnection network and the coherence 

protocol is necessary to obtain a proper function of the whole system, as well as to achieve 

performance improvements which would not be possible without the contribution from both 

components.   

In the next chapter, before introducing the two proposals of coherence protocols provide in this 

thesis, we will analyze the state-of-the-art of cache coherence. We will review how coherence 

has been handled until now. We will also analyze the necessities and the obstacles that have 

appeared, while describing some of the most relevant proposals offered at present. Lastly, we 

will forecast the future of cache coherence in CMPs.  
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Chapter 3. State of the art of coherence  

Cache coherence has been a major concern since the first multiprocessor systems. Nowadays 

multiprocessors always include cache memories within their hierarchy in order to reduce the 

average latency when executing load and stores and the global traffic to and from memory. 

However, the existence of private levels induces the appearance of coherence problems since 

cores do not have the same point of view of the whole additional shared memory space. Current 

mainstream solutions add specialized hardware to the system, which takes care of the cache 

coherence problems, discharging the programmer of the duty. This dedicated hardware has been 

always aimed at performance optimization of the whole memory hierarchy; from the addition of 

special bits which give specific information about the private levels’ data to the implementation 

of structures with a particular target.  

Throughout this chapter, we will provide a general overview of previous work that is most 

relevant for the development of this thesis. First, we will see the beginnings of cache and the 

first solutions for coherence issues (section 3.1). Second, we will analyze the main problems 

that cache coherence protocol designers face nowadays and how their concerns are being solved 

(section 3.2). Lastly, we will forecast the possible evolution of different aspects of coherence 

(section 3.3). 

3.1 Cache coherence in the past 

As was mentioned in the last chapter, from the beginning there were two clear ideas of how to 

solve the coherence problem: with messages traveling through a shared-bus that is observed by 

all controllers; or with implementations independent of the network, with a centralized structure 

where the necessary information to maintain coherency is stored. In the first type, the limited 

scalability of the shared-bus is the main obstacle to be overcome as it becomes a bottleneck. The 

only way to do so is by limiting the listening controller’s use of that bus. Initially the 

introduction of cache memories made it possible to reduce the overall traffic by allowing each 

processor to access its own private cache. Replacement policies were also modified. Instead of 

updating the main memory each time a block is modified (write-through), only when the block 

had to be removed from the private cache was the new value in memory updated (write-back).  

Write Once Protocol [34], proposed by James R. Goodman, was the first snoopy cache 

coherence protocol. This is classified as a Write Invalidate protocol since all other caches must 

invalidate their copies of a block before it can be modified by any other single processor. This 

protocol was devised for single-board computers based on Intel Multibus [35]. Memory blocks 
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could be in four different states: valid (may be shared), modified, exclusive and invalid. New 

systems such as Synapse N+1 [36] doubled the number of buses to increase the available 

bandwidth and to be able to introduce 28 tightly-coupled processors of the 80s. Another novelty 

of this design was the inclusion of a single-bit tag in each cache block of main memory to 

distinguish when it had to reply to a miss in that block, avoiding possible race conditions. 

Another protocol created for a RISC multiprocessor, known as Berkeley protocol [37], included 

two important developments regarding past work: cache-to-cache transfers and the avoidance of 

updating a block in memory when it was going to be shared between multiple caches. The 

Illinois protocol [38] began to use the source of the requested data to determine the data status 

in the other caches. Thus, if a data block came from memory, it was assumed that no more 

copies of the same data were in other caches. If instead the data block came from another cache, 

it was a shared block. This information (preamble of the exclusive state) significantly improved 

system performance since invalidations of write hits on unmodified private blocks could be 

entirely avoided. 

The Firefly protocol [39] (for the experimental DEC Firefly multiprocessor) was the first 

scheme in which multiple caches were allowed to contain writeable blocks. When modifying a 

non-shared block, the protocol followed a write-back strategy. For shared data, an update 

strategy was performed and the new written value had to be sent to memory, instead of having 

to send invalidations. The system had a special bus line (SharedLine) used to detect sharing 

copies. When the caches that shared the block snooped the new data value on the bus, they 

activated the SharedLine. Thus, the initiator processor knew that subsequent writes in that block 

needed to be broadcast. If instead, none of the caches activated the SharedLine, the data became 

exclusive, and any value could be updated in memory when it was victimized. The alternative to 

Firefly was the multiprocessor Dragon [40] whose operation was the same as the above also 

allowing multiple writers without invalidations, except for the difference that a new written 

value was not sent to main memory but was only sent to other caches with a copy of that block. 

This implied the need to add a new state to indicate that although a block was shared its value 

had to be updated in main memory. These solutions permitting multiple writers have better 

performance than any invalidating option, but it is always at the expense of greater bandwidth 

and energy requirements.  

During this period, snoopy protocols, such as the ones mentioned above, became more 

attractive. However, directory-based protocols seem an appealing solution when thinking about 

larger systems than those used so far. As was mentioned in the previous chapter, the main 

advantage with this type of protocols is that the location of all copies in the system is known so 

there is no need to send a broadcast asking all the nodes in the system whether they have the 
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data. During the early years of directory-based protocols, an important restriction was to forbid 

having any modified data in several caches without updating it in main memory [41]. In this 

scheme a central directory is kept with an entry for each block in main memory. By using a set 

of commands between the caches and the directory, whenever a cache modified the state of its 

blocks, the directory updated its information. Thus, it could know at any time which blocks 

were shared or private. When receiving a request, the directory checked whether any cache had 

changed the block and if so, it first updated the block in main memory and then deleted it from 

the caches before responding to the received request. If it was not modified in any of the caches, 

the directory invalidated all the copies sending the data block to the requestor. In [42] a similar 

directory organization was proposed although it added some filters to avoid unnecessary 

invalidation messages. It included a private flag to each cache block so its holding cache could 

know that it was the only one with that block (similar to the exclusive state). It also added, to 

each main memory block, as many present flags as possible caches that could hold the block. 

Thus, it was possible to know which caches had a valid copy of each block. Lastly, a modified 

flag was included in each main memory block to know when the content of the block in main 

memory was different from the copies present in the caches. These last two flags, allowed the 

update of the value in main-memory to be delayed (i.e. avoiding the write-through mode).  

Already in the early days of directory-based protocols, the amount of storage needed to maintain 

the information about all the copies was starting to be a problem, especially because it was 

proportional to the size of the main memory. For this reason, successive works proposing 

reductions of the directory size began to emerge. For example, in [43] each memory block used 

2 bits to maintain 4 different states: no copies of the block, unmodified block in a cache, 

unmodified block in an unknown number of caches, and modified block in exactly one cache. 

This bit reduction meant that the coherence protocol needed to use broadcasts to perform either 

invalidations or write-back requests to retrieve the data because it did not have accurate 

information about each data block.  

The late 90s brought the 64-bit processors with large cache and memory sizes and fast floating-

point units, making massively parallel computers the most popular choice. Shared-memory 

computers were rare and were modest in both number of processors and speed. Their absence 

was in part due to a widespread belief that neither shared-memory software nor shared-memory 

hardware, were scalable. Even for shared memory machines, the use of non-sharing memory 

programming models was recommended [44]. In addition, many existing shared memory 

programs had low performance on massively parallel systems, because they were written under 

a naïve model which assumed that all memory references had the same cost. This assumption 
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was wrong because the remote references required slower communication than local ones, i.e. 

Non-Uniform Memory Access (NUMA). 

However, shared memory offered important advantages such as a uniform address space and 

referential transparency. A uniform name space allows the construction of distributed data 

structures, which facilitates fine-grained sharing and frees de programmer for any resource 

limits. Referential transparency ensures that addresses and access primitives are identical for 

both local and remote objects. Trying to take advantage of these benefits, proposals began to 

appear for both shared-memory models [45] and machines with that structure, such as SGI 

Challenge [46] based on a split transaction bus. 

Directory-based protocols were working as an alternative to the bandwidth limitation that meant 

using a bus for the interconnection network. However, the complexity of managing races, the 

increasing number of transient states and the centralization of the structure did not help to 

improve scalability of this type of protocols. Additionally, the gap between the computing 

capabilities offered by microprocessors and the ones provided by supercomputers was 

decreasing, while their advantages in price-performance ratio were increasing. This led to the 

use of microprocessors as computing engines for multiprocessors. Thus, it was most cost-

effective to acquire higher performance with them, instead of developing powerful 

uniprocessors. 

An important turning point was the proposal of the Dash Multiprocessor [25]. The coherence 

protocol was a directory-based one and both the memory and the directory structure were 

 

Figure 3-1. The Dash Architecture. The interconnection network connects all the clusters. The directory 

includes the pointers to the clusters caching each memory line. 
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distributed avoiding bottlenecks in their accesses and offering more scalability. It was possible 

to keep on using a single shared memory space and open up the possibility of using generic 

interconnection networks such as Omega [47] or k-ary n-cubes [48] used in non-cache coherent 

machines. As figure 3-1 shows, the multiprocessor was composed of several clusters connected 

by a snooping bus and all interconnected with a generic network. After a miss in a private 

cache, the request was sent within the same cluster (local cluster). If it could not be dealt with 

locally, it was sent to a higher logical level (home cluster) where the directory and the physical 

memory of the requested address were. Note that Dash already included a two-level memory 

hierarchy. 

A step forward in this direction was the SGI Origin implementation [26] whose architecture is 

shown in figure 3-2. This was also a non-uniform memory access (NUMA) machine, because 

although the memory was fully addressable, it was distributed among each of the nodes in the 

system (up to 4GB each). Moreover, each of the nodes contained two processors both connected 

by a bus. However, this bus was not used as a snoopy bus and requests did not have to be 

snooped by all the processors in the cluster before being sent to remote levels (in contrast to 

what the DASH machine did), thus reducing the average latency. SGI Origin had support for the 

exclusive state allowing the read-modify-write accesses. Its protocol also permitted the 

processor to replace a clean-exclusive cache line without notifying the directory. Additionally, 

Origin did not need any network ordering and messages were allowed to bypass each other in 

the network, because the protocol was able to detect and deal with the out-of-order message 

deliveries. For this reason, Origin could use adaptive routing, or router micro-architecture 

improvements such as DAMQ, to deal with network congestion. The directory of this machine 

stored the sharers in 16 or 64 bits, so it was designed to hold up to 1024 processors; when there 

 

Figure 3-2. The SGI Origin Architecture. Each node includes two processors, up to 4 GB of main memory and 

the directory. It also includes a portion of the IO subsystem. 
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were more than 64 processors, the sharers were stored either with a full-bit vector or a coarse-bit 

vector, choosing dynamically depending on where the sharers were located. 

In parallel with the development of directory-based coherence machines, some interesting and 

smart solutions were implemented trying to overcome the lack of scalability of the bus.  A good 

example is the Sun Microsystems Starfire E10000 [49]. Sun removed the physical bus and used 

a scalable network to implement a logical bus. The network was a tree with the processors 

located at the leaves. When a processor made a request it was sent to the root of the tree from 

where it was broadcast achieving ordering without requiring a physical bus. This system also 

added the possibility of allowing the data that did not need ordering to be sent through a 

crossbar that was connecting all processors, thereby increasing the available bandwidth. 

As technology progressed, coherence protocols were modified to obtain optimizations for 

Symmetric Multiprocessors (SMP). However, as mentioned before, in the mid-90s, the 

complexity of processor design was increasing as designers were trying to achieve the 

maximum instruction-level parallelism possible, increasing with it the costs and design time. 

Commercial applications began to suffer from high memory latencies, so new design 

alternatives attempting to take advantage of the existence of multiple threads started to appear. 

This opened two lines of work: simultaneous multithreading (SMT) [50] and chip 

multiprocessors (CMPs) [51]. The former attempts to maximize the processor resource 

utilization by executing multiple instructions of multiple threads concurrently whenever it is 

possible, whereas the latter tries to increase the performance by introducing simple processors 

in the same chip, trying the take advantage of the thread level parallelism (TLP). In SMT, the 

first-level cache capacity has to be enlarged, because the amount of data needed by a processor 

that can execute many threads concurrently can be significant. On the other hand, in CMPs each 

core is completely independent of the others, so each of them can have its own high-frequency 

private cache and thus all be accessed in parallel. Since the available on-chip bandwidth can be 

easily increased, in some cases it is possible to use a write-through policy to maintain the 

coherence protocol simple. 

In the early 2000s, there were some significant works such as the Compaq Piranha system [52] 

or the IBM Power 4 [53]. Piranha was a prototype that integrated, on a single chip, eight Alpha 

processors with two levels of memory hierarchy, whose coherence was controlled by a duplicate 

tag directory. IBM Power 4 was the first commercial non-embedded multicore. It included two 

cores within the chip and a memory hierarchy with three levels. The two lowest levels were 

within the chip, L2 being shared between the two cores (physically, three slices connected via a 

crossbar to the L1s), while the third level, L3, was located off-chip, although the directory was 

maintained inside the chip.  
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In the period from 2000 to 2005, as well as a tendency to introduce higher clock rates (through 

deeper pipelining such as in Pentium 4) and simultaneous multithreading (IBM Power 5), there 

was a clear movement toward multicore systems following the steps of IBM Power 4, with the 

AMD Opteron [54], Intel Core-Duo [55] or Sun Niagara [28]. In these early CMPs there were 

not so many problems with coherence scalability issues since the systems were small. The 

Opteron used the standard MOESI protocol for cache coherence with a L2 cache acting as a 

victim cache of L1 (they were mutually exclusive). In the Intel Core Duo case, the snoopy 

protocol was adopted, for two reasons: (i) it was closer to the design of the single-core Pentium 

M and (ii) it required less logic (no directory), and therefore less leakage power was dissipated 

[56]. It included the same MESI protocol as in all other Pentium M processors, but with some 

optimizations added for faster communication between cores in the same chip (in particular 

when the data was located in L2). An important modification made was to allow the system to 

distinguish different situations in which the data were shared by just the two CMP cores or with 

the rest of the system.  

In contrast to the complex Intel Core Duo superscalar processors, the Sun Niagara (figure 3-3) 

was a CMP which used simple fine-grained multithreaded processors (eight processors and 32 

threads per chip). The main reason for this different design is the applications that Niagara was 

targeted toward: Web and/or database management systems. The interconnection between 

processors and L2 cache banks was a crossbar switch. The coherence was handled at the L2 

level via a duplicate-tag directory scheme. Although this type of directory has a significant cost, 

as analyzed in the previous chapter, its use is possible thanks to the small size and associativity 

of the L1 caches (4-way 8KB and 16KB the L1-D and the L1-I respectively) and the reduced 

 

Figure 3-3. The Sun Niagara Architecture. Each SPARC core contains private L1 caches. They share a 4-way 

banked 3MB L2 cache and they are connected with a crossbar interconnection network. 
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number of cores in the CMP. After a load miss occurs in the L1 D-cache and a hit in L2, the L1 

tag address is entered in the directory and a data block copy is forwarded to the requestor. For a 

store, the first task is to update the L2 line, then the directory is checked and the corresponding 

L1 lines are invalidated. The thread that initiated the store can continue without waiting for the 

coherence actions to take place. In the case of multiple concurrent stores, the updates are 

delivered to the caches in the same order, thus making sure that transactions are completed in 

order. L2 is write-back and write–allocate; when a L2 miss occurs, all L1 lines mapping onto 

the L2 victim are invalidated, thus implementing an inclusive scheme [57]. 

The technological and market evolution had pushed toward increasing the number of cores per 

CMP. Although the solutions developed to solve the problems that classic multiprocessor 

systems could also be used for CMPs, they have some distinctive issues of their own that need 

to be handled following different approaches. Perhaps, the scarcity of the off-chip bandwidth 

and the power consumed by the chip can be considered the most important ones. In contrast, 

CMPs also have positive features: abundance of on-chip bandwidth, which allows a better 

communication between the different cores and the levels of the memory hierarchy inside the 

chip.  

The debate [58] about the Intel Core or Sun Niagara core types dilemma still remains open, i.e. 

complex processors or higher number of simple processors. In any case, the complexity of 

CMPs has grown enough to convert the scalability problems into a matter of numerous studies, 

with disparate results in many cases. In the next section we briefly analyze the coherence 

evolution in CMPs over the last few years. 

3.2 Cache coherence today (in CMPs) 

Future processor chips will contain large numbers of cores and so it would seem that cache 

coherence might not be scalable under such conditions. Several works suggest that on-chip 

hardware coherence, as well as shared memories, will not exist in the near future and propose 

other methods to maintain coherence from a software level. DeNovo [14] for instance presents a 

coherence protocol for an architecture based on a disciplined software model. In the 48-core IA-

32-processor [15], shared memory coherence is maintained through software. Data cache lines 

are modified with a new status bit used to mark the content of the cache line as Message Passing 

Memory Type (MPMT). This additional bit is determined by the page table information found 

in the core’s TLB which must be setup properly by the operating system. In both of these 

solutions, the programmer is in charge of managing caches in order to maintain coherence. In 

the middle ground between these two alternatives, Cohesion [59] presents a hybrid memory 

model which combines hardware and software coherence. There is not a single shared address 
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space, but instead there are regions where coherence is supported by hardware. [60] propose 

using the synchronization instructions to maintain coherence instead of relying on the 

programmer. The readers in the system self-invalidate their blocks using a mechanism called 

Selective Flushing for which every L1 invalidates any data that is being used when any 

synchronization point is reached (lock, barrier or wait/signal synchronization).  

All these studies support the idea that the coherence hardware is not scalable for future 

machines. However, some papers such as [16] refute the conventional wisdom that coherence 

does not scale well to many cores. They show several ways to scale on-chip cache coherence 

with bounded costs by combining known techniques. This statement is analyzed taking into 

account different possible problems from the point of view of scalability: traffic, latency, 

storage, inclusiveness, and energy. We will use these problems to introduce some of the 

proposals that have appeared in recent years on each of them, banishing much of the existing 

reluctance towards coherence hardware scalability.  

3.2.1 Traffic and Latency 

Traffic and latency are two of the main issues that have to be taken into account when analyzing 

coherence in current multicores. As the number of processors increases it may seem that the 

amount of traffic is also increased supra-linearly. However, during recent years, several 

proposals have appeared trying to reduce latency and global coherence traffic by introducing 

interconnection network participation into the coherence protocol. The first work to implement 

cache coherence in the network layer was a proposal by Mizrahi et al. [61]. In their work, the 

entire data cache was migrated into the network routers. However, in the domain of on-chip 

networks, it is not feasible to cache real data within the network fabric as the access time will 

critically affect the router pipeline. Thus, in 2006, an in-network cache coherence proposal [62] 

appeared, which adds information to the network routers to construct a virtual coherence tree 

that connected all the sharers of each of the shared blocks in the system. The idea was similar to 

Kaxiras and Goodman’s GLOW protocol [63]. When a request is travelling through the network 

to the home node, it may find information about the block without having to reach its 

destination (reducing the request latency). The data message used to deal with the request 

constructs a new branch of the virtual tree for further requests from other nodes. Besides the 

additional hardware needed in the router, which appears to be replicated for every block in more 

than one router, the in-network proposal only allows one outstanding request per core in order 

to avoid races. This, for aggressive out-of order cores, does not seem a feasible option. 

However, the idea of having virtual trees used to connect all the sharers is also used in [64] 

making it possible to completely avoid broadcast requests and sending them only to the right 
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nodes. In this case, the trees are constructed based on the sharers of coarse-grained regions 

rather than for each sharing cache line, so the storage overhead is less than in the in-network 

coherence proposal. A region is a continuous portion of memory comprising a power of two 

blocks. The idea of regions is that if a block is not being shared among various cores, there is a 

high probability that the region that the block belongs to is not shared either. Based on this 

assertion, it is possible to keep the sharers for a region rather than for a cache block without 

losing excessive accuracy. The usage of regions to reduce bandwidth was also present in 

Coarse-Grain Coherence Tracking [65] and in RegionScout [66].  

The same trend of adding hardware into the interconnection network in order to reduce the total 

amount of traffic in the system is followed in the INCF proposal [67]. This proposal adds filters 

inside the elements of the interconnection network to reduce the impact of the broadcasts. By 

keeping information in each of the routers of the regions that are not shared by any of the cores 

reachable through each router, it is possible to avoid sending messages and snooping caches that 

will certainly not have a copy of the block. This means important savings in both bandwidth and 

power.  

As far as these in-network solutions are concerned, they only exploit their characteristics when 

the data blocks are being shared between cores. With no sharing degree, the amount of traffic 

used depends on the specific coherence protocol employed, so new solutions to reduce this basic 

coherence traffic are necessary, especially for snoopy protocols which need a broadcast request 

for each of the misses in a private cache. 

One way of reducing this broadcast traffic comes by varying the granularity of the memory 

hierarchy blocks. This is what Amoeba-Cache does [68], trying to exploit spatial locality. Based 

on previous work which proposes dynamically modifying block sizes [69], Amoeba-Cache 

unifies tags and data in the same array and uses two separate bitmaps to distinguish all the 

words. One bitmap is used to distinguish the tags from the data, and another one is used to know 

which data is valid and which is not. With this type of cache, the memory utilization is better 

and therefore the miss rate obtained will be lower, and the bandwidth used (both on-chip and 

off-chip) will also be less. However, it should be taken into account that such solutions mean an 

additional complexity in the coherence protocol, making design and verification very difficult. 

Similar approaches are presented in Region Tracker (RT) [70] where its design starts with a 

conventional cache and replaces the tag array with a structure that facilitates region-level 

lookups and management at fine-grain level. Its performance results improve previous region 

works such as RegionScout [66] and Coarse-Grain Coherence Tracking (CGCT) [65].  

PATCH [71] also tries to reduce the total coherence traffic, although employing a different 

strategy. With a directory-coherence protocol, PATCH uses token counting to avoid explicit 
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acknowledgements and the prediction of request destination to adaptively reduce the bandwidth 

usage. Any lack of progress in the system is avoided by a mechanism called token tenure which 

uses timeouts to detect when the tokens located at any core should be returned to the home node 

because another core needs them. However, even though this work’s results show less traffic for 

specific configurations, it does not take into account that the use of timeouts may bring down 

the interconnection network and degrade the system performance if the timeout value chosen is 

not adequate, because all the cores could start to return their tokens. 

Closely related to the amount of traffic is the latency to finish any transaction and so there are 

several works attempting to reduce it in very different ways. The system latency is affected by 

how the systems handle the following four situations: a hit in the private cache; a miss in the 

private cache that finds the requested data in the LLC (direct miss); a miss in the private cache 

that finds the requested data in another private cache (indirect miss); and a miss that means an 

access to off-chip memory. The coherence protocol has no influence on how long the first 

situation takes, which means a tag lookup in the private cache to get the requested data. Nor 

does it have any influence in the fourth situation.  

At first glance, the coherence protocol only affects the time it takes to solve the indirect misses, 

because direct misses are solved by tag lookups in the shared cache. However, the number of 

direct misses can also have an extraordinary influence on the caches’ miss-rate, because 

reducing the number of times off-chip and direct misses occur obviously reduces the average 

system latency. Among the numerous works directed to reducing the individual miss latency, 

those specifically designed for ring-based interconnection networks can be highlighted 

[72][73][74]. Ring interconnections offer a viable intermediate solution between a clearly non-

scalable network and the much more difficult design and verification complexity of other 

packet-switched networks. Rings use short point-to-point wires with distributed control. They 

require simple routers with less area and design overhead and have some ordering properties 

that are exploitable by the coherence protocol. In fact, they are used for example when 

connecting several IBM Power4 and Power5, in the on-chip interconnect for the 

IBM/Sony/Toshiba Cell [75], the Scalable Coherence Interconnect (SCI) [76], the Intel 

Nehalem [77] and subsequently [78][6]. However, given the limitations of this type of 

interconnection network, the adoption of more complex packet-switched networks seems 

inevitable to support the increase in the number of cores in forthcoming CMP designs. 

The average access latency can also be reduced by lowering the miss rate of the caches. If we 

avoid replacing data that are being used, subsequent requests for the same data will be dealt 

with sooner. Modification of the replacement and insertion algorithms is an approach that can 

decrease this latency and thereby improve the system performance. Two recent proposals in this 
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sense are ZCache [79] and Cuckoo [80]. Zcache is a cache design based on previous research on 

skew-associative1 caches [81] that allows much higher associativity than the number of physical 

ways. Each way is indexed by a different hash function and a cache block can only reside in a 

single position on each way, corresponding to the hash value of the block’s address. Basically, 

the idea is to increase the number of replacement candidates, but not the number of cache ways. 

Therefore, hits, which are the most common case, require a single lookup and when a miss 

occurs, the zcache performs a replacement in multiple steps.  

The Cuckoo proposal is similar, but applied to directory conflicts. Instead of over-provisioning 

the directory capacity to avoid the impractical highly associative requirements (see section 

2.5.2.2.2), the Cuckoo directory uses an N-ary Cuckoo hash table. This table is a structure with 

low associativity (3- or 4-way) whose address bits are passed through different hash functions, 

one for each way (figure 3-4). Its implementation is similar to a set-associative structure. Its 

lookup operation is identical to the skewed-associative cache, but the main difference is the 

insertion procedure. Whereas the skewed-associative cache selects a victim from one of the 

ways, the Cuckoo organization uses displacement to iteratively move entries until a non-

conflicting location is found. There is no discussion about the increase of the protocol 

complexity when applying this technique.  

Finally, to reduce both the total amount of traffic and the average latency, besides adding new 

                                                      

1 Skew-associative caches index each way with a different hash function. 

 

Figure 3-4. Hardware for a 4-way Cuckoo directory.  
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features to the coherence protocols and constructing new cache designs, we already mentioned 

in the previous chapter the importance of mechanisms for handling multicast traffic. It is very 

different to send a multicast message to P different destinations as P unicast messages, than 

sending only one message which is replicated whenever it has to. The first way means 

Pindividual messages travelling though the network; the second one initially means only one 

message that it is replicated as it reaches routers where different paths have to be taken to reach 

its P destinations. The end-to-end traffic is the same, but the link-traffic is very different. 

Enright et al. in [32] demonstrated that multi-destination traffic has a serious impact on CMP 

system performance and the main reason derives from the increased latency of messages. 

Replicating the messages in the source node causes a waste of bandwidth due to the reiterative 

resource use of unicast packets that belong to the same multicast message. Moreover, unicast 

decompositions for multi-destination packets increase the waiting time at their injection queues 

in each node because of the unavoidable need to sequence the use of the output links. As an 

example of the enormous difference, figure 3-5 shows the average latency evolution of the two 

main multicast schemes (path-based and tree-based) compared to the unicast approach for 16 

nodes interconnected by a 4-ary 2-cube topology under random traffic with 10% of broadcast 

messages. The figure shows how, without multicast support, the CMP is able to support about 

half of traffic. For this reason, this is a fundamental network property and especially necessary 

in broadcast-based protocols [82].  

Closely related to the amount of traffic used is the way the sharers of a block are stored in the 

system. As more accuracy is achieved in the stored information, fewer messages will be needed 

 

Figure 3-5. Latency evolution for different multicast mechanisms. (Source: [83]) 
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for the coherence protocol reducing the total amount of coherence traffic. However, as will be 

shown in the next section, the precision of this sharers’ information is not trouble-free. 

3.2.2 Sharer Tracking 

The way all the block sharers are stored is a relevant problem for CMPs. As was mentioned in 

the previous chapter, there are different structures for maintaining the sharers of a block in the 

system. The ideal situation is to keep exactly which private caches include a copy of each of the 

data blocks in the system. However, as the number of cores increases, and so does the number 

of private caches, it becomes unfeasible to hold all this information with straightforward 

representations (duplicate-tag directories or full-map directories), because they do not scale with 

a large number of cores. For these reasons, in recent years, a very active research topic has been 

to propose new ways of storing the sharers as exactly as possible but in a scalable way. 

On the one hand, to save some storage overhead, sharers may be tracked inexactly. Besides 

traditional solutions such as coarse-grain bit-vectors [27] or limited pointers [26], there are other 

more complex proposals to keep the sharers tracked although in an inexact way. Thus, in 

SPACE [84], it was observed that many memory locations are always accessed by the same 

processors, i.e. they share the same sharing pattern. This means that a large proportion of 

entries in the directory have similar or the same bit-vectors. In order to take advantage of this 

situation, SPACE includes the used sharing patterns in a separate table and introduces in each of 

the entries of the LLC a pointer to the correct pattern. Thus, there can be more than one cache 

line pointing to the same entry in the table, so not needing as many bits. As this table cannot be 

infinite, SPACE dynamically coalesces patterns that are similar to each other to make room for 

new ones. Moreover, as soon as a pattern is no longer pointed by any cache line, its entry is 

released for another new pattern. These two actions may lead into two problems. One is that 

some sharing patterns will cause false positives, i.e. it indicates that a cache is a sharer when it 

is not. Although SPACE tries to merge sharing patterns with the least Hamming distance so that 

the changes are minimal, false positives will occur anyway. This leads to a higher complexity of 

the coherence protocol, because the coherence controllers need to be prepared to receive 

requests for data that they do not have allocated and they need to indicate this to the directory 

with specific messages. Additionally, bandwidth usage and network contention will increase if 

false positives occur too often. The second thing that may happen is that, if the table size is not 

correctly dimensioned, sharing patterns are coalesced too many times and never deleted because 

they are always pointed to by some cache line. This would mean that the probability of having 

patterns with all their bits set increases and so the accuracy of the sharing information is 

completely lost.  
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Another different approach to track the sharers is the Tagless Coherence Directory [85] which 

removes the tags from the directory by relying in a grid of Bloom Filters [86] to track all the 

sharers of a block, with one column for each core and one row for each cache set. Thus, instead 

of having a directory with tags attached to sharer vectors, like a conventional directory does, 

Tagless uses a specific number of hash functions to find out which cores share a copy of the 

requested address. As happened in SPACE, Bloom filters also cause false positives, i.e. the 

directory says a cache is a sharer when it is not, increasing the protocol complexity. Another 

problem with Bloom filters is the difficulty to know when an element from the filter has to be 

removed. Tagless directory has one filter per core and set, so to delete the sharer it can use the 

normal cache eviction information and reevaluate all the hash functions to clear the necessary 

filter bits. Although the proposal offers a scalability analysis up to 1024 cores, posterior works 

[80] show that beyond that number of cores, the energy used on each read or update operation 

becomes too high due to the bit-width, reaching values of the duplicate tag directory.   

A work based on both previously mentioned SPACE and Tagless approaches is SPATL [87]. As 

in the Tagless approach, tags within individual sets are combined in a Bloom filter. However, 

rather than containing sharer vectors, the individual buckets in the bloom filter contain pointers 

to a table of sharing patterns. As in SPACE, only the sharing patterns actually present due to 

current access to shared data are represented in the sharing pattern table. This combination 

enables directory compression with graceful degradation in precision for both inclusive and 

non-inclusive cache organizations. 

Another way of tracking sharers, although sometimes not exact, is to vary the granularity of the 

data tracked, as Spatiotemporal Coherence Tracking (SCT) [88] does. SCT classifies data 

according to the requests that the cores have sent (read, write or evictions) maintaining different 

granularity for each of them. For shared data it is better to maintain a fine-grain granularity in 

order to know the exact sharers with a copy of the data blocks. On the other hand, private data 

may be detected and grouped in regions using a coarse-granularity to track sharers, reducing the 

number of entries required in the directory for this type of data.  

On the other hand there is the option of attempting to track the sharers exactly. To achieve this, 

the memory hierarchy can be used to track the exact sharers in a hierarchical way. If sharers are 

structured in multiple levels of sparse directories, thousands of cores may be tracked with not a 

very high storage overhead [89]. There are two main drawbacks in this type of directories: 

several lookups can be on the critical path (more latency and so worse performance) and the 

increased complexity of multi-level protocols.  

More recently, SCD [90] has used the idea of organizing sharers in a hierarchical way, without 

needing to have multi-level directories. The sharers representation is dynamic depending on 
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how many sharers the directory tag needs to track. For few sharers, it uses a single-tag limited 

pointer representation. When there are more sharers than pointers available, it uses a multi-tag 

format with hierarchical bit-vectors. One entry in the directory is used as a root bit-vector which 

indicates the sets of the cores that share the line, and as many entries as needed are used as leaf 

bit-vectors encoding which are the exact sharers of each set of cores. With the use of a highly-

associative zcache [79] and this method, it is possible to track thousands of sharers without 

needing thousands of bits per tag in the directory. 

3.2.3 Inclusiveness and exclusivenes 

At the same time as providing solutions to the problem of how to represent the sharers of any 

cache block in the private levels, there are also many works focusing on the different designs of 

the memory hierarchy levels as we will see next. 

A system is inclusive when higher levels of the cache hierarchy include all the tags and data 

from lower levels. An exclusive system is exactly the opposite: every tag and data in the lower 

level is not in the higher one and vice versa. The intermediate option is a non-inclusive system 

in which it is not possible to ensure the data that is allocated in each level according to what it is 

in the others. Figure 3-6 shows a simple representation of the differences among the three 

designs. In the inclusive scheme, after a miss in all the levels of the hierarchy, the data block is 

allocated in both, LLC and non-LLC . Whenever there is a replacement in LLC, the 

coherence needs to send a recall message invalidating all the copies of the block in order to 

maintain the inclusion property. Evictions of clean data blocks (not modified) from the non-

LLC do not have to be written in the LLC, as they are already allocated there, and only dirty 

evictions need to be updated. The non-inclusive design differs from the inclusive one just in that 

it is not necessary to send a recall message when the LLC needs to free an entry with a 

replacement . When the exclusive design brings a data block from memory after a miss in all 

its levels, it only allocates the block in the lowest level, without leaving a copy in LLC  since 

the block cannot be present in both exclusive levels. As well as not having to send recall 

 

Figure 3-6. Representation of the differences between the inclusive, non-inclusive and exclusive design (light 

arrows represent unnecessary actions). 
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messages whenever there is a replacement in LLC, the exclusive scheme also needs to allocate 

in the LLC, not only the dirty evictions like the previous approaches, but also all the clean 

evictions, since they are not present in LLC when being removed from the non-LLC. 

In order to analyze the impact that these designs might have on the performance, it is important 

to consider the size relation between the levels of the cache hierarchy. When the introduction of 

more transistors onto the chip was used to increase the LLC size, the existing ratio of the non-

LLCs to the LLC became lower, i.e. LLC was growing much more than the non-LLC levels. 

However, with the appearance of CMPs, the number of cores inside the chip has increased and 

so has the global capacity of the private levels (the sum of all of them). For this reason, the ratio 

of non-LLC to the LLC has started to increase making the relation between them higher, i.e. 

non-LLC capacity increases. This behavior can be seen in the graph in figure 3-7. Until 2006, 

the figure shows that the ratio of cache capacity decreases as the processor design was focusing 

on increasing the LLC. From 2006 onwards, since the appearance of the first multicore designs, 

this ratio has stopped decreasing and it has even begun to increase again with the introduction of 

a L3 cache as LLC.  

Of the three options, although inclusion makes coherence protocol designer’s life easiest, it has 

least aggregate capacity. This occurs because the global capacity of the system is the same as 

the highest level which includes the others. For this reason, performance might be severely 

affected in some situations in which the LLC size is close to the sum of lower levels, i.e. non-

LLC/LLC size is close to 1. On the other hand, in an exclusion design the global capacity is the 

sum of all levels and so it has more aggregate capacity. However, this scheme uses more 

bandwidth than inclusive caches, because of the continuous cache writes of replaced blocks that 

have to travel from lower to upper levels (both clean and dirty replacements). The non-inclusive 

approach makes better use of the bandwidth available, but obtains higher miss-rate as well as it 

adds complexity to the coherence protocol design, because the number of cases to be considered 

is many more than in the previous ones. The three designs are used in some of the levels of 

 

Figure 3-7. Ratio of cache capacity of non-LLCs to the LLC for Intel processors over the past 10 years. 

(Source: [91]) 
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current CMPs. For example, Intel Nehalem [11] has an inclusive L3 (including everything that 

is present in privates L1 and L2) while L2 is maintained as a victim cache of L1, both caches 

becoming exclusive (if a block is present in one of them, it is not in the other). The AMD 

Phenom II [92] and VIA [93] processors both use exclusive L1 and L2 caches although the 

former implements a non-inclusive L3 cache and the latter maintains the L3 exclusive too. 

Since the three options have advantages and disadvantages, it seems clear that one possibility is 

to try to combine several of them to achieve their advantages. In the TLA approach [94] the 

inclusive scheme is chosen, but with a modified LLC replacement policy to add non-inclusive 

characteristics to the hierarchy. The proposal detects the cache blocks allocated in the LLC 

which are highly accessed by the cores in their private levels, avoiding replacing them in order 

to maintain the inclusiveness property. The paper suggests three possibilities to know the 

temporal locality of the blocks in the cache. One consists of sending hints to the LLC to update 

its replacement state (Temporal Locality Hints). Another one is to invalidate lines in the private 

caches before they become LRU in the LLC, so maintaining the block allocated there. Thus, it is 

possible to analyze whether the block is re-requested at some other time and so derive from that 

its temporal locality (Early Core Invalidation). The last option is to query the private caches 

about lines in order to know whether they can be evicted or not (Query Based Selection). The 

first solution means a high usage of the bandwidth available and it might saturate the LLC with 

coherence messages used to modify its replacement victims. The second solution decreases the 

bandwidth usage, but invalidates lines according to the access pattern perceived by LLC, which 

might not match the processors’ pattern. This will lead to the invalidation of useful lines and so 

an increase in the miss ratio in the private caches. The third option improves both previous 

designs by decreasing the bandwidth usage and avoiding the invalidation of useful lines. 

However, querying the private caches about their block usage will mean an increase in the 

control messages the cache will have to manage leading to higher response latency.  

The same idea of hints sent to the LLC is used by Chaudhuri et al. in [95], which proposes a 

replacement algorithm for inclusive and exclusive caches where the private caches analyze the 

access patterns of their allocated blocks. In an inclusive scheme, private caches may send hints 

to the LLC, enabling it to have more information about its blocks. This way, the LLC can 

replace according to the probability of a block being used again by a core. In an exclusive 

scheme, that pattern information from the private caches may be used to avoid extra writes in 

the LLC. Thus, when a private cache replaces a block which has a high probability of not being 

accessed again, it is not sent to the LLC for allocation. This is known as selective cache 

bypassing [96][97]. Although inclusive architectures cannot benefit from this technique, 

because bypassing inherently breaks the inclusion property, in [98] Gupta et al. propose a 
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possibility to circumvent this limitation. The LLC includes a bypass buffer and the bypassed 

cache lines skip the LLC while their tags are stored in it. When a tag is evicted from the bypass 

buffer, it invalidates the corresponding cache lines in upper level caches to ensure the inclusion 

property. The key insight is that the lifetime of a bypassed line should be short in upper level 

caches and it is most likely dead when its tag is evicted from the bypass buffer. Therefore, a 

small bypass buffer is sufficient to fulfill the inclusion property and to obtain most performance 

benefits from bypassing.  

There are other novel methods which dynamically decide whether to use exclusion or non-

inclusion schemes according to the application that is being executed. This is what FLEXclusion 

does [91]. By monitoring traffic, this proposal can select exclusion mode when it is necessary to 

have more capacity and, in contrast, when it is necessary to decrease the bandwidth usage, it 

changes to a non-inclusion scheme. Although these methodologies do not increase performance 

significantly, qualitatively the complexity added to the coherence protocol seems to be non-

negligible. In any case, it is important to have new methods to achieve even more scalability in 

cases where a traditional inclusive or exclusive cache does not seem to be a suitable option.  

3.2.4 Energy overheads 

One of the most recurrent aspects that appear when discussing future coherence mechanisms in 

CMP is energy. Like in the majority of current computer architecture works, given the 

constrained power envelope of a CMP, the energy characterization of any new proposal is 

fundamental. However, there are some occasions where obtaining this characterization is done 

by trying to emphasize the proposals themselves, sometimes using quite simplistic models that 

lead to partial conclusions or even incorrect ones.  

The most common pitfall is to analyze the energy consumption of a proposed element isolated 

from the rest of the system. This means that only the new hardware added in the proposal is 

analyzed and if the power consumed is lower than the same piece of hardware proposed 

previously by others for the same task, the conclusion is that it consumes less energy. However, 

if this comparison is not well done, i.e. with the correct normalized values, usually the 

conclusions will not be completely accurate. It is important to always bear in mind the power 

consumed by the whole system while it executes any task, because even though any new 

element might consume more power, the final energy consumed by the full system might be 

lower, because the time it takes to finish that same task is reduced. 

In any case, almost all relevant works about coherence protocols include energy-efficiency 

analysis. One way of reducing the energy consumption of a directory-based protocol is to 

diminish the number of directory accesses (snoop filters) like Jetty [99] and TurboTag [100] do, 
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which introduce filtering mechanisms to eliminate unnecessary directory lookups. These 

needless lookups come from the basic idea that the majority of accesses to the directory find no 

sharers, because data is not shared among the cores, meaning wasting power if its coherence is 

checked. There are other similar energy saving proposals like [101] which avoids tracking non-

coherent memory blocks, although this scheme needs the operating system collaboration for 

detecting the private data blocks.  

Some scalability comparisons have been done for different directory organizations considering 

up to a thousand cores [80]. Although their results were obtained under numerous assumptions 

and simplifications, some interesting conclusions can be highlighted.  

Figure 3-8 shows that there are already solutions which scale up to thousands of cores. 

Moreover, the solutions used up to now, such as the duplicate-tag or in-cache designs, are not 

suitable, and other hierarchical or sparse solutions are necessary. It is also important to bear in 

mind that even though proposals could be highly scalable from the area point of view, they are 

not when power consumption is considered [85]. 

3.3 Forecasting cache coherence in future CMP 

Summarizing the above, the trend of future microprocessor architectures is clear: multicore. 

Whereas some experts predict processors with a thousand cores or more by the middle of the 

next decade [102], others have doubts [103]. In any case, an important question that 

continuously arises is whether current architectures will scale to such high numbers of cores and 

whether they will be manageable from the programmer’s point of view. For some the answer is 

no, at least with a plain architecture as appears in several works. For others, if several conditions 

are introduced to overcome the limitations that appear, the answer is yes. 

To improve performance when having a large number of cores, it is necessary to address the 

limitations imposed by the communication between cores and the off-chip memory bandwidth. 

 

Figure 3-8. Power and area comparison of directory organizations. (Source: [80]) 
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When the computation is spread across multiple cores on the chip, the instruction distribution 

and the communication of intermediate values will increase the execution time, due to latency 

and communication resource contention. Applications that require a large amount of traffic have 

to be especially aware of this, because each of their operations ties up many resources and can 

consume a significant amount of energy. Therefore, even for CMPs with far fewer than a 

thousand cores, there is a set of necessary conditions that has to be accomplished in order to be 

able to use hardware coherence in the coming years. Among the most important ones, we could 

highlight the following. 

First, it should be noted that avoiding coherence hardware does not eliminate the problem, but 

basically it transfers it to the programmer-compiler pair. Obviously there will still be multicore 

solutions with no cache or shared memory, but they will not be mainstream options. A fact 

supporting this statement is the evolution of the operating systems; different scalability issues 

are being solved [104] and even the new multi-kernel proposals are dealt with assuming the 

existence of hardware coherency [105].    

Secondly, one of the aspects that seems essential is the existence of different levels in the 

subdivision of a large number of cores. Works like [102][106], which analyze the scalability of 

a thousand nodes, divide the cores into a number of smaller clusters that are interconnected by 

one or more interconnection networks, minimizing some of the problems that crop up when 

treating the entire system as one plain device. 

Third, it seems clear that such a large number of processors requires either introducing a very 

large amount of on-chip memory or solving the problem of the bandwidth wall. One possible 

solution may be brought about by emerging memory technologies (STT-RAM [107], CBRAM 

[108]...) or using more-than-Moore technologies such as 3D Stacking. These technologies will 

increase the on-chip size by several orders of magnitude. Therefore, to maintain their efficiency 

it will be necessary to increase the number of levels in the hierarchy, handling their higher 

complexity.  

Fourth, even without taking into account coherence in multi-socket systems, the large amounts 

of on-chip memory storage will make it impossible to store information about "all" the sharers 

in a precise way. This will require us to rely on some broadcast-based management when a load 

or store miss triggers a request with an inaccurate destination.  

Fifth, the interconnection network will have characteristics suited to the requirements of a 

multicore system. This means that they will have appropriate topological properties, including 

the suitable broadcast management support mentioned before. That is, the interconnection 

network must minimize the communication cost efficiently handling multicast messages, i.e. no 
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serialized multiple unicast messages must be generated when sending multicast or broadcast 

messages.  

Sixth, the miss latency for actively shared blocks will be high, but it is important to leave it 

independent of the network diameter and only dependent on the number of sharers. For this 

reason, solutions such as ATC-ACKwise [102] are indispensable, which propose storing up to a 

limited number of sharers in order to know how many cores, but not which cores, have the data 

stored. Solutions such as the ones proposed in this thesis, based on tokens, also perform the 

same functionality.  

Seventh, it should be noted that although the system grows, the locality of applications will 

continue to exist and its exploitation will still be essential to improving performance. This 

suggests finding solutions that use hierarchical protocols that take advantage of this locality. For 

example, make fast cache-to-cache transfers by using broadcast mechanisms, while remote 

accesses are made through directory type structures, to avoid flooding the interconnection 

network with unnecessary messages and wasting power. 

Finally, it seems imperative to limit protocol complexity. While it is true that increasing the 

number of processors does not necessarily mean increasing the protocol complexity, it does 

increase the time required to verify their correctness. Therefore, it would be convenient to think 

in terms of hierarchical coherence protocols that can be formally verified with an amount of 

effort independent of the number of cores [109]. 

Nevertheless, and considering the commercial tendency, it can be said that CMPs future has a 

multicore chip landscape, with not a very large number of processors inside the chip, maybe few 

tens of them, but very powerful such as IBM Power 8 [110] or Intel Skylake. The tendency to 

introduce even larger amounts of cache inside the chip is also clear. IBM is already introducing 

eDRAM [4][110] and it seems that Intel is already planning to do the same. In the long term, it 

will be possible to increase the number of cores inside, reaching hundreds to thousands of cores. 

Possibly, it will be necessary to organize them in a hierarchical structure as was mentioned 

before, but the coherence protocols will have to be able to manage such large numbers of cores 

without becoming an obstacle for the whole system. Bearing all this in mind and believing that 

hardware cache-coherent systems will be the best design choice for future CMPs, the coherence 

protocols presented in the next chapter, LOCKE and MOSAIC, each try to solve the problems that 

may appear in the near future and in the long-term future respectively and benefit from the 

specific characteristics of each type of system.  
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Chapter 4. Reactive coherence for  

medium-scale CMPs: LOCKE 

The previous chapter detailed a clear tendency for implementing multicores in the future. 

However, in the short term, the number of cores that will be introduced inside the chip does not 

seem to be reaching large-scale values and companies opt for small to medium scale sizes but 

with more individual power in each core [4][6]. To maintain the coherence of these types of 

system, their main characteristics should be exploited in order to reduce the global latency of 

the whole system. One of these characteristics is the high bandwidth availability inside the chip, 

on the contrary to the limited bandwidth that exists on the off-chip interconnection networks, 

where it is scarce because of the discrete nature of the communication system elements. The use 

of scalable point-to-point interconnection networks and the scalable cache hierarchies designs 

implemented, such as NUCA [111], make this bandwidth profuse inside the chip. If we add to 

these characteristics the appearance of 3D stacked systems [13] and the utilization of low-swing 

links [112], the excess in bandwidth is substantially increased and the energy cost of moving 

data faster is reduced.  

For all these reasons, when designing coherence protocols in small to medium size 

architectures, we will always have to think about using this on-chip network bandwidth 

availability and try to avoid any extra latency in the form of indirections as much as possible. 

Currently there are a substantial number of CMP coherence protocol proposals that share this 

point of view [17][71][113] and most of the ideas use broadcasting as the mechanism to 

overcome indirection at intermediate ordering points. The impact of the shortcomings that these 

protocols might have can be much less than is commonly assumed. Namely:  

1) The multicast traffic required for on-chip cache requests will increase network 

consumption. 

It is true that power consumption is affected by multicast traffic, but the final effect 

depends on the network characteristics. As we saw in the previous chapters, if the 

network has hardware support for multicast messages [32][114], its impact could be 

reduced because each network resource is used at most once per request. This happens 

because the message is only replicated when it has to go through different paths to reach 

its destinations. When no multicast support is included, one message will have to be 

sent for each of the destinations and so each resource will be used many times. 

According to [32], using multicast support could save up to 70% in the network Energy 

Delay Square Product (ED2P).  
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2) Excessive network cache bandwidth consumption could increase contention and 

significantly increase on-chip latency.  

Although this may potentially ruin the rationale of snoop-based coherence protocols, a 

correctly dimensioned design for the cache hierarchy capable of decoupling the number 

of cores and the on-chip cache bandwidth will prevent it. Under these circumstances, 

on-chip communication bandwidth will scale in proportion to core count and/or its 

aggressiveness. 

3) Extra cache tag lookups produced in these protocols will increase cache energy 

consumption. 

If we take into account the growing leakage in each technological advance [9], the area 

devoted to cache, and the substantial benefit in terms of performance obtained by 

snoop-based coherence, the increased tag snoop energy might be quickly amortized by 

the benefits in static energy. 

Under this scenario, the LOCKE coherence protocol is proposed for small to medium 

architectures. As a starting point it uses the token coherence framework [115] seen in chapter 2, 

but enhances responsiveness and stability in several ways as will be shown next. LOCKE can 

establish the position of all the tokens by using explicit acknowledgements for each token 

movement. Thus, every request will locate either the necessary tokens or a pending 

acknowledgement. Its requests may be quickly forwarded to the in-flight tokens’ destinations, 

improving the latency especially when accessing contended data. Moreover, LOCKE does not 

require any starvation avoidance mechanism, such as the persistent request method, since it is a 

reactive coherence protocol where requests always have information about where to find the 

requested data.   

It might appear that this acknowledgment traffic will increase bandwidth utilization and maybe 

the added contention could potentially increase network latency or energy consumption, but as 

will be demonstrated in this chapter, this might not be the case. The effectiveness of the token 

location mechanism compensates for its extra bandwidth consumption, improving the energy-

performance tradeoff of both token coherence and directory-based coherence protocols.  

To check LOCKE’S effectiveness we have used a full-system simulator which includes a precise 

interconnection network simulator along with a wide variety of workloads ranging from 

multithreaded server and numerical applications to multiprogrammed workloads (Appendix A). 

On average LOCKE outperforms a conventional directory and a token coherence protocol by 

16% and 28% respectively for a 16-core CMP.   
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The rest of the chapter is organized as follows: section 4.1 focuses on analyzing the 

responsiveness and the instabilities of token coherence protocol, motivating the necessity of 

LOCKE coherence protocol. Sections 4.2 and 4.3 will describe the coherence protocol proposal 

itself with its different methods to solve false and true racing requests, which will be described 

in sections 4.4 and 4.5. Last, section 4.6 will provide the performance results obtained with 

LOCKE and demonstrate the improvements obtained.  

4.1 Motivation  

In order to understand why a novel coherence protocol like LOCKE is attractive, it is important 

to bear in mind the limitations of the Token Coherence protocol, in which it is based. Although 

this protocol’s main characteristics were reviewed in the coherence protocols chapter (chapter 

2), we will study in detail the instabilities that its responsiveness mechanism undergoes under 

specific situations.  

4.1.1 Token Coherence responsiveness 

As a reminder for the reader, Token Coherence protocol deals with racing requests by counting 

tokens. In this way, data races are avoided by forcing different ongoing memory operations to 

require an incompatible number of tokens. In starvation-prone circumstances, each contending 

processor eventually issues what is called a persistent request, which will statically determine 

the winner and force the loser or losers to return the tokens to the frontrunner processor. When 

this one finishes its operation, the next processor obtains the tokens required to perform its 

pending memory transaction. Under most working conditions racing requests are not frequent, 

so this serialization will have a negligible impact on performance.  

However, many racing requests will come from the synchronization instructions, especially in 

workloads like multithreaded ones [116] where it is their key operation. The passive approach 

used by token coherence to resolve this kind of situations, which is limited by the time 

established to issue the persistent request, could delay synchronization resolution unnecessarily. 

Additionally, persistent requests not only serialize potential data races, but also address the 

temporary lack of knowledge about token location. This lack of knowledge arises when some of 

the tokens required to perform a specific memory transaction are unavailable at the end point of 

the messages from a broadcast request. For example, this happens when a block is evicted from 

a cache and a request overtakes the in-flight data block in the interconnection network. In these 

circumstances, the request will not be fulfilled because it will not reach the needed tokens either 

at the origin or at the destination (for a specific example, see figure 2-9 in chapter 2). The 

outcome of this situation is similar to a temporary racing request, denoted from now on as a 
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false racing request. By contraposition, we denominate the concurrent and simultaneously 

incompatible operations issued over the same block by different processors as true racing 

requests.  

4.1.2 Token Coherence Stability 

True and false request races are dealt with using the persistent request method by keeping track 

of the time involved in each pending memory request. If the time is greater than a fixed 

threshold, a persistent request is sent. In order to maintain the scalability of the hardware, 

structures are required to perform persistent requests and to provide a distributed and fair 

arbitration scheme. Token coherence establishes that only one ongoing persistent request per 

core is supported. For this reason, to minimize the performance impact that this might have in 

processors with multiple outstanding memory operations, the original request is reissued one or 

more times before sending the persistent request. The timeout chosen to trigger this process can 

be established statically, looking at the on-chip miss access latency, or dynamically, averaging 

the latency of recent memory transactions. If the time of a particular ongoing memory 

transaction is above this limit, it seems reasonable to suppose that there might be another core 

accessing the same block. The request is reissued and if the timeout is once again exceeded then 

a persistent request is sent.  

Although the persistent request mechanism seems to be very simple, contention effects can 

negatively impact its performance. When applying a significant load on the network, the 

communication latency of each individual message increases as a result of the unavailability of 

resources in use by other messages. At medium loads the total latency could increase by a few 

cycles, but when the load is higher, the effect could be substantially larger. Worst of all, this 

variation could be highly dependent on the traffic pattern and the applied load, which can vary 

abruptly throughout the workload execution.  

In a low contention situation, network latency is closer to base latency and persistent requests 

work as expected. Nevertheless, if a spike of traffic suddenly appears, contention increases and 

so does the latency of all pending memory transactions. If the effect of the contention is over the 

persistent request timeout, a chain reaction might be triggered. The positive feedback between 

reissues and persistent request and network contention creates a storm of persistent requests in 

which almost any memory operation is reissued or even solved by a persistent request. Under 

this unstable situation, the system performance drops dramatically. To illustrate this 

phenomenon, we will focus our interest on two particular applications (NUMERICAL and 

SERVER) running in 16 aggressive out-of-order cores in the CMP such as the ones described in 

table 4-5. All the parameters of the system, including the network, are correctly dimensioned, 
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i.e. they are chosen in order to obtain an optimal cost/performance ratio over a large set of 

applications. The sharing degree of the two applications is quite different, in the NUMERICAL 

it is low and in the SERVER it is high. For this reason, the number of persistent requests in the 

former should be lower than in the latter. However, for an optimal time-out threshold and one 

reissue before sending a persistent request, the proportion of memory transactions resolved by 

persistent request is more than 10% in NUMERICAL and less than 0.1% for SERVER. 

This behavior, which apparently seems contradictory according to the sharing degree of each 

application, may be explained looking at figure 4-1. It shows the network latency (a) and the 

applied load (b) during 10 million processor cycles for both applications. In contrast to 

SERVER, the NUMERICAL application is very interconnection-network demanding during 

short intervals due to the access to highly contended blocks. During these phases, the latency 

spikes due to on-network contention effects. These effects are exacerbated by the one-to-all 

traffic pattern of the application. During these spikes, reissue and persistent request frequency 

increases, not because of true racing requests, but because packets are delayed within the 

network. This triggers more reissues and persistent requests, which further increase contention. 

Even using dynamically predicted thresholds, we are unable to capture the sudden variations in 

latency. In fact, dynamic estimations could accelerate system instabilities even preventing the 

complete execution of the workload. The described effect is not a rare anomaly and similar 

behavior can also be observed if off-chip bandwidth is saturated. All in all, without a solution 

for this problem, choosing this protocol to be used in a general purpose system might be unsafe. 

 

 

Figure 4-1. Network dynamic evolution with a 16-processor system. 

(a) Average latency (includes injection queue delay); (b) Throughput. 
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For all these reasons, if we want to use token coherence in these architectures and take 

advantage of all its good characteristics, it is necessary to have a new coherence protocol. This 

also includes token counting, but maintains its behavior independent from the interconnection 

network situation and shielded from any negative contention effect by removing any timeout 

from its functioning.  

4.2 Conceptual approach 

LOCKE uses token counting to maintain coherence invariants, but it includes additional 

characteristics to avoid false racing requests and a smart mechanism to actively resolve true 

racing requests, making a passive starvation avoidance mechanism unnecessary. In order to do 

this, LOCKE is based on precise knowledge of where any token is or will be located in the near 

future. Thus, if the protocol can track all the tokens, no false racing requests are possible. On the 

other hand, LOCKE solves true racing requests with a starvation-free self-inhibition mechanism 

that serializes data access of simultaneous incompatible memory transactions.  

Before seeing LOCKE behavior in detail, we will review the conceptual approach of its design 

when a false and a true racing request occur. In a token counting coherence protocol, the tokens 

assigned to a specific data block can be found either stored in a line in any cache or they can be 

moving from one place to another, i.e. being sent to a requestor or being replaced from a higher 

level of the hierarchy. These token movements are the main cause of false racing requests, 

because of the lack of knowledge about the tokens location during specific time intervals. For 

this reason, LOCKE requires an acknowledgement to be sent to the token sender so that it knows 

when the tokens have reached their destination. The second type of racing requests, true racing 

requests, occur because of simultaneous operations initiated by different processors which are 

incompatible. For this situation, LOCKE includes a self-managed mechanism to serialize all the 

incompatible operations without suffering any deadlock.  

Figure 4-2 shows a simplified sketch of how LOCKE works when a false racing request occurs in 

a simplified 3 processor system, each of them with its private cache and a LLC shared among 

all of them. The initial situation we will consider is P0 having the data block with all its tokens 

allocated, i.e. block is in state E (exclusive). First, P1 issues a read request for that block 

sendinga broadcast message to the rest of coherence controllers in the system  (messages to 

the LLC are omitted in the figure, but its controller would work like any other). When the 

request reaches P0 where the requested block is, P0 sends a copy of the data block with one 

token to P1  and holds the line in a specific state that determines that it is waiting for an 

acknowledgement for that token movement. While that token is going to its destination, P2  
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issues a write request, sending another broadcast to the rest of the controllers . When this 

write request reaches P1, it has still not received the data block so it ignores it. When it reaches 

P0, it replies to the write request sending all the tokens it has (all of them except one) and 

informs P2 that it is waiting an acknowledgement message from P1  meaning that P2’s request 

may reach P1 before it has received the data block (as happens). On the other hand, after all this, 

P1 receives the data block with the token  and so it sends a reception acknowledgement 

message to P0, completing its read operation. When P2 receives the pending acknowledgement 

information from P1, it sends a special unicast read request to P1 asking for the lost token . 

This time, P1 does not ignore the request because it has the requested data block and so it sends 

the token to P2 , invalidating its own block in order for P2 to be able to finish its write request.  

This last movement will also wait for the reception acknowledgement message in case there are 

more requests for that same block and to maintain LOCKE’s invariant of always knowing where 

all the tokens are. 

The other situation for which LOCKE has to have some mechanism is the true racing request that 

might appear for incompatible and simultaneous requests. Figure 4-3 shows a basic sketch for 

two simultaneous write requests (GetX) from P1 and P2. We will consider that the initial 

situation this time will be that P0 has two of the three tokens of the requested block and the LLC 

has the remaining one. Both write requests are made at the same time ( and ), but the 

request from P1 arrives first to P0 and the request from P2 arrives first to the LLC. P0 will 

forward its two tokens to P1  and the LLC will forward its token to P2 . From this moment, 

 

Figure 4-2. Sketch of a false racing request handled with LOCKE.  
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both requesting processors will have a subset of the tokens needed to perform their write 

operations. If no mechanism to handle the situation was added, the system would enter a 

deadlock, because none of the private cache controllers would release their tokens until their 

operations are done. However, LOCKE is able to solve the problem when P1’s write request 

arrives at P2  (we will consider for now that P1‘s priority is higher than P2’s). At the very 

instant that P2 knows that there is a simultaneous write request, which is incompatible with its 

pending operation, and that the other write request has more priority that its own, it self-freezes. 

This means that it forwards all the tokens it has collected up to that moment to P1  and it 

would forward any other token that arrived later. In this specific example, after the token is 

forwarded from P2, P1 can finish its request because it collects the three tokens to finish its write 

instruction. Although not shown in the example2, when P1 finishes its write request, it 

broadcasts a completion message to indicate to all the possible frozen processors that they can 

retry their pending requests.  

The key point of the whole protocol is that either the tokens or their pending acknowledgement 

are found by all the requests that are broadcast to the network. This means that no false racing 

requests will occur, because there will never be a lack of knowledge about when tokens are 

moving from one cache to another. If a true racing request happens, where the problem is the 

                                                      
2 The sketch also omits the acknowledgement messages sent due to the token movements.  

 

Figure 4-3. Sketch of a true racing request handled by LOCKE. 
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incompatibility of several requests, LOCKE includes a mechanism to serialize the controllers and 

avoid starvation situations.  

Obviously, the two sketches represent very specific situations so the reader can understand 

LOCKE‘s main behavior. In the following sections, the whole coherence protocol will be 

described in detail.  

4.3 Design details  

LOCKE coherence protocol includes the standard stable states of a MOESI protocol, with 3 

transient states (IS, IM and SM). It also adds 4 new control states for its characteristic behavior 

(PS, PO, PX and F). The first three of these are used to indicate when there is an 

acknowledgement message pending. The F state is needed to manage when there is more than 

one processor trying to write simultaneously, i.e. when a true racing request occurs. Table 4-1 

provides a brief description of each of the states needed in the protocol.   

The stable (M, O, E, S and I) and their transient states (IS, IM and SM) maintain their generic 

meaning as table 4-1 describes (for more details see chapter 2). We will focus on the four 

control states specific of LOCKE.  

Table 4-1. Description of LOCKE states. 

States Description 

I Block not present or invalid 

S Block with shared data including some token/s 

O 
Block with owned data including some tokens and the owner token is one of 
them 

E Block with exclusive data including all the tokens  

M Block with modified data including all the tokens  

IS Controller issued a GetS and it is waiting for data 

IM Controller issued a GetX and it is waiting for data 

SM Controller issued a GetX, it is waiting for data and holds some tokens 

PS Controller sent shared data and it is waiting for acknowledgement 

PO 
Controller sent shared data and it is waiting for acknowledgement, but 
keeps the owner token 

PX 
Controller sent data with all the tokens it had and it is waiting for 
acknowledgement 

F 
Frozen. Controller has a pending store operation but with less priority than 
another one 

 



Chapter 4 

 

68 

The first three of them (PS, PO and PX) are states used when the controller has sent some kind 

of data with tokens and it is waiting for an acknowledgement message. The difference between 

them is the type of data sent and what is kept in its own cache. The PS state indicates that shared 

data was sent, not leaving any data or token allocated in the origin; the PX state shows that data 

and all the tokens available were sent (including the owner); the PO state indicates that shared 

data was sent, but the controller keeps the owner token. This differentiation is made to 

distinguish when the requests received from others while waiting for an acknowledgement have 

to be answered or not. The fourth characteristic control state of LOCKE is the F state, for frozen. 

Table 4-2. Basic events of the private coherence controller 

Events Description 

Load 
Processor wants to load a block which is allocated in the private cache with 
read permissions. 

Store 
Processor wants to store a block which is allocated in the private cache 
with write permissions. 

Replacement 
The coherence controller needs to evict the line to make space for a new 
one. 

GetS Another controller has sent a read request. 

GetX 
Another controller with less priority than this controller has sent a write 
request. 

FreezeGetX 
Another controller with more priority than this controller has sent a write 
request.  

SpecialGetS 
Another controller has been told that tokens were coming to this 
controller and it wants to perform a read operation. 

SpecialGetX 
Another controller has been told that tokens were coming to this 
controller and it wants to perform a write operation. 

DataShared Received data block with one token. 

DataOwner 
Received data block with the token owner (and maybe more tokens, but 
not all). 

DataAllTokens Received data block with all the tokens. 

Ack 
Acknowledgement message indicating the tokens sent were received so 
they do not have to be tracked anymore. 

Retry 
Message indicating the need to retry our pending request with another 
controller, because ours arrived while tokens were in movement. 

Complete 
Complete message of another coherence controller that has finished its 
write operation. 
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A line changes its state to F when there is an unfinished write request, but the controller has 

detected another higher priority write request for the same address. 

Using the table-based technique, table 4-4 shows a simplified transition table of the private 

cache controllers using LOCKE coherence protocol. To help understand the table and as a 

support for the reader, table 4-2 and table 4-3 describe the events triggered and the actions taken 

respectively.  

Table 4-3. Basic actions of the private coherence controller 

Actions Description 

sendGetS Broadcast a GetS request to all the coherence controllers. 

sendGetX Broadcast a GetX request to all the coherence controllers. 

replaceData Send the data block replaced to the LLC. 

send1Token Send data block with 1 token to a read requestor. 

sendAllTokens Send data block with all the tokens to a write requestor. 

update 
Update the incoming data block and number of tokens in our 

cache. 

sendAck 

Send an acknowledgement message to the sender of a data block 

with tokens indicating that the tokens have arrived to their 

destination. 

inforTokensDestination Inform a requestor where the controller has sent the tokens. 

inforOwnerDestination Inform a requestor where the controller has sent the owner token. 

sendSpecialGetS 
After receiving information about the owner token destination, 

send a unicast SpecialGetS to that destination. 

sendSpecialGetX 
After receiving information about tokens’ destination(s), send a 

multicast SpecialGetX to that/those destination(s). 

askToRetryToMeLater 
Send a message indicating the need to retry the request as a 

unicast once again. 

askToRetryBC 
Send a message indicating the need to retry the request as a 

broadcast once again. 

retryWithBoss 

Send a message indicating the need to retry the request with the 

coherence controller that we keep as the boss (writer with most 

priority). 

bounceToBoss 
Bounce data block and tokens received to the coherence controller 

that we maintain as the boss (writer with most priority). 

bounceData Send back the data block and tokens received to the sender.  

bounceToL2 Bounce data block and tokens received to the LLC. 

 



 

 

 

Table 4-4. Simplified transitions table for a private cache coherence controller using LOCKE protocol.  

Colored cells indicate control actions: stalling the request in green, ignoring the incoming message in blue and an error transition in red. 
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Both events and actions are a reduced list of the two sets. Different specific situations 

(according the received message and the state of the block) and all the corner cases that occur in 

a CMP have to be managed by the coherence controller and the protocol has to be prepared for 

all of them. However, with table 4-4, the reader might obtain a general idea of how a private 

coherence controller with LOCKE protocol works. 

Two different groups have been differentiated in table 4-4 by cells with thicker lines: those 

directly related to the false racing requests and those about the true racing requests. Cells that 

are empty indicate special transitions. Green and blue represent generic control actions. Green 

cells indicate that the controller has to stall the incoming request, because it has another one 

pending and that has not finished. Blue indicates that the incoming message is ignored, which 

usually happens because it is not needed any more. Red cells represent transitions that cannot 

happen (if they occur the coherence controller is not properly implemented). 

In the ‘false racing requests’ transitions group of table 4-4, it is possible to see that, after 

receiving a request for a data block (GetS, GetX, FreezeGetX, SpecialGetS, SpecialGetX) or 

when having to replace it (Replacement), the cache sends that block with the tokens requested 

with the actions sendAllTokens, send1Token or replaceData. However, the state of the line does 

not change to invalid as it should be when data and tokens are removed from a cache, but 

instead it changes to one of the LOCKE control states (PS, PX or PO) to indicate that there is a 

pending acknowledgement for that address. In this way, if another request arrives at the cache 

controller and the line is in any of these states, the cache controller can inform about the next 

destination of the tokens sent (actions informOwnerDest and informTokensDest). Hence, it is 

possible to ensure that any broadcast request will find either the tokens or information about 

where they are going to next, so avoiding any false racing request  

The ‘true racing requests’ are managed by using the F state. If we look at table 4-4, when the 

cache controller is in a transient state with a pending write operation (IM or SM) and receives a 

GetX which has more priority than its own (FreezeGetX), it changes the line state to F, self-

freezing until the other request is over. The way priority of each request is set will be seen in the 

following section. While in the F state, any data received is bounced to the higher priority 

requestor, which in LOCKE is called the boss of the true racing request (action: bounceToBoss. 

The event Complete is triggered when the complete message broadcast by the coherence 

controller that it is maintained as the boss is snooped. From this moment, the controller is 

unfrozen and can retry its write request operation. 

Similarly, the shared LLC controller will also expect an acknowledgement message whenever a 

data block with tokens is sent and it will also send it whenever a replacement block is received. 

However, in order to reduce the total amount of traffic due to the replacements, LOCKE allows 
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private caches to replace shared data blocks (with no owner token) just by sending the tokens 

and so avoiding sending the data block. This means that the LLC needs to be prepared for 

receiving these data-less replacements. For this reason, LLC needs an additional state A, which 

means that the data block is allocated, with invalid data but with one or more tokens. Except for 

this small design detail, the rest of the LLC controller will work the same way as seen for the 

private controller in table 4-4. Full LOCKE specification tables for all the coherence controllers 

can be found in [117].  

Next, we will show with detailed diagrams how false racing requests are avoided and true 

racing requests are dealt with.  

4.4 False Racing Requests: Token location 

As was mentioned before, in order to determine token location and thus avoid false racing 

requests, any block movement is monitored at the originating location, keeping a label of the 

destination of the block. The label for the pending transaction is kept until a message reception 

acknowledgement is received from that destination. Thus, when a coherence controller 

generates a request, all the tokens needed or the flag of some pending acknowledgement will be 

found. Note that, in contrast to directory-based protocols, LOCKE’s acknowledgement 

messaging is outside the critical path. 

 

Figure 4-4. Token location with explicit acknowledgement: P0 issues a GetS operation transitioning the block 

to IS and P2 issues another GetS operation for the same block. The request from P2 arrives first to P1, which 

has the owner token. P1 sends the data with the owner token to P2, transitioning its own block to PS. This state 

will be maintained until the explicit reception acknowledgement from P2 arrives at P1. When the block is 

received at P2, the block goes to the stable state O and the acknowledgement message is sent. In the meantime, 

the request from P0 arrives at P1 which informs it that P2 has the owner token. P0 reissues a unicast to P2 

requesting a copy of the data. 
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As seen in the previous transitions table, if the request corresponds to a write operation (GetX), 

any token will be forwarded to the requestor. On the contrary, if the request corresponds to a 

read operation (GetS), only the controller with the owner token will reply. If the request arrives 

when the tokens required are in-flight, the requestor is notified with the final destination of the 

tokens. Thus, the requestor may reissue a unicast request to the one holding the necessary 

tokens. The intermediate node always notifies the requestor if the transaction is a GetX, but only 

notifies if the owner token is in-flight when the request is a GetS. Note that this is the situation 

depicted in the example in figure 4-4. Processors P0 and P2 simultaneously try to perform a GetS 

operation for the same block, and P1 holds only the owner token for that block. P2’s request 

reaches P1 first, so P1 sends its data with the owner token to P2. When P0’s request reaches P1, it 

finds the pending acknowledgment flag so P1 notifies P0 to retry its request to P2. If this same 

situation happens when using a Token Coherence Protocol, a false racing request would occur. 

The side effect of this mechanism is the generation of extra unicast traffic for acknowledgement 

packets and reissuing the GetS. As we said before, in contrast to directory-based coherence 

protocols, acknowledgments operate outside the critical path of any memory transaction. In this 

example, the hit latency of processor P2 will not be increased because of the mechanism. 

4.4.1 I-trees 

Unfortunately, the previous scheme is starvation prone. To exemplify this, figure 4-5 shows the 

same initial situation as in the previous figure 4-4, but this time, P0’s request is delayed long 

 

Figure 4-5. Starvation with request overtaking: With the same initial state depicted previously, the P0 

multicast request message arrives at P2 before it issues its own GetS and most importantly, it arrives at P1 

after the acknowledgement reception from P2. Both processors P1 and P2 ignore P0’s request. 
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enough so that it arrives at P1 when the acknowledgement message from P2 has already been 

received. In this situation, P1 does not notify P0 that P2 has the block and the owner token. 

Moreover, P2 is unaware of P0 being interested in that block because P0’s request arrived at P2 

before this processor issued the GetS. If both of these things happen, P0’s transaction starves.  

In order to prevent this anomalous situation, we need an approach to order both requests on the 

interconnection network. The most scalable way to perform this ordering is to use a fixed 

multicast tree for each set of addresses. If we force all the requests to a specific address to 

follow that tree, then no request or acknowledgment race is possible because the messages 

involved cannot be overtaken. To balance network resource utilization we could define different 

multicast trees per address. The routers should include the mechanism to use the right tree 

according to the address accessed. Using the least significant bits in the address we could select 

which one to follow. Figure 4-6 shows a possible distribution in an 8-processor CMP with a 

non-uniform cache architecture (NUCA) using a 4×4 mesh interconnection network and four 

multicast trees. We will denote the multicast trees as I-trees. To minimize base latency effects, 

each I-tree trunk can pass through the last level (LLC slice where the address could be located). 

Note that one of the destinations for the broadcast request will be an L2 slice. For example, 

addresses mapped to slice 0, 4, 8 and 12 will use the I-tree for addresses whose last 2 bits are 

00.  

In any case, a marginal latency increase will be observed if source and destination are in the 

same column and the LLC slice is not. It should be noted that this tree has no relation to home 

indirection in directory (there is no root or serialization point). Any multicast-capable network 

will require a multicast tree [64]. 

 

Figure 4-6. Ordering I-tree in a NUCA architecture. 
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For example, in figure 4-6, if core 0 requests data that is located in core 1 L1 cache, it will take 

only one hop in the network to reach it. In the worst case, if data is located in core 4 L1 cache 

using the I-tree of the figure it will take 7 network hops to reach it, while in an optimal multicast 

tree it will take 3 hops. Although the average impact on on-chip latency overhead will depend 

on data distribution and network contention, the average distance increment for multicast 

messages is less than 10%. Moreover, the rest of the traffic (responses, acks, etc.) will follow 

minimal paths. 

What we are able to do by using these trees is to always have a common point for every 

communication between three points. If we take the previous example in figure 4-5 and consider 

that the three processors are connected with an I-tree, they would have a common point among 

them in some place of the network, as is shown in figure 4-7.  

Under this circumstance, when P0 broadcasts its request and reaches the common point, three 

different cases may occur:  

 If P2‘s request is still going to that common point without reaching it, it will find the token 

needed in P1 (case 1). 

 If P2‘s request has already passed that common point, it will reach the token first, and so 

P0‘s request will find the pending acknowledgement mark (case 2).  

 If P2‘s acknowledgement has passed that common point, P0 will find the data needed at P2 

(case 3). 

These three possible situations are the only ones that can happen and that it is why it is possible 

to ensure that when using LOCKE any request will find either the tokens in their location, or the 

pending acknowledgement mark in its origin. 

 

Figure 4-7. Three possible situations when using I-trees considering one common point. Case 1) Data is found 

in P1: P0’s request arrives first at the common point, so it reaches data in P1 first. Case 2) The pending 

acknowledgement is found in P1: P0’s request arrives second to the common point, so it reaches P1 after P2’s 

request, finding the pending acknowledgement. Case 3) Data is found in P2: P0’s request reaches the common 

point after the acknowledgement from P2, meaning that data is in P2. 
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4.5 True Racing Requests: Arbitration 

4.5.1 Self-inhibition 

If the location of all tokens needed to complete a transaction is known then only true racing 

requests have to be resolved. When two or more processors are trying to perform simultaneous 

but incompatible operations, LOCKE deals with the situation using scalable self-regulated 

arbitration. The option adopted is to assign a priority order to each processor and operation and 

to allow the resolution of the race without breaking the coherency invariants. The different 

coherency controllers apply this policy in a fully distributed way, so guaranteeing system 

scalability. 

Two or more simultaneous operations on the same block are incompatible if the total number of 

required tokens is greater than the number of processors P. If one coherence controller detects 

the possibility of such a situation arising, it must choose whether to keep going with the 

operation or to give up. For example, if it wants to perform a write operation in a cache block 

and sees an incoming write request from another processor trying to write in the same cache 

block, it has to check each request’s priority. Initially and for the sake of simplicity, we will 

assume that the priority is determined by the processor index. If the current controller has an 

index smaller than the incoming request, the controller goes ahead with its operation or, if not, it 

self-freezes the operation. 

If the controller decides to temporarily inhibit the outgoing transaction, due to its lower priority 

with respect to the remote incoming request, it changes the block state to “frozen” and annotates 

the winner controller for that block. When a block is frozen, any incoming token will be 

forwarded to the annotated winner controller. The block will remain in a frozen state until the 

winner notifies the completion of the operation, via a complete multicast message. If this 

happens, the inhibited operation is reissued from the beginning. Figure 4-8 presents an example 

of this situation. We will assume that P2 has all the tokens and P0 has the highest priority. In P1’s 

controller the block changes to frozen as soon as the request from P0 is seen. When tokens and 

data arrive at P1 they are forwarded towards P0. On each interchange of tokens the controller has 

to carefully deal with the acknowledgement signaling. When P0 completes its operation, it 

awakens P1, which reissues its pending GetX. 



LOCKE Coherence Protocol 

 

77 

When a block is frozen, any other write request from another controller, no matter what its 

priority is, will be ignored. Thus, depending on the timing of the reception of requests, an 

implicit tree of pending operations is formed. This tree has a tendency to follow the address I-

tree shape. Usually, independently of the number of controllers that are trying to perform the 

operation concurrently, the ordering tree shape is deep. Therefore, the request reissue after 

reordering is lazy; only one pending memory transaction is reissued after the completion of a 

write in most cases.  

4.5.2 Fair priority ordering with out-of-order processors 

Statically assigned priorities could provoke pathological situations, because contended blocks 

are obtained most often by the same processor. Nevertheless, assuming multiple outstanding 

requests per core, there is an easy and scalable solution to deal with this if we can guarantee 

that:  

 Two different processors cannot issue an operation to the same block with the same 

priority. 

 

Figure 4-8. Example of write serialization: P0 and P1 simultaneously issue a GetX on a block which is in M 

state at P2 (i.e., all the tokens are located there). We will assume for now that P0 has higher priority than P1. 

P1’s request arrives at P2 first, so P2 sends data and all tokens, changing its state block to the transitory state 

PX until the acknowledgement from P1 is received. Before receiving the data and the tokens, P1 snoops a 

request from processor P0 which has greater priority than its own one, so it self-freezes its operation and 

annotates P0 as the winner at the MSHR (its boss). When data and tokens from P2 arrive at P1, they are 

immediately forwarded to the winner P0, annotating the in-flight tokens. When P0 receives the data and 

tokens it sends an acknowledgement to P1 (as it corresponds to any token movement) and finalizes its 

operation. When P0’s GetX operation ends, it broadcasts a complete message. P1’s MSHR hit unfreezes the 

operation and reissues it. 
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 The probability of having a different priority ordering at two contended blocks from two 

different processors has to be non zero. 

The first condition guarantees that two different processors will never grab simultaneously a 

subset of tokens from the same block, i.e. avoiding starvation. The second condition guarantees 

that, on average, no processor memory operations are favored over others. The most 

straightforward way to achieve this is to construct the priority of each request as the 

combination of the processor ID (LSB bits) used to achieve condition one, and a small random 

number (MSB bits) that would be added to each write request to achieve condition two. The 

priority is maintained until the request is completed. 

Experimentally, it is observed that this approach provides similar performance to an age-based 

priority (which requires a complex coordinated timestamp-based mechanism) at a fraction of the 

cost. On average, this approach equalizes processor work balance. The performance reduction 

observed for a four-bit random number compared to an idealized fully age-based approach is 

less than 1%. The bottom line is that only 4 bits of overhead per package is required (the 

requesting node is always included in it).  

4.6 Evaluation 

In order to validate the advantages of our proposal, we have used two coherence protocols for 

the given system architecture with the configuration parameters shown in table 4-5. The main 

parameters of the target system mimic state-of-the-art high-end CMPs such as [5][4][118]. An 

optimized directory protocol similar to the one used to compare to the token coherence protocol 

in [119], but adapted to NUCA is used as a baseline coherence protocol. Directory information 

is distributed across all slices and full mapping. Optimistically, null storage overhead is 

assumed for this protocol.  

Broadcast-based token coherence protocol variation [115] is considered, as a representative 

counterpart of snoop-based protocols. A fixed timeout to reissue the request is set. Only one 

reissue is tolerated before triggering a persistent request. The timeout has been selected 

measuring all the benchmarks with different timeouts and choosing the one with best average 

performance. For the system configuration used, the selected time-out is 330 processor cycles. 

A dynamically estimated time-out does not provide performance benefits.  

To evaluate the coherence protocol, a 4-way superscalar out-of-order processor architecture is 

chosen. Having multiple outstanding memory requests makes the coherence protocol more 

relevant and it will help us check LOCKE under more stressful circumstances.  
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For the cache hierarchy, we assume NUCA [111] for the last level cache. Although LOCKE is 

also applicable for a tiled system, NUCA architecture is a better approach because it decouples 

the number of LLC cache slices from the number of cores, providing much more flexibility to 

scale available on-chip bandwidth.  

Table 4-5. Basic system configuration, 32 nm. technology assumed for energy estimations. 

 Configuration 1 Configuration 2 

Processor  

Config. 

Number of cores 8 @3GHz 16 @3GHz 

Functional Units 4xI-ALU / 4xFP-ALU /  4xD-MEM 

ROB size 128 

Fetch/Issue/Retire Width 3/4/3 way 

Fetch-to-Dispatch 7 cycles 

Branch predictor YAGS with 8K entries 

L1 Cache 

Block Size 64 Bytes 

Size 128KB Instruction/Data 

Associativity 4-way 

Access Time 2 cycles 

Max. number of outstanding  

memory operations 
16 

L2 Cache 

Block Size 64 Bytes 

Size 

(number of banks × size per bank) 

8MB 

(16×512KB) 

16MB 

(32×512KB) 

Associativity 16-way 

NUCA Mapping Static, interleaved across slices 

Bank Access Time 5 cycles 

Memory 

Capacity 4GB 

Access Time 240 cycles 

Num. Memory Controllers 2 centered 4 centered 

Bandwidth 32 GBs 64 GBs 

Network 

Topology 4×4 Mesh 6×6 Mesh 

Link Latency and Width 1 cycle – 16 Bytes 

Router Latency 1 cycle 

Flow Control Wormhole 

Buffering per Router 5.4 KB 

Routing DOR 

 

As far as the interconnection network is concerned, we will add the minimum variation over 

commonly used router microarchitecture and network topology. As for the router micro-

architecture used, it will be similar to the proposal described in [32], using on-network multicast 

support when required. We use dynamic buffering allocation per virtual channel and 1-cycle 

low load pipeline pass-through. In each protocol we use the required number of virtual channels 
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to avoid message-dependent deadlock [120] and network deadlock. Dynamic buffering enables 

the use of a fixed capacity per router of 5.4KB. DOR routing is used when no I-tree has to be 

followed by messages. 

In order to observe the scalability of the proposal, we chose two different system sizes 

composed of 8 and 16 processors. The eight-processor system layout is similar to the one shown 

in figure 4-6. For the second configuration, although processor, L1 and router specifications 

remain unchanged, LLC capacity and bandwidth are scaled up in accordance with the larger 

number of processors. For this, L2 has 32 slices of 512KB mapped over a 6×6 mesh for a total 

of 16MB.  

In all configurations, instead of using in-order cores, we opted to mimic [4][118] with 

aggressive out-of-order processors. Although a large number of small cores could make sense 

for cloud-computing workloads, we focus LOCKE on the CMPs forecast in the previous chapter 

for the near future: aggressive and powerful processors inside the chip. Additionally, medium 

size systems with a large number of outstanding memory transactions per processor are much 

more demanding for the coherence protocol than many simple cores.  

Moreover, a detailed description of the methodology used, including simulation stack and 

workloads description can be found in Appendix A.  

4.6.1 Performance and efficiency 

Figure 4-9 provides performance with the basic 8-processor CMP (config1 in table 4-5). On 

average, DIRECTORY is outperformed by both snooping protocols LOCKE and TOKEN. As 

expected, some workloads are insensitive, which attenuates average performance impact of 

coherence protocol. In contrast, in applications with highly contended blocks, such as numerical 

benchmarks (see appendix), coherence impact on performance is quite relevant. In those cases, 

LOCKE outperforms other protocols by up to 30%. In applications with high sharing degree but 

limited contention, such as server workloads, LOCKE outperforms the other counterparts by a 

smaller but still visible margin. Although, on average, TOKEN performs better than DIRECTORY, 

some noticeable results such as IS or FT, even in a modest size system like this one, show its 

performance is poor due to the reasons explained in Section 4.1.2. In contrast, LOCKE exhibits a 

consistent performance across all the workloads. 
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End-point traffic comparison of different protocols may not reflect a direct impact in 

performance or energy profile. First, using routers capable of handling multicast traffic, as in 

our case, causes a multicast packet with n destinations not to use the same effective bandwidth 

as n unicast packets for the same destination [32]. Second, network energy is only a part of the 

on-chip memory hierarchy which is dominated by cache. Third, Energy Delay Square Product 

(ED2P) is the most suitable metric to estimate energy-performance tradeoff in high-performance 

systems such as ours [121]. Therefore, we provide this metric, grouped for each suite of 

benchmarks and protocols in figure 4-10. As we can see, the cubic influence of performance in 

ED2P has a major effect, meaning that the ED2P of the network, in spite of producing more 

traffic, is even smaller for broadcast-based protocols. Additionally, for 32nm technology and a 

large cache footprint (8MB in this configuration), leakage power, which is constant across 

coherence protocols, causes the ED2P leakage proportion to grow significantly when the 

performance is worse. Therefore, snoop-based broadcast coherence protocols have lower 

average ED2P than directory-based for this type of architectures. Due to the more consistent 

LOCKE performance, on average it requires 19% less ED2P than DIRECTORY. In contrast, due to 

performance instabilities, which negatively affect some workloads, TOKEN is only capable of 

saving 7%.  

 

Figure 4-9. Directory normalized execution time in an 8-processor CMP. 

 

Figure 4-10. Directory normalized memory hierarchy ED2P in an 8-processor CMP. 
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4.6.2 Scalability 

Although LOCKE is not a coherence protocol envisaged for use in large architectures (the 

coherence protocol presented in the next chapter is designed for these type of systems) and its 

objective is to improve the protocol responsiveness in small-to-medium ones, it is important to 

analyze whether its performance advantage is maintained when increasing the number of 

processors. To explore its scalability, we increase the system size to 16 cores (config2 in table 

4-5).  

The performance observed in figure 4-11 indicates that LOCKE is able to increase its advantage 

in comparison to DIRECTORY. Scaling up the network size to accommodate NUCA slices would 

increase the cost of DIRECTORY indirections. Nevertheless, the increased contention due to 

larger numbers of multicast destinations seems not to increase the latency in the network 

significantly for LOCKE. Therefore, the performance advantage of LOCKE over the directory is 

now greater than in the 8-core CMP (16%). In contrast, TOKEN performs poorly, being 

noticeably slower than DIRECTORY. 

4.6.3 Responsiveness 

LOCKE’s main objective is to offer an option with good performance and responsiveness, 

especially in situations with high contention, where other snoopy protocols do not perform very 

 

Figure 4-11. Directory normalized execution time for a 16-core CMP. 

 

 

Figure 4-12. Directory normalized memory hierarchy ED2P for a 16-core CMP. 
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well. To demonstrate LOCKE’s effectiveness, figure 4-13 shows the average latency perceived 

by the processor with each of the protocols for an 8-processor system. Although memory level 

parallelism and synchronization makes it hard to directly translate any performance difference 

into average access times, those metrics could help to understand the performance differences. 

As can be appreciated, DIRECTORY-based protocol has a larger memory contribution in some 

applications. This is a direct consequence of inclusiveness. Whereas snoop-based protocols do 

not need inclusiveness to track on-chip block sharers, DIRECTORY requires an entry in LLC for 

any L1 cache block. Consequently, the effective cache capacity is smaller than in the snoopy 

protocols and so LLC miss rate is raised. This problem is acknowledged as a serious drawback 

of directory coherence protocols [122][123] (the next chapter will present an efficient directory 

solution that solves this inclusiveness problem). TOKEN coherence introduces pressure on the 

network in some applications and the starvation avoidance mechanism increases the on-chip hit 

latency significantly, making the average access time up to 40% slower in applications such as 

IS. In contrast, LOCKE seems to consistently outperform other protocols in most applications.  

Although, on-chip hit latency provides a good idea about protocol efficiency, it might be 

interesting to isolate how the protocol reacts when multiple coherence events arise 

simultaneously for the same block. In such situations, the effectiveness of the protocol is the key 

to prompt resolution of the situation. Figure 4-14 shows how effective each protocol is when 

resolving true racing requests in eight-processor systems. As we can see, in most cases LOCKE 

is the fastest one, being on average 10% faster than DIRECTORY and 60% faster than TOKEN. 

Token’s persistent mechanism to resolve those situations makes it the slowest one, being on 

average 40% slower than DIRECTORY. With non-conflicting coherence events broadcast-based 

 

Figure 4-13. Directory normalized average latency for an 8-core system. 
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coherence protocols are faster that directory due to inclusiveness, which increases on-chip miss 

rate, as can be appreciated in the memory contribution in figure 4-13. 

4.6.4 Network Energy Impact of Multicast traffic 

As stated before, it is commonly assumed that multicast traffic has a large impact on network 

power consumption. This assumption is based on the large increment in control traffic observed 

at the end-point, i.e. consumers. Nevertheless, when a network has multicast support, i.e. on-

network packet replication, this is completely wrong because multicast packets use network 

resources only once before replication [32][82]. Therefore, unlike unicast-only networks, in 

multicast-capable networks energy consumption is not proportional to end-point traffic, but to 

average link utilization. For example, figure 4-15 shows the directory normalized network link 

utilization for LOCKE and TOKEN for 8-processor and 16-processor CMPs. All the links in the 

interconnection networks have been considered, including connections from routers to L1 

caches, L2 slices and memory controllers. 

As we can appreciate, network activity in snoop-based protocols is not much higher than 

directory protocols, at least for the medium size system considered in this work. Multicast 

 

Figure 4-14. Normalized time to resolve conflicting memory accesses for an 8-processor CMP. 

 

Figure 4-15. Directory normalized average network link utilization. 
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capable routers have an identical data-path to conventional ones, so normalized link utilization 

differences will be translated into energy consumption (and negligible implementation cost). In 

all cases, LOCKE has lower link activity, because the multicast tree used is much deeper than the 

one used in TOKEN, which tries to reach all the destinations as soon as possible replicating the 

message earlier. As indicated in section 4.4.1 LOCKE ordering I-trees delay packet replication, 

which increases request base latency, but reduces network load. With particularly demanding 

applications, such as most NAS Parallel Benchmarks, or bigger system sizes, TOKEN starvation 

avoidance increases the amount of activity. Even in the largest system, network system activity 

is only 15% greater in LOCKE than in DIRECTORY. Performance benefits offset this, making 

LOCKE the most efficient coherence protocol of the three. With small size, the system 

DIRECTORY generates more network activity than snoop-based protocols due to protocol 

indirections and the larger number of on-cache misses. 

4.7 Conclusions 

Throughout this chapter a new coherence protocol has been presented and evaluated. LOCKE 

successfully exploits large on-chip bandwidth availability to improve cache-coherent chip 

multiprocessor performance and energy efficiency. Provided that the interconnection network is 

designed to support multicast traffic and the protocol maximizes the potential advantages that 

direct coherence brings, we demonstrate that a multicast-based coherence protocol could reduce 

energy requirements in the CMP memory hierarchy. The key idea presented is to establish a 

suitable level of on-chip network throughput to accelerate synchronization by two means: 

avoiding the protocol serialization, inherent to directory-based coherence protocol, and reducing 

average access time more than in other snoop-based coherence protocols, when shared data is 

truly contended. LOCKE is developed on top of a Token coherence performance substrate, with a 

new set of simple proactive policies that speeds up data synchronization and eliminates the 

passive token starvation avoidance mechanism. Using a full-system simulator that faithfully 

models on-chip interconnection, aggressive core architecture and precise memory hierarchy 

details, while running a broad spectrum of workloads, our proposal can improve both directory-

based and token-based coherence protocols both in terms of energy and performance, at least in 

systems with up to 16 aggressive out-of-order processors in the chip. 
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Chapter 5. Scalable coherence  

for large CMPs: MOSAIC 

Up to now, we have considered small to medium architectures with tens of processors. In the 

previous chapter, LOCKE‘s scalability was analyzed and although its results for a small number 

of cores showed very good performance, it is necessary to be aware that when considering large 

architectures with hundreds or thousands of cores, the interconnection network will not be able 

to provide support to all the broadcasts made for every miss happening in the private caches and 

so relying on broadcast-based coherence protocol will become unfeasible. For this reason, it is 

necessary to find more scalable solutions that reduce the number of broadcasts made.  

Historically, directory-based coherence protocols have been used to address the scalability 

problem in multiprocessor systems. However, nowadays CMPs present specific characteristics 

that change the situation. On the one hand, unlike what happened with the bus used for the 

interconnection network, when using meshes and torus inside the chip, bottlenecks are avoided 

and bandwidth availability is not the problem anymore. In contrast to off-chip networks, on-chip 

link bandwidth is profuse and in latency-sensitive scenarios, link availability is usually 

employed to build wide channels, reducing the serialization penalty of communications. On the 

other hand, the private section of the cache hierarchy in current systems is quite large, in order 

to achieve progressive hit-times throughout the different levels of the memory hierarchy [124]. 

As the memory wall effects become more relevant, more on-chip cache capacity will be 

required and therefore large private caches will be needed. These large capacities require large 

storage necessities to keep all the coherence information about all the data copies in the system. 

As has been mentioned before, this coherence information has to maintain the inclusiveness and 

hold all the information about the copies allocated in the private levels. Depending on the 

directory design chosen, this inclusiveness will have a certain effect. In the in-cache directory, 

including all the coherence information in the LLC will mean, on the one hand, that the space 

that has to be reserved for storing the information in each of the blocks will be increased, 

although on some occasions it will not even be necessary. On the other hand, the effective 

capacity of the LLC will be reduced since there will be progressively more blocks that will have 

to be dedicated to maintaining this information and fewer blocks dedicated to victim cache for 

private replacements. When a sparse directory design is chosen, the total effective capacity of 

the LLC is recovered, but the directory size has to be correctly set in order to avoid the negative 

effects of inclusiveness, needing to send recall messages to invalidate private blocks that are 

being used because there is no available space in the directory.  This “correctly-dimensioned” 
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attribute of the directory is not easy to choose because it might reach large values, which in 

some cases could even be unsustainable. For all these reasons, neither of the two solutions, 

broadcast and directory (neither of the two designs explained), seems the most suitable choice. 

However, we believe that the hybridization of the two approaches in a single proposal is a 

reasonable way to overcome their inherent limitations. By designing a new coherence protocol 

that it is able to exploit the on-chip bandwidth availability, it is possible to eliminate the 

necessity of inclusiveness of the data present in the private caches.  

The coherence protocol introduced next, MOSAIC, is able to take advantage of the bandwidth 

availability inside the chip in order to avoid the necessity of inclusiveness and still keep the 

system scalable. Sending broadcasts to reconstruct the directory information whenever it is 

needed avoids having to maintain inclusive information in the directory, although it requires 

extra bandwidth. However, token counting enables the LLC to be used as a filter to eliminate 

most of these broadcast messages, which enables a scalable system to be achieved.  

The chapter is divided into 4 different sections. Initially, the conceptual approach of the 

proposal is shown in section 5.1 in order to give the reader a general idea of how the protocol 

works. This generic idea will be extended with the design details in section 5.2 and specific and 

detailed examples will be presented in section 5.3. The MOSAIC proposal will be fully analyzed 

in section 5.4 and a summary of the possible optimization paths for the future will be explained 

in section 5.5. Section 5.6 will end the chapter with the conclusions. 

5.1 Conceptual Approach 

The MOSAIC protocol is focused on reducing one of the main problems that the conventional 

directory approach has when dealing with a large number of processors and with large number 

of blocks kept in the private levels: the space needed to hold all their coherence information.  

The cost of the directory is proportional to the size and plurality of the private levels. In order to 

break this directory constraint, MOSAIC does not evict blocks from the private levels when there 

is not enough space in the directory and some coherence information has to be removed to 

allocate new coherence lines. This means that the blocks can be kept in the private caches, 

although the directory is not tracking them anymore. Thus, coherence information inclusiveness 

is completely removed from the directory, allowing some restrictions to be eliminated when 

deciding the size of the directory.  

Without this inclusiveness eforcement property, when a request is received and a miss occurs in 

the directory, it is not possible to know whether the requested data block is allocated in the off-

chip memory, in the LLC and/or in any of the private levels. For this reason, the coherence 
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protocol needs to have a special mechanism to find out and to locate all the possible copies of 

the requested data.  

In order to be able to collect all the coherence information associated with a requested block, 

after any subsequent miss in the directory, an on-chip reconstruction of the directory entry is 

initiated. This reconstruction process starts by checking in the LLC whether the requested block 

with all the tokens is present. If it is not, a broadcast message is sent to all the private caches 

asking for information about the requested block. This process will end when all the coherence 

information associated with that block (i.e. the sharers of the block and their state) has been 

collected. By using token counting [17], the process is kept simple and negative 

acknowledgements [122] are avoided. This is possible because only the private caches that have 

the data block with some tokens have to reply to the reconstruction broadcast message. These 

replies will include the number of tokens that they have, so by adding all of them the directory 

will know when it has finished the reconstruction process. It is important to bear in mind that 

the directory will not store the number of tokens each private cache has and it will only store 

which of them have a copy (i.e. the sharers) and which one has the owner token.  

To explain the whole process in a more graphical way, figure 5-1 presents a schematic sketch of 

how MOSAIC behaves. The example starts with a read request from processor P0 that, after 

missing in its private cache, sends a read request to the directory slice . If the directory does 

not have any information about the requested data block, it checks whether it is present in the 

 

 

Figure 5-1. Sketch of MOSAIC's concept after a request from P0 misses in the LLC and in the directory. 
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LLC , and if it is not, it starts a broadcast reconstruction message looking for the data block 

needed . This reconstruction message has two objectives: to build the directory sharers 

information and to solve the request that initiated the whole process. For this last goal, the 

reconstruction message includes information about who started the reconstruction and for which 

type of request it did so. Thus, the corresponding private caches will be able to know when and 

how they have to reply to the requestor. This means that, for example, in figure 5-1, since the 

starting request is a read request, only the private cache holding the owner token will be in 

charge of solving it. For this reason, P1 sends a copy of the data block with one of its tokens to 

P0 . To achieve the first goal of the reconstruction process, the directory needs to collect all 

the information about the requested data block. So it needs to know who is holding any tokens 

associated with that address and also how many of them they have, in order to know when the 

directory has finished collecting all the information. In figure 5-1, P1 and P2 send the 

information about their tokens to the directory . For a write operation, the reconstruction 

process is similar with the difference that all of the sharers will forward their tokens to the 

requestor (invalidating their copies) without sending any message to the directory. The 

requesting processor, after collecting all the tokens, will notify the directory with a completion 

message. In any case, once the entry is fully constructed, if the directory needs to evict it, 

because of lack of space in the directory after a subsequent miss, MOSAIC does not need to 

invalidate any of the private copies. It may replace the entry silently because it will be 

reconstructed if necessary.  

5.2 Design details  

MOSAIC coherence protocol may be used either in a sparse directory or in an in-cache directory. 

The only difference between using one or the other of them is in the coherence controller that is 

in charge of constructing the line, which is the element holding all the coherence information 

and acting as the directory. This coherence controller can be a standalone directory in the sparse 

design or the LLC controller in the in-cache design.  

Each of the entries in the directory, or in the LLC, will hold the coherence information about the 

address it makes reference to. The main states that might be considered are the ones naming the 

coherence protocol: Modified (M), Owner (O), Shared (S), Allocated (A), Invalid (I) and 

Constructing (C). The meaning of the first three and the invalid state are well known (chapter 

2), but the new states A and C provide the key implementation details of the MOSAIC protocol. 

The C state indicates when an entry in the directory is being constructed and the A state defines 

when a line is fully constructed with all the coherence information attached. However, each of 

the designs has its own necessities and more importantly, its own possibilities for optimizations. 
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For this reason, these main states vary a little from one to another. Next, specific design details 

of each of them will be seen using the table-based transitions method.  

5.2.1 Sparse directory specification 

In a sparse design, the directory does not have data copies attached to each line. For this reason, 

having the M, O or S state in those entries does not apply, because the only necessary 

information is whether the entry is already constructed (A), being constructed (C) or invalid (I).  

When the directory controller is constructing a line, the block enters a transitory state (C_S or 

C_X). To which of them will depend on whether the reconstruction process was started by a 

read request (C_S) or a write request (C_X). This distinction is necessary because the directory 

controller needs to recall why the reconstruction process started in order to take specific actions 

in case a race occurs and to avoid possible deadlocks, as we will see later. This requirement is 

also mandatory for the Allocated state (A) which is divided into A_S or A_X after a GetS or 

GetX request respectively for the same reasons. Table 5-1 summarizes a brief description of 

each state. 

 Besides the state of the block, the coherence information that each of the entries in the directory 

should include is: the sharers of that block, the core holding the owner token (as it will be in 

charge of forwarding data if necessary) and a token-count field of that block (we will see next 

why this is necessary). Any existing method to maintain the sharer information such as the ones 

Table 5-1. MOSAIC protocol main states in a sparse directory. 

States Description 

I Invalid. Block is not present in the sparse directory. 

C_S 
Constructing the block after receiving a read request (GetS) from a 

core.  

C_X 
Constructing the block after receiving a write request (GetX) from a 

core. 

A 
Allocated. Block is fully constructed with all the coherence information 

about that block. 

A_S 
Allocated and a read request (GetS) has been received from a core. 

Waiting for an unblock message. 

A_X 
Allocated and a write request (GetX) has been received from a core. 

Waiting for an unblock message. 

A_I Invalidating a block. 
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shown in chapter 3 or others may be chosen [90][79]. However, a full bit vector will be assumed 

throughout this document to simplify the protocol complexity.  

Table 5-2 shows a simplified version of the transition table of the sparse directory controller 

working with MOSAIC. When receiving a request (GetS or GetX), if the block is not present in 

the directory (state I), this controller initiates a reconstruction process like the one explained in 

the previous section. Notice that this reconstruction process is different depending on whether 

the request is a GetS or a GetX and so the state the entry has to change to is different (C_S or 

C_X respectively).  

During the reconstruction, when the controller receives information about some tokens’ location 

(event: Token Info), it adds that sharer to the sharers bit vector and updates the number of 

known located tokens. When the request triggering the reconstruction is a GetS, the cache with 

the owner token of the block will send a copy of the data with one of its token to the requestor. 

After that, it will inform the directory about how many tokens it has left. When the requestor 

finishes its request, it sends an unblock message (event: Unblock). The directory will always 

wait for the requestor’s unblock message to finish the reconstruction. This will guarantee that no 

other request is dealt with until the entry is fully constructed and the request is completely 

resolved. If the request is a GetX, all the caches with a copy of the requesting block will have to 

forward their tokens to the requestor, which will send the unblock message when it has 

collected all of them and so its request is finished. In this case, the directory controller will add 

the requestor as the exclusive sharer of the data (state C_X, event Unblock). 

If the coherence information needed is in the directory (state A), all the data locations are 

known so the directory only has to forward the request to the appropriate sharer. If it is a read 

request (GetS), it sends it to the cache holding the owner token; if it is a write request (GetX), it 

sends it to all the sharers of the block.  

The directory needs to be informed about all the replacements occurring in the private levels in 

order to always have updated information about the sharers. Any private cache replacing a block 

sends a request with the tokens (event: PUT Tokens), or if it has the owner token with the data 

(event: PUT Data) to the directory. When there is a token replacement, the directory maintains 

this tokens in its entry increasing the number of tokens it owns (this is why the entry needs to 

have a token count field). When receiving a data replacement, if the entry is not constructed 

(state I) or there is no pending request (state A), data and all the tokens are written back to LLC3 

(action: write data in LLC).  

                                                      
3 The directory writes back the tokens received along with any token it had from another previous replacement. Thus, 

tokens tend to be regrouped in LLC.  



 

 

Table 5-2. MOSAIC sparse directory controller transitions table. 

Colored cells indicate control actions: stalling the request in green and an error transition in red. 
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Replacements that occur while the line is being constructed (C_X or C_S) or when the directory 

is still dealing with a request (A_S or A_X) have to be handled with care. Write requests are 

easier (C_X), because when the directory receives a replaced data block (event: PUT Data) or 

replaced tokens (PUT Tokens) it just forwards them to the pending requestor (action: bounce 

data to requestor). Read requests on the other hand are a little trickier, because a lot more 

possible situations can occur. On some occasions, the directory might be in charge of solving 

the pending read request with the replaced data, but it cannot be fully sure about this without 

more information, because it does not know whether the request has already been solved. If the 

reconstruction request arrived at the owner before it made its replacement, it has dealt with the 

pending request. If it arrived after the replacement, it could not do so because it did not have 

any tokens. When the replacement message arrives with all the tokens attached the answer is 

clear, the request was not solved and the directory needs to do so itself. On the contrary, if the 

replacement message does not include all the tokens, the directory controller is not able to know 

whether one of the missing tokens was sent to the requestor or not. The only way to know 

without sending extra control messages or negative acknowledgements is to finish constructing 

the whole entry and locate all the tokens. When the reconstruction is over, if the pending 

requestor did not send any token information, it means it did not receive any response and the 

directory needs to send one. As the reader may appreciate, all these corner cases require the 

addition of more states and more events indicating these situations with their corresponding 

extra transitions. However, they were not included in table 5-2 to avoid extra complexity for the 

reader and only the most common cases are illustrated. The full protocol specification may be 

found in [125]. 

Having the directory and the LLC for the same address side by side [126] gives MOSAIC a great 

opportunity for optimization. When a request is sent to the directory, the LLC can be accessed 

in parallel. If the data block is found in the LLC with all the tokens, it is possible to avoid the 

broadcast reconstruction request although the entry is not present in the directory. This speeds 

up the entry reconstruction and more importantly, it filters most of the multicast messages sent 

to the private caches in the CMP. As LLC capacity will be substantially higher than the number 

of blocks tracked by the directory, this will be the most habitual scenario for actively used 

private data blocks, which is the common case. Therefore, in most situations the data and all the 

tokens will be allocated there. If all tokens are in LLC, it is known that no other copy of the 

block is located in any of the private caches and the directory entry reconstruction will proceed 

without broadcast. Additionally, it should be noted that actively shared data (such as those 

associated with frequent state changes, i.e. producer-consumer scenarios) will require frequent 

accesses to the directory. A plain LRU replacement algorithm in this structure, even with a low 

associativity, will evict entries tracking private data blocks sooner. 
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5.2.2 In-cache directory specification 

The in-cache implementation of MOSAIC has a substantial number of similarities with the sparse 

version. Nevertheless, its different structure means the addition of new states and in some cases 

the possibility of some optimizations. A LLC controller working with a MOSAIC protocol also 

needs to provide information about the situation each data block is in. For this reason, it is then 

not sufficient to define only whether an entry is constructed or not, but it is also necessary to 

indicate the state that valid data is in. Therefore, in contrast to the sparse design, now there are 

three additional possibilities, which are that a data block can be shared (S), owned (O) or 

modified (M). The A state is still necessary, because block sharing information may be valid 

(entry constructed), while data copy is not. The C states are now a group of three different 

states. As well as distinguishing whether the reconstruction process is started with a read request 

(C_S) or a write request (C_X), MOSAIC is optimized to react differently when there is an 

instruction fetch, in which case the entry is in C_I state.  A brief description of the main states is 

given in table 5-3.  

States Description 

I Invalid. Block is not present in the sparse directory. 

C_S 
Constructing the block after receiving a read request (GetS) from a 

core.  

C_I 
Constructing the block after receiving an instruction fetch (GetI) 

from a core. 

C_X 
Constructing the block after receiving a write request (GetX) from a 

core. 

A 
Allocated. Block is fully constructed with all the coherence 

information about that block. 

S Shared.  Block with valid data and one token. 

O Owned. Block with valid data and at least the owner token.  

M Modified. Block with valid data and all the tokens.  

A_S 
Allocated and a read request (GetS) has been received from a core. 

Waiting for an unblock message. 

A_X 
Allocated and a write request (GetX) has been received from a core. 

Waiting for an unblock message. 

A_I Invalidating a block. 

Table 5-3. MOSAIC protocol main states in an in-cache directory. 
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Table 5-4 shows the main transitions occurring in the LLC controller. The main difference 

compared with the sparse directory is the existence of the C_I state whose aim is to optimize the 

protocol when receiving an instruction fetch. This optimization is possible thanks to having the 

sharing information next to each data block. For loads (non-instructions), MOSAIC always tries 

to send the data block along with all the tokens to the requestor in order to facilitate following 

writes on that block, emulating an exclusive (E) state behavior. If the block has all the tokens, 

the controller may write in it without sending any request (i.e. upgrade miss) and the more 

tokens it has, the easier it will be to collect the remaining ones. Moreover, avoiding maintaining 

tokens in LLC favors silent entry evictions in case of replacements. Therefore, when 

constructing an entry, if the requested data block is present in off-chip memory, it is sent with 

all the tokens to the requestor. However, instructions will not be written during the execution 

and they may be part of shared code, so it does not make sense to initially send them with all 

tokens to the requestor. Instead, when off-chip memory receives a reconstruction request for an 

instruction, it sends a copy of the block with one token to the requestor and another copy with 

the rest of the tokens (including the owner) to LLC. In table 5-4, when the entry is in C_I, it 

may receive a data block from memory (event: data from Memory) and when it receives the 

Unblock message from the requestor, it changes it state to O (owner).  Thus, if those instructions 

are later requested by other cores, they will receive a copy with a token simply using a 2-hop 

process: request to LLC and LLC sends data to the requestor. If instructions were treated like 

normal reads, they would need 3 hops: request to LLC, then the request is forwarded to the 

owner and then the owner sends data, with the increase in latency that this would mean.  

Another detail to take into account in the in-cache version is that replaced data has to be 

distinguished in order to know to which state the block needs to change to after writing it back. 

In table 5-4, only the event PUT Data appears, but note that with only this event, it is not 

possible to know to which state the controller has to go to when the entry is in the I or A state. 

Once again, the complete and detailed documentation of the coherence protocol for the in-cache 

design can also be found in [125].  

 



 

 

Table 5-4. MOSAIC in-cache LLC controller transition table. 

Colored cells indicate control actions: stalling the request in green and an error transition in red. 
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One of the main disadvantages of the in-cache structure is that, in some cases, replacements 

cannot be silent. When it is necessary to construct a line and there is no available space for it in 

the LLC, the coherence protocol needs to replace one block to construct a new one. If the data 

block is in the A state, the eviction can be made silently, but if it has some tokens, it has to 

replace this tokens writing them back in off-chip memory. This did not occur in the sparse 

version of MOSAIC where a construction of a line did not mean an eviction from the LLC.  

5.3 Detailed examples 

Now that the reader has a vision of the details of the coherence protocol, we can review the 

conceptual approach seen at the beginning of this chapter, but focusing on precisely describing 

what happens with the entry states and the rest of the copies in the system.  

Figure 5-2 and figure 5-3 show the representation of two consecutive reads in a 4-core CMP 

with a MOSAIC sparse directory. We have added one additional processor (P3) to the conceptual 

approach example in order to be able to see the behavior when there is a second read after the 

line has been reconstructed. The initial situation is with P1 having the data block with all the 

tokens except for one, which is in P2’s private cache with another copy of the data block. P0 

issues a read request (GetS) to the directory  because it does not have the data block in its 

private cache (which might be composed of multiple levels). The directory does not have any 

entry allocated for the requested address so it broadcasts a reconstruction message  asking for 

 

Figure 5-2. Example of MOSAIC coherence protocol when a read request arrives at the directory and no entry 

for the requested block is allocated. P0 issues a GetS operation and the directory has to initiate the 

reconstruction process.  
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all the token information and indicating that P0 needs a copy of the data block with at least one 

token. Processors that do not have any token ignore the request (like P3) and processors with the 

data block in a shared state (such as P2) send information about how many tokens they have. 

The processor holding the owner token (in this case P1) is in charge of solving the initial 

request, so it sends a copy of the data block with one token to P0  and sends information about 

all the tokens left to the directory. While the directory is receiving messages with the token 

location information, it updates the sharers vector and it increases the number of known tokens 

that it has received so far. It will also receive information about which processor holds the 

owner token. Thus, when it knows where all the tokens are and who the owner of the block is, 

the directory is able to ensure that the entry information is completed. In our example, this 

occurs when the last token information arrives from the requestor , when the directory can 

change the state to A indicating that the entry is allocated with all the information updated. 

Using token counting is a key component in MOSAIC, because it simplifies all the handshaking 

used to reconstruct directory entries and it avoids the use of negative acknowledgements as well 

as the necessity of timeouts. Since the directory behaves like a serialization point, concurrent 

operations initiated by different processors for the same cache block will never end up suffering 

starvation. In this way, the directory coherence controller avoids these problems without 

requiring persistent request [17] or added token tracking facilities (chapter 4) [127][71].  

After this process, any other request for that address arriving at the directory will find the entry 

fully reconstructed and it can be dealt with directory, like in a conventional directory protocol. 

This situation is shown in figure 5-3 where, using the final situation of the previous figure as the 

starting point, P3 issues another read request to the directory . This time, when the request 

 

Figure 5-3. Example of MOSAIC coherence protocol when a read request arrives at the directory and it finds 

the entry for the requested block constructed with all the coherence information. 
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arrives at the directory, the line is fully constructed and it includes all the necessary coherence 

information. Therefore, as it knows that the owner of that data block is P1, it only has to forward 

 the read request to P1 and the owner will reply to P3 with a data block copy and one token . 

If the request was a write request, this unicast message would be a multicast message to all the 

sharers to invalidate their copy (P0, P1 and P2 in this case). After P3 finishes its read request, it 

sends a complete message to the directory, which will add it as another sharer and set the entry 

state back to the stable state A .  

In order to see how MOSAIC behaves for a write request, we will repeat the example of the 

reconstruction process in figure 5-2, but with write request instead. Figure 5-4 shows how P0 

issues a GetX after a store miss . When it arrives at the directory and it does not have an entry 

allocated, it starts the reconstruction process as it did for the read request . However, as this 

reconstruction message indicates that a write request from P0 started the process, the private 

caches with allocated tokens will not inform the directory about their location, but instead they 

will forward all of them to the requestor. Therefore, P1, as the owner of the block, sends a copy 

of the data block with all its tokens to P0 invalidating its copy of the block . P2 sends its token 

as well (no data attached because it is not the owner). When P0 receives the last token assigned 

to the requested block, it can ensure there are no more copies of that block in the system and it 

can finish with its pending store operation. It also sends a message to the directory indicating 

that it is the exclusive owner of the block and so the directory can finish the construction 

process.  

 

 

Figure 5-4. Example of MOSAIC coherence protocol when a write request arrives at the directory and it does 

not find the entry for the requested block constructed with all the coherence information. 
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Although the number of different situations is large, (in fact, all state transitions shown in the 

table definition should be analyzed) we believe that these examples show the essential aspects 

of the behavior of the protocol. The next step in developing MOSAIC was its performance 

evaluation under real applications. 

5.4 Evaluation 

It has been shown in the previous chapter that for sizes of systems such as those with 8 or 16 

cores, a broadcast-based protocol like LOCKE might perform better than a directory protocol and 

in order to check MOSAIC’s capability to overcome classic directory limitation, it would be 

necessary to simulate much higher numbers of cores in the CMP. Nevertheless, to evaluate  
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systems with tens or hundreds of cores is unfeasible with current evaluation tools because of the 

computational effort of this task and the limited availability of scalable workloads. For this 

reason, in this section MOSAIC‘s directory properties will be varied, like its associativity and 

capacity, reaching values that may seem unrealistic, but that will allow us to extrapolate the 

results to a much larger number of cores. Similarly, studying the evolution of the benefits and 

drawbacks of 8-core CMP compared to 16-core CMP will also allow us to glimpse the 

scalability of the idea with a higher number of cores.  

Table 5-5. Memory system configuration of 8-core CMP (and 16-core CMP). 
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The majority of the following analysis will be focused on the sparse directory design, since it 

has less storage overhead [126][128] and the cache evictions due to directory conflicts have 

lower impact on performance.  

As was done with LOCKE, we will use aggressive out-of-order cores to analyze MOSAIC. We 

will use the same processor configuration values that we used to evaluate the LOCKE coherence 

protocol (table 4-5), introducing changes in the memory configuration as shown in table 5-5.  

We decided to simulate the same two layouts of the 8-core and 16-core CMP used in LOCKE, 

which use a 4x4 (figure 4-6) and 6x6 mesh topology respectively. As both figures show, the 

notable difference is that now the on-chip hierarchy configuration is composed of three levels 

(figure 5-5). We reduce the size of the first level of cache and we introduce an additional private 

L2 cache. The LLC is kept as a shared static NUCA [111] connected with a mesh network. The 

workloads described in the appendix will be used. 

5.4.1 Impact of Directory Configuration on Performance 

When the number of cores is large, conventional sparse directory protocols have to face 

limitations in two main factors, capacity and associativity. MOSAIC’s sensitivity to both 

parameters is analyzed next and its results are compared with those from a conventional sparse 

 

Figure 5-5. Layout of the 8-core CMP simulated with MOSAIC. 
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directory implementation. The reference point in this analysis will be a directory with duplicate 

tags. Since under this configuration there will be no private cache invalidations due to directory 

misses, there will be no performance differences between MOSAIC and conventional protocols. 

We will start with small private caches of a 2-way 32 KB L1 I/D and a unified 4-way victim L2 

cache of 64KB. Assuming in both cases a block size of 64 bytes, L1 caches have 512 entries 

each and L2 caches have 1024 entries each. This means that the number of entries required in 

the directory to avoid capacity misses (to have space for all the tags) is 2048*#cores. In the 

CMP simulated, #cores correspond to eight cores (except in the scalability analysis). Therefore, 

assuming 8 bytes per directory entry (enough to store the tag and the sharing information), the 

total directory size required to avoid capacity misses will be 128KB (2048 entries × 8 

bytes/entry × 8 cores). With the aim of minimizing the access time to data in data slices and 

avoiding access contention, the directory is distributed in 16 slices (as many slices as the LLC). 

The slice interleaving of data and directory entries over LLC uses the least significant bits of the 

address. For the same addresses, the directory slice and data slice are 1 cycle apart.  As was 

mentioned in chapter 2, section 2.5.2, to avoid any conflict misses in the directory, the required 

associativity will be 64. This large associativity is necessary because on each entry we need as 

many ways as the sum of both of the private levels’ associativity times the number of cores (i.e. 

(L1I associativity + L1D associativity + L2 associativity) * #cores). 

5.4.1.1 Sensitivity to Conflict Misses in the Directory. 

Initially, the sensitivity of a conventional directory protocol and MOSAIC when the associativity 

of the sparse directory is reduced will be determined. This will help us undersand how the two 

protocols will react when the number of conflict misses in the directory increases significantly. 

In order to perform this analysis, we keep the directory capacity fixed at 128KB and modify the 

associativity from 64-way to 1-way per set. As the associativity goes down the number of 

conflicts grows, because even though there is space for all potential blocks stored in private 

caches, some of them may conflict in the directory.  
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Figure 5-6 shows how the base Directory protocol (from now on it will be denoted as BASE) and 

MOSAIC impact on the cache level behavior when the number of directory conflicts is increased. 

While MOSAIC is completely insensitive to any associativity modifications, BASE directory has 

an adverse reaction to that change, causing a large number of misses in private levels due to 

private cache invalidations induced by directory conflicts. In some applications, such as 

Omnetpp (where the cores are not sharing any data), the misses in those levels are multiplied by 

two.  

The final differences in performance depend on each type of application, i.e. its behavior in 

private caches using a duplicate tag directory. Figure 5-7 shows these results, indicating that the 

MOSAIC protocol could be up to 40% faster than the BASE protocol. For the combination of 

system size and applications used, the most remarkable effects are found in extreme situations 

when even with capacity to track all private blocks, the performance will fall, on average 12% 

when restricting the associativity of the directory to 1 way per set. MOSAIC overcomes the 

 

 

 

 

 

 

Figure 5-6. Normalized number of misses in the private levels when sparse directory associativity is changed 

for a conventional coherence protocol (BASE) and MOSAIC. 
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problem of having a limited associativity (major issue in directory protocols [128]) since a 

simple direct mapped directory is capable of maintaining the performance and even in some 

cases improving it. 

5.4.1.2 Sensitivity to Capacity and Conflict Misses in the Directory 

The second effect that might influence performance is the number of capacity misses in the 

sparse directory. The combination of capacity misses induced by limited directory storage as 

well as the associativity reduction seen in the previous section will increase total conflict 

misses. To compare how both effects might impact on each protocol, we reproduce the previous 

analysis, but reducing the directory capability to track only an eighth of the private caches 

capacity, i.e. up to 2K blocks. Figure 5-8 reproduces the results provided in figure 5-7 with the 

new directory capacity. In this new configuration, misses in private caches for BASE are 

substantially higher than in MOSAIC (Figure 5-9). Even with an associativity of 64, after 

reducing the size of the directory, capacity conflicts have a relevant impact on performance, 

degrading it up by up to 20%.  These capacity misses seem to be more relevant in applications 

with a higher sharing degree (i.e. commercial workloads [129]) since the number of misses in 

 

Figure 5-7. MOSAIC execution time normalized to BASE, while varying the associativity of a fully sized sparse 

directory (i.e.16K entries). 

 

Figure 5-8. MOSAIC execution time normalized to BASE while varying the associativity for a directory with one 

eighth of fully sized sparse directory (i.e., 2K entries). 
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the private levels is much fewer, while applications with a reduced working set are less sensitive 

to this capacity reduction, such as hmmer which only shows a 2% improvement.  

However, the associativity reduction now has a greater influence on performance, especially on 

those applications where there is no sharing data at all. This happens because the cores are using 

completely different data and so they all need different entries allocated in the same set of the 

directory, but as the number of ways is being limited, there is not enough space for all the tags. 

For this reason, the directory is continuously replacing the tags allocated when receiving new 

requests. 

 
 

 

 

 

Figure 5-9. Normalized number of misses in the private levels when sparse directory associativity and capacity 

is changed for a conventional coherence protocol (BASE) 
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When this happens in the BASE directory, data allocated in the private levels that are used by the 

processors are invalidated, thus increasing the number of misses in the private levels noticeably, 

as can be seen in figure 5-9. On the contrary, MOSAIC replaces silently without invalidating, 

allowing those blocks to stay in the private levels until the processors replaces them. 

To better understand how directory invalidations influence each protocol, figure 5-10 provides 

the average access time for on-chip hits. Again, the dissimilar behavior of the two protocols is 

notable. In some applications, MOSAIC shows half of the on-chip latency of BASE due to the 

extra misses in private caches in the latter. Those requests are mostly resolved by LLC with 

extra added latency, which explains its growing contribution when the directory-caused 

evictions in the private caches are more relevant. With MOSAIC, all the applications demonstrate 

a higher contribution of the private L2.  

 

 

 
 

Figure 5-10. Average on-chip latency for a 16KB (2K entry) sparse directory when varying its associativity. 
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Moreover, for applications with a high sharing degree, the broadcast reconstruction message 

favors the forwarding between caches as the Other L1 and Other L2 contributions show, and so 

avoids an access to L3 as the conventional directory does. The steady miss latency values 

obtained demonstrate MOSAIC’s stability even in the most extreme configurations, a direct-

mapped directory with capacity to track just an eighth of the private cache blocks. 

5.4.1.3 Sensitivity to Directory Size in a Realistic Private Cache configuration. 

Up to now, we have been using limited private cache capacity and associativity. If we consider 

the configuration of commercial systems [4][130][131],  L2 caches have between 1/8 and 1/4 of 

L3 capacity and both L1 and L2 have a larger associativity.  Therefore, it is important to carry 

out a sensitivity analysis for the size of the directory with a realistic configuration for private 

caches. In this particular case, we try to mimic the L2 cache configuration in Intel’s Nehalem 

[11] (4-way 32 KB of L1s and 8-way 256 KB of L2). We will keep the associativity fixed at 16-

way (like in the data banks) and vary the capacity of the directory, from double [126] the full 

 

Figure 5-11. MOSAIC execution time normalized to Duplicate Tag Directory, for a Nehalem-like private caches 

configuration varying directory capacity. 

 

Figure 5-12. BASE execution time normalized to Duplicate Tag Directory, for a Nehalem-like private caches 

configuration varying directory capacity. 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 
16w1MB 16w512KB 16w256KB 16w128KB 16w64KB 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 
16w1MB 16w512KB 16w256KB 16w128KB 16w64KB 



MOSAIC Coherence Protocol 

 

109 

directory to one eighth of the full directory. For these private cache sizes, the duplicate-tag 

directory would need to track 5120 blocks for each core, needing 40960 entries in total. 

Considering the size of each entry to be 8 Bytes, it is necessary to have 320KB of space 

dedicated to the directory. To maintain the directory size as a power of 2, the total duplicate-tag 

size is established at 512 KB. Figure 5-11 show the average execution time for each application 

normalized to the double-sized directory (i.e. 1MB) where even with the smallest capacity, there 

is no performance impact. As can be seen in figure 5-12, when reproducing this same 

experiment for the BASE protocol, the performance impact is greater than 20% in some cases.  

5.4.2 Cost Analysis: Bandwidth and Energy Overhead of MOSAIC 

In light of the previous results, in contrast to a BASE protocol, MOSAIC’s behavior is fairly 

independent of the directory configuration. Since the rationale of MOSAIC is to trade directory 

cost for on-chip bandwidth and additional snoops in private caches, we need to analyze the 

energy overheads. The first step in this analysis is to quantify how directory cost reduction 

influences the on-chip bandwidth consumption. If the network is using routers with support for 

handling multicast traffic [32], the real measure of bandwidth and energy consumption for the 

interconnection network is given by the average link utilization and not the end-point traffic 

consumption (see previous chapter). Figure 5-13 shows the average link utilization for the initial 

configuration (i.e. exclusive 32KB L1 and 64KB L2) when the capacity of the directory or its 

associativity is reduced. The values are normalized for a duplicate tag directory, i.e. capacity for 

16K entries (128KB) and 64-way associative. The results show that on average and under the 

worst conditions (i.e. a 2-way associative directory, with an eighth of the capacity of the full 

directory) the traffic is just 5% higher than a duplicate tag directory.  

 

Figure 5-13. Average network link utilization of MOSAIC normalized to a duplicate tag directory, varying 

directory capacity and associativity. 
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Focusing our attention on each class of applications, multi-programmed workloads are 

completely insensitive to directory configuration. Since in these applications there is no 

information shared between the cores, this is the expected behavior. More noteworthy is the 

behavior of scientific applications, where there is a substantial amount of shared and highly 

contended data. In such cases, the directory replacement algorithm prevents the eviction of 

actively shared data and entries of private blocks are more prone to being replaced.  

Consequently, traffic does not change. Server workloads seem to be the most sensitive, since in 

this case the amount of shared data is large, most of them being code. Therefore these blocks 

will be accessed in read-only mode and the directory will be less frequently accessed. As a 

consequence, the chances of evicting an actively shared entry are higher than in numerical 

applications and so too are the chances of requiring a multicast to reconstruct these entries. 

Nevertheless, even in the most adverse (and unpractical) directory configurations, this 

increment is less than 20%, which is substantially less than in broadcast coherence protocols 

[127][71][17].  

The reason for this behavior is that multicast is only generated when, after a miss in the sparse 

directory, the data and tokens available in LLC are not enough to fully reconstruct the sharing 

information. If the block has all the tokens, it can be ensure that there are no copies in any 

private caches and consequently the multicast can be avoided. Since LLC can be very large, the 

most usual case will be this one and, therefore, multicast will be required only if the data is 

really shared. In contrast, if we compare the bandwidth consumption of MOSAIC and BASE 

protocols when the directory is simplified, the results are very different. As figure 5-14 

indicates, the BASE protocol requires more on-chip bandwidth in most cases, especially when 

the directory is highly limited. In the most extreme case, i.e. a 16KB, 2-way associative 

directory, BASE requires up to 40% extra bandwidth consumption on average. The main reason 

for this is that MOSAIC has fewer misses in the private caches and directory evictions are silent. 

For instance, in SPEC applications all processors have mostly independent executions so the 

 

Figure 5-14. Average network link utilization of MOSAIC normalized to BASE directory. 
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conflicts that occur in the sparse directory with a conventional directory protocol induce a large 

number of invalidation messages to the private levels. These invalidation requests replace the 

data needed by the processors, which may still be useful. Subsequent misses will require extra 

communication with the directory. In contrast, MOSAIC leaves these data in the private levels 

avoiding extra misses in the sparse directory because it is private data and so it will not be 

requested again, by this means avoiding requests and data travelling back and forward through 

the network. When the difference in the number of misses between the two protocols is small 

and applications have a high sharing degree, broadcast messages of the reconstruction requests 

are more noticeable. With highly contended shared data, such as in numerical applications, the 

replacement algorithm of the directory inhibits evictions of actively used data and therefore the 

external invalidations in caches with BASE are fewer (at least with directory configurations that 

are not highly constrained). Under this configuration MOSAIC memory misses might increase 

the traffic due to the multicast traffic required to deal with them. Although this multicast traffic 

might be avoided using simple solutions such as [132], it seems irrelevant in most applications. 

The most relevant case is IS, which has a large MPKI. Even in these cases, the extra traffic is 

less than 10%. In server applications, shared blocks rarely change their state (from S) and they 

have the same probability to be evicted as private data blocks. Consequently, the number of 

invalidations of useful data in private caches is larger. The result is that the extra traffic required 

to deal with this situation is much greater than with MOSAIC.  

The previous discussion partially addresses the potential added costs. To complete it, we need to 

look at the energy consumption, with emphasis on the cache hierarchy. Results of this analysis 

are shown for both protocols in figure 5-15 when using a 2-way associative sparse directory 

with three different sizes: 128KB, 64KB and 16KB. The results have been normalized to 

128KB and a 2-way directory size of BASE protocol. The results are coherent with the traffic 

results: MOSAIC reacts in a more energy efficient way than the BASE protocol when the 

directory size is constrained. Therefore, we can conclude that the extra costs derived in the 

bandwidth-directory tradeoff overhead are favorable in our proposal.  
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5.4.3 Scalability Analysis 

To complete the cost analysis, MOSAIC‘s reaction in a CMP with 16 cores is studied. In this 

system configuration the number of LLC banks is doubled and a 6×6 mesh is used to connect 

them with private caches and four memory controllers. The remaining configuration parameters 

are maintained unchanged. To scale on-chip cache bandwidth, the number of banks and 

consequently the network has to be scaled up [111]. Comparing the results in figure 5-13 and 

figure 5-16, it can be seen that the differences are unnoticeable for most of the applications, 

even in extreme situations such as the one corresponding to a 2-way set associative directory 

with capacity to track an eighth of the private caches, which has only 7% more link utilization 

on average than a Duplicate Tag Directory. As with the 8-core CMP, the server applications, 

due to their high sharing degree of read-only data, are the most sensitive to directory structure. 

Even in these cases, with a quarter of the directory capacity, the average extra traffic is less than 

10%.  

 

 

Figure 5-15. Normalized dynamic energy used by caches and network normalized to the directory-based 

coherence protocol with an aggregate 128KB sparse directory. 

 Different sizes: 128KB, 64KB and 16KB (8, 4 and 1 KB per slice). 
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When checking the performance comparison between the two protocols, MOSAIC’s stability is 

remarkable while BASE suffers up to 60% degradation of the execution time when varying the 

size and associativity of the sparse directory (figure 5-17). These results with 16 cores are even 

better than those obtained in the 8-core CMP configuration. The reason for this is that misses 

(due to directory invalidations) in private caches take longer to be resolved in LLC due to the 

larger size of the system. 

Given the complexity of the evaluation environment and the architecture of the system 

evaluated, it is not possible for us to increase the number of cores simulated beyond this point. 

Nevertheless, comparing the evolution from 8 to 16-core CMP systems, we can infer that the 

progression with larger numbers of cores should be similar. Since extra traffic will be 

proportional to the number of cores, the bandwidth overhead compared with an unfeasible 

Duplicate Tag Directory in bigger CMPs or with more realistic private cache hierarchies will be 

 

Figure 5-16. Average link utilization of MOSAIC normalized to a Duplicate Tag Directory (128-way 

associative, 256KB), varying directory capacity and associativity) in a 16-core CMP.  

 

 

Figure 5-17. Execution time of BASE and MOSAIC normalized to a Duplicate Tag Directory (128-way 

associative, 256KB), varying directory capacity and associativity in a 16-core CMP. 
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similar. Finally, note that to prevent on-chip and off-chip bandwidth impact on performance 

when increasing the number of cores in the chip, on-chip interconnection network bandwidth 

has to be extended [133]. In our particular case the bisection bandwidth has increased 50%, 

(from 4 to 6 bidirectional links), which is substantially larger than MOSAIC’s traffic overhead in 

the most unfavorable directory configurations. Consequently, it seems reasonable to assume that 

MOSAIC will scale up for much larger systems. 

5.4.4 In-cache analysis  

Although the previous results have been focused on a sparse directory configuration, MOSAIC 

has also been implemented in in-cache architecture. It was mentioned in previous chapters that 

this cache design has several advantages when compared to the sparse directory. As well as the 

simplicity of the coherence protocol increasing considerably, it avoids having to duplicate cache 

block tags in order to keep the sharing information in a standalone structure. However, when the 

aggregate private cache capacity grows, the in-cache design is seriously affected, because of the 

inclusiveness that has to be maintained to store all the private cache tags. Under these 

circumstances, a coherence protocol such as MOSAIC, where inclusiveness is not an essential 

characteristic to guarantee correct function, can make this type of design the best choice.  

Therefore, when comparing in-cache MOSAIC to BASE when the relation between the total 

amount of private cache capacity and the LLC size is closer to 1, i.e. the same size in both of 

them, MOSAIC‘s advantage is greater. This is so because the majority of the entries in LLC are 

used to track blocks in the private caches and when there is a replacement in the LLC, MOSAIC 

does not invalidate any data block allocated in the private cache, while BASE does. Figure 5-18 

shows the execution time of MOSAIC normalized to the BASE directory with two different ratio 

 

Figure 5-18. Execution time of MOSAIC normalized to BASE directory when using in-cache MOSAIC in a 8-core 

CMP and varying the LLC size. 
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sizes: 1/16 and 1. Considering the initial 8-core configuration (32KB of instruction and data L1 

and 64 KB of L2), when the size of the LLC is set to 1MB all the entries in the LLC could be 

used to track all the data blocks of the private levels. However, this would mean that the LLC 

will not have any capacity that could be used as a victim cache. Therefore, when the difference 

in size of the aggregate capacity and the LLC size is very large, both protocols react the same 

way and there is no difference between their execution time. However, when this ratio is 1, 

MOSAIC obtains better performance results because it does not have to invalidate any private 

copy whenever it has to replace an entry in LLC, while the BASE directory does have to.  

5.5 Future optimizations in MOSAIC 

After the analysis done for both architectures when using MOSAIC and, having verified the good 

behavior of our proposal, we have noticed several additional features that can further improve 

the MOSAIC coherence protocol.  

One of these optimizations has to do with the different treatment of private and shared data. We 

have observed that the protocol could obtain benefits from the fact that most of the data blocks 

for which the line is being reconstructed are private data, i.e. they are requested by one 

processor and they will not be shared with others later. For this reason, it is possible to modify 

the original protocol to avoid replacing an entry in the directory when the arriving request is for 

a private data block. As the directory is not able to know when a data block is private or not, it 

would be necessary to modify the directory controller to take decisions while receiving token 

location information from the potential sharers. Thus, when the directory receives a request, it 

could initiate the reconstruction process as before, but without replacing any existing line. If it 

receives any reply for that reconstruction process with information about not all the tokens, it 

can assume that the data block is present in at least one cache. This means that it already is or it 

will be a shared block and it will have to replace an entry to make space for the new 

reconstructed entry. On the other hand, if it only receives one reply from the requestor itself 

informing that it has all the tokens in an exclusive way, the directory will know that the 

requestor received the data from the LLC or from off-chip memory, becoming a private data 

block and making it unnecessary to replace any existing entry. The sparse design will directly 

benefit from this additional feature since it reduces the impact that the size of the directory 

might have on the system performance and all the private data blocks will not need to have a 

line in the directory. This will reduce the number of misses of those requests that need the 

coherence information in the directory. On the contrary, to obtain benefits in the in-cache design 

from this optimization, it would have to be complemented with some cache bypassing [97][96] 

to avoid replacing, in the LLC, private data blocks removed from the private caches that have 
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low probability of being used again. This will reduce the number of cache writes of private data 

blocks which are not used once the private caches evict them. 

Another possible way to optimize MOSAIC is by adding a filter to reduce the on-chip traffic. 

Each of the entries in the sparse directory could include a bloom filter [86]. This filter could 

include information about which data blocks matching that entry are allocated inside the chip. 

Whenever a data block is present in the private caches, the filter is set and in this way, when a 

miss occurs in the directory and after checking that requested data is not present in the LLC, the 

controller could check in the filter whether it has to reconstruct the line by broadcasting the 

request, or just send it to off-chip memory. To unset the filter for a specific block, it is necessary 

to know when the data block is sent to off-chip memory. For this purpose, we can use token 

counting and only permit replacements of data blocks present in the LLC with all the tokens 

collected. Lastly, the off-chip traffic could also be reduced with an additional filter such as the 

one explained previously, but associated with the blocks which are certainly allocated in the 

private levels. This is necessary because the on-chip filter will have false positives, i.e. it says 

that a requested block is present in private caches, but it is not. This means that for these cases it 

will be necessary to broadcast to all the private caches and also to memory in case the filter is 

incorrect. In this way, the MOSAIC reconstruction process will be more accurate and the total 

amount of traffic could be reduced.  

5.6 Conclusions 

A new coherence protocol that addresses the challenges of complex multilevel cache hierarchies 

in future many-core systems has been implemented. In order to limit coherence protocol 

complexity, inclusiveness is required to track coherence information across levels in this type of 

systems, but this might introduce unsustainable costs for directory structures. Cost reduction 

decisions taken to reduce this complexity may introduce artificial inefficiencies in the on-chip 

cache hierarchy, especially when the number of cores and private cache size is large. The 

coherence protocol presented in this Chapter, denoted MOSAIC, introduces a new approach to 

tackle this problem. In energy terms, the protocol scales like a conventional directory coherence 

protocol, but relaxes the shared information inclusiveness. This allows the performance 

implications of directory size and associativity reduction to be overcome. MOSAIC demonstrates 

that inclusiveness is escapable and can be removed from a directory coherence protocol, while 

maintaining the complexity constrained. In fact, MOSAIC is even simpler than a conventional 

directory. The results of our evaluation show that the approach is quite insensitive, in terms of 

performance and energy expenditure, to the size and associativity of the directory. 
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Chapter 6. Conclusions and Future Work 

In this chapter we will present the main conclusions of this thesis, the publications directly 

derived from it and those that it has spawned. To finish up, we will describe the main research 

lines for the near future.  

6.1 Conclusions 

The main conclusions of this work are obviously associated with the different aspects that have 

guided its development and the results obtained from the proposals made.  

Coherence protocols. Complexity 

Although throughout this whole document complexity has not been given the importance it 

really deserves, it is actually one of the main problems that coherence protocol design entails. 

From the beginning of the protocol development, through the difficult path of the verification 

process, up to the achievement of protocol correctness, the whole process is quite convoluted. 

As has been mentioned before, both the protocol implementations presented in this work were 

developed with the simulator GEMS, using its Specific Language for Cache Coherence 

protocols SLICC [19]. GEMS provided the possibility of performing the initial debugging tasks 

with the tools available in the simulator, i.e. Ruby tester with synthetic and random workloads. 

Thus, it is possible to obtain files with all the information about what is happening in the 

different specified components of the initial simulations (controllers, buffers, SLICC, caches, 

etc.) as well as the consecutive transitions that the coherence protocol controllers change to for 

each address. Fortunately for the designer, SLICC does not let you cheat when implementing 

the protocol, which reduces the possibilities of making mistakes while designing it and losing 

control of the whole system (although this is a double-edged sword since on some occasions this 

complicates the designer’s work preventing the easy achievement of an approximate estimation 

for new ideas or fast prototyping).  

In any case, the conclusion reached is that the process itself is highly time consuming and 

extremely difficult. For this reason, coherence protocols and solutions to coherence problems 

should be kept simple in order to avoid further complicating the whole development process. 

Many works and proposals, associated with coherence protocols and not, do not even mention 

this additional complexity and yet, many architectural decisions are made based on this 

complexity.  
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Protocol-network interaction 

From the beginning of the work, it was clear that the relationship between the interconnection 

network and the coherence protocol is significant. It is well-known that the communication 

subsystem becomes critical when considering system performance. However, its relation to 

coherence protocol is less clear. For instance, the availability of hardware mechanisms to handle 

broadcast traffic extends the scalability of any broadcast-based coherence protocol.  

Moreover, trying to optimize the interconnection network in an isolated way by applying an 

excessive restriction to the hardware resource assignment may degrade system performance. For 

this reason, it is advisable to consider the interconnection network and the memory hierarchy 

together when designing large-scale CMPs, while neglecting or omitting the analysis of either 

of them can lead to non proper solutions for the problem presented.  

Trading bandwidth for latency 

Latency, and not bandwidth, is the primary performance constraint in on-chip transactions. Even 

assuming tens of cores executing various threads each and with workloads with a high miss rate, 

it is possible to implement efficient interconnection networks with enough bandwidth. However, 

a large percentage of CMP performance is a consequence of the miss latency, for which the way 

communications are made plays an important role. For this reason, trading bandwidth for 

latency becomes profitable since critical data will reach the processor faster. This means that, as 

long as this trade can be made, it seems advisable to utilize any mechanism that takes advantage 

of all the bandwidth available in order to reduce the final miss latency. For example, using 

broadcast messages to favor cache-to-cache transfers, which have high impact on the full-

system performance, is a way of benefiting from the bandwidth availability in a CMP, as was 

demonstrated with the LOCKE protocol.  

Scalability  

When the number of cores increases, the hardware required to handle coherence problems might 

become impracticable. Even with available bandwidth, broadcast-based mechanisms might 

flood the interconnection network with requests from all the cores and directory-based protocols 

will impose high costs to hold all the coherence information necessary to locate where the data 

is. These two problems justify the existing skepticism about the scalability of systems with 

shared memory and hardware coherence. However, in this thesis MOSAIC, a scalable strategy 

for a high number of cores, is proposed based on three observations. Firstly, it is possible to 

store precise information about where any data are located, but it is not essential to maintain this 

information for all the private blocks in the system. Secondly, it is possible to trade bandwidth 

for storage by using broadcasts to find the data needed when its information is not stored 



Conclusions and Future Work 

 

119 

anywhere. Thirdly, additional mechanisms are needed to limit the two restrictions that affect 

scalability: broadcasting and storing.  

Simulation framework  

Finally, an additional conclusion which is worth highlighting is the importance of the whole 

testing environment for the architectural proposals. Although this is affirmed by all researchers 

in Computer Architecture, in many cases the reality is quite different. Initially, a simplified 

analysis of any proposal can be made, but the amount and variety of parameters that affect the 

behavior of a CMP require its complete simulation, including the operating system, in order to 

reach a reasonable level of reliability in the results. In order to achieve this, it is essential to 

have extensive knowledge of the tools necessary to validate the proposals and a wide variety of 

workloads should be used in order to represent a large set of future applications for the designed 

systems.    

6.2 Future work 

The chip multiprocessor situation, especially the coherency field, has been thoroughly explored 

during this work, contributing some general interest innovations to the field. However, there is 

still a wide variety of research lines waiting to be explored and others that have been opened 

during and since the development of this work. In the previous chapter, a clear line was 

presented for improvement of the MOSAIC protocol, which takes advantage of the majority of 

private blocks in the application executions obtaining some encouraging results. Besides this 

optimization, there are other important ones to be developed which will bring significant 

benefits and improvements to CMPs. In particular there are three important paths to be followed 

immediately after the completion of this thesis: traffic filtering, hierarchical coherence 

protocols, and non-volatile memory. In any case, it must be taken into account that changes in 

this area are so fast that they might modify our research lines.  

Traffic Filtering  

Orienting the research to multi-CMP systems, it seems absolutely necessary to filter the traffic 

that goes both ways in and out of the chips. It is absolutely necessary to augment the directory 

with a filter to predict when a block is "within" the chip and when is not in order to reduce the 

on-chip and off-chip traffic. As was mentioned in the previous chapter, additional filter 

information for each entry in the directory could help to reduce the number of broadcasts and 

would add more accuracy to the directory information. Moreover, adding some filtering for the 

requests traveling off chip will make it possible to use a coherence protocol like MOSAIC in a 

multi-CMP system without having to send massive broadcasts whenever data is not found in the 

directory, while maintaining a hierarchical coherence.  
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Hierarchical Coherence  

When considering architectures with hundreds or thousands of cores, it seems difficult to 

imagine a single logic substrate as a good way of handling the coherence protocol information. 

The most suitable way to organize it seems to be using a hierarchical organization that can take 

advantage of the applications’ locality. If efficient strategies for request filtering are found, it 

seems natural to group processors in order to treat them logically as only one. Thus, a request is 

sent to the whole group when the protocol has the certainty that the group includes in its storage 

space a copy of the data block required. This might lead to the development of hierarchical 

coherence protocols where different protocols work together in order to obtain better 

performance. These protocols might have heterogeneous or homogeneous features. As a 

heterogeneous example, there could be small groups of processors whose internal coherence is 

maintained with a LOCKE protocol, while the whole set of groups could be managed by a 

MOSAIC protocol. Homogeneous is understood as for example, to have a multi-CMP where each 

chip has a “small” MOSAIC protocol inside, while a “larger” MOSAIC might control the 

coherence among all of them.  

Non-volatile memory  

One technological step that can significantly change the memory hierarchy as we consider it 

nowadays is the use of non-volatile memories.  Memories with technologies such as STT-

MRAM, CBRAM, etc. have a combination of characteristics that make them attractive for using 

them in substitution of the DRAM or even SRAM used for the LLC. Their non-volatile features, 

the large density integration and above all, the absence of leakage, could provide very 

significant energy reductions. Therefore, including them inside the chip and combining them 

with 3D stacking would relieve the bandwidth-wall noticeably.  

However, in order to be able to start using these technologies, there are still some important 

issues that must be addressed. For instance, memory writes take too long and increase the 

request latency. Even more seriously, they have an endurance problem since the number of 

writing operations that can be supported before they stop working is much lower than CMOS-

based memories. In all these aspects the coherence protocol can play an important role to 

overcome these limitations because, in the whole system, it has the most information about what 

is being written in the memory and when. 
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Appendix A. Simulation tools 

Currently, simulation is one of the most important parts of any innovation in the computer 

architecture research field. Simulating machines with large levels of detail enable specific 

improvements to be achieved and failures to be found, without having to implement any 

prototype physically. Nevertheless, the acquisition of the necessary tools to accomplish these 

simulations, precise knowledge about them and their maintenance are very time-consuming 

tasks.  

The two proposals presented in this thesis, as well as their counterparts, have been checked and 

proven by using a full-system simulator composed of different simulation tools from different 

developers. Each of them focuses on independent areas of the system, but together they make it 

possible to obtain accurate results about how the proposal would behave in a real and complete 

system. A sketch of the different modules forming the simulation environment is depicted in 

figure. a.  

The main toolset employed for our evaluation is GEMS [19]. It is a modular simulation 

infrastructure that includes Ruby, Opal and additional testing tools. It decouples functionality 

and timing and it is able to perform full-system simulations, including the complete software 

stack. This tool relies on Simics [18], a functional simulator which provides enough fidelity to 

 

 

Figure. A. Complete simulation framework. 
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boot an unmodified operating system, Solaris 10 in our case. On top of the operating system it is 

possible to execute realistic workloads from different benchmark suites. These benchmarks 

allow the simulation of diverse workload behaviors, each with specific characteristics (sharing 

degree, network demand, etc.) that might affect the CMP in very different ways. 

Next, we will give a brief description of each of the simulators and tools of the whole 

framework, a brief summary of the workloads used with their main features and a short 

description of the workflow used. 

A.1. Simics 

Simics is a full system simulator [18] which enables the execution of unmodified operating 

systems that can to run realistic workloads, for a given hardware platform (Sunfire server in our 

case). Simics is in charge of maintaining the execution state and controlling the instructions that 

are executed at any moment. Its functional execution can be complemented with the timing 

details provided by the internal tools (MAI) or when used together with other time modeling 

tools such as GEMS [19]. 

A.2. GEMS 

GEMS [19] (General Execution-driven Multiprocessor Simulator) is a simulation toolset used 

to evaluate multiprocessor hardware systems. Its structure is organized in different modules, it 

being possible to obtain different detail levels in each of the modules simulated. It has been 

developed by Wisconsin University under a GNU General Public License.  

Basically, GEMS is the tool in charge of providing the timing of the application instructions that 

are executed in Simics. It can simulate the key elements that are part of the CMP architecture, 

allowing very accurate timing models to be defined. Its two main modules are Ruby and Opal.   

A.2.1. Ruby 

Ruby is in charge of modeling the system caches and memory and coherence controllers. This 

event-driven memory simulator combines C++ programmed objects, which simulate each of the 

hardware components in the memory hierarchy, with SLICC programmed components. SLICC 

(Specification Language for Implementing Cache Coherence) is a language included in GEMS, 

specifically created to specify new coherence protocols. Both coherence protocols LOCKE and 

MOSAIC, as well as all the other counterparts needed for comparison, have been implemented 

using this special-purpose language. It enables the consistent definition of the coherence 
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controllers’ state machine, specifying the sets of states, events, actions and transitions (see 

chapter 2) needed to implement a coherence protocol.  

Ruby Testing Tools 

Ruby is connected to several simulation drivers which generate the requests that Ruby has to 

manage. One of these important modules (continuously employed in this work) is the random 

tester [134]. Executing pseudo-random memory accesses, it is used to stress the memory system 

and find an important number of errors appearing throughout the coherence protocol 

development. Another useful module is the microbenchmarks set which offers the possibility of 

analyzing the performance of any proposal for some specific conditions, i.e. barriers, contended 

blocks and other deterministic drivers.  

A.2.2. Opal 

The execution done by Simics is sequential which, especially nowadays, makes it indispensable 

to add a module that can provide the timing of a system with several cores each with advanced 

characteristics. In GEMS this task is run by Opal, which enables the simulation of a highly 

configurable out-of-order superscalar processor. As only the most frequently used part of the 

instruction set has been implemented, in this particular case SPARCv9 [135], each time Opal 

executes an instruction the processor status is compared with the one from Simics to ensure that 

it has been correctly done. Discrepancies among their values, which occur in less than 1% of the 

cases, are solved by choosing Simics’ results [136].  

A.3. TOPAZ 

Ruby also includes a simple interconnection network simulator. As well as being simple, it 

models latency and bandwidth for the messages travelling between the memory hierarchy 

components. However, for detailed values when simulating contention, another simulator has to 

be used to add more accuracy. This simulator in our case is TOPAZ [20]. It is a general-purpose 

interconnection network simulator. It enables the detailed modeling of a wide variety of 

message routers, with different tradeoffs between accuracy, simulation speed and precision. The 

simulator includes several standard configurations, but it is possible to implement new 

components in the networks with specific routing and behavior in order to simulate new 

proposals (such as the I-trees included in LOCKE). It is object oriented and it is implemented in 

C++. TOPAZ can be used as a stand-alone tool with synthetic loads or with GEMS, substituting 

its interconnection network simulator and giving very detailed network results when needed.  
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A.4. Power tools: CACTI and Orion 

One of the most essential aspects of any new architecture proposal is its energy consumption. 

For this reason, tools that enable these values to be obtained are indispensable in any 

architecture simulation framework. The one used in this work includes CACTI [137] and Orion 

[138] for this purpose.  

CACTI is the tool used for modeling the dynamic power, access time, area and leakage power 

of caches and other memories. The versions used in this thesis are 5.0 and 6.5 for LOCKE and 

MOSAIC respectively. 

Orion 2.0 augments the TOPAZ simulator in order to estimate the network energy consumption 

of the new components. This tool is a suite of dynamic and leakage power models developed for 

various architectural components of on-chip networks, enabling rapid power-performance 

tradeoffs at the architectural level. 

A.5. Workloads 

Table. A shows a list of the applications used to analyze the performance of both coherence 

protocol proposals provided in this thesis. Both types, multiprogrammed and multi-threaded 

applications are considered, all running on top of the Solaris 10 OS.  

The server benchmarks correspond to the whole Wisconsin Commercial Workload suite [129]. 

The numerical applications correspond to the NAS Parallel Benchmark suite (OpenMP 

implementation  version 3.2) [139]. Three benchmarks of the PARSEC suite were chosen [140]. 

The remaining type corresponds to multi-programmed workloads using part of the SPEC 

CPU2006 suite [141] running in rate mode (where one core is reserved to run OS services).  

All benchmarks are fast-forwarded to the point of interest during which page tables, TLBs, 

predictors and caches are warmed up. In iteration-based applications, such as NPB, a warm 

checkpoint is taken in the middle of the execution, with a reduced number of iteration runs. 

Transactional workloads are warmed up by running hundreds of thousands of transactions. 

Moreover, each application is simulated multiple times with random perturbations in memory 

access time in order to reach 95% of confidence intervals.  

The chosen workloads have been selected trying to cover diverse use scenarios, varying the 

sharing degree (from none in SPEC applications to a large amount in Server Workloads) and 

sharing contention (from none in SPEC to a large amount in scientific applications). Among the 

NAS applications, we chose the ones with the highest sharing contention. From the SPEC suite, 

we chose applications with a variable range in working set size. 



Simulation tools 

 

125 

Table. A. Multithreaded and multiprogrammed workloads. 

M
u

lt
it

h
re

ad
e

d
 

Wisconsin 

Commercial 

Workload 

Apache  
Apache web server, Spec Web like, 25000 

transactions 

Zeus SpecWeb like, 25000 transactions 

Jbb SpecJBB 70000 Transactions 

OLTP IBM DB2 DBMS, TPC-C like, 10000 transactions 

NAS Parallel 

Benchmarks 

FT Fast Fourier Transform – class W 

CG Class A 

LU  LU Diagonalization – class A 

IS Integer Sort – class A 

PARSEC 

blackscholes Native 

canneal Native 

fluidanimate Native 

M
u

lt
ip

ro
gr

am
m

ed
 

SPEC 2006 

astar Native [7 threads in 8 proc; 15 threads in 16 proc] 

hmmer Native [7 threads in 8 proc; 15 threads in 16 proc] 

ommetpp Native [7 threads in 8 proc; 15 threads in 16 proc] 

lbm Native [7 threads in 8 proc; 15 threads in 16 proc] 

 

A.6. Short description of the Workflow 

As a summary of how all the modules of the simulation framework introduced in this appendix 

are used, a brief description of all the steps that are usually taken to develop any new coherence 

protocol proposal (from the moment it seems viable) were:  

a) Definition of the state transition table for each coherence controller of the new protocol 

(private levels, LLC and main memory).  
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b) Implementation with SLICC of all the state machines necessary to accomplish all the 

specifications defined in the transition tables.  

c) Customize the cache values.  

 Ruby for cache sizes, associativity and the rest of the architecture parameters.  

 Opal for the core characteristics.  

 TOPAZ or Ruby for the network parameters, depending on the expected detail.  

 CACTI for access cycles, network parameters with Ruby or TOPAZ 

d) Use of the testing tools (random tester and microbenchmarks) for the initial verification 

process. This step is the one that takes the largest amount of effort, because it includes 

long debugging processes to find the exact situation that causes all the errors appearing 

in the protocol. In most situations, their consequent protocol fixes will mean new 

coherence situations which will require starting the whole debugging process again 

from the beginning.  

e) Selection of the workload sets and their execution parameters. 

f) Fixing new anomalies appearing due to corner cases that the execution of real 

applications exposes.  

g) Analysis of the proposal performance (execution time, latencies, traffic, energy, etc.). 

Finally, the whole simulation process has a high complexity and the total number of parameters 

that have to be considered is large. Moreover, the global simulation times are quite long, as is 

each iteration of the design process, and they take even longer as the development advances 

(days, or weeks in some extreme cases, to obtain reliable values). However, the high reliability 

of the results obtained with such a complex framework makes it worth the enormous effort that 

is required to use it correctly. 
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