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Abstract. In this paper we are concerned with a distributed optimal control problem governed by
an elliptic partial differential equation. State constraints of box type are considered. We show that the
Lagrange multiplier associated with the state constraints, which is known to be a measure, is indeed
more regular under quite general assumptions. We discretize the problem by continuous piecewise linear
finite elements and we are able to prove that, for the case of a linear equation, the order of convergence
for the error in L2(Ω) of the control variable is h| log h| in dimensions 2 and 3.
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1. Introduction

This paper deals with the following optimal control problem

(P) min
u∈Uad

J(u),

where
J(u) =

1
2

∫
Ω

(yu(x) − yd(x))2 dx+
ν

2

∫
Ω

u2(x) dx,

Uad = {u ∈ L2(Ω) : a(x) ≤ yu(x) ≤ b(x) for all x ∈ Ω},
and yu is the solution of the Dirichlet problem{

Ay = u in Ω,
y = 0 on Γ,

(1.1)

A being an elliptic operator.
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The inherent difficulty of these control problems is the fact that the Lagrange multiplier associated with
the state constraints is a Borel measure μ̄ in Ω ⊂ R

n. This leads to an adjoint state ϕ̄ ∈ W 1,s
0 (Ω) for every

1 ≤ s < n
n−1 . In this paper, under mild assumptions, we prove that the adjoint state ϕ̄ belongs to H1(Ω)∩L∞(Ω)

and μ̄ ∈ H−1(Ω). This implies, in particular, that Dirac measures are excluded as Lagrange multipliers for n > 1.
As a consequence we also obtain the H1(Ω) ∩ L∞(Ω) regularity for the optimal control ū. As far as we know,
H1(Ω) regularity results for ū were proved in [11], where the presence of pointwise control constraints played a
crucial role in the proof. However, no additional regularity for the adjoint state ϕ̄ and the Lagrange multiplier
μ̄ was obtained there. Our regularity result has been inspired by a recent result by Pieper and Vexler [27] for a
sparse control problem with controls in a measure space.

We use this new regularity result to improve the error estimates for the finite element discretization of the
control problem. For the error between the optimal control ū and its discrete counterpart ūh we prove an
estimate of order O(h|log h|) for both the two and three dimensional case.

Error estimates for optimal control problems with state constraints governed by elliptic equations are derived
in several publications. In [9, 10, 22] error estimates are given for optimal control problems with finitely many
state constraints. In Deckelnick and Hinze [15,16] error estimates of order h1−ε in 2d and h

1
2−ε in 3d are derived

for a problem with pointwise state constraints, see also Meyer [26] for a proof of similar results with a different
technique. These estimates are obtained for domains with smooth boundary Γ . For a convex polygonal domain,
Meyer [26] obtains an order of O(hλ) where λ ∈ (1/2, 1) depends on the biggest interior angle of Ω. For the three
dimensional case an improvement to h

3
4 is achieved in Rösch and Steinig [28] and an estimate of order h|log h|

is shown in [21] for a problem with control and state constraints. For the proof of the later result the presence of
control constraints ensuring the uniform boundedness of ū and ūh plays a crucial role. Liu, Gong and Yan [23]
and Gong and Yan [19] treat problem (P) by transforming it into a biharmonic obstacle problem. They deal
with the linear-quadratic case and the Laplace operator in dimension 2. For the error analysis, they suppose
that Ω is polygonal, the obstacle is in H4(Ω) and, following [3], some extra assumptions on the active set are
needed to have the adjoint state in H1

0 (Ω). Discretization is made with the nonconforming Morley finite element
in the first reference and with Lagrange P1 finite elements in the second one. They prove O(h) convergence for
the Morley finite element. For P1 elements they obtain again O(h) in superconvergent meshes, and O(h1/2) in
quasi-uniform meshes. These results are valid if the optimal state is in H3(Ω).

This means that our result improves the known estimate of almost order O(h
1
2 ) to O(h|log h|) for a purely

state-constrained problem in the three dimensional case and also for plane polygonal convex domains, where in
general the optimal state is only in H2+α(Ω), for some α ∈ (0, 1) depending on the biggest interior angle of the
domain (see, e.g. [20], Thm. 5.1.1.4, or [4] for a general regularity result about the biharmonic operator).

The plan of this paper is as follows. In Section 2 we recall the optimality system and we discuss some
consequences of it. In particular, the structure of the Lagrange multiplier μ̄ is studied. Section 3 is devoted to
the proof of our main regularity result. In Section 4 we consider some extensions of this result to more general
control problems. In particular, the case of semilinear state equations is considered. The error estimates for the
finite element approximations are proved in Section 5 and some numerical examples confirming these estimates
are given in Section 6.

2. Assumptions and preliminary results

Concerning the Dirichlet problem (1.1) we make the following hypotheses.

Assumption 2.1. Ω denotes an open bounded subset of R
n, n = 2 or 3, with a Lipschitz boundary Γ . A is

the linear operator

Ay = −
n∑

i,j=1

∂xj [aij(x) ∂xiy] + a0(x)y,
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with aij , a0 ∈ L∞(Ω), a0(x) ≥ 0 for almost all x ∈ Ω. Furthermore, there exists some Λ > 0 such that

n∑
i,j=1

aij(x) ξi ξj ≥ Λ |ξ|2 for a.a. x ∈ Ω and ∀ξ ∈ R
n.

Some additional regularity will be required for Ω, Γ and the coefficients aij in the section devoted to the
numerical approximation.

Under this assumption, it is well known that for every u ∈ H−1(Ω) equation (1.1) has a unique solution in
the Sobolev space H1

0 (Ω). This solution will be denoted by yu. Moreover, if u ∈W−1,p(Ω) for some p > n, then
yu belongs to the Hölder space Cθ(Ω̄) for some 0 < θ < 1 depending on p; see [18], Theorem 8.29. We also have
the estimate {

‖yu‖H1
0 (Ω) ≤M0‖u‖H−1(Ω),

‖yu‖Cθ(Ω̄) ≤Mp‖u‖W−1,p(Ω).
(2.1)

Since n = 2 or 3, we have that L2(Ω) ⊂W−1,p(Ω), with continuous embedding, for any p <∞ if n = 2 and any
p ≤ 6 if n = 3. Hence, the above estimates remain valid replacing the norm of u in the corresponding Sobolev
space by the L2(Ω)-norm, with the obvious changes of the constants M0 and Mp.

Assumption 2.2. Along this paper yd is an element of L2(Ω) and ν > 0. We also assume the following
hypotheses on the functions a and b.

a, b ∈ C(Ω̄). (2.2a)
a(x) < b(x) ∀x ∈ Ω̄. (2.2b)
a(x) < 0 < b(x) ∀x ∈ Γ. (2.2c)
Aa,Ab ∈ L∞(Ω). (2.2d)

Associated with these data we define the set

Yab = {y ∈ C0(Ω) : a(x) ≤ y(x) ≤ b(x) ∀x ∈ Ω},

where C0(Ω) is the space of continuous functions in Ω̄ vanishing on Γ . Then, the admissible control set can be
rewritten as follows

Uad = {u ∈ L2(Ω) : yu ∈ Yab}.

Notice that the assumptions (2.2a)−(2.2d) hold if a and b are constants satisfying a < 0 < b. This is the
case for the typical state constraint |yu(x)| ≤ δ. The assumptions (2.2a)−(2.2c) are natural and similar to
assumptions usually required for optimal control problems with state constraints. The additional regularity
assumption (2.2d) is crucial for our main regularity result, see Theorem 3.1, as well as for the error estimate,
see Corollary 5.7.

It is obvious that the control problem (P) is strictly convex. Hence, it has at most one solution. The existence
of a solution can be proved by standard arguments. Hereafter, ū will denote the solution of (P) and ȳ the
corresponding state. Before establishing the first-order optimality conditions fulfilled by the optimal control ū,
we introduce some notation. We denote by M(Ω) the space of real and regular Borel measures in Ω, which is
identified with the dual of C0(Ω). This is a Banach space for the norm

‖μ‖M(Ω) = |μ|(Ω) = sup
y∈C0(Ω),‖y‖∞≤1

∫
Ω

y dμ.

Above |μ| denotes the total variation measure corresponding to μ. We also consider the Jordan decomposition
μ = μ+ − μ−. Then, we know that |μ| = μ+ + μ−; see, for instance, Rudin ([29], Chap. 6), for details.
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Theorem 2.3. Under the Assumptions 2.1 and (2.2a)–(2.2c), there exist a measure μ̄ ∈ M(Ω) and an element
ϕ̄ ∈W 1,s

0 (Ω), for every 1 ≤ s < n
n−1 , such that

{
Aȳ = ū in Ω,

ȳ = 0 on Γ,
(2.3a)

{
A∗ϕ̄ = ȳ − yd + μ̄ in Ω,

ϕ̄ = 0 on Γ,
(2.3b)∫

Ω

(y − ȳ) dμ̄ ≤ 0 ∀y ∈ Yab, (2.3c)

ϕ̄+ νū = 0, (2.3d)

where A∗ is the adjoint operator of A, given by the expression

A∗ϕ = −
n∑

i,j=1

∂xj [aji(x) ∂xiϕ] + a0(x)ϕ.

Moreover, the Lagrange multiplier μ̄ and the adjoint state ϕ̄ are unique.

Proof. First, let us prove the uniqueness of ϕ̄ and μ̄. The uniqueness of ϕ̄ follows from the uniqueness of ū
and (2.3d). Hence, (2.3b) implies the uniqueness of μ̄ as a distribution, which is equivalent to the uniqueness of
μ̄ as a measure.

The existence of μ̄ and ϕ̄ satisfying (2.3b)−(2.3d) is well known under the assumption of the Slater condition,
see, for instance, [6]. Let us check that the Slater condition is fulfilled:

∃u0 ∈ L2(Ω) such that a(x) < yu0(x) < b(x) ∀x ∈ Ω̄.

Define
ρ1 = min

x∈Ω̄
(b(x) − a(x)),

Due to (2.2a) and (2.2b), we have that ρ1 > 0. Moreover, using (2.2c) we can find ε > 0 and ρ2 > 0 such that

a(x) < −ρ2 < ρ2 < b(x) ∀x ∈ Ω̄ such that d(x, Γ ) < ε. (2.4)

Set ρ = min{ρ1, ρ2}. Now, we use Uryshon’s lemma to obtain a function φ ∈ C0(Ω) such that

0 ≤ φ ≤ 1 and φ(x) =

{
0 if d(x, Γ ) ≤ ε

2
,

1 if d(x, Γ ) ≥ ε.

Setting aφ = φa and bφ = φb, we have that aφ, bφ ∈ C0(Ω) and

a(x) ≤ aφ(x) ≤ bφ(x) ≤ b(x) ∀x ∈ Ω̄.

We know that the space C∞
0 (Ω) of smooth functions having a compact support inΩ is dense in C0(Ω). Therefore,

we can select one of these functions, denoted by y, such that∥∥∥∥y − 1
2
(aφ + bφ)

∥∥∥∥
L∞(Ω)

<
ρ

4
·

It is obvious that Ay ∈W−1,p(Ω) for every p ≥ 1. Fix some p ∈ (n,+∞) and take u0 ∈ Lp(Ω) such that

‖u0 −Ay‖W−1,p(Ω) <
ρ

4Mp
,
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where Mp is given by (2.1). Let us prove that u0 satisfies the Slater assumption. First, we observe∥∥∥∥yu0 −
1
2
(aφ + bφ)

∥∥∥∥
L∞(Ω)

≤ ‖yu0 − y‖L∞(Ω) +
∥∥∥∥y − 1

2
(aφ + bφ)

∥∥∥∥
L∞(Ω)

< Mp‖u0 −Ay‖W−1,p(Ω) +
ρ

4
<
ρ

2
· (2.5)

To prove that a(x) < yu0(x) < b(x) in Ω̄ we distinguish three cases.

Case I. d(x, Γ ) ≤ ε
2 . In this case, aφ(x) = bφ(x) = 0, therefore (2.4) and (2.5) lead to

a(x) < −ρ2 ≤ −ρ < yu0(x) < ρ ≤ ρ2 < b(x).

Case II. d(x, Γ ) ≥ ε. For this x we have that aφ(x) = a(x) and bφ(x) = b(x). From the definition of ρ1 and ρ
we get

−ρ ≥ −ρ1 ≥ a(x) − b(x) and ρ ≤ ρ1 ≤ b(x) − a(x).

Thus, we obtain with (2.5)

a(x) ≤ 1
2
(a(x) + b(x)) − ρ1

2
≤ 1

2
(aφ(x) + bφ(x)) − ρ

2
< yu0(x)

<
1
2
(aφ(x) + bφ(x)) +

ρ

2
≤ 1

2
(a(x) + b(x)) +

ρ1

2
≤ b(x).

Case III. ε
2 < d(x, Γ ) < ε. Using again (2.4) and (2.5), it follows

a(x) ≤ 1
2
aφ(x) +

1
2
a(x) ≤ 1

2
(aφ(x) + bφ(x)) − ρ2

2

≤ 1
2
(aφ(x) + bφ(x)) − ρ

2
< yu0(x) <

1
2
(aφ(x) + bφ(x)) +

ρ

2

≤ 1
2
(aφ(x) + bφ(x)) +

ρ2

2
≤ 1

2
bφ(x) +

1
2
b(x) ≤ b(x). �

Remark 2.4. Let us notice that the assumption (2.2d) was not necessary for the proof of the Slater condition.
We only used the assumptions (2.2a)−(2.2c). Moreover, the proof can be simplified if we assume that the
coefficients aij of the operator A are Lipschitz continuous in Ω̄. Indeed, under this assumption, if we take φ of
class C2 in Ω and satisfying the conditions of the proof, then u0 = A[12 (aφ + bφ)] ∈ L2(Ω) satisfies the Slater
condition. Furthermore, if a and b are constants, with a < 0 < b, then u0 = 0 satisfies the Slater condition.

Regarding the adjoint state equation (2.3b), some explanation is necessary. Following Stampacchia [31], given
a measure μ ∈ M(Ω), we say that an element ϕ ∈ L1(Ω) is a solution of the Dirichlet problem{

A∗ϕ = μ in Ω,
ϕ = 0 on Γ,

(2.6)

if ∫
Ω

ϕAz dx =
∫

Ω

z dμ ∀z ∈ Z,

with
Z = {z ∈ H1

0 (Ω) : Az ∈ C0(Ω)}.

Using again ([18], Thm. 8.29), we deduce that Z ⊂ C0(Ω), hence the above integrals are well defined. With this
definition, we know that there exists a unique solution that additionally belongs to W 1,s

0 (Ω) for every s < n
n−1 .
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Moreover, if E denotes the support of μ, then ϕ ∈ H1
loc(Ω \ E) ∩ C(Ω̄ \ E), and for any compact K ⊂ Ω \ E

the following estimate holds
‖ϕ‖C(K) ≤ CK‖μ‖M(Ω), (2.7)

see ([31], Thm. 9.3). Of course, all these properties are enjoyed by ϕ̄.
The following complementarity result is well known, but we have not found any proof in the literature for

the case of non-constant bounds a and b. For the sake of completeness we give a proof, see also e.g. [6] for the
proof in the case of constant bounds.

Proposition 2.5. Let a, b be two functions satisfying (2.2a)–(2.2c) and let ȳ ∈ C0(Ω) and μ̄ ∈ M(Ω) sat-
isfy (2.3c). Then, the following embeddings hold{

supp μ̄+ ⊂ {x ∈ Ω : ȳ(x) = b(x)},
supp μ̄− ⊂ {x ∈ Ω : ȳ(x) = a(x)}, (2.8)

where μ̄ = μ̄+ − μ̄− is the Jordan decomposition of μ̄.

Proof. Let us denote

Ka = {x ∈ Ω : ȳ(x) = a(x)} and Kb = {x ∈ Ω : ȳ(x) = b(x)}.

For every integer k ≥ 1, we set

Ωk =
{
x ∈ Ω : a(x) +

1
k
< ȳ(x) < b(x) − 1

k

}
.

From the assumptions (2.2a)−(2.2c) we infer that Ωk is a nonempty open set for every k sufficiently large.
Let us take an arbitrary element y ∈ C0(Ωk) such that ‖y‖∞ ≤ 1. We extend y by zero to Ω and denote this
extension again by y. Then, y ∈ C0(Ω) and yk = ȳ + 1

ky ∈ Yab, hence (2.3c) implies∫
Ωk

y dμ̄ = k

∫
Ω

(yk − ȳ) dμ̄ ≤ 0.

This implies that |μ̄|(Ωk) = 0 for every k, therefore

|μ̄|(Ω \ (Ka ∪Kb)) = lim
k→∞

|μ̄|(Ωk) = 0.

This means that the support of μ̄ is contained in Ka ∪Kb. It is enough to prove that μ̄ is nonnegative on Kb

and nonpositive on Ka to conclude (2.8). We show that μ̄ is nonpositive on Ka; the proof of the nonnegativity
of μ̄ on Kb is analogous. Take a number ρ satisfying

0 < ρ <
1
2

inf
x∈Ω̄

(b(x) − a(x)).

This choice is possible thanks to (2.2a)−(2.2c). Now, we define the sets

Ωa = {x ∈ Ω : ȳ(x) < a(x) + ρ} and Ωb = {x ∈ Ω : ȳ(x) > b(x) − ρ}.

Since ȳ ∈ C0(Ω), we get with (2.2a)−(2.2c) that Ωa and Ωb are open sets and

Ka ⊂ Ωa, Kb ⊂ Ωb and Ω̄a ∩ Ω̄b = ∅.

Let y ∈ C(Ka)\{0} be a nonnegative function. Using Tietze’s extension theorem, we can extend y to Ω, denoted
y again, in such a way that supp y ⊂ Ωa. Moreover, taking max{y(x), 0}, we can assume that y ≥ 0 in Ω. Then,
we have

yρ = ȳ +
ρ

‖y‖∞
y ∈ Yab.
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Indeed, if x 
∈ Ωa, then yρ = ȳ and a(x) ≤ yρ(x) ≤ b(x). If x ∈ Ωa, the definition of ρ and Ωa implies

a(x) ≤ ȳ(x) ≤ yρ(x) ≤ ȳ(x) + ρ < a(x) + 2ρ < b(x).

Finally, from supp y ⊂ Ωa, supp μ̄ ⊂ Ka ∪Kb and (2.3c) it follows∫
Ka

y dμ̄ =
∫

Ω

y dμ̄ =
‖y‖∞
ρ

∫
Ω

(yρ − ȳ) dμ̄ ≤ 0.

Since this inequality holds for every nonnegative function y ∈ C(Ka), we conclude that μ̄ is nonpositive on Ka,
as desired. �

The classical regularity result for ū is deduced from the equality (2.3d): ū ∈W 1,s
0 (Ω) for every 1 ≤ s < n

n−1 .
In the next section, we will show that ū ∈ H1

0 (Ω).

3. A regularity result for the adjoint state ϕ̄ and the lagrange multiplier μ̄

The goal of this section is to prove the following theorem.

Theorem 3.1. Under the Assumptions 2.1 and 2.2, the following regularity result holds:

ϕ̄, ū ∈ H1
0 (Ω) ∩ L∞(Ω) and μ̄ ∈ M(Ω) ∩H−1(Ω).

We state two auxiliary lemmas before proving the theorem.

Lemma 3.2. Let μ ∈ M(Ω) be a positive measure with a compact support in Ω and ϕ ∈ W 1,s
0 (Ω) be the

solution of (2.6). Define

ϕ∗(x) :=
∫

Ω

gA(x, ξ) dμ(ξ) ∀x ∈ Ω,

where gA is Green’s function corresponding to the Dirichlet problem (2.6). Then, we have that

ϕ ∈ L∞(Ω) ⇔ sup
x∈supp μ

ϕ∗(x) <∞.

Proof. For the case A = −Δ this lemma is proven in [27]. For the general case, let us consider the solution
z ∈W 1,s

0 (Ω) of the Dirichlet problem {−Δz = μ in Ω,
z = 0 on Γ.

Observe that the positivity of μ implies that ϕ and z are nonnegative almost everywhere in Ω. Moreover, since
A∗ϕ = Δz = 0 in the open set Ω \ suppμ and ϕ = z = 0 on Γ , we deduce that ϕ, z ∈ C(Ω̄ \ suppμ). Therefore,
given ε > 0 we can choose a compact set Kε such that suppμ ⊂ Kε ⊂ Ω and

ϕ(x) + z(x) < ε for a.a. x ∈ Ω \Kε. (3.1)

We know from [31] that there exists a positive number Cε such that

1
Cε
g(x, ξ) ≤ gA(x, ξ) ≤ Cε g(x, ξ) ∀x, ξ ∈ Kε,

where g denotes the Green’s function associated with the Dirichlet problem corresponding to −Δ. Analogously
to ϕ∗ we define

z∗(x) =
∫

Ω

g(x, ξ) dμ(ξ).
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Integration with respect to μ in the above inequalities and taking into account that μ ≥ 0 and suppμ ⊂ Kε

yields for all x ∈ Kε

1
Cε
z∗(x) =

1
Cε

∫
Ω

g(x, ξ) dμ(ξ) =
1
Cε

∫
Kε

g(x, ξ)dμ(ξ) ≤
∫

Kε

gA(x, ξ) dμ(ξ)

=
∫

Ω

gA(x, ξ) dμ(ξ) = ϕ∗(x) ≤ Cε

∫
Kε

g(x, ξ) dμ(ξ) = Cε z
∗(x).

Since ϕ = ϕ∗ almost everywhere in Ω, these inequalities imply that

ϕ ∈ L∞(Ω) ⇔ ϕ∗ ∈ L∞(Ω) ⇔ z∗ ∈ L∞(Ω) ⇔ sup
x∈supp μ

z∗(x) <∞,

where the last equivalence is due to a result by Pieper and Vexler [27].
Finally, the inequalities

1
Cε
z∗(x) ≤ ϕ∗(x) ≤ Cεz

∗(x) ∀x ∈ suppμ ⊂ Kε

and the above equivalences imply that

sup
x∈supp μ

ϕ∗(x) <∞ ⇔ sup
x∈supp μ

z∗(x) <∞ ⇔ ϕ ∈ L∞(Ω). �

For any function ϕ and α ≤ β, we denote Proj[α,β](ϕ)(x) = min{max{α, ϕ(x)}, β}.

Lemma 3.3. Let μ ∈ M(Ω) and let ϕ ∈ W 1,s
0 (Ω) for all s < n/(n − 1) be the solution of (2.6). Then,

Proj[−M,M ](ϕ) ∈ H1
0 (Ω) for every M > 0.

Proof. This result can be deduced from ([14], Thm. 10.1 and Eq. (2.22)) or ([17], Eq. (7)). For convenience, we
provide the reader with a simple proof.

Let us take a sequence of functions {μk}k ⊂ L2(Ω), such that μk
∗
⇀ μ in M(Ω) and ‖μk‖L1(Ω) ≤ ‖μ‖M(Ω).

Let ϕk ∈ H1
0 (Ω) be the unique solution of {

A∗ϕk = μk in Ω,

ϕk = 0 on Γ.

Due to the compact embedding of M(Ω) into W−1,s(Ω) for all s < n
n−1 , we have that ϕk → ϕ strongly in

W 1,s(Ω). Take M > 0 fixed and define ϕM
k = Proj[−M,M ](ϕk). By the continuity of Proj[−M,M ] : W 1,s(Ω) →

W 1,s(Ω) we also have

lim
k
ϕM

k = Proj[−M,M ](ϕ) strongly in W 1,s
0 (Ω) ∀ 1 ≤ s <

n
n − 1

· (3.2)

On the other hand, using the uniform ellipticity of the operator A∗, we have

Λ‖∇ϕM
k ‖2

L2(Ω) ≤
n∑

i,j=1

∫
Ω

aij(x)∂xjϕ
M
k ∂xiϕ

M
k dx+

∫
Ω

a0(x)ϕM
k ϕM

k dx

≤
n∑

i,j=1

∫
Ω

aij(x)∂xjϕk∂xiϕ
M
k dx+

∫
Ω

a0(x)ϕkϕ
M
k dx

=
∫

Ω

μkϕ
M
k dx ≤ ‖ϕM

k ‖L∞(Ω)‖μk‖L1(Ω) ≤M‖μ‖M(Ω).

Therefore the sequence {ϕM
k }k is bounded in H1

0 (Ω) and there exist ϕM ∈ H1
0 (Ω) and a subsequence of {ϕM

k }k,
denoted in the same way, such that ϕM

k ⇀ ϕM weakly in H1
0 (Ω). Using this fact and (3.2) we readily have that

Proj[−M,M ](ϕ) = ϕM ∈ H1
0 (Ω). �
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Proof of Theorem 3.1. Let us consider the Jordan decomposition of μ̄: μ̄ = μ̄+ − μ̄−. We also decompose

ϕ̄ = ϕ0 + ϕ+ − ϕ−

where ϕ0, ϕ+ and ϕ− are the solutions of (2.6) with right hand side equal to ȳ − yd, μ̄+ and μ̄−, respectively.
Since ȳ − yd ∈ L2(Ω), then we know that ϕ0 ∈ H1

0 (Ω) ∩ C(Ω̄). We will prove that ϕ+ ∈ L∞(Ω), the proof of
the boundedness of ϕ− being analogous, which implies the boundedness of ϕ̄. Then, the H1

0 (Ω)-regularity of ϕ̄
follows from Lemma 3.3. The proof of the theorem is concluded by (2.3b) and (2.3d): μ̄ = A∗ϕ̄−ȳ+yd ∈ H−1(Ω)
and ū = − 1

ν ϕ̄ ∈ H1
0 (Ω) ∩ L∞(Ω).

Let us prove the boundedness of ϕ+. First, we observe that ϕ+ and ϕ− are nonnegative functions and
ϕ− ∈ C(Ω̄ \ supp μ̄−). By Lemma 3.2, we have that ϕ+ ∈ L∞(Ω) if and only if ϕ∗

+ is upper bounded in supp μ̄+,
where ϕ∗

+ is defined as in Lemma 3.2 by

ϕ∗
+(x) :=

∫
Ω

gA(x, ξ) dμ+(ξ) ∀x ∈ Ω.

We argue by contradiction and we assume that ϕ∗
+ is not bounded in supp μ̄+. Take 0 < ρ < 1 such that

a(x) < ρb(x) for every x ∈ Ω̄. The existence of ρ follows from (2.2a) and (2.2c). We define the compact set

K = {x ∈ Ω : ȳ(x) ≥ ρb(x)} .

By (2.7) and (2.8) we have
‖ϕ−‖C(K) ≤ CK‖μ̄−‖M(Ω).

Let us set
M = ‖ϕ0‖C(K) + CK‖μ̄−‖M(Ω) + ν

(
‖a0‖L∞(Ω)‖b− a‖L∞(Ω) + ‖Ab‖L∞(Ω)

)
.

Since ϕ∗
+ is not bounded in supp μ̄+, there exists an element x0 ∈ supp μ̄+ such that ϕ∗

+(x0) > M . From the
positivity of Green’s function gA we deduce, with Fatou’s Lemma, that ϕ∗

+ is lower semicontinuous. Hence, the
set {x ∈ Ω : ϕ∗

+(x) > M} is open. Let us take ε > 0 such that ϕ∗
+(x) > M ∀x ∈ Bε(x0) and Bε(x0) ⊂ K.

Therefore, we have for almost every x ∈ Bε(x0)

ϕ̄(x) = ϕ0(x) + ϕ∗
+(x) − ϕ∗

−(x)
> M − ‖ϕ0‖C(K) − ‖ϕ∗

−‖C(K)

≥ ν
(
‖a0‖L∞(Ω)‖b− a‖L∞(Ω) + ‖Ab‖L∞(Ω)

)
.

We consider the difference ỹ = ȳ − b. There holds ỹ ≤ 0 and due to the fact that x0 ∈ supp μ̄+ we have by
Proposition 2.5 that ỹ(x0) = ȳ(x0)− b(x0) = 0 takes its maximum at x = x0. Now, (2.2a), (2.2d) and the above
inequality imply

−
n∑

i,j=1

∂xj [aij(x) ∂xi(ỹ(x))] = ū(x) − a0(x)(ȳ(x) − b(x)) −Ab

= −1
ν
ϕ̄(x) − a0(x)(ȳ(x) − b(x)) − Ab

< −‖a0‖L∞(Ω)‖b− a‖L∞(Ω) − a0(x)(ȳ(x) − b(x)) ≤ 0

for almost all x ∈ Bε(x0). Hence, the maximum principle implies that ỹ is constant in the ball Bε(x0), which
contradicts the above inequality. �

Remark 3.4. The assumptions (2.2a)−(2.2c) are quite natural for the study of pointwise state constraints.
However, the assumption (2.2d) is unusual, but it is necessary to prove the regularity results of Theorem 3.1.
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Indeed, Theorem 3.1 can fail if it does not hold. There are several examples in the literature where the multipliers
μ̄ are Dirac measures; see e.g. ([24], Sect. 8.1), ([25], Sect. 6.2) or [12]. In these examples, Ab 
∈ L2(Ω). We
provide an example of a linear quadratic control problem such that Ab ∈ Lp(Ω) for all p < +∞, and however
the Lagrange multiplier is a Dirac measure.

Consider Ω = B1(0) ⊂ R
2 the unit ball, yd ≡ 1, ν = 1 and A = −Δ. Let ũ be the solution of the unconstrained

linear quadratic control problem

(P̃ ) min
u∈L2(Ω)

J(u) =
1
2
‖yu − yd‖L2(Ω) +

1
2
‖u‖2

L2(Ω).

Let ỹ = yũ. From the optimality system

−Δỹ = −ϕ̃, −Δϕ̃ = ỹ − 1 in Ω, ỹ = ϕ̃ = 0 on Γ, ũ = −ϕ̃ in Ω,

we deduce that ỹ 
≡ 0. Now, consider the point x0 = (0, 0) and take some b < ỹ(x0). We define the problem
with a state constraint only at the point x0

(P0) min
u∈Uad

J(u), with Uad = {u ∈ L2(Ω), yu(x0) ≤ b}.

This problem has a unique solution ū with related state ȳ. Moreover, the state constraint at x0 is attained:
ȳ(x0) = b. Indeed, if ȳ(x0) < b, then μ̄ = 0 and ū would satisfy the optimality system for problem (P̃ ). Therefore,
ū would be a solution of the unconstrained problem (P̃ ), and by uniqueness ū = ũ. This would imply ȳ(x0) > b,
which is a contradiction. The optimality system for (P0) reads like

−Δȳ = −ϕ̄, −Δϕ̄ = ȳ − 1 + λ̄δx0 in Ω, ȳ = ϕ̄ = 0 on Γ, ū = −ϕ̄ in Ω,

and λ̄ ∈ R, λ̄ > 0. Again, if λ̄ = 0 we would have ū = ũ leading to a contradiction. Recall that n = 2; then
we have that ϕ̄ ∈ W 1,s(Ω) for all s < 2 and hence ϕ̄ ∈ Lp(Ω) for all p < ∞, but ϕ̄ 
∈ L∞(Ω). Therefore, we
conclude that −Δȳ ∈ Lp(Ω) for all p <∞, but −Δȳ 
∈ L∞(Ω).

Consider b(x) = ȳ(x) + |x|2, where |x| denotes the Euclidean norm of x in R
2 and the problem

(P) min
u∈Uad

J(u), with Uad = {u ∈ L2(Ω), yu(x) ≤ b(x) ∀x ∈ Ω}.

The function b satisfies the assumptions (2.2a)−(2.2c), but not (2.2d) because −Δb = −Δȳ − 4. We have that
ȳ(x) ≤ b in Ω̄ since b − ȳ = |x|2 and ū, ȳ, ϕ̄ and μ̄ = λ̄δx0 satisfy the optimality system for (P). Since the
problem is convex, necessary conditions are also sufficient and hence we have found that the solution does not
satisfy the claims of Theorem 3.1.

We finish this section establishing a corollary of Theorem 3.1 that will be useful to prove the error estimates
in Section 5.

Corollary 3.5. Let us suppose that the Assumptions 2.1 and 2.2 hold, and aij ∈ C0,1(Ω) for 1 ≤ i, j ≤ n.
Then, for every open set Ω′ ⊂ Ω̄′ ⊂ Ω and any 1 ≤ p <∞, there exists a constant C > 0 independent of ū and
p such that

‖ȳ‖W 2,p(Ω′) ≤ Cp‖ū‖L∞(Ω). (3.3)

The fact that ȳ ∈ W 2,p(Ω′) follows by elliptic regularity. The exact dependence of the constant on p can be
traced for example from Theorem 9.9 in [18].
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4. Some extensions

More general formulations for state-constrained optimal control problems of elliptic equations can be found
in the literature, see for instance [7] or [11]. The formulation of the problem (P) was given in a simple way for
an easier reading of the paper and the technique used in the Proof of Theorem 3.1. In this section, we point out
under which assumptions Theorem 3.1 can be extended to more general formulations.

4.1. A general cost functional and control constraints

Instead of the quadratic cost functional considered in the formulation of (P), a more general functional can
be treated

J(u) =
∫

Ω

L(x, yu(x), u(x)) dx,

with L : Ω × R
2 → R a Carathédory function. Some differentiability hypotheses on L must be assumed to get

the corresponding optimality system (2.3a)−(2.3d). We make the following assumption: L is of class C1 with
respect to the second and third variables, L(·, 0, 0) ∈ L1(Ω), and for all M > 0 there is a function ψM ∈ L2(Ω)
such that ∣∣∣∣∂L∂u (x, y, u)

∣∣∣∣ +
∣∣∣∣∂L∂y (x, y, u)

∣∣∣∣ ≤ ψM (x), for a.a. x ∈ Ω and |y|, |u| ≤M.

Additionally, we can consider control constraints u ∈ Uαβ , with

Uαβ = {u ∈ L∞(Ω) : −∞ < α ≤ u(x) ≤ β < +∞ for a.a. x ∈ Ω}

with α, β ∈ R and α < β. In this case, the control problem is in general not convex and we can have local
and global solutions. To prove the existence of a solution of the control problem, besides the Assumptions 2.1
and 2.2, we need the convexity of L with respect to u. Assuming that the Slater condition is fulfilled, if ū is
a local solution then the optimality system (2.3a)−(2.3d) holds with the following changes. Instead of (2.3b)
and (2.3d), we have ⎧⎨

⎩A∗ϕ̄ =
∂L

∂y
(x, ȳ, ū) + μ̄ in Ω,

ϕ̄ = 0 on Γ,
(4.1)

∫
Ω

(
ϕ̄+

∂L

∂u
(x, ȳ, ū)

)
(u − ū) dx ≥ 0 ∀u ∈ Uαβ . (4.2)

Relations (2.3b) and (2.3d) played an important role in the Proof of Theorem 3.1. Relations (4.1) and (4.2)
can be used in a similar way to get the same regularity results. If L is independent of u, then we get from
from (4.2) that ū(x) = α for a.a. x ∈ Bε(x0). If L depends on u, then we additionally assume that L is of class
C2 with respect to u and

∃κ > 0 such that
∂2L

∂u2
(x, y, u) ≥ κ for a.a. x ∈ Ω and ∀y ∈ R.

Then, (4.2) leads to the formula
ū(x) = Proj[α,β](s̄(x)),

where s̄(x) is (uniquely) defined through the equation

ϕ̄(x) +
∂L

∂u
(x, ȳ(x), s̄(x)) = 0 for a.a. x ∈ Ω;

see [1] for more details. The above equality and the assumption ∂2L
∂u2 (x, y, u) ≥ κ implies that s̄(x) < 0 is as

small as needed assuming that ϕ̄(x) > M for M sufficiently large. To argue as in the Proof of Theorem 3.1, the
assumption (2.2d) is not enough. We need new one involving α, β, a and b: α < Ab and β > Aa in Ω. If a and
b are constants satisfying a < 0 < b, then the precedent conditions are simplified: α < 0 < β.
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Remark 4.1. The conditions relating α with b and β with a cannot be removed. We provide a model example
where b is constant and α ≡ 0 and the multiplier is not an element in H−1(Ω). Consider problem (P̃ ) as in
Remark 3.4, but with yd(x) = |x|4−4|x|2+67. The unique solution of this problem is given by ũ(x) = 16(1−|x|2),
whose associate state is ỹ(x) = yd(x) − 64. Define α(x) ≡ 0, fix some 0 < ε < 1, define b = εỹ(0) and consider
the problem

(P 0) min J(u) =
1
2
‖yu − yd‖2

L2(Ω) +
1
2
‖u‖2

L2(Ω), u(x) ≥ 0 for all x ∈ Ω̄, y(x0) ≤ b

Since u = 1
2εũ is admissible for (P 0), it is clear that this problem has a unique solution ū. The optimality system

reads like:

−Δȳ = ū in Ω, y = 0 on Γ,−Δϕ̄ = ȳ − yd + λ̄δx0 in Ω, ϕ̄ = 0 on Γ, ū(x) = max(−ϕ̄(x), 0) in Ω̄

Notice that the state constraint must be attained and the Lagrange multiplier λ̄ ∈ R associated to the state
constraint must be strictly positive (in other case, the solution of the optimality system would be ũ, which is
impossible). Notice also that due to the radial symmetry of the problem and the fact that −Δȳ = ū ≥ 0 in Ω,
we gather that ȳ attains its absolute maximum at x0, with value b. Therefore ū is the solution of problem

(P ) min J(u) =
1
2
‖yu − yd‖2

L2(Ω) +
1
2
‖u‖2

L2(Ω), u(x) ≥ 0 for all x ∈ Ω̄, y(x) ≤ b for all x ∈ Ω̄

and the associated multiplier to the state constraint is μ̄ = λ̄δx0 , which does not satisfy the claims of Theorem 3.1.

4.2. A semilinear elliptic equation

We can extend our results to semilinear equations replacing (1.1){
Ay + a0(x, y) = u in Ω,

y = 0 on Γ,

with

Ay = −
n∑

i,j=1

∂xj [aij(x) ∂xiy].

Here, a0 : Ω × R −→ R is a Carathéodory function of class C1 with respect to the second variable, with
a(·, 0) ∈ Lp(Ω) for some p > n

2 , and satisfying⎧⎪⎪⎨
⎪⎪⎩
∂a0

∂y
(x, y) ≥ 0 for a.a. x ∈ Ω and ∀y ∈ R,

∀M > 0 ∃CM > 0 s.t.
∂a0

∂y
(x, y) ≤ CM for a.a. x ∈ Ω and ∀|y| ≤M.

In this situation, the regularity results of Theorem 3.1 still hold under the assumption (2.2d) and assuming
that the functions a0(x, a(x)) and a0(x, b(x)) belong to L∞(Ω). The proof follows the same steps of the one of
Theorem 3.1. It is enough to take into account the monotonicity of a0 with respect to the second variable and
to take

M = ‖ϕ0‖C(K) + CK‖μ̄−‖M(Ω) + ν
(
‖Ab‖L∞(Ω) + ‖a0(x, a(x))‖L∞(Ω)

)
.

Then, we have with ỹ = ȳ − b

Aỹ = ū(x) − a0(x, ȳ(x)) −Ab

≤ −1
ν
ϕ̄(x) − a0(x, a(x)) −Ab < 0 in Bε

(
x0

)
,

and we can use again the maximum principle to get the contradiction.
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5. Numerical approximation

In this section, we make some additional assumptions on Ω as well as on the coefficients aij and on the
bounds a, b, which avoid some technicalities and which are necessary to assure a higher regularity of the optimal
state and adjoint state. This extra regularity is needed to improve the error estimates.

Assumption 5.1. Hereafter we will suppose that Ω is convex and aij ∈ C1,θ(Ω̄), for some 0 < θ ≤ 1.

Under Assumptions 2.1 and 5.1, the solution yu of (1.1) belongs to H2(Ω) ∩H1
0 (Ω) if u ∈ L2(Ω), and there

exists a constant C such that
‖yu‖H2(Ω) ≤ C‖u‖L2(Ω) ∀u ∈ L2(Ω); (5.1)

see in Chapter 3 of [20].
Let {Th}h be a quasi-uniform family of triangulations of Ω̄ and let Ωh be the interior of ∪{T : T ∈ Th}.

As usual, we assume that |Ω \ Ωh| ≤ ch2. This holds if Γ is of class C1,1 or if Ω is a polygonal or polyhedral
domain. For the discretization of the control, the state and the adjoint state we use the space of linear finite
elements Yh0 ⊂ H1

0 (Ω)

Yh0 = {y ∈ C(Ω̄) : yh ∈ P 1(T ) ∀T ∈ Th, yh ≡ 0 in Ω̄ \Ωh}.

For the discrete Lagrange multiplier we use the space Mh ⊂ M(Ω) which is spanned by Dirac measures
corresponding to the interior nodes {xj}nh

j=1 of the finite element mesh. For every u ∈ L2(Ω), yh(u) is the
unique element in Yh0 such that

aA(yh(u), zh) =
∫

Ωh

uzh dx ∀zh ∈ Yh0,

where aA : H1
0 (Ω) × H1

0 (Ω) → R denotes the bilinear form associated to the elliptic operator A. Problem
(Ph) reads like

(Ph)

⎧⎪⎨
⎪⎩

min Jh(u) =
1
2
‖yh(u) − yd‖2

L2(Ωh) +
ν

2
‖u‖2

L2(Ωh)

u ∈ Yh0, yh(u) ∈ Yab,h,

where
Yab,h = {yh ∈ Yh0 : a(xj) ≤ yh(xj) ≤ b(xj) for all j = 1, . . . , nh}.

Proposition 5.2. Under Assumptions 2.1, 2.2 and 5.1, problem (Ph) has a unique solution ūh ∈ Yh0, with
related state ȳh = yh(ūh). Moreover, for every h ≤ h0, for some h0 > 0, there exist ϕ̄h ∈ Yh0 and μ̄h ∈ Mh

such that the following optimality system is satisfied.

aA(ȳh, zh) = (ūh, zh) ∀zh ∈ Yh0, (5.2a)

aA(zh, ϕ̄h) = (ȳh − yd, zh) +
∫

Ωh

zh dμ̄h ∀zh ∈ Yh0, (5.2b)∫
Ωh

(yh − ȳh) dμ̄h ≤ 0 ∀yh ∈ Yab,h, (5.2c)

ϕh + νūh = 0, (5.2d)

where (·, ·) denotes the inner product in L2(Ω).

Before proving this proposition, we establish a technical lemma that we will use several times in the sequel.
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Lemma 5.3. Under Assumptions 2.1 and 5.1, we have the following estimates

‖yu − yh(u)‖L2(Ω) ≤ Ch‖u‖H−1(Ω) ∀u ∈ H−1(Ω), (5.3a)

‖yu − yh(u)‖L2(Ω) + h‖yu − yh(u)‖H1(Ω) ≤ Ch2‖u‖L2(Ω) ∀u ∈ L2(Ω), (5.3b)

‖yu − yh(u)‖L∞(Ω) ≤ Ch2−n
2 ‖u‖L2(Ω) ∀u ∈ L2(Ω), (5.3c)

where the constants C are independent of h. Moreover if {uh}h>0 ⊂ L2(Ω) converges weakly to u in L2(Ω),
then

lim
h→0

(
‖yu − yh(uh)‖H1(Ω) + ‖yu − yh(uh)‖L∞(Ω)

)
= 0. (5.4)

Proof. For the proof of the estimates (5.3a)−(5.3c) the reader is referred e.g. to Chapter 3 in [13]. For the proof
of (5.4) it is enough to use the triangle inequality and the above estimates as follows

‖yu − yh(uh)‖H1(Ω) ≤ ‖yu − yuh
‖H1(Ω) + ‖yuh

− yh(uh)‖H1(Ω)

≤ ‖yu − yuh
‖H1(Ω) + Ch‖uh‖L2(Ω).

Now, the weak convergence uh ⇀ u in L2(Ω) implies the strong convergence uh → u in H−1(Ω), which gives
the convergence to 0 of the first addend above. For the second addend it is enough to observe that {uh}h>0 is
bounded in L2(Ω). For the convergence in L∞(Ω) we proceed in a similar way, using (5.3c) instead of (5.3b).
For the convergence of yuh

→ yu in L∞(Ω), it is enough to observe that uh → u in W−1,p(Ω) for all p < 6, and
apply (2.1). �

Proof of Proposition 5.2. Problem (Ph) is a finite dimensional strictly convex optimization problem and the
constraints define a convex set, so existence and uniqueness of solution follow from the existence of an admissible
control. First order necessary and sufficient optimality conditions follow in a standard way from the Slater
condition. Therefore, we only need to prove that the Slater condition holds, which also implies that the set of
admissible controls is nonempty. To this end, we take u0 ∈ L2(Ω) satisfying the Slater condition of problem (P),
whose existence was shown in the proof of Theorem 2.3. Denote by u0h the L2-projection of u0 on Yh0. We know
that uh0 → u0 strongly in L2(Ω). Hence, from (5.4) we have that yh(u0h) → yu0 strongly in H1

0 (Ω) ∩ C0(Ω).
Since a(x) < yu0(x) < b(x) ∀x ∈ Ω̄, we deduce the existence of h0 > 0 such that every yh(uh0) satisfies the
same strict inequalities for all h ≤ h0. �

Analogously to (2.8), we can write μ̄h = μ+
h − μ−

h , with both μ±
h ≥ 0, and we deduce from (5.2c){

supp μ̄+
h ⊂ {xj : ȳh(xj) = b(xj)},

supp μ̄−
h ⊂ {xj : ȳh(xj) = a(xj)}.

(5.5)

Therefore, we have

μ̄h =
nh∑
j=1

λ̄jδxj , with λ̄j

{
≥ 0 if ȳh(xj) = b(xj),
≤ 0 if ȳh(xj) = a(xj),

(5.6)

where δxj denotes the Dirac measure centered at xj .
In the next theorem, we analyze the convergence of the solutions of problems (Ph) as well as the convergence

of the optimality system (5.2a)−(5.2d).

Theorem 5.4. Let h0 be as in Proposition 5.2. Under the Assumptions 2.1, 2.2 and 5.1, for every h ≤ h0 the
system (5.2a)−(5.2d) has a unique solution and the following convergence holds

(ūh, ȳh, ϕ̄h, μ̄h) → (ū, ȳ, ϕ̄, μ̄)

strongly in L2(Ω) × [H1
0 (Ω) ∩C(Ω̄)] ×W 1,s

0 (Ω) ×W−1,s(Ω) as h→ 0 for all s < n
n−1 .
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Proof. In a similar way to Theorem 2.3, the uniqueness of ϕ̄h and μ̄h follows from (5.2d) and (5.2b), respectively.
Let us prove the convergence of (ūh, ȳh, ϕ̄h, μ̄h). First, we observe that the optimality of ūh implies

ν

2
‖ūh‖2

L2(Ω) ≤ Jh(ūh) ≤ Jh(u0h),

where u0h are the admissible discrete controls found in the Proof of Proposition 5.2. The convergences indicated
in the afore-mentioned proposition imply that {u0h} and {y0h} are bounded in L2(Ω), and hence {ūh} is bounded
in L2(Ω). Now, taking a subsequence if necessary, we can assume that {ūh}h>0 converges weakly in L2(Ω).
With (5.4), this leads to the strong convergence of the associated discrete states {ȳh}h>0 in H1

0 (Ω) ∩ C0(Ω).
The proof of the convergence of {ūh}h>0 to ū, the solution of (P), is standard. Even more, due to the structure of
the cost functional, we have that ūh → ū strongly in L2(Ω). We also have that ȳh → ȳ strongly in H1

0 (Ω)∩C(Ω̄);
see, for instance, [8] for the details. Moreover, from (5.2d) and (2.3d), we deduce the strong convergence ϕ̄h → ϕ̄
in L2(Ω).

Let us prove the boundedness of {μ̄h}h>0. To this end, we take u0 and {u0h}h≤h0 as in the Proof of Proposi-
tion 5.2: uh0 → u0 in L2(Ω) and u0h satisfies the Slater condition for problem (Ph). Denote by y0h the discrete
state associated with u0h. We have that y0h → yu0 strongly in H1

0 (Ω)∩C0(Ω). Select a number ρ > 0 such that

a(xj) < yh0(xj) − ρ < yh0(xj) + ρ < b(xj), j = 1, . . . nh, ∀h ≤ h0,

which is possible because u0 also satisfies the Slater condition for problem (P). Consider the element yh ∈ Yh0

given by

yh(xj) =
{

+ρ if λ̄j ≥ 0,
−ρ if λ̄j < 0.

Then, yh + y0h ∈ Yab,h and using (5.2c) we get

ρ‖μ̄h‖M(Ω) = ρ

nh∑
j=1

|λ̄j | =
∫

Ωh

yh dμ̄h ≤
∫

Ωh

(ȳh − y0h) dμ̄h

= aA(ȳh − y0h, ϕ̄h) −
∫

Ωh

(ȳh − yd)(ȳh − y0h) dx

=
∫

Ωh

(ūh − u0h)ϕ̄h dx−
∫

Ωh

(ȳh − yd)(ȳh − y0h) dx ≤ C.

Since {μ̄h}h>0 is bounded in M(Ω), we can take a subsequence such that μ̄h
∗
⇀ μ̄ in M(Ω). From the

compactness of the embedding M(Ω) ⊂ W−1,s(Ω) for every 1 ≤ s < n
n−1 , we infer the strong convergence

μ̄h → μ̄ in W−1,s(Ω) for every 1 ≤ s < n
n−1 . From here, using W 1,s stability of the Ritz-projection, see ([5],

Sect. 7.5), we deduce the strong convergence ϕ̄h → ϕ̄ in W 1,s
0 (Ω) for every 1 ≤ s < n

n−1 . Thus, we have proved
that (ūh, ȳh, ϕ̄h, μ̄h) → (ū, ȳ, ϕ̄, μ̄) strongly in L2(Ω)× [H1

0 (Ω)∩C(Ω̄)]×W 1,s
0 (Ω)×W−1,s(Ω) as h→ 0. Observe

that no subsequence is necessary because any subsequence has the same limit. �

Corollary 5.5. There exists h̄0 ≤ h0 and an open set Ω0 ⊂ Ω̄0 ⊂ Ω such that supp μ̄ ⊂ Ω0 and supp μ̄h ⊂ Ω0

for every h ≤ h̄0.

Proof. From (2.2a)−(2.2c) we deduce the existence of ε > 0 and ρ > 0 such that

a(x) + ρ < ȳ(x) < b(x) − ρ if d(x, Γ ) ≤ ε.

From the uniform convergence ȳh → ȳ in C0(Ω), we deduce the existence of h̄0 ∈ (0, h0] such that

a(x) +
ρ

2
< ȳh(x) < b(x) − ρ

2
if d(x, Γ ) ≤ ε, ∀h ≤ h̄0.
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Now, we set
Ω0 = {x ∈ Ω : d(x, Γ ) > ε}.

Obviously, if ȳh(xj) = a(xj) or ȳh(xj) = b(xj), then xj ∈ Ω0. Hence, the proof is concluded by (5.5). �

To every control u ∈ L2(Ω) we will relate ϕ0(u) ∈ H1
0 (Ω) and ϕ0,h(u) ∈ Yh0 the unique solutions of,

respectively

aA(z, ϕ0(u)) = (yu − yd, z) ∀z ∈ H1
0 (Ω)

aA(zh, ϕ0,h(u)) = (yh(u) − yd, zh) ∀zh ∈ Yh0

and for every μ ∈ M(Ω), we define ϕ(μ) ∈ W 1,s(Ω) for all s < n/(n − 1) and ϕh(μ) ∈ Yh0 as the unique
solutions of (2.6) and

aA(zh, ϕh(μ)) =
∫

Ω

zh dμ ∀zh ∈ Yh0,

respectively. In this way, we can also split ϕ̄h = ϕ0,h(ūh) + ϕh(μ̄h) and ϕ̄ = ϕ0(ū) + ϕ(μ̄).

Theorem 5.6. Let Ω0 be as in Corollary 5.5 and assume that a, b ∈ W 2,∞(Ω0). Let ū and ūh be the solutions
of problems (P) and (Ph), respectively. Then, there exists C > 0 independent of h ≤ h̄0

‖ū− ūh‖2
L2(Ω) ≤ C

(
‖ϕ0(ū) − ϕ0,h(ū)‖2

L2(Ω) + ‖ϕ(μ̄) − ϕh(μ̄)‖2
L2(Ω)

+‖ȳ − yh(ū)‖L∞(Ω0) + h2
(
‖a‖W 2,∞(Ω0) + ‖b‖W 2,∞(Ω0)

) )
.

Proof. Since the problem is linear quadratic, we have

(ϕ0(ū) − ϕ0(ūh), ū − ūh) = aA(ȳ − yūh
, ϕ0(ū) − ϕ0(ūh)) = (ȳ − yūh

, ȳ − yūh
) ≥ 0,

and hence

ν‖ū− ūh‖2
L2(Ω) ≤ (ν(ū − ūh) + ϕ0(ū) − ϕ0(ūh), ū− ūh)

= (νū + ϕ0(ū), ū− ūh) + (ϕ0,h(ūh) − ϕ0(ūh), ū− ūh)
− (νūh + ϕ0,h(ūh), ū− ūh)

= −(ϕ(μ̄), ū− ūh) + (ϕ0,h(ūh) − ϕ0(ūh), ū− ūh)
+ (ϕh(μ̄h), ū− ūh)

= −(ϕ(μ̄) − ϕh(μ̄), ū− ūh) + (ϕ0,h(ūh) − ϕ0(ūh), ū− ūh)
+ (ϕh(μ̄h) − ϕh(μ̄), ū− ūh).

Therefore, we have that

‖ū− ūh‖2
L2(Ω) ≤ C

(
‖ϕ(μ̄) − ϕh(μ̄)‖2

L2(Ω) + ‖ϕ0(ūh) − ϕ0,h(ūh)‖2
L2(Ω) + (ϕh(μ̄h) − ϕh(μ̄), ū− ūh)

)
.

We have just to get an estimate for the last term. By means of the discrete state equation, the definition of
ϕh(μ̄) and ϕh(μ̄h) and the decomposition of the measures, we obtain

(ϕh(μ̄h) − ϕh(μ̄), ū − ūh) = aA(yh(ū) − ȳh, ϕh(μ̄h) − ϕh(μ̄))
= 〈μ̄h − μ̄, yh(ū) − ȳh〉
= 〈μ̄+, ȳh − yh(ū)〉 − 〈μ̄−, ȳh − yh(ū)〉

+ 〈μ̄+
h , yh(ū) − ȳh〉 − 〈μ̄−

h , yh(ū) − ȳh〉.
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For the first two addends we introduce the nodal interpolation operator Ih : C0(Ω) → Yh0 and use that ȳ = b
on suppμ+, ȳ = a on suppμ−, Iha ≤ ȳh ≤ Ihb and the estimates for the error of interpolation to obtain

〈μ̄+, ȳh − yh(ū)〉 − 〈μ̄−, ȳh − yh(ū)〉
≤ 〈μ̄+, b− yh(ū)〉 + 〈μ̄+, Ihb − b〉 + 〈μ̄−,−a+ yh(ū)〉 + 〈μ̄−, a− Iha〉
= 〈μ̄+, b− ȳ〉 − 〈μ̄−, a− ȳ〉 + 〈μ̄+ − μ̄−, ȳ − yh(ū)〉 + 〈μ̄+, Ihb− b〉 + 〈μ̄−, a− Iha〉
= 〈μ̄, ȳ − yh(ū)〉 + 〈μ̄+, Ihb− b〉 + 〈μ̄−, a− Iha〉

≤ ‖μ̄‖M(Ω)

(
‖ȳ − yh(ū)‖L∞(Ω0) + Ch2(‖a‖W 2,∞(Ω0) + ‖b‖W 2,∞(Ω0))

)
.

To finish, we use that ȳh = b on supp μ̄+
h , ȳ − b ≤ 0, ȳh = a on supp μ̄−

h and ȳ − a ≥ 0 to obtain

〈μ̄+
h , yh(ū) − ȳh〉 − 〈μ̄−

h , yh(ū) − ȳh〉 = 〈μ̄+
h , yh(ū) − b〉 − 〈μ̄−

h , yh(ū) − a〉
= 〈μ̄+

h , yh(ū) − ȳ〉 + 〈μ̄+
h , ȳ − b〉 − 〈μ̄−

h , yh(ū) − ȳ〉 − 〈μ̄−
h , ȳ − a〉 ≤ 〈μ̄h, yh(ū) − ȳ〉

≤ ‖μ̄h‖M(Ω)‖ȳ − yh(ū)‖L∞(Ω0)

which completes the proof. �

Corollary 5.7. Under the assumptions of Theorem 5.6, there exists C > 0 independent of h ≤ h̄0 such that

‖ū− ūh‖L2(Ω) ≤ Ch|log h|. (5.7)

Proof. Usual finite element error estimates for regular problems lead to the estimate:

‖ϕ0(ū) − ϕ0,h(ū)‖L2(Ω) ≤ Ch2‖ū‖L2(Ω).

Thanks to the regularity stated in our main result, Theorem 3.1, we have that μ̄ ∈ H−1(Ω) and ϕ(μ̄) ∈ H1
0 (Ω).

Again usual finite element error estimates lead to

‖ϕ(μ̄) − ϕh(μ̄)‖L2(Ω) ≤ Ch‖ϕ(μ̄)‖H1
0 (Ω) ≤ Ch‖μ̄‖H−1(Ω).

The estimates for the final term follow from ([30], Thm. 5.1), the error estimates for the error of interpola-
tion, (5.3b) and (3.3).

Indeed, let us take and open set Ω′ satisfying Ω̄0 ⊂ Ω′ ⊂ Ω̄′ ⊂ Ω, then for every p <∞ we have

‖ȳ − yh(ū)‖L∞(Ω0) ≤ C
(
|log h|‖ȳ − Ihȳ‖L∞(Ω′) + ‖ȳ − yh(ū)‖L2(Ω′)

)

≤ C
(
|log h|h2−n

p ‖ȳ‖W 2,p(Ω′) + h2‖ū‖L2(Ω)

)

≤ C
(
p|log h|h2−n

p ‖ū‖L∞(Ω) + h2‖ū‖L2(Ω)

)
.

Now, taking p = |log h|,
‖ȳ − yh(ū)‖L∞(Ω0) ≤ Ch2|log h|2‖ū‖L∞(Ω)

and the proof is complete. �
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Table 1. Coefficients for ŷd1, ŷd2 and b̂0.

ŷd1 ŷd2 b̂0

r6 −31.434189678717527 0 −31.434189678717527

r5 +46.159111917905442 +12.13291524916886 + 46.159111917905442

r4 −18.560977582095056 −17.996278998962907 −18.560977582095056

r3 0 +7.3349388302866316 0

r2 −2.6404719330122726 −1.1774263620970444 0

r +1.6617280290445962 0 0

1 +0.26726826901485923 +0.5 +0.49

6. Numerical evidence

In this section we present the numerical results obtained for a control problem in dimension 3, that confirm
our theoretical error estimates. The reader is referred to [15] for an example in dimension 2.

Let Ω be the unit ball in R
3 and Γ its boundary. We are concerned with the problem

min
1
2
‖yu − yd‖2 +

ν

2
‖u‖2,

−Δy = u in Ω, y = 0 on Γ,

a ≤ y ≤ b in Ω̄.

We build an example with spherical symmetry. Let r = |x| be the euclidean distance of x to the origin. All our
data are piecewise polynomial in r. We fix some of the parameters that appear in the functions, and the others
are computed imposing the optimality conditions and some differentiability properties. For the convenience
of the reader, we have written the coefficients of the polynomials (computed in double precision) in Table 1,
starting in every case with the coefficient of r6.

Let us take ν = 10−4 and define yd, a and b as follows:

yd(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŷd1(r) if r ≤ 0.25,

ŷd2(r) if 0.25 ≤ r ≤ 0.75,

0.375r2 − 1.125r+ 0.75 if r ≥ 0.75,

a(x) = −1 and b(x) = b0(x) +

⎧⎨
⎩

(r − 0.25)2 if r < 0.25,
0 if 0.25 ≤ r ≤ 0.75,

(r − 0.75)2 if r > 0.75,

b0(x) =

⎧⎨
⎩

b̂0(r) if r ≤ 0.485,

0.375r2 − 1.125r + 0.75 if r ≥ 0.485.

This problem has a unique solution

ū(x) =

⎧⎪⎨
⎪⎩

û(r) if r ≤ 0.485,

−2.25 +
2.25
r

if r ≥ 0.485,
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Table 2. Coefficients for û and μ̂1 and μ̂2.

û μ̂1 μ̂2

r6 0 +31.434189678717527 0

r5 0 −34.026196668736581 +12.13291524916886

r4 +1320.235966506136 +0.56469858313214871 −17.996278998962907

r3 -1384.7733575371633 +7.3349388302866316 7.3349388302866316

r2 +371.21955164190115 +1.4630455709152281 −1.5524263620970444

r 0 −1.6617280290445962 +1.125

1 0 0.23273173098514077 -0.25

Table 3. Mesh size, error and experimental order of convergence

h ‖ū − ūh‖L2(Ω) EOC
0.43 1.56 –
0.26 0.82 1.31
0.15 0.55 0.75
0.084 0.272 1.15
0.043 0.136 1.06
0.022 0.0673 1.05

where û is a polynomial whose coefficientes are shown in Table 2. The optimal state is ȳ = b0 and the related
adjoint state is ϕ̄ = −νū. The lower constraint a is not attained. The multiplier μ̄ can be written as the sum of
a regular part μr ∈ L∞(Ω) plus a singular part μs. The regular part is a piecewise polynomial function

μr(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if r < 0.25,

μ̂1(r) if 0.25 < r < 0.485,

μ̂2(r) if 0.485 < r < 0.75,

0 if r > 0.75.

The coefficients of the corresponding polynomials μ̂i are given in Table 2. The singular part can be written as

〈μs, z〉 =
∫∫

r=0.485

μ0z(x)dσ(x) ∀z ∈ H1
0 (Ω)

with μ0 = −0.00044855057616469.
Notice that b ∈ W 2,∞(Ω0) for any open set Ω0 satisfying supp μ̄ ⊂ Ω0 ⊂ Ω̄0 ⊂ Ω, with 0 
∈ Ω̄0. Hence the

estimate (5.7) holds.
We have solved the finite element approximation of the control problem using an active set strategy as

described in [2]. We have obtained the results summarized in Table 3, where EOC denotes the experimental
order of convergence. These numbers show the sharpness of our theoretical results. Our finest mesh has more
then 5 × 106 tetrahedra and almost 9 × 105 nodes.
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