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Prologue

During the past few decades, large collaborations, technology innovation and a dose

of creativity has led the knowledge of our Universe to grow considerably, giving rise to

a standard model to explain the Universe content and evolution. The high precision

cosmological observations have been and will be very important to obtain a detailed

picture of our Universe, and it is the first time that those can have an impact in physics

research in general. Key questions have been opened to be solved by all the scientific

community, such as the mechanism for inflation and the nature of dark matter and

dark energy, components of the total energy density that might require new physics to

be solved.

The most notable cosmological information has been obtained from the cosmic

microwave background (CMB), large scale structure distribution and supernovae Ia

observations. During the next years the cosmological history should be continued with

observations of weak lensing, baryonic acoustic oscillations and CMB polarization sur-

veys, among other probes. The PhD thesis presented here is focused on two of these

topics, CMB and weak lensing. The exploitation of the CMB data has obtained a very

accurate picture of the early Universe, giving hints on the inflationary epoch using the

non-Gaussian features in the temperature maps. The CMB consolidated the theory of

the Big Bang, and has set constraints on the cosmological parameters at unprecedented

levels. The picture will be completed with probes dependent on the redshift that will

allow a study through different epochs of the Universe. The analysis of weak lensing

signal, allows a reconstruction of the cold dark matter distribution, and has informa-

tion also of the dark energy form. Although theoretically the cosmological information

is very clear, the lensing effects are difficult to measure with the required precision

for cosmological analysis. However, the community has made an important effort to

achieve the necessary precision. In that sense, forecasts for future experiments are very

encouraging.

The aim of this thesis is to contribute with new tools to the analysis of those

observables in order to extract the largest amount of information possible in a simple

and computationally efficient way. The thesis is organized as follows. I start with an

introduction with general ideas of the standard cosmological model, followed by an

overview of the CMB and the physics behind the anisotropy distribution. Also, there

is an introduction of the inflationary phase and the non-Gaussian features that are

transferred to the CMB. Then, in a more technical part, different estimators to detect
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non-Gaussianity from the CMB maps are discussed. The last part of the introduction is

devoted to gravitational lensing where I present the basic ideas and formalism of weak

lensing. Chapter 2 is devoted to a Gaussianity analysis of the WMAP-7yr data with

a fast wavelet estimator. Chapter 3 is an extension of the work of Chapter 2, where a

neural network classifier is proposed as an alternative estimator for non-Gaussianity. In

Chapter 4 a deeper research into neural networks has been done, and its implications

using the binned bispectrum. Chapter 5 is focused on weak lensing, in particular on

the magnification effect observed by the change on galaxy sizes. The conclusions are

presented in Chapter 6 and the last chapter is dedicated to a summary of the thesis in

Spanish.
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Chapter 1

Introduction

Nowadays, we know that the Universe has not always been as it looks today. The

knowledge and understanding of all its stages and processes will help us to clarify why

we observe it as we do, and, if we are lucky, to predict how it will look in the future.

Moreover, the properties of our Universe, as its geometry, and the finite speed of light

allows us to receive now particles and photons coming from very primitive epochs. This

fact makes the observation of the Universe a very challenging and exciting task with a

large amount of information to be disentangled.

Besides of the planets, stars, galaxies and other astrophysical objects, the Universe

has been observed to be completely filled with low energy photons that maintain it at

a temperature of 2.73K. This background of photons is known to come from a very

early stage of the Universe, and has been named the cosmic microwave background

(CMB) due to its typical wavelength now. The CMB has been a very relevant source

of information about the early stages of the Universe. In fact, the observation of the

CMB, together with the cosmic expansion and the abundance of light elements, has

consolidated the theory of the Big Bang, and set the bases for a standard cosmological

model, usually called ΛCDM model.

The name of the model is given by the main contributions on the total energy den-

sity of the Universe. Λ is a cosmological constant providing an extra amount of energy

that would explain the current accelerated state of the Universe. At present, the energy

density provided by Λ is the dominant contribution to the total energy density of the

Universe, but its nature remains a mystery, and is often referred to as Dark Energy.

1
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CDM stands for cold dark matter, which would be the second main contribution to the

total energy density of the current state of the Universe. The cold dark matter only

interacts with ordinary matter through gravity, and its nature remains still unknown.

Those two components of the Universe are the next challenges of the modern cosmol-

ogy, and new experiments as J-PAS (Beńıtez et al., 2009), Fermi (Atwood et al., 2009),

BOSS (Schlegel et al., 2011) or Euclid (Laureijs et al., 2011), among others, shall pro-

vide some clues in the next decades. The third contribution in the total energy density

is due to the ordinary matter, which represents roughly the 5% of the total.

Although it may seem that our knowledge of the Universe is shallow, the constraints

on the cosmological parameters, as its composition, geometry or age are very accurately

determined. In that sense, there are clear suggestions about which are the directions

to follow.

1.1. Standard cosmological model

The work presented in this thesis is mainly devoted to the study of the CMB, with

a last part dedicated to weak lensing. The former set the bases for the standard cos-

mological model while the latter was a prediction of the same model. I believe it is

necessary a general introduction to the ΛCDM model before I proceed to a more de-

tailed explanation of the two subjects of my work.

The standard cosmological model, also known as concordance model, describes a

Universe that started in a singularity, where the space began its expansion. This was

followed by an accelerated expansion, called cosmic inflation, and the scale factor grew

exponentially in a fraction of a second. Although cosmic inflation prediction agrees very

well with the observations, the details of the mechanism that created the accelerated

expansion are currently under discussion. In fact, there are several proposed models of

inflation (this is explained in detail in chapter 3) that are difficult to discriminate, due

to the distance (in time) from us and the unusual properties of the Universe at that

moment.

In the ΛCDM model the dynamics of the space-time, or the description of gravita-

tion, are given by the general relativity theory proposed by Einstein in 1916. Most of

the predictions of the theory of general relativity have been observed, as the deflection
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of the light by large mass densities or the existence of black holes. One of the goals

of cosmology for the following years is the detection of gravitational waves, another

prediction of the theory.

Although the theory works very well on cosmological scales, a theory that explains

the whole Universe and its singularities should be able to embrace quantum mechanics.

There is some effort being made on that direction with a quantum gravity theory,

however is a theory in development.

1.1.1. Friedmann-Robertson-Walker metric

As explained above, the theory of general relativity is the theoretical framework to

describe gravitation and the properties of the space-time. The distance between two

events (xµ, xν) is given by:

ds2 = gµνdx
µdxν (1.1)

where gµν is the metric tensor.

One of the main pillars of the current cosmology is that the Universe is homogeneous

and isotropic at large scales. This assumption simplifies the solution of the general

relativity equations and the metric for an isotropic and homogeneous Universe using

spherical coordintaes is the Friedmann-Robertson-Walker metric:

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2θdφ)

]
, (1.2)

where a(t) is the scale factor, r is the time independent comoving distance, and θ and

φ are the polar coordinates. Furthermore, t is the cosmic time and k describes the local

spatial curvature that can take the values k = −1, 0, 1. Note that the speed of light

has been set to c = 1.

1.1.2. Cosmological parameters

The beauty of having a model to explain the dynamics and content of our Universe

is that it can be characterised with few parameters, which can be derived from the

observations. In particular the ΛCDM model has six cosmological parameters: the

baryon density, the dark matter density, the Hubble parameter, the optical depth at

reionisation, the spectral amplitude and the spectral index. In this introduction I briefly

describe them.
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Hubble parameter and redshift

In 1929 Edwin Hubble found that far galaxies were departing from us at higher

velocity than the closest galaxies. This discovery indicated that the space-time

was not a static field, but instead the spatial part was expanding. Observing the

redshift between the galaxy emitted (λem) and observed (λobs) spectral lines ,

z =
λobs − λem

λem
, (1.3)

Edwin Hubble found a linear relation between the proper distance and the velocity

of a galaxy from us:

v = H0d . (1.4)

where H0 is the Hubble parameter at the current cosmological time. In general,

the Hubble parameter H is defined from the scale factor:

H ≡ ȧ

a
. (1.5)

This quantity is useful to define relevant quantities of our Universe, as for example,

the Hubble horizon, that approximately defines the connected Universe at a given

time:

rHS =
c

H
. (1.6)

Content of energy

The dynamics of the Universe depends on the predominant contribution of the

energy density. There are three main sources: the baryonic matter, the cold dark

matter and the dark energy. Although at the end of the twentieth century it

was believed that the main contribution to the energy content came from the

cold dark matter, studies of type Ia supernovae found that the expansion was

accelerating (Riess et al., 1998; Perlmutter et al., 1999), which could happen if

the main contribution to the energy density of the Universe is given by the dark

energy. The most common quantity used to define the energy density content is

the density parameter Ω:

Ωi =
ρi
ρc

(1.7)

where ρc is called the critical density as it is the required density for the Universe

to be flat, ρc =
3m2

pH
2

8π . There are density parameters for all the possible contri-

butions to the energy content of the Universe; the most relevant are: cold dark

matter (Ωm), baryonic matter (Ωb), dark energy (ΩΛ) and the curvature (Ωk).
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The observations tell us that the curvature is consistent with 0 with a precision of

less than 1%, hence, for the specific case of the ΛCDM, the Universe is assumed

to be flat with Ωk=0 and then Ωtotal = Ωb + Ωm + ΩΛ = 1. Therefore, given two

of the density parameters the third one is determined.

Initial matter perturbations

Up to date, the most accepted scenario to explain the generation of the initial

matter perturbations related to the large scale structure observed nowadays, is

that the Universe passed through an inflationary phase. The inflationary scenario

describes a very high energy initial state with quantum fluctuations of a scalar

field. Under some assumptions the Universe could have expanded exponentially

between the 10−42 and 10−36 seconds of age, and this is called the inflation-

ary epoch. While the physics behind this process is still unknown, it is widely

accepted that all observations can be well accomodated within the inflationary

framework. This extreme expansion would have stretched the initial quantum

perturbations to cosmological scales and, from them, gravity and radiative pres-

sure would have competed to finally obtain the actual distribution of the matter

in the Universe, leaving relevant footprints in the photons of the CMB. Assuming

that the gravitational field Φ acts as a quantum oscillator, the primordial fluctu-

ations are Gaussian, and the properties of those fluctuations are encoded in the

power spectrum PΦ(k):

〈Φ(~k)Φ∗(~k′)〉 = (2π)3PΦ(k)δ3(~k − ~k′) . (1.8)

One specific case, is the scale-invariant power spectrum (also referred as Harrison-

Zel’dovich spectrum) where k3PΦ(k) does not depend on k. The observations

indicate that the primordial power spectrum is not exactly scale-invariant, and

in order to quantify the deviations, it is commonly parametrised by a power law,

k3PΦ = Ask
ns−1. The form of the power spectrum is derived from the power

spectrum of the inflaton fluctuations that would be explained in more detail in

Sec. 1.3.1, therefore the spectral amplitude As, and spectral index ns, depend on

the inflationary model.

Reionisation

The universe was reionised at late times, in such scenario the photons of the CMB

interact again with the electrons and the observed anisotropies of the CMB would

be affected, depending on the optical depth τ of the region. This effect would be
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seen in scales within the horizon at the reionisation time. The redshift of that

epoch or the optical depth would be another one of the cosmological parameters

of the ΛCDM model.

1.2. The cosmic microwave background

The existence of the CMB was predicted in the middle of the twentieth century

by Gamow and collaborators (Alpher et al., 1948; Alpher & Herman, 1948; Gamow,

1948). While trying to explain the observed relative abundances of the lightest elements

(basically H, He, Li), they proposed the generation of these elements in a stage of the

Universe with particles and photons in thermal equilibrium. A consequence of this, is

that the Universe would be filled with an homogeneous and isotropic radiation with

a black-body spectrum with a characteristic temperature: the adequate to allow the

abundance of light elements that we observe today to be generated. Once this was

stated, a prediction of the wavelength and therefore temperature of this radiation at

our time, was an easy task as it only depended on the redshift. Alpher & Herman

(1949) and Gamow (1956) predicted the expected value of the temperature of that

radiation at the present time to be a few degrees above absolute zero. Fifteen years

later an isotropic radiation with a black-body power spectrum was accidentally detected

by the Bell engineers Arno Penzias and Robert Wilson with a temperature of 3K, very

close to the predictions (Penzias & Wilson, 1965). Around the same time of the CMB

observation, Dicke et al. (1965) developed the work started by Alpher, Hermann and

Gamow, re-estimating the current Universe temperature to 3.5 K, and setting the

grounds of the nowadays knowledge of the cosmic microwave background.

The observation of the CMB, together with the cosmic expansion and the relative

abundance of the lightest elements, placed the Big Bang theory in front of more conser-

vative theories as the Steady State Universe (Bondi & Gold, 1948; Hoyle, 1948; Gold,

1949). Therefore, the history of our Universe was starting to be written. It was known

that at a few minutes of age the Universe was composed by an initial plasma of photons,

electrons and atomic nuclei, constantly interacting with each other. When the Universe

was 377,000 years old, the temperature reduced enough to allow neutral atoms to form,

separating matter and radiation. At that time the photons could start to travel freely,

and is commonly said that the Universe became transparent to the photons, forming

a homogeneous and isotropic background, the CMB. This radiation appears to come
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from a spherical surface, with radius the distance that the photons have traveled since

they could freely move. This is known as the last scattering surface, as most of the

photons we receive today had its last interaction with matter at that epoch.

1.2.1. CMB experiments

The detection of the CMB stimulated a large number of experiments to be con-

ducted in order to characterise this radiation. In 1989 a confirmation of the black body

spectrum with a more accurate temperature estimation of 2.726± 0.001 was obtained

with the FIRAS spectrograph installed in the COBE (COsmic Background Explorer)

satellite launched by the National Aeronautics and Space Administration (NASA)

(Mather et al., 1994). With the other instrument on board of this same satellite, DMR

(Differential Microwave Radiometer), there were observed for the first time small statis-

tical fluctuations on the temperature field of the order of 10−5 K (Smoot et al., 1992).

At the same time, a ground-based experiment, the Tenerife experiment (Watson et al.,

1992), detected a common structure between the three independent frequency channels

in which the telescope operated (10, 15 and 33 GHz) (Lasenby et al., 1995). The com-

patibility with COBE data gave great confidence that those patterns were related to

the seeds of the observed distribution of matter of the Universe. Other ground-based

experiments were developed to study these small fluctuations (see Lasenby et al., 1998,

for a review), from those it is worth commenting the Degree Angular Scale Interfer-

ometer (Halverson et al., 2002), that detected for the first time the E-mode polariza-

tion of the CMB. It is also worth mentioning the balloon experiments, BOOMERanG

(de Bernardis et al., 2000), MAXIMA (Hanany et al., 2000) or Archeops (Benôıt et al.,

2003) that were conducted to avoid atmospheric contamination. Additionally, two space

missions were developed, the Wilkinson Microwave Anisotropy Probe (WMAP) satel-

lite, launched by NASA in 2001 Bennett et al. (1997), and the Planck space telescope

from the European Space Agency (ESA) that started observations in 2009 (Tauber,

2004). Although these two satellites had instruments to measure the polarization of

the CMB, it was not their main goal. However, there are many ground based experi-

ments devoted to this subject, as BICEP (Keating et al., 2003), MAXIPOL (Wu et al.,

2007), QUIJOTE (Rubiño-Mart́ın et al., 2010), EBEX (Reichborn-Kjennerud et al.,

2010), POLARBEAR (Kermish et al., 2012), among others (see Barreiro, 2010, for

a review of polarization experiments). Moreover, there are space missions proposed to

be conducted in the future (André et al., 2014).
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Figure 1.1 - Temperature anisotropy maps of the CMB obtained by COBE,

WMAP and Planck, respectively. Images are from the website of LAMBDA (Legacy

Archive for Microwave Background Data Analysis, http://lambda.gsfc.nasa.gov/.

The satellite WMAP performed full sky observations from the L2 Lagrangian point,

situated at 1.5 million kilometers from the Earth. WMAP operated with 5 channels

of frequency from 23 GHz to 94 GHz. The Planck satellite was launched in 2009,

working at frequencies from 30 to 857 GHz and with higher resolution and sensitivity

than WMAP, with the data released in March 2013. A comparison of the resolution

of CMB maps of the three previously mentioned satellites is shown in fig. 1.1. Com-

plementary ground-based experiments, such as telescope ACT (Atacama Cosmology

Telescope Kosowsky, 2003) and SPT (South Pole Telescope Carlstrom et al., 2011),

observe smaller regions of the sky but with higher resolution. These experiments focus

on the study of the Sunyaev-Zeldovich effect and, in a second phase, on the polarization

of the CMB.

1.2.2. Power spectrum

Once the observations are made, the data analyst challenge is to gather the maxi-

mum amount of cosmological information from them. Besides the importance of finding

an isotropic field with a black body spectrum, allowing one to infer some general condi-

tions of the early Universe, the CMB constitutes another source of no less enlightening

information. There are small fluctuations on the temperature (∼ 10−5 K), and its

statistical distribution is related to the very primitive processes in the Universe.

Under the assumption that the temperature anisotropies distribution is Gaussian,
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the information is encoded in the two first moments of the field. Therefore, it is

characterized by its mean value,
〈

∆T

T

〉
≡
〈
T − To
T

〉
(1.9)

that is zero by definition and the two point correlation function

C(θ) =

〈
∆T (~n1)

T

∆T (~n2)

T

〉
. (1.10)

where θ is the separation angle between the directions ~n1, ~n2. Due to the isotropy of

the field, the two point correlation function of the CMB anisotropies only depends on

the angular separation θ. The CMB photons received are emitted, or last scattered, at

similar times, hence we are observing the signal over a sphere, without radial significant

information. Therefore, it is very common to use the spherical harmonics to describe

the CMB:

∆T (~n)

T
=

ℓ=∞∑

ℓ=1

m=ℓ∑

m=−ℓ

aℓmYℓm(~n) (1.11)

and in this case the second order moment is the power spectrum:

〈aℓma∗ℓ′m′〉 = Cℓδℓℓ′δmm′ , (1.12)

where the dependence on m vanishes due to the isotropy of the CMB. The average on

the coefficients is done over all m for a given ℓ implying larger uncertainties for lower

multipoles, due to the sampling number. This is known as the cosmic variance:

∆Cℓ
Cℓ

=

√
2

2ℓ+ 1
(1.13)

The power spectrum is a very valuable source of information, as it is determined by

the cosmological parameter. The presence of the peaks in the power spectrum arises

from the fact that the Universe was full of baryons and photons encapsulated on grav-

itational potential wells. The pressure of the radiation resisted the compression of the

gravity resulting in acoustic oscillations. This would end at the recombination epoch

when photons would travel freely and scape from the gravitational wells. Therefore,

there is one fundamental mode which would have had enough time to compress once.

This scale is the sound horizon (Hs) at that moment, and determines the position of the

first peak. The following accoustic peaks would be related to the proportional modes

to the fundamental one. Furthermore, during the acoustic oscillations there are varia-

tions of the velocities of the plasma, therefore a Doppler effect, shifted by 90 degrees to
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Figure 1.2 - Theoretical CMB power spectrum with the cosmological parame-

ters derived from WMAP-7yr. Color squares are shown for different experimen-

tal data, with height roughly representing the uncertainties (data obtained from

http://background.uchicago.edu/ whu/intermediate/map7.html).

the previous effect, can be seen also in the power spectrum (see e.g. Lineweaver, 1997;

Tristram & Ganga, 2007).

After COBE first observation of the anisotropies, other experiments were proposed

with their primary objective to find the first acoustic peak of the power spectrum.

With Boomerang and MAXIMA balloon experiments, an entire reconstruction of the

first peak was made placing it at ℓ ∼ 220 (see Fig. 1.2). The shape and position

of the peak, as well as the spectral index of the power spectrum, had shown a su-

perb agreement with inflationary predictions, what favored this model over all other

alternatives to explain the initial perturbations. In fig. 1.2 it is shown the range of mul-

tipoles measured by different CMB experiments before WMAP. In 2001, the satellite

WMAP was launched to study with more detail the temperature fluctuations of the

CMB and characterize the full power spectrum with very high accuracy up to the third

peak (ℓ ∼ 800) (Hinshaw et al., 2013). The results of WMAP have been extremely

useful to consolidate the ΛCDM model and determined very accurate constraints on

the cosmological parameters (Bennett et al., 2013). Planck went beyond and explored

the CMB with more frequency channels and higher resolution, being able to efficiently

model the foregrounds and minimise its effects, providing even tighter constraints on
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Figure 1.3 - CMB power spectrum obtained with Planck data, and published in

Planck Collaboration (2013b). The cosmic variance is included in the error bars,

and is indicated by the green shaded area. The Λ-CDM best fit has cosmological

parameters as Ωbh
2 = 0.022, Ωch

2 = 0.120, ΩΛ = 0.683, Ωm = 0.317, τ = 0.092,

ns = 0.962, ∆2
R

= 2.21 × 10−9.

the cosmological parameters. In Fig. 1.3 the power spectrum obtained with Planck

data presented in late March 2013 is shown. The recently released Planck data has al-

lowed the determination of the CMB power spectrum with high accuracy up to the 7th

peak (ℓ ∼ 2000) (Planck Collaboration, 2013c,b). Planck data allowed a better char-

acterisation of the foregrounds due to its large frequency range and the reconstruction

of the lensing potential maps that helped to determine the cosmological parameters.

Additionally, smaller scales are studied with the South Pole Telescope, within a range

of multipoles from ℓ ∼ 1000 to ℓ ∼ 3000, very useful to study the interaction of the

CMB photons with clusters of galaxies (Story et al., 2013).

1.2.3. CMB polarization

Another property of the CMB photons is that, as they interacted with free electrons

by Thompson scattering, they are linearly polarized. The polarized component appears

when the intensisty field presents a quadrupolar pattern: the incident photons com-

ing from orthogonal directions have differenet energies (see fig. 1.4). The quadrupolar

pattern can be produced by the acoustic oscillations explained before (scalar pertur-

bations) or by gravitational waves generated during inflation (tensor perturbations).

The polarization patterns, can be described by the Stokes parameters Q and U, but



12 CHAPTER 1. INTRODUCTION

Quadrupole

Anisotropy

Thomson 

Scattering

e–

Linear 

Polarization

ε'

ε'

ε

Figure 1.4 - Illustration of a Thompson scattering of the radiation with a

quadrupolar anisotropy that generates linearly polarized photons. Figure obtained

from Hu & White (1997).

they are usually transformed into the scalar fields E and B. The relation between the

harmonic coefficients of the scalar fields E and B and the 2-spinors Q and U is (for

details see Hu & White, 1997):

Eℓm ± iBℓm = −
∫
dn̂±2Y

∗
ℓm(n̂)[Q(n̂) ± iU(n̂) . (1.14)

The power spectrum of the polarization scalar modes, as well as its correlation with

the temperature, are also a source of valuable information that can break some of

the degeneracies among the cosmological parameters. However, the signal-to-noise

ratio of the polarisation observations is significantly lower than those obtained for

temperature. The TE and TB cross spectra obtained by WMAP are shown in Fig. 1.5.

Furthermore, the correlations of the temperature and polarization signals allows us to

distinguish between scalar, vector and tensor modes. A valuable observable quantity,

that depends on the inflationary model, can be defined as the ratio of the tensor and

scalar perturbations power spectrum:

r =
Pt(k)

Ps(k)
, (1.15)

evaluated at a given pivot scale (typically ko = 0.002 Mpc−1). The primordial E-

mode has been detected by different experiments and the B-mode due to lensing has

been recently detected by the SPT experiment (Hanson et al., 2013). While finishing

to write this thesis BICEP2 team claimed the first detection of primordial B-mode

(BICEP2 Collaboration, 2014), a very important achievement as it resents indirect

prove for primordial gravitational waves (see Hu & White, 1997, for a complete review

on CMB polarization).
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1.2.4. Sources of the CMB anisotropies

The CMB temperature anisotropies are divided in two main groups, primary and

secondary. The primary anisotropies are those generated at the epoch of decoupling

while the secondary anisotropies are generated during the travel of the photons from

that epoch until now.

Primary anisotropies

At large scales the dominant contribution of the primary anisotropies is due to

the Sachs-Wolfe effect. As commented above, after the inflationary epoch the

energy density fluctuations were stretched to cosmological scales, producing wells

and hills of gravitational potential at all scales. At the recombination time, the

photons can freely travel and those trapped into a potential well loose energy

when climbing the well, whereas the photons in less dense zones would have more

energy than the average. This effect generates CMB primordial anisotropies at

large scales, (ℓ . 200). The scales larger than the sound horizon were uncon-

nected from each other, therefore there are not acoustic peaks in these scales.

Another source of primary anisotropies are the acoustic oscillations explained

before, due to the competition of the gravity and the radiative pressure, that

Figure 1.5 - CMB polarization TE and TB cross spectra obtained with WMAP-7y

data, and published in Larson et al. (2011).The green line represents the theoretical

cross power spectrum, the black points the 7-yr data with its errors, and the boxes

are the results for WMAP 5-yr.
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are reflected in the peaks of the power spectrum at ℓ & 200. There is a third

main effect, that is a damping diffusion (Silk damping) present in the smaller

scales (ℓ & 1000). This happens because the formation of neutral atoms was not

instantaneous, therefore we can say that the last scattering surface has a given

thickness. Those fluctuations with scales comparable to that thickness or lower

would be diluted by the previously released photons. This effect is reflected on a

reduction of the amplitudes of the peaks at high multipoles (see fig. 1.3).

Secondary anisotropies

The secondary anisotropies are generated when the photons scattered at the de-

coupling surface interact with gravity or matter during its travel towards us.

They can also give very valuable cosmological information, complementary to the

primary anisotropies, because they represent a projection of the different stages

of the Universe, from the recombination epoch until now. The first interaction of

those photons are with the re-ionised gas due to the high energetic processes dur-

ing the generation of the first stars of the Universe. The CMB photons interact

with the free electrons by Thompson scattering and this causes the amplitude of

the anisotropies at small scales to decrease. Another secondary anisotropy comes

from the fact that when a photon passes through a galaxy cluster, and interacts

with the intergalactic medium, it suffers the inverse Compton scattering gaining

energy from the high energy electrons in that medium. This is called the thermal

Sunyaev-Zeldovich effect. A galactic cluster can also modify the energy of the

incoming photon due to the peculiar movement of the cluster with respect to

the reference system of the CMB, and it is called the kinetic Sunyaev-Zeldovich

effect. Another relevant contribution to the secondary anisotropies is the inte-

grated Sachs-Wolfe effect (ISW), related to the interaction of the photons with

gravitational fields. This effect only occurs if the graviational fields vary with

the conformal time, which is the case for an accelerated expansion. Therefore, it

depends on the amount and nature of dark energy. The ISW effect would have an

impact in all scales, however its main power is concentrated in the large scales,

on the left side of the first peak.

Another effect due to the interaction of the photons with gravity, is the lensing ef-

fect. The large scale structure between the last scattering surface and the observer

acts as a lens deviating the photons and modifying the original anisotropies. This
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effect will slightly smooth the amplitudes of the acoustic peaks and will transform

the polarization E-modes into B-modes. Conversely to the previously commented

effects, lensing was not detected with WMAP data, whereas Planck resolution al-

lowed a reconstruction of the lensing map (Planck Collaboration, 2013d). Very

recently the SPT experiment has detected the polarization B-mode produced by

lensing (Hanson et al., 2013).

Contaminants

In the observed microwave maps, there are also foreground contaminants, that

need to be separated to do a proper CMB analysis, but also because they might be

a source of valuable information for other astrophysical studies. The most impor-

tant of those contaminants is the galactic emission, which on the microwave band

is basically due to synchrotron emission, generated by ultra-relativistic particles

on the interstellar medium, the free-free emission, produced by the interaction of

electrons and other charged particles and finally the thermal dust, that absorbs

UV radiation and re-emits radiation at the far-infrared frequencies. There is also a

galactic and extragalactic anomalous emission (AME) probably due to the electric

dipole generated by dust grains with fast rotation. While there are several op-

timal methods for component separation (see for example Planck Collaboration,

2013a), the area of the galactic plane is too large and the separation of the signal

becomes very complicated, therefore it is very common to mask this zone of the

sky before doing any analysis. Also there are extragalactic objects emitting in

the microwave range that should be taken into account, especially radio and IR

galaxies, which are also usually masked. An advantage when dealing with the

foregrounds of the CMB is that they are frequency-dependent, this is the main

reason why multi-channel experiments are designed. Finally, the instrument in-

troduces a certain noise level and possible systematic effects that are particular

to each experiment. They need to be understood and must be taken into account

before the analysis of the data. For details of CMB foreground contamination see

for example Delabrouille & Cardoso (2009) and Bennett et al. (2003) and refer-

ences therein.
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1.3. Primordial non-Gaussianity

The standard inflationary model predicts a Gaussian distribution of the CMB

anisotropies. Therefore, the study of the Gaussianity of the CMB is interesting as

it gives very valuable information about this epoch. However, testing Gaussianity is a

difficult task because there is an infinite number of ways to introduce a non-Gaussian

signal. Moreover, if the signal is sufficiently weak it might be overlooked in a general

Gaussianity test. One of the tests to check for non-Gaussianities is to look at the higher

moments of the distribution, where the odd moments should vanish, whereas even mo-

ments are proportional to the second order moment. Therefore, if the distribution is

not Gaussian, there is information beyond the power spectrum, that needs to be ex-

plored. The deviations from Gaussianity in the CMB can be of two types: primordial,

where the non-Gaussian features were generated before the recombination epoch, or

secondary, that occurred through the path that the photons traveled.

One of the main possible sources of primordial non-Gaussianity is generated during

inflation. As commented before, the CMB power spectrum supported the theory that

there was an inflationary epoch, but it has very little information of how this could

happen. In order to gather some more information it is required to go to higher moments

of the temperature anisotropy distribution, as well as, to study the polarization data,

in particular the B modes.

The cosmic inflation was postulated in 1980 by Starobinsky and independently by

Alan Guth in 1981 to solve three important issues of the theory of the Big Bang,

the horizon, the flatness and the monopole problems (Starobinsky, 1980; Guth, 1981).

Moreover, the inflation resulted to be a mechanism to generate the primordial density

perturbations and hence, to explain the origin of the seeds of the large scale structure

observed today. The predictions of the simplest inflationary models are that the ob-

servable Universe is flat, homogeneous and isotropic on large scales with small inhomo-

geneities that are almost scale-invariant and follow a Gaussian distribution (Guth & Pi,

1982; Hawking, 1982). In the following subsections the inflationary paradigm and its

dynamics as well as the generation of non-Gaussianities in that period are explained.

1.3.1. Inflationary paradigm

The basic idea of inflation is that when the Universe was 10−42 seconds old, (setting

the origin of the time coordinate in the singularity given by the Einstein equations)
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there was an exponential accelerated expansion that stopped at around 10−36 seconds.

An inflationary epoch is allowed in the Einstein General Relativity equations, hence it

is just required a physical mechanism to produce it.

For a homogeneous and isotropic Universe, the Einstein equations yield to the

Friedmann and fluid equations:

H2 =
8π

3m2
pl

ρ− K

a2
(1.16)

ρ̇+ 3H(ρ+ p) = 0 (1.17)

where H is the Hubble expansion rate, a is the scale factor, K is the spatial curvature

and mpl the Planck mass (mpl =
√

~c5

G
, here and elsewhere ~ = c = 1). Combining

these two equations the following expression can be obtained:

ä

a
= − 4π

3m2
pl

(ρ+ 3p) , (1.18)

and an accelerated expansion (ä > 0) appears naturally from this equation if

ρ+ 3p < 0 (1.19)

In the special case that the main contribution to the energy comes from the vacuum

energy ρΛ and assuming that it does not change with the scale factor, eq.1.19 would be

ä
a
∝ ρΛ. Hence, using eq. 1.16 it is easy to see that a grows exponentially with time,

leaving the Hubble radius constant, H =
√

8π
2mpl

ρΛ. Therefore the comoving Hubble

radius (aH)−1 will significantly decrease during inflation, solving the flatness problem.

Einstein equations allow any curvature of the Universe without any preferences, thus it

was difficult to explain the flatness that all observations suggested, being the curvature

equal to zero a very special case. Inflation naturally solves this problem, which is clearly

seen if the Friedmann equation is written in terms of the ratio of the energy density to

the critical density Ω = ρ
ρc

where the critical density is ρc =
3m2

pH
2

8π :

Ω − 1 =
K

a2H2
. (1.20)

As the comoving Hubble radius is dramatically reduced during inflation Ω is very

close to 1, leaving the effects of K negligible by the end of the inflationary phase.

A second problem of the theory of the Big Bang that is solved by inflation is the

horizon problem. The isotropy of the CMB requires that all the observed sky should

be spatially connected at some point, but in a Universe without inflation some distant
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Figure 1.6 - The physical size of the Hubble radius (solid line) and size of per-

turbation (dashed line) as a function of the scale factor a. During inflation the

Hubble radius is constant, while the perturbations grow proportional to the scale

factor. When inflation ends, the Universe is dominated by radiation and the Hubble

radius increases with time as a ∝ t
1

2 . Here is shown that without inflation large

perturbations would have not been connected in the primitive Universe.

zones would have never been in contact. As commented above, before inflation the

comoving Hubble radius was much larger, allowing zones that are disconnected after

inflation, to maintain similar properties. This is more clearly seen in Fig. 1.6, where

the evolution of the scale-length of the Hubble radius and the perturbation mode with

the expansion of the Universe is shown. Additionally, inflation solved naturally a

third problem of the Big Bang theory, related to the predicted generation of magnetic

monopoles in a very hot and dense state. The early stages of the Universe should have

generated a detectable amount of these particles, however they have not been observed.

In an inflationary paradigm the density of monopoles is reduced by the stretching of

the space to undetectable levels (ΩMO ≃ 10−33).

1.3.2. Dynamics of inflation

The simplest inflationary models are based on one scalar field φ with mass m,

usually referred to as the inflaton. The choice of scalar fields is not only motivated by

simplicity, but also because they arise in the framework of relativistic local gauge field

theories, such as the Standard Model of particle physics, where a scalar Higgs Boson

is responsible for the mechanism called “electroweak symmetry breaking”, necessary

for the gauge (vector) bosons of the theory (in this case the W and Z bosons) to
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acquire mass. The recent detection of a possible standard model Higgs particle in

the Large Hadron Collider (LHC) at CERN (CMS Collaboration Chatrchyan, 2012;

ATLAS Collaboration, 2013) encouraged works on inflationary models driven by the

Higgs boson (see for example Salvio, 2013; Hamada et al., 2014).

The energy and pressure density of a scalar field in a homogeneous Universe are

given by:

ρ =
1

2
φ̇2 + V (φ) (1.21)

p =
1

2
φ̇2 − V (φ) (1.22)

where V (φ) is the potential of the inflaton, that depends on the inflationary model.

Using eq. 1.21 and eq. 1.22 in the Friedmann and fluid equations, and neglecting the

curvature term, we obtain:

H2 =
8π

3m2
pl

[
1

2
φ̇2 + V (φ)

]
(1.23)

and

φ̈+ 3Hφ̇+ V ′(φ) = 0 (1.24)

where V ′(φ) = dV/dφ. From eq. 1.21, eq. 1.22 and eq. 1.19 it can be easily seen that it

is sufficient to satisfy φ̇ < V (φ) to assure an accelerated expansion. The most successful

inflationary models, in terms of concordance with the observations, are those in a slow-

roll regime, where the kinetic energy is much smaller than the potential (1
2 φ̇ << V (φ)).

This property induces a specific exponential expansion as the Hubble radius becomes

constant in time, and the equation of state would be p ∼ −ρ. To maintain the kinetic

energy smaller than the potential during a sufficient time, the condition |φ̈| << 3Hφ̇

is imposed. Using the slow-roll conditions, eq. 1.23 and eq. 1.24 can be written as:

H2 ≃ 8π

3m2
pl

V (φ) (1.25)

3Hφ̇ ≃ −V ′(φ) (1.26)

In general the slow-roll scenarios are characterized by two parameters related to the

potential, ǫ and η, defined as:

ǫ ≡
m2
pl

16π

(
V ′(φ)

V (φ)

)
, η ≡

m2
pl

8π

V ′′(φ)

V (φ)
(1.27)

At the end of inflation, the inflaton remains oscillating around the minimum of the

potential and the inflaton field decays into the standard model particles, filling the
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Universe with electromagnetic radiation and increasing the temperature again. At that

moment the Universe enters the radiation dominated era and its temperature increases,

reheating the Universe. This process depends on the model of inflation and it is usually

very fast (for a review on reheating see e.g. Bassett et al., 2006).

Perturbations in inflation

In addition to the classical motion of the inflaton field, there are quantum fluctua-

tions that are responsible for the initial inhomogeneities of the Universe. In a simple

scenario where the inflaton behaves as a quantum oscillator, the ground state of en-

ergy would have perturbations δφ with a Gaussian distribution. Although there can

be tensor and scalar perturbations, here we are focused on scalar perturbations (see

e.g Dodelson, 2003, for detailed information on tensor perturbations). The inflaton

field can then be presented in terms of a homogeneous background field with a linear

perturbation:

φ(~x, t) = φ(t) + δφ(~x, t) . (1.28)

This perturbation will have the main effect of having the slow-rolling behaviour φ(t)

in different parts of the Universe at different times δt = δφ

φ̇
. The dynamics equation of

the perturbations in Fourier space contains a gradient term that was neglected in the

background field for homogeneity and isotropy reasons:

δφ̈k + 3Hδφ̇k +
k2

a2
δφk = 0 (1.29)

where the term related to the potential has been neglected, as V ′ can be treated as a

constant for slow-roll models. Solving the differential equations the exact solution for

the perturbations is :

δφk = − H√
2k3

ie−ikτ (1 − ikτ) (1.30)

where τ is the comoving time. Therefore, during inflation the perturbation oscillates

on sub-horizon scales (−kτ = k
aH

>> 1)1:

δφk = −Hτ e
−ikτ

√
2k

, (1.31)

while on super-horizon scales ( k
aH

<< 1) the perturbations are frozen:

|δφk| =
H√
2k3

. (1.32)

1Note that dτ = − dt
a

= − da
ȧ

= − da
a2H

where the minus sign is chosen because the light is

moving towards us. Integrating both sides of the expression leads to τ = 1
aH

.
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In that limit, the power spectrum of the inflaton fluctuations, neglecting metric per-

turbations during inflation, is:

Pδφ =
H2

2k3
. (1.33)

These perturbations can now be treated as classical and they would couple with the

metric perturbation field ψ. Although a detailed explanation of the perturbations of

the curvature and the metric is out of the scope of this thesis (see Baumann, 2009;

Kinney, 2009; Langlois, 2008; Riotto, 2002; Dodelson, 2003, and references therein are

recommended for detailed information), I would like to point out the relation between

the inflaton and curvature perturbations power spectra after inflation:

Pψ =
4

9

(
aH

φ̇

)2

Pδφ . (1.34)

Under the assumption that anisotropic stresses are small the gravitational potential

Φ is equal to −ψ. Therefore, for a single field slow-roll inflation the initial matter

perturbations power spectrum k3P (k) depends on the slow-roll parameters ǫ and η,

leaving a nearly scale-invariant power spectrum. As I will show in the following section

it is feasible to obtain the temperature anisotropies of the CMB from Φ (see for example

Lewis & Bridle, 2002; Zaldarriaga et al., 1997). Summarizing, we are able to trace

properties of the inflationary epoch by the observation of the CMB.

Models of inflation

The modeling of an inflationary epoch is a very challenging question, as there is

no possibility of studying processes at that energy level in our laboratories. After the

first approach of Alan Guth in 1981, which was finally not phenomenologically viable,

a large number of other models have been presented. On the one hand there are models

based on the standard model of particle physics, using already studied scalar fields, as

the Goldston Bosons (Guth, 1981; Hawking, 1982; Freese et al., 1990). On the other

hand, new mechanisms have been proposed with the properties required to act as an

inflaton (e.g. D-brane inflation, Baumann et al., 2008). This makes the inflationary

paradigm even more interesting, as it could be a confirmation of particle physics the-

ories or to open the way for new physics mechanisms. In any case, the study of the

inflationary phase would contribute to a better understanding of the largest and tiniest

structures of our Universe. I will focus here on the slow-roll models of inflation, where

different models arise from choices of different potentials, and therefore of the slow-roll

parameters. In a broad classic sense, the slow-roll inflation models can be divided into
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Figure 1.7 - Schematic illustration of the potential energy of the inflation for the

three different main types of slow-roll inflation. On the top, the first potential is

a small-field model, the second figure illustrates a large-field model and the third

figure (on the bottom) is an example of hybrid inflation. Plot from Kolb (1999).

three main groups, large field, small field and hybrids models (Dodelson et al., 1997;

Kolb, 1999). The typical potential for each of these models is illustrated in fig. 1.5.

The small field models, whose most known example is the new inflation scenario

(Linde, 1982), arise from spontaneous symmetry breaking. They are characterised by

a “red” spectral ns < 1 and low contribution of the gravitational waves (r . 0.01). A

typical potential would be of the form:

V (φ) = λ

[
1 −

(
φ

µ

)p]
(1.35)

where λ and µ are free parameters of the potential.

The large field models are characterized by a scalar field displaced from the minimum

of the potential by several times the Planck mass, and a slow evolution towards the

minimum. These models are more difficult to fit in the particle physics framework,

but have the advantage of less fine-tuning requirements, and present a mechanism to

end inflation naturally. They are characterized by a “red” spectral index ns < 1 (with

slow roll parameters 0 < η < 2ǫ) and can give a larger contribution of the scalar-tensor

ratio. The chaotic inflation proposed by Linde (1986) is the most studied example of

this category with a potential of the form:

V (φ) = λ

(
φ

µ

)p
. (1.36)
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The hybrid models involve more than one field. Recently, inflationary models based

on the supersymmetry theories have been proposed, typically with two scalar fields

involved (φ and χ). Some of the hybrid models give a “blue” spectral index ns > 1

which is disfavoured by the observations, whereas the hybrid models with expected

“red” spectral index usually gives a very large contribution of tensor perturbations

which is also disfavoured by observations. However, there are still valid assumptions

on the free parameters that allow this type of models. An example is the spontaneous

symmetry breaking of SUSY model (Dvali et al., 2004b) with a potential given by:

V (φ, χ) = λ

(
1 − χ2

µ2

)2

+ α log(
φ

µ
) +

g2

2
φ2χ2 (1.37)

Setting tight constraints on the spectral index and the tensor to scalar ratio would help

to discriminate among all the variety of inflationary models. For more details in in-

flationary models and its dependency with ns and r see Planck Collaboration (2013e).

There are more exotic models of inflation that do not hold the slow-roll conditions as

the ghost inflation, where the inflationary phase is obtained with a ghost condensate

(Arkani-Hamed et al., 2004). Based on the string theory, the DBI-inflation proposes a

type of inflation that occurs due to the motion of a D-brane traveling down a higher-

dimensional space-time (Dvali & Tye, 1999). Another very different approach is based

on the loop-quantum gravity that provides a possible mechanism to generate inflation

(Ashtekar, 2009). Besides their dependence on the slow-roll parameters that can be in-

directly observed by the CMB (Dodelson et al., 1997), another important feature that

may help to discard some of these models is the presence of non-Gaussianity. In partic-

ular, depending on the model of inflation, different contributions to the higher moments

of the CMB fluctuations distribution are expected (see for example Bartolo et al., 2004).

1.3.3. Non-Gaussianities produced by inflation

As explained in the previous section the quantum perturbations of the inflaton field

couple with the metric, and are finally related to gravitational potential perturbations.

The CMB temperature anisotropies are related to the gravitational potential Φ by:

∆T (n̂)

T0
=
∑

ℓm

Yℓm(n̂)

∫
r2drΦℓm(r)gTℓ

(r) , (1.38)

where Φℓm is the spherical harmonic transform of Φ(x), Φℓm =
∫
d2n̂Φ(r, n̂)Y ∗(n̂).

In the above equation gTℓ
(in the literature also denoted by αℓ) is a mathematical
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function that depends on the cosmological model which projects Φ into the temperature

anisotropies through the integral over the line of sight. As a consequence, the CMB

anisotropies would be Gaussian if and only if the curvature perturbations were Gaussian

and its relation with the CMB anisotropies were linear.

The non-Gaussianities produced by inflation can be parametrised with the non-linear

coupling parameter fNL. In particular, up to the second-order the expression for the

effective primordial potential can be written as:

Φ(x) = Φ(x)L + fNL
[
Φ2(x)L −

〈
Φ2
L(x)

〉]
, (1.39)

that should be used in eq. 1.38 to obtain the temperature anisotropies. Note that in

this case both sides of the equations are evaluated at the same location in the po-

sition space. This type of non-Gaussianity is called local non-Gaussianity, and the

non-coupling parameter is usually referred as f localNL .

The parameter fNL can be related to the amplitude of the third order moments of

the CMB anisotropies. As shown below, in the spherical harmonic space fNL represents

the amplitude of the bispectrum. There can be different forms of the bispectrum, where

the amplitude is defined by different types of fNL . The most interesting forms are: the

local bispectrum, where the main contribution comes from the components with two

high multipoles and a low multipole, the equilateral form, where the main contribution

is due to equilateral triangles, and the orthogonal form, which will be combinations

orthogonal to the first two forms.

In this thesis we have studied the local form of the bispectrum (hereafter fNL

=f localNL ), for more details on other forms see for example the review by Liguori et al.

(2010). The main contribution of the local primordial non-Gaussianity is reflected in

the third order moment of the distribution of the temperature anisotropies. A natural

way to explore this signal is by looking at the three-point correlation function in the

spherical harmonic space, the bispectrum,

Bm1m2m3

ℓ1ℓ2ℓ3
≡ 〈aℓ1m1

aℓ2m2
aℓ3m3

〉 (1.40)

where the aℓm are related to the primordial gravitational potential by:

aℓm = 4π(−i)ℓ
∫

d3k

(2π)3
Φ(~k)gTℓ(k)Y

∗
ℓm

(
~k

k

)
, (1.41)
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where Φ(~k) is the Fourier transform

Φ(~x) =

∫
d3k

(2π)3
ei
~k~xΦ(~k) . (1.42)

For the local type of non-Gaussianity the Fourier transform of the gravitational poten-

tial eq. 1.39, can be divided into two different parts:

Φ(~k) = ΦL(~k) + ΦNL(~k) , (1.43)

where ΦL(k) is the linear part of the potential and ΦNL(k) the non-linear part, which

is defined by:

ΦNL(~k) ≡ fNL

[∫
d3p

(2π)3
ΦL(~k + ~p)Φ∗

L(~p) − (2π)2δ(3)(~k)〈Φ2
L(~x)〉

]
. (1.44)

Using eq.1.43 and eq. 1.44 one finds the non-vanishing components proportional to fNL

(see Komatsu, 2002, for details):

〈ΦL(~k1)ΦL(~k2)ΦNL( ~k3)〉 = 2(2π)3δ(3)( ~k1 + ~k2 + ~k3)fNLPΦ( ~k1)PΦ(~k2) . (1.45)

Taking into account all the permutations and, as commented previously in sec. 1.1.2,

that PΦ ∝ 1
kns−4 , the potential bispectrum in the limit where k3 7→ 0 would be:

〈Φ( ~k1)Φ( ~k2)Φ( ~k3)〉 = 4(2π)3δ(3)( ~k1 + ~k2 + ~k3)fNLPΦ(~k1)PΦ( ~k2) . (1.46)

Assuming a single-field slow-roll model of inflation, Maldacena (2003) found that

the amplitude of the three point correlation function depends on the spectral index ns:

lim
k3→0

< Φk1Φk2Φk3 >= (2π)3δ(~k1 + ~k2 + ~k3)
5

3
(1 − ns)PΦ(k1)PΦ(k3) (1.47)

when comparing eq. 1.47 and eq. 1.46 it can be seen that fNL for the squeezed (local)

shape should be of the order of 5
12(1 − ns) for single-field inflationary models.

Creminelli & Zaldarriaga (2004) pointed out that eq. 1.47 is more general, and it

is valid outside the slow-roll regime, with assuming nothing more besides that the in-

flaton is the only field involved. However, recent works point out that eq. 1.47 does

not hold for a few non-standard single-field models and therefore could give a signifi-

cant local non-Gaussian contribution. This is the case for models with super-horizon

curvature perturbation (Chen et al., 2013; Namjoo et al., 2013), or non-Bunch-Davies

initial states (Ganc, 2011; Agullo & Parker, 2011). Those single-field models could give

a large contribution to fNL .
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single field < 1 Creminelli & Zaldarriaga (2004)

DBI inflation 0.1-100 Alishahiha et al. (2004)

curvaton type models fNL = 5
4r Lyth et al. (2003)

ghost inflation ∼ 100 Arkani-Hamed et al. (2004)

ekpyrotic models ± 5α
24β ǫ

−1 Buchbinder et al. (2007)

Table 1.1 - Table of values of expected local type fNL in different generation of

primordial perturbations models. For the curvaton models, the fNL value depends

on the curvaton field density just before the decay, as a fraction of the total density

(r). For ekpyrotic models fNL is expected to be large, although it depends on the

free parameters of the model α and β. .

Besides of these exceptions, it is not expected to find a detectable fNL for large and

small field models but only for hybrid models, where the amplitude depends on the

form and free parameters of the potential. Additionally to the hybrid models, this type

of non-Gaussianity might arise also in inhomogeneous reheating (Dvali et al., 2004a)

and in non-standard cosmologies as the new ekpyrotic models (Creminelli & Senatore,

2007; Koyama et al., 2007; Buchbinder et al., 2007). The expected values of fNL for

different models of inflation are shown in table 1.1. While with WMAP constraints

(−3 < fNL < 77 at 95% CL) most of the models in table 1.1 were still allowed,

with the exception of the ghost inflation (Bennett et al., 2013), the recently released

Planck results (−9 < fNL < 14 at 95% CL) are able to set tight constraints on

the properties of the multi-field inflationary models and ekpyrotic free parameters

(Planck Collaboration, 2013f).

1.4. fNL estimators

As shown in the previous section, the local non-Gaussianity produced by inflation

is reflected in the third order moments. In this section some of the most common

estimators are summarised as well as the estimators used in the analyses presented in

this thesis.
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1.4.1. Bispectrum estimators

The full bispectrum is extremely demanding, computationally speaking, what makes

its use unfeasible for non-Gaussianity analysis. Different approaches have been pro-

posed to reduce the computational demand maintaining the expected efficiency (see for

example Komatsu et al., 2005; Bucher et al., 2010; Fergusson et al., 2010). In addition,

there are other linear transformations, as the ones given by wavelets, whose third order

moments have been used to obtain similar constraints (Curto et al., 2009a, 2011). Here

are presented some of the estimators of the bispectrum.

Angular averaged reduced bispectrum

The angular averaged bispectrum is obtained by assuming isotropy as:

Bℓ1ℓ2ℓ3 =
∑

mi

(
ℓ1 ℓ2 ℓ3

m1 m2 m3

)
aℓ1m1

aℓ2m2
aℓ3m3

, (1.48)

where the matrix denotes the Wigner-3j symbol, that ensures that the combi-

nations of ℓs meet the triangle condition |ℓi − ℓj| ≤ ℓk ≤ |ℓi + ℓj | and that

m1 + m2 + m3 = 0. Additionally, parity invariance of the angular correlation

function demands ℓ1 + ℓ2 + ℓ3 = even. Eq. 1.48 can be expressed in a more com-

putationally effective form, using the relation of the Wigner-3j symbols with the

spherical harmonics:

(
ℓ1 ℓ2 ℓ3

m1 m2 m3

)
=

(
ℓ1 ℓ2 ℓ3

0 0 0

)−1√
4π

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)
× (1.49)

∫
Yℓ1m1

(n̂)Yℓ2m2
(n̂)Yℓ3m3

(n̂)dn̂ ,

The expression for the angular averaged bispectrum can then be written as:

Bℓ1ℓ2ℓ3 =

(
ℓ1 ℓ2 ℓ3

0 0 0

)−1√
4π

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

∫
Tℓ1Tℓ2Tℓ3dΩ ,

(1.50)

where Tℓi =
∑

mi

aℓimi
Yℓimi

. Finally, in Komatsu & Spergel (2001) is defined the

reduced bispectrum bℓ1ℓ2ℓ3 , in order to have a more convenient estimator to use

in the flat sky approximation:

Bℓ1ℓ2ℓ3 =

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3

0 0 0

)
bℓ1ℓ2ℓ3 . (1.51)
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Then, using the reduced bispectrum definition and eq. 1.50, the relation between

the angular averaged reduced bispectrum and Tℓ is:

bℓ1ℓ2ℓ3 =

(
ℓ1 ℓ2 ℓ3

0 0 0

)−2

4π

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

∫
Tℓ1Tℓ2Tℓ3dΩ (1.52)

Binned bispectrum

In order to reduce the number of components of the full bispectrum Bucher et al.

(2010) proposed to bin the ℓ space, in such a form as:

bIaIbIc =
∑

ℓ∈Ia

∑

ℓ2∈Ib

∑

ℓ3∈Ic

bℓ1ℓ2ℓ3 (1.53)

where Ii are intervals in ℓ, Ii = [ℓimin, ℓ
i
max]. To be able to perform the binning be-

fore computing the full bispectrum, an alternative reduced bispectrum is defined:

bℓ1ℓ2ℓ3 =

∫
Tℓ1Tℓ2Tℓ3dΩ. (1.54)

This definition of the reduced bispectrum differs from the the previous expression

defined in eq. 1.52 by the factor Γℓ1,ℓ2,ℓ3:

Γℓ1,ℓ2,ℓ3 =
(2ℓ1 + 1)(2ℓ2 + 1)(ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3

0 0 0

)2

. (1.55)

The binned bispectrum can then be computed from the binned maps TIa (TIa =∑

ℓ∈Ia

Tℓ), allowing us to reduce the number of spherical harmonic transformations.

The number of bins is typically two orders of magnitude smaller than the number

of ℓ, implying a significant reduction of the 3-point correlation components. The

binned bispectrum is constructed from the binned maps as:

bIaIbIc =
N∑

i

4π

N
TIa(i)TIb(i)TIc(i) (1.56)

where N is the number of pixels of the map. The binning scheme reduces by

5 orders of magnitude the number of components of the bispectrum, reducing

considerably the dimension of the problem and therefore its computational ef-

fort. The drastic reduction does not affect significantly the efficiency of the

method, giving very similar constraints on the fNL parameter (Bucher et al.,

2010; Casaponsa et al., 2013). The performance of this method and its appli-

cations to WMAP 7-yr data have been studied in chapter 4 (Casaponsa et al.



1.4. FNL ESTIMATORS 29

2013). Furthermore, the binned bispectrum has been used for setting the con-

traints on fNL in Planck data (Planck Collaboration, 2013f).

There are other methods in the literature, along the same lines of the estima-

tors presented above. Fergusson et al. (2010) presented a similar approach as

the binned bispectrum, that reduces the number of components of the bispec-

trum performing a separable mode expansion. Another attempt to reduce the

dimensionality of the problem is the “skew-spectra” presented in Munshi et al.

(2011).

1.4.2. Wavelet estimators

A large set of different wavelets have been used in the astrophysics literature. In par-

ticular, different spherical wavelets have been applied to CMB Gaussianity analysis dur-

ing the last decade, including the spherical Haar wavelet (SHW, Barreiro et al. (2000)),

the Spherical Mexican hat Wavelet (SMHW, Cayón et al. (2001); Mart́ınez-González et al.

(2002); Vielva et al. (2004); Mukherjee & Wang (2004); Cruz et al. (2005); Curto et al.

(2009b)), elliptical SMWH McEwen et al. (2005), directional spherical wavelets (McEwen

et al. 2006, 2007) and needlets (Pietrobon et al., 2009; Rudjord et al., 2009; Cabella et al.,

2010). For a review on wavelet applications to cosmology see McEwen et al. (2007).

Here I describe the two types of wavelets that are used in the analysis presented in this

thesis, the SMHW and a new wavelet the Healpix wavelet (HW).

Spherical Mexican hat wavelet

In particular for fNL estimation, one of the most commonly used wavelets is the

spherical Mexican hat wavelet (SMHW), which gives very close fNL constraints

to the ones obtained with the bispectrum. Conversely to the spherical harmonic

transformation, in this case the transformation is done in the wavelet domain,

maintaining part of the information of the real space while adding harmonic

space information. The definition and properites of the SMHW transformation

can be seen in Mart́ınez-González et al. (2002). Basically, given a function f(~n)

evaluated on the sphere at a direction ~n, the wavelet transform is defined as

w(R, ~p) =

∫
f(~n)Ψ(~n, ~p,R)d~n (1.57)

where Ψ(~n, ~p,R) is a continuous wavelet function, ~p is the position in the sky at

which the wavelet coefficient is evaluated and R is the scale of the wavelet. In
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particular for the SMHW, the wavelet only depends on the polar angle θ and the

scale R and is defined by:

Ψ(θ;R) =
1

(2π)
1
2N(R)

[
1 +

(y
2

)2
]2 [

2 −
( y
R

)2
]
e−

y2

2R2 , (1.58)

where

N(R) ≡
(

1 +
R2

2
+
R4

4

) 1
2

(1.59)

and

y ≡ 2 tan

(
θ

2

)
. (1.60)

As for the bispectrum, third order moments of the wavelet coefficients are con-

structed, which will be directly related to fNL .

Healpix wavelet

The Healpix wavelet (HW) is a very simple statistical tool, inspired in the Haar

wavelet and adapted to the HEALPix pixelization. The HW is a discrete wavelet

and presents an optimal space localization, while the frequency localization is not

as good as that of the SMHW. The main advantage of this wavelet is that con-

versely to the SMHW and to needlets, a transformation of the data into spherical

harmonic space is not required. Therefore, the computational cost is significantly

reduced. The wavelet functions for the HW are:

Ψ0,j,k(x) = ϕj+1,k0(x) −
ϕj,k(x)

4
(1.61)

Ψ1.j,k(x) = ϕj+1,k1(x) −
ϕj,k(x)

4

Ψ2,j,k(x) = ϕj+1,k2(x) −
ϕj,k(x)

4

Ψ3,j,k(x) = ϕj+1,k3(x) −
ϕj,k(x)

4

where ϕ(x)j,k is the scaling function

ϕ(x)j,k =

{
1 if x ∈ Pj,k
0 otherwise ,

(1.62)

and Pj,k is the pixel at position k at resolution j, which at the next higher reso-

lution is divided into four daughter pixels Pj+1,k0, Pj+1,k1, Pj+1,k2, Pj+1,k3.

The wavelet decomposition of a temperature map can be written in terms of
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the basis functions and a set of coefficients:

∆T

T
(xi) =

Nj0
−1∑

k=0

λj0,kϕj0,k(xi) +
J∑

j=j0

3∑

m=0

Nj−1∑

k=0

γm,j,kΨm,j,k(xi) , (1.63)

where Nj is the number of pixels at resolution j. λj,k and γm,j,k are the ap-

proximation and detail coefficients respectively (those are described in detail in

chapter 2).

The third order moments of the HW are used to constrain fNL of WMAP-7yr

(Casaponsa et al., 2011) and would be presented in the second chapter of this

thesis, as well as more details about the implementation of the HW.

It is also worth commenting other methods with a very different approach, as the

Minkowsi functionals that performs an analysis of the geometry of the field. Its the-

oretical dependence on fNL is known and therefore constraints on the parameter can

also be imposed (Hikage et al., 2008). Other alternative methods for fNL estimation

have been presented, as the use of the N-pdf of the CMB anisotropies (Vielva & Sanz,

2009), a Bayesian approach presented in Elsner & Wandelt (2010) or a goodness of fit

analysis (Aliaga et al., 2005; Curto et al., 2007).

1.4.3. Classical parameter estimation

A common procedure is to construct a fNL estimator using third order statistics of

the form explained above. With the approximation that the cubic statistics follow a

Gaussian distribution, the likelihood can be written in terms of a χ2:

L ∝ e−
1
2
χ2

. (1.64)

As the bispectrum is proportional to fNL , one can write 〈Bℓ1ℓ2ℓ3〉 = fNL〈Bℓ1ℓ2ℓ3〉1,
where 〈Bℓ1ℓ2ℓ3〉1 is the value for the bispectrum at fNL = 1. Here we use the angular

averaged bispectrum, but the same reasoning could be done for the other estimators

proposed above. Then the χ2 expression is:

χ2 =
∑

ℓ1ℓ2ℓ3,ℓ
′

1ℓ
′

2ℓ
′

3

(
Bobs
ℓ1ℓ2ℓ3

− fNL〈Bℓ1ℓ2ℓ3〉1
)
C−1
ℓ1ℓ2ℓ3,ℓ

′

1ℓ
′

2ℓ
′

3

(
Bobs
ℓ′1ℓ

′

2ℓ
′

3
− fNL〈Bℓ′1ℓ′2ℓ′3〉

1
)
,

(1.65)

For the bispectrum the scales are uncorrelated (under ideal conditions), and the off-

diagonal terms of the covariance matrix C vanish. Then C−1
ℓ1ℓ2ℓ3,ℓ

′

1ℓ
′

2ℓ
′

3
is just the inverse
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of the variance: Cℓ1ℓ2ℓ3,ℓ1ℓ2ℓ3 = ∆Cℓ1Cℓ2Cℓ3 , where ∆ is a factor that takes values

of 6, 2 or 1 if all multipoles are equal, two are equal or all are different respectively

(see Komatsu, 2002, for details). Therefore, it can be easily found that the maximum

likelihood estimator for fNL would be:

f̂NL =
∑

ℓ′1ℓ
′

2ℓ
′

3

Wℓ′1ℓ
′

2ℓ
′

3
Bobs
ℓ′1ℓ

′

2ℓ
′

3
(1.66)

where the weights Wℓ′1ℓ
′

2ℓ
′

3
are:

Wℓ′1ℓ
′

2ℓ
′

3
=

〈Bℓ1ℓ2ℓ3〉1/∆Cℓ1Cℓ2Cℓ3∑
ℓ′1ℓ

′

2ℓ
′

3
(〈Bℓ′1ℓ′2ℓ′3〉1)2/∆Cℓ1Cℓ2Cℓ3

. (1.67)

The estimator in eq. 1.66 is unbiased as it satisfies 〈f̂NL〉 =fNL .

The error of the estimator is given by its standard deviation, which is computed

with simulations, and the lower bound for a given experiment is given (from the Fisher

matrix) by:

Fa,a = −∂
2 lnL
∂a∂a

(1.68)

where a correspond to the parameter of the model, in this case fNL . The lower bound

on the dispersion of the parameter would be:

σfnl =
1√

Ffnl,fnl
, (1.69)

σfnl =

√
(〈Bℓ1ℓ2ℓ3〉1)2
∆Cℓ1Cℓ2Cℓ3

. (1.70)

Dealing with non-ideal conditions

The approach defined above is very powerful for an ideal experiment (full sky and

isotropic noise). However, under realistic conditions, the CMB data present two im-

portant sources of anisotropy: the noise, due to the scanning procedure of the satellite,

and the mask. As explained in section 1.2.4 there are zones of the sky that can not

be completely cleaned and need to be masked, typically setting those areas to a null

value. This has an impact on the used statistics, which should be carefully studied.

As a very simple approximation, the available sky fraction (fsky) is commonly used to

correct the theoretical standard deviation of the parameter:

σfnl =
1√
fsky

√
(Bℓ1ℓ2ℓ3)

2

∆Cℓ1Cℓ2Cℓ3
(1.71)
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This correction is only valid for the computation of the lower bound, whereas when

estimating the fNL value of a map, the non-idealities would introduce correlations at

different scales, that may have a large effect on the results. There are several tech-

niques proposed to solve this problem, as for example to apodize the mask, avoiding

sharp cuts at the edges of the galactic zone. Another technique is the use of inpainting,

that it fills the masked pixels with some noise, with a more or less complex algorithms.

These techinques might be useful but they need to be implemented carefully to prevent

a contamination of the real signal.

When using the theoretical estimator for fNL the correlations are not taken into ac-

count, yielding to a sub-optimal estimator. Babich (2005) and Creminelli et al. (2006)

proposed an optimal estimator that included a linear term which takes into account

the anisotropic effects. This term appears naturally if, instead of assuming a Gaussian

distribution of the alm, the non-Gaussian signal due to fNL is included in the likelihood

using the Edgeworth expansion:

L(a|fNL) =


1 − fNL

∑

ℓimi

〈aℓ1m1
aℓ2m2

aℓ3m3
〉1 ∂

∂aℓ1m1

∂

∂aℓ2m2

∂

∂aℓ3m3


× (1.72)

×e
− 1

2

P

a∗
ℓ4m4

C−1
ℓ4m4,ℓ5m5

aℓ5m5

√
(2π)N |C|

.

An estimator is optimal, unbiased and with a variance saturating the Cramer-Rao

bound, if the following condition is satisfied:

d lnL(a|fNL)

dfNL
= FfNLfNL

(f̂NL − fNL) . (1.73)

Using eq. 1.64 and eq. 1.73, and after some calculations it is found that the optimal

estimator is given by:

f̂NL =
1

N

∑

limi

(
〈al1m1

al2m2
al3m3

〉1 C−1
l1m1,l4m4

C−1
l2m2,l5m5

C−1
l3m3,l6m6

al4m4
al5m5

al6m6
(1.74)

−3 〈al1m1
al2m2

al3m3
〉1 C−1

l1m1,l2m2
C−1
l3m3,l4m4

al4m4

)
,

where Cℓm,ℓ′m′ = 〈aℓmaℓ′m′〉. For simplicity, Creminelli et al. (2006) used the assump-

tion of a diagonal C in the denominator, therefore the estimator would be as in eq. 1.66

plus a linear term of the form:

− 3

N

∑

ℓimi

〈aℓ1m1
aℓ2m2

aℓ3m3
〉1

Cℓ1Cℓ2Cℓ3
Cℓ1m1,ℓ2m2

aℓ3m3
. (1.75)
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For an ideal case, one can see that the estimator for fNL remains the same as in eq. 1.66.

The linear term contribution is less important if correlations are taken into account, as

it will be shown in chapter 4.

1.4.4. Neural networks

Besides the classical approaches for parameter estimation, there are other tech-

niques as artificial neural networks that have been widely used in this matter (e.g. see

the review of Cheng & Titterington, 1994). The first application of neural networks

regarding the estimation of primordial non-Gaussianity is presented in this thesis.

Artificial neural networks were introduced during the mid twentieth century based

on the first biological neural network models of the brain. The basic idea was a sys-

tem composed by different neurons connected to each other that communicate through

electromagnetic impulses. The human learning process was thought to be possible due

to the strengthening of determined neural connections when activities were repeated.

Algorithms to recreate the biological neural network were created to understand bet-

ter our brain (McCulloch & Pitts, 1943; Farley & Clark, 1954; Rosenblatt, 1958). Al-

though the simplest artificial neural networks (ANN) are not able to reproduce the

complex human brain activity, they have been a very useful tool to solve complex

mathematical problems with quite simple algorithms. ANN have been widely used for

solving several practical problems such as pattern recognition, chaotic system predic-

tions or classification of objects. Furthermore, artificial intelligence techniques have

been introduced to astrophysical analysis in the past decades: morphological galaxy

determination, photo-redshift estimations, and classification of different objects are

examples of successful applications of neural networks (e.g. Baccigalupi et al. 2000;

Firth et al. 2003; Ball et al. 2004 and Nørgaard-Nielsen 2012). In particular, for CMB

analysis, they have been recently used to reduce the computational time of cosmological

parameter estimation from the CMB power spectrum (Auld et al., 2007, 2008) and in

this thesis we present the first application to a CMB non-Gaussianity analysis. Here,

an overview of the neural networks and its applications to the CMB non-Gaussianity

are given while the details on the implementation are left to chapter 3.
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Figure 1.8 - Illustration of a schematic biological neuron on the left and the

mathematical equivalent of one single artificial neuron.

ANN mechanism

An artificial neural network is a set of neurons (nodes) distributed in layers, con-

nected to each other. The first layer represents the inputs of the problem and the last

one is left to symbolise the outputs. The so-called hidden layers, with a number of

hidden nodes, are those layers in between. The job of the neural network is to find the

pattern that links the values of the inputs with the outputs. In a biological analogy, an

artificial node represents the cell body, the input links would be the dendrites, and the

output links would be the axon, which would connect with dendrites of other nodes.

The intensity of those connections, are given by a mathematical function of the inputs

(activation function), analogously to the intensity of the electromagnetic impulses of

the biological network (Fig. 1.8). The strenght of the connections between the nodes

(the weights value) will be given by what is called the learning process. A full network

will have all the neurons connected to each other in any possible direction. However,

a simpler network allowing only the forward connections, is commonly employed. A

diagram of a typical feed-forward neural network is shown in Fig. 1.9, where all nodes

are only connected to those of the following layer. The presence of a node, with the

exception of the nodes in the first layer, indicates the application of an activation func-

tion. The first neural networks were designed to work with step functions, in order to

activate or not the connection. Later on, it was found to be more effective the use of
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Figure 1.9 - Schematic diagram of a 3-layer neural network.

derivable functions, within a range of action. For that, sigmoidal functions are typically

used, as the hyperbolic tangent.

The ANN mechanism is very simple, each node uses a linear combination of the receiv-

ing nodes and links, applies a sigmoidal function and gives an output that will be used

as the input for the next layer. For example, for one hidden layer network the hidden

nodes hj are given by the activation function applied to a linear combinations of the

inputs:

hj = tanh

(∑

i

wijXi + θj

)
. (1.76)

where wij represent the “strength” of the connection between the input xi and the

hidden node hj . A similar process happens in the next layer: the hidden nodes would

be the “inputs” for the next layer, that in this case (one hidden layer only) would be

the output layer. The nodes of the last layer are usually set with a linear activation

function. Then:

yk =
∑

j

Wjkhj + Θk . (1.77)

Substituting eq. 1.76 into eq. 1.77, the outputs are left as a function of the inputs and

the network parameters a = [w, θ,W,Θ]. One sees that the final outputs are sensitive

to the network architecture: how many layers there are and how populated they are.

Training the network

The basic idea of the artificial neural network is to use information that we already

have, in order to learn from it and, finally, to obtain a pseudo-model reliable for predic-
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tions. For this reason a set of known inputs and outputs (or targets) is used (e.g. if we

want a neural network to learn how to perform an addition, the inputs would be the

addends and the targets the result of the addition). The objective is to find the network

outputs (eq. 1.77) that give the best answer for the targets. Hence, an optimization

function E is defined, such as the mean squared error, whose minimum will indicate

the optimal weights. The differences between neural networks, besides the architec-

ture and the choice of the activation function, lies on the selection of the minimization

algorithm. One of the simplest methods is actualizing the network parameters using

the back-propagation algorithm. In this algorithm the weights are updated through an

iterative process until a desired tolerance is met. This process is very fast, however the

solution is a local minimum, and for complex problems it could be far from optimal.

Algorithms with a better performance as the conjugate-gradients based algorithms,

simulated annealing or Powell’s method among others, are commonly used (see e.g

Golden, 1996; Mackay, 2003, for complete neural network reviews.) Another approach

to the neural networks is to look at it as a model fitting probabilistic problem from the

Bayesian point of view. For this thesis, the algorithm to obtain the optimal weights was

developed by Gull & Skilling (1999), and is based on the maximum entropy trajectory.

In this case, the optimization function has a contribution given by the entropy S of the

network parameters:

Q = E − αS (1.78)

where α starts from infinity and goes slowly to zero. E is the optimization function

(e.g. mean squared error):

E =
1

N

∑

l

∑

k

(tlk − yk(a, ~x
l))2, , (1.79)

with k running from 1 to the number of outputs and l is the number of pairs input-

target. The addition of the entropy to the optimization function helps the training

process to converge smoothly to the minimum.

The error function E can be interpreted as the minus log likelihood, where the data are

the targets, and the model is given by the network parameters a.

P (D|a) ∝ e−E(a) . (1.80)

The second part of the optimization function can be interpreted in terms of a log prior

probability distribution over the parameters:

P (a|α) ∝ eαS(a) . (1.81)
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Following the Bayes theorem, the objective function Q can be seen as the minus log

posterior probability:

P (a|D,α) =
P (D|a)P (a|α)

P (D|α)
= (1.82)

∝ e−Ee−αS

P (D|α)
∝ e−Q(a) .

In that sense, the network parameters that minimize Q could be interpreted as the

most probable parameter vector. For the neural network used here, E = χ2 and S is

the entropy defined as:

S(a) =
∑

i

(
ai − ao,i − ai log

ai
ao,i

)
(1.83)

where ao is the initial guess for the network parameters. In practice the weights might

take positive and negative values, therefore it is used the definition of the entropic

prior for distributions with positive and negative values proposed by Hobson & Lasenby

(1998):

S(a) =
∑

i

(
Υi − 2ao,i − ai log

Υi + ai
2ao,i

)
(1.84)

where Υi =
√
a2
i + 4a2

o,i. The advantage of using and entropic prior is basically improv-

ing for convergence. In addition, the use of the Bayes theorem allows one to obtain a

posterior probability of the solution given by the network. This is very useful to decide

which network architecture (number of hidden nodes and layers) to use, whereas in

the frequentist approach this can only be done by training different architectures and

comparing the results.

NN fNL estimators

In this thesis, a new approach is proposed to obtain the fNL estimator from a CMB

map, avoiding large matrix estimations and inversions. Two estimators based on a

neural network are tested finding similar results than with the classical approaches

explained in the previous subsection (1.3.3). The inputs of the network should encap-

sulate in the best way the non-Gaussian signal, for this reason the third order moments

defined at the beginning of this section will be used as inputs whereas the estimator

of the fNL parameter will be obtained by training a neural network. The fNL esti-

mators are constructed from the neural network parameters obtained in the training

process. There are two main types of neural networks approaches: classification and
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regression. The regression finds a relation between the inputs and the outputs, whereas

the classification network relates several inputs into classes. The neural network classi-

fier is required to find the characteristics of each class setting the boundaries between

different classes. Both approaches are studied for non-Gaussianity and an overview of

the estimators used are presented here, while more details are given in chapters 3 and 4.

Regression

A regression network is trained with the third order statistics of a map generated

with a given fNL. This fNL value will be the required target, that is compared to

the network output computed with the same inputs. To obtain the optimal NN

parameters, the function Q (eq. 1.78) is minimised using a conjugate-gradient

algorithm. Then, with the optimal network parameters, the fNL estimate for

any given map can be computed. Using a neural network with one hidden layer

(eq. 1.77) the estimator for fNL is:

f̂NL =
∑

j

Wjk tanh

(∑

i

wijSi + θj

)
+ θk . (1.85)

However, as explained in chapter 3, we find that no hidden layers are required for

this problem, thus the above expression is simplified:

f̂NL =
∑

j

wijSi + θj . (1.86)

Classification

A neural network can also be used as a classifier, where the outputs are classes.

The network finds the pattern of the inputs that characterises a class. The output

values would be a vector with dimension equal to the number of classes with zeros

in all its components except for the class where the object belongs. In this case

the outputs need to be transformed into probabilities, using a soft-max filter:

pk =
eyk

∑
r e

yr
, (1.87)

For the classifier, the optimisation function is also eq. 1.78, with the difference

that now E is tipically the Kullback–Leibler divergence or the cross-entropy, that

compares two distributions:

E =
∑

t

(
−
∑

i

qti log pi(~x
t,a)

)
(1.88)
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qli are the training set target vectors, qi is 1 if the input belongs in class i and 0

otherwise and l, as before, stands for the training pair used. For the case studied

in this thesis, the classes correspond to the level of non-Gaussianity of each map.

The range in fNL used is divided in bins with a central value f cNL and a bin width

smaller than the expected error bar. The network outputs pi can be treated as

the probability of a given input to belong to each class. Then the estimator for

fNL can be constructed by integrating over the classes:

f̂NL =
∑

i

f cNL,ipi (1.89)

.

1.5. Gravitational lensing

As seen in the previous sections, the CMB has provided exceptional information

to establish the current cosmological model, with very accurate constraints on the

cosmological parameters. However, there is the need to observe the Universe in all its

epochs to complete the cosmological picture. For that, the weak lensing observables

are expected to be crucial.

General relativity predicts that the path of light from a distant galaxy is distorted

by the gravitational potential fluctuations along the line of sight. This modification

of the light paths is called gravitational lensing and is a powerful tool for probing the

distribution of mass in the Universe. The variation of the light path depends on the

position in the sky of the emitting object, the distance from the emitting object to the

observer and on the potential along the light path (see fig. 1.10). As the Universe is in

permanent evolution photons emitted at an earlier epoch will be differently deflected

from those emitted later, due principally to the longer path length (for some reviews

see Schneider et al., 1992; Narayan & Bartelmann, 1996; Mellier, 1999; Munshi et al.,

2008). The combination of the depth information with angular information on the

gravitational lensing distortion, allows for the reconstruction of the three-dimensional

unbiased distribution of matter, or to perform statistical analysis to infer cosmological

parameters from the dependence of the observables on the power spectrum and growth

of density perturbations with redshift. Dark energy and modifications to Einstein

gravity also act to modify the lensing effect by changing the distance-redshift relation

in addition to the growth of density perturbations (Huterer, 2002; Munshi & Wang,
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2003). Lensing effects are therefore a particularly valuable source of information for

three of the important open issues in modern cosmology, namely the distribution of

dark matter, the properties of dark energy and the nature of gravity.

1.5.1. Cosmology with weak lensing

The main contribution to cosmology given by the weak lensing observations rests

primarily on the information provided about the dark matter and dark energy. In fact,

weak lensing by itself would be, in principle, able to have more precise constraints than

a CMB experiment on the parameter related to the clustering of the matter (σ8), as

well as on the parameters related to the dark energy equation of state (wo and wa). σ8

represents the amplitude of the matter fluctuations, in particular the root mean square

(rms) matter fluctuations today within a sphere of radius 8h−1Mpc. This cosmological

parameter depends on the parameters defined in section 1.1.2, and its current value

obtained with Planck is σ8 = 0.834 ± 0.027 at 68% CL (using only temperature).

In the standard cosmological model the dark energy is assumed to be a constant,

however, there are alternatives proposed as the dynamical dark energy. These models

are usually based on scalar fields allowing a connection with inflation, where there is

an accelerated expansion as well. The dynamical dark energy will have an equation of

state parameter w varying with the scale factor (note that for ΛCDM model w = −1).

A typical parametrisation is:

w(a) = wo + wa(1 − a) . (1.90)

This simple parametrisation can be useful to discriminate among different dark energy

candidates, or at least discard some of the models (see Copeland et al., 2006, for a

review on dark energy candidates). The dark energy parameters are probably the most

weakly constrained parameters by CMB alone experiments, and this is why matter

related observations are essential to reduce its errors. The most stringent constraints for

wo and wa are obtained using CMB and barionic acoustic oscillations (BAO) combined

observations: wo = 1.04 ± 0.7 and wa < 1.32 both at 95% CL. (Planck Collaboration,

2013c).

Additionally, a combined analysis with CMB data will reduce the uncertainties

on other cosmological parameters obtained with a CMB experiment alone. Forecasts

of the cosmological parameters with a weak lensing experiment as Euclid alone and

the joint analysis with CMB data can be seen, for example, in Heavens et al. (2006)
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and Amendola et al. (2013), finding that a joint analysis reduces the errors of all the

cosmological parameters.

1.5.2. Lensing formalism

The deflection angle produced by the lens is related to the distance from the object

to the lens (Dds), and the distances at which the lens (Dd) and the object (Ds) are

located from us:

~θDs = ~βDs + ~αDds , (1.91)

or

~β = ~θ − ~α
Dds

Ds
. (1.92)

The deflection angle sets the relation between the observed position of the object ~θ

with its true position ~β.

This change of the light path is related to the Newtonian potential of the lens. For

that it is defined an effective lensing potential, that is obtained from a projection of

the Newtonian potential as:

Ψ(~θ) =
2

c2
Dds

Dd

Ds

∫
Φ(~ξ, z)dz . (1.93)

where ~ξ is the impact parameter (see fig. 1.10). The gradient of the effective lensing

potential is related to the deflection angle as:

~∇θΨ =
Dds

Ds
~α . (1.94)

This relation is only valid for the thin lens approximation, that means that the thickness

of the lens is negligible compared to the distances involved, in that case the lens can be

approximated by a plane. Another important relation is the one between the effective

lensing potential and the mass distribution or the surface mass density of the lens

(Σ(~θ)):

~∇2
θΨ = 2

Σ(~θ)

Σcr
. (1.95)

Σcr is the critical surface mass density, and is defined as:

Σcr =
c2

4πG

Ds

DdDds
. (1.96)

The quantity κ(~θ) = Σ(~θ)
Σcr

is what is called the convergence, and states the limit between

strong lensing (κ(~θ) ≥ 1) and weak lensing (κ(~θ) < 1). Therefore, eq. 1.95 can be
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Figure 1.10 - Schematic illustration of the gravitational lensing deflection.S is the

source, the middle circle represents the lens and the observer is marked with O.

Figure from Narayan & Bartelmann (1996).

written as:

~∇2
θΨ = 2κ(~θ) . (1.97)

The distortions induced by gravitational lensing are described by the Jacobian matrix

A, that maps the true angular position of the image to the angular position of the

source:

Aij =
∂ ~βi

∂~θi
. (1.98)

Using eq. 1.92 and eq. 1.94 Aij can be written in terms of the Hessian matrix Ψij of

the effective lensing potential:

Aij = δij − Ψij . (1.99)

There are two important quantities related to the second derivatives of the effective

lensing potential. The first one is the convergence, mentioned before:

κ =
1

2
(Ψ11 + Ψ22) (1.100)

and the second one is the complex shear γ:

γ = γ1 + iγ2; (1.101)
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Figure 1.11 - Changes in an image due to different weak lensing fields. The first

panel is without lensing, the middle panel is with κ = 0.1 and γ = 0, and the third

panel has κ = 0.1, γ1 = 0.1 and γ2 = 0.02.

where

γ1 =
1

2
(Ψ11 − Ψ22)γ2 = Ψ12 . (1.102)

Then the matrix A can be written in terms of the convergence and the complex shear:

A =

(
1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)
(1.103)

The convergence causes a magnification of the source, whereas the shear introduces

anisotropic distortions that will have an impact on the shape of the source. The effects

on a circular source are shown in fig. 1.11.

1.5.3. Weak lensing observables

Observationally there are three main effects on the background sources: changes

in the ellipticity, magnification of the flux, and magnification of the size, the last two

being directly related due to the conservation of the surface brightness in gravitational

lensing. For large densities of matter the effects are all very strong, and multiple im-

ages of the background galaxies can be produced with large distortion. The study of

these images has led to local reconstructions of the distribution of matter (see for ex-

ample Tyson et al., 1984; Fort et al., 1988; Tyson et al., 1990; Kaiser & Squires, 1993;

Mellier et al., 1993; Diego et al., 2005). When the potential fluctuations and their

derivatives are small, the mapping from the source position to the image position on

the sky is the identity matrix with corrections which are ≪ 1.
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In the weak lensing regime (κ, γ << 1) individual galaxy shear or convergence can

not be determined observationally, but the distortions may be observed statistically

using a large sample. The main cosmological information can be extracted from the

convergence power spectrum Pκ. Consider the Fourier transform of κ(~θ):

κ(~ℓ) =

∫
ei
~ℓ~θκ(~θ), (1.104)

then the 2D convergence power spectrum is:

〈κ(~ℓ)κ(~ℓ′)〉 = (2π)2δD(~ℓ− ~ℓ′)Pκ(ℓ) . (1.105)

The Limber’s equation provides an approximate relation between the spatial three

dimensional correlation function ξ(r) with the projected correlation function C(θ).

Kaiser (1992) applied it to relate the 2D convergence power spectrum with the 3D

matter power spectrum Pδ:

Pκ(ℓ) =
9H4

0Ω2
M

4c4

∫ ∞

0
dr

(
g(r)

a(r)

)2

Pδ

(
ℓ

r
, r

)
. (1.106)

where r is the radial coordinate, H0 is the Hubble constant and ΩM the matter energy

density relative to the critical density. Furthermore,

g(r) =

∫ ∞

r

dr′n(r)
r′ − r

r
(1.107)

where n(r) is the normalized radial distribution of the sources (for details see e.g.

Schneider, 2005; Heavens, 2011). In the weak lensing limit the shear power spectrum

is identical to the convergence power spectrum P γℓ ≃ P κℓ . Therefore, observations of

both fields contain valuable cosmological information. If the fields were Gaussian we

would not need to go to higher-order correlations. However, non-linearities in small

scales make the weak lensing field non-Gaussian, carrying some of the information in

higher-order correlations (see e.g. Bernardeau et al., 2012; Takada & Jain, 2003)

Cosmic shear

In weak lensing the most studied effect is the modification of the galaxy shape, a

measure of the shear. The shape distortion has the main advantage that the intrinsic

distribution of galaxy ellipticities is expected to be random, according to the cosmo-

logical principle, and therefore the average complex ellipticity is zero. In practice, in

terms of changes in the ellipticity, the quantity that is directly observable is the reduced

shear:

g = γ(1 − κ)−1 (1.108)
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that ignores the changes in size. This can be seen if we write the Jacobian matrix A
(eq. 1.103) in terms of the reduced shear:

A = (1 − κ)

(
1 − g1 −g2
−g2 1 + g1

)
(1.109)

where the factor (1− κ) affects the size and the distortion matrix only depends on the

new quantity defined.

Weak lensing effects using galaxy ellipticities is a well-developed field and has

been detected by several groups using different surveys and methods, see for exam-

ple Wittman et al. (2000); Semboloni et al. (2006); Jarvis et al. (2006); Benjamin et al.

(2007); Schrabback et al. (2010). In addition important efforts have been made to in-

clude and test many possible systematic effects on shape measurement (including, for

example, the point spread function [PSF], instrumental noise and pixelization), and

there are several algorithms that can measure shapes with varying degrees of accu-

racy including KSB (Kaiser et al., 1995), KSB+ (Hoekstra et al., 1998) and its variants

(Rhodes et al., 2000; Kaiser, 2000), shapelets (Bernstein & Jarvis, 2002; Refregier & Bacon,

2003; Kuijken, 2006) and CHEF (Jiménez-Teja & Beńıtez, 2012), amongst others. A

novel Bayesian model fitting approach lensfit was presented in Miller et al. (2007);

Kitching et al. (2010). In order to test, in a blind way, the ability of methods to mea-

sure the shapes of galaxies a series of simulations have been created: STEP1, STEP2,

GREAT08 and GREAT10, where several techniques have been tested and compared

systematically. A summary of these methods and their performance for each of the

simulated sets, is given in Heymans et al. (2006); Massey et al. (2007); Bridle et al.

(2010) and Kitching et al. (2012), respectively.

Magnification

Another quantity related to the lensing observations is the magnification that, at

first order, depends only on the convergence:

µ =
1

det(A)
= [(1 − κ)2 − |γ|2]−1 ≃ 1 + 2κ . (1.110)

There are two main effects due to the magnification of background galaxies. The first

of them is related to the amplification of the flux. A given galaxy is enlarged but

its surface brightness remains constant, therefore the flux increases, and some faint

galaxies that could not be observed in the absence of lensing can now be detected.
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This changes the expected number of counts at a given magnitude (see for example

Broadhurst et al., 1995; Taylor et al., 1998; Beńıtez & Sanz, 1999; Hildebrandt et al.,

2011).

Assuming that the unlensed number density of sources with a flux larger than S

and with redshift within z ± dz is n0(> S, z), thus the cumulative number density if

there is a magnification effect µ is given by:

n(> S, z) =
1

µ
n0

(
>
S

µ
, z

)
. (1.111)

The argument S
µ

in the unlensed n0 states that fainter sources can be observed if µ > 1,

whereas the multiplicative factor 1
µ

is related to the change of apparent solid angle. If

a given region is amplified, the angular distances between galaxies are larger, and

therefore the number density is reduced. From eq. 1.111 one sees that if the unlensed

cumulative number density at a given flux is known, the magnification µ can be inferred

from observations. If the unlensed distribution follows a power law n0(> S) = S−α the

following expression is obtained:

n(> S, z)

n0(> S, z)
= µ(z)α(z)−1 , (1.112)

and depending on the value of α the magnification effect would be easier or harder to

detect. For example, on the B band α ∼ 1 while in redder bands α < 1, and this is one

of the reasons why they are preferred for weak lensing experiments.

The number of observed galaxies above a given flux may increase or decrease due

to the lensing caused by the foreground galaxies. There are two competing effects,

the flux increases and the number of counts would be greater than without lensing

but simultaneously the solid angle covered by the images also incresases, resulting to

fewer observed galaxies per solid angle. In fig. 1.12 is shown that for µ > 1, at low

redshifts the dominant effect is the scattering of images by the lens. Meanwhile, at

higher redshifts the increasing number of observable galaxies will be more important.

For µ < 1, that is negative values of the convergence field (κ < −0.5), the effects go

in the opposite direction. Also one sees that there is a small range of redshifts where

the magnification effect is cancelled. The other observable related to the magnification

is the change of the source size. Near a foreground over-density, the lensed galaxies

would be larger than in void regions. The area of a lensed galaxy is changed by:

A = µA0 ≃ (1 + 2κ)A0 , (1.113)
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Figure 1.12 - Changes in the number density redshift relation above a given

flux with the magnification. The expression for n0(z) and α(z) are taken from

Broadhurst et al. (1995) for galaxies of magnitude R=22.5.

where A0 is the unlensed galaxy area. The radius will change as R 7→ R0(1+κ). In the

weak lensing limit, the power spectrum of the magnification fluctuations (µ − 1) is 4

times P κℓ , therefore, in principle, cosmological constraints could be made independently

of the shear (Jain, 2002; Barber & Taylor, 2003). However the signal-to-noise ratio

for the measured ellipticities is in general larger, hence the shear may carry more

statistical weight. Even so a joint analysis of shear and magnification measurements

will necessarily provide tighter constraints on cosmological parameters than a shear

analysis alone. In particular, in van Waerbeke (2010) it is shown that the constraints

on σ8 and Ωm can be improved up to ∼ 40%. Similarly combining size-magnification,

galaxy densities and shear, the improvement on the precision of halo mass estimates can

be ∼ 40% − 50% (Rozo & Schmidt, 2010). In Heavens et al. (2013) the improvement

of including the size information is analysed for a Euclid-like experiment.

In contrast to galaxy ellipticity measurement, the size information has not been

explored in detail, possibly because the complicated effects of the PSF and pixellisation

were thought to be too challenging. However, there are two reasons for revisiting size

magnification as a potential tool for cosmology: one is that accurate shear estimation

is itself very challenging, and size could add useful complementary information; the

second one is that methods devised for ellipticity estimation must deal with the PSF and

pixellisation, and as a byproduct provide a size estimate, or a full posterior probability

distribution for the estimated size, which is currently ignored or marginalised over.

Therefore, the use of this information does not have an additional computational cost.
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Intrinsic correlations

Besides instrumental and environmental issues, there can be astrophysical contam-

inants associated with weak lensing. In the case of shape distortion, there are intrinsic

correlations that need to be taken into account. We should write the ellipticity two-

point correlation function as:

〈e1e2〉 = 〈eint1 eint2 〉 + 〈eint1 γ2〉 + 〈γ1e
int
2 〉 + 〈γ1γ2〉 , (1.114)

where the last term on the right is related to the power spectrum in eq. 1.106. In

fact, none of the other terms vanish, since it is known that there are intrinsic align-

ments of nearby galaxies due to the alignment of angular momentum produced by tidal

shear correlations (II correlations, see for detections Brown et al. 2002; Heymans et al.

2004; Mandelbaum et al. 2011; Joachimi et al. 2011, 2013, and for theory Heavens et al.

2000; Catelan & Porciani 2001; Crittenden et al. 2001; Heymans & Heavens 2003). In

addition, as the density field might change the ellipticity of the nearby galaxies, and

modifies the shape of the background galaxies, there can be correlations between den-

sity fields and ellipticities (GI correlations Hirata & Seljak, 2004; Mandelbaum et al.,

2006). Intrinsic correlations have been studied in detail and it is not trivial to account

for or to remove them when quantifying the weak lensing signal.

Regarding to the intrinsic correlation of sizes and its dependence on the environ-

ment, these are still open issues. In fact, the correlation of sizes and density field, it

is known to play an important role in discriminating between models of size evolution;

recent works find a significant correlation between sizes and the density field using

around 11,000 galaxies drawn from the joint DEEP2/DEEP3 data-set (Cooper et al.,

2012; Papovich et al., 2012), while earlier studies with smaller samples have been in

disagreement. Using 5,000 galaxies of STAGES data-set, Maltby et al. (2010) find a

possible anti-correlation between the density field and size for intermediate/low-mass

spiral galaxies. According to this work, clustered galaxies seem to be 15% smaller than

the field-galaxies, while they do not find any correlation for high-mass galaxies. Also for

massive elliptical galaxies from the ESO Distant Clusters Survey, Rettura et al. (2010)

do not find any significant correlation, while using the same data set Cimatti et al.

(2012) claims a similar correlation as in Cooper et al. (2012). In Park & Choi (2009)

they study the correlation between sizes and separation with late and early-type galax-

ies from the SDSS catalogue, at small and large scales. They compare the size of the

nearest neighbour with the separation between them, and find larger galaxies at smaller



50 CHAPTER 1. INTRODUCTION

separations. This correlation is found for early-type galaxies if the separation between

the galaxies is smaller than the merging scale, but not for larger separations. The

size of late-type galaxies does not seem to have a correlation with the separation in

any scale. We expect that further studies with larger samples will clarify the intrinsic

correlations of sizes, we note that the systematics are generated from different physical

processes than in the case of shear and this will affect the signal in a different way;

we suggest this is a positive, and another reason why a joint analysis of ellipticity and

sizes is interesting.

The following chapters are devoted to the work that has been published during my

PhD. Those works were conducted before the Planck data was released, therefore the

CMB analyses are performed on WMAP data. Chapter 2 is devoted to the analysis of

the non-Gaussianity of WMAP-7yr data with the Healpix wavelet (Casaponsa et al.,

2011). In Chapter 3 the neural networks are introduced in non-Gaussianity analysis

(Casaponsa et al., 2011). Chapter 4 is an extension of the work of Chapter 3, with a

more detailed discussion about the utility of neural networks as an alternative estimator

for non-Gaussianity based on the paper (Casaponsa et al., 2013). In Chapter 5 the

part of this thesis focused on weak lensing is presented and is based on the paper

(Casaponsa et al., 2013). Finally the conclusions are drawn in Chapter 6 and Chapter

7 is left for a brief Spanish summary.



Chapter 2

Wilkinson Microwave Anisotropy Probe

7-yr constraints on fNL with a fast

wavelet estimator

This chapter is based on the published work of Casaponsa et al., 2011a. In this

chapter a new method to constrain the local non-linear coupling parameter fNL based

on a fast wavelet decomposition is presented. Using a multiresolution wavelet adapted

to the HEALPix pixelization, we have developed a method that is ∼ 102 times faster

than previous estimators based on isotropic wavelets and ∼ 103 faster than the KSW

bispectrum estimator, at the resolution of the Wilkinson Microwave Anisotropy Probe

(WMAP) data. The method has been applied to the WMAP 7-yr V+W combined map,

imposing constraints on fNL of −69 < fNL < 65 at the 95 per cent CL. This result has

been obtained after correcting for the contribution of the residual point sources which

has been estimated to be ∆fNL = 7 ± 6. In addition, a Gaussianity analysis of the

data has been carried out using the third order moments of the wavelet coefficients,

finding consistency with Gaussianity. Although the constrainsts imposed on fNL are

less stringent than those found with optimal estimators, we believe that a very fast

method, as the one proposed in this work, can be very useful, especially bearing in

mind the large amount of data that will be provided by future experiments, such as the

Planck satellite. Moreover, the localisation of wavelets allows one to carry out analyses

on different regions of the sky. As an application, we have separately analysed the two

hemispheres defined by the dipolar modulation proposed by Hoftuft et al. (2009). We

do not find any significant asymmetry regarding the estimated value of fNL in those

hemispheres.

51



52 CHAPTER 2. FNL WITH A FAST WAVELET ESTIMATOR

2.1. Introduction

As commented in the introduction of this thesis, the fluctuations of the CMB natu-

rally arise in an inflationary scenario. The understanding of this very early stage of the

history of the Universe is a challenging issue for the scientific community due to the im-

plications on large scale structure formation and fundamental particle physics at high

energies. A large number of inflationary models have been proposed in the literature

(for an overview see for instance Lyth 2008) but the task of testing such scenarios is not

trivial, and there is the need of new experiments and powerful statistical tools to dis-

criminate among them. In this sense, the statistical properties of the CMB temperature

anisotropies are a source of information about the processes that have generated the

primordial fluctuations. In particular, the standard, slow roll, single field inflationary

model predicts a nearly Gaussian distribution of the CMB temperature anisotropies,

while alternative models may introduce a certain level of non-Gaussianity in the CMB.

A convenient parametrization valid for a large set of non-standard inflationary models

which includes the quadratic corrections of the primordial curvature perturbation is

(Salopek & Bond, 1990; Gangui, 1994; Verde et al., 2000; Komatsu & Spergel, 2001):

φ(r) = φL(r) + fNL
[
φ2
L− < φ2

L >
]
, (2.1)

where φL are Gaussian linear perturbations and fNL characterises the amplitude of

the non-linear contribution in real space. This local form appears in non-standard

multi-field inflationary models (Babich et al., 2004; Komatsu et al., 2009). For a com-

plete review on non-Gaussianity due to inflationary models see Bartolo et al. (2004).

In addition to inflationary models, there are other alternative scenarios that can be

constrained, such as the ekpyrotic model where a negative value of fNL is expected

(Lehners, 2010). Moreover, there are other processes that can introduce deviations

from Gaussianity in the third order moments (as foreground contamination, non-linear

gravitational effects, topological defects, etc).

Since the quadratic parametrization was proposed, an important effort has been

made to set observational constraints on local fNL with a wide variety of methods

including the bispectrum (Yadav & Wandelt, 2008; Smith et al., 2009; Komatsu et al.,

2011), wavelet-based methods (Cayón et al., 2003; Mukherjee & Wang, 2004; Curto et al.,

2009,b; Pietrobon et al., 2009; Rudjord et al., 2009), Minkowski functionals (Hikage et al.,

2008) or the N-pdf (Vielva & Sanz, 2009, 2010). Most of these works find that the data

are compatible with fNL = 0, but the constraints are not yet sufficiently tight to dis-
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criminate among a large set of inflationary models. The best limit for WMAP-7yr

data is given by Komatsu et al. (2011) and is −10 < fNL < 74 at the 95 per cent

confidence level. These constraints have been obtained with a bispectrum estimator,

which is computationally very demanding. However, Curto et al. (2011) have recently

shown that an estimator based on the SMHW can provide constraints on fNL as strin-

gent as the optimal estimator, the bispectrum, while reducing considerably the CPU

time. With the arrival of new data from high resolution experiments such as the ESA

Planck satellite2 (Tauber et al., 2010), it becomes even more important the availabil-

ity of even faster and simpler methods. With this aim we present the application for

CMB of a wavelet adapted to the HEALPix pixelization similar to the tool proposed

by Shahram et al. (2007).

The chapter is organised as follows. In Section 2.2 we introduce the HEALPix

wavelet decomposition. In Section 2.3 the method to constrain the fNL parameter as

well as the proposed Gaussianity test are described. Finally, we present the results of

the application of this technique to the WMAP 7-yr data in Section 2.4 and conclusions

are drawn in chapter 6.

2.2. The HEALPix wavelet

In this chapter we describe an application using the so-called HEALPix wavelet,

described in sec. 1.4.2 of this thesis. In the previous work of (Shahram et al., 2007)

a linear operator is applied to the HW to obtain wavelet coefficients corresponding

to vertical, horizontal and diagonal orientations. This operation leads to a wavelet

coefficients without redundancy, obtaining a number of wavelet coefficients (details plus

approximation) equal to the number of original pixels. However, we have kept the HW

with its intrinsic redundancy for three main reasons: first, to improve the computational

time, second to obtain a wavelet decomposition as isotropic as the HW allows 3, and

third, because, as it is shown later, redundancy helps to improve the sensitivity in the

detection of fNL. Similarly to the SHW, the HW is a discrete, orthogonal wavelet,

adapted to a hierarchical pixelization (such as HEALPix4, Górski et al. 2005), whereas

2http://www.rssd.esa.int/index.php?project=planck
3 It is worth mentioning that HW detail coefficients help to highlight the isotropy properties

of the field as compared to the directional oriented details of the SHW. This is important because

the local non-Gaussianities are expected to be isotropic.
4http://healpix.jpl.nasa.gov/
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the SMHW is a continuous, non-orthogonal wavelet and does not have a hierarchical

decomposition structure. The HW presents an optimal space localization, while the

scale localization is not as good as that of the SMHW. However, the main advantadge

of the HW is that operates in the real space, with the computational cost significantly

reduced.

The resolution of a HEALPix map is characterised by the Nside parameter, such that

the number of pixels in which the sphere is divided corresponds to N = 12N2
side. Nside

can only take powers of two as values. The HW decomposes the temperature map at

resolution J , where Nside = 2J , in wavelet coefficient maps at all the allowed HEALPix

resolutions down to the lower considered resolution j0. As previously commented the

wavelet decomposition of a temperature map can be written in terms of the basis

functions (sec. 1.4.2) and a set of coefficients:

∆T

T
(xi) =

Nj0
−1∑

k=0

λj0,kϕj0,k(xi) +

J∑

j=j0

3∑

m=0

Nj−1∑

k=0

γm,j,kΨm,j,k(xi) , (2.2)

where Nj is the number of pixels at resolution j. λj,k and γm,j,k are the approximation

and detail coefficients respectively. From a practical point of view, to perform the

decomposition, we start with the original resolution, i.e. j = J . At this resolution, the

approximation coefficients λJ,k correspond to the pixels of the original tempature map.

The approximation coefficients at the next resolution are simply obtained by degrading

the map to the inmediatly lower resolution (i.e., by averaging the corresponding four

daughter pixels):

λj,k =
1

4

3∑

i=0

λj+1,ki
, (2.3)

On the other hand, the detail coefficients at resolution j + 1 are simply obtained by

subtracting the approximation at resolution j from the approximation at resolution

j + 1. Thus, the detail coefficients are defined as:

γ0,j,k = λj+1,k0 − 4λj,k (2.4)

γ1,j,k = λj+1,k1 − 4λj,k

γ2,j,k = λj+1,k2 − 4λj,k

γ3,j,k = λj+1,k3 − 4λj,k

Note that the 4 in the second term on the right side appears due to the pixel area weight.
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Figure 2.1 - Diagram of the construction of the approximation and detail coeffi-

cients. Approximation coefficients are computed as the average of the four daughter

pixels. Detail coefficients are computed as the subtraction of that average from the

original pixels and are represented by d.

A schematic diagram of how to obtain the approximation and detail coefficients is given

in Fig. 2.1.

2.3. Methodology

The main purpose of this work is to constrain the parameter fNL defined in Eq. (2.1)

using the WMAP-7yr data5. For this analysis, we only consider the (foreground re-

duced) V and W channels, since they are less afected by foreground contamination. A

single CMB map is obtained through a noise-weighted linear combination of the V and

W receivers. The KQ75 mask (which covers around a 29 per cent of the sky) is applied

subsequently.

In order to calibrate our estimator, we need both Gaussian and non-Gaussian sim-

ulations. To generate the Gaussian simulations, we compute the power spectrum that

best fits the WMAP-7yr data accordingly to the parameters estimated by Komatsu et al.

(2011). For this purpose we use the On-line tool CAMB (Lewis et al., 2000). We then

5The data are available at the LAMBDA web page: http://lambda.gsfc.nasa.gov/



56 CHAPTER 2. FNL WITH A FAST WAVELET ESTIMATOR

apply the corresponding beam and pixel functions to simulate the data at each of the

considered receivers (2 for V and 4 for W). A Gaussian noise realisation is subsequently

added to the CMB maps with a variance per pixel given by σ0

Nobs
, where σ0 is the detec-

tor sensitivity of each of the receivers and Nobs is the number of observations at each

pixel. Finally the six maps are combined in the same way as the data.

Regarding the non-Gaussian simulations, we have used the 1000 simulations gen-

erated by Elsner & Wandelt (2009) that are publicly available6. The previous authors

provide the harmonic coefficients for the Gaussian and non-Gaussian parts of the sim-

ulation. A non-Gaussian simulation with a given value of fNL is then constructed as:

alm = a
(G)
lm + fNLa

(NG)
lm , (2.5)

where we have normalized a
(G)
lm and a

(NG)
lm

7 to the power spectrum that best fits the

WMAP-7yr data, and that was used for the Gaussian simulations (the original simula-

tions were obtained using the WMAP 5-yr power spectrum). Again, we construct the

maps for the V and W receivers, applying the corresponding beam and pixel transfer

functions and adding the appropriate level of noise. Finally a single V+W combined

map is constructed for each non-Gaussian simulation.

2.3.1. Cubic statistics

In this section we define the third order moments of the wavelet coefficients that

are used to constrain fNL. Similar statistics have been used in other previous works

(Curto et al., 2009b; Rudjord et al., 2009).

We perform the wavelet decomposition of the considered map starting at resolution

Nside = 512 (J = 9) and down to Nside = 2 (j0 = 1) (when using a higher value of j0

we are losing efficiency whereas for j0 = 0 the results are not significantly improved

while the computational time increases by a 30%). We obtain 8 detail maps and 1

approximation map. In addition, we also include in the analysis the original map and

the 8 intermediate approximation maps (which are obtained during the wavelet decom-

position to construct the detail coefficients). Although, in principle, these additional

approximation maps contain redundant information, they seem to provide additional

information regarding the third order statistics, since a larger number of third order

combinations can be constructed. In fact, we have tested that with the inclusion of the

6http://planck.mpa-garching.mpg.de/cmb/fnl-simulations/
7The amplitude of the aNG

lm has been corrected by a factor of 3
5

as indicated by the authors
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approximation maps and the original map, the results are improved by a 30%. There-

fore, we have a total of 18 maps for each analysed signal. The statistics are constructed

as the third order moments of all the possible combinations of these 18 maps, where

the coefficients are weighted to take into account the presence of a mask. In order to

calculate these weights, one performs the wavelet decomposition of the considered mask

(that has zeros in the masked pixels and ones in the rest). The wavelet coefficients of

the mask at each detail and approximation scale are used to construct the weight wj(i)

of the coefficient at position i at resolution j. This makes sense if one bears in mind how

the wavelet decomposition is performed. For instance, to construct the approximation

map at resolution J − 1 at a given position i, the four daughter pixels at resolution J

have to be averaged. If the four pixels are unmasked, this corresponds to a weight of 1

in the original map and also in the approximation map at position i. However, if one

of the orignal pixels is masked, this pixel would have a weight of zero, and the average

would be done only over three pixels. Thus the weight of the corresponding approxi-

mation coefficient would be 3/4. Therefore, this weighting scheme takes into account

the fact that different coefficients contain different amount of information, depending

on the considered mask. Also, contrary to the case of other wavelet estimators, this

means that the mask does not need to be extended but, in fact, it is reduced when

increasing the scale. This is due to the fact that a larger pixel is kept for the analysis,

with the appropriate weight, if at least one of the daughter pixels was unmasked.

The third order statistics are then defined as:

Sjkl =
1

Nl−1∑

i=0

Wjkl(i)

Nl−1∑

i=0

Wjkl(i)ǫi,jǫi,kǫi,l
σjσkσl

, (2.6)

where ǫi,j = yi,j−µj and yi,j are the wavelet coefficients maps at position i at resolution

j. Note that j goes from j0 to J , k goes from j to J and l goes from k to J . µj and σj

are the weighted mean and the dispersion for the map at resolution j. Wjkl(i) is the

weight associated to the wavelet coefficients at position i and scales j, k, l and is given

by:

Wjkl(i) = 3

√
wj(i)wk(i)wl(i) . (2.7)

Note that some of these statistics are redundant (linearly dependent between them),

so we restrict our analysis to the set of non-rendudant statistics, which gives a total of

nstat =232 quantities.
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The process for computing these statistics requires ∼ N×nstat number of operations,

where N is the number of pixels and nstat the number of statistics computed. This

number is significantly lower than that of the full bispectrum that needs N
5
2 operations.

Using the KSW algorithm presented in Komatsu et al. (2005) the number of operations

is reduced to ∼ rN
3
2 , where r is the number of sampling points (of the order of 100). On

the other hand, the SMHW scales as ∼ nsN
3
2 , where ns is the number of scales involved

(of the order of 10). Thus, at WMAP resolution (Nside = 512 and N ∼ 3×106) we have

that the method presented in this work is 102 times faster than the SMHW, 103 times

faster than KSW bispectrum estimator and 107 faster than the general bispectrum

estimator.

2.3.2. Gaussianity test and fNL constraints

We first perform a Gaussianity test in order to probe whether the data is compatible

with Gaussianity using the χ2 estimator:

χ2 =

nstat∑

i,j=1

(vi − 〈vi〉)C−1
ij (vj − 〈vj〉) , (2.8)

where vi is the vector of the third order statistics computed from the considered map (to

simplify notation, hereinafter we define v1 ≡ S111, v2 ≡ S112, ...). 〈vi〉 and Cij are the

mean and covariance matrix of the statistics obtained with 10000 Gaussian simulations.

To perform the Gaussianity test, the value of the χ2 is computed for the WMAP data,

and compared to the distribution of the estimator obtained from an additional set of

1000 Gaussian simulations.

The second analysis that has been performed is the estimation of fNL from the

data. As the wavelet decomposition is linear, we can obtain the wavelet coefficients

from the Gaussian and non-Gaussian parts separately. Thus, the wavelet coefficients

for a given value of fNL are given by

yi = y
(G)
i + fNLy

(NG)
i . (2.9)

Taking into account that y(NG) are around 4 orders of magnitude smaller than y(G),

when we compute < y3 > the NG high-order terms can be neglected and it can be

shown that fNL is proportional to the wavelet estimators, as it is also the case for

other statistics (such as the bispectrum):

vi = aifNL , (2.10)
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where ai can be computed from simulations with a simple linear regression.

In order to estimate the fNL parameter, we perform a χ2 minimisation. In partic-

ular, χ2(fNL) is defined as follows

χ2 =
nstat∑

i,j=1

(vi − 〈vi〉fNL
)C−1

ij (fNL)(vj − 〈vj〉fNL
) , (2.11)

where 〈vi〉fNL
is the mean of the statistics for a given value of fNL obtained from the

1000 non-Gaussian simulations and Cij(fNL) is the corresponding covariance matrix.

For fNL << 1000 is reasonable to use the approximation Cij(fNL) ≃ Cij , where Cij is

the covariance matrix for the Gaussian case.

Error bars on the parameter estimation at different confidence levels are found

using the Gaussian simulations. We also compute the minimum variance in a semi-

analytical manner. It is well known that the diagonal of the inverse of the Fisher

matrix provides an estimation of the variance of the parameters. In order to estimate

the Fisher matrix, we approximate the distribution of the statistics by a Gaussian.

Using this approximation and taking into account Eqs. (2.10) and (2.11), the variance

from the Fisher Matrix can be written as:

σ2 =
1

nstat∑

i,j

aiC
−1
ij aj

. (2.12)

In practice, the distribution of the statistics do not follow a perfect Gaussian distri-

bution. Therefore, this variance can be seen as a lower limit to the true underlying

variance.

2.4. Results

In this section, we present the analysis of the WMAP-7yr V+W combined map.

On the one hand, we analyse the compatibility of the data with Gaussianity using

the cubic statistics defined in Eq. (2.6) and the estimator presented in Eq. (2.8). On

the other hand, we compute the best-fit fNL parameter from the data by minimizing

Eq. (2.11). Error bars are set using simulations. In addition, we also present a study

of the contribution of the point sources to the estimated fNL value and of the variation

of fNL estimated from two independent hemispheres (defined by Hoftuft et al. 2009).
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Figure 2.2 - The cubic statistics vi from WMAP-7y V+W data are shown. Shadow

areas correspond to the 68, 95 and 99 per cent confidence levels of the distribution

obtained from 1000 Gaussian simulations. The statistics have been plotted from

lower to higher variance.

2.4.1. Gaussianity test

As explained in Section 2.3.1, we have considered a total of 232 cubic statistics,

constructed from 18 maps at 9 different scales. Fig. 2.2 shows the value of vi for the

WMAP 7-yr V+W data, after applying the KQ75 mask. The plot does not show any

obvious deviation from Gaussianity. To further study the consistency of the data with

Gaussianity, we also perform the χ2 test defined in Eq. (2.8). From 1000 Gaussian

simulations, we estimate the distribution of this quantity, finding a mean value of
〈
χ2
〉

= 233, very close to the number of degrees of freedom (232). The value of the

dispersion is 69, larger than expected for a χ2 distribution with the considered degrees

of freedom. However, this may be explained by the fact that the distribution of the

different statistics are not purely Gaussian. For the WMAP data, we find χ2
data = 434

with a cumulative probability of P (χ2 ≤ χ2
data) = 0.96. Although the result indicates

that the WMAP data is some how in the tail of the distribution, the χ2 value is not

large enough to claim a deviation from Gaussianity.

2.4.2. Constraints on the fNL parameter

We have also performed an estimation of the non-linear parameter fNL. As already

mentioned, for this analysis we have used the 1000 non-Gaussian simulations provided

by Elsner & Wandelt (2009). In Fig. 2.3, the mean of the cubic statistics derived from
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Figure 2.3 - Mean values of the cubic statistics vi from 1000 non-Gaussian simu-

lations with fNL = 0,±100,±300.

simulations with fNL = 0,±100,±300 is presented. It can be seen that, as stated in

Eq. (2.10), the statistics are proportional to the value of fNL.

After obtaining the cubic statistics for the WMAP-7yr data and minimising the χ2

given by Eq. (2.11), we estimate that the best-fit value of fNL is 6. Using Gaussian

simulations, we find that the contraints for the parameter are −28 < fNL < 40 at the

68 per cent confidence level and −62 < fNL < 72 at the 95 per cent confidence level. It

is also interesting to point out the agreement between the dispersion computed semi-

analytically through the Fisher matrix (Eq. 2.12) and that obtained from Gaussian

simulations, which are both estimated to be around 34.

Although the constraints provided by the HW are less stringent than those found

with optimal estimators (such as the bispectrum or the SMHW), they are similar or

even better than those obtained by other mehtods such as needlets (Pietrobon et al.,

2009; Rudjord et al., 2009), the Minkowski functionals (Hikage et al., 2008) or the N-

pdf (Vielva & Sanz, 2009). Moreover, as already pointed out, our estimator is signifi-

cantly faster than all the previously mentioned methods, providing a very valuable tool,

especially for future high resolution experiments such as Planck. It is also interesting to

point out that we find a more symmetric constraint around zero than those obtained,

for instance, by Komatsu et al. (2011) or Curto et al. (2011).

In order to study further the robustness of our estimator, we have performed some

additional tests. In particular, we have estimated the mean value and dispersion of the

best-fit value of fNL from simulations with different values of fNL. The left panel of
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Figure 2.4 - The left panels show the histograms of the estimated fNL from

simulations with values of fNL = −40, 0, 20, 60. The mean value and dispersion of

fNL for each considered case is indicated in the corresponding panel. In the panel

of the right the behaviour of σ(fNL) is shown when estimated from simulations

with different values of fNL.

Fig. 2.4 shows the histograms of the estimated values of fNL obtained from simulations

with fNL=-40,0,20,60. To carry out these tests, we have used 500 of the 1000 non-

Gaussian simulations to estimate the mean value of the third order statistics 〈vi〉fNL
and

the remaining 500 simulations to obtain estimates of fNL and construct the histograms.

The mean values and dispersions of fNL are given in the corresponding panels. In

particular, we see that the method is unbiased, since the mean value of the estimated

fNL is very close to the true underlying value for all the considered cases. In addition,

we also plot in the right panel of Fig. 2.4 how the dispersion of the estimator varies as a

function of fNL. The standard procedure to estimate this dispersion is to use Gaussian

simulations but, as seen in the plot, this gives a minimum in the estimated value of

σ(fNL). However, for small values of fNL, such as the ones found in this work, the

variation is small and therefore one can safely use the value of the dispersion estimated

for the Gaussian case.

2.4.3. Point source contribution

The background of unresolved point sources may introduce a bias in the estima-

tion of fNL. In order to correct this bias, we have studied the contribution to fNL

given by a point source background that is added to the Gaussian simulations. For

that purpose, we have produced point source simulations following the procedure of

Curto et al. (2009). In particular, point sources maps are simulated according to the
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Figure 2.5 - Mean values of the vi statistics obtained from 1000 Gaussian simula-

tions with and without point sources. Diamonds represent CMB plus noise simula-

tions, while crosses correspond to simulations including also the point sources. To

improve the visualization, the statistics have been normalised to unit dispersion.

density distribution given by de Zotti et al. (2005) in a range of intensities between

Imin = 1mJy and Imax = 1Jy. These maps are then convolved with the corresponding

beam and pixel functions and added to the simulations containing Gaussian CMB plus

noise. The estimated value of fNL when point sources are present is then compared to

the one obtained from simulations containing only CMB and noise, finding a difference

of ∆fNL = 7 ± 6. Fig. 2.5 shows the effect that point sources have on the vi statis-

tics. As one would expect, they mainly affect the statistics involving small scales, that

correspond to the ones with a lower value of k in the figure. Taking into account this

result our final constraint on fNL for the WMAP-7yr data is −69 < fNL < 65 at the

95 per cent confidence level.

2.4.4. Local study of fNL

Finally, we have analysed the data considering two independent hemispheres. In

particular, we have considered the hemispheres associated to the dipolar modulation

proposed by Hoftuft et al. (2009) where the preferred direction is pointing towards

the Galactic coordinates (l,b)=(224◦,−22◦). We have estimated the best-fit value and

constraints on fNL for the WMAP 7-yr data in both hemispheres, following the same

procedure as for the full-sky. After correcting the point source contribution, the con-

straint found for the northern hemisphere is −73 < fNL < 119 while for the southern

hemisphere we have −137 < fNL < 62, both at the 95 per cent confidence level. There-
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fore, as it was the case for the full-sky, both hemispheres are consistent with Gaussianity

(i.e, fNL = 0). We have also tested that the results from the hemispheres are consis-

tent between them. In particular, we have obtained the mean difference and dispersion

between the fNL estimates at each hemisphere for Gaussian simulations, finding values

of 〈∆fNL〉=-4 and σ(∆fNL)=71. For the WMAP data, we have ∆fNL = 67, which

is perfectly consistent with the values expected from Gaussian simulations. Therefore,

we do not find any assymmetry for the considered hemispheres. These results are

in agreement with the analysis based on needlets made by Pietrobon et al. (2010) and

Rudjord et al. (2010) for the WMAP-5yr data, where several divisions of the CMB map

are studied without finding a significant asymmetry. In a recent work, Vielva & Sanz

(2010) have found an asymmetry in the same hemispheres studied in this work on

the estimation of the fNL using the N-pdf. The disagreement may be caused by the

differences on the methods. While Pietrobon et al. (2010) and Rudjord et al. (2010)

have worked with the same resolution as we did (6.9 arcmin), Vielva & Sanz (2010)

focused on scales around 2◦. Also, the non-Gaussian model used by the former works

is the same as the one used in this work, whereas the model of the latter stands on the

Sachs-Wolfe regime.



Chapter 3

Constraints on fNL from Wilkinson

Anisotropy Probe 7-year data using a

neural network classifier

The contents of this chapter are based on the published work of Casaponsa et al.,

2011b. In this chapter is presented a multi-class neural network (NN) classifier as

a method to measure non-Gaussianity, characterised by the local non-linear coupling

parameter fNL, in maps of the cosmic microwave background (CMB) radiation. The

classifier is trained on simulated non-Gaussian CMB maps with a range of known

fNL values by providing it with wavelet coefficients of the maps; we consider both the

HealPix (HW) wavelet and the spherical Mexican hat wavelet (SMHW). When applied

to simulated test maps, the NN classfier produces results in very good agreement with

those obtained using standard χ2 minimization. The standard deviations of the fNL

estimates for WMAP-like simulations were σ = 22 and σ = 33 for the SMHW and the

HW, respectively, which are extremely close to those obtained using classical statistical

methods in Curto et al., 2011 and Casaponsa et al., 2011a. Moreover, the NN classifier

does not require the inversion of a large covariance matrix, thus avoiding any need to

regularise the matrix when it is not directly invertible, and is considerably faster.

3.1. Introduction

Artificial intelligence algorithms are being used increasingly to improve the efficiency

of computationally intensive data analysis. In particular, neural networks (NN) have

65
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been successfully applied to pattern recognition, classification of objects and parameter

estimation in a number of fields, including cosmology (see e.g. Auld et al., 2007).

Cosmological analysis typically involves the use of large datasets and high preci-

sion numerical tools. In particular, the study of deviations from Gaussianity in the

distribution of temperature anisotropies in the cosmic microwave background (CMB)

require very demanding computational methods. The simplest way to characterise

such a deviation is through third order moments, as these vanish in the Gaussian case.

It is now commonplace in CMB analysis to work in spherical harmonic space, where

computing the three point correlation function or bispectrum can prove difficult, or in-

deed impossible, due to numerical instability. Some recent efforts have been applied to

lessen the computational demand without reducing efficiency; see for example the KSW

bispectrum estimator (Komatsu et al., 2005), or the binned estimator (Bucher et al.,

2010). Other methods which have also been applied to non-Gaussianity analysis in-

clude Minkowski functionals (Hikage et al., 2008; Natoli, 2010), wavelet-based methods

(Cayón et al., 2001; Mukherjee & Wang, 2004; Curto et al., 2009,b; Pietrobon et al.,

2010; Casaponsa et al., 2011), a Bayesian approach (Elsner & Wandelt, 2010) and the

analysis of the N -dimensional probability density function (Vielva & Sanz, 2010).

This chapter introduces an approach based on a neural network classifier which,

after training on third order moments of wavelet coefficients derived from simulated

Gaussian and non-Gaussian CMB realisations, can be used to estimate the presence

and degree of non-Gaussianity for any given data map. We have chosen to estimate the

local non-linear coupling parameter fNL, which parameterises the local non-Gaussianity

as a quadratic term in the primordial curvature perturbation. More precisely, fNL is the

amplitude of the corrections at second order of the primordial curvature perturbations

(Salopek & Bond, 1990; Gangui, 1994; Verde et al., 2000; Komatsu & Spergel, 2001).

This type of non-Gaussianity is predicted even in the simplest slow-roll inflationary

scenario, albeit at a very low level fNL < 1, whereas a wide range of non-standard

inflationary models predict much larger typical fNL values (for a more complete review

see Bartolo et al. (2004),Babich et al. (2004) and Yadav & Wandelt (2010)). Estimat-

ing the value of fNL from a given data map using existing methods typically has a high

computational cost and usually numerical problems arise (e.g. matrix inversion). As

we will show, the use of neural networks bypasses these difficulties.

In principle, one could use the pixel temperatures in the CMB map directly, or its

spherical harmonic coefficients, as the inputs to the neural network classifier. Nonethe-
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less, we perform a pre-processing step in which we decompose the temperature maps

into their wavelet coefficients, which have shown themselves to be sensitive to non-

Gaussian signals (e.g. Curto et al., 2009b, 2011; Casaponsa et al., 2011). In particular,

we consider the HealPix wavelet (HW) and a spherical Mexican hat wavelet (SMHW),

and compute third-order moments of these wavelet coefficients, the mean value of which

is proportional to fNL. The network is then trained so that when presented with these

cubic statistics for a new (data) map, it can estimate the fNL value and its error bar.

We apply this method to estimate the degree of non-Gaussianity in the Wilkinson

microwave anisotropy probe (WMAP) 7-year data release.

This chapter is organized as follows. In Section 3.2, we give a brief introduction to

the wavelet analysis used. An overview of the type of neural network employed and our

training procedure follows in Section 4.2. In Section 3.4 we explain the generation of

our Gaussian and non-Gaussian simulations, and the specific characteristics of our fNL

classification network. We present the results of applying our classifier to simulations

and to WMAP 7-year data in Section 3.5. The conclusions are summarised in chapter 6.

3.2. Wavelet estimators to train the neural network

Wavelet methods have seen increasing usage in cosmology. This has been particu-

larly marked in CMB non-Gaussianity analyses, in which competitive results have been

obtained using wavelets such as the SMHW (Cayón et al., 2003; Vielva et al., 2004;

Cruz et al., 2005; Curto et al., 2011), directional spherical wavelets (McEwen et al.,

2008), spherical Haar wavelet (SHW) (Tenorio et al., 1999; Barreiro et al., 2000), and

recently the HealPix wavelet (HW) (Casaponsa et al., 2011). For a review of wavelets

applied on the sphere, see, for example, McEwen et al. (2007). In essence, decompos-

ing a CMB map into its wavelet coefficients allows one to separate the search for

non-Gaussianity on different length-scales, while retaining positional information. In

this section we will briefly discuss the characteristics of both the HW and SMHW and

describe how we construct the statistics which are used in our analysis.

HealPix wavelet

The HealPix wavelet is very similar to that presented by Shahram et al. (2007).

Casaponsa et al. (2011) have used a revised version of this wavelet and perform

the first cosmological application. In both papers, the central idea is the con-

struction of a fast wavelet method adapted to the HealPix pixelization scheme
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(Górski et al., 2005). The HW is similar to the SHW in the sense that, at each

level of the wavelet transform, one produces both a high- and low-resolution

map. The low-resolution map for the HW is obtained simply by averaging over

4-pixel blocks, and the high-resolution map is just the original map minus the

low-resolution map. One begins with the original map at resolution J = 9

(Nside = 512) and performs successive wavelet decompositions until resolution

J = 2 (Nside = 2), thereby constructing 7 sets of high- and low-resolution maps.

Although the original map is fully represented by the 7 high-resolution maps plus

the low-resolution map at J = 2, in our analysis we have used all the high- and

low-resolution maps, plus the original map, since this has been shown to improve

results (see sec. 1.4.2 and sec. 5 for details).

Using all these maps, the third order moments of the wavelet coefficients are

computed as follows:

Sjkl =
1

Nl

∑Nl

i=1 wi,jwi,kwi,l
σjσkσl

, (3.1)

where wi,j is the ith wavelet coefficient of the map at resolution j, σj is the

dispersion of wi,j, and Nl is the number of pixels in the map at resolution l

(since one requires j ≤ k ≤ l). Some of these statistics are redundant (linearly

dependency exists between them), so we restrict our analysis to the set of non-

redudant statistics, which gives a total of 232 quantities; these are then computed

for non-Gaussian simulations with a range of known values of fNL.

The expected values of these statistics are proportional to the non-linear coupling

parameter, and they have previously been used to estimate the best fit fNL value

for the data by weighted least squares parameter estimation (Casaponsa et al.,

2011). In this case, the dispersion in the estimated fNL value for Gaussian simu-

lations and is found to be σ(fNL) = 34, which is slightly larger that the optimal

value. The main advantage of the HW is the computing efficiency; for example,

the third-order statistics construction is 103 times faster than for the KSW bispec-

trum estimator (Komatsu et al., 2005) and 102 times faster than the SMHW (see

below). This procedure (for both the HW and SMHW) does, however, include the

estimation and inversion of a correlation matrix, which can be computationally

demanding and, in some cases, close to singular. As we will show below, this step

is avoided with the use of a NN classifier.

Spherical Mexican Hat Wavelet
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The spherical Mexican hat wavelet (SMHW) (Antoine & Vandergheynst, 1998;

Mart́ınez-González et al., 2002) has produced competitive results in constrain-

ing primordial non-Gaussianity (Mukherjee & Wang, 2004; Curto et al., 2009,b,

2011). It is a continuous wavelet that has better frequency localization than

the HW, although the computing efficiency is lower. Curto et al. (2011) use the

SMHW to constrain fNL with an accuracy equivalent to the bispectrum estimators

(see for example Smith et al., 2009; Fergusson & Shellard, 2009; Fergusson et al.,

2010; Komatsu et al., 2011; Bucher et al., 2010). The definition of the third-order

moments is the same as for the HW. In this case, however, there are more inter-

scale combinations because the scales involved are not restricted by the HealPix

pixelization. The total number of non-redundant statistics for the SMHW wavelet

coefficients is 680. Using the mean values and covariances of these statistics com-

puted from non-Gaussian simulations, Curto et al. (2011) applied a χ2 minimi-

sation method to obtain optimal uncertainties on the fNL estimates of σ ≈ 21.

However, this method requires a principal component analysis to deal with the

degenerancies present in the covariance matrix. As we will see, this problem is

avoided with the use of the multi-class neural network classifier.

3.3. Neural network classifier applied to non-Gaussianity

Artificial neural networks are a methodology for computing, based on massive paral-

lelism and redundancy, which are features also found in animal brains. They consist of

a number of interconnected processors each of which processes information and passes

it to other processors in the network. Well-designed networks are able to ‘learn’ from a

set of training data and to make predictions when presented with new, possibly incom-

plete, data. These algorithms have been successfully applied in several areas, in partic-

ular, we note the following applications in astrophysics: Storrie-Lombardi et al. (1992);

Baccigalupi et al. (2000); Vanzella et al. (2004); Auld et al. (2007) and Carballo et al.

(2008); Nørgaard-Nielsen (2012).

The basic building block of an ANN is the neuron. Information is passed as inputs

to the neuron, which processes them and produces an output. The output is typically

a simple mathematical function of the inputs. The power of the ANN comes from

assembling many neurons into a network. The network is able to model very complex

behaviour from input to output. We use a three-layer feed-forward network consisting
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of a layer of input neurons, a layer of ‘hidden’ neurons and a layer of output neurons.

In such an arrangement each neuron is referred to as a node (see sec. 1.4.4 for details

and figure 1.9 for an schematic illustration of an artificial neural network).

The outputs of the hidden layer and the output layer are related to their inputs as

follows:

hidden layer: hj = g(1)(f
(1)
j ); f

(1)
j =

∑

i

w
(1)
ji xi + b

(1)
j , (3.2)

output layer: yk = g(2)(f
(2)
k ); f

(2)
k =

∑

j

w
(2)
kj hj + b

(2)
k , (3.3)

where the output of the hidden layer h and output layer y are given for each hidden

node j and each output node k. The index i runs over all input nodes. The functions

g(1) and g(2) are called activation functions. The non-linear nature of g(1) is a key

ingredient in constructing a viable and practically useful network. This non-linear

function must be bounded, smooth and monotonic; we use g(1)(x) = tanhx. For g(2)

we simply use g(2)(x) = x. The layout and number of nodes are collectively termed the

architecture of the network. For a basic introduction to artificial neural networks the

reader is directed to Mackay (2003).

For a given architecture, the weights w and biases b define the operation of the

network and are the quantities we wish to determine by some training algorithm. We

denote w and b collectively by a. As these parameters vary during training, a very

wide range of non-linear mappings between inputs and outputs is possible. In fact,

according to a ‘universal approximation theorem’ Leshno (1993), a standard three-

layer feed-forward network can approximate any continuous function to any degree

of accuracy with appropriately chosen activation functions and a sufficient number of

hidden nodes.

In our application, we will construct a classification network. The aim of any clas-

sification method is to place members of a set into groups based on inherent properties

or features of the individuals, given some pre-classified training data. Formally, classi-

fication can be summarised as finding a classifier C : x → C which maps an object from

some (typically multi-dimensional) feature space x to its classification label C, which is

typically taken as one of {1, ..., N} where N is the number of distinct classes. Thus the

problem of classification is to partition feature space into regions (not necessarily con-

tiguous), assigning each region a label corresponding to the appropriate classification.

In our context, the aim is to classify sets of third-order statistics of wavelet coefficients
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of (possibly) non-Gaussian CMB maps (assembled into an input feature vector x) into

classes defined by ranges of fNL; this is discussed in more detail below.

In building a classifier using a neural network, it is convenient to view the problem

probabilistically. To this end we consider a 3-layer MLP (multi-layer percepton) consist-

ing of an input layer (xi), a hidden layer (hj), and an output layer (yi). In classification

networks, however, the outputs are transformed according to the softmax procedure

pk =
eyk

∑
m e

ym
, (3.4)

such that they are all non-negative and sum to unity. In this way pk can be interpreted

as the probability that the input feature vector x belongs to the kth class. A suitable

objective function for the classification problem is then

L(a) =
∑

l

∑

k

t
(l)
k ln pk(x

(l),a), (3.5)

where the index l runs over the training dataset D = {x(l), t(l)}, in which the target

vector t(l) for the network outputs has unity in the element corresponding to the true

class of the lth feature vector x(l) and zeroes elsewhere. One then wishes to choose

network parameters a so as to maximise this objective function as the training pro-

gresses. The advantage of this probabilistic approach is that we gain the ability to

make statistical decisions on the appropriate classification in very large feature spaces

where a direct linear partition would not be feasible.

One wishes to choose network parameters a so as to maximise the objective function

L(a) as the training progresses. This is, however, a highly non-linear, multi-modal

function in many dimensions whose optimisation poses a non-trivial problem. We

perform this optimisation using the MemSys package (Gull & Skilling, 1999). This

algorithm considers the parameters a to have prior probabilities proportional to eαS(a),

where S(a) is the positive-negative entropy functional (Hobson & Lasenby, 1998). α is

treated as a hyper-parameter of the prior, and sets the scale over which variations in a

are expected. α is chosen to maximise its marginal posterior probability whose value is

inversely proportional to the standard deviation of the prior. Thus for a given α, the

log-posterior probability is proportional to L(a) + αS(a). For each chosen α there is a

solution â that maximises the posterior. As α varies, the set of solutions â is called the

maximum-entropy trajectory. We wish to find the solution for which L is maximised

which occurs at the end of the trajectory where α = 0. For practical purposes we

start at a large value of α and iterate downwards until α is sufficiently small so that
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the posterior is dominated by the L term. MemSys performs this algorithm using

conjugate gradient descent at each step to converge to the maximum-entropy trajectory.

The required matrix of second derivatives of L is approximated using vector routines

only, thus circumventing the need for O(N3) operations required for exact calculations.

The application of MemSys to the problem of network training allows for the fast

efficient training of relatively large network structures on large data sets that would

otherwise be difficult to perform in a reasonable time. Moreover the MemSys package

also computes the Bayesian evidence for the model (i.e. network) under consideration,

(see for example Jaynes & Bretthorst, 2003, for a review), which provides a powerful

model selection tool. In principle, values of the evidence computed for each possible

architecture of the network (and training data) provide a mechanism to select the most

appropriate architecture, which is simply the one that maximises the evidence (although

we will use a more prosaic method below for deciding on the network architecture). The

MemSys algorithm is described in greater detail in (Gull & Skilling, 1999).

3.4. The fNL classification network

To train our fNL classification network we provide it with an ensemble of training

data D = {x(l), t(l)}. The lth input vector x(l) contains the third-order statistics of

the wavelet coefficients of the lth simulated CMB map. The output classes of our

network correspond to contiguous ranges of fNL values. Thus, the target vector t(l)

for the network outputs has zeroes everywhere except for a unit entry in the element

corresponding to the class in which the true fNL value of the lth simulated CMB map

falls.

The N output classes of the network were defined by dividing some initial (antici-

pated) range of fNL values into N equal-width subranges. For example, for a total range

of −30 ≤ fNL < 30 and a network with just 3 output classes, input vectors constructed

from maps with −30 ≤ fNL < −10 were ascribed to class=1 with an associated target

vector t = (1, 0, 0), maps with −10 ≤ fNL < 10 to class=2 with t = (0, 1, 0), and

those with 10 ≤ fNL < 30 to class=3 with t = (0, 0, 1). In this example, the output

given by the network for some test input vector x would be a 3-dimensional vector

p = (p1, p2, p3), where
∑

k pk = 1 and pk can be interpreted as the probability that the

input vector belongs to class k. The discrepancy between the targets and the outputs

during training can be measured by the true positive rate, which is simply the fraction
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of the training input vectors for which the network assigns the maximum probability

to the correct class.

From the output values pk obtained for each map, we define the estimator of the

local non-Gaussianity parameter to be simply

f̂NL =

nclass∑

k=1

〈fNL〉kpk (3.6)

where 〈fNL〉k is the mean value of fNL in the kth class. The statistical properties of

this estimator, namely its mean and dispersion, determine the accuracy of the method.

3.4.1. Training data

The training input vectors x(l) were generated as follows. We began with a set

of 1000 non-Gaussian CMB realisations from which aNG
lm and aG

lm were generated by

Elsner & Wandelt (2009) and normalized to the WMAP 7-year concordance model

power spectrum generated by CAMB. These alm are publicly available8. The ultimate

accuracy of the network classifier is improved, however, by the inclusion of further

training data. Given the finite number of available simulations, we thus created a

further set by rotation of the original maps by 90◦ perpendicular to the galactic plane.

This rotation creates roughly 20 per cent extra map area based on the original mask;

we verified that its inclusion improves the results. Using this procedure we generate

a further 1000 non-Gaussian simulations. Of the 2000 non-Gaussian maps, 1800 were

used for training and the remainder were set aside for testing of the networks.

For each non-Gaussian simulation used for training, sets of alm were then generated

with varying fNL using the following prescription

alm = aG
lm + fNLa

NG
lm , (3.7)

with 20 different fNL random values between −120 and 120 for the HW decomposition

and between −76 and 76 for the SMHW analysis. Thus, for each non-Gaussian simula-

tion, 20 sets of alm were generated. Hence the total number of available training data

sets is 36000. Noise-weighted V+W-band WMAP realizations were then constructed

as explained in Curto et al. (2009) and Casaponsa et al. (2011), and the KQ75 mask

was then applied, which covers roughly 29% of the sky. A wavelet decomposition for

both the HW and SMHW was performed to determine the wavelet coefficents for each

8http://planck.mpa-garching.mpg.de/cmb/fnl-simulations/
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alm set, and their third-order moments computed. These statistics were provided as

inputs to the neural network. Each input vector contained 232 values for the HW and

680 for the SMHW.

3.4.2. Network architecture

The architecture of our 3-layer neural networks are defined by two free parameters:

the number of hidden nodes nhid and the number of output classes, nclass, into which

the fNL range is divided. A further parameter, which determines the accuracy of the

network classifier, is the quantity of training data ndata. Variation of these parame-

ters can affect the training efficiency so it is desirable to explore this training space

adequately in order to find an optimal set of parameters.

Although the MemSys algorithm provides routines to determine the optimal value

of the number of hidden nodes using the Bayesian evidence Gull & Skilling (1999), in

this application nhid is determined simply by measuring training times and the accuracy

of the trained networks on an independent testing set. In this example, we have found

that in fact the optimal architecture contains no hidden nodes, resulting in what is

effectively a linear classifier. This is not surprising, since we are effectively ‘asking’

the network to learn the mean value and dispersion of the third-order moments of the

wavelet coefficients for each fNL; since the expectation value is linearly dependent on

the fNL, this network architecture trivially satisfies this requirment. Indeed, networks

of this sort provide a simple way of obtaining the (pseudo)inverse of any matrix.

The number of output classes, nclass, of the network is clearly related to the total

range of fNL considered and size of the subranges into which this range is divided. Here

we consider networks with nclass = 9 (an odd number ensures that fNL = 0 does not

lie on the boundary of a class) The range of fNL was chosen a priori to correspond to

approximately ±3σ, where σ is the dispersion in the fNL estimates obtained previously

using the standard χ2 minimisation method. Thus, the full range was taken to be

−120 ≤ fNL < 120 for the HW and −76 ≤ fNL < 76 for the SMHW, resulting in

subranges per class of width 27 and 17 units, respectively. This combination fulfilled

all the requirements of classification over the range of our simulated data.

The quantity of training data, ndata, determines the accuracy of the resulting classi-

fication network. Naturally, the network accuracy increases with ndata, but it typically

saturates after a given number. We found that the quantity of data required saturated
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Figure 3.1 - Results of the dispersion of f̂NL for 1000 Gaussian simulations for

different values of ndata.

at roughly ndata ∼ 10000 (see Fig. 3.1).

3.4.3. Training evolution

Figure 3.2 illustrates the training evolution for the classification network with nhid =

0 and nclass = 9. In the top two panels we plot the true positive rates (TPR) of the

network on the training set and the test set, for the HW and SHMW respectively; in

each plot, the TPR on the training set has been mutliplied by a factor less than unity

to highlight the divergence with the TPR for the test set. We see that this divergence

occurs after ∼ 100 and ∼ 500 iterations of the MemSys optimiser for the HW and

SMHW, respectively. Thus the training was terminated at this point to construct our

final classification networks.

A key criterion in determining the quality of our classifiers is the dispersion of the

fNL values obtained in the testing set. This is plotted in the bottom two panels of

Figure 3.2 for the HW and SMHW, respectively. We note that, in each case, this

dispersion increases noticeable beyond the point where the TPRs on the training and

testing sets diverge.

3.5. Results

3.5.1. Application to WMAP simulations

We first applied our classifiers to 1000 WMAP-7yr simulations made from Gaus-

sian CMB maps (fNL = 0). For the HW classifier, we obtained 〈f̂NL〉 = −1, which
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Figure 3.2 - Evolution of the true positive rate for each iteration of the training

process with a neural network with nhid = 0 and ndata = 10000. Note that the

TPR of the training set have been multiplied by a factor less than unity in order to

highlight the divergence of the behaviours. The bottom panels show the variation

of the dispersion on the estimate f̂NL during the training. Left panels for HW and

right panels for SMHW.
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Figure 3.3 - Distribution of f̂NL obtained from 1000 Gaussian realizations for HW

(left) and SMHW (right).

indicates the estimator is essentially unbiassed. Moreover, the dispersion of the estima-

tor σ(f̂NL) = 33 is extremely similar to that obtained with the weighted least-squares

method (σ(f̂NL) = 34). The full distribution of the estimator is shown in the top panel

of Fig. 3.3. For the SMHW classifier, we again found 〈f̂NL〉 = −1, with a dispersion of

σ(f̂NL) = 22, which is very close to the optimal value of σ(f̂NL) = 21. The distribution

of the estimator for the SMHW is shown in the bottom panel of Fig. 3.3. The histogram

bins in Fig. 3.3 have the same size and central values as those used to define the network

classes. We see that the classes at extremal fNL values are empty, indicating that the

network placed no maps in these fNL ranges. Thus for estimating fNL from Gaussian

or nearly Gaussian maps the range in fNL used is sufficiently wide.

We next applied our estimator to sets of non-Gaussian simulations, each with a

different non-zero fNL value. For each true fNL value, we analysed the corresponding

WMAP simulations and calculated the mean and dispersion of our estimator f̂NL for

both the HW and SMHW classifiers. The results are shown in fig. 3.4, in which we

plot the mean value of f̂NL against the true fNL value. We see that the classifiers are

unbiassed for |fNL| . σ with an almost constant dispersion. For larger |fNL| values,

however, the estimator becomes progressively more biassed and its dispersion decreases.

The latter behaviour is simply understood as an edge effect due to the finite total

range of fNL considered by the networks. This point is illustrated in Fig. 3.5 in which

we plot the full distributions of f̂NL obtained for a number of representative values of

the true fNL. We see that for |fNL| . σ, we obtain close to symmetric distribution
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Figure 3.4 - The mean and dispersion of f̂NL obtained for a number of represen-

tative values of the true fNL for the HW network (left) and the SMHW network

(right).

centred on the true fNL value, with no maps being placed in the extreme classes. As

|fNL| > σ, however, we see that the classifier does begin to place maps in the extreme

classes, resulting in the distribution of f̂NL becoming severely skewed and no longer

centred on the true value. Of course, if one were to encounter this behaviour in the

analysis of a real data set, one could simply alter the range of fNL considered by the

network and retrain.

In any case, the above results show that both the HW and SMHW network classifiers

produce unbiassed estimates f̂NL provided −σ < fNL < σ. Moreover, the dispersions

on these estimators are very similar to those obtained with the classical weighted least

squares (WLS) method, indicating that neural networks can produce very accurate

results within the limitations described above. In the case of the SMHW, this is a

particularly important result since the complexity of the covariance matrix inversion

required in the standard approach is bypassed via the use of the neural network classi-

fier. Curto et al. (2011) used a principal component analysis to reduce the covariance

matrix dimension to allow inversion.

3.5.2. Application to WMAP 7-year data

Applying the neural network classifiers to real data (the V+W WMAP 7-year data

map), we obtain f̂NL = −12 for the HW and f̂NL = 19 for the SMHW. Both these values

lie well within the corresponding dispersion of the estimator. From the corresponding

f̂NL distributions obtained on simulated data, we find that 95% confidence limits are
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f̂NL,data σ(f̂NL) 〈f̂NL,gauss〉 P2.5 P97.5

SMHW (NN) 19 22 −1 −43 42

SMHW (WLS)

Curto et al. 2011b
37 21 0 −42 46

HW (NN) −12 33 −1 −66 63

HW (WLS)

Casaponsa et al. 2011
6 34 1 −68 67

Table 3.1 - Results obtained with neural networks (NN) and weighted least squares

(WLS). f̂NL,data is the best fitting value for V+W WMAP data, 〈f̂NL,gauss〉 and

σ(f̂NL) are the expected value and the standard deviation for Gaussian simulations.

P2.5 and P97.5 represent the percentile values at 95% confidence level of f̂NL for

Gaussian realizations.

−78 < fNL < 51 for the HW and −24 < fNL < 61 for the SMHW.9 We therefore

conclude that the data are consistent with the Gaussian hypothesis. We note that

the SMHW confidence limits are very similar to those obtained with the optimal fNL

estimator (Komatsu et al., 2011; Smith et al., 2009).

These results are summarised in Table 3.1, along with found via the weighted least

squares (WLS) method. The latter results are also consistent with Gaussianity. It is

worth mentioning, however, the different values of f̂NL obtained by the neural network

and the WLS methods, for both HW and SMHW. Although all four values lie well

within their corresponding dispersions, each method returns a different f̂NL value when

applied to the same WMAP-7yr dataset. This behaviour is to be expected, however,

since these are four different estimators of fNL. Therefore, in general, they will not be

equal, even when applied to the same input data. Only the statistical properties (e.g.

mean, dispersion) of their sampling distributions are important.

9Note that the constraints are not corrected for the unresolved point sources contribution.
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Figure 3.5 - Distribution of f̂NL obtained from 200 non-Gaussian realizations with

representative true fNL values, for HW (left) and SMHW (right).



Chapter 4

Exploring local fNL estimators based on

the binned bispectrum

This chapter is devoted also to the use of neural networks to construct non-Gaussianity

estimators and is based on the published work of Casaponsa et al., 2013b. Conversely

to the previous chapter, now we explore the a regression neural network, instead of a

classification network, and we use other third order quantities (the binned bispectrum

components) to train it. Moreover, in this work are also explored what are the requeri-

ments that make an estimator for fNL based on the binned bispectrum to be as good as

the optimal estimator. For that, we explore different estimators of the local non-linear

coupling parameter, fNL, based on the binned bispectrum presented in Bucher et al.,

2010. Using simulations of Wilkinson Microwave Anisotropy Probe (WMAP)-7yr data,

we compare the performance of a regression neural network with a χ2-minimization and

study the dependence of the results on the presence of the linear term in the analysis

and on the use of inpainting for masked regions. Both methods obtain similar results

and are robust to the use of inpainting, but the neural network estimator converges

considerably faster. We also examine the performance of a simplified χ2 estimator

that assumes a diagonal matrix and has the linear term subtracted, which considerably

reduces the computational time; in this case inpainting is found to be crucial. The esti-

mators are also applied to real WMAP-7yr data, yielding constraints at 95% confidence

level of −3 < fNL < 83.

81
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CHAPTER 4. FNL ESTIMATORS BASED ON THE BINNED

BISPECTRUM

4.1. Introduction

Cosmic microwave background (CMB) fluctuations naturally arise in inflationary

models. Discriminating between different models is a difficult task, but can be addressed

by observing very faint non-Gaussian signals in the high-order correlation functions of

the CMB temperature anisotropies. A popular approach is to search for the local form

of non-Gaussianity, where the initial curvature Gaussian perturbations are expanded

up to the second order as

Φ = Φg + fNL

[
Φ2
g −

〈
Φ2
g

〉]

(for more details see e.g. Bartolo et al., 2004; Babich et al., 2004).

WMAP constraints on the amplitude of the local form of non-Gaussianity have

been able to rule out exotic models such as ghost inflation (Arkani-Hamed et al., 2004).

New data sets, such as the recent release from Planck satellite (Planck Collaboration,

2013f), significantly reduce the uncertainties on local fNL, ruling out some ekpyrotic

models and imposing strong constraints on multi-field inflationary models. In fact,

for single-field inflation, fNL (hereafter fNL is the local form) should be of the order

of the spectral index (Creminelli & Zaldarriaga, 2004), given the consistency relation

derived in Maldacena (2003). Recent papers show that this relation does not hold

for non-vacuum initial states (Ganc, 2011; Agullo & Parker, 2011) and non-constant

super-horizon modes (Chen et al., 2013), but the vast majority of single-field models

should be ruled out by a detection of a larger fNL value.

This type of primordial non-Gaussianity may be detected using higher-order cor-

relation functions. The simplest of these is third-order, which is equivalent to the

bispectrum in spherical harmonic space. The first derivation of the optimal estimator,

in the sense of an unbiased estimator that saturates the Cramer–Rao inequality, is

given in Babich (2005), assuming an isotropic field. Working with real data, however,

is usually more complicated. In particular, CMB maps have anisotropic noise due to

the scanning strategy and masked regions, both of which break the isotropy assump-

tion for these theoretical estimators. The masked regions are particularly difficult to

treat, as they introduce correlations among the Fourier modes, which are otherwise

expected to be independent. Creminelli et al. (2006) applied the optimal estimator to

real data, showing that the presence of a term proportional to the aℓm is required to

account for such anisotropies. In that paper the constraints are computed using an

approximation to avoid numerical difficulties. Finally, this estimator was successfully
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applied in its complete form to WMAP data by (Smith et al., 2009; Komatsu et al.,

2011; Bennett et al., 2013, for 5th, 7th and 9th year respectively).

New imaging reconstruction techniques have recently been used to pre-process CMB

maps by smoothing the contours of the masked regions. A simple approach is to apodize

the mask by introducing a smooth function in the pixels surrounding the masked re-

gions. Another approach is to fill the masked regions with a pseudo-signal, which is

termed inpainting. Several techniques have been proposed in the literature for inpaint-

ing, which is a very delicate process since the signal can be distorted (Bajkova, 2005;

Abrial et al., 2008; Starck et al., 2013).

Consequently, primordial non-Gaussianity analyses can be computationally demand-

ing, and new techniques should therefore be investigated to overcome the computational

cost of large matrix estimations and inversions. Here we investigate the utility of a neu-

ral network to obtain the necessary weights in the fNL estimator and compare it with

the direct approach via χ2 minimization. Over the last 20 years, artificial intelligence

techniques have been use in a number of areas of astrophysical analysis: morphologi-

cal galaxy determination, photo-redshift estimations, and classification of different ob-

jects are examples of successful applications of neural networks (Storrie-Lombardi et al.,

1992; Firth et al., 2003; Vanzella et al., 2004; Carballo et al., 2008). In particular, for

cosmological analysis, they have recently been used to reduce the computational time

of cosmological parameter estimation from observations of the CMB power spectrum

(Auld et al., 2007, 2008). Also in CMB analysis, Casaponsa et al. (2011) used neu-

ral networks to define a new non-Gaussianity estimator and showed that networks are

a valuable tool for bypassing the inversion of ill-conditioned matrices, and to avoid

covariance matrix estimation in a χ2 analysis.

The aim of the present work is to continue our earlier study of the power of the neu-

ral networks in the statistical analysis associated with cosmic microwave background

(CMB) non-Gaussianity. To this end, this chapter is focused on the study of differ-

ent tools, in order to identify the most robust and efficient estimator when dealing

with real data. We compare three different approaches to estimate fNL, based on the

binned bispectrum. The first estimator is obtained by minimizing a χ2 of the binned

bispectrum components. A second approach is based on the optimal estimator, without

taking into account the correlations among the binned bispectrum components, which

for a isotropic field would be the same as the former. And the third method uses the

weights of a regression neural network. From these approaches we construct different
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estimators to account for the effects of pre-processing the data with inpainting and the

presence of a the linear term.

The chapter is organized as follows. An overview of the type of neural network

employed and the training procedure is given in Section 4.2. In Section 4.3 we describe

the binned bispectrum. The definition of the estimators is presented in Section 4.4

followed by an explanation of the main details of the implementation in Section 4.5

and finally the results are presented in Section 3.5. The conclusions of this work are

given in chapter 6.

4.2. Regression neural network applied to non-Gaussianity

In our previous application of ANN to the estimation of fNL, a classification neural

network was used (Casaponsa et al., 2011). Here, we instead use a regression network,

which we find to be as useful as the classification approach, and also allows a more

direct comparison with the χ2 minimization procedure. Additionally, using a regres-

sion network has the advantage of reducing the network parameter space, making the

training faster.

In Casaponsa et al. (2011), we used neural networks for which the inputs were

third-order moments of two wavelet decompositions of the CMB map: the Healpix

wavelet (HW) (Casaponsa et al., 2011) and the spherical Mexican hat wavelet (SMHW)

(Curto et al., 2009a, 2011). We found the resulting fNL estimator had the same accu-

racy as the standard one based on χ2-minimization, but was much faster to evaluate.

Here, the inputs to our neural networks are the estimator for the bispectrum proposed

by Bucher et al. (2010), defined in a number of bins in l-space, which reduces the di-

mension of the problem by a factor of 105. The aim of this work is to learn a mapping

from the binned bispectrum components of the (possibly) non-Gaussian CMB (assem-

bled into an input feature vector x) to the corresponding fNL of the map. Therefore,

conversely to the classification case, we only have one node in the ouput layer, reducing

the dimension of the network parameter space. This is dicussed in detail below.

A suitable objective function for the regression problem is

L(a) =
1

2

∑

n

∑

k

[t
(n)
k − y

(n)
k (x(n),a)]2, (4.1)

where a are the network parameters (weights and biases) and the index n runs over

the training data-set D = {x(n), t(n)}, in which the target vector t(n) for the network
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outputs are the fNL values, as explained in the next section. We need to find the

network parameters a that minimise this objective function as the training progresses.

As in the previous work, we perform this optimisation using the MemSys package

(Gull & Skilling, 1999), that finds he optimal solution following the maximum-entropy

trajectory. The main advantadge of using MemSys to the problem of network training

is its computational efficiency with large data sets, and complex neural network struc-

tures. Moreover, the MemSys package computes de Bayesian evidence for the model

under consideration, providing a tool to select the optimal network architecture, that

would be the one that maximises the evidence.

4.3. Binned bispectrum

Several approaches to bispectrum analyses have been proposed in the literature,

such as the KSW (Komatsu et al., 2005), Skew-Cls (Munshi & Heavens, 2010), wavelets

(Curto et al., 2009a, 2011; Casaponsa et al., 2011) or needlets (Pietrobon et al.,

2009; Donzelli et al., 2012) among others. Furthermore, Bucher et al. (2010) and

Fergusson & Shellard (2011) presented bispectrum estimators that reduce the dimen-

sionality of the problem without losing significant information. In particular, we use the

bispectrum estimator defined in Bucher et al. (2010). The proposed method consists

of joining the bispectrum components in bins, significantly reducing the computational

time, but maintaining the quality of the estimator of fNL. Bucher et al. (2010) show

that this is the case for ideal maps, with isotropic noise and small symmetric masks.

The binned bispectrum is also applied to Planck data in Planck Collaboration (2013f)

to constrain primordial non-Gaussianity. Here we study with more detail its applica-

tions to realistic data, for which we used simulations with WMAP-7yr characteristics.

As a starting point, the angle-averaged reduced bispectrum is defined by

bl1l2l3 =

∫
Tℓ1Tℓ2Tℓ3dΩ , (4.2)

where Tℓ(~n) =
∑

m aℓmY (~n). The binned reduced bispectrum is then

babc =
∑

ℓ1∈Ia

∑

ℓ2∈Ib

∑

ℓ3∈Ic

bℓ1ℓ2ℓ3 , (4.3)

where In are bins in ℓ. This definition of the reduced bispectrum, differing from the

standard one by the factor I2
ℓ1ℓ2ℓ3

(for details see Bucher et al., 2010; Komatsu, 2002),

is convenient since one can write babc in terms of Ta, Tb and Tc which are the binned
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maps:

Tn =
∑

ℓi∈In

Tℓi . (4.4)

The advantage of constructing maps in ℓ-bins is that the number of transformations to

spherical harmonic space is significantly reduced. Then, the resulting bispectrum esti-

mator is faster to construct than the one based on the KSW estimator (Komatsu et al.,

2005) or the SMHW (Curto et al., 2011).

4.4. fNL estimators

The optimal estimator for fNL, in the sense of an unbiased estimator that satu-

rates the Cramer-Rao inequality, is obtained by performing an Edgeworth expansion

of the probability distribution of the aℓm for weakly non-Gaussian data (Babich, 2005;

Creminelli et al., 2006; Smith et al., 2009). This estimator is found to have a cubic

term and a linear term in aℓm. The latter term plays an important role under realistic

conditions, where anisotropic instrumental noise and/or a mask is present.

The form of this estimator can also be understood using the properties of the Wick

product. As demonstrated in Donzelli et al. (2012), Marinucci & Peccati (2011) and

Peccati & Taqqu (2011), the Wick product of a cubic variable, which is given by

: x1, x2, x3 := x1x2x3 − x1 〈x2x3〉 − x2 〈x1x3〉 − x3 〈x1x2〉 , (4.5)

has a smaller variance than the cubic variable itself, while not affecting the mean value

so long as the variables xi are Gaussian and have a mean value of zero. Then, if we

replace each cubic term in an estimator by its Wick product, it will yield an estimator

with lower variance. Following this reasoning, the binned bispectrum defined in Sec. 4.3

can be replaced by its Wick product

: TIaTIbTIc : = TIaTIbTIc − 〈TIaTIb〉TIc
−〈TIbTIc〉TIa − 〈TIaTIc〉TIb . (4.6)

Note that Ti = Ti(x), since there is a dependence on the pixel for anisotropic maps.

Donzelli et al. (2012) have proved that for the case of wavelet and needlet coeffi-

cients, the linear term is basically equivalent to removing the mean value of the coef-

ficients. In order to see if this is the case for the binned bispectrum, we explore the
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option of substituting T ′
n = Tn−〈Tn〉, where 〈Tn〉 is computed with the unmasked pix-

els. This would be less costly than estimating the correlation matrix 〈TaTb〉 required

for the computation of the linear term.

In the following subsections, we describe three methods for choosing the weights that

are used to construct the final fNL estimator. In each case, estimators are constructed

with and without the linear term contribution to explore its importance. Also, the

performance of these estimators is tested on inpainted and non-inpainted maps, with

the methodology explained in Sec. 4.5.3. In all cases the original mask M is applied

again at the final stage when computing the binned bispectrum components

babc =

Npix∑

i=1

Mi(Ta,iTb,iTc,i)

4πNpix
, (4.7)

where Npix =
∑

iMi. The efficiency achieved by the estimators will be compared to

that defined by the Cramer-Rao inequality. The Cramer-Rao bound states that the

minimum variance for any unbiased estimator is given by the inverse of the Fisher

matrix information. A useful reference value in the case of partial sky coverage is

obtained from the full sky estimator corrected by the fraction of the available sky.

Therefore, the minimum variance for fNL is estimated to be:

σ2
fh =

[
fsky

∑

ℓ1≤ℓ2≤ℓ3

(
〈Bℓ1ℓ2ℓ3〉1

)2

∆Cℓ1Cℓ2Cℓ3

]−1
(4.8)

where ∆ takes values 1, 2 or 6 when all ℓ’s are different, two are equal, or all are the

same and fsky is the fraction of the sky available. For (4.8) to be used for a realistic case,

the power spectrum must include the noise and the beam contribution. The beam also

needs to be included in the bispectrum part. We have used WMAP-7yr characteristics,

in particular the average of the two channels of 61 and 94 GHz (V and W) and the

extended mask KQ75. In terms of the reduced bispectrum defined in Sec. 4.3, the

angular average bispectrum Bℓ1ℓ2ℓ3 is:

Bℓ1ℓ2ℓ3 =

√
4π

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)
× (4.9)

(
ℓ1 ℓ2 ℓ3

0 0 0

)−1

bℓ1ℓ2ℓ2 .
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4.4.1. Approximated maximum-likelihood estimator (AMLE)

The standard approach in this type of analysis is to use the fact that the third-

order moments are nearly Gaussian, and therefore the maximum-likelihood estimator

is obtained approximately by the minimization of a χ2 given by

χ2 =
∑

abc,def

(
babc − fNL〈babc〉1

)
C−1
abc,def

(
bdef − fNL〈bdef 〉1

)
. (4.10)

where 〈bdef 〉1 is the expected value for fNL = 1 and C−1
abc,def = 〈babc〉〈bdef 〉 − 〈babcbdef 〉.

From the previous equation is straightforward to show that the fNL estimator for an

observed map is:

fNL =
∑

abc,def

〈babc〉1C−1
abc,defb

obs
def∑

abc,def

〈babc〉1C−1
abc,def 〈bdef 〉1

. (4.11)

In order to include the linear term correction, TaTbTc should be substituted by its Wick

product (4.6), wherever it appears. The mean value of the linear term is zero, and thus

it vanishes in the term of the estimator related to the model, whereas it needs to be

included in the covariance matrix. Thus, the corresponding estimator is

fNL =
∑

abc,def

〈babc〉1C−1
abc,def∑

abc,def

〈babc〉1C−1
abc,def 〈bdef 〉1

× (4.12)

( 1

4πNpix

Npix∑

i

Td,iTe,iT
obs
f,i

−〈Td,iTe,i〉T obsf,i − 〈Td,iTf,i〉T obse,i − 〈Te,iTf,i〉T obsd,i

)
,

where 〈babc〉1 is estimated using the regression coefficient of a linear fit to the mean

values of 1,000 non-Gaussian simulations with different fNL values. In particular, this

is a conservative number that ensures that the mean values have converged10. For C−1

we assume that it is independent of fNL, which is a good approximation in the limit of

weak non-Gaussianity, and it is thus estimated with Gaussian simulations (∼ 25, 000

are necessary for convergence issues). The term 〈TaTb〉 is estimated with 1,000 Gaussian

simulations.

10To check that convergence is reached with N simulations, we simply test that two inde-

pendent sets of N/2 realisations give consistent results
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4.4.2. Approximated maximum likelihood estimator with diagonal co-

variance matrix (AMLED)

The estimator proposed by Bucher et al. (2010) used the approximation of assuming

a diagonal covariance matrix. In this case, the estimator simplifies significantly, since

the covariance matrix does not need to be estimated or inverted, and one obtains

fNL =
∑

abc

〈babc〉1bobsabc/var(babc)∑

def

(〈bdef 〉1)2/var(bdef )
(4.13)

where var(babc) is the variance of the binned bispectrum components, which is com-

puted with simulations. Besides its computational efficiency, another advantage of this

estimator is that can be obtained analytically (see Bucher et al., 2010, for details).

Strictly speaking, this estimator is optimal only for a full-sky CMB experiment with

isotropic noise (although it has been shown to work well also in presence of a reduced

symmetric mask). Under realistic conditions, a linear term of a similar form to that

used above needs to be added, such that

fNL =
∑

abc

〈babc〉1/var(babc)∑

def

(〈bdef 〉1)2/var(bdef )

( 1

4πNpix

Npix∑

i

Ta,iTb,iT
obs
c,i (4.14)

−〈Ta,iTb,i〉Tc,i − 〈Ta,iTc,i〉Tb,i − 〈Tb,iTc,i〉Ta,i
)

As with the previous estimator, 1,000 simulations were used for the model estimation

and another 1,000 to obtain var(babc). This implies a reduction by a factor > 10 in the

number of simulations required with respect to the AMLE, as the convergence in the

estimation of the variance is reached with much smaller number of realisations than

that of the covariance matrix.

4.4.3. Neural network estimator (NNE)

The architecture of our 3-layer neural network is defined by three parameters: the

number of input, output and hidden nodes. The first two are determined by the problem

at hand; in this case the dimension of the input vector depends on the number of bins

chosen and there is a single output.

In this application the number of hidden nodes (nhid) is determined empirically

by measuring the accuracy of the trained networks on an independent testing set. As



90
CHAPTER 4. FNL ESTIMATORS BASED ON THE BINNED

BISPECTRUM

before, we have found that in fact the optimal architecture contains no hidden nodes,

resulting in what is effectively a linear mapping between input and output. Then, for

zero hidden nodes, the single network output is just a linear function of the inputs. Once

the network parameters (~w, θ) are found during the training process, the estimator for

fNL is thus given by:

fNL =
∑

abc

wabcbabc + θ . (4.15)

As with the previous estimators the network is also trained including the linear term,

in which case

fNL =
∑

abc

wabc

( 1

4πNpix

Npix∑

i

Ta,iTb,iTc,i− (4.16)

〈Ta,iTb,i〉Tc,i − 〈Ta,iTc,i〉Tb,i − 〈Tb,iTc,i〉Ta,i
)

+ θ .

Comparing with the AMLE estimator, we can see that it is equivalent to a neural

network with parameters

wdef 7→
∑

abc

〈babc〉1C−1
abc,def∑

abc,def

〈babc〉1C−1
abc,def 〈bdef 〉1

. (4.17)

θ 7→ 0 (4.18)

If this were the optimal linear combination to estimate fNL, the neural network would

find the same result as the AMLE but avoiding all the expensive calculations required

in the direct computation of this estimator (provided that we have chosen a linear com-

bination for the NNE). Conversely, if that combination were not optimal, the network

should be able to find different, more optimal, weights. For instance, for the AMLE

to be optimal, the considered statistics should follow a Gaussian distribution, whereas

the NNE does not make any assumptions about the intrinsic distribution of the inputs.

Therefore, the neural network is expected to perform better when working with non-

Gaussian statistics. In addition, the neural network does not require to assume that the

covarinace matrix is independent of fNL. Even if this approximation works well for the

current application, it may not always be the case, which would significantly complicate

the calculation of the AMLE. In such cases the NNE would represent a clear advantage

over the χ2 minimization. Finally, we would also like to point out that, although for

the current application a linear combination was found to be the best choice for the

NNE, in a general case, this estimator is not restricted to a linear combination of the

inputs, which can be useful in other problems.
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4.5. Implementation

In this section the non-Gaussian simulations used for the analyses as well as some

technical details required for the implementation of the estimators are described.

4.5.1. Non-Gaussian simulations

Two different sets of non-Gaussian realizations are used. A set generated with

the map-making method proposed in Fergusson et al. (2010) and described also

in Curto et al. (2011), and a set of publicly available realisations11 generated by

Elsner & Wandelt (2009). In the first method, the non-Gaussian part of the map

(aNGℓm ) is taken directly from the theoretical bispectrum, while the second algorithm

starts from the primordial curvature fluctuations and is therefore more precise.

The two different sets are used for the following reasons. Having a large number

of independent realizations is necessary to train the network, as well as to test its

performance with the number of training data. Since the first set is faster to produce,

30,000 independent realisations were generated as in Curto et al. (2011). In the analysis

with the SMHW of Curto et al. (2011), they found the dispersion on fNL to be slightly

larger than using the simulations of set 2. In Curto et al. (2011), constraints on fNL

are obtained with both sets finding a discrepancy of 5%. We find similar deviations for

the binned bispectrum. This is observed if the average bispectrum at the numerator

in (4.8) is computed with simulations with both sets. Then, as the model of set 1 is

given by an approximation, the minimum dispersion of the parameter obtained with

realisations is slightly larger than using the analytical dispersion in eq. 4.8. Conversely,

using realisations of set 2 we find a closer value to the analytically computed lower

bound.

Hence, after proving that the NNE converges with few thousand realisations for

the best performing form of the estimator, the second set is used for the final results.

This is convenient to be able to compare our results with the Fisher dispersion of (4.8),

and with the ones obtained with the optimal estimator (Komatsu et al., 2011), where

simulations equivalent to the ones of set 2 are used.

The Gaussian and non-Gaussian harmonic coefficients of the CMB realisations, aNG
lm

and aG
lm, either generated from set 1 or set 2, are combined to obtain the non-Gaussian

11http://planck.mpa-garching.mpg.de/cmb/fnl-simulations/
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realisation with different values of fNL:

alm = aG
lm + fNLa

NG
lm . (4.19)

Noise-weighted V+W band WMAP-7yr realizations were then constructed as explained

in Curto et al. (2009a) and Casaponsa et al. (2011), and the KQ75 mask was then

applied, which covers roughly 29% of the sky.

4.5.2. Binning scheme

One is free to choose the number and size of the bins in ℓ-space for the binned

bispectrum. Bucher et al. (2010) found that for ℓmax =2000 and 64 bins the results

obtained were 99.3% of the optimal value. For an application to WMAP, one has

ℓmax =1024, so the corresponding number of bins is 32. We have tested the performance

of the estimators with different number of bins and find that for nbin = 28 the results

have converged. Therefore, the following results use this number of bins, which also

provides a modest saving in computation with respect to 32 bins. Conversely to the

exhaustive choosing of the binning scheme done in Bucher et al. (2010) estimator,

here we simply use logarithmic bins. The logarithmic scale is chosen by imposing the

condition that all bins have at least one ℓ.

The binned bispectrum components are computed from combinations of three binned

maps TaTbTc =
∑

ℓ1∈Ia

∑
ℓ2∈Ib

∑
ℓ3∈Ic

Tℓ1Tℓ2Tℓ3 . It can be noticed that some of the com-

binations ℓ1ℓ2ℓ3 might not satisfy the triangle condition (ℓ3 − ℓ2 ≤ ℓ1 ≤ ℓ2 + ℓ3). To

avoid as far as possible those non-contributing combinations, we discard the binned bis-

pectrum components where all the contained ℓ combinations do not meet the triangle

condition. For that reason the components used are the ones that hold the following

condition:

ℓminIc − ℓmaxIb
≤ ℓmaxIa ≤ ℓmaxIc + ℓmaxIb

,

where ℓminIn
and ℓmaxIn

are the minimum and maximum value of ℓ of the bin In. Then,

the binned bispectrum for nbin = 28 consists of 1077 components, whereas the full

bispectrum would have ∼ 108 components.

4.5.3. Inpainting

Several inpainting methods have been developed for general imaging reconstruction

(see e.g. the review by Bertalmio et al., 2000). The goal of these methods is to restore
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Figure 4.1 - Inpainting effect shown in the masked WMAP-7yr map. On the top

the initial temperature map with the mask in dark grey and an amplified region are

presented and on the bottom, the same map and region are given after inpainting.

missing or damaged regions of an image to recover the original signal as far as possible.

For CMB map reconstruction, the ideal inpainting method would lead to a restored

map preserving the statistical properties of the unmasked map.

Different approaches have been used to reduce the discontinuities generated by the

mask edges in CMB maps, since they introduce undesirable correlations among the

binned bispectrum components. As the intention here is to reduce this impact, rather

than reconstruct the full map, we use a simple iterative process that averages over

the direct neighbours of the masked pixels, and is based on the work of Oliveira et al.

(2001).

One begins with the map T (~x) and the binary mask M(~x). Then each pixel of the

masked map T ′ = T ×M with value zero is substituted by the average of its immediate

neighbours, whether masked or not, using the HEALPix subroutine neighbours. The

process is repeated 1,000 times, leaving the masked point sources completely inpainted

and smoothing the edges of the galactic mask. The results of this process are illustrated

in Fig. 4.1. We find that, in this case, the technique is more effective than simply using

an apodized mask.
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Figure 4.2 - In the top panel the Pearson correlation coefficient between true fNL

value and the network estimator f̂NL for case 3 of table 4.2 versus the number of

iterations. Bottom panel is for the root mean squared error of fNL at each iteration.

Asterisks denote training data and dots denote validation data.

4.5.4. Neural network training process

To train our fNL network we provide it with an ensemble of training data D =

{x(n), t(n)}. The nth input vector x(n) contains the binned bispectrum components,

explained in Section 4.3, of the ith simulated CMB map. The output target is the

corresponding fNL value of the ith CMB simulation. Thus, for nbin = 28 the input

vector has 1077 components, and the target vector t(n) for the network consists of only

one component. From the training set, 20 per cent of the realisations are reserved for

the validation process.

The network weights are computed during the training procedure, which in this

case requires only a few seconds. The performance of the network is validated during

the training process using an independent set of testing data. Figure 4.2 illustrates

the training evolution for the regression network with nhid = 0 and ndata = 10, 000. In

the top panel we plot the correlation coefficient between the target and the network

outputs on the training set and the test set. We see that a divergence occurs around

60 iterations of the MemSys optimiser due to over-fitting. The same behaviour is

confirmed if the root mean squared error is studied (bottom panel). The network

parameters use to construct our final network estimator in (4.15) and (4.16) are the

ones that give a maximum value of the correlation coefficient and a minimum of the

root mean squared error in the validation data set.
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Estimator σfh σg < fNL >
Gauss

AMLED

9.7

9.7 -0.2

AMLE 10.3 -0.3

NN 9.8 -0.2

Table 4.1 - Results for noiseless full sky maps of set 1. The first column is for the

estimator used, second column indicates the expected dispersion for ℓmax = 1024

and in the last two columns the dispersion and mean value found for 1,000 Gaussian

maps are shown.

It is worth noting that for training the neural network, we need to choose a certain

range of |fNL| to generate the required simulations. We find that [-220 220] is a safe

interval for training the network, without significantly biasing the results for |fNL| up

to 30.

4.6. Results

As a preliminary check, we applied the three estimators to Gaussian full-sky maps

without noise, finding very similar results in all cases (see table 4.1). In this ideal case,

the AMLE should in principle coincide exactly with the AMLED, but because of the

lack of correlations among the binned bispectrum components the AMLED seems to

be more efficient. This is probably due to numerical uncertainties that arise in the

covariance matrix estimation. The neural network is found to be nearly as efficient as

the AMLED. It is also worth noticing that the estimators do not present a significant

bias.

An important difference between the estimators is the total number of realisations

required to converge, which is directly related to the computational efficiency. In par-

ticular, the generation of a simulation at lmax = 1024 takes around 1 minute and the

obtention of the binned bispectrum components takes approximately 3 minutes of CPU

time. For the AMLED, a few hundred realisations are sufficient to estimate the vari-

ance of the binned bispectrum. For the AMLE estimator, however, it is necessary to

estimate the covariance matrix, which requires at least 25,000 Gaussian simulations.

For the NNE, a few thousand realisations are required for the training process to con-

verge. Nonetheless, it is worth noting that the number of training realisations required

by the NNE does vary with the case being studied. For example, for inpainted maps
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Figure 4.3 - Comparison of the efficiency (left) and bias (right) of the three esti-

mators with respect to the number of simulations used to construct the estimator.

For reference, the optimal values for the dispersion and bias (dashed black line) are

also shown. Note that for the NNE, the simulations are used for the training pro-

cess, whereas for the AMLE they are employed to estimate the covariance matrix.

For the AMLED, they correspond to the number of simulations used to obtain the

diagonal elements of the covariance matrix.

where neither the linear term is taken into account nor the mean is subtracted (case 1

of table 4.2), the NNE needs 10,000 independent simulations to converge.

In applying the three estimators to realistic simulations, based on WMAP-7yr data,

larger differences are observed in the results; these are summarised in table 4.2. We

find that the AMLED estimator reaches values close to the expected dispersion if and

only if the linear term is subtracted and inpainting is performed. Actually, if the

estimator is applied to non-inpainted maps, the dispersion worsens by a ∼ 60%. Of

course, in the absence of the linear term, the estimator becomes highly suboptimal,

giving errors of 300%. This is not the case for the other two estimators. We notice

that the full covariance matrix χ2 estimator and the neural network give similar results

if instead of taking into account the linear term, the mean value of the intermediate

maps is subtracted, as is the case for wavelets and needlets (Donzelli et al., 2012). This

is observed in both inpainted and non-inpainted maps, comparing cases 2 and 3 and

4 and 5 respectively (see table 4.2). Indeed, these estimators appear more robust,

since the improvement due to the inpainting is small. In particular, comparing cases

2 and 4, the NNE estimator without inpainting increases the dispersion only by 5%

and for the full χ2 estimator by ∼ 10%, while for the AMLED the results are much

worse. Although similar results are found with the AMLE and the NNE estimators,
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Figure 4.4 - Weights for the AMLE estimator involving the covariance matrix

and the model, versus the NN weights obtained after the training process. This

comparison is made when both estimators have converged presenting a linear fit

slope and intercept of a = 91, b = 2 × 105.

one important difference is the number of simulations required to construct them. As

commented before, 25,000 Gaussian realizations were used to estimate the covariance

matrix in AMLE. As shown in top panel of Fig. 4.3, the NNE requires dramatically fewer

training realisations and also has the advantage that the average value of the binned

bispectrum at fNL = 1 does not need to be estimated. In the same figure, bottom

panel, we plot the bias found for the fNL estimates for 1,000 Gaussian realisations for

the three estimators with the number of simulations used. One sees that the AMLE

requires more realizations than the other two estimators to produce unbiased results.

All these results indicate that the neural network is a viable short cut to obtaining

the necessary weights to construct the AMLE estimator. In Fig. 4.4 the weights found

for the neural network are compared to those of the AMLE. Note that the weights of

both estimators are very similar, validating the relation stated in (4.17). The contri-

bution of the network parameter θ is negligible for all cases.

In terms of computational demand, the most efficient estimators are the NNE and

the AMLED, with the number of simulations required at least 10 times smaller than for

the AMLE. Note that for the AMLED we have used realisations to estimate the average

of the bispectrum at fNL = 1, therefore the final number of realisations employed is

similar to the ones used for training the NNE.

For all three estimators, the best results are obtained when the map is inpainted and



98
CHAPTER 4. FNL ESTIMATORS BASED ON THE BINNED

BISPECTRUM

Case Inpainting linear term mean subs. Estimator σg < fNL >
Gauss (σfh − σg)/σfh(%)

1 Yes No No

AMLED 107 3 300

AMLE 32.7 -1 45

NN 29.7 -0.3 32

2 Yes Yes No

AMLED 22.7 0.7 0.9

AMLE 23.3 0.7 3.5

NN 22.4 0.7 0.4

3 Yes No Yes

AMLED 31.5 0.7 40

AMLE 24.0 0.7 6.7

NN 23.1 0.5 2.7

4 No Yes No

AMLED 35.9 -0.3 60

AMLE 24.3 0.1 9.3

NN 23.6 0.6 4.8

5 No No Yes

AMLED 37.0 1.5 64

AMLE 24.6 -0.4 8.0

NN 23.6 0.4 4.8

Table 4.2 - Comparison of results depending on the estimator. The columns are

the characteristic of the estimator, if an inpainting of the simulations is made, if

the linear term is added and if the mean was subtracted on the binned intermediate

maps. Next columns are σ(fNL) and 〈fNL〉 for 1,000 Gaussian simulations. Finally

the relative error related to the minimum expected dispersion is shown in the last

column.
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the linear term is subtracted (see case 3 of table 4.2, indicated in bold face). For this op-

timal case, we compute 〈babc〉1 with 1,000 simulations of set 2 (Elsner & Wandelt, 2009),

to compare it with the expected dispersion for a WMAP-7yr characteristics, computed

as in (4.8). The neural network is now trained with this set of aℓm. As we have seen,

the NNE typically requires 2,500 independent training realisations to converge. Since

only 1,000 are available, we therefore generated 10,000 simulations using the same set

of aℓm rotating them and adding different noise contributions. This procedure was used

in Casaponsa et al. (2011) and was found to be useful when only a small number of

realisations is available. In table 4.3 the final results for all of the estimators are shown.

The values for WMAP-7yr data are without point sources correction, which is given in

the last column of the same table. The unresolved point sources contribution to fNL

is obtained using the same procedure as in Curto et al. (2009a) and Casaponsa et al.

(2011). As expected, by looking at the preliminary results, the tightest constraints are

given by the NNE and AMLED estimators. For comparison, the WMAP-7yr map fNL

estimate with the optimal estimator obtained by Komatsu et al. (2011) is 42, without

the point sources correction. Note that the closest value is given by the NNE. The

constraints for fNL with the point source contribution taken into account at 95% con-

fidence level are −3 < fNL < 83 to be compared with −2 < fNL < 82 given by the

optimal estimator.

We conclude that the most efficient tools are the neural network regression estimator

and the AMLED estimator. The latter would be the choice if a small set of non-

Gaussian simulations is available (∼1,000), or analytical models are preferred. However,

the AMLED depends on a specific pre-processing of the data. Neural networks give

Estimator σfh σg < fNL >
Gauss fmapNL ∆fNL

AMLED

21.3

21.7 -0.2 33.4 3±2

AMLE 22.4 -0.1 39.8 3±2

NN 21.4 0.5 44.2 4±2

Table 4.3 - Results for inpainted Gaussian realizations. Model estimated and

neural network trained using Elsner & Wandelt simulations (set 2). The columns

from left to right are: the estimator used, the Fisher σ computed from eq. 4.8,

the dispersion and mean value of f̂NL for 1,000 Gaussian simulations. Followed

by the fNL value found for WMAP-7yr data and the contribution expected by the

unresolved point sources (∆fNL).
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almost optimal results, without the use of inpainting, thereby avoiding the need to alter

the data.

Finally, the constraints for WMAP-7yr data, with the unresolved point sources

contribution included, at 95% confidence level would be −3 < fNL < 83. These results

are compatible with fNL =0, as found in Komatsu et al. (2011); Curto et al. (2011);

Bennett et al. (2013). Note that we have used foreground reduced maps, and the

foregrounds have not been marginalised over in this analysis. We note that neural

networks would be a useful method to estimate jointly other forms of non-Gaussianity,

such as those where the number of outputs were set to a number of different fNL shapes

(e.g. local, equilateral, orthogonal), but this is left for future work.



Chapter 5

Size magnification as a complement to

cosmic shear

This chapter is based on the published work of Casaponsa et al., 2013a. In this

chapter the extent to which cosmic size magnification may be used to complement cos-

mic shear in weak gravitational lensing surveys is investigated, with a view to obtaining

high-precision estimates of cosmological parameters. Using simulated galaxy images,

we find that unbiased estimation of the convergence field is possible using galaxies with

angular sizes larger than the Point-Spread Function (PSF) and signal-to-noise ratio in

excess of 10. The statistical power is similar to, but not quite as good as, cosmic shear,

and it is subject to different systematic effects. Application to ground-based data will

be challenging, with relatively large empirical corrections required to account for the

fact that many galaxies are smaller than the PSF, but for space-based data with 0.1-0.2

arcsecond resolution, the size distribution of galaxies brighter than i ≃ 24 is almost

ideal for accurate estimation of cosmic size magnification.

5.1. Introduction

In contrast to galaxy ellipticity measurement, the size information has not been

explored in detail, possibly because the complicating effects of the PSF and pixellisation

were thought to be too challenging. However, there are two reasons for revisiting size

magnification as a potential tool for cosmology: one is that accurate shear estimation

is itself very challenging, and size could add useful complementary information; the

second is that methods devised for ellipticity estimation must deal with the PSF and

101
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pixellisation, and as a byproduct provide a size estimate, or a full posterior probability

distribution for estimated size, which is currently ignored or marginalised over.

In terms of signal-to-noise (S/N) of shape distortions vs magnification estimation,

the relative strengths of the methods depend on the distributions of ellipticity and size.

The former has an r.m.s. of around 0.3-0.4 (Leauthaud et al., 2007); for bright galaxies

(Mr < −20), the Sloan Digital Sky Survey (SDSS) found that the size distribution is

approximately log-normal with σ lnR ∼ 0.3, and for fainter galaxies σ(lnR) ∼ 0.5),

where R is the Petrosian half-light radius (Shen et al., 2003); for deeper space data the

dispersion is also around 0.3 (Simard et al., 2002). Thus one might expect a slightly

smaller S/N for lensing measurements based on size rather than ellipticity, but not

markedly so. Bertin & Lombardi (2006) proposed a method based on the fundamental

plane relation (Dressler et al., 1987; Djorgovski & Davis, 1987) to reduce the observable

size variance. Huff & Graves (2011) applied a similar method to measure galaxy mag-

nification using 55,000 galaxies of the SDSS catalogue, and find consistency with shear

using the same sample. Also a detection with COSMOS HST survey using a revised

version of the KSB method is presented in Schmidt et al. (2012), showing reasonable

consistency with shear.

Here we revisit size magnification measurement, and will show that to use size-

magnification we require i) a wide area survey that enables observations of a suffi-

ciently large sample of galaxies, this is required to overcome the intrinsic scatter, and

ii) a consistently small PSF that does not destroy the size information of the observed

galaxies. Both of these requirements can be met with a wide-area space-based sur-

vey, although some science may be possible from the ground. Euclid12 (Laureijs et al.,

2011) should meet these requirements (large samples will be available, and the PSF

size is smaller than typical galaxies), so the size information could be considered as

a complementary cosmological probe to weak lensing ellipticity measurements. One

advantage of using the size information is that the magnification and distortion have

different radial dependences on the spatial distribution of matter, which may be very

useful to lift the so-called mass-sheet degeneracy (Bartelmann et al., 1996; Fort et al.,

1997; Taylor et al., 1998; Broadhurst et al., 2005; Umetsu et al., 2011; Vallinotto et al.,

2011), that occurs due to the reduced shear (or the measured ellipticities) being invari-

ant under a transformation of the distortion matrix by a scalar multiple.

Besides the degeneracy lifting, another advantage of using magnification is that

12http://www.euclid-ec.org
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combining the size magnification information with the shear will reduce uncertainties

on the reconstruction of the distribution of matter (Jain, 2002; Vallinotto et al., 2011;

Sonnenfeld et al., 2011).

On the measurement of the size, all of the shear estimation methods referred to

above already estimate the size of galaxies when calculating the ellipticities, so we ex-

pect to measure this additional information for free, given an accurate ellipticity mea-

surement. However, the accuracy of size information should not be taken for granted:

it is important to know the uncertainties in size measurement, and how they propa-

gate to a convergence field estimation. It is this question of how accurately one can

measure the sizes of galaxies, that this chapter addresses. Amara & Réfrégier (2007);

Kitching et al. (2008) have shown that to obtain an accurate determination of cosmo-

logical parameters, such as the equation of state of dark energy, the systematic errors

in the measured ellipticities should be . 0.2%, and we would expect similar require-

ments for size. Although a full study of the convergence bias at this level needs to be

done, the main goal of this first work is to investigate whether unbiased measurement

of size is feasible at all, and to come some basic conclusions on required image sizes

and signal-to-noise.

The chapter is organised as follows. First, in Section 5.2 we will present the weak

lensing quantities that are used throughout this chapter, then a definition of the es-

timator, and a brief comment on the method and the characteristics of the simulated

images. Finally, the analysis and results are explained in Section 5.3. The conclusions

are summarised in chapter 6.

5.2. Method

A good algorithm for weak lensing analysis must be able to take into account the

distortion introduced by the PSF, pixelization effects and pixel noise. Another require-

ment is that it should be computationally fast because the statistical analysis will be

made on large samples. This means that algorithm development is challenging because

of the dissonant requirements of both increased accuracy and increased speed as the

required systematic level decreases. Several methods have been proposed and applied

to weak lensing surveys, and are described in the challenge reports of STEP, GREAT08

and GREAT10 (Heymans et al., 2006; Bridle et al., 2010; Kitching et al., 2012). These

blind challenges have been critical in demonstrating to what extent methods can achieve
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the required accuracy for upcoming surveys by creating simulations with controlled in-

puts against which results can be tested. Here we propose a very similar approach as

the one presented in the GREAT10 challenge, we have used simulated galaxy images

with different properties to measure the response of the size/convergence measurement

under different conditions (corresponding to changes in the PSF, S/N and bulge frac-

tion).

5.2.1. Weak lensing formalism

The distortions induced by gravitational lensing are described by the Jacobian ma-

trix which maps the true angular position of the image to the angular position of the

source (in the absence of deflections):

A(~θ) =

(
1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

which defines the convergence field κ and complex shear field γ ≡ γ1 + iγ2 (for more

details, see e.g. Bartelmann et al., 1996; Hoekstra et al., 1998; Munshi et al., 2008).

In terms of the convergence and the shear there are two important variables, directly

related to the lensing observables. The reduced shear,

g = γ(1 − κ)−1 (5.1)

represents shape changes ignoring size. The magnification of the surface area µ is,

µ =
1

det(A)
= [(1 − κ)2 − |γ|2]−1. (5.2)

If κ, |γ| ≪ 1 (which we assume throughout) can be approximated by

µ ≃ 1 + 2κ.

The power spectrum for κ can be obtained in terms of the matter power spectrum

Pδ(k,w), where w is a comoving distance coordinate which plays the role of cosmic

time. For a set of sources with a distribution function p(w),

Pκ(ℓ) =
9H4

0Ω2
m

4c4

∫ wh

0
dw

g2(w)

a2(w)
Pδ

(
ℓ

w
,w

)
, (5.3)

where g(w) =
∫ wh

w
dw′ pw(w′)w

′−w
w′ , w is the co-moving distance, wh is the horizon

distance. Ωm and H0 are the present matter density parameter and Hubble parameter.
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Note that eq. 5.1 and 5.2 are always valid while eq. 5.3 is only meaningful for cosmic

shear.

In the weak lensing limit, the power spectrum of the magnification fluctuations

(µ− 1) is 4 times Pk(l), therefore, in principle, cosmological constraints could be made

independently of the shear (Jain, 2002; Barber & Taylor, 2003), however the signal-to-

noise ratio for the measured ellipticities is in general larger, hence the shear may carry

more statistical weight. Even so a complementary analysis of shear and magnification

measurements will necessarily provide tighter constraints on cosmological parameters

than a shear analysis alone. In particular, in van Waerbeke (2010) it is shown that

the constraints on σ8 and Ωm can be improved up to ∼ 40%, similarly combining size-

magnification, galaxy densities and shear, the improvement on the precision of halo

mass estimates can be ∼ 40% − 50% (Rozo & Schmidt, 2010).

5.2.2. Estimator

In this study, the observed galaxy size, s and the intrinsic galaxy size, ss are defined

as the half light disk radii13. The ratio between the magnified and intrisic galaxy size is

given by s
ss = µ

1
2 . On the other hand, the magnification is related to the convergence,

to first order, µ
1
2 = 1 + κ, therefore we can write s

ss = µ
1
2 then κ = s

ss − 1. We can

construct an estimator for κ in the weak lensing limit by assuming that, since 〈κ〉 = 0,

the mean size value is not modified by lensing, i.e., 〈ss〉 = 〈s〉, and replacing ss by its

expectation value:

κ̂ =
s

〈s〉 − 1. (5.4)

From the definition of the estimator, and the width of the s distribution, an estimate

of κ from a single galaxy will be very noisy, with smaller galaxies than the mean always

giving a negative κ̂, while larger galaxies will produce positive κ̂. What is important is

to test if our estimator is unbiased over a population to a sufficient degree to be useful

for real data.

5.2.3. lensfit

Throughout we use lensfit (Miller et al., 2007; Kitching et al., 2008, Miller et al.,

2012) to estimate the galaxy size; we use this because: 1) it has been shown that

13Note that there is an erratum in the published work where is stated that the defined size

is the semi-major axis
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lensfit performs well on ellipticity measurement; 2) it is a model fitting code which also

measures the sizes of galaxies; 3) it allows for the consistent investigation of the intrinsic

distribution of galaxy sizes through the inclusion of a prior on size, and 4) it includes the

effects of PSF and pixellisation. lensfit was proposed in Miller et al. (2007) and has been

proved to be a successful tool for galaxy ellipticity shape measurements (Kitching et al.,

2008). Although model-fitting is the optimal approach for this type of problem if the

model used is an accurate representation of the data, the main disadvantage is that is

usually computationally demanding to explore a large parameter space. lensfit solves

this problem by analytically marginalizing over some parameters that are not of interest

for weak lensing ellipticity measurements, such as position, surface brightness and bulge

fraction. The size reported by lensfit is also marginalised over the galaxy ellipticity.

Sensitivity correction

In the Bayesian formalism the expected value for the size of an individual galaxy

can be written as 〈s〉 =
∫
s p(s|sd)ds, where sd is the data and s stands for the fitted

model parameter for the size explained in Sec. 5.2.4. In terms of the prior P(s) and

the likelihood L(sd|s) the expression is

〈s〉 =

∫
sP(s)L(sd|s)ds∫
P(s)L(sd|s)ds

. (5.5)

Individual galaxy size estimates allow errors to be assigned to each galaxy, or the full

posterior can be used and the information propagated to the κ signal. Miller et al.

(2007) introduced the shear sensitivity, a factor that corrects for the fact that the code

measures ellipticities but that shear (a statistical change in ellipticity) is the quantity of

interest. A similar correction is required for size measurement, whereby we measure the

size but it is the convergence that is the quantity of interest; this correction is needed

because for a single galaxy the prior information for the convergence is not known, and

we assume it is zero. With a Bayesian method we can estimate the magnitude of this

effect for each galaxy, a further reason to use a Bayesian model fitting code in these

investigations. Consider the Bayesian estimate of the size of galaxy i and write its

dependence on κ as a Taylor expansion:

ŝi = ssi + κ
dŝi
dκ

. (5.6)

In the simple case where the likelihood L(sd|s) (for simplicity, hereafter L(s) = L(sd|s))
is described by a Gaussian distribution with variance b2, with an expectation value s,
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and a prior P(s) that also follows a Gaussian distribution centred on s̄ with variance

a2, the posterior probability will follow a Gaussian distribution with expectation value:

〈s〉 =
s̄b2 + sda

2

a2 + b2

and variance

σ2 =
a2b2

a2 + b2
.

These equations illustrate that the posterior is driven towards the prior in the

low S/N limit (b → ∞), and thus requires correction. Differentiating the expression

sd = ss(1 + κ) + σs, with σs being the systematic noise, we find that the κ sensitivity

correction is:
dŝ

dκ
=

a2

a2 + b2
dsd
dκ

=
a2

a2 + b2
ss, (5.7)

substituting into eq. 5.6

ŝi = ssi + κssi
a2

a2 + b2

we find the estimator for κ will be the same as in eq. 5.4, corrected by the sensitivity

factor:

κ =

(
ŝ

〈ŝ〉 − 1

)
a2 + b2

a2
. (5.8)

In this work we have used this approximation for simplicity but in general a normal

distribution should not be assumed. A more general estimation of the κ correction can

be done in the same way as with the shear and can be evaluated numerically, without

the need of using external simulations.

To calculate the sensitivity correction in the general case we consider the response

of the posterior to a small κ, by adding the convergence contribution in the likelihood,

L(s− ss) 7→ L(s− ss − κss) and expand it as a Taylor series:

L(s− ss − κss) ≃ L(s− ss) − ssκ
dL
ds
.

We then substitute into eq. 5.5 and differentiate to obtain the analytic expression for the

κ sensitivity (for more details of this applied to ellipticity measurement see Miller et al.

2007; Kitching et al. 2008)

ds

dκ
≃
∫

(〈s〉 − s)P(s)ss dL
ds
ds∫

P(s)L(s)ds
. (5.9)

If the prior and likelihood are described by a normal distribution, this expression can

be analytically computed and the sensitivity correction is the same as before. A sim-

ilar empirically motivated correction on the estimator expression was used in eq.5 of

Schmidt et al. (2012), where the factor is computed with simulations.
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5.2.4. Simulations

In order to test the estimation of sizes with lensfit we have generated the same type

of simulations used in the GREAT10 challenge (Kitching et al., 2010, 2012), but with

non-zero κ. Multiple images were generated, each containing 10,000 simulated galaxies

in a grid of 100x100 postage stamps of 48x48 pixels; each postage stamp contains one

galaxy.

Each galaxy is composed of a bulge and a disk, each modeled with Sérsic light

profiles:

I(r) ≃ I0 exp

{
−K

[(
r

rd

) 1
n

− 1

]}
(5.10)

where I0 is the intensity at the effective radius rd that encloses half of the total light and

K = 2n− 0.331. The disks were modelled as galaxies with an exponential light profile

(n = 1), and the bulges with a de Vaucouleurs profile (n = 4). Ellipticities for bulge and

disk were drawn from a Gaussian distribution centred on zero with dispersion σ = 0.3.

Both components had distributions centred at the middle of the postage stamp with

a Gaussian distribution of σ = 0.5 pixels. The galaxy image was then created adding

both components. The S/N was fixed for all galaxies of the image and implemented by

calculating the noise-free model flux by integrating over the galaxy model, then adding

a constant Gaussian noise with a variance of unity and rescaling the galaxy model

to yield the correct signal-to-noise, as in Kitching et al. (2012). Finally the PSF was

modelled with a Moffat profile with β = 3, with FWHM fixed for all galaxies on the

image, with different ellipticities drawn from a uniform distribution, with ranges given

in Table 5.1.

The different types of image were generated to study the effects of the bulge fraction

(fraction of the total flux concentrated in the bulge), the S/N and the PSF separately.

In summary, the main characteristics of the considered sets are:

Set 1. Disk-only galaxies (bulge fraction = 0), negligible PSF effect (FWHM PSF

= 0.01 pixels) and different S/N.

Set 2. Disk-only galaxies (bulge fraction = 0), with S/N=20 and different sizes

of PSF.

Set 3. Negligible PSF effect, S/N=20 and different bulge fractions.
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Set Name S/N fwhm PSF(pix) e PSF B/D fraction rd(pix) rb(pix) e

Set 1 [10,40] 0.01 0 0 〈rd〉 = 7 , σ = 1.2 - 0

Set 2 20 [0.01,10] 0 0 〈rd〉 = 7 , σ = 1.2 - 〈e〉 = 0,σ = 0.3

Set 3 20 0.01 0 [0,0.95] 〈rd〉 = 7 , σ = 1.2 rd/2 〈e〉 = 0,σ = 0.3

Set 4 [10,40] 4.5 [-0.1,0.1] 0.5 〈rd〉 = 7 , σ = 1.2 〈rb〉 = 3.5 , σ = 0.6 〈e〉 = 0,σ = 0.3

Table 5.1 - Major characteristics of the different sets used in this analysis. In bold

are marked the variables explored in each set and the range of variation. In Set 4,

PSF ellipticities are drawn from a uniform distribution in the range specified. Note

that ri corresponds to the half-light radius. Last column is the galaxy ellipticity

and is the same for both components, bulge and disk.

Set 4. Bulge fraction of 0.5, FWHM of PSF 1.5 times smaller than the charac-

teristic size of the disk, and different S/N.

To characterize the size of the galaxy the half-light radius of a circular isophote, rd, is

used. We have drawn rd from a Gaussian distribution with expected value of 7 pixels

and dispersion of 1.2 pixels, to keep disk sizes of at least 2 pixels and not larger than

the postage-stamp. The galaxy sizes explored here have a somewhat smaller range

(σ(lnR) ∼ 0.18) than found by Shen et al. (2003) with the SDSS catalogue, where

in terms of pixels the mean value of the full sample is around 5 with σ(lnR) ∼ 0.3

(see Fig.1 of Shen et al., 2003). Therefore the sensitivity corrections are consequently

larger than would be needed for real data. Besides a wider distribution of galaxies, the

important change from the original images for the GREAT10 challenge is the addition

of a non-zero κ-field that creates a size-magnification effect (in GREAT10 only a shear

field was used to distort the intrinsic galaxy images). A Gaussian convergence field

with a simple power-law power spectrum in Fourier space Pκ(ℓ) ∼ 10−5ℓ−1.1 has been

applied to each image. The power-law is a good approximation to the theoretical

power spectrum over the scales 10 . ℓ . 10000 (see i.e. Schneider, 2005).The size of

the κ-field is θimage = 2π
ℓmin

and θimage is set to 10 degrees, such that the range in ℓ

we used to generate the power was ℓ = [36, 3600] where the upper bound is given by

the grid separation cut-off. In real space this translates to a maximum |κ| of around

2%, although we investigate larger |κ| in Section 5.3.4. The κ-field is generated on the

100x100 grid, each point representing a postage stamp, and is applied to the galaxy at

the same position (s = ss(1 + κ)), neglecting the contribution of the shear. The pixel

angular size is not fixed, and can be scaled to any experimental set up.
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5.3. Results

Before trying to estimate the convergence field of our most realistic image, we have

tested the dependence on different aspects separately: S/N, PSF size and bulge fraction.

We expect these to be the observable effects that have the largest impact on the ability

to measure the size of galaxies. Lower S/N will cause size estimates to become more

noisy and possibly biased (in a similar way as for ellipticity, see Melchior & Viola 2012);

a larger PSF size will act to remove information on galaxy size from the image and a

change in galaxy type or bulge fraction may cause biases because now two characteristic

sizes are present in the images (bulge and disk lengths). In order to study carefully the

sensitivity of our estimator to systematic noise, PSF or galaxy properties, we started

from the simplest case and added increasing levels of complexity. The number of

galaxies used for the analysis is 200,000 for the first three sets and we increased the

number to 500,000 for the last test to give smaller error bars.

We compare the estimated κ̂ computed as in eq. 5.4 with the input field κ, and fit

a straight line to the relationship to estimate a multiplicative bias m and an additive

bias c:

κ̂ = (m+ 1)κ+ c, (5.11)

after applying the sensitivity correction (section 5.2.3). We bin the data14 and a linear

fit is done to compute m and c. This process is shown in Fig. 5.1. The error bars for

the regression coefficients are given by its standard deviation, assuming that the errors

are normally distributed. The regression coefficients and its errors are computed using

the function polyfit of matlab software.

We now discuss each of the categories in turn.

5.3.1. Signal-to-noise

As a first approach to the problem, disk-only galaxies with a negligible PSF (FHWM=

0.01 pixels) and zero ellipticity were generated to test the dependence of the bias on

S/N alone, given otherwise perfect data. In Fig. 5.2 we can see that as we increase the

S/N the accuracy of the size estimation grows, as expected. In Fig. 5.3 we show the

estimation of the convergence field, modified by the sensitivity correction. There is a

14Note that the differences between the results before and after the binning of κ are within

the error bars.



5.3. RESULTS 111

2 4 6 8 10 12
2

4

6

8

10

12

s
in

s ou
t

 

 

data
b=0.99
c=0.11

−0.1 −0.05 0 0.05 0.1
−0.5

0

0.5

k
in

k ou
t

 

 
data
b=0.98
c=0.00

−0.02 −0.01 0 0.01 0.02

−0.02

−0.01

0

0.01

0.02

k
in

k ou
t

 

 

data
b=1.01
c=0.00

Figure 5.1 - Sequence of steps to obtain m and c values. First panel shows the

lensfit output size compared to the input size, in the second panel the estimated κ

compared to the input convergence at each galaxy, and in the third panel is shown

the same plot using bins. Slope and intercept values of the fitting are shown in

each plot (throughout, we fit generically y = bx + c, with b = m + 1 and c = c of

eq. 5.11). This is for galaxies of Set 1 with signal-to-noise 40.

clear correlation between the inputs and the outputs, and the slope is close to unity for

all S/N explored. In Fig. 5.4 the estimates for m and c are shown, with and without

the sensitivity correction. In this case the correction does not alter the results much

except at low S/N, because the sizes are less accurately estimated. In this work the

factor a2/(a2 + b2) is estimated by the inverse of the slope of the size estimation fitting

(see Fig. 5.2). Using 200,000 galaxies for this test, the values found for m and c are

consistent with zero, typically m ≃ 0.02 ± 0.05, and c ≃ (5 ± 5) × 10−4.

5.3.2. PSF effect

To study the uncertainties on the size estimation due to the PSF size, we gener-

ated images with different FWHM PSF values, with an intermediate signal to noise

(S/N=20), maintaining the same properties as before, except that we considered here

a Gaussian distribution of ellipticities with mean value of e = 0 and σe = 0.3 (per

component). The size estimates are good for small PSFs, but become progressively

more biased as the PSF size increases beyond the disk scale length (see Fig. 5.5). A

PSF with a FWHM larger or similar to the size of the disk, tends to make the galaxy

look larger, and the estimator for κ becomes biased. This effect can be seen in the

slope and intercept of κ̂ vs κ plot (Fig. 5.6). Fig. 5.7 shows the variation of the pa-

rameters m and c with the ratio between the scale-length of the PSF and the galaxy

(ratio=rd/PSFFWHM).

We find no evidence for an additive bias, but we do find a multiplicative bias for large
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Figure 5.2 - Comparison of the estimated sizes by lensfit with the input galaxy size

for different S/N in the range [10,40]. Disk-only circular galaxies with a negligible

PSF effect are considered (Set 1). Slope and intercept of the fitting are shown (b

and c, respectively). Note that the input size is the lensed one.
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Figure 5.3 - Comparison of the binned estimated convergence and the input value

for Set 1 with different S/N in the range [10,40]. Slope and intercept of the fitting

are shown (b and c, respectively). For errors, see text.
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Figure 5.4 - m and c values computed with 200,000 galaxies of Set 1. Triangles

are for the values obtained with the sensitivity correction and squares without it.

PSFs. With a wide size distribution, some of the smaller galaxies are convolved with a

PSF larger than their size, and this could produce an overall bias in κ, but if the number

of those galaxies is not very large, the effect on the global estimation of the convergence

field will be correspondingly small. Similar biases exist with shear measurement for

large PSFs, but the biases are larger here. For a space-based experiment, with a

relatively bright cut at i ∼ 24.5, such as planned for Euclid, the limitation on PSF

size will not be dominant because the median galaxy size is 0.24 arcsec (Simard et al.,

2002; Miller et al., 2012), larger than the PSF FWHM of 0.18 arcsec. For ground-based

surveys, such as CFHTLenS and future experiments the situation is not so clear, the

measurement will be more challenging, and large empirical bias corrections of the order

of m ≃ −0.5 will be needed (see the first point of Fig. 5.7).

5.3.3. Bulge fraction

In this test we generated galaxy images with bulges with different fractions of the

total flux, to test the response to the galaxy type. In Fig. 5.8 we show that galaxy

size estimates for bulge fractions of 0.2 are much better than for galaxies with bulge

fractions of 0.95. This is because for bulge-dominated models the central part of the

galaxy becomes under-sampled due to a limiting pixel scale. The poor estimation of

sizes is reflected in the κ estimation (bottom panels of Fig. 5.8). The parameters m

and c for this set are shown in Fig. 5.9, where we can see that for bulge fraction greater

than 0.8, the results are clearly biased with m = −0.25. For all bulge fractions the error

bars are around 10%. Although for bulge-only galaxies, the κ estimates are poor most

of the galaxies used for weak lensing experiments have bulge fractions lower than 0.5

(Schade et al., 1996), so that in fact the population of useful lensing galaxies is likely
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Figure 5.5 - Sizes estimates vs input sizes for four different PSF scale-lengths

between 0.1 and 7 pixels. Galaxies are disks with S/N=20 and mean size 7 pixels.

Slope and intercept of the fitting are shown (b and c, respectively).
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Figure 5.6 - κ estimates vs input values for four different PSF scale-lengths.

Galaxies are disks with S/N=20 and mean size 7 pixels. Dashed line is κout = κin

and the solid line is the least squares fit, with slope and intercept shown in the

plots. Note that b=m+1.
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Figure 5.7 - m and c values computed with 200,000 galaxies of Set 2. Triangles

represent the values obtained with the sensitivity correction and squares without

it.
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Figure 5.8 - Top panels: Sizes estimates vs input sizes for different bulge fractions

in the range [0.2,0.95]. Bulge+Disk galaxies with different ellipticities are used,

with S/N=20 and negligible effect of the PSF (Set3). Slope and intercept of the

fitting are shown (b and c, respectively). Bottom panels: Bulge+Disk elliptical

galaxies with S/N of 20 and negligible effect of the PSF (Set 3). Dashed line is

κout = κin and the solid line is the fit of the output values. Note that b=m+1 of

eq. 5.11.
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Figure 5.9 - m and c values computed with 200,000 galaxies of Set 3. Values

obtained with the sensitivity correction are marked by triangles and by squares are

without the correction.

to be enough to do a successful analysis.
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5.3.4. Most Realistic Set

The last set includes realistic values for all the effects we investigate. We have

generated galaxies with elliptical isophotes with a bulge fraction of 0.5 convolved with

an anisotropic PSF with FWHM of 4.5 pixels (1.5 times smaller than the characteristic

scale-length of the disk), and again we investigate the dependence on S/N. This is also

a challenging test for lensfit, the current version (c. 2012) of which uses a simplified

parameter set where the bulge scale length is assumed to be half the disk scale length.

Here, we include a dispersion in the bulge scale length of 0.6 pixels around a mean

value of 3.5 pixels. The analysis was done with 500,000 galaxies, to keep the error

bars smaller than 10%. As expected, the size estimation for this set is poorer than in

set 1; however, the errors on κ̂ remain similar thanks to the sensitivity correction (see

Fig. 5.10). While the theoretical κ in the studied range of ℓ has a maximum amplitude

of ∼ 2%, non-linear density evolution increases its contribution on smaller scales (see

for example Fig.17 of Bartelmann et al., 1996). For this set, the analysis was performed

with higher values of κ to confirm that the method is valid for larger κ. A comparison

of the original range with a larger range (|κ| . 0.05) is shown in Fig. 5.10, where no

significant differences are apparent. Fig. 5.11 shows the values of m and c for this set,

with and without the sensitivity correction. If we compare it with the previous plots we

can see that as the galaxy population becomes more realistic, including several effects,

the importance of the correction increases. Results for this set are shown in Fig. 5.11,

showing unbiased results except for S/N=10, which has m = −0.19 ± 0.1. For the

higher S/N points, we find |m| < 0.06 with errorbars of ±0.09.
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Figure 5.10 - κ̂ estimates compared to the true κ values for set 4. Dashed line

is for κin = κout and solid line is the least squares fit, with regression coefficients

shown in the plot (κ̂ = bκ+ c, where b = m+1). Left four plots are for a maximum

value of input κ of ∼ 2% and right set of plots for |κin| . 0.05.
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Figure 5.11 - m and c parameters for 500,000 galaxies of Set 4. Squares are raw

m and c values; triangles have the sensitivity correction included.



Chapter 6

Conclusions

In this chapter the conclusions of the works presented in this thesis are described.

High resolution cosmological data require new efficient tools in terms of accuracy and

computational demand. For that, new tools are tested in this thesis, finding that fast

tools, such as the HEALPix Wavelet (HW), can provide useful constraints on the fNL

parameter. We find that artificial intelligence techniques, in particular neural net-

works, can achieve a reduction of the computational time without loosing accuracy.

We explored their power in non-Gaussianity analysis, but they may well have wider

applications in cosmology. In the weak lensing study, we find that galaxy size informa-

tion in Euclid conditions is sufficiently good to estimate the convergence field, and will

be a very valuable complement to the shear analysis. In the following sections more

detailed conclusions for each chapter are summarised.

6.1. Wilkinson Microwave Anisotropy Probe 7-yr constraints

on fNL with a fast wavelet estimator

In chapter 2 a new methodology to analyse the Gaussianity of the CMB and to

constrain the fNL parameter using the HW has been presented. To our knowledge, the

developed fNL estimator is the fastest method that has been proposed up to date. In

particular, for WMAP resolution (Nside = 512), it is ∼ 102 times faster than the SMHW,

∼ 103 times faster than the KSW bispectrum and 107 times faster than the general

bispectrum estimator. Moreover, although the constraints imposed by our method are

not as stringent as those of the optimal estimators (based on the bispectrum or on

119
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the SMHW), they are very similar or even better than those proposed by alternative

methods, such as needlets, Minkowski functionals or the N-pdf.

The method, which is based on the calculation of the third-order moments of the

wavelet coefficient maps, has been applied to the WMAP-7yr V+W combined map.

On the one hand, we have performed a χ2 test to study the Gaussianity of the CMB,

finding consistency with the Gaussian hypothesis. On the other hand, we have con-

strained the value of the local fNL parameter to be −69 < fNL < 65 at the 95 per

cent confidence level, after correcting for the point source contribution. In addition,

the HW gives the possibility of performing local studies of Gaussianity in the CMB

map. In particular, we have analysed two independent hemispheres associated to the

dipolar modulation proposed by Hoftuft et al. (2009). In this study, we do not find

any significant asymmetry on the fNL estimates for the two hemispheres of the WMAP

data. The constraints for the northern and southern hemispheres are −73 < fNL < 119

and −137 < fNL < 62, respectively, at the 95 per cent confidence level.

6.2. Constraints on fNL from Wilkinson Anisotropy Probe

7-year data using a neural network classifier

In chapter 3 an application of neural networks in non-Gaussianity analysis was pre-

sented. In particular a multi-class neural network classifier with third-order moments

of the HW and SMHW coefficients of non-Gaussian realizations was used in order to

set constraints on the local non-linear coupling term fNL using WMAP 7-year data.

We found that with a very simple network and with few iterations (requiring just a

few secs CPU time) it is possible to produce the same results as those obtained with

the weighted least squares method. This is an interesting achievement, as it bypasses

any covariance matrix related computations and their associated regularisation prob-

lems. The estimation of the covariance matrix for each wavelet requires the analysis

of at least 10000 Gaussian simulations which involves a huge demand in CPU time,

in particular for the SMHW. The error bars on the estimation of fNL computed with

Gaussian simulations are σ(f̂NL) = 33) for HW and σ(f̂NL) = 22 for SMHW, which are

very similar to the ones obtained in Casaponsa et al. (2011) and Curto et al. (2011)

using the same statisitcs but a different estimator based on the weighted least squares

method (σ = 34, σ = 21 for HW and SMHW respectively). The constraints for WMAP

7-year data were found to be −78 < fNL < 51 for the HW and −24 < fNL < 61 for
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the SMHW, which are compatible with a Gaussian distribution as found in Smith et al.

(2009); Curto et al. (2009b); Komatsu et al. (2011); Casaponsa et al. (2011) and Curto

et al. (2011b). The results obtained with the SMHW statistics are similar to the ones

found in Smith et al. (2009) and Komatsu et al. (2011), which are the most stringent

ones currently available at the limit of the WMAP resolution.

6.3. Exploring local fNL estimators based on the binned

bispectrum

In chapter 3 an application of neural networks in non-Gaussianity analysis was

presented. In particular a multi-class neural network classifier with Chapter 4 is also

devoted to the use of neural networks to construct non-Gaussianity estimators. An-

other type of neural network was used, and also different inputs were explored. The

requirement of the linear term in the estimator was studied finding that in some cases

is crucial while in others its effect is less important. In this work a regression net-

work is trained with the binned bispectrum components of non-Gaussian realizations

in order to obtain constraints on the local non-linear coupling parameter fNL. The

results have been compared with those obtained with a maximum-likelihood estimator,

using either a diagonal or a full covariance matrix. The effect of the addition of the

linear term, of performing a mean subtraction and the use of inpainting, is also studied.

We find that the three estimators become close to optimal if the linear term is subtracted

and inpainting is performed. We find that the linear term is absolutely necessary if a

diagonal covariance matrix is used. However, its effect is very small if the full covari-

ance matrix or the neural network is used and the mean is subtracted from the binned

maps, as found for wavelets and needlets in Donzelli et al. (2012) and Curto et al.

(2012). In that sense, the choice of the estimator depends on the difficulty of com-

puting the linear term. Although the best results for all estimators are obtained when

inpainted maps are used, the largest effect of this technique is seen when we use the

approximated maximum likelihood estimator with only diagonal terms of the covari-

ance matrix (AMLED), whereas the other two estimators presented in Chapter 4, the

approximate maximum likelihood estimator (AMLE) and the neural network estimator

(NNE), are less affected by the presence of a mask. Thus, the most robust tools are

the AMLE and the NNE estimators, with the NNE displaying a clear computational
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advantage, since the covariance matrix does not need to be estimated or inverted; this

reduces significantly the number of simulations required. Another advantage of the

neural network estimator arises from the fact that for χ2 minimization the dependence

of the covariance matrix on fNL makes a full solution computationally hard, if not un-

feasible, for certain problems. Conversely, the NNE bypasses such calculations, thereby

simplifying the analysis.

6.4. Size magnification as a complement to cosmic shear

In chapter 5 the first systematic investigation of the performance of a weak lensing

shape measurement method’s ability to estimate the magnification effect through an

estimate of observed galaxy sizes is presented. This test is performed by creating a

suite of simulations, with known input values, and by using the most advanced shape

measurement available at the current time, lensfit.

A full study of the magnification effect using sizes was performed testing the depen-

dence on S/N, PSF size and type of galaxy. The requirements on biases on shear (or

equivalently convergence) for Euclid such that systematics do not dominate the very

small statistical errors in cosmological parameters are stringent (see Massey et al., 2012

and Cropper et al., 2012). A much larger study will be required to determine whether

these requirements can be met for size, but we find no evidence for additive size biases

at all, and no evidence for multiplicative bias provided that 1) the PSF is small enough

(<galaxy scale-length/1.5), 2) the S/N high enough (≥ 15), and 3) the bulge not too

dominant (bulge/disk ratio <= 4).

The analysis presented in chapter 5 has assumed that the statistical distribution

of galaxy sizes is known, whereas in practice the size distribution depends on galaxy

brightness and must be determined from observation. Gravitational lensing of a galaxy

with amplification A increases both the integrated flux and area of that galaxy by

A, which has the effect of moving galaxies along a locus of slope 0.5 in the relation

between log(size) and log(flux). Thus, if the intrinsic distribution of sizes r of galaxies

scales with flux S as r ∝ Sβ, the apparent shift in size caused by lensing amplification

A is r′ ∝ A0.5−β, resulting in a dilution of the signal compared with the idealised

case investigated in this work. A similar effect occurs in galaxy number magnification,

where the observed enhancement in galaxy number density N ′ varies as N ′ ∝ Aα−1, if

the intrinsic number density of galaxies varies as N ∝ S−α (Broadhurst et al., 1995).



6.4. 123

The value of β at faint magnitudes has recently been estimated by Miller et al. (2012),

who analysed the fits to galaxies with i . 25 of Simard et al. (2002) and estimated

β ≃ 0.29. Thus we expect this effect in a real survey to dilute the lensing magnification

signal by a factor 0.42, but still allowing detection of lensing magnification. In practice,

the dilution factor could be evaluated by fitting to the size-flux relation in the lensing

survey.

Lensing number magnification surveys are also affected by the problem that varying

Galactic or extragalactic extinction reduces the flux of galaxies and thus may cause a

spurious signal (e.g. Ménard et al., 2010). Such extinction would also affect the size

magnification of galaxies, but with a different sign in its effect. Thus a combination of

lensing number magnification and size magnification might be very effective at removing

the effects of extinction from magnification analyses.

Space-based surveys as Euclid should overcome the limitations that we have exposed

in chapter 5, having a large number of galaxies, with S/N > 10, and importantly a PSF

at least 1.5 smaller than the average disk size. The addition of the size information to

the ellipticity analysis is expected to reduce the uncertainties in the estimation of weak

lensing signal, and therefore improve the constraints of the distribution of matter and

dark energy properties.





Chapter 7

Resumen en castellano

7.1. Introducción

Actualmente, la avanzada tecnoloǵıa y la unión del esfuerzo de varios páıses, han

contribúıdo a tener mapas del Universo observable muy precisos, que han permitido

establecer las bases a un modelo cosmológico aceptado por la mayoŕıa de la comunidad

cient́ıfica. Tener un modelo, nos permite probarlo o refutarlo, nos permite avanzar,

explicar las diferentes etapas del Universo: como era antes y prever como será.

Durante el siglo XX se fue consolidando lo que se ha llamado modelo cosmológico

estándar. Uno de los conceptos básicos del modelo es que el Universo está en ex-

pansión, propiedad que fue descubierta por Edwin Hubble al observar que las galaxias

lejanas se alejaban de nosotros a más velocidad que las más cercanas. Esto implica que

el espacio no es estático, que se mueve, cambiando las distancias entre los objetos que

reposan en él. En el modelo cosmológico estándar la dinámica del espacio-tiempo está

descrita por la Relatividad General, teoŕıa propuesta por Einstein que ha sido validada

por multitud de observaciones.

Un Universo en expansión pierde densidad y se va enfriando, entonces es lógico

pensar, que en un principio era más caliente, con densidades más altas. De aqúı surge

la idea del Big Bang, si miráramos suficientemente atrás en el tiempo, el Universo estaŕıa

formado por un plasma de part́ıculas elementales a muy alta densidad. Cient́ıficos de

mitad del siglo XX dedujeron que el Universo se comportaŕıa como un cuerpo negro

a cierta temperatura, lo que implicaŕıa que aún ahora recibiŕıamos esa radiación, a

una longitud de onda mayor, debido a la expansión del Universo. Esa radiación con
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espectro de cuerpo negro se detectó en los años 60, y es conocida como el fondo cósmico

de microondas, confirmando ese estado caliente y denso en el Universo primitivo.

Para solventar algunos problemas de la teoŕıa del Big Bang, se propone una época

inflacionaria, donde el Universo se expandió exponencialmente. Aunque que el Universo

pasara por una fase de este tipo es compatible con las observaciones, cómo se produjo

está aún por esclarecer; de hecho, hay varios modelos propuestos y no es fácil com-

probarlos o refutarlos. Uno de los objetivos de esta tesis es descartar algunos de estos

modelos usando los datos del fondo cósmico de microondas (detalles en los caṕıtulos 2,

3 y 4).

El modelo cosmológico estándar además tiene otros dos importantes frentes abiertos,

la materia oscura y la enerǵıa oscura. Observaciones de efectos gravitatorios indican

claramente que hay más materia de la que somos capaces de detectar, es decir que no

emiten luz o es extremadamente débil. Con los componentes conocidos del Universo,

desde part́ıculas elementales hasta objetos astronómicos, no somos capaces de explicar

la cantidad de materia oscura necesaria para generar los efectos gravitatorios que ob-

servamos. Lo que śı somos capaces de saber es cuál es la contribución de esta materia

al total de enerǵıa del Universo.

La necesidad de incluir la enerǵıa oscura en el modelo cosmológico estándar aparece

cuando Riess et al. (1998) y Perlmutter et al. (1999), utilizando datos de supernovas

tipo Ia, encuentran que la expansión del Universo está acelerando. Para poder expli-

carlo se necesita un campo que genere esta aceleración, siendo esto aún un tema abierto

en el que se está poniendo mucho esfuerzo para clarificarlo.

El último trabajo presentado en esta tesis (caṕıtulo 5) está dedicado al estudio del

efecto lente gravitatoria débil. Este efecto está relacionado con la materia oscura y la

enerǵıa oscura, y aunque no puede determinar la naturaleza de estas dos contribuciones,

si puede determinar su distribución en el espacio y en distintas etapas del Universo.

7.1.1. Fondo cósmico de microondas

El estudio de la radiación del fondo cósmico de microondas ha supuesto un impor-

tante avance para la comprensión de los distintos estados del Universo. Su detección

a mediados del siglo XX supuso la aceptación de la Teoŕıa del Big Bang por la gran
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mayoŕıa de la comunidad cient́ıfica, desplazando otras teoŕıas más estáticas del Uni-

verso. Esta radiación es isótropa, pero si se mira con detalle tiene diferencias de 10−5

K entre distintas direcciones, por lo que se trabaja con mapas de anisotroṕıas. La dis-

tribución de estas anisotroṕıas, y en particular la función de correlación a dos puntos,

permite poner cotas en los parámetros del modelo cosmológico (cantidad de materia

oscura, cantidad de enerǵıa oscura, ratio de expansión del Universo, etc.). Además

de darnos información sobre el Universo primitivo, los fotones del fondo cósmico de

microondas han atravesado distintas etapas del Universo hasta llegar a nosotros, por

tanto tienen información de ese viaje. Estas desviaciones de su distribución energética

y espacial inicial son lo que se denominan anisotroṕıas secundarias.

7.1.2. No-Gaussianidad primordial

Usando las correlaciones a dos puntos de las anisotroṕıas del fondo cósmico de

microondas se obtienen los parámetros del modelo cosmológico. Si la distribución de

estas anisotroṕıas es Gaussiana, toda la información está contenida en el momento de

orden dos. Pero diversos procesos del Universo primitivo, podŕıan introducir pequeñas

desviaciones que daŕıan una distribución no-Gaussiana. Esto es predicho por algunos

modelos de inflación donde, por ejemplo, hay más de un campo involucrado. En dichos

modelos se puede separar el potencial gravitatorio en dos términos uno Gaussiano y

otro no-Gaussiano, y la amplitud de esa segunda parte vendŕıa parametrizada por el

parámetro fNL. Analizando los momentos de tercer orden de las anisotroṕıas del fondo

cósmico de microondas se pueden obtener cotas a este parámetro. Teóricamente se

puede calcular cuál seŕıa la contribución de fNL para distintos modelos de inflación, y

analizando los datos podemos descartar modelos de inflación con un solo parámetro.

Tres caṕıtulos de esta tesis están dedicados a métodos implementados para poner

cotas al parámetro fNL. Dichos métodos se han aplicado a los datos del satélite WMAP,

siendo los resultados publicados en la revista cient́ıfica de alto impacto MNRAS. Los

detalles de cada método están explicados en los caṕıtulos 2, 3 y 4 de esta tesis y los

aspectos más importantes y las conclusiones están resumidos en la sección 7.2.

7.1.3. Efecto lente gravitatoria débil

Un ĺımite importante en los estudios de la radiación del fondo cósmico de microon-

das, es que no hay información a distintas distancias, los fotones recibidos provienen
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aproximadamente del mismo momento de emisión. Para estudiar distintas etapas del

Universo podemos observar la distribución de galaxias a distintas distancias. Debido

a que la luz tiene una velocidad finita, a distancias mayores observamos estados del

Universo más primitivos.

La teoŕıa de la relatividad general predice que el camino que recorre la luz de una

galaxia lejana es distorsionado por los pozos de potencial que encuentra en la ĺınea de

visión. Este efecto es conocido como efecto lente graviatoria, y en ocasiones, cuando

la distorsión es producida por un pozo de potencial intenso, pueden llegar a gener-

arse múltiples imágenes de la galaxia de fondo. Estudiando las caracteŕısticas de las

imágenes se puede deducir la distribución de masa necesaria para generalas. El efecto

lente gravitatoria ha sido crucial para la confirmación de la existencia de materia oscura,

y es muy útil para trazar la distribución de materia (sin distinción de su naturaleza)

del Universo. Cuando el potencial gravitatorio es menor, el efecto no se puede detectar

en una sola galaxia y hablamos de efecto lente débil. Aunque el tamaño y la elipticidad

de la galaxia observada son distintos a los propios de la galaxia, con una sola galaxia

no se puede discernir si son sus propiedades intŕınsecas o han sido modificadas por el

efecto lente gravitatoria. Lo que se hace es estudiar un gran número de galaxias y ver

si hay patrones o correlaciones que puedan indicar que ha habido efecto lente.

7.2. Métodos para acotar al parámetro fNL

Los caṕıtulos 2, 3 y 4 de esta tesis están dedicados al desarrollo de métodos para

estimar el valor de fNL y sus barras de error en datos del fondo cósmico de microondas.

Se ha trabajado con varios estimadores de la función de correlación a tres puntos. En

particular, en el caṕıtulo 2 se trabaja con los momentos de tercer orden constrúıdos

con una wavelet u ond́ıcula con base en el espacio real. Cuando se trabaja con las

anisotroṕıas del fondo cósmico de microondas, se acostumbra a transformar la señal en

armónicos esféricos, y aunque es ventajoso en varios aspectos, como proporcionar infor-

mación de la escala de las anisotroṕıas, es un proceso costoso computacionalmente. En

los caṕıtulos 3 y 4 se explora el uso de redes neuronales en análisis de no-Gaussianidad,

que pueden suponer una ventaja para evitar estimar e invertir matrices grandes.
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7.2.1. Cotas en el parámetro fNL usando la HW en datos de WMAP-

7yr

Para evitar las transformaciones al espacio de armónicos esféricos, se propone una

herramienta que descompone la señal en distintas escalas, manteniendo la localización

del espacio real. Además esta descomposición se ajusta al software espećıfico que se

usa para analizar los mapas del fondo cósmico de microondas HEALPix (Górski et al.,

2005), de aqúı el nombre HEALPix wavelet (HW). Se descompone el mapa inicial

en mapas a distintas escalas y se construyen momentos de tercer orden combinando

todas las escalas. Este proceso resulta ser varios factores de magnitud más rápido que

los métodos convencionales. Las cotas en el parámetro fNL que se obtienen para los

datos de WMAP-7yr son −69 < fNL < 65 al 95% de nivel de confianza. Aunque su

sensibilidad al parámetro es menor que la de los métodos óptimos, supera la de otros

métodos presentados en la literatura como los funcionales de Minkowsky o usando la

Npdf.

7.2.2. Cotas en el parámetro fNL en los datos de WMAP-7yr con una

red neuronal de clasificación

En el caṕıtulo 3 se presenta una red neuronal aplicada a análisis de no-Gaussianidad

del fondo cósmico de microondas. En este trabajo se pretende estudiar las ventajas

y desventajas de utilizar esta herramienta matemática de inteligencia artificial. En

una red neuronal los datos de salida se relacionan con los datos de entrada mediante

una combinación lineal de diversas funciones de activación (representadas por nodos

o neuronas). Son herramientas que tienen un proceso de aprendizaje, por lo que se

necesitan datos simulados para entrenar la red. La red neuronal tiene varios parámetros

libres asociados a cada neurona, los pesos w que indican la fuerza de los enlaces entre

neuronas y un sesgo b caracteŕıstico de cada nodo. Al proceso de encontrar estos

parámetros libres se le llama entrenamiento, que básicamente es minimizar la distancia

entre los datos de salida de la red y los resultados simulados.

En este primer trabajo con redes neuronales, se construye una red neuronal para

clasificar un mapa según su nivel de no-Gaussianidad. Se utilizan los estad́ısticos

cúbicos construidos en el caṕıtulo 2 y se observa que con la red neuronal se obtienen

resultados muy parecidos al método clásico. Las cotas en el parámetro fNL que se

obtienen con la red neuronal son −78 < fNL < 51. La ventaja de la red neuronal es que
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se necesitan menos simulaciones ya que no se necesita estimar la matriz de covarianza

necesaria con el método convencional. Para el caso de la HW, reducir el tiempo de com-

putación no es fundamental ya que la herramienta es muy rápida. Por eso se construye

otra red para aplicarla con los estad́ısticos de la SMHW (definida en la sección 1.4.2)

que es una herramienta más lenta. El interés de trabajar con la SMHW, es también

porque el estimador de fNL se ha comprobado que es óptimo. Se comprueba que us-

ando la red neuronal de clasificación el estimador de la SMHW sigue siendo óptimo,

reduciendo un cinco veces el tiempo de computación.

7.2.3. Explorando fNL con estimadores basados en el bispectro bineado

En el caṕıtulo 4, se usa una red neuronal de regresión, donde en vez de clasificar

objetos, lo que se hace es estimar directamente el valor de fNL . En este caso, los

datos de entrada son el bispectro bineado del mapa, estimador que está descrito en la

sección 1.4.1. Como hemos dicho, la ventaja de las redes neuronales es que se reduce el

número de simulaciones necesarias y por tanto el tiempo de computación. Esto también

ocurre si suponemos que los términos fuera de la diagonal de la matriz de covarianza

son despreciables, aunque esta suposición solo es válida si no hay correlaciones entre

estad́ısticos. Cuando se trabaja con los datos aparecen correlaciones debido al ruido

anisótropo y al enmascarar el mapa. En Creminelli et al. 2006 se propone añadir un

término lineal al estimador cúbico que tendŕıa en cuenta estas correlaciones (detalles

en la sección 1.4.3. La introducción de este término simplifica el estimador, pero es más

sensible al procesado de los datos. En este trabajo se construyen varios estimadores

de fNL : dos basados en el estimador de máxima verosimilitud (likelihood en inglés),

uno teniendo en cuenta los términos fuera de la diagonal de la matriz de covarianza

(EMV) y otro sin tenerlos en cuenta (EMVD), y un tercer estimador basado en redes

neuronales (ENN). Se estudia la necesidad de hacer un inpainting a los datos y el

efecto del término lineal en los tres estimadores. En esta comparación se concluye que

los estimadores más efectivos computacionalmente son el ENN y el EMVD, pero el

segundo es más dependiente del pre-procesado de los datos (inpainitng) que el primero.

Aunque añadir el término lineal mejora los resultados para todos los estimadores, es

imprescindible para que el estimador EMVD sea competitivo, mientras que para los

otros dos (EMV y ENN) los resultados son cercanos al óptimo.
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7.3. Efecto lente gravitatoria débil usando tamaños de las

galaxias

El efecto lente gravitatoria débil, en principio, se puede estudiar con las correlaciones

de la elipticidad de las galaxias o con las correlaciones entre tamaños. En general, se

estudia la elipticidad, porque la señal-ruido es mayor que con los tamaños. Además se

créıa que la distribución intŕınseca de la elipticidad de las galaxias era aleatoria y por

tanto de media cero. En realidad no es aśı, hay ciertas correlaciones intŕınsecas, que

deben estudiarse y substraer a la señal.

En el proceso de estimar la elipticidad de una galaxia, se necesita estimar el tamaño

(el radio o el semi-eje mayor a cierto flujo). Aunque teóricamente, la información de los

tamaños mejora las predicciones en cotas de los parámetros cosmológicos relacionados

con la materia y la enerǵıa oscura, no se hab́ıa hecho un análisis exhaustivo de cuáles

son las caracteŕısticas necesarias, para que esta información “gratis” sea útil. Esto es

lo que se pretende responder en el caṕıtulo 5.

En este trabajo se estiman los tamaños de 200,000 galaxias simuladas con distintas

caracteŕısticas y se les aplica un campo de convergencia κ. Para estimar los tamaños se

ha utilizado el código más preciso hasta el momento que se ha usado para estudios de

efecto lente graviatoria, lensfit (Miller et al., 2007; Kitching et al., 2008). Se construye

un estimador del campo de convergencia a partir de los tamaños estimados y se compara

con el campo κ aplicado a las galaxias simuladas. El análisis se realiza para estudiar la

dependencia de la estimación del tamaño de una galaxia con la point spread function

(PSF), el tipo de galaxias modificando el ratio entre bulbo y disco, y con ell ratio de

señal-ruido de la galaxia. Las conclusiones que se derivan del trabajo son que con las

caracteŕısticas de un satélite como Euclid se podŕıan usar los tamaños de las galaxias

para obtener información cosmológica. Es un campo nuevo, y aún faltan por estudiar

con rigurosidad las correlaciones intŕınsecas entre tamaños y su dependencia con el

flujo, pero los resultados son alentadores.





Bibliography

Abrial P., Moudden Y., Starck J.-L., Fadili J., Delabrouille J., Nguyen M. K., 2008,

Statistical Methodology, 5, 289

Agullo I., Parker L., 2011, Phys. Rev. D, 83, 063526

Aliaga A. M., Rubiño-Mart́ın J. A., Mart́ınez-González E., Barreiro R. B., Sanz J. L.,
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Benôıt A., Ade P., Amblard A., et al. 2003, A&A, 399, L25

Bernardeau F., Bonvin C., Van de Rijt N., Vernizzi F., 2012, Phys. Rev. D, 86, 023001

Bernstein G. M., Jarvis M., 2002, AJ, 123, 583

Bertalmio M., Caselles V., Masnou S., Sapiro G., 2000, http://math.univ-lyon1.fr/ mas-

nou/fichiers/publications/survey.pdf, p. 259

Bertin G., Lombardi M., 2006, ApJ, 648, L17

BICEP2 Collaboration 2014, arXiv:1403.3985

Bondi H., Gold T., 1948, MNRAS, 108, 252

Bridle S., Balan S. T., Bethge M., Gentile M., Harmeling S., Heymans C., Hirsch M.,

Hosseini R., Jarvis e. a., 2010, MNRAS, 405, 2044
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RAS



136 BIBLIOGRAPHY

Casaponsa B., Barreiro R. B., Mart́ınez-González E., Curto A., Bridges M., Hobson
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Vielva P., Mart́ınez-González E., Barreiro R. B., Sanz J. L., Cayón L., 2004, ApJ, 609,

22

Vielva P., Sanz J. L., 2009, MNRAS, 397, 837

Vielva P., Sanz J. L., 2010, MNRAS, 404, 895

Watson R. A., Gutierrez de La Cruz C. M., Davies R. D., Lasenby A. N., Rebolo R.,

Beckman J. E., Hancock S., 1992, Nature, 357, 660

Wittman D. M., Tyson J. A., Kirkman D., Dell’Antonio I., Bernstein G., 2000, Nature,

405, 143

Wu J. H. P., Zuntz J., Abroe M. E., et al. 2007, ApJ, 665, 55

Yadav A. P. S., Wandelt B. D., 2008, Physical Review Letters, 100, 181301

Yadav A. P. S., Wandelt B. D., 2010, Advances in Astronomy, 2010

Zaldarriaga M., Spergel D. N., Seljak U., 1997, ApJ, 488, 1


	Portada
	Prologue
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1. Standard cosmological model
	1.1.1. Friedmann-Robertson-Walker metric
	1.1.2. Cosmological parameters

	1.2. The cosmic microwave background
	1.2.1. CMB experiments
	1.2.2. Power spectrum
	1.2.3. CMB polarization
	1.2.4. Sources of the CMB anisotropies

	1.3. Primordial non-Gaussianity
	1.3.1. Inflationary paradigm
	1.3.2. Dynamics of inflation
	1.3.3. Non-Gaussianities produced by inflation

	1.4. fNL estimators
	1.4.1. Bispectrum estimators
	1.4.2. Wavelet estimators
	1.4.3. Classical parameter estimation
	1.4.4. Neural networks

	1.5. Gravitational lensing
	1.5.1. Cosmology with weak lensing
	1.5.2. Lensing formalism
	1.5.3. Weak lensing observables


	Chapter 2 Wilkinson Microwave Anisotropy Probe 7-yr constraints on fNL with a fast wavelet estimator
	2.1. Introduction
	2.2. The HEALPix wavelet
	2.3.Methodology
	2.3.1. Cubic statistics
	2.3.2. Gaussianity test and fNL constraints

	2.4. Results
	2.4.1. Gaussianity test
	2.4.2. Constraints on the fNL parameter
	2.4.3. Point source contribution
	2.4.4. Local study of fNL


	Chapter 3 Constraints on fNL from Wilkinson Anisotropy Probe 7-year data using a neural network classifier
	3.1. Introduction
	3.2. Wavelet estimators
	3.3. Neural network classifier applied to non-Gaussianity
	3.4. The fNL classification network
	3.4.1. Training data
	3.4.2. Network architecture
	3.4.3. Training evolution

	3.5. Results
	3.5.1. Application to WMAP simulations
	3.5.2. Application to WMAP 7-year data


	Chapter 4 Exploring local fNL estimators based on the binned bispectrum
	4.1. Introduction
	4.2. Regression neural network applied to non-Gaussianity
	4.3. Binned bispectrum
	4.4. fNL estimators
	4.4.1. Approximated maximum-likelihood estimator (AMLE)
	4.4.2. Approximated maximum likelihood estimator with diagonal covariance matrix (AMLED)
	4.4.3. Neural network estimator (NNE)

	4.5. Implementation
	4.5.1. Non-Gaussian simulations
	4.5.2. Binning scheme
	4.5.3. Inpainting
	4.5.4. Neural network training process

	4.6. Results

	Chapter 5 Size magnification as a complement to cosmic shear
	5.1. Introduction
	5.2. Method
	5.2.1. Weak lensing formalism
	5.2.2. Estimator
	5.2.3. lensfit
	5.2.4. Simulations

	5.3. Results
	5.3.1. Signal-to-noise
	5.3.2. PSF effect
	5.3.3. Bulge fraction
	5.3.4. Most Realistic Set


	Chapter 6 Conclusions
	6.1. WMAP 7-yr constraints on fNL with a fast wavelet estimator
	6.2. Constraints on fNL from WMAP 7-yr data using a neural network classifier
	6.3. Exploring local fNL estimators based on the binned bispectrum
	6.4. Size magnification as a complement to cosmic shear

	Chapter 7 Resumen en castellano
	7.1. Introducción
	7.1.1. Fondo cósmico de microondas
	7.1.2. No-Gaussianidad primordial
	7.1.3. Efecto lente gravitatoria débil

	7.2. Métodos para acotar al parámetro fNL 
	7.2.1. Cotas en el parámetro fNL usando la HW en datos de WMAP-7yr
	7.2.2. Cotas en el parámetro fNL en los datos de WMAP-7yr con una red neuronal de clasificación
	7.2.3. Explorando fNL con estimadores basados en el bispectro bineado

	7.3. Efecto lente débil usando el tamaño de las galaxias

	Bibliography

