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ABSTRACT
We present the first results from the Juropa Hubble Volume project, based a large N-body,
dark matter-only cosmological simulation with a volume of V = (6 h−1 Gpc)3, containing
60003 particles, performed within the concordance � cold dark matter cosmological model.
The simulation volume is sufficient to probe extremely large length-scales in the universe,
whilst at the same time the particle count is high enough so that dark matter haloes down to
1.5 × 1012 h−1 M� can be resolved. At z = 0, we identify over 400 million haloes. The cluster
mass function is derived using three different halofinders and compared to fitting functions in
the literature. The distribution of clusters of maximal mass across redshifts agrees well with
predicted masses of extreme objects, and we explicitly confirm that the Poisson distribution is
very good at describing the distribution of rare clusters. The Poisson distribution also matches
well the level to which cosmic variance can be expected to affect number counts of high-mass
clusters. We find that objects like the Bullet cluster exist in the far-tail of the distribution of
mergers in terms of relative collisional speed. We also derive the number counts of voids in
the simulation box for z = 0, 0.5 and 1.
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1 I N T RO D U C T I O N

Surveys mapping a substantial portion of the observable Universe
(e.g. BOSS – Dawson et al. 2013, WiggleZ – Drinkwater et al. 2010,
BigBoss – Schlegel et al. 2009, PanSTARRS – Magnier et al. 2013,
DES – Mohr et al. 2012, PAU – Benı́tez et al. 2009, LSST – LSST
Dark Energy Science Collaboration 2012, Euclid – Amiaux et al.
2012, etc.) aim to constrain the cosmological model to unprece-
dented accuracy. As they will be able to capture very faint objects
they will have a shot-noise level low enough to be close to sam-
pling variance limited. This requires impressive handling of every
step of the observational pipeline in order to limit the possibility
of systematic errors that may degrade the information contained in
them. Aside from these observational efforts, there will also be a
similarly high demand placed on our ability to generate theoret-
ical predictions that are equally accurate. This undoubtedly calls
for numerical simulations of cosmic structure formation that re-
solve galactic scales in volumes comparable to the ones covered by
these surveys. This is a non-trivial task. A simulation must cover a
wide dynamic range in order to accurately sample large-scale struc-
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ture (LSS) in the universe. In particular, simulations need to resolve
dark matter haloes, which are believed to host the observed galaxies,
groups and clusters of galaxies, and accurately model the physics
of galaxy formation and other non-linear physics, whilst adequately
sampling large-scale matter fluctuations. Only recently have such
simulations become feasible, and nowadays full-box simulations of
considerable fractions of the observable Universe are being con-
ducted utilizing close to a trillion particles (for a review of dark
matter N-body simulations, see Kuhlen, Vogelsberger & Angulo
2012).

Whilst a careful comparison of the statistical clustering properties
of objects, in particular galaxies, will put tighter constraints on the
parameters of any cosmological model, it is worth noting that the
mere existence of individual outliers might pose challenges. Fol-
lowing observations of a series of apparently extreme objects such
as high-mass clusters (for example XMMU J2235.3−2557 – a clus-
ter with mass M > 4 × 1014 h−1 M� at redshift z ∼ 1.4; Mullis et al.
2005; Rosati et al. 2009) or high-velocity collisions (for example
the Bullet cluster; see Section 3.4), some authors have claimed
that such objects are highly unlikely to exist in a concordance
� cold dark matter (�CDM) cosmology and hence pose a chal-
lenge to its validity (Jimenez & Verde 2009; Lee & Komatsu 2010;
Cayón, Gordon & Silk 2011; Enqvist, Hotchkiss & Taanila 2011;
Hoyle, Jimenez & Verde 2011; Holz & Perlmutter 2012). However,
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others have found no tension in their analyses (Harrison & Coles
2011; Mortonson, Hu & Huterer 2011; Waizmann et al. 2012b) and
it has been recently pointed out by Hotchkiss (2011) that many stud-
ies into high-mass cluster observations have used biased statistical
methods, a result that has been corroborated by other studies (Hoyle
et al. 2012; Waizmann, Ettori & Moscardini 2012a; Stalder et al.
2013). The case of the Bullet cluster is less clear and we discuss it
in Section 3.4. Debate of this nature highlights the need to clarify
our understanding of the statistics of such rare objects, for example
by using large cosmological simulations. But this again requires
simulations of large enough volumes and sufficient resolution to
properly capture the likelihood of the formation of such rare clus-
ters. Theoretical (as opposed to numerical) studies of such objects
are challenging too due to their rarity and highly non-linear nature.

In this work, we present one of the largest cosmological dark
matter-only simulations to date, the so-called Juropa Hubble Vol-
ume (Jubilee) Universe, consisting of 60003 particles in a cubical
volume of side-length 6 h−1 Gpc. In this paper, we focus on a pre-
sentation of the simulation itself and its general properties with
respect to the cosmic web, clustering properties and halo statistics.
Subsequent papers will focus on topics including the generation of
mock catalogues of luminous red galaxies (LRGs) and quasars, a
calculation of the integrated Sachs–Wolfe (ISW) effect signal and
its cross-correlation to LSS, the weak lensing signal and the SZ
effect (see Watson et al. 2013b for initial results in some of these
areas). This paper is laid out as follows. In Section 2, we outline
our methodology for running the simulation and deriving from it
results including halo and void catalogues. In Section 3, we present
our main results and in Section 4 briefly discuss their potential
implications.

2 M E T H O D S

2.1 Simulations

The results presented in this work are based on two LSS N-body
simulations, whose parameters are listed in Table 1. Our main sim-
ulation has 60003 (216 billion) particles in a volume of 6 h−1 Gpc.
The particle mass is 7.49 × 1011 h−1 M�, yielding a minimum
resolved halo mass (with 20 particles) of 1.49 × 1012 h−1 M�,
corresponding to galaxies slightly more massive than the Milky
Way. LRGs (M ∼ 1013 h−1 M�) are resolved with 100 particles,
and galaxy clusters (M > 1014 h−1 M�) are resolved with 103 par-
ticles or more. This main simulation is accompanied by a second,
smaller ‘control’ one with 30723 (29 billion) particles in a volume of
3.072 h−1 Gpc and exactly the same minimum resolution. We used
the CUBEP3M N-body code, a P3M (particle–particle–particle–mesh)
code (Harnois-Deraps et al. 2012). It calculates the long-range grav-
ity forces on a two-level mesh and short-range forces exactly by
direct summation over local particles. The code is massively paral-
lel, using hybrid (combining MPI and OpenMP) parallelization and
has been shown to scale well up to tens of thousands of computing
cores (see Harnois-Deraps et al. 2012 for complete code description
and tests). Both simulations and most analyses were performed on

the Juropa supercomputer at the Jülich Supercomputing Centre in
Germany (17 664 cores, 53 TB RAM, 207 TFlops peak perfor-
mance) and required approximately 70 000 and 1.5 million core-
hours for the 3 and 6 h−1 Gpc boxes, respectively. The larger simu-
lation was run on 8000 computing cores (1000 MPI processes, each
with eight OpenMP threads) and the smaller one on 2048 cores.

2.1.1 Cosmology

We base our simulation on the 5-yr Wilkinson Microwave Anisotropy
Probe(WMAP) results (Dunkley et al. 2009; Komatsu et al. 2009).
The cosmology used was the ‘Union’ combination from Komatsu
et al. (2009), based on results from WMAP, baryonic acoustic
oscillations (BAO) and high-redshift supernovae, i.e. �m = 0.27,
�� = 0.73, h = 0.70, �b = 0.044, σ 8 = 0.80 and ns = 0.96.
These parameters are similar to the recent cosmology results of
the Planck Collaboration (Planck Collaboration et al. 2013), where,
considering a combination of data from the Planck, WMAP and
LSS surveys (showing baryon acoustic oscillations), the parameters
were calculated to be �m = 0.307 ± 0.0042, �� = 0.692 ± 0.010,
h = 0.678 ± 0.0077, �b = 0.048 ± 0.000 52, σ 8 = 0.826 ± 0.012
and ns = 0.9608 ± 0.000 24. The power spectrum and transfer func-
tion used for setting initial conditions were generated using CAMB

(Lewis, Challinor & Lasenby 2000). The initial condition generator
employed in the run uses first-order Lagrangian perturbation the-
ory, i.e. the Zel’dovich approximation (Zel’dovich 1970), to place
particles in their starting positions. The initial redshift when this
step takes place was z = 100. For a more detailed commentary on
the choice of starting redshift for this simulation see Watson et al.
(2013a).

2.2 Halofinding

We use two complementary definitions of haloes in this study. The
first is the spherical overdensity (SO) definition of Lacey & Cole
(1993). In this approach, haloes are taken to be spheres that have
overdensities that are above a chosen threshold, �. The mass en-
closed in these spheres is then given by

M� = 4π�ρm

3
R3

�, (1)

where R� is the radius of the halo and ρm is the background matter
density in the Universe. We choose the overdensity threshold to
be �178, i.e. an overdensity of 178 times the background matter
density. This is a common choice motivated from the top-hat model
of non-linear collapse in an Einstein–de-Sitter universe (Gunn &
Gott 1972).

The second halo definition we adopt is that of the friends-of-
friends (FOF) algorithm, first proposed by Davis et al. (1985).
Haloes defined by this algorithm are identified within a simula-
tion volume as agglomerations of particles that lie within a certain
parametrized distance from one another. This distance is typically
defined as the ‘linking length’ × the mean interparticle separation
of particles in the simulation. Groups of particles within this dis-
tance of each other are identified as individual dark matter haloes.

Table 1. N-body simulation parameters. Background cosmology is based on the WMAP 5-yr results.

Boxsize Npart Mesh Smoothing mparticle Mhalo,min

3072 h−1 Mpc 30723 61443 50 h−1 kpc 7.49 × 1011 h−1 M� 1.49 × 1012 h−1 M�
6000 h−1 Mpc 60003 12 0003 50 h−1 kpc 7.49 × 1011 h−1 M� 1.49 × 1012 h−1 M�
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For our FOF haloes, we follow various previous authors (Jenkins
et al. 2001; Reed et al. 2003, 2007; Crocce et al. 2010; Courtin
et al. 2011; Angulo et al. 2012) and use a linking length of 0.2. For
further analysis on how the choice of halofinding parameters affect
the mass function see Watson et al. (2013a) and references therein.

We employ three halofinding codes in our analysis: CUBEP3M’s
own on-the-fly SO halofinder (hereafter ‘CPMSO’; Harnois-Deraps
et al. 2012), the Amiga Halo Finder (hereafter ‘AHF’; Gill, Knebe &
Gibson 2004; Knollmann & Knebe 2009) and the FOF halofinder
from the GADGET-3 N-body cosmological code (Springel 2005, an
update to the publicly available GADGET-2 code).

The CPMSO halofinder utilizes a fine mesh from the CUBEP3M
code (with spacing twice as fine as the mean interparticle separation)
and an interpolation scheme to identify local peaks in the density
field. The code first builds the fine-mesh density using either cloud-
in-cell (CIC) or nearest-grid-point interpolation. It then proceeds
to search for and record all local density maxima above a certain
threshold (typically set to 100 above the mean density) within the
physical volume. It then uses quadratic interpolation on the density
field to determine more precisely the location of the maximum
within the densest cell. The halo centre determined this way agrees
closely with the centre of mass of the halo particles. Each of the
halo candidates is inspected independently, starting with the highest
peak. The grid mass is accumulated in spherical shells of fine grid
cells surrounding the maximum until the mean overdensity within
the halo drops below �. While the mass is accumulated it is removed
from the mesh, so that no mass element is double-counted. For
further details on the CPMSO method see Harnois-Deraps et al.
(2012).

The halofinder AHF1 is a SO finder that identifies (isolated and
sub) haloes as described in Gill, Knebe & Gibson (2004) and Knoll-
mann & Knebe (2009). It employs a recursively refined grid to lo-
cate local overdensities in the density field. The identified density
peaks are then treated as centres of prospective haloes. The resulting
grid hierarchy is further utilized to generate a halo tree containing
the information of which halo is a (prospective) host and subhalo,
respectively. Halo properties are calculated based on the list of par-
ticles asserted to be gravitationally bound to the respective density
peak. For a comparison of its performance to other finders in the
field, we refer the reader to Knebe et al. (2011, 2013) and Onions
et al. (2012).

The specifics of the FOF halofinder packaged in with the
GADGET-3 code currently have not been detailed in any publica-
tion but the algorithm itself is outlined in Davis et al. (1985). The
main difference in the algorithm that exists in the GADGET-3 version
is that the code is parallelized for distributed-memory machines.
Specifically, haloes are found in local subvolumes of the simula-
tion assigned to individual MPI tasks (created using the GADGET-3
domain decomposition which utilizes a space-filling Peano–Hilbert
curve – for details see the GADGET-2 paper, Springel 2005) and then
haloes that extend spatially beyond the edges of the subvolumes
are linked together in a final MPI communication step. We have al-
tered the GADGET-3 code to read CUBEP3M’s particle output format
and significantly reduced its memory footprint by stripping away
extraneous data structures.

Due to limitations in the scaling of the codes with processor num-
bers and the large memory footprint of the Jubilee simulation, it was
necessary to split the simulation time-slices into 27 subvolumes and
run the halofinding algorithms on each subvolume independently.

1 AHF is freely available from http://www.popia.ft.uam.es/AMIGA.

Each subvolume included a buffer zone which overlapped with the
neighbouring ones, for correct handling of haloes straddling two or
more subregions. We then stitched the subvolumes back together
to create the final AHF and FOF halo catalogues, removing any du-
plicated structures in the overlapping buffers. This approach allows
the handling of much larger amounts of data than otherwise pos-
sible and provides additional flexibility in terms of computational
resources needed for post-processing.

2.3 Void finding

The formation of structure in the Universe is a hierarchical process:
small objects form, grow by accretion and merging, and form more
and more massive objects up to clusters of galaxies. Between the
clusters large filaments can be seen both in observational data as
well as in numerical simulations (Fig. 1). These filaments surround
large regions of low density which do not contain objects as massive
as the ones found in the filaments or the knots at the end of filaments.
These low-density regions – voids – are the most extended objects
in the Universe. There are many different ways to define voids and
correspondingly there are many different void-finding algorithms
(for a review, see Colberg et al. 2008). In the following, we are in-
terested in the largest spherical regions of the Universe which do not
contain any object above a certain threshold in mass. In principle,
one could extend this definition of voids also to non-spherical re-
gions; however, in this case one can get arbitrary volumes depending
on the shape allowed. Since we are interested in the void function,
we restrict ourselves to spherical voids which are described only
by one parameter, their radius. We identify voids in a sample of
point-like objects distributed in space. Here, these objects are our
AHF haloes above a certain mass, but one could also use galaxies
above a certain luminosity. Thus, our voids are characterized by a
threshold mass. If one decreases this mass threshold, the number of
objects increases and the size of the void decreases. In fact, a given
void defined with objects at a higher mass becomes decomposed
into many smaller voids defined in the distribution of lower mass
objects (Gottlöber et al. 2003). This reflects the scale-free nature
of structure formation. The algorithm searches first for the largest
empty sphere, then repeats taking into account the previously found
voids so that no region is double-counted.

2.4 Online data bases

It is our intention to make the data from the Jubilee simulation
publicly available. These data will consist of three complementary
halo catalogues of CPMSO, AHF and FOF haloes, in addition to LRG
catalogues derived from the halo data and a catalogue of voids. The
CPMSO will be available across a wide number of redshifts (∼30)
from z = 0−6, whereas the AHF and FOF data will be initially
available only for z < 1. Further, data sets will include smoothed
density fields and maps of weak lensing and ISW signals. An SQL
data base has been set up so that the data can be queried to suit the
requirements of individual users. Further information can be found
at the Jubilee project website: http://jubilee-project.org.

3 RESULTS

3.1 Large-scale structure and the cosmic web

In Fig. 1, we show a slice of the cosmic web at z = 0 extracted from
our 6 h−1 Gpc simulation. Perhaps, most striking is the homogeneity
of the matter distribution at large scales. This is expected from the
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Figure 1. A slice of the cosmic web of structure at z = 0 based on our 60003-particle simulation. The image is 6 h−1 Gpc per side and 20 Mpc thick.

cosmological principle which states that, on large enough scales,
the Universe is homogeneous and isotropic. On smaller scales, sig-
nificant features in the density field can be observed including voids,
walls, filaments and clusters. For any simulated observations (for
example of ISW and weak lensing signals; Watson et al. 2013b),
we place virtual observers inside the simulation volume at a given
location. As can be seen in Fig. 1, the full sky as observed by an ob-
server will show a highly homogeneous distribution of galaxies past
a proper distance of a few hundred Mpc (i.e. a redshift of around
z ∼ 0.1).

In Fig. 2, we show the evolution of the power spectra of the density
field, P(k), from redshift z = 6 to 0. The particles were interpolated
on to a regular grid of 12 0003 cells using the CIC interpolation
scheme. From these data we then applied a correction for aliasing
and the CIC window function and another for the effect of Poisson
noise, all based on the prescription laid out in Jing (2005).

The BAO scale, k ∼ 0.1 h Mpc−1, is well within the simulation
box size and the BAO are visible in the power spectra. At high
redshift, z ∼ 6, the power spectrum is largely linear, except at
the smallest scales (k > 1 h Mpc−1), where the power grows faster
than the linear growth factor predicts. As the hierarchical structure

formation proceeds, this non-linearity scale propagates to ever larger
scales, reaching k ∼ 0.1 h Mpc−1 at redshift z = 0, and thereby
affecting the BAO scale.

We calculate halo mass functions using the three halofinding
algorithms outlined in Section 2.2. Fig. 3 shows the residuals be-
tween our haloes and two fits from the literature at z = 0. We
compare our CPMSO and AHF haloes to the Tinker et al. (2008)
mass function, noting that the Tinker et al. (2008) fit was calibrated
to haloes with an overdensity criteria of � = 200 versus the back-
ground matter density and our haloes were calculated using a value
of � = 178. Despite this, we see a good correspondence to within
∼5 per cent between the Tinker et al. (2008) fit and our AHF data for
haloes with particle counts greater than ∼300. For the very largest
haloes, there is evidence that the Tinker et al. (2008) fit may be
overpredicting the mass function, although this is where shot noise
begins to severely affect number counts of objects. The CPMSO
data follow a similar trend to the AHF data. We overlay on these
plots two of the fits from Watson et al. (2013a) – mass function
results calibrated to data that included the Jubilee haloes presented
here. The fit used for the left-hand panel is the redshift-dependent
fit based on the CPMSO halofinder, the fit for the central panel is a
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Figure 2. Evolution of the power spectra of the density field, P(k), as a
function of the wavenumber, k.

fit based on AHF results for z = 0 (see Watson et al. 2013a for further
details).

We compare the FOF results to those of the Millennium,
Millennium-2 and Millennium-XXL simulations (Angulo et al.
2012), the latter containing 67203 particles in a box with length
3 h−1 Gpc. The FOF halo data show agreement to within ±5 per cent
with the Angulo et al. (2012) fit for haloes with 300 or more par-
ticles. The FOF haloes are being compared with a linking length
of 0.2, which makes the similarity between the mass functions a
good test of the validity of the Jubilee halo distribution as this was
the same choice made in Angulo et al. (2012). For a more detailed
study of the mass function across a broad redshift range, including
results from the 6 h−1 Gpc simulation, see Watson et al. (2013a).

3.2 Cosmic variance

Due to the large size of our simulated volume, we are able to quantify
cosmic variance on scales smaller than our box size in terms of the
number counts of objects one expects to find in a given volume.
To that end, we have compared halo counts in different mass bins
in different sized subvolumes. We chose the subvolumes such that
they filled the entire full box with no overlap. The results are shown
in Fig. 4. We show the 1 standard deviation error in the number
counts of haloes by mass bin relative to our entire (6 h−1 Gpc)3

volume for subbox lengths of 3, 2, 1 and 0.5 h−1 Gpc. These
choices directly compare to the box lengths of some contemporary
simulations (Millennium-XXL – Angulo et al. 2012, Horizon –
Teyssier et al. 2009, MultiDark – Prada et al. 2012 and Millennium
– Springel et al. 2005, respectively). We also show a prediction for
this error calculated by assuming that the halo number counts follow
the CPMSO redshift parametrized mass function from Watson et al.
(2013a) and by assuming that the observed error in number counts
follows a Poisson distribution. This theoretical prediction matches
the high-mass data very well. For lower masses, the error becomes
dominated by sample variance, as discussed in Smith & Marian
(2011), and the Poisson prediction presented here begins to break
down. We discuss how well the Poisson distribution matches the
counts of high-mass clusters in Section 3.3 below.

As expected, the error is minimal for lower mass haloes and
increases for rarer objects. At z = 0, the 0.5 h−1 Gpc box has
an error of under 10 per cent up until haloes of mass around
4 × 1014 h−1 M�, while for box lengths of 1, 2 and 3 h−1 Gpc,
a 10 per cent error in number counts per mass interval is realized
at around 1 × 1015, 2 × 1015 and 3 × 1015 h−1 M�, respectively.
The errors are exacerbated at higher redshifts, due to the haloes of
a fixed size growing rarer at earlier times.

One subtlety should be mentioned: because the subvolumes con-
sidered in this analysis were derived from a larger simulation vol-
ume, they include the effect of matter fluctuations that exist on
scales larger than their box lengths. We stress here that this is not
the case for simulations with equivalent volumes to these subvol-
umes, as modes of power in the density field that are larger than
the box length of a simulation are typically set to zero. This im-
plies that the variation in number counts presented here is slightly

Figure 3. Jubilee simulation halo mass function based on different halofinders versus recent analytic fits based on numerical data: (left-hand panel) CPMSO
versus Tinker et al. (2008) fit, with the Watson et al. (2013a) redshift-dependent fit (based on CPMSO haloes) shown as a dashed line; (middle panel) AHF

versus Tinker et al. (2008) fit, with the AHF z = 0 fit from Watson et al. (2013a) shown as a dashed line; and (right-hand panel) FOF versus Angulo et al. (2012).
Errors shown are Poisson.
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Figure 4. Relative error in dn/dM for subvolumes of box lengths 3, 2, 1 and 0.5 h−1 Gpc. ‘Relative error’ is defined as the standard deviation from the expected
number counts per unit volume in a given mass interval, as defined using the entire 6 h−1 Gpc volume. The solid lines are the predictions based on the AHF

redshift parametrized mass function from Watson et al. (2013a) combined with the assumption that the error in number counts around the mean is given by the
Poisson distribution.

different from one that occurs due to a lack of appropriate large-scale
power in a simulation volume. This misrepresentation of reality (by
all simulations, including the Jubilee despite its large volume) leads
to an additional set of errors but is, fortuitously, only an issue for
very small volume simulations with box lengths of the order of
up to a few tens of Mpc (for example see Yoshida et al. 2003;
Barkana & Loeb 2004; Sirko 2005; Bagla & Prasad 2006; Power &
Knebe 2006; Lukic et al. 2007). Observational volumes, sampling
the Universe, do not suffer from this effect and the results presented
here can be expected to translate reasonably well into counts of
high-mass objects in LSS surveys.

3.3 Statistics of rare objects

A current topic in cosmology that relates to the number counts of
very high mass objects is that whether large observed clusters are
in conflict with the standard �CDM model. In Fig. 5, we show
a theoretical prediction for the expected distribution of maximal
mass clusters. This prediction was created using the extreme value

statistics (EVS) prescription of Harrison & Coles (2011) and the
redshift parametrized redshift-dependent mass function, based on
CPMSO haloes, from Watson et al. (2013a). It is comparable to
the plot in fig. 1 of Harrison & Coles (2012) which was created
using the mass function from Tinker et al. (2008), except for the
fact that the mass of the haloes in this version is taken to be set
by the � = 178 overdensity criterion, rather than the � = 200
criterion used in Harrison & Coles (2012). The black data points
shown in Fig. 5 correspond to the largest clusters observed in the
Jubilee simulation by a central observer, also based on a � = 178,
as per the configuration of the CPMSO halofinder. The redshift
shells for both the EVS contours and the maximal mass clusters are
identical. The data all lie within the 3σ range showing the expected
result that there is no tension between objects observed in a �CDM
cosmological simulation and the theoretical expectation from EVS.
Of interest is whether there are observed clusters in the Universe
that have masses that are in tension with the �CDM model. To
date, observations have shown this not to be the case, as shown in a
systematic review by Harrison & Hotchkiss (2013).
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Figure 5. A new version of Fig. 1 from Harrison & Coles (2012) using
the EVS prescription of Harrison & Coles (2011) and the CPMSO mass
function from Watson et al. (2013a). The shaded regions show the 66, 95
and 99 per cent confidence intervals. The black data points show maximal
mass clusters observed by a central observer in the Jubilee simulation.

Figure 6. Histogram of extreme objects for three different thresholds in
mass (dotted line) compared with the prediction from the Poisson distribu-
tion (dashed line) for the corresponding mean value of the objects above the
corresponding threshold. The mass thresholds are 1.2 × 1015, 1.4 × 1015

and 1.6 × 1015 h−1 M�, left-to-right panels, respectively. The statistics are
calculated for z = 0.05.

The question of how well the Poisson distribution fits our rare
cluster number counts is addressed in Fig. 6. The simulation vol-
ume at z = 0.05 was split up into 5438 independent subvolumes. For
each subvolume, we calculated the number of objects above a given
threshold mass (1.2 × 1015, 1.4 × 1015 and 1.6 × 1015 h−1 M� for
the panels in Fig. 6, left-to-right, respectively) found in each sub-
volume. The mass thresholds were chosen so that only a very small
number (around 0–2) of objects were found in each subvolume,
which represents the regime where we expect Poisson statistics to
be dominant. We then compared the histogram of the measured
distribution of the objects in the simulation to that predicted by a
Poisson distribution with a mean set by the average across all the
subvolumes. The correspondence between the two is very close.
This is an interesting result as it validates the common choice of
Poisson statistics for describing the expected distribution of these
objects, and this is the first time it has been validated using a simu-
lation of this scale (for a detailed investigation of the applicability

of the Poisson distribution in cluster counts across different masses
see Smith & Marian 2011, who used simulations of box length
1.5 h−1 Gpc for their study).

3.4 High �v mergers and the Bullet cluster

There has been recent debate regarding whether the Bullet cluster
(1E0657-56, which resides at a redshift of z = 0.296) poses a chal-
lenge to the �CDM model. 1E0657-56 consists of a large cluster
of mass M200 ∼ 1.5 × 1015 h−1 M� and a subcluster – the ‘bullet’
– of mass M200 ∼ 1.5 × 1014 h−1 M� that has traversed through
the larger cluster, creating a substantial bow shock along the way
(Barrena et al. 2002; Markevitch et al. 2002; Clowe, Gonzalez &
Markevitch 2004; Bradač et al. 2006; Clowe et al. 2006). Ten-
sion with �CDM arises from the calculated value for the speed of
the shock of vs = 4740+710

−550 km s−1 (Markevitch et al. 2002, 2004;
Springel & Farrar 2007), which was originally calculated to be
too high for a �CDM universe (Farrar & Rosen 2007) – whereas
it might be better accommodated in alternative cosmologies (e.g.
Llinares, Zhao & Knebe 2009). Other studies have concluded that
the velocity is not in tension with �CDM (Hayashi & White 2006).
An important clarification of this issue was presented by groups
working on simulations of Bullet-like systems (Takizawa 2005,
2006; Milosavljević et al. 2007; Springel & Farrar 2007; Mastropi-
etro & Burkert 2008) where, in general, it was found that the shock
speed was substantially higher than the speed of the mass centroid
of the infalling subcluster. For example, Springel & Farrar (2007)
found that a Bullet-like system in their simulations had a shock
speed of ∼4500 km s−1 whereas the subcluster had a speed of only
∼2600 km s−1. Milosavljević et al. (2007) found that in an illus-
trative simulation, the subcluster CDM halo had a speed that was
16 per cent lower than that of the shock.

Even given this moderation of the extreme subcluster speed in
1E0657-56 there have still been claims in the literature that the
�CDM model may be incapable of creating such a system (Lee &
Komatsu 2010; Thompson & Nagamine 2012). This is not wholly
unexpected as (a) Mastropietro & Burkert (2008) have shown that
the properties of the bow shock are not well described by simulations
and (b) even with a moderation in subcluster speed along the lines
of Springel & Farrar (2007) or Milosavljević et al. (2007), the
speed may still be too high for the �CDM model to accommodate.
These studies have relied on numerical simulations to observe the
distribution of relative velocities in colliding clusters. From these
distributions, 1E0657-56 can be assessed and deemed to be either
rare for a �CDM universe or so rare that it puts the whole model in
doubt.

Alternative approaches have also been taken in addressing this
question. Forero-Romero, Gottlöber & Yepes (2010) looked in 2D-
projected position-space for Bullet-like systems in the MareNos-
trum Universe, a large hydrodynamical cosmological simulation.
The characteristic distribution of gas and dark matter in 1E0657-
56, as projected on the sky – with a large displacement between
the cluster’s gas and dark matter – was found to be expected in 1–
2 per cent of clusters with masses larger than 1014 h−1 M�. Nusser
(2008) performed a ‘back in time’ analysis to place bounds on the
relative overdensity the system resides in, in the Universe, conclud-
ing that for a relative speed of ∼4500 km s−1, the system would
need to have a mass of 2.8 × 1015 h−1 M� and exist in a local
overdensity of 10 times the background density of the Universe.

Here, we use the huge number counts of clusters in the Jubilee
simulation to add to the debate. We consider AHF (sub) haloes with
mass greater than 1 × 1013 h−1 M� that are colliding with (host)
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Figure 7. Relative pairwise velocities for haloes. The data points correspond to the observed Bullet cluster speed from Markevitch et al. (2004) (cross) and the
corrected speed estimated by Springel & Farrar (2007) (circle). The simulated speeds were obtained from the full box using the output redshift slice (z = 0.32)
that best matched the redshift of the Bullet cluster (z = 0.296). The halofinder used was AHF, which can resolve both subhaloes and haloes. We have shown in
blue, merging objects that are both host haloes in their own rights and in red, merging objects where a subhalo is moving with a high relative velocity to its host
halo. The data in the simulation were reduced by considering haloes with a mass of over 1 × 1013 h−1 M� and data points were plotted with the restriction
that one of the haloes in the pair had a mass of at least 7 × 1014 h−1 M�. Finally, we have added in a random scatter to mimic the effect of Eddington bias, as
described in the text.

haloes of mass greater or equal to 7 × 1014 h−1 M� at z = 0.32.
Our results are shown in Fig. 7, along with the original Bullet speed
presented in Markevitch et al. (2004), and the moderated result from
Springel & Farrar (2007), which represents the lowest value from
the literature to date. We show in blue, haloes that are colliding pairs
and in red, haloes that are a colliding subhalo and halo pair. We have
added a normally distributed random scatter to our velocities with
a width given by the error in the observed value for vs. This is
to mimic the effect of Eddington bias in our simulated data. This
observational bias arises when observing extreme measurements
in a distribution of measurements all with some associated scatter.
As there are many more data points that exist with less extreme
velocities than the one in question, it is likely that an extreme
data point is an upscattered less extreme one. As we know very
precisely the pairwise velocities of halo pairs in our simulation,
adding random scatter to this distribution serves to create the effect
in our measurement.

As can be seen from the distribution, the Bullet cluster is an
extreme object, but only when the radial separation of the halo
pairs is considered. We find many candidate mergers in our volume
with a collision speed that equals or exceeds the more conservative
speed estimate for the cluster and a few objects that are not far from
the higher velocity estimate of Markevitch et al. (2004). However,
we find no objects that, at a closer separation, give rise to a large
enough merging velocity. This is likely to be due to the effect of
only considering one simulation output in our analysis. At any
given output redshift only a handful of haloes will be undergoing

a major merger event of the sort we are interested in and this is
reflected by the paucity of data points that lie at a separation of less
than 0.6 h−1 Mpc. It is likely, therefore, that over the course of the
Jubilee simulation run, high-velocity mergers of the type observed
in the Bullet cluster do occur.

This result is in line with previous attempts to use large cosmolog-
ical simulations to address this issue where the bullet was not found
to be extreme (Hayashi & White 2006; Thompson & Nagamine
2012). Interestingly, Thompson & Nagamine (2012) extrapolated
their results from smaller simulation volumes and concluded that a
volume of (4.5 h−1 Gpc)3 would be required in order to observe a
Bullet-like cluster.

The conclusion that we put forward based on this result is that
there is at present no tension between our data and the standard
cosmological model. This conclusion is tentative, however, and
there would appear to be a need for careful further research into
this question based on a number of points. First, the results are
very sensitive to the mass cuts imposed on the candidate search.
It would be very difficult to find a precise analogue to the Bullet
cluster in terms of the masses, velocities and spatial separation of
the haloes. Here, we have taken a cut-off in mass that allows us to
search for Bullet-like systems rather than a precise Bullet cluster.
Secondly, we have placed no restrictions on the directions of the
relative velocities of the halo pairs. The bow shock observed in
the Bullet cluster has arisen from the Bullet subhalo having passed
through the parent halo (it is this occurrence, which fortuitously lies
almost in the plane of the sky as we observe it, that has allowed us
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to identify the relative pairwise velocities of the halo and subhalo in
the system). In our analysis, we plot all the pairwise velocities of the
haloes, making no distinction between haloes that are infalling and
haloes that have already undergone a collision and not considering
how the orientations of the collisions might appear to a specific
observer. This is a fair way to assess the data as the actual collision
in a Bullet cluster-like system is expected to take a few hundred
megayears so is a relatively short event. Canvasing all our haloes in
this manner assesses whether there is likely to be or whether there
has been a Bullet cluster-like collision in the simulation around
z∼ 0.3. Further studies should include how random observers would
observe these events. Lastly, halofinding algorithms are notoriously
suboptimal when trying to find and separate haloes that are merging
(this is discussed in detail in Knebe et al. 2011, we draw the reader’s
attention to fig. 10 from that paper in particular). However, as the
separation in question of the two haloes is relatively large, this is
unlikely to be affecting our results.

3.5 The Jubilee void function

The distribution of voids for a given threshold is characterized by
the void function, the number of spheres with radii larger than
Rvoid per volume. We have studied the void distribution at redshifts
z = 0, 0.5 and 1. At z = 0, we have identified the voids in the
distribution of haloes more massive than 5 × 1014, 2 × 1014, 1 × 1014

and 1 × 1013 h−1 M�. At redshift z = 0, we identified 244 989,
1753 982, 5596 627 and 91 615 821 haloes more massive than these
thresholds, respectively. Thus, the mean distance between them (i.e.
the box length divided by the cube root of the number counts) is
about 96, 50, 34 and 13 h−1 Mpc. Nevertheless, we found huge
volumes which do not contain any of these objects.

In Fig. 8, top panel, we show the void functions at z = 0 for four
different threshold masses. For the largest threshold, we find a few
very large spheres with radii of 150 h−1 Mpc which do not con-
tain any cluster more massive than 5 × 1014 h−1 M�. For smaller
thresholds, the void function is very steep, i.e. there are a num-
ber of voids with a volume almost as large as the volume of the
largest voids defined by the threshold. This means that the voids
are almost uniformly distributed, as there are so many of a simi-
lar size. At higher redshifts (middle and bottom panel of Fig. 8),
we observe similar behaviour but, due to the evolution of the mass
function, only with lower threshold masses. Note that at the lowest
threshold (1013 h−1 M�), the maximum void radius is almost red-
shift independent between z = 0−1 and occurs at a void radius of
about 40 h−1 Mpc. This may seem in contradiction to the fact that
low-density regions expand slightly faster than the mean expansion
rate of the Universe. However, since the tracers of the voids are also
evolving, the number of objects above the threshold evolves. For
1013 h−1 M� mass haloes, the number counts rise from 38 994 056
at z = 1 to 91 615 821 at z = 0. Therefore, the mean distance
shrinks from 18 to 13 h−1 Mpc, and using this threshold mass, we
see the interesting result that the maximum void radius remains
almost constant in time.

4 SU M M A RY A N D D I S C U S S I O N

In this paper, we have presented a broad range of results from a
�CDM-based simulation. The results have focused on predictions
on very large scales, such as extremely massive clusters and large
void regions. The simulation itself represents one of the largest un-
dertaken to date, with a volume of (6 h−1 Gpc)3 and haloes resolved

Figure 8. Void functions from the Jubilee simulation for z = 0, 0.5 and 1,

top-to-bottom, respectively. Voids are defined as spherical regions of radius
Rvoid wherein no haloes with a mass higher than a threshold mass are found.
The plot shows, for different threshold masses, the number densities of voids
with radii over Rvoid.

down to 1.4 × 1012 h−1 M�, a resolution that allows the creation
of mock LRG and cluster catalogues.

The distribution of dark matter haloes in the Jubilee was found
to be well described by fitting functions from the literature, and the
dark matter haloes from the Jubilee have been used in a separate
paper (Watson et al. 2013a) to construct mass function fits across
a broad range of redshifts and volumes. For the rare tail of the
mass function, we have confirmed that the Poisson distribution
describes well the number counts of objects. The masses of clusters
with extremal masses in the Jubilee simulation were investigated
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across a range of redshifts and were found to agree well with both
observation and theory, in particular the expected masses of the very
largest objects found when using EVS.

4.1 Implications for precision cosmology

An important prediction from this simulation is the expected effect
of cosmic variance on the counts of massive clusters. This result
can be used to gauge number-count errors in survey and simu-
lation data. Understanding this is a vital component of the drive
towards high-precision cosmology. We showed in Fig. 4, how the
expected number of clusters in given volumes are likely to vary.
In general, quantifying the effect of cosmic variance in simulations
is notoriously tricky due to the requirement for either multiple re-
peats of a simulation or for a large simulated volume (or preferably
both of these). Due to the large scale of the Jubilee volume, we
are able to use the latter and do so in a manner that includes the
long-wavelength modes of the matter distribution. The variation in
cluster counts for smaller boxes or surveys is highly significant if
one is investigating the distribution of high-mass objects such as
galaxy clusters, which form an important cosmological probe.

4.2 The largest voids

Our largest void, defined using a threshold mass of 5 ×
1014 h−1 M�, is ∼350 h−1 Mpc across. To put this void in context, it
is around one fifth of the volume of the Millennium simulation and
it contains no clusters with mass greater than 5 × 1014 h−1 M�. The
probability, based on volume-occupation alone, of finding yourself
within this void in the universe represented by the Jubilee simulation
is 0.01 per cent. There have been investigations as to whether our
occupying a local underdensity might explain the apparent existence
of an accelerated expansion in the late-time Universe (Ellis 1979;
Mustapha, Hellaby & Ellis 1997; Zehavi et al. 1998; Tomita 2001;
Iguchi, Nakamura & Nakao 2002; Barausse, Matarrese & Riotto
2005; Moffat 2005; Wiltshire 2005; Alexander et al. 2009; Febru-
ary et al. 2010; Marra & Pääkkönen 2010; Nadathur & Sarkar 2011).
The void in question would need to have very specific characteristics
that include its radius, sphericity, density and density profile. Predic-
tions for these void parameters vary but have typically required the
void to be of at least a few hundred Mpc in radius and, importantly,
close to spherically symmetric, with us as observers very near its
centre. This latter requirement is due to the Type Ia supernovae data
implying that dark energy is close to isotropic across the sky. We
see from our void functions in Fig. 8 that there are a few hundred
voids in the Jubilee volume with radii Rvoid > 100 h−1 Mpc, for
the 5 × 1014 h−1 M� mass threshold. We estimate the proportion
of the entire simulation volume taken up by voids with a radius
of Rvoid > 100 h−1 Mpc to be 0.04 per cent. Adding an additional
requirement that an observer occupies the central 1 per cent of the
void volumes in question, we arrive at the total spatial volume in
the Jubilee box that would contain observers in the centre of voids
of radii greater than 100 h−1 Mpc to be ∼0.0004 per cent. This is a
rough statistical estimate and ignores the fact that observers might
be better considered to only exist at the locations of galaxies in the
simulation. In addition, the simulation contains a dark energy com-
ponent so it has already modelled the effect of late-time accelerated
expansion on structure formation. This latter point does not alter the
order of magnitude of the result as void sizes in universes without
dark energy are comparable to void sizes in �CDM (Müller et al.
2000). We intend to look more closely into putting a probability on
this figure for voids in the Jubilee simulation in a follow-up paper.

4.3 The �CDM model versus observations

The distribution of most massive clusters in the Jubilee was found
to be in line with current theoretical predictions based on EVS.
The nature of EVS is that it lacks predictive power in terms of
constraining models, but it is a powerful method for ruling out
models based on only a handful of extreme data points (various
authors have previously implemented studies in cosmology based
on it; for example Coles 1988; Antal et al. 2009; Colombi et al.
2011; Davis et al. 2011; Harrison & Coles 2011). Had the masses of
observed clusters in Harrison & Hotchkiss (2013) lain significantly
away from the expected EVS prediction, then the �CDM model
would be immediately placed in doubt. One result in this paper that
of the extreme nature of the Bullet cluster is suggestive of a possible
tension with �CDM. An EVS approach is likely to cast this result
in a more comprehensive context, but it is beyond the scope of this
paper to attempt analysis along these lines.

In follow-up work, we intend to investigate in more detail the
existing discrepancy between observations of the ISW signal and the
expected �CDM signal. For example, Hunt & Sarkar (2010) claim
that the observed voids from SDSS data are too large for a �CDM
universe. This result was based largely on analysis of the ISW
signal in Granett, Neyrinck & Szapudi (2008) and Granett, Neyrinck
& Szapudi (2009). This highlights the intimate link between the
void distribution and the ISW signal – underdense regions imprint
themselves on the CMB via the ISW effect – and represents a current
challenge to the �CDM model.
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