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Abstract:  The main objectives of this paper are to measure the technical efficiency levels of 

Spanish construction sector before and during the current financial crisis and to investigate 

the degree to which various factors influence efficiency levels in this sector. Stocastic 

frontier analysis (SFA) methods are applied to firm-level data over the period 1996-2011. 

Despite its contribution to the Spanish economy the technical efficiency of the Spanish 

construction industry has neither been measured, nor the factors influencing the efficiency 

have been analyzed. 

The results show that technical efficiency is significantly shorter at the beginning of the 

financial crisis than during the financial crisis. Results also show that firms that went 

bankrupt, on average have a lower technical efficiency level than firms that did not go 

bankrupt in the period before the Spanish housing bubble burst. 

We also identify several important factors affecting technical efficiency levels. Our 

empirical results indicate that age, size, level of diversification, level of corporate 

transparency an level of debt have a significant influence on technical efficiency levels.  
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1. Introduction. 

 

The concept of “construction” is unusually complex. It brings problems of quantifying 

output, of value-added, of relative prices, etc. Almost every project in construction is unique, 

and it is exceedingly difficult to find a uniform measure of the quality of construction projects. 

The Construction Sector is both highly competitive and cyclically sensitive (Moscarini 

and Postel-Vinay 2009). The short term supply is inelastic in the sector thereupon increases in 

demand produce rapid increases in prices. This one of the main reasons why construction 

companies commonly operate with a high level of financial leverage leading to the exposure of 

financial stress and continuous liquidity problems as a result of financial markets movements.  

Buildings, heavy civil and specialty trade are the construction main activities ( I. M. 

Horta et All,2012). The construction of buildings and civil engineering works is undertaken in 

a similar way worldwide: a general contractor, responsible for delivering the finished project to 

the owner, subcontracts much of the practical work to specialty trade companies. The building 

segment includes the general contractors, who build residential buildings, and nonresidential, 

such as industrial, commercial, and other buildings. Residential building companies are 

associated with household demand.  

The real estate bubble formation is linked to three intrinsic characteristics of the 

construction and real estate activities: rigid supply in the short term, important role of 

expectations for supply and demand, and high leverage on production and home purchase.  

During the decade of 1997-2006 Spain has been featured in the formation of a real 

estate bubble. The Spanish construction sector enjoyed a period of constant growth, reaching a 

12.1% share of gross value added in 2006, which is twice the overall comparable figure for the 

EU, and employing 2.8 million persons (13% of the labor force in 2007). Until 2007, Spain 

was recording higher annual new home construction completions than France, Germany and 

Italy combined. However, we should note that the formation of a real estate bubble has not 

been just a Spanish issue and the United States, UK, Ireland, South Africa, China, and 

Argentina, among others, have attended the formation of this phenomenon. But Spain is 

highlighted as one of the countries most affected after the bursting of the bubble. 

Unleashed in 2007 by the burst of the Spanish Housing Bubble the financial crisis 

unfolded at a speed and magnitude even the most die-hard pessimists could not have predicted. 

Because of the cyclical nature of the construction industry the situation had been more adverse 
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to construction firms than to other firms.  A drastic decrease in demand for new housing added 

to the high external debt that the companies suffer from cause the wholesale collapse of its 

industry. As an example, the number of licenses authorized for the construction of buildings 

issued in 2011 only account for fourteen percent of those issued in 2006 (Spanish National 

Statistics Institute). A great number of bankruptcies among Spanish construction firms, that 

failed to adapt themselves to the changing environments, including some major construction 

firms such as, Astroc Mediterraneo, Martinsa-Fadesa, Habitat, and most recently Reyal Urbis, 

all characterized by a high external debt and extremely exposed to real estate business. 

And yet here Spain has today the largest construction sector among the EU countries 

(Eurostat, GVA 2010).  The Spanish construction sector supported in the internationalization 

reaches to the second place in the ranking of constructions companies elaborated by Deloitte 

(European Powers of Construction). The construction industry is no longer a local market, 

given globalization. The global construction industry makes up approximately 9% of the 

world’s GDP. This sector is the largest industrial employer in most countries, accounting to 

around 7% of the total employment worldwide (I. M. Horta et al, 2012). Construction 

companies are adopting strategies of internationalization that enable them to benefit from the 

global market. In particular, some Spanish construction companies have moved their entire 

operations to Latin America, Southeast Asia, and the Middle East, with lower running costs, 

more work and opportunities. 

Despite its contribution to the Spanish economy the technical efficiency of the Spanish 

construction industry has neither been measured, nor the factors influencing the efficiency have 

been analyzed. Globally, country studies report a wide range of efficiency levels. These range 

from a low of around 50% for Canadian firms (Pilateris and McCabe, 2003), 57% for 

Vietnamese firms (Nguyen and Giang, 2005), approximately 60% for Portuguese firms (Horta 

et al., 2012), to higher estimates of 83% for Norwegian firms (Edvardsen, 2004) and 93% for 

Greek firms (Tsolas, 2011). 

Interesting because of the resemblance to the Spanish case, is the study of You and Zi 

(2007), in which analyzed the case of Korea in the late 1990’s. The Korean construction sector 

was impacted by an economic crisis in November 1997. Using a data envelopment analysis 

(DEA) approach for the period 1996-2000, the author focus on leverage ratio, export weight, 

institutional ownership, asset size and receivables overdue turnover and find these factors 

impact all efficiency measures.  
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Other studies that should be emphasized on the construction field are Horta et al., 2010 

and El-Mashaleh et al.,2011, where author’s use the DEA method to evaluate the safety 

efficiency of every contractor aiming to transform inefficient contractors into high efficiency 

contractors. 

 In this article we gauge and analyze the technical efficiency of the Spanish Building 

industry for the period 1996-2011. 

 

2. Literature review 

 

The technical efficiency of a production may be defined as the ability of a firm to 

produce as much output as possible given certain levels of inputs or factors of production, and 

certain technology. 

Farrell (1957) suggested a method of measuring the technical efficiency of a firm in an 

industry by estimating the production function of firms which are “fully-efficient”. 

We will take as given the existence of a well-defined production structure characterized 

by smooth, continuous, continuously differentiable, quasi-concave production or 

transformation function. Producers are assumed to be price takers in their input markets, so 

input prices are treated as exogenous. The empirical measurement of TE(y,x) requires 

definition of a transformation function 

Let 

 

 ( )y    f x           (1.0) 

 

denote the production function for the single output, y, using input vector x.  Then, an output 

based Debreu-Farrell style measure of technical efficiency is 

 

( )  =  1.
( )


y

TE y,
f

x
x

          (1.1) 

  

Farrell suggested that one could usefully analyze technical efficiency in terms of 

realized deviations from an idealized frontier isoquant.  This approach falls naturally into an 

econometric approach in which the inefficiency is identified with disturbances in a regression 

model. 

Many subsequent papers have applied and reviewed Farrell’s ideas. This literature may 

be roughly divided into two groups according to the method chosen to estimate the frontier 
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production function, namely, Deterministic Frontier versus Stochastic Frontiers.  Debate 

continues over which approach is the most appropriate method to use. The answer often 

depends upon the application considered.  

 

4.a.    Deterministic Frontiers 

 

Fallowing (Ruggiero, 2007), we assume N producers that faces the same production 

technology represented by the conversion of a vector X of inputs into a single output y . For 

simplicity, we assume that efficient production can be represented by a Cobb–Douglas 

production function with two inputs 

 

y  = AX 1

1

 X 2

2

                                                                                            (1.3)              

 

This production function, showing the maximum output from given input usage, will serve as 

the basis for efficiency measurement. Allowing inefficiency, we can represent (1.3) with the 

empirical production function 

 

y  = AX 1

1

 X 2

2

 u                                                                                         (1.4)  

where u    1  represents inefficiency. Models that seek to estimate u based on (1.4) are 

considered deterministic because measurement error and other statistical noise are assumed 

away. 

Taking Greene method (GM) (Greene, 1980), the production function can be estimated 

by taking logs and using OLS as 

 

 2211 lnlnlnln xbxbay                                                                                       (1.5)  

 

Greene proved that OLS produces consistent estimates for the slope parameters. The largest 

positive residual is added to the intercept and subtracted from the residuals. Hence, the 

adjusted residual represents the shortfall in output from the efficient level. Given the resulting 

residuals i  for observation i, efficiency is estimated as  j
j

i  maxexp(ˆ    

Because of the needed of a priori specification of the production function in GM, the 

most widely used deterministic approach is not the GM but Data Envelopment Analysis 

(hereinafter DEA). DEA is a non-parametric approach -it does not require any assumption 

about the functional form of the production or cost frontier- introduced by Charnes et al. 
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(1978) to measure efficiency under the assumption of constant returns to scale, and extended 

by Banker et al. (1984) to allow variable returns to scale.  

Advantages of the DEA approach are the nonparametric nature and the ability to handle 

multiple outputs and multiple inputs. As disadvantages, econometricians have argued that the 

approach produces biased estimates in presence of measurement error and other statistical 

noise. 

The lack of allowance for statistical noise is widely regarded as the most serious 

limitation of DEA, because this puts a great deal of pressure on users of this technique to 

collect data on all relevant variables and to measure them accurately. The following two issues, 

however, have been frequently ignored despite their importance. 

DEA is the solution to the fallowing mathematical problem 
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where subscript ‘o’ represents the firm under analysis. DEA requires solving program (1.6) for 

each of the N producing units. Solution for all decision-making units leads to a vector  ̂ CCR of 

efficiency estimates. Adding the convexity constraint  


N

j
j

1
1  to (1.6) results in the variable 

returns to scale DEA model of Banker et al. (1984).  

A potential problem in the comparison of DEA and other approaches is the excess slack 

that may exist in some but not all of the input constraints. As a result, the equi-proportional 

estimate ̂ CCR may not capture all inefficiency. Therefore, we also consider the alternative 

Russell measure 

 



7 
 

 

jj

koko

N

j

kjj

N

j

jj

ooro

kxx

yy

TS

Min

o

















,0

1

·

1

·

21

2,1:,

..

*5.0ˆ









       (1.7) 

 

The solution of (1.7) for a given decision-making unit results in a non-proportional 

efficiency estimate and reduces the problem of (1.6) with excess input slack. Solution for all 

decision-making units leads to a vector ̂ Russell of efficiency estimates. 

Figure 1 illustrates this definition. In the figure, there are five points (A–E) associated 

with different levels of input and output. The line ABC describes the frontier for the production 

process. Observations A, B, and C are on the frontier, while observations D and E lie below the 

frontier. There exists a ray from the origin tangent to the frontier at point B representing the 

constant returns to scale of the technology. In this example, observation B represents the 

relative technical efficiency, whereby this firm is technically and scale efficient because of its 

location on the frontier and the property of constant returns to scale. 

As it can be seen in Figure 1 (observations A and C), in an overall sense, a firm could 

be technically efficient, while experiment inefficiency in scale. Namely A and C are purely 

technically efficient because they belong to the frontier, but they exhibit scale inefficiencies.  

Instead, observation D is both scale and technically inefficient because it lies below the 

frontier. Theoretically, the same level of input could be used to achieve a higher level of 

output, which will allow this firm (at point D) to move forward to the frontier between points B 

and C. 

Observation E is technically inefficient because it lies below the frontier, but it is scale 

efficient because it produces at input level of   , the same level of output as observation B. 
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Figure 1:Illustration of Technical Efficiency 

 

 

Deterministic approaches are based in cross-sectional models; however, they can be 

extended to panel data models by averaging the data across time. Ruggiero (2004) 

Recently, data envelopment analysis has become the dominant approach to measure the 

performance of many economic sectors. One of the attractive characteristics of DEA is that it 

can deal with multiple outputs easily. 

 

4.b.    Stochastic Frontiers 

 

The stochastic production frontier is motivated by the idea that deviations from the 

production ‘frontier’ might not be entirely under the control of the firm being studied. Under 

the interpretation of the deterministic frontier of the preceding section, for example, an 

unusually high number of random equipment failures, or even bad weather, might ultimately 

appear to the analyst as inefficiency. 

Since Aigner, Lovell, and Schmidt proposed their pioneer work in 1977, both the 

theoretical development and empirical application of stochastic frontier models have prospered 

in the literature.  

 A more appealing formulation holds that any particular firm faces its own production 

frontier, and that frontier is randomly placed by the whole collection of stochastic elements 

which might enter the model outside the control of the firm. 

 Following Greene (2005) specifications, an appropriate formulation is 
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 ( ) iv
iii

  =  fy eTEx        ,i=1,...,N, (1.8) 

 

where TEi corresponds to     , and vi is unrestricted. The latter term embodies measurement 

errors, any other statistical noise, and random variation of the frontier across firms.  The 

reformulated model, taking on log-linear (Cobb-Douglas) production function, is 

 

ln yi =o + 


k

j 1

j xji+ (vi - ui) = o + 


k

j 1

j xji +    ,i=1,...,N, (1.9) 

 

As before, ui > 0, but vi may take any value.  A symmetric distribution, such as the normal 

distribution, is usually assumed for vi.  Thus, the stochastic frontier is o + j xji+    vi and, ui 

represents the inefficiency. 

 Discussions about the distribution of the compound disturbance in the stochastic 

frontier model have been done. The literature begins with Aigner, Lovell and Schmidt’s (1977) 

Normal-half normal model, where 

 

 ui  =  |Ui|  where fU(Ui) = N[0,u
2
]   = (1/u)(Ui/u), - < Ui <  ,   (1.10) 

 

Stevenson (1980) introduce the Truncated normal model arguing that the zero mean 

assumed in the Aigner, et al. (1977) model was an unnecessary restriction. He produced results 

for a truncated as opposed to half-normal distribution. That is, the one-sided error term,    is 

obtained by truncating at zero the distribution of a variable with possibly nonzero mean. 

The log-likelihood function for each of the two models, have been derived, and has 

been integrated into several commercial computer packages, starting with Frontier4 (Coelli 

(1996)), LIMDEP (Greene (2000)), and incorporated at the present time into free software 

including Gretl and R. 

A variety of specifications of the model production and (in)efficiency have emerged 

during this time as alternatives to the production frontier. Among them: 

 Stochastic frontier cost functions. Introduce a distinct representation of the production 

technology, under a set of regularity conditions (Shephard (1953)). In the construction sector, a 

recent paper of Dzeng, R. et al. ( 2013) used the stochastic frontier analysis to model and 

measure the cost efficiency of construction firms in Taiwan.   

Multiple outputs production/cost functions. As an example of multiple production 

function see Fernandez et al. (2000). The authors use an output aggregator that links the 




k

j 1
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‘aggregate output’ to a familiar production function. See Orea and Kumbhakar (2003), as an 

example of cost function in the Spanish bank sector.   

Another approach that has proved useful in numerous empirical studies is the Distance 

and profit function, based in Shephard's input distance function. 

Panel data applications have kept pace with other types of developments in the 

literature. A fundamental question concerns whether inefficiency is properly modeled as fixed 

over time. Intuition should suggest that the longer is the panel, the ‘better’ will be the estimator 

of time invariant inefficiency in the model, however computed.  But, at the same time, the 

longer is the time period of the observation, the less tenable the assumption becomes (Greene, 

2005). Treatments of firm and time variation in inefficiency are usefully distinguished in two 

dimensions.  The first is whether we wish to assume that it is time varying or not.  Second, we 

consider models which make only minimal distributional assumptions about inefficiency 

(‘fixed effects’ models) and models which make specific distributional assumptions such as 

those made earlier, half normal, exponential, etc. 

Pitt and Lee (1981), Kumbhakar’s (1990), Lee and Schmidt (1993) Battese and Coelli’s 

(1992) suggested different Stochastic Panel Data Models. 

The debate on whether to use one-step or two-step approach brought important 

developments in the investigation of how exogenous factors influence the one-sided 

inefficiency effect. This effort allows researchers to understand not only the production unit’s 

state of efficiency, but also the contributing factors of the efficiency. As an argument in favor 

of one-step approach it is easy to think that not accounting for the exogenous influences at the 

first step will induce a persistent bias in the estimates that are carried forward into the second. 

The extensive Monte Carlo results presented by Schmidt and Wang (2002) give evidence in 

favor of the one-step approach. 

Perhaps the most well-known model of the one-step approach is the Battese and Coelli 

(1995) Model. These authors propose parameterizing the mean of the pre-truncated distribution 

as a way to study the exogenous influence on inefficiency. 

Heterogeneity was another topic of discussion among researchers. Greene, 2004 

categorize heterogeneity between observable and unobservable heterogeneity. The parameters 

of the underlying distribution of ui provide a mechanism for introducing heterogeneity into the 

distribution of inefficiency.  The mean of the distribution (or the variance or both) could 

depend on factors such as industry, location, capital vintage, and so on. In Orea et al. (2004) 
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and Greene (2005), a latent class specification is suggested to accommodate heterogeneity 

across firms in the sample. 

Recent research works try to combine strengths of stochastic method into DEA Models. 

As an example Simar et al, 2011 integrate a stochastic SFA-style noise term to the 

nonparametric, axiomatic DEA-style cost frontier. 

Ruggiero, 2007, using simulated data, compare DEA and SFM and show: Firstly, 

Additional time periods improve the performance of all measures. Secondly, as the variance of 

the measurement error term increases holding the number of periods fixed the performance of 

all estimators’ declines on average. Third, in almost all cases, the stochastic frontier model 

outperforms the other measures. 

Badunenko, Henderson and Kumbhakar (2012) show that the reliability of efficiency 

scores hinges critically on the ratio of the variance of inefficiency to the variance of noise; with 

high ratio, both methods work well; with medium ratio, both methods underestimate efficiency 

but SFA does so by less; with low ratio, both methods perform poorly.  

 

3. Teorical Model 

 

To measure the efficiency for the of Spanish construction sector and identify 

explanatory variables of the (in)efficiency, we propose the Stochastic frontier production 

function for unbalanced panel data developed by Battese and Coelli (1992), and the Technical 

inefficiency effects model Battese and Coelli (1995) . As we have seen in section 2, this type of 

frontier and the computation method present advantages with respect other alternatives. For 

example the mathematical programing (DEA) are extremely sensitive to the existence of 

outliers. As well, the estimated coefficients of DEA method lack statistical properties 

(statistical inference, hypothesis contrasts,...). 

In the other hand, the function that explains the inefficiency scores is estimated in a 

single stage with the production technology, which avoids the problem of inconsistency that 

the two stage approach suffers from, Wang (2002). 

Following Battese and Coelli (1992), the stochastic frontier production function 

proposed, has firm effects that are assumed to be distributed as truncated normal random 

variables and, also, are permitted to vary systematically with time. The model may be 

expressed as: 
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Yit =o + 


k

j 1

j Xjit+ (Vit - Uit)                              ,i=1,...,N, t=1,...,T,   (3.1) 

 

where Yit denotes (the logarithm of) the production of the i-th firm in the t-th time period; Xk 

represents the k-th (transformations of the) input quantities; k stands for the output elasticity 

with respect to the k-th input; the Vit is a random variable which is assumed to be iid N(0,V
2
), 

and distributed independently of the Uit which has the specification: 

 

Uit = Ui it = Uiexp(-(t-Ti))        (3.2) 

 

where the Ui is a non-negative random variable which is assumed to account for technical 

inefficiency in production and are assumed to be iid as truncations at zero of the N(,
2
) 

distribution and  is a parameter to be estimated. 

The last period (t=Ti) for firm i contains the base level of inefficiency for that firm (Uit 

= Ui). If  > 0, then the level of inefficiency decays toward the base level. If  < 0, then the 

level of inefficiency increases to the base level, and if  = 0, then the level of inefficiency 

remain constant. 

Using the parametrization of Battese and Corra (1977) who replace V
2
 and 

2
 with 

2
=V

2
+

2
 and =

2
/(V

2
+

2
). The parameter , must lie between 0 and 1. 

The imposition of one or more restrictions upon this model formulation can provide a 

number of special cases of this particular model, which have appeared in the literature. For 

example, setting  to be zero provides the time-invariant model. One can also test whether any 

form of stochastic frontier production function is required at all by testing the significance of 

the  parameter. If the null hypothesis, that  equals zero, is accepted, this would indicate that 


2
 is zero and hence that the Uit term should be removed from the model, leaving a 

specification with parameters that can be consistently estimated using ordinary least squares. 

The predictions of individual firm technical efficiencies from the estimated stochastic 

production frontiers are defined as: 

 

      EFit= exp(-Uit)= E[exp(-Uit)Ei] = 
 

  







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)/(1
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ii
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it
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




  (3.3) 

 

where Ei represents the (Ti x 1) vector of Eit ‘s associated with the time periods observed for the 

i th firm, where Eit = Vit - Uit;  
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where i represents the (Ti x 1) vector of it ‘s associated with the time periods observed for the 

i th firm, and (.) represents the distribution function for the standard normal random variable. 

If the firm effects are time invariant, then the technical efficiency is obtained by replacing it = 

1 and  = 0.  

The main objective of this study is to provide measures of technical efficiency ant to 

identify explanatory variables that may help explain some of the technical efficiency 

variations.  It has been utilized a Technical inefficiency effects model (TIE), Battese and Coelli 

(1995). In this model the function that explains the inefficiency scores is estimated in a single 

stage with the production technology, which avoids the problem of inconsistency that the two 

stage approach suffers from. 

Then, Ui is assumed to account for technical inefficiency effect in production and are 

also assumed to be iid as truncations at zero of the N(,
2
).  

 

Uit = zit δ +Wit           (3.6) 

 

zit, is a (1 x m) vector of explanatory variables associated with technical inefficiency of 

production of firms over time. The explanatory variables may include some input variables in 

the stochastic frontier, provided the inefficiency effects are stochastic. If the first z-variable has 

value one and the coefficients of all other z-variables are zero, then this case represents the 

model specified in Stevenson (1980) and Battese and Coelli (1992). 

δ  is an (m x 1) vector of unknown coefficients. If all elements of the δ -vector are equal 

to zero, then the technical inefficiency effects are not related to the z-variables and so the half-

normal distribution originally specified in Aigner, Lovell and Schmidt (1977) is obtained. 

Wit is random variable N(0,2
), but not necessarily identically distributed. 

 Uit non-negative truncation of the N(zit δ,2
) distribution. The mean zit δ of the normal 

distribution, which is truncated at zero to obtain the distribution of Uit, is not required to be 

positive for each observation. 

Uit s and the Wit s are independently distributed for all t = 1, 2 , . . . , T, and i= l,2,...,N. 
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The technical efficiency of production for the i-th firm at the t-th observation is defined 

by equation: TE it, = exp( -U it) = exp( - zit δ - Wt,). The method of maximum likelihood is 

proposed for simultaneous estimation of the parameters of the stochastic frontier and the model 

for the technical inefficiency effects. 

 

4. Data and Empirical specification. 

 

The SABI (Sistema de Análisis de Balances Ibericos) database, managed by Bureau van 

Dijk, provides the necessary data to estimate an efficiency measure. The study sample includes 

the firms belonging to the category of firms in, Real estate development, Construction of 

residential buildings, Construction of non-residential buildings (NACE Rev. 2 codes 4110, 

4121, 4122). The database is an unbalanced panel observed over the period 1996-2011. SABE 

also provides information about the major two-digit NACE codes to which the firms belong.  

 Table 1 reflects the sectorial division of the service sector analyzed in this paper, the 

number of firms and the number of observations of each subsample. 

 

Table 1: Sector classification, number of firms and number of observations  

CNAE Sector classification Num.of firms Num.of 

observations 

4110 Real estate development 472 3804 

4121 Residential buildings construction 2126 19845 

4122 Non-residential building construction 217 2040 

 

Output is measured by the yearly value added (VA), defined as sales less cost of goods plus 

inventories, and is converted into real terms. Labor (L) is measured as the number of 

employees. In this type of study, the standard practice is to define labor in terms of hours 

worked but this information is not available. Capital quantities (K) are defined as the market 

value of assets owned by the firms, in constant prices. Intermediate Consumptions (IC) are 

defined as the values of the different intermediate consumption goods (raw materials and part-

finished products and services). 

In order to control for the effect of the economic crisis, we estimate the model by 

dividing the sample period into two sub-periods: before the Housing Bubble Burst (1996-

2006); and after the Housing Bubble Burst (2007-2011). Table 2 presents a summary statistics 

of the data in both periods. 
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Table 2: Summary statistics     

Sector 

classification 

Variable Mean Standard Deviation Minimum Value Maximum Value 

(PERIOD 1996-2006)     

4110 VA  3,374.83                   9,064.75                      14.38             175,843.95  

 L       42.00                      133.00                        1.00                 2,641.00  

 K  3,819.83                 17,615.23                        0.03             257,481.22  

 CI  6,544.83                 13,912.79                        4.13             181,761.97  

4121 VA  1,550.30                 11,011.41                        1.20             997,050.70  

 L       52.00                      165.00                        1.00                 7,018.00  

 K     467.42                   1,788.32                        0.02               64,553.82  

 CI  4,624.30                 30,501.91                        0.52          1,443,313.00  

4122 VA  1,221.74                   1,914.51                      64.18               29,081.57  

 K     405.73                   1,293.93                        0.17               29,860.08  

 L       43.00                        59.00                        1.00                    838.00  

 CI  3,859.46                   8,685.10                        3.54             153,350.18  

      

(PERIOD 2007-2011)     

4110 VA  3,904.25                   9,101.61                        7.21             105,058.66  

 L       53.00                      157.00                        1.00                 2,556.00  

 K  6,052.18                 19,561.54                        2.86             277,716.39  

 CI  9,589.98                 23,651.86                        1.34             290,346.62  

4121 VA  2,628.50                 14,900.34                        5.40             429,711.40  

 L       69.00                      301.00                        1.00                 7,633.00  

 K     778.16                   2,973.58                        0.02               61,990.92  

 CI  7,816.00                 47,755.90                        1.10          1,437,220.20  

4122 VA  1,310.16                   1,947.01                      27.02               18,684.83  

 K     628.95                   1,637.28                        0.54               15,351.16  

 L       42.00                        57.00                        4.00                    662.00  

 CI  4,420.58                   8,585.67                      13.48               71,438.20  

Notes: Output (VA), capital (K) and Intermediate Comsumtions (IC) are in thousands of euros. 

 

Variables VA, K and CI are deflated using the implicit deflator index of the 

construction GFCF. Prices used to deflate output and inputs are obtained from the Spanish 

Statistical Office (various years). 

 

4.a.    SFA Estimation 

 

In order to estimate the production functions of each sector, from which obtain 

efficiency scores, we take as a starting point the translog specification (hereinafter translog). 
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The translog function is a more flexible extension of the Cobb-Douglas function therefore does 

not require a constant and unitary elasticity of substitution. Hence, the translog function can be 

seen as a combination of the Cobb-Douglas function and the quadratic function. To check 

whether the Cobb-Douglas production function is rejected in favor of the Translog production 

function, we will apply a likelihood ratio test.  

The translog production function has following specification of the Stochastic frontier 

model (hereinafter SFA): 
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   (4.1) 

 

Where 

 The subscript "i" denotes the ith sample firm i = 1, 2, ... N 

 The parameters k and kk with k = 1, 2, 3 are unknown parameters to be estimated. 

 The subscript "t" indicates the t-th year of the sample t = 1996,…2006 for period 

1996-2006. 

 The variable ityln  denotes the output produced by each firm "i" and year "t". 

 Variables kitX  with k = 1,2,3 are the explanatory variables of the model per year 

and per company. 

 itv  is a random error term assumed to be independently and identically distributed 

(iid) as N(0,V
2
). 

 itu  is a non-negative random variable which is assumed to account for technical 

inefficiency in production and are assumed to be iid as truncations at zero of the 

N(,
2
) 

There is also the variable t and 2t which are a variables added here to measure the 

Hicks-neutral technical change. 

In the estimation process, the estimation algorithm re-parameterizes the variance 

parameter of the noise term (V
2
) and the scale parameter of the inefficiency term (

2
) and 

instead estimates the parameters 2
=V

2
+

2
 and γ =

2
/(V

2
+

2
). The parameter γ lies 

between zero and one and indicates the importance of the inefficiency term. If γ is zero, the 
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inefficiency term u is irrelevant and the results should be equal to OLS results. In contrast, if γ 

is one, the noise term v  is irrelevant and all deviations from the production frontier are 

explained by technical inefficiency. 

The coefficients 1, 2 and ₃ are the output elasticities of inputs, and the sum of them 

gives us the elasticity of scale, which indicates the returns to scale.  

For models are proposed as follows: Model 1.0 is the stochastic frontier production 

function in which the firm effects, itu , have the time-varying structure defined in the last 

section; Model 1.1 is the case in which the iu ’s have half-normal distribution, assumes that  

= 0; Model 1.2 is the time-invariant model, assumes that  = 0; Model 1.3 is the time-invariant 

model in which the  iu ’s have half-normal distribution, assumes that  =  = 0. 

Table 3 displays the estimated coefficients for the period during the formation of the 

Housing Bubble 1996-2006. Presented below the name of the sectors, in brackets, are the 

names for the best model of each sector. To determine the most suitable model, we conducted 

various hypothesis test of restriction on the parameters of the production structure. the decision 

is made based on the generalized likelihood-ratio statistic (the t-test for the coefficient γ is not 

valid, because γ is bound to the interval [0, 1] and hence, cannot follow a t-distribution). These 

generalized likelihood ratio statistics along with the decision are reported in the Table 3. 

 

Table 3: Estimations and tests of hypothesis for three sectors (period 1996-2006 )   

SECTOR 4110 Maximum-likelihood estimates      

(Model 1.0) Model 1.0 Model 1.1 Model 1.2 Model 1.3 

 Variable Coeffic. Std Error Coeffic. Std Error Coeffic. Std Error Coeffic. Std Error 

 Constant 8.4657 (0.077)*** 7.8909 (0.053)*** 8.2367 (0.080)*** 7.8327 (0.050)*** 

 Capital 0.1144 (0.008)*** 0.1318 (0.007)*** 0.1256 (0.008)*** 0.1397 (0.007)*** 

 Labor 0.3557 (0.016)*** 0.3367 (0.016)*** 0.3807 (0.016)*** 0.3673 (0.015)*** 

 IC 0.4061 (0.011)*** 0.4200 (0.011)*** 0.4216 (0.011)*** 0.4237 (0.011)*** 

 Time -0.0104 (0.008) -0.0026 (0.008) 0.0087 (0.008) -0.0020 (0.008) 

 Capital² 0.0093 (0.004)* 0.0211 (0.004)*** 0.0185 (0.004)*** 0.0243 (0.004)*** 

 Labor² 0.0606 (0.016)*** 0.0670 (0.016)*** 0.0767 (0.017)*** 0.0817 (0.017)*** 

 IC² 0.1108 (0.007)*** 0.1226 (0.007)*** 0.1232 (0.007)*** 0.1271 (0.007)*** 

 Time² 0.0007 (0.000) 0.0003 (0.000) -0.0011 (0.000) 0.0002 (0.000) 

 Capital*Labor -0.0021 (0.006) -0.0007 (0.006) -0.0042 (0.006) -0.0034 (0.006) 

 IC*Capital -0.0075 (0.004)¨ -0.0087 (0.004)* -0.0096 (0.004)* -0.0120 (0.004)** 

 Labor*IC -0.0403 (0.009)*** -0.0467 (0.009)*** -0.0330 (0.009)*** -0.0410 (0.009)*** 

          

  1.3069 (0.074)*** - - 1.3022 (0.089)***   

  0.0143 (0.002)*** 0.0217 (0.002)*** - -   
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 
2
=V

2
+

2 0.6415 (0.027)*** 1.2891 (0.101)*** 0.6382 (0.039)*** 1.4440 (0.106)*** 

  0.6657 (0.011)*** 0.8224 (0.015)*** 0.6643 (0.014)*** 0.8370 (0.013)*** 

 Log 

(likelihood) 

-

3099.821 

 -3180.689  -3145.703  -3215.483  

          

 Test of hypothesis for parameters       

 Test Null hypothesis Assumptions 
2
-statistics Decision  

 TInv/SEff/Hnor
m 

 =  =  = 0 Model 1.0     3,981.5   ***  Reject H0 

 T. Invar/H. 
normal 

 =  = 0 Model 1.0        449.9   ***  Reject H0 

 Half Normal  = 0  Model 1.0        411.8   ***  Reject H0 

 Time Invariant  = 0  Model 1.0          57.5   ***  Reject H0 

 Stocastic Effect  = 0  Model 1.0     1,824.0   ***  Reject H0 

 Cobb Duglas β₆₋₁₂ = 0 Translog         268.9   ***  Reject H0 

 Returns to 
Scale 

β₁₋₃ = 1  Decrising Returns to Scale          65.5   ***  Reject H0 

          

SECTOR 4121 Maximum-likelihood estimates      

(Model 1.0) Model 1.0 Model 1.1 Model 1.2 Model 1.3 

 Variable Coeffic. Std Error Coeffic. Std Error Coeffic. Std Error Coeffic. Std Error 

 Constant 7.2619 (0.013)*** 7.0298 (0.015)*** 7.2647 (0.013)*** 7.8327 (0.050)*** 

 Capital 0.0824 (0.002)*** 0.0938 (0.002)*** 0.0818 (0.002)*** 0.1397 (0.007)*** 

 Labor 0.4922 (0.006)*** 0.4951 (0.005)*** 0.4841 (0.006)*** 0.3673 (0.015)*** 

 IC 0.2705 (0.003)*** 0.2702 (0.003)*** 0.2619 (0.003)*** 0.4237 (0.011)*** 

 Time 0.0063 (0.002)** -0.0014 (0.002) 0.0070 (0.002)*** -0.0020 (0.008) 

 Capital² 0.0316 (0.001)*** 0.0358 (0.001)*** 0.0330 (0.001)*** 0.0243 (0.004)*** 

 Labor² 0.1877 (0.006)*** 0.2159 (0.005)*** 0.1789 (0.006)*** 0.0817 (0.017)*** 

 IC² 0.1045 (0.003)*** 0.1050 (0.002)*** 0.0963 (0.002)*** 0.1271 (0.007)*** 

 Time² -0.0007 (0.000)** 0.0002 (0.000) -0.0008 (0.000)*** 0.0002 (0.000) 

 Capital*Labor -0.0074 (0.002)* -0.0116 (0.002)*** -0.0128 (0.002)*** -0.0034 (0.006) 

 IC*Capital -0.0103 (0.001)*** -0.0094 (0.001)*** -0.0074 (0.001)*** -0.0120 (0.004)** 

 Labor*IC -0.0878 (0.003)*** -0.0971 (0.003)*** -0.0779 (0.003)*** -0.0410 (0.009)*** 

          

  0.8556 (0.017)*** - - 0.8586 (0.018)*** - - 

  -0.0033 (0.001)** -0.0040 (0.001)*** - - - - 

 
2
=V

2
+

2 0.2514 (0.006)*** 0.6520 (0.026)*** 0.2528 (0.007)*** 1.4440 (0.106)*** 

  0.7280 (0.004)*** 0.8843 (0.005)*** 0.7291 (0.004)*** 0.8370 (0.013)*** 

 Log 

(likelihood) 

-

5019.609 

 -5577.369  -5038.424  -5585.477  

          

 Test of hypothesis for parameters       

 Test Null hypothesis Assumptions 
2
-statistics Decision  

 TInv/SEff/Hnor
m 

 =  =  = 0 Model 1.0   13,598.0   ***  Reject H0 

 T. Invar/H. 
normal 

 =  = 0 Model 1.0     1,131.7   ***  Reject H0 

 Half Normal  = 0  Model 1.0     1,115.5   ***  Reject H0 
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 Time Invariant  = 0  Model 1.0          37.6   **  Reject H0 

 Stocastic 
Effect 

 = 0  Model 1.0     9,852.6   ***  Reject H0 

 Cobb Duglas β₆₋₁₂ = 0 Translog      3,170.4   ***  Reject H0 

 Returns to 
Scale 

β₁₋₃ = 1  Decrising Returns to Scale        768.4   ***  Reject H0 

          

SECTOR 4122 Maximum-likelihood estimates      

(Model 1.2) Model 1.0 Model 1.1 Model 1.2 Model 1.3 

 Variable Coeffic. Std Error Coeffic. Std Error Coeffic. Std Error Coeffic. Std Error 

 Constant 7.0741 (0.047)*** 6.8925 (0.033)*** 7.0917 (0.062)*** 6.8868 (0.033)*** 

 Capital 0.0906 (0.007)*** 0.1026 (0.007)*** 0.0900 (0.008)*** 0.1023 (0.007)*** 

 Labor 0.4590 (0.016)*** 0.4640 (0.016)*** 0.4594 (0.015)*** 0.4687 (0.016)*** 

 IC 0.2746 (0.010)*** 0.2701 (0.010)*** 0.2798 (0.010)*** 0.2732 (0.010)*** 

 Time 0.0090 (0.006) 0.0035 (0.006) 0.0073 (0.006) 0.0037 (0.006) 

 Capital² 0.0307 (0.004)*** 0.0339 (0.004)*** 0.0316 (0.005)*** 0.0341 (0.004)*** 

 Labor² 0.2186 (0.020)*** 0.2351 (0.020)*** 0.2191 (0.020)*** 0.2374 (0.020)*** 

 IC² 0.0884 (0.008)*** 0.0889 (0.008)*** 0.0907 (0.008)*** 0.0905 (0.008)*** 

 Time² -0.0009 (0.000) -0.0004 (0.000) -0.0008 (0.000) -0.0004 (0.000) 

 Capital*Labor -0.0543 (0.008)*** -0.0560 (0.008)*** -0.0536 (0.007)*** -0.0563 (0.007)*** 

 IC*Capital 0.0054 (0.005) 0.0074 (0.005) 0.0026 (0.005) 0.0066 (0.005) 

 Labor*IC -0.0431 (0.011)*** -0.0582 (0.011)*** -0.0422 (0.011)*** -0.0586 (0.011)*** 

          

  0.6135 (0.060)*** - - 0.6374 (0.076)*** - - 

  0.0034 (0.004) 0.0067 (0.004) - - - - 

 
2
=V

2
+

2 0.1547 (0.015)*** 0.3312 (0.034)*** 0.1637 (0.016)*** 0.3433 (0.034)*** 

  0.6084 (0.026)*** 0.8012 (0.022)*** 0.6204 (0.028)*** 0.8076 (0.021)*** 

 Log 

(likelihood) 

-365.14  -387.01  -365.12  -388.27  

          

 Test of hypothesis for parameters       

 Test Null hypothesis Assumptions 
2
-statistics Decision  

 TInv/SEff/Hnor
m 

 =  =  = 0 Model 1.0     2,089.1   ***  Reject H0 

 T. Invar/H. 
normal 

 =  = 0 Model 1.0          46.3   ***  Reject H0 

 Half Normal  = 0  Model 1.0          43.7   ***  Reject H0 

 Time Invariant  = 0  Model 1.0          0.04   Acept H0  

 Stocastic 
Effect 

 = 0  Model 1.2 ()        847.8   ***  Reject H0 

 Cobb Duglas β₆₋₁₂ = 0 Translog         330.5   ***  Reject H0 

 Returns to 
Scale 

β₁₋₃ = 1  Decrising Returns to Scale        120.5   ***  Reject H0 

          

 Signif. codes:  0  ‘***’,  0.01 ‘**’,  0.05 ‘*’,  0.10 ‘'’     
 

 

The Cobb Douglas specification is rejected in all estimations in favor to the Translog 

specification. The null hypothesis, H0:  =  =  = 0, is rejected in all the sectors. Therefore it 



20 
 

is evident that the average production function is not an adequate representation of the sample. 

Furthermore, the hypothesis that the half-normal distribution is an adequate representation for 

the distribution of the firm effects is also rejected (H0:  =  = 0 and H0:  = 0). However, the 

hypothesis that time-invariant model for firm effects is not rejected for the sectors 4122. Given 

that in this sector, the time-invariant is appropriated to define the firm effects. 

Recapitulating, we select model 1.0 for the sectors 4110 and 4121, and the model 1.3 

for the sector 4122.  

The first order parameters in Table 3 can be identified as production elasticities 

evaluated at the sample means since all data were corrected by geometric mean before the 

estimation of SFA model. Looking in the elasticity of scale the results show that the sum of the 

parameters 1, 2 and ₃ are significantly different from one and, as a consequence, the sectors 

present decreasing returns to scale with a parameter placed in the interval 0.88-0.83. Hence, if 

all firms increase all input quantities by one percent, the output quantity will usually increase 

by around 0.88-0.83 percent. 

The coefficient of time (year of observation) is significant only for the sector 4121, and 

shows a slight technical progress in Hicks sense (average of 0.6 percent per year over the 

eleven-year period). 

As the estimate of γ is 0.66 in sector 4110, 0.72 in sector 4121 and 0.62 in sector 4121, 

we conclude that both statistical noise and inefficiency are important for explaining deviations 

from the production function but that inefficiency is more important than noise. As 
2
 is not 

equal to the variance of the inefficiency termu , the estimated parameter γ cannot be 

interpreted as the proportion of the total variance that is due to inefficiency.  

As neither the noise term itv  nor the inefficiency term itu  but only the total error term 

    = itit uv   is known, the technical efficiencies      =       are generally unknown. 

However, given that the parameter estimates (including the parameters 2
 and γ or V

2
and 

2
) 

and the total error term       are known, it is possible to determine the expected value of the 

technical efficiency (Coelli et al., 2005): 

 

  ̂     [ 
   ]         (4.2) 

 

We repeat the same estimation process for the sample of the period during de Financial 

Crisis 2007-2011. Table 4 provides the information about the Technical Efficiency before 
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(1996-2006) and after (2007-2011) the Housing Bubble Burst (Hereinafter HBB). Information 

about size sample and Returns to Scale are also shown. 

 

Table 4: Technical Efficiency period 1996-2006 and 2007-2011     

Period of 

time 

SECTOR 4110  SECTOR 4121  SECTOR 4122  

 N T.E. Returns to 

Scale 

N T.E. Returns to 

Scale 

N T.E. Returns to 

Scale 

1996-2006     3,804  0.27 0.88   19,845  0.43 0.85     2,040  0.55 0.83 

2007-2011     1,026  0.33 0.86     6,360  0.75 0.99        701  0.77 0.97 

 

In the same way as show in Table 4, the graphs shows in Figure 2 presents the Kernel 

density estimates of Technical Efficiency for time-period before and after the beginning of the 

financial crisis (from 1996 to 2006, and from 2007 to 2011) for each sector. 

Sector 4110 “Real estate development” shows the smallest mean efficiency in both 

periods, as well as a smaller difference between the two periods. Sector 4121” Residential 

buildings construction” in the in the opposite case is the sector with the greatest increase in TE 

contrasting the period before the financial crisis (0.43) to the period during the financial crisis 

(0.75). A possible first interpretation can be derived from this result: some technical inefficient 

firms might have been forced to disappear from the market due to the decrease in demand 

caused by the crisis. However, we can assure looking to the returns of scale that the increases 

in the average scale efficiency between periods as a result of the exit of scale inefficient firms.  

 

Figure 2. Kernel density estimates for Technical Efficiency pre- and post- Housing Bubble Burst 

   

       Sector 4110. Technical Efficiency (Kernel Density) 
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Sector 4121. Technical Efficiency (Kernel Density) 

 

Sector 4122. Technical Efficiency (Kernel Density) 
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Further insights can be achieved by splitting the sample of efficiency estimates into 

construction firms that are active versus those that exit the sector due to bankruptcy. To 

compare the efficiency of Spanish construction firms operating in Housing Bubble formation 

period 1996-2006, we separate the sample into two subsamples: bankrupt companies in the 

period 2007-2011 and active companies in the period 2007-2011. Table 4 presents the figures 

and Figure 3 presents the Kernel density estimates of TE of these two categories of firms’ 

situation for the period from 1996 to 2006. 

 

Table 4: Technical Efficiency period 1996-2006  

    
Companies 

SECTOR 4110 SECTOR 4121 SECTOR 4122 

N T.E. N T.E. N T.E. 

Backrupt in period 2007-2011 
       

937  0.34 
       

4,143  0.40 
      

605  0.49 

Actives  in period 2007-2011 
    

2,867  0.27 
     

15,702  0.45 
  

1,435  0.57 

 

Whit the exception of sector 4110 Figure 3 suggests that TE is slightly lower for 

construction firms that went bankrupt than for active firms. Thereby, we can confirm for 

sectors 4121 and 4122 that in average, some technical inefficient firms have been forced to 

disappear from the market in the period 2007-2011. 

 

Figure 3. Kernel density estimates for Technical Efficiency period 1996-2006 

 

Sector 4110. Technical Efficiency (Kernel Density) 
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Sector 4121. Technical Efficiency (Kernel Density) 

    

 

 

Sector 4122. Technical Efficiency (Kernel Density) 
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4.b.    Factors Affecting Efficiency 

 

A number of hypothesis were investigated with the intention of assess the relative 

influence of these explanatory factors and others random effects. As explained above, we will 

use the Technical Inefficiency Effects model (TIE) Battese and Coelli (1995). With the 

assumptions developed in section 3 in place, the parametric mean of the density function,    , 

can be defined as 

 

                                                               

                                              (4.3) 

 

We include the Year variable in the Technical Inefficiency Effects model to account for 

the changes in the technical inefficiency as time increases. We should clarify that this inclusion 

is compatible with Year variable include in the Stochastic Frontier Model, accounting for 

possible Hicks-Neutral technological change (Coelli and Battese, 1996). The technical 

inefficiency effects model discussed in section 3 is only useful when the inefficiency effects 

are stochastic and follow a specific distribution. 

The definition and expected signs of the explanatory variables used in this study are 

presented in Table 5. 

 

Table 5: List of explanatory variables 

 Eff. 

Determinants 
Vble type Measurement Expectec sing 

Age Value Age of the company each year Positive/Negative 

Size Value Number of subsidiaries company have Positive/Negative 

Export Dummy 1=Expor, 0=Otherwise Negative 

Debt Ratio Value Debt ratio each year Positive 

Diversification Dummy 1=Diversified, 0=Otherwise Negative 

InfoCA Dummy 1= Public Staff Remun,, 0=Otherwise Negative 

StockMarket Dummy 1=Publicly Traded, 0=Otherwise Negative 

T Value Yeard of Observation ?? 

 

The expected sign of the δ-parameters in the inefficiency model are not clear in all 

cases. The Older firms could be expected to have more experience and hence have less 

inefficiency. However Older firms are also likely to be more accommodate and thereby 

perhaps more inefficient. 
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 During the period post- HBB (2007-2011) the Spanish construction industry has 

undergone a hardship due to the excessive usage of debt. As You and Zi (2007) argued, there 

are some conflicting theories on the relationship between corporate leverage and efficiency. 

Spanish construction firms had been excessively levered and suffered from severe cash flow 

shortage. Therefore, we expect that the negative effect of leverage dominates the positive effect 

and high leverage ratio influences positively inefficiency. 

 Export and Diversification may be viewed as a market strategy. Economists suggest the 

reinsurance effect hypothesis that a firm’s diversification reduces its profit variability through a 

business portfolio effect and thus increases its value (Lewellen, 1971). 

InfoAC and StockMarket are variables related to corporate transparency. Listed 

companies are required to make additional retirement of information. Shareholders will have a 

better understanding of the real situation of the company and will act accordingly. For this 

reason, we consider that to be a listed company should be associated with less technical 

inefficiency. We use the same argument of transparency for companies that report board of 

directors’ remuneration.  

We estimate the Technical Inefficiency Effects Model with all sectors included for both 

periods, pre- HBB (1996-2006) and post-HBB (2007-2011). The results are shown in Table 6.  

All coefficients in the TIE Model are significant (at 1% significance level), and null 

hypothesis about joint significance of the variables were both rejected at the one percent level 

of significance which proves that variables are jointly significant.  

We look at the sense of the signs because the size of the coefficients of the TIE model 

(δ) cannot be reasonably interpreted
1
.  In the manner we expected Info AC and StockMarket are 

significantly negative, which means that corporate transparent firms are significantly more 

technical efficient. Age is significantly negative, which means that older firms are significantly 

more efficient and Year is significantly positive, which means that as time increases technical 

inefficiency increase.  

Export and Debt Ratio behaves as the expected sense in the post HBB period (2007-

2011), but opposite as expected in the pre-crisis period. Intuitively we might think that, for the 

Export variable, during the formation of the housing bubble, domestic market generate greater 

returns to investment than foreign market and after housing bubble burst, foreign market 

becomes more attractive. Debt Ratio behaviors could be associated with the patterns on 

                                                 
1 Marginal effects of the variables that should explain the efficiency level on the efficiency estimates can be calculate 

following Olsen and Henningsen, (2011). 
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financial system and the lack of liquidity after the HBB. Spanish firms with high leverage ratio 

and involved in liquidity and credit problems are adversely affected in their technical 

efficiency level. 

 

Table 6: Technical Efficiency Effects Frontier for period 1996-2006 and period 2007-2011  

Pre- HBB (1996-2006)     Post- HBB (2007-2011)    

Variable Coefficient Std Error Expected  Variable Coefficient Std Error Expected 

Constant -1635.0687 255.9***   Constant -8977.6941 1862.***  

Age -2.2019 0.317*** √  Age -1.0417 0.224*** √ 
Size 337.8483 52.23*** √  Size 686.0974 143.0*** √ 
Export 254.8382 39.39*** X  Export -100.2490 20.93*** √ 
Debt Ratio -1.0622 0.157*** X  Debt Ratio 0.0585 0.021** √ 
Diversification 98.8224 15.37*** X  Diversification -58.6194 12.24*** √ 
InfoAC -170.1813 27.07*** √  InfoAC -115.5026 24.23*** √ 
StockMarket -816.4395 126.2*** √  StockMarket -11.6104 1.166*** √ 
Year 14.8569 2.324***   Year 413.2766 85.65*** 


2
=V

2
+

2 218.4176 34.18***   
2
=V

2
+

2 696.1464 144.4***  

 0.9992 0.000***    0.9998 0.000***  

Test of hypothesis for parameters    Test of hypothesis for parameters   

Test Null hypothesis -statist. Decision  Test Null hypothesis -statist. Decision 

Efficiency effects  = δ₁₋₈ = 0 179.1*** Reject H0  Efficiency effects  = δ₁₋₈ = 0 99.1*** Reject H0 

Joint effects of 

Ineff. 

Determinants 

 δ₁₋₈= 0 162.9*** Reject H0  Joint effects of 

Ineff. 

Determinants 

 δ₁₋₈= 0 84.9*** Reject H0 

         

Signif. codes:  0  ‘***’,  0.01 ‘**’,  0.05 ‘*’,  0.10 ‘'’      

 

5. Concluding comments. 

 

The Spanish construction sector enjoyed a period of constant growth and played an 

important role in the development of the Spanish economy over the past several decades. 

However, the burst of the Spanish Housing Bubble in 2007 had made the construction sector 

undergo unprecedented hardships. A drastic decrease in demand for new housing added to the 

high external debt that the companies suffer from cause the wholesale collapse of its industry 

generating that from 2007 to 2013 one in two building companies has closed.  

This is the first empirical study examines the technical efficiency of Spanish 

Construction sector using Stochastic Frontier Analysis Model. This study estimates technical 
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efficiency of the firms under the three sectors related to Spanish building activity before and 

after the Housing Bubble Burst and compares the firms that went bankrupt versus those that 

were not. The empirical application used accountancy data from 2,815 construction firms in the 

period 1996-2011. We also identify several important factors of the efficiency change.  

In all sectors, Technical Efficiency is significantly larger after the beginning of the 

financial crisis than before the financial crisis. The improvement is mainly due to the 

disappearance of large number of companies on average, more Technical Inefficient. Increases 

in the average scale efficiency between periods were founds for two sectors as a result of the 

exit of scale inefficient firms during the financial crisis. 

Meanwhile, the results from the SFA method shows that Age affects positively the 

technical efficiency and corporate transparency firms have high levels of Technical 

Efficiency. 

Export and the leverage ratio variation are also significantly related with the TE level. 

But, this variables sign varies with the period we consider, pre-crisis or during-crisis. This 

behavior confirms the hypothesis suggesting that construction industry is an activity cyclically 

sensitive. At this point politics suggestions may arise, counter-cyclical policies to preserve 

economic and financial stability should be expanded in the sector. Promoting financial 

assistance to the companies in times of economic crisis and promoting export and 

diversification of the companies in expansive economic cycle could be measures consistent 

with this study. 

Finally, the SFA method was used in this study, however, alternative ways to estimate 

technical efficiency while incorporating explanatory variables do exist. For example, DEA 

estimation methods could be considered in future work, to investigate the influence of 

methodology choice upon our empirical results. 
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