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In this paper we introduce a general method for estimating semiparametrically
the different components in separable models+ The family of separable models
is quite popular in economic research because this structure offers clear inter-
pretation, has straightforward economic consequences, and is often justified by
theory+ This family is also of statistical interest because it allows us to estimate
high-dimensional complexity semiparametrically without running into the curse
of dimensionality+We consider even the case when multiple indices appear in the
objective function; thus we can estimate models that are typical in economic analy-
sis, such as those that contain limited dependent variables+ The idea of the new
method is mainly based on a generalized profile likelihood approach+ Although
this requires some hypotheses on the conditional error distribution, it yields a
quite general usable method with low computational costs but high accuracy even
for small samples+ We give estimation procedures and provide some asymptotic
theory+ Implementation is discussed; simulations and an application demonstrate
its feasibility and good finite-sample behavior+

1. INTRODUCTION

Separability plays an extremely important role in economics and econometrics+
As long ago as 1947 Leontief ~1947a, 1947b! introduced definitions, interpre-
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tations, and consequences for different levels of separability+ In general, sepa-
rability is motivated by the idea of two-stage decision making: Let G~x! be a
utility, demand, or production function with x � Rd + Imagine that the regres-
sors can be partitioned into aggregates or groups x j � x so that preferences
within them can be described independently of the quantities of the others+ Then
we have subutility functions hj~x j!, and we can write G~x!� F~h1,h2, + + + ,hp!+
Thus the decision is made first for each x j and then for the resulting set of
hj via F~{!+ In household expenditure decisions, for example, we imagine first
a budgeting for groups such as food, shelter, and entertainment and in the
second step budgeting within each group+ Alternatively, in production pro-
cesses separability is characterized by the independence of the marginal rate of
substitution between a group of inputs from changes in the level of another
input: ~]0]xk!~g ~i !0g ~ j ! ! � 0 or g ~ j !g ~i, k! � g ~i !g ~ j, k! � 0 with g ~i ! � ]G0]xi ,
g ~i, k! � ]2G0]xi]xk, i, j, k � 1, + + + ,d+ One speaks of weak separability when
xi , xj are from the same subset of inputs but xk is from a different one+ Strong
separability is given when xi , xj may also be from different subsets+ The sub-
sets are thought to be mutually exclusive and exhaustive+ Regarding the con-
sequences for the functional form of G, Goldman and Uzawa ~1964! show
that strong separability is equivalent to additivity G~x! � F~h1 � {{{ � hp!
whereas weak separability is equivalent to G~x! � F~h1, + + + ,hp!, where hs is
a function of the elements xk, k � 1, + + + , ds of subset s, s � 1, + + + , p only+
Blundell and Robin ~2000! give a long discussion of the extension of this
concept to latent separability, i+e+, grouping commodities without having even
weak separability+

There is an enormous amount of literature discussing separability for
demand and utility functions ~Deaton and Muellbauer, 1980! and for pro-
duction functions ~Denny and Fuss, 1977; Fuss, McFadden, and Mundlak,
1978!+ It is often considered in the context of problems of aggregation and
substitution ~Berndt and Christensen, 1973! but also for the specification of
flexible functional forms and separated inferences+ From a statistical point of
view, Stone ~1985, 1986! stresses flexibility, dimensionality, and interpret-
ability+ He proves that additive modeling can circumvent the curse of dimen-
sionality, which in nonparametrics is of fundamental importance; moreover,
it makes these methods feasible for higher dimensional problems+ This actu-
ally carries over to the more general case when the impact function can be
decomposed into lower dimensional functionals, as will be seen in this
paper+

Nonparametric estimation methods for separable models have so far focused
on additive models ~see, e+g+, the backfitting by Hastie and Tibshirani, 1990;
Mammen, Linton, and Nielsen, 1999! and on the marginal impact of particular
regressors applying marginal integration ~see, e+g+, Tjøstheim and Auestadt, 1994;
Linton and Nielsen, 1995!+ Recently, Horowitz ~2001! has presented a condi-
tional moment estimator for generalized additive models with unknown link
function but without partial parametric modeling and has discussed an exten-
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sion to a trivial case of weak separability+ As almost no structure is assumed,
this is a nice approach for pure exploratory data analysis, with the only pay-
ment being some numerical deficiencies+

Unfortunately, none of the methods mentioned previously allow for more
complex structural models such as multiple index models+ For some approaches
to non- or semiparametric estimation of some censored Tobit models we refer
to Lewbel and Linton ~2002! and Ai and Chen ~2002!+ Both use moment esti-
mators, and therefore they do not need to introduce distributional assumptions+
The latter approach also considers semiparametric separable models but can
only estimate the parametric part and is of a more theoretical nature+

In this paper we propose a semiparametric estimation method for separable
models+ Such models allow for a finite-dimensional parameter vector and also
for nonparametric modeling of separable components+ The unknown finite-
dimensional parameter vector is incorporated in the most general way; it can
be part of the link function or the error distribution, or it can be used for partial
linear modeling or even for combining nonparametric components+

This estimator extends previous estimators in at least two directions: weak
and latent separability is allowed, and limited dependent variables can also be
taken into account+ We also derive conditions such that the finite-dimensional
parameter can be estimated with the parametric rate and each separable com-
ponent with the rate according to its input variables+

Because we wanted a feasible, computationally nonintensive, but well per-
forming procedure that allows us to derive some asymptotic theory we have
chosen an estimation procedure that is based on a generalized profile likeli-
hood approach+ This method requires the assumption of a likelihood function
for the model errors+ Certainly, our method requires more distributional assump-
tions than conditional moment estimators+ However, several of the econometric
models considered can only be identified by specifying either the distribution
or the functionals+ Furthermore, likelihood methods apply straightforwardly to
all of the problems mentioned and have good finite-sample performance+ Note
finally that errors in likelihood estimation caused by violation of distributional
assumptions are less problematic than sometimes believed+ Instead, for models
typical in economic research, the errors due to a misspecification in the index
functions are usually quite serious compared to the rather negligible ones caused
by misspecification of the link+ See, e+g+, Fernandez and Rodríguez-Póo ~1997!+
They show that switching from a generalized linear model ~GLM! to a single-
index model ~SIM! with unknown link usually does not really change the final
results, whereas modeling the index in a more flexible way changes them a
great deal+

The rest of the paper is organized as follows+ In Section 2 we introduce and
explain the reasons behind the model+ The estimator and its asymptotic proper-
ties are given in Section 3+ In Section 4 we discuss more practical questions
and illustrate finite-sample behavior by simulations+ Section 5 concludes and
gives further discussion+ All proofs are postponed to the Appendix+
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2. THE STATISTICAL MODEL AND MOTIVATION

Consider a model for the relationship between a dependent variable Y � IR
and a set of explanatory variables ~X,T !, X � X, T � T, such that the con-
ditional distribution of Y given X and T belongs to the following family of
density functions indexed by u and h1, + + + ,hp:

$�~•6T ;h1, + + + ,hp ;u! : h1 � H1, + + + ,hp � Hp ,u � Q%, (1)

where Q is assumed to be a compact subset of IRk , H1, + + + ,Hp are, respec-
tively, compact subsets in IR, and X and T are also assumed to be compact sets
X � IRd , T � IRk +

The relationship between Y and ~X,T ! will be fully characterized by deter-
mining the values of u and h1, h2, + + + ,hp, where u is an unknown parameter
vector and hj’s are assumed to be unknown smooth functions of not necessarily
disjoint subsets of X, hj :Xdj

r Hj , that take values in a set

Gj � $f � C 2~Xdj
! :f~x j ! � Hj for all x j � Xdj

%+

More precisely, h1 � h1~x 1!, h2 � h2~x 2!, + + + ,hp � hp~x p!, where the vectors
x i � Xdi

, i � 1, + + + , p, may contain common elements+
For the sake of simplicity, we will consider X and T absolutely continuous

random variables defined in a compact support+ This is by no means necessary;
we could also include discrete or even dummy variables, especially for T,
replacing the densities by probabilities measures+ For the variable X that will
enter into the nonparametric estimation part we refer to Delgado and Mora
~1995!+ They show that the impact of discrete variables can be handled non-
parametrically in the same way and does not even affect the rate of convergence+

Note that our approach is fairly general and nests all separable models+
In fact, the structure of the model will depend on the family of conditional
densities into which it will be assumed to fall+ That is, the functional form of
�~{6T ;h1,h2, + + + ,hp;u! will be determined not only by the statistical assump-
tions but also by the restrictions introduced by economic theory+

To explain our considerations further we present one example from eco-
nomics where separability and0or limited dependency is of essential interest+
Gronau ~1973! proposes a theory of how a housewife decides whether or not
to work and how much to work+ He assumes that the wage offered, W o , is
given to each housewife independently of the hours worked H+ Then, given a
W o , a housewife maximizes her utility function U~C, X 1, X 2! subject to X �
W oH � V and C � H � Time, where C is time spent at home for child care,
X � ~X 1, X 2! represents all other goods, Time is total available time, and V is
other income+ Thus, a housewife does not work if

� ]U0]C
]U0]X �

H�0
� W o
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and does work if the inequality is reversed+ If she works, the hours of work H
and the actual wage rate W must be such that

� ]U0]C
]U0]X � � W+

Gronau calls the left-hand side of the preceding equation the housewife’s value
of time, i+e+, the reservation wage, W r + If the utility function U~{! is strongly
separable in the bundles of goods X 1 and X 2 , then Gronau’s model could be
statistically described as follows:

wi
o � h1~xi

1!� u1i , wi
r � h2~xi

2!� u2i � u1i ,

wi � wi
o if wi

o � wi
r ,

wi � 0 if wi
o � wi

r , i � 1,2, + + + ,N, (2)

where he assumes that the pair ~u1i ,u2i ! are independent and identically distrib-
uted ~i+i+d+! random variables generated from a bivariate Gaussian distribution
with zero mean, variances s1

2 , s2
2 , and covariance s12+

Note that in this example we have considerably weakened Gronau’s assump-
tions because we are allowing for h1~{! and h2~{! to be unknown smooth func-
tions of the different variables instead of imposing, as he did, that wo and wr

be writable as linear combinations of the independent variables+ As already re-
marked in many studies, linearity is often imposed for the sake of simplicity in
the specification of the statistical model but without justification from eco-
nomic theory+ Unfortunately, if our interest lies in weakening the restrictions
that concern the index function, we cannot at the same time relax the assump-
tions about the conditional distribution of the error term+ Therefore, for the sake
of identification, we need to take the conditional density of the error term as
known+

In model ~2! we are interested in estimating the parameters u �
~s1

2 ,s2
2 ,s12 ! and the unknown functions h1~{! and h2~{!+ Just to simplify fur-

ther discussion we impose for the sake of simplicity s12 � 0+ This condition is
used in Gronau ~1973!; however, as already remarked in Amemiya ~1985!, this
is a rather unrealistic assumption, and in fact it is not necessary for estimation
purposes+ Then, the full likelihood based on the statistical model that is de-
scribed in ~2! is

L �)
0
�1 � F � h1~xi

1!� h2~xi
2!

s2
��

�)
1

F � h1~xi
1!� h2~xi

2!

s2
�s1

�1 f �wi � h1~xi
1!

s1
� , (3)

where F is the cumulative standard normal distribution and f is its density, )0

is the product over all observations without jobs, and )1 is the product overall
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with jobs+ Note that ~3! represents a multiple-index model where the nonpara-
metric components are introduced into the structural model additively+

The assumption of strong separability of the utility function can be relaxed,
e+g+, by introducing weak separability between the bundles X 1 and X 2 + Then
Gronau’s model can take the following alternative form:

wi
o � h1~xi

1!� u1i , wi
r � h1~xi

1!h2~xi
2!� u2i � u1i ,

wi � wi
o if wi

o � wi
r ,

wi � 0 if wi
o � wy

r , i � 1,2, + + + ,N, (4)

and the full likelihood expression for model ~4! takes the form

L �)
0
�1 � F � h1~xi

1!$1 � h2~xi
2!%

s2
��

�)
1

F � h1~xi
1!$1 � h2~xi

2!%

s2
�s1

�1 f �wi � h1~xi
1!

s1
� + (5)

In this case ~5! represents a multiple-index model where the nonparametric com-
ponents are introduced in a nonadditive manner+ Certainly, a further possibility
for relaxing the model would be to make use of latent separability, i+e+, allow-
ing for some regressors to appear in both X 1 and X 2 +

Following this example, it is also possible to develop a structural model where
the participation ~binary choice! equation in ~2! and ~4! is replaced by a trun-
cated Tobit model+ This extension is based on Heckman’s model ~Heckman,
1974!, which differs from Gronau’s model in that the determination of hours
worked, H, is included in the model+ If we are only interested in the hours of
work ~H ! we have the following truncated Tobit model:

Hi � �h~xi , ti !� ui if h~xi , ti !� ui � 0
0 otherwise,

(6)

where X and T are characterized at the beginning of Section 2+ Assume also
that the error term, u, is normally distributed with zero mean and variance s 2 +
Then it could be interesting to model h~{! in various ways: a partially linear
model, a semiparametric partially additive model ~strong separability!, or weaker
forms of separability such as weak or latent separability+ Under the preceding
assumptions the truncated Tobit model has the following likelihood function:

L �)
1

F� h~xi , ti !
s

��1
s�1 f� Hi � h~xi , ti !

s
�+ (7)

Setting u � ~gT,s!T we again face one of the regression problems discussed+
Compare also Section 4+
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In the preceding examples, we have given reasons for working with a wide
class of semiparametric structural econometric models that present estimation
problems that are far from trivial and, to our knowledge, remain unsolved: the
estimation of censored and truncated models under different types of separa-
bility restrictions+ Certainly, in the much simpler case of a single regressor on
@0,1# , Conditions I, S, and NP of Severini and Wong ~1992! allow censored
or truncated variables+ Under the assumption of strong separability, alias addi-
tive models, a wide class of estimators has been already reviewed in Sec-
tion 1+ However, the assumption of separability is much weaker than additivity+
It allows for any combination and interaction between the component func-
tions, as can be realized in ~4!+ The main advantage of the estimation proce-
dure proposed in this paper is that it can handle a wide class of separable
models jointly with any kind of nonparametric multi-index structure, as we
have in ~2! or ~4!+

3. THE ESTIMATOR

Suppose we have a sample of N independent replicates $~Yi , Xi ,Ti !%i�1, + + + ,N + Our
goal will be to estimate jointly the parameter vector u � Q and the nuisance
parameters h1, h2, + + + , hp+ If as stated in Section 1 the conditional density of Y
given X and T belongs to the family of parametric functions represented in ~1!
we could write the following likelihood function:

Ln~u,h1, + + + ,hp ! � (
i�1

N

�~Yi 6Ti ;h1, + + + ,hp ;u! (8)

and then maximize it over the parameters of interest+ Estimation of a finite-
dimensional parameter in the presence of an infinite-dimensional nuisance pa-
rameter has been considered by a number of authors+ Here, we propose estimators
that are based on a generalized profile likelihood approach ~see Severini and
Wong, 1992!+ The estimation procedure consists of approximating the likeli-
hood function locally through a weighted likelihood approach developed in
Staniswalis ~1989!+ Furthermore, under certain hypotheses on the likelihood
function we also develop an estimator that is based on maximizing a local quasi-
likelihood function ~see McCullagh and Nelder, 1989; Severini and Staniswa-
lis, 1994!+ The main advantage of the method based on the quasi-likelihood
function is that there is no need to assume knowledge of the conditional den-
sity function+ However, its drawback is that it rules out the possibility of con-
sidering the multiple-index models that are typical in standard microeconomic
analysis+

Let us denote the estimators of the different curves at point x0 by [h1 �
[h1~x0

1!, + + + , [hp � [hp~x0
p!+ The estimation is then implemented through a three-

step procedure+ The steps are as follows+
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1+ For a given value x0 � ~x0
1 , + + + , x0

d! and fixed u, we estimate h1,h2, + + + ,hp as the
solution of the problem
~ [h1,u , [h2,u , + + + , [hp,u ! � sup

h1�H1, + + + ,hp�Hp

W~h1, + + + ,hp ,u!,

where the weighted likelihood is

W~h1, + + + ,hp ,u! � (
i�1

N

K� x0 � Xi

h � log �~Yi ,Ti ;h1, + + + ,hp ,u!

and K~{! is a d-variate kernel function and h the corresponding bandwidth+ Note
also that all estimators depend on u+ This step is repeated for all x0 because these
estimators are needed for the next part of the algorithm+

2+ Given the previous estimates for the nonparametric part, we perform a simple max-
imum likelihood estimation for u0, i+e+,

ZuN � sup
u�Q
(
i�1

N

log �~Yi ,Ti ; [h1,u~Xi
1!, + + + , [hp,u~Xi

p!,u!, (9)

and set [hj � [hj, ZuN for all j � 1,2, + + + , p+
3+ Now, with the estimators obtained in steps 1 and 2, we reestimate the nonparamet-

ric part as follows:

Z[hj ~x0
j! � sup

hj�Hj
(
i�1

N

Kj� x0
j � Xi

j

hj
� log �~Yi ,Ti ; [h1~Xi

1!, + + + ,hj , + + + , [hp~Xi
p!, ZuN !

for all j � 1, + + + , p+

The first two steps are derived from the generalized profile likelihood ap-
proach proposed in Severini and Wong ~1992! but extended to the case in which
u, h1, + + + ,hp, and X are multidimensional+ From these two steps we obtain a
root-N-consistent, efficient estimator of u0, but unfortunately the nonparamet-
ric components are estimated with the problem of the curse of dimensionality+

The third step is included to reduce the curse of dimensionality ~d is reduced
to dj ! of the nonparametric estimators+ Furthermore, it is also argued that this
third step is oracle efficient, i+e+, as efficient as the infeasible estimate that is
based on knowing all components but the one of interest+ This property has
been discussed in the context of additive models ~see Linton, 1997, 2000! and
is extended here to weak and latent separable models+

Let us introduce some notation and assumptions that will be used in the re-
mainder of the paper+ Denote by p~X ! the marginal density of X � ~X 1, + + + , X p!
and by pj~X j! the marginal density of X j + Further, set s 2~x! � E @Y 2 6X � x# ,
sj

2~x j ! � E @Y 2 6X j � x j# , and

w~ y, t;h1, + + + ,hp ,u! � ln �~ y, t;h1, + + + ,hp ,u!, (10)

Fj
~l !~ y, t;h1, + + + ,hp ,u! �

]

]hj
l F~ y, t;h1, + + + ,hp ,u! j � 1, + + + , p+ (11)
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Here, Fj~{! can be, respectively, �j~{!, wj~{!, or rj~{!+ Let mx denote a k-vector of
nonnegative integer constants+ For such a vector we define

~i! 6mx 6 � (j�1
k m j , where mx � ~m1, + + + ,mk!

T ,
~ii! for any function a~x! on IRk :

Dmxa~x! �
] 6mx 6

]x1
m1]x2

m2 + + +]xk
mk

a~x!+

Now, we require that the family of density functions

$�~•6T ;h1, + + + ,hp ;u! : h1 � H1, + + + ,hp � Hp ,u � Q%

satisfy the following conditions:

~A+1!+ For fixed but arbitrary u1,h1
� , + + + ,hp

� , where u1 � Q, and h1
� �

H1, + + + ,hp
� � Hp, let

r~h1,h2 , + + + ,hp ,u! ��w~ y, t;h1, + + + ,hp ,u!�~ y, t;h1
� , + + + ,hp

� ,u1! dy,

u � Q,h1 � H1, + + + ,hp � Hp +

If u � u1, then

r~h1,h2 , + + + ,hp ,u! � r~h1
� ,h2

� , + + + ,hp
� ,u1!+

Let Iu~h1,h2, + + + ,hp,u! denote the marginal Fisher information for u in the para-
metric model, i+e+,

Iu~h1,h2 , + + + ,hp ,u!

� E� ]
]u
w~Y,T ;h,u!

]

]uT w~Y,T ;h,u!�
� E� ]

]u
w~Y,T ;h,u!

]

]hT w~Y,T ;h,u!�
� E� ]

]h
w~Y,T ;h,u!

]

]hT w~Y,T ;h,u!��1

� E� ]
]h
w~Y,T ;h,u!

]

]uT w~Y,T ;h,u!� ,
where

]

]u
w~Y,T ;h,u! � � ]]u1 w~Y,T ;h1, + + + ,hp ,u!, + + + ,

]

]uk
w~Y,T ;h1, + + + ,hp ,u!�T
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and

]

]h
w~Y,T ;h,u! � � ]]h1

w~Y,T ;h1, + + + ,hp ,u!, + + + ,
]

]hp
w~Y,T ;h1, + + + ,hp ,u!�T

+

Then assume that the matrix Iu~h1,h2, + + + ,hp,u! is positive definite for all u � Q
and h1 � H1, + + + ,hp � Hp+

~A+2!+ Assume that for vectors 6rh6� 4 and 6su6� 4 such that 6rh6� 6su6� 4
the function

DrhDsuw~Y,T ;h1, + + + ,hp ,u!

exists for almost all Y and T+ Further, assume that

E �sup
u

sup
h
6DrhDsuw~Y,T ;h1, + + + ,hp ,u!62� � `+

Condition ~A+1! is an identification condition+ It is equivalent to Condition I
of Severini and Wong ~1992, p+ 1777!+ Condition ~A+2! is standard in likelihood-
related problems, and it allows differentiation and integration to be inter-
changed when differentiating

r~h1,h2 , + + + ,hp ,u! ��w~ y, t;h1, + + + ,hp ,u!�~ y, t;h1
� , + + + ,hp

� ,u1! dy+

This assumption is equivalent to Condition S of Severini and Wong ~1992,
p+ 1777!+

Next, we need to include some smoothness assumptions that are necessary
because of the use of nonparametric smoothing methods+

~B+1!+ For each u � Q and x � X let us define

h~u,h1, + + + ,hp , x! � E $w~Y,T ;h1, + + + ,hp ,u!6X � x%+

Then

sup
u,h1, + + + ,hp , x

6DrhDsuDtxh~u,h1, + + + ,hp , x!6 � `

for 2 � 6rh6 � 4, 6su6 � 2, 6 tx 6 � 1, and 6rh6 � 6su6 � 6 tx 6 � 4+

~B+2!+ Let the vector Thu~x! � ~ Th1,u~x 1!, + + + , Thp,u~x p!!T be the solution to

]

]h
h~u,h1, + + + ,hp , x! � 0,
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with respect to h for each fixed u and x+ Here Thu~x! is unique, and for any
constant e � 0 there exists another d � 0 such that

sup
u

sup
x 	 ]]hj

h~u,hu~x!, x!	 � d

implies that

sup
u

sup
x
6hj,u~x!� hj,u~x!6 � e

for j � 1, + + + , p+
~B+3!+ We define

Dh,u
rh , su~Y,T ! � DrhDsuw~Y,T ;h1, + + + ,hp ,u!

and let fu
~rh , su!~ y, t 6x! denote the conditional density of Dh,urh , su~Y,T ! given

X � x+ Then

~i! E~suph supu 6Dh,urh , su~Y,T !6! � ` for 6rh6 � 5 and 6su6 � 3,
~ii! for any even integer q � 10 it holds that suph supu E $6Dh,urh , su~Y,T !6q % � ` for
6rh6 � 3 and 6su6 � 4,

~iii! suph supu supy, x, t 6 fhu
~rh , su!~ y, t 6x!6 � ` for 6rh6 � 4 and 6su6 � 3

~iv! supx 6Dtxp~x!6 � ` and suph supu supy, x, t 6Dtx fhu~ y, t 6x!6 � ` for 6 tx 6 � m � 2,
~v! and 0 � infx p~x! � supx p~x! � `+

These smoothness assumptions affect the rate of convergence of the nonpara-
metric estimators of the different components h1, + + + ,hp+ In fact, in the Appen-
dix it is shown that ~B+1!–~B+3! are sufficient conditions to prove that the
nonparametric estimators [hj , j � 1, + + + , p, from Step I, have the following
properties:

~i! the N 104-consistency condition ~see Andrews, 1994!

sup
x0

j
�Xdj

6 Z[hj ~x0
j!� hj ~x0

j!6 � op~N�104 !,

~ii! and thus they are estimators of least favorable curves+

Property ~i! provides the slowest rate of convergence that the nonparametric
estimators must fulfill to allow ZuN ~in step 2! to achieve the MN rate+ The es-
timators proposed by Klein and Spady ~1993! and Ichimura and Lee ~1991!,
e+g+, satisfy this property+ Property ~ii! imposes an asymptotic orthogonality
condition between the parametric and the nonparametric estimators+ This im-
plies that the asymptotic distribution of ZuN is not affected by the distribution of
[h1, + + + , [hp and therefore the parametric estimator achieves the marginal Fisher

information for u+ Properties ~i! and ~ii! are equivalent to what is called Con-
dition NP in Severini and Wong ~1992, p+ 1779!+

Finally, we also need to impose some conditions on K~{! and hN + The main
conditions are as follows+
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~K+1!+ The kernel K~{! is a real valued function on IRd such that it is com-
pactly supported with z � ~z1, z2, + + + , zd !

T , zi � IR,

�z1
i1 + + + zd

id K~z1, z2 , + + + , zd ! dz1 + + +dzd � �1 if i1 � i2 � {{{ � id � 0
0 if 0 � i1 � i2 � {{{ � id � m,

�6z 6i 6K~z!6dz � ` for i � 0 and i � m,

and

sup
z
6DtzK~z!6 � ` for 6 tz 6� m � 2+

~H+1!+ hN is a sequence of constants satisfying hN � OP~N�a!,

1
4m

� a �
1

4d
q � p � 2
2p � q � 4

such that m0d � ~q � p � 2!0~2p � q � 4!+

To have mean square error converging to zero, if d � 4, Assumption ~H+1!
implies bandwidth rates of order a � 1

4
_ + Thus m must be larger than 2+ By

Assumption ~K+1! this implies a higher order kernel+ This is a standard bias
reducing technique, and jointly with Assumption ~H+1! on the bandwidth it is
needed to achieve the preceding condition of N 104-consistency+ Note finally that
the bandwidth rates required in condition ~H+1! are faster than the optimal ones+
This is also standard in semiparametric models and is due to the fact that the
bias of the nonparametric estimator would otherwise appear in the asymptotic
properties of the parametric part+

Then, if ZuN is the solution to optimization problem ~9! in step 2, the follow-
ing result is proved in the Appendix+

THEOREM 1+ Under Assumptions (A.1), (A.2), (B.1)–(B.3), (K.1), and (H.1),
as N tends to infinity

MN ~ ZuN � u0 !rd N$0, Iu�1~h1, + + + ,hp ,u!%,

where
Iu~h1,h2 , + + + ,hp ,u!

� E� ]
]u
w~Y,T ;h,u!

]

]uT w~Y,T ;h,u!�
� E� ]

]u
w~Y,T ;h,u!

]

]hT w~Y,T ;h,u!�
� E� ]

]h
w~Y,T ;h,u!

]

]hT w~Y,T ;h,u!��1

� E� ]
]h
w~Y,T ;h,u!

]

]uT w~Y,T ;h,u!�
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and

]

]u
w~Y,T ;h,u! � � ]]u1 w~Y,T ;h1, + + + ,hp ,u!, + + + ,

]

]uk
w~Y,T ;h1, + + + ,hp ,u!�T

,

]

]h
w~Y,T ;h,u! � � ]]h1

w~Y,T ;h1, + + + ,hp ,u!, + + + ,
]

]hp
w~Y,T ;h1, + + + ,hp ,u!�T

+

As can be observed from this result, the semiparametric estimator achieves
the semiparametric efficiency bound ~see Chamberlain, 1992; Newey, 1990,
1994!+ Note that our model restrictions do not contain any information about a
possible dependence structure between X and T+ Further note that the asymp-
totic variance could be approximated with the aid of the Hessian matrix+

Following the example introduced in Section 2, in Gronau’s model with strong
separability ~see equation ~2!!, the nonparametric estimators for h1 and h2 are
obtained by maximizing the smoothed log-likelihood version of ~3! and then

[h1 �

1
Nh d (

i�1

N

K� x0 � xi

h �1l ~wi
o � wi

r � 0!wi

1
Nh d (

i�1

N

K� x0 � xi

h �1l ~wi
o � wi

r � 0!
, (12)

[h2 � [h1 � s2 F�1 

1

Nh d (
i�1

N

K� x0 � xi

h �1l ~wi
o � wi

r � 0!

1
Nh d (

i�1

N

K� x0 � xi

h � � + (13)

The finite-dimensional parameter s1
2 can be estimated by maximizing the un-

smoothed log-likelihood version of ~3!,

[s1
2 �

(
i�1

N

~wi � [h1~xi !!
21l ~wi

o � wi
r � 0!

(
i�1

N

1l ~wi
o � wi

r � 0!
, (14)

whereas [s2 is a solution of an implicit formula expression+
Then, under the conditions stated in Theorem 1, we obtain the following result:

MN ~ [s1
2 � s1

2!rd N�0,s1
4 � 1 � g

g
�� (15)

and

g � E�F�h1~X 1 !� h2~X 2 !

s2
�� + (16)
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If instead of using strong separability, alias additivity, in Gronau’s model, we
use weak separability as in equation ~4!, then the estimator in step 1 for h1 is
the same as in the additive case, but for h2 we obtain the expression

[h2 � 1 �
s2

[h1
F�1 


1
Nh d (

i�1

N

K� x0 � xi

h �1l ~wi
o � wi

r � 0!

1
Nh d (

i�1

N

K� x0 � xi

h � � (17)

for h1~x0!� 0, ∀x0 � X+ Further expressions can be obtained as in the strongly
separable case+

Next we study the asymptotic behavior of the nonparametric estimators ob-
tained in step 3+ To do this, we introduce the following additional assumptions+

~C+1!+ Nhj
dj r ` and Nhj

dj�4 r 0, for j � 1, + + + , p, as N tends to infinity+

~C+2!+ The support of kernel Kj is compact and * tKj~t ! dt � 0, for any j+

~C+3!+ For all j � 1, + + + , p it holds that

E @wj
~1!~Y,T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,hp~X p !,u!6X j � x j #� 0+

Assumptions ~C+1!–~C+3! are standard in nonparametric regression litera-
ture+ For example, condition ~C+1! makes variance and bias tend to zero when
the sample size increases+ The condition Nhj

dj�4 r 0 can be weakened by as-
suming only that hj r 0+ Then, under the previous assumptions we obtain

sup
x0

j
�Xdj

6 Z[hj ~x0
j!� hj ~x0

j!6 � Op�� log N
Nhj

dj �� O~hj
2!+

Therefore, the asymptotic distribution of Z[hj ~x0
j! will have a nonnegligible

bias of order O~Nhj
dj�4!+ To correct the bias, two alternative procedures are

available in the relevant literature+ One is to approximate the distribution of
supx0

j
�Xdj
6 Z[hj ~x0

j! � hj ~x0
j!6, e+g+, by a bootstrap or subsampling technique ~see

Section 5!+ The other approach is to assume that the bandwidth hj tends to zero
slightly faster than the optimal rate, i+e+, Nhj

dj�4 r 0+ We have chosen the sec-
ond procedure, although we remark that at this rate of decay of the bandwidth,
our nonparametric estimator will achieve a rate of convergence that is slightly
slower than the optimal rate+ Condition ~C+3! is an identification condition that
is similar in additive models under Gaussian errors to the backfitting algorithm
~see Hastie and Tibshirani, 1990!+ Under these assumptions the following theo-
rem holds+

THEOREM 2+ Under the conditions of Theorem 1 and Assumptions (C.1)–
(C.3), for any j � 1, + + + , p
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(i)

MNhj
dj ~ Z[hj ~x0

j!� hj ~x0
j!!

Vj
102~ Z[hj ~x0

j!, ZuN !
rd N$0,1%,

(ii)

sup
x0

j
�Xdj

6 Z[hj ~x0
j!� hj ~x0

j!6 � Op�� log N
Nhj

dj �,
where

Vj ~hj ,u0 ! ��Kj
2~t ! dt

Ij ~hj ,u0 !

pj ~x0
j!$Hj ~hj ,u0 !%2

, (18)

Hj ~hj ,u0 ! � E @�wj
~2!~Y,T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,u0 !6X j � x0

j# , and (19)

Ij ~hj ,u0 ! � E @wj
~1!~Y,T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,hp~X p !,u0 !2 6X j � x0

j# (20)

as N tends to infinity.

Remark+ Note that under correct specification of the statistical model the
information equality holds, Hj~hj ,u0!� Ij~hj ,u0!, and then the asymptotic vari-
ance in ~18! collapses to

Vj ~hj ,u0 ! ��Kj
2~t ! dt

1
pj ~x0

j!Hj ~hj ,u0 !
+

As an example, in Gronau’s model with strong separability ~see equation ~2!!
under the conditions assumed in Theorem 2, the estimator for h1~x0

1! obtained
in step 3 has the closed form

Z[hj ~x0
1! �

1
Nh1

d1 (
i�1

N

K1� x0
1 � xi

1

h �1l ~wi
o � wi

r � 0!wi

1
Nh d1 (i�1

N

K1� x0
1 � xi

1

h �1l ~wi
o � wi

r � 0!
(21)

and shows the following asymptotic behavior:

MNh1
d1~ Z[h1~x0

1!� h1~x0
1!!rd N$0,V~x0

1!%

as N tends to infinity, where

V~x0
1! �

�K1
2~u! du$s1

2 � h1
2~x0

1!%

p1~x1
0!E �F�h1~X 1 !� h2~X 2 !

s2
�	X 1 � x0

1� +
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In the weakly separable case of equation ~4!, in step 3 we obtain the same es-
timator for h1 as in the additive case+ However, its asymptotic variance is dif-
ferent+ In this case, it can be shown that

V w~x0
1! �

�K1
2~u! du$s1

2 � h1
2~x0

1!%

p1~x1
0!E �F�h1~X 1 !$1 � h2~X 2 !%

s2
�	X 1 � x0

1� +
As can be noticed from the theorem, all nonparametric components are esti-

mated at the fastest possible rate overcoming the curse of dimensionality+ This
agrees with the results found by Stone ~1986! for additive models, but we re-
mark that the same result is achieved here with a weaker restriction on separa-
bility+ Also, as indicated before, we reach the same asymptotics as if the other
components in the model were known+ Finally, the ~pointwise! asymptotic ex-
pressions could be estimated without too much extra calculation+ Unfortu-
nately, it is well known that in finite samples these estimates of asymptotic
expressions are of little practical help+ Instead, we again refer to Section 5+

In some contexts, the results obtained in Theorems 1 and 2, mainly consis-
tency and Gaussian limiting distribution, still hold even if only part of the model
is correctly specified+ More precisely, by taking a one-parameter linear expo-
nential family as the conditional distribution of Y given X, maximum likeli-
hood estimates of the parameters of interest are consistent and asymptotically
normal+ The quasi-likelihood approach allows us to estimate models up to the
identifiable ~separable! components whenever they present a single-index
structure+

Each member of the family has a density that can be written as

�~Y,T ;h1, + + + ,hp ;u! � exp $Yd� b~d!� c~Y !%,

where d� ~h1, + + + ,hp,u!+ In this case, by the properties of the exponential den-
sity function, one gets

E~Y 6X � x,T � t !� g~t,h1~x 1 !, + + + ,hp~x p !,u0 !, and

V~Y 6X � x,T � t !� s2V0~g~t,h1~x 1 !, + + + ,hp~x p !,u0 !!,

where g~{! is a known function+ Note that again heteroskedasticity is included
but the variance function V0 must depend on T and X through the index
g~t,h1~x 1!, + + + ,hp~x p!,u0!+ In this case, it is possible in steps 1–3 to replace
the log-likelihood log �~{! by the quasi-likelihood function r~{, g~t,h1~x 1!, + + + ,
hp~x p!,u0!! defined as
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r~ y, g! ��
g

y ~s � y!
V~s!

ds,

where V~{! is a known function+ If we replace the true distribution by the quasi-
likelihood function in all steps of our estimation procedure, then, as shown in
Rodríguez-Póo, Sperlich, and Vieu ~2000!, the preceding results still hold+ How-
ever, as might be expected, there is an efficiency loss if the specification is not
equivalent to the real distribution+

To show the main results of this section we need to make the following
assumptions+

~Q+1!+ Let G denote a compact subset of IR such that g~t,h1~x 1 !, + + + ,
hp~x p!,u! � G for all t � T, x 1 � Xd1

, + + + , x p � Xdp
,h1 � H1, + + + ,hp � Hp, and

u� Q+ Then supG V~g!�`, infG V~g!� 0, supGV~g!�`, and supG *
gV~s! ds,

where

V~g! ��g ds
V~s!

+

~Q+2!+ For p � 1, + + + ,3 then ] pV~g!0]g p exists and is bounded for all g � G+

~Q+3!+ The function g~{! is at least three times continuously differentiable
bounded with respect to all its arguments+

~B+1'!+ As for ~B+1! replacing w~{! by r~{!+

~B+2'!+ As for ~B+2! replacing w~{! by r~{!+

~B+3'!+ As for ~B+3! replacing w~{! by r~{!+

~C+3'!+ For all j � 1, + + + , p

E� Y � g~T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,hp~X p !,u0 !

V~g~T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,hp~X p !,u0 !!

�
]

]hj
g~T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,hp~X p !,u0 !6X j � x j�� 0,

Assumptions ~Q+1!–~Q+3! are regularity conditions needed in the quasi-
likelihood framework mainly to guarantee that the quasi-likelihood function used
in estimating h1, + + + ,hp and u has the properties of a likelihood function+ Con-
dition ~C+3'! is the same as the identification condition ~C+3! but now in terms
of the quasi-likelihood function+
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THEOREM 3+ Under Assumptions (B.1')–(B.3'), (K.1), (H.1), and (Q.1)–
(Q.3), as N tends to infinity

MN ~ ZuN � u0 !rd N$0, Ju�1~h1, + + + ,hp ,u!%,

where

Ju~h1,h2 , + + + ,hp ,u!

� E� ]
]u

g~T ;h,u0 !
]

]uT g~T ;h,u0 !�
� E� ]

]u
g~T ;h,u0 !

]

]hT g~T ;h,u0 !�
� E� ]

]h
g~T ;h,u0 !

]

]hT g~T ;h,u0 !��1

� E� ]
]h

g~T ;h,u0 !
]

]uT g~T ;h,u0 !�,
with

]

]u
g~T ;h,u! � � ]]u1 g~T ;h1, + + + ,hp ,u!, + + + ,

]

]uk
g~T ;h1, + + + ,hp ,u0 !�T

and

]

]h
g~T ;h,u! � � ]]h1

g~T ;h1, + + + ,hp ,u!, + + + ,
]

]hk
g~T ;h1, + + + ,hp ,u0 !�T

+

As can be seen now, if the model is correctly specified both criterion func-
tions coincide, and therefore we obtain the efficient estimator that was shown
in Theorem 1+

The behavior of the estimator obtained in step 3 is given in the following
theorem+

THEOREM 4+ Under the conditions of Theorem 3 and Assumptions (C.1),
(C.2), and (C.3'), we have for any j � 1, + + + , p

MNhj
dj ~ Z[hj ~x0

j!� hj ~x0
j!!

Vj
102~ Z[hj ~x0

j!, ZuN !
rd N$0,1%,

sup
x0

j
�Xdj

6 Z[hj ~x0
j!� hj ~x0

j!6 � Op�� log N
Nhj

dj �,
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where

Vj ~hj ,u0 ! �
�Kj

2~t ! dt

pj ~x0
j!

� �E�� Y � g~t,h1~X 1 !, + + + ,hp~X p !,u0 !

V~g~t,h1~X 1 !, + + + ,hp~X p !,u0 !!

]

]hj

� g~T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,hp~X p !,u0 !�2

	X j � x j�

E� 1

V0~g~t,h1~X 1 !, + + + ,hp~X p !,u0 !!
�
]

]hj

� g~T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,hp~X p !,u0 !2 6X j � x j�2�102

,

as N tends to infinity.

From Theorem 4 we remark on two important issues: the estimator is oracle
efficient, i+e+, as efficient as the infeasible estimate that is based on knowing all
components except the one of interest+Moreover, this estimator avoids the curse
of dimensionality+ Linton ~2000! proposes a two-step estimator for the additive
components in a generalized additive ~i+e+, strongly separable! nonparametric
regression model+ In our approach, if we adopt a generalized additive model,
the asymptotic variance given in Theorem 4 collapses to the variance given in
Linton ~2000, Theorem 1, p+ 506!+ This result was expected because, for the
strongly separable case, to obtain the estimators for the additive components
Linton proposes a local linear approximation, whereas we propose a local con-
stant one+ As is well known ~see Fan, 1992!, the difference between the two
types of approximation is in the bias, but the variance stays the same+ Both
estimators avoid the curse of dimensionality, but Linton’s does not consider the
weak and latent separability case+

4. COMPUTATIONAL ASPECTS AND SIMULATIONS

In this section we deal with some questions that are relevant in practice and
illustrate the numerical performance of our estimators by some simulations+
After a bandwidth discussion we come back to the model examples from Sec-
tion 2, beginning with the censored Tobit model+ Second, we consider a trun-
cated Tobit and weak separability+ In that example we also discuss the problem
when the nonparametric part of the model of interest cannot be completely iden-
tified in step 1+ For those cases we suggest a feasible, well performing algo-
rithm, for which we also present a small simulation study+

Unfortunately, the choice of bandwidth or the corresponding smoothing
parameters in spline-, wavelet-, etc+, smoothing is still an open problem in multi-
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dimensional regression and testing+ From a mathematical point of view there
exists an optimal bandwidth in the sense that the mean squared error is mini-
mized+ Even though for our estimators plug-in methods and cross validation
are both possible in theory the inexactness of the asymptotic expressions in
finite samples and computational burdens renders these approaches impracti-
cal+ On the other hand, one has to admit that in our context of estimating flex-
ible functional forms non- and semiparametric methods are explorative tools,
maybe even just for finding the proper parametric model+ Looking at matters in
that way, an increase in the bandwidth simply corresponds to a decrease in the
degrees of freedom, unfortunately allowing an increasing bias toward constant
functionals+ An extension of our approach to a local linear smoother would re-
lax this to a bias toward linear functionals ~cf+, e+g+, Lejeune, 1985!+ But this is
left open for future research+ Note that these considerations do not hold for the
problem of testing parametric vs+ nonparametric functionals+ There, the opti-
mal bandwidth is the one that guarantees the correct significance level, which
is usually a different bandwidth from the mean squared error minimizing one+
As a consequence of all this, the empirical researcher should apply various band-
widths, always depending on their “tolerance” against smoothness or wiggli-
ness+ This holds especially for the choice of the hj’s in step 3+

In step 1, bandwidth hN has to be chosen appropriately to yield good esti-
mates for the parametric part of the model+ This can be handled by considering
the nonparametric part as nuisance parameters+ Then, as can also be seen from
theory ~e+g+, in condition ~H+1!!, one should undersmooth in step 1+All we need
there for the nonparametric part is sufficient smoothness to reach convergence
in the maximization algorithm+ Therefore, in practice we choose bandwidths
close to the smallest ones that still yield numerical convergence in steps 1 and 2+
In applications on real data some additional weighting or trimming could be
useful for points at the boundary or outliers+

How can a possibly unwanted double effect of hN on step 3 be avoided? We
speak of double effect because the final estimates Z[hj are affected not only by
the estimate of u but also by the preestimates of the hj , j � 1, + + + , p+ As indi-
cated in Section 3, the asymptotic results in Theorems 2 and 4 do not change if
we use consistent preestimates different from those proposed+ So one could,
e+g+, repeat step 3 without changing the theoretical results+ This means in prac-
tice that by only one iteration in step 3, one can limit the impact of hN ~on the
final estimates of the hj ! to the impact caused by ZuhN

+ This allows us to con-
sider the bandwidth choices in steps 1 and 3 separately+

4.1. Example 1—Censored Tobit

As mentioned previously, we come back to the censored Tobit models intro-
duced in Section 2+We first consider the strong separable one; i+e+, we generate
data from
wi

0 � h1~xi
1!� ui , wi

r � h2~xi
2!� vi , (22)
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with h1~x! � h2~x! � 2+0 � 2+00~exp $�10x% � 1! and ui , vi being indepen-
dently drawn from N$0,1% and observing wi � wi

0 1l $wi
0 � wi

r% +
Here, we have chosen the same functional form for h1 and h2 to compare

them afterward+ One might expect that the information lacking ~by not observ-
ing wr! would worsen the estimation of h2 and sv compared to h1, su+ We
implement a procedure that maximizes the likelihood:

L �)
0
�1 � F � h1~xi

1!� h2~xi
2!

Msu
2 � sv

2 ��
�)

1
F �wi � h2~xi

2!

sv
� su

�1 f �wi � h1~xi
1!

su
� ,

as did Gronau ~1974!, where F is the cumulative standard normal distribution
and f its density+

As we know that correlation between the covariates worsens the estimation
results for estimators such as marginal integration and backfitting ~see Sper-
lich, Linton, and Härdle, 1999! sometimes by a great deal, we draw N � 500
observations ~x 1, x 2 !T from N$0,S% with variances of 1+0 and covariances
s12 � 0+3+ Further, for the simulation it is more convenient to have all
data inside a given interval; therefore we transform each variable by x r
0+55~2+4 arctan~x!0p � 1+0! � 0+55, thus projecting all observations into the
interval @�0+55, 0+55# + Then the functions h1, h2 are estimated on a grid of
30 points from �0+5 to 0+5+

In step 1 we try bandwidths hN � 2+2sx , 2+4sx , 2+6sx , where sx indicates
the vector of the standard deviations of x1, x2+ Here, sx is close to the smallest
bandwidth without running into numerical problems+ Condition ~H+1! requires
higher order kernels in step 1+ As q in ~H+1! can be quite large, a kernel of
order m � 4 is sufficient, and we choose the “optimal” fourth-order kernel ~see
Lejeune, 1985!+ Mean and standard deviation of ~ [su, [sv! after performing 250
simulation runs for each bandwidth hN are displayed in Table 1+

In step 3 higher order kernels are no longer, necessary and we choose the
quartic one, which is of order 2+ As bandwidths we try h :� ~h1, h2!

T � 0+8sx ,
~h1, h2!

T � 1+0sx , and 1+2sx + Note that this leads to nine different estimates
~three different hN times three different h! for h1, h2 from which in Figure 1

Table 1. Means and standard deviations ~in parentheses! of the estimates re-
sulting from steps 1 and 2 after 250 simulation runs with model ~22!

hN 2+2sx 2+4sx 2+6sx

[su 1+0387 ~0+1457! 1+0242 ~0+1209! 1+0370 ~0+1552!
[sv 0+8510 ~0+2603! 0+8560 ~0+2651! 0+8723 ~0+2890!
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are given some selected results when using hN � 2+4sx in step 1+ The results
are displayed in terms of 95% pointwise confidence bands ~without bias cor-
rection! calculated from 250 simulation runs+ The dashed lines are the data gen-
erating functions+

First, as expected we discover clearly the bias and boundary effects, espe-
cially when choosing a large h in step 3+ Further, one can see how the under-
estimation of sv leads to confidence bands for h2 much wider than for h1+ Finally,
as a result of the “information loss” of not observing wr but wo , h2 is clearly
estimated with less exactness than h1+ Nevertheless, despite the complexity of
the model and highly correlated regressors the real shapes can be detected by
our procedure quite well+

We now consider an example extending the estimation problem in three di-
rections: weak separability, higher dimensions, and nonidentifiability in step 1+

4.2. Example 2—Truncated Tobit

Let us turn to a problem we so far have not explicitly discussed+ Consider a
truncated Tobit model as introduced in Section 2:

yi � �tiTg� h~xi !� ui if tiTg� h~xi !� ui � 0
0 otherwise,

(23)

Figure 1. 95% pointwise confidence bands of Z[h1 ~left!, Z[h2 ~right! from model ~22! for
bandwidths h T � 0+8sx in the upper row, and h T � 1+2sx in the lower one+ The con-
struction of the confidence band ~c+b+! is based on 250 replications with hN � 2+4sx +
Dashed lines represent the data generating functions+
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with ti � IR2 , xi � IR5 , ui ; N~0,s1
2!, and

h~x! � h1~x1!� h2~x2 !� h3~x3 !� h3~x3 !h4~x4 !+

Recalling the likelihood function, the problem we face here is that in steps 1
and 2 we cannot uniquely identify h1,h2, + + + ,h4 but only g, su, and h+ The
estimation algorithm we suggest in that case is as follows: first proceed to steps
1 and 2 for g, su, and h+ Then in step 3 solve a simultaneous equation system
for the smoothed likelihoods of Z[h1~xi

1! up to Z[h4~xi
4! making use of the esti-

mates obtained in steps 1 and 2+
A computationally feasible way is an iteration in step 3 over the four likeli-

hoods for the Z[hj as we have already suggested in the context of bandwidth dis-
cussion+ The major difference here is that as a result of the identification problem
in step 1, we do not have all necessary consistent preestimates at hand as de-
manded in Theorems 2 and 4+ Although it is known that the derivation of a
closed asymptotic theory for such an algorithm is impossible, it is a most intu-
itive procedure, known from operations research to converge under some reg-
ularity ~smoothness! conditions and providing the right thing, i+e+, the estimates
presented in our theorems+ The preestimates lacking in step 3 would be re-
placed by appropriately flexible parametric estimates+ In our simulation study
we use simply linear preestimation for h1 to h3 and start the iteration over h4+
Obvious extensions of our method that would allow identification but also the
derivation of asymptotic theory are discussed in the next section+

The data generating process is model ~23! with h1~x! � 1+0, h2~x! �
2x 2 � 1, h3~x! � sin~2x!, h4~x! � x, g � ~�1+5,2+0!T , and su � 1+0+ The re-
gressors are drawn independently with t1, t2 ; U @0,2# and xj ; U @�1,1# for
j � 1, + + + ,4+ We draw about 700 observations to end up always with N � 600
nontruncated ~ y � 0+0! observations+ For the estimation we apply the identifi-
cation condition E @h2#� E @h3#� E @h4#� 0 even though this is quite restric-
tive for h4+ However, simulations without fixing the expectation of h4 lead to
identification problems for h3 and h4+

Again we have to choose a higher order kernel in step 1 ~compare condition
~H+1!!+ Note that because of the identification problem p is just equal to 1 in
steps 1 and 2+With q large, a kernel of order m � 6 is sufficient to fulfill ~H+1!+
We choose the “optimal” sixth-order kernel ~see Lejeune, 1985! but the quartic
one in step 3+ Our bandwidths are hN � 4+0sx and h � ~0+6,0+6,0+6,0+9!Tsx ,
respectively+

After 500 replications we get for ZuT � ~ [g1, [g2, [su! in the mean ~�1+5051,
2+0115, 1+1105! with standard deviations ~0+09733, 0+10479, 0+059!+ Figure 2
gives the 99% pointwise confidence bands for the estimators of h1 to h4, again
without bias correction and based on 500 replications+ The dashed lines are the
data generating functions+

In Figure 2 we detect slight boundary effects, and certainly the bands for the
functional h1, i+e+, the constant, are quite wide because we estimate it without
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fixing the mean E @h1# + But otherwise the estimation procedure works quite
well and always detects the correct functional form even in this high-dimensional,
complex model with only N � 600 observations+

5. CONCLUSION AND EXTENSIONS

In this paper we present a new method for estimating semiparametric models
with nonparametric separable components and0or limited dependent variables+
These models are rather standard in economics literature+ In Section 2 we show
how our procedure can take into account many complex regression systems as
Tobit models+ This, to our knowledge, is the first method to date that allows
semiparametric modeling of such complex structures+ Aside from the theoreti-
cal consequences, shown in Section 3, the use of maximum likelihood tech-
niques allows us to identify the semiparametric model+ Moreover, it makes the
estimator feasible in the small data sets typical in empirical research+ This is
demonstrated in Section 4 together with a detailed discussion of problems re-
lated to application+

However, for the future it will be necessary to give some attention to the
problem of testing the distribution assumption+ Let us emphasize again that for
the sake of identification one cannot model nonparametrically both the distri-
bution function and the index functionals+ Therefore, in our context the distri-
bution assumptions cannot be relaxed more but have to be tested afterward+ In
the case of SIM, i+e+, models of the form E @Y 6X # � G$bTt � h~x!% , where

Figure 2. 99% pointwise confidence bands for all function estimates Z[h1 to Z[h4 from
the upper left to the lower right, based on 500 replications+ Dashed lines are the data
generating functions+
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h~{! is nonparametric, one can test the specification of G~{! as proposed in the
bootstrap paper by Härdle, Huet, Mammen, and Sperlich ~2000!+ Approximate
x2 tests could perhaps also be applied on the residuals+

The latter paper also gives many interesting guidelines with respect to boot-
strap inferences in our context+ The construction of confidence bands ~or inter-
vals! and the various specification tests developed there can be applied+ However,
making use of our estimators, the implementation to the models considered here
is not immediate+ Certainly the theory has yet to be properly developed+

An extension of this method to dependent data is straightforward+ A careful
check of the proof reveals that the same statements we made in Theorems 1–4
can be made for time series data with some strong mixing conditions+ How-
ever, for the sake of transparency in the ideas of methods and proof we have
restricted ourselves to the independent case and instead refer to Bosq ~1998!
for an idea as to how the proofs need to be modified to fit the dependent case+

An extension for which further theory is not necessary is the following+ Re-
call the identification problem discussed in Section 4+ Nonparametric func-
tions, say, h1 and h2, which always occur jointly in the index or indices, and in
the same additive or multiplicative way, e+g+, h1 � h2, can never be identified
separately in step 1 of our procedure+ Instead, one would restrict oneself, in
steps 1 and 2, to the estimation of the identifiable parameters and functions+
That is, one would estimate h1,2 � h1 � h2+ To estimate h1, h2 efficiently, in
step 3, it is sufficient to have any consistent preestimator for h1 or h2+ It is well
known ~see, e+g+, Linton, 2000; Härdle et al+, 2000! that these can be obtained
by marginal integration ~here, by integrating over [h1,2!, and the necessary theory
carries directly over to our case+ Note also that marginal integration applies not
only to additivity but also to many more combinations ~see Linton and Nielsen,
1995; Sperlich, Tjøstheim, and Yang, 2002; Pinske, 2000!+

If one were to apply marginal integration in general, before step 3, then our
paper overlaps for special cases with existing papers+ For instance for single-
indexed generalized additive partial linear models, our paper includes then the
estimators presented in Härdle et al+ ~2000! but adding step 3 to yield full effi-
ciency+ For the same model Linton ~2000! proposes a procedure, also using
marginal integration, where he yields “efficiency” by doing a single-iteration
backfit in step 3+ He speaks as we do of efficiency in the sense of reaching the
bounds of an oracle estimator for which the nuisance components are known+
See also our references to that paper in Section 3, where we compare the final
estimators in detail+
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APPENDIX: PROOF OF THE MAIN RESULTS
Proof of Theorem 1. The proof of this theorem is based on a generalization of Prop-

ositions 1 and 2 from Severini and Wong ~1992, p+ 1780!+ Assumptions ~A+1! and ~A+2!
imply directly Conditions I and S from Severini and Wong ~1992, pp+ 1777, 1778!+ Fur-
thermore, for fixed u, under ~A+1!, ~A+2!, ~K+1!, and ~H+1! the estimator obtained as a
solution of

~ [h1,u , [h2,u , + + + , [hp,u ! � sup
h1�H1, + + + ,hp�Hp

W~h1, + + + ,hp ,u! (A.1)

is an estimator of a least favorable curve+ To see this, note that if [hu~x! � ~ [h1,u~x!, + + + ,
[hp,u~x!!T is the solution to ~A+1! then

(
i�1

N ]

]h
log �~Yi ,Ti ; [h1,u , + + + , [hp,u ,u!K� x � Xi

h � � 0+

Furthermore

(
i�1

N ]2

]u]hT log �~Yi ,Ti ; [h1,u , + + + , [hp,u ,u!K� x � Xi

h �
� (

i�1

N ]2

]h]hT log �~Yi ,Ti ; [h1,u , + + + , [hp,u ,u!K� x � Xi

h � ]
]uT [hu~x!� 0+
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Then, using the preceding assumptions and the properties of the Watson–Nadaraya
smoother

]

]uT [hu~x!rp ��E� ]2

]h]hT w~Y,T ;h1~X 1 !, + + + ,hp~X p !,u0 !6T � t, X � x���1

� E� ]2

]u]hT w~Y,T ;h1~X 1 !, + + + ,hp~X p !,u0 !6T � t, X � x� ,
and the estimator obtained in ~A+1! is an estimator of a least favorable curve ~Severini
and Wong, 1992, p+ 1779, Condition NP~b!!+ Condition NP~a! is obtained as follows+
Let us denote

ZhN ~u,h1, + + + ,hp , x! �
Gh,u
~rh , su!~x!

Zf ~x!
�

1
NhN

d (
i

K� x � Xi

hN
�Dh,u~rh , su!~Yi ,Ti !

1
NhN

d (
i

K� x � Xi

hN
� +

Consider the case rh � su � 0+ Then, using the same approach as in the proof of Lem-
mas 5 and 8 from Severini and Wong ~1992! one can show that

sup
h1, + + + ,hp

sup
u

sup
x
6DtxGh,u~x!� Dtxh~u,h1, + + + ,hp , x!6

� Op~hN
m � N�@q02~ p�q�2!#N ghN

�~6 tx 6�d @~2p�q�4!0~ p�q�2!#!!

and

sup
h1, + + + ,hp

sup
u

sup
x
6Dtx Zf ~x!� Dtx f ~x!6

� Op~hN
m � N�@q02~ p�q�2!#N ghN

�~6 tx 6�d @~2p�q�4!0~ p�q�2!#!!

for some g � 0+ For the bandwidth use the rate assumed in ~H+1!; then

sup
h1, + + + ,hp

sup
u

sup
x
6 ZhN ~u,h1, + + + ,hp , x!� h~u,h1, + + + ,hp , x!6 � op~N�104 !

and

sup
h1, + + + ,hp

sup
u

sup
x
6Dtx ZhN ~u,h1, + + + ,hp , x!� Dtxh~u,h1, + + + ,hp , x!6 � op~N�104hN

�6 tx 6!+

The same can be done for 6rh6 � 0, and 6su6 � 0, and then Conditions NP~a! from
Severini and Wong ~1992, p+ 1779! are verified+ Because Conditions I, S, and NP are
verified, then Propositions 1 and 2 apply, and the proof is complete+ �

Proof of Theorem 2. To simplify the proofs, j is fixed, and we can see that Z[hj is
indeed such that

Z[hj � arg max Wj
*~hj , ZuN !,
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where

Wj
*~hj , ZuN ! �

1
Nhj

dj (i�1

N

Kj� x0
j � Xi

j

hj
� log �~Yi ,Ti ; [h1~Xi

1!, + + + ,hj , + + + , [hp~Xi
p!, ZuN !+

A Taylor expansion of wj
~1! around the point hj

i � hj ~Xi
j! gives directly the existence of

some Thj
i belonging between hj and hj

i , such that

wj
~1!~Yi ,Ti ; [h1

i , + + + , + + + ,hj , + + + , [hp
i , ZuN !

� wj
~1!~Yi ,Ti ; [h1

i , + + + , [hj�1
i ,hj

i , [hj�1
i , + + + , [hp

i , ZuN !

� ~hj � hj
i!wj
~2!~Yi ,Ti ; [h1

i , + + + , [hj�1
i , Thj

i , [hj�1
i , + + + , [hp

i , ZuN !+

So this leads directly to

]Wj
*~hj , ZuN !

]hj
� A1~ ZuN !� A2~hj , ZuN !� @A3~ ZuN !� A4~hj , ZuN !# ~hj � hj

0!, (A.2)

where

A1~ ZuN ! �

1
Nhj

dj (i�1

N

Kj� x0
j � Xi

j

hj
�wj

~1!~Yi ,Ti ; [h1
i , + + + , [hj�1

i ,hj
i , [hj�1

i , + + + , [hp
i , ZuN !

1
Nhj

dj (i�1

N

Kj� x0
j � Xi

j

hj
� ,

A2~hj , ZuN ! �

1
Nhj

dj (i�1

N

Kj� x0
j � Xi

j

hj
�~hj

0 � hj
i!wj
~2!~Yi ,Ti ; [h1

i , + + + , [hj�1
i , Thj

i , [hj�1
i , + + + , [hp

i , ZuN !

1
Nhj

dj (i�1

N

Kj� x0
j � Xi

j

hj
� ,

A3~ ZuN ! �

1
Nhj

dj (i�1

N

Kj� x0
j � Xi

j

hj
�wj

~2!~Yi ,Ti ; [h1
i , + + + , [hj�1

i ,hj
i , [hj�1

i , + + + , [hp
i , ZuN !

1
Nhj

dj (i�1

N

Kj� x0
j � Xi

j

hj
� ,

and

A4~hj , ZuN ! �
1

1
Nhj

dj (i�1

N

Kj� x0
j � Xi

j

hj
�

1
Nhj

dj (i�1

N

Kj� x0
j � Xi

j

hj
�

� @wj
~2!~Yi ,Ti ; [h1

i , + + + , [hj�1
i , Thj

i , [hj�1
i , + + + , [hp

i , ZuN !

� wj
~2!~Yi ,Ti ; [h1

i , + + + , [hj�1
i ,hj

i , [hj�1
i , + + + , [hp

i , ZuN !# +
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Now we will study the asymptotics of the preceding terms, recalling that under the
conditions established in Theorem 1, MN ~ ZuN � u0! � Op~1! and supx j�Xdj

6 [hj ~x j ! �
hj~x j!6� op~N�104! for j �1, + + + , p+ For the term A1 note that by the mean value theorem

1
Nhj

dj (i�1

N

Kj� x0
j � Xi

j

hj
�wj

~1!~Yi ,Ti ; [h1
i , + + + , [hj�1

i ,hj
i , [hj�1

i , + + + , [hp
i , ZuN !

�
1

Nhj
dj (i�1

N

Kj� x0
j � Xi

j

hj
�wj

~1!~Yi ,Ti ;h1
i , + + + ,hj�1

i ,hj
i ,hj�1

i , + + + ,hp
i ,u0 !

�
1

Nhj
dj (i�1

N

Kj� x0
j � Xi

j

hj
�(

l�j

p ]

]hl
wl
~1!~Yi ,Ti ; Th1

i , + + + , Thj�1
i ,hl

i , Thl�1
i , + + + , Thp

i , NuN !

� ~ [hl ~Xi
l!� hl ~Xi

l!!�
1

Nhj
dj (i�1

N

Kj� x0
j � Xi

j

hj
� ]

]uT

� wj
~1!~Yi ,Ti ; Th1

i , + + + , Thj�1
i ,hj

i , Thj�1
i , + + + , Thp

i , NuN !~ ZuN � u0 !+

By using the following results from Theorem 1:

sup
x0

j
�Xdj

6 Z[hj ~x0
j!� hj ~x0

j!6 � Op~N�104 !,

ZuN � u0 � Op� 1

MN �
and a strong law of large numbers we obtain

A1~ ZuN ! � A1~u0 !� op~N�104 !� Op� hj
2

MN
�

1
Nhj

dj 02�, (A.3)

where

A1~u0 ! �
1

Nhj
dj (i�1

N

Kj� x0
j � Xi

j

hj
�wj

~1!~Yi ,Ti ;h1
i , + + + ,hj�1

i ,hj
i ,hj�1

i , + + + ,hp
i ,u0 !+

Now, because E @wj
~1!~Y,T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,hp~X p !,u0 !6X j � x0

j# � 0, standard
results on Watson–Nadaraya smoothers give us

A1~u0 !rp 0,

E~A1~u0 !! � O~hj
2!,

Var~A1~u0 !! �
1

Nhj
dj ��Kj

2~t ! dtIj ~hj
0 ,u0 !pj

�1~x0
j!�� o� 1

nhj
dj�, (A.4)

and

Ij ~hj
0 ,u0 ! � E @wj

~1!~Y,T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,hp~X p !,u0 !2 6X j � x0
j# +
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For the next two terms, with the same arguments we arrive at

A2~hj , ZuN ! � A2~hj ,u0 !� op~N�104 !� Op� hj
2

MN
�

1
Nhj

dj 02�, (A.5)

where

A2~hj ,u0 ! �
(
i�1

N

Kj� x0
j � Xi

j

hj
�~hj

0 � hj
i!wj
~2!~Yi ,Ti ;h1

i , + + + ,hj�1
i ,hj

i ,hj�1
i , + + + ,hp

i ,u0 !

(
i�1

N

Kj� x0
j � Xi

j

hj
�

with

A2~h,u0 !rp 0,

E~A2~h,u0 !! � o~hj
2!,

Var~A2~h,u0 !! � o~Var~A1~u0 !!!, (A.6)

and

A3~ ZuN ! � E @wj
~2!~Y,T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,u0 !6X j � x0

j#

� op�hj
2 �

1

MNhj
dj�� op~N�104 !,

which finally leads to

A3~ ZuN ! � �Hj ~hj
0 ,u0 !� op~1!, (A.7)

where

Hj ~hj
0 ,u0 ! � E @�wj

~2!~Y,T ;h1~X 1 !, + + + ,hj ~X j !, + + + ,u0 !6X j � x0
j# +

For the term A4~hj , ZuN !, this can be dealt with by using various arguments+ Indeed, the
absolute continuity condition on wj

~2! leads directly to

A4~hj , ZuN !r 0 (A.8)

in probability+ This convergence is uniform over hj and u ~because both hj and u belong
to some compact and so the continuity of wj

~2! is indeed uniform!+ The proof of ~i! is
completed as follows+ Let us denote

Z � MNhj
dj ~ [hj � hj

0!+ (A.9)

By applying ~A+2! at point hj � [hj , we arrive at

Zj � MNhj
dj� A1~ ZuN !� A2~ [hj , ZuN !

�A3~ ZuN !� A4~ [hj , ZuN !
�+
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Using ~A+5! we have that

MNhj
djA2~ [hj , ZuN ! � MNhj

djA2~ [hj ,u0 !� Op�hj
2�~dj 02!�

1

MN �+
Moreover, by expression ~A+6!

MNhj
djE @A2~ [hj ,u0 !# � o~MNhj

dj hj
4!,

and finally, because of condition ~C+1! on the bandwidth we have that Z has asymptot-
ically the same distribution as

MNhj
dj

A1~ ZuN !

�A3~ ZuN !� A4~ [hj , ZuN !
+

Now apply ~A+3!, ~A+7!, and ~A+8! and remark that thus Z has the same distribution as
MNhj

dj A1~u0 !0Hj ~hj
0 ,u0 !+ On the other hand the Lindeberg–Feller theorem together

with ~A+4! leads to

MNhj
djA1~u0 !rd N�0,��Kj

2~t ! dt
Ij ~hj

0 ,u0 !

pj ~x0
j!

�+ (A.10)

To complete the proof of the first part of the theorem, note that by continuity of the
function Vj~hj ! and because of Theorem 2~ii! we have

Vj ~ Z[hj !

Vj ~hj
0!
rp 1+ (A.11)

Finally, because of Slutsky’s theorem, ~A+11! and ~A+10! are enough to prove the result
of Theorem 2~i!+

To show ~ii!, if in place of using the Lindeberg–Feller theorem as we did to prove ~i!,
we use Bernstein’s type inequality ~see Serfling, 1980, p+ 95! we immediately get the
following expression for A1~u0!:

A1~u0 ! � Op�� log N
Nhj

dj �+
Writing S now in the form

S � � A1~ ZuN !� A2~ [hj , ZuN !

�A3~ ZuN !� A4~ [hj , ZuN !
�,

and using ~A+5!, ~A+6!, ~A+7!, and ~A+8! to treat the terms A2, A3, and A4, we get directly

S � Op�� log N
Nhj

dj �+ (A.12)

Finally, ~A+9! and ~A+12! are enough to complete the proof of part ~ii! of the theorem+
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