
CONSTRAINED SMOOTHING
SPLINES

JUUUAAANNN M. ROOODDDRRRIIIGGGUUUEEEZZZ PÓÓÓOOO
Universidad de Cantabria

We use smoothing splines to introduce prior information in nonparametric models+
The type of information we consider is based on the belief that the regression curve
is similar in shape to a parametric model+The resulting estimator is a convex sum of
a fit to data and the parametric model, and it can be seen as shrinkage of the smooth-
ing spline toward the parametric model+We analyze its rates of convergence and we
provide some asymptotic distribution theory+Because the asymptotic distribution is
intractable,we propose to carry out inference with the estimator by using the method
proposed by Politis and Romano ~1994, Annals of Statistics 22, 2031–2050!+ We
also propose a data-driven technique to compute the smoothing parameters that
provides asymptotically optimal estimates+ Finally, we apply our results to the es-
timation of a model of investment behavior of the U+S+ telephone industry and we
present some Monte Carlo results+

1. INTRODUCTION

In this paper we address the problem of incorporating prior information in non-
parametric regression estimates+ The type of information we introduce is based
on the belief that the regression curve is similar in shape to a parametric curve+ If
we assume directly a parametric form for the regression curve, the unknown
parameters can be estimated by several procedures+ Parametric estimation meth-
ods provide good efficiency properties under very general conditions ~see Bickel
and Doksum, 1977!, but they often impose too much structure on data resulting
in estimators with non-negligible asymptotic bias+ Instead of constraining the
regression curve to belong to a family of parametric functions,we can estimate it
by nonparametric regression methods+ These methods allow us to extend the
class of structures under which the chosen procedures give valid inference+Among
these methods, the most popular are kernel regression ~Härdle, 1990!, smoothing
splines ~Wahba, 1990!, and local polynomial regression ~Fan and Gijbels, 1996!+

Preliminary parametric components traditionally have been incorporated in
the nonparametric setup through partial linear models ~see Heckman, 1986;Green,
1987; Speckman, 1988!+ In fact, this kind of model introduces the parametric
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component in the belief that at least part of the mean response can be approxi-
mated by this parametric structure+However, as has been remarked by Rice ~1986!,
the statistical properties of both parametric and nonparametric components are
interrelated, and incorrect specification of the parametric part of the model leads
to asymptotic bias in the estimators of both components+

We propose a nonparametric estimator that introduces the preliminary para-
metric component through a constrained optimization technique+ This procedure
has at least two advantages with respect to the previous developments+ First, it
introduces the parametric model as a restriction, and, therefore, it is possible to
relax this constraint with a penalty parameter that is data driven+ In the second
place, the statistical properties of the estimator remain intact even if the paramet-
ric model is incorrectly specified+ In such cases, the estimator still achieves its
proper rates of convergence+

The proposed constrained nonparametric estimator is based on smoothing
splines+ Because they are computed as a solution to a constrained optimization
problem, they are well suited to imposing additional restrictions in nonparametric
models+The resulting estimator is a convex sum of a fit to data and the parametric
model, and it can be viewed as “shrinking the smoothing spline towards the para-
metric model,” in the Stein shrinkage style ~see James and Stein, 1961!+ The
attractiveness of this procedure is that when the parametric model is correctly
specified then the nonparametric smoother can borrow strength from the low
dimensional model by shrinkage toward it+ We also establish connections with
other works combining parametric and nonparametric estimators, such as Olkin
and Spiegelman ~1987! and Burman and Chaudhuri ~1992!+

In Section 2 we introduce the model and we propose the estimator+ In Section
3 we compute the asymptotic bounds and the optimal rates of convergence and
derive the asymptotic distribution of our estimator+ Section 4 provides a data-
driven method to compute the penalty parameters+ Section 5 contains an appli-
cation in the estimation of a model of investment behavior in the U+S+ telephone
industry and a simulation study+ Finally, in Section 6 we give some conclusions
and suggest areas for future research+The main results are proved in the Appendix+

2. STATISTICAL MODEL AND ESTIMATION PROCEDURE

We consider a model of n independent observations y1, y2, + + + , yn with expectation
m~x!:

yi � m~xi !� ei ~i � 1, + + + ,n!+ (1)

The design variables xi are nonrandom and real valued, and, for simplicity,
they are assumed to lie in @0,1# + The function m~{! is unknown and needs to be
estimated+ The parametric curve that represents the prior belief is g~x;u!, where
u is a p-dimensional unknown parameter vector+ From now on, we introduce
the following notation y � ~ y1, + + + , yn!

T, m � ~m~x1!, + + + ,m~xn!!
T, and g~u! �
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~g~x1;u!, + + + , g~xn;u!!T+ For any vector h in Rn, we define 7h7n2 as the Euclid-
ean norm of h in Rn+ We shall make the following assumptions+

A+1+ The ei are independent and identically distributed ~i+i+d+! random vari-
ables with zero mean and variances 2 � 0+ They also have finite absolute ~2�a!
moments, a� 8+

A+2+ Define W2
~n!@0,1# as a nth order Sobolev space:

W2
~n!@0,1# � �m 6m, + + + ,m ~n�1! are absolutely continuous and

�~m ~n! ~t!!2 dt � `� +
We assume that m~x! � W2

~n!@0,1# +

A+3+ We also assume that the function g~x;u! and their t�1 first derivatives
are absolutely continuous and that its tth derivative is a bounded square integra-
ble function in @0,1#�Q+ The functions ]g~x;u!0]ur and ]2g~x;u!0]ur]us ~r, s �
1,2, + + + , p! are continuous on @0,1#�Q+

A+4+ Q is a closed, bounded ~compact! subset of R p+

A+5+ The observations xi are such that Fn~x!r F~x!, where Fn~x! is the em-
pirical distribution function and F~x! is a distribution function+

A+6+ Define u0 as

u0 � arg inf
u�Q

7m � g~u!7n2 + (2)

We assume that if g~z;u!� g~z;u0! then u� u0+Moreover, u0 is an interior point
of Q+

A+7+ The matrix function A~u0!� @ars~u0!# , where

ars~u0! �� ]g~x;u!]ur

]g~x;u!
]us

dF~x! (3)

is nonsingular+

We also define the distance between the unknown regression function and the
parametric family of functions under consideration as

dn � 7m � g~u0!7n2 + (4)

Note that if the parametric model is correct, dn � 0, and if the parametric model
is incorrectly specified, dn � 0+The distance dn will determine the optimal amount
of shrinkage of the smoothing spline toward the parametric model+
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To introduce the belief that m~{! is similar in shape to g~{,u! we propose to
derive an estimator that is based on a modified version of the following penalized
residual sum of squares:

L~m! � 7y � m7n2 � l1�
0

1

~m ~n! ~u!!2 du+ (5)

The first term of the sum accounts for the degree of fitness, and the second term
is the roughness penalty+ It is well known ~see Eubank, 1988! that minimizing
L~m! over the class of all ~n-differentiable! functions m~{!, at grid points $xi % i�1

n ,
yields an estimate [ml1

� ~ [ml1
~x1!, [ml1

~x2!, + + + , [ml1
~xn!!

T, which for given val-
ues of l1 is the best compromise between smoothness and goodness of fit+ It can
be also shown that the curve estimate [ml1

has the following properties:

~i! [ml1
~{! is a polynomial of degree 2n � 1 on any subinterval @xi , xi�1! for i �

1, + + + ,n � 1+
~ii! [ml1

~{! and its 2n � 2 first derivatives are continuous at the observation points
$xi %i�1

n +
~iii! The ~2n� 1!th derivative is a step function with jumps at the xi’s+
~iv! [ml1

~n!~t!� 0 outside of @x1, xn# +

As a result of ~iv!, [ml1
~x! satisfies the so-called natural boundary conditions

[ml1

~ j !~0! � 0 j � n, + + + ,2n� 1 (6)

and

[ml1

~ j !~1! � 0 j � n, + + + ,2n� 1+ (7)

The additional restriction imposed by the parametric function g~x;u! is intro-
duced by adding a new term in ~5!:

L~m;u! � 7y � m7n2 � l1�
0

1

~m ~n! ~u!!2 du � l27m � g~u!7n2 + (8)

The new term reflects the distance between the unknown regression function
m~{! and the prespecified parametric function g~{;u!+ The two parameters l1 and
l2 represent a trade-off in the requirements about fidelity to data, degree of smooth-
ness, and closeness to a prespecified function+ Ansley, Kohn, and Wong ~1993!
proposed to introduce the parametric constraint by considering a roughness pen-
alty defined by a differential equation instead of introducing a new term in the
criterion function+

We estimate the unknown regression curve m~{! and the parameter vector u
using a two-step procedure+ First, the unknown vector of parameters u is esti-
mated by nonlinear least squares techniques, Zun, i+e+,

Zun � arg inf
u�Q

7y � g~u!7n2 + (9)
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Then, the nonlinear estimate is plugged into the criterion function L~m;u!,

Ln~m; Zun! � 7y � m7n2 � l1�
0

1

~m ~n! ~u!!2 du � l27m � g~ Zun!7n2 , (10)

in this way finding the value of m that minimizes the preceding criterion function,

[ml � arg inf
m�W2

~n!
@0,1#

L~m; Zun!, (11)

where [ml� ~ [ml1,l2
~x1!, [ml1,l2

~x2!, + + + , [ml1,l2
~xn!!

T and g~ Zun!� ~g~x1; Zun!, + + + ,
g~xn; Zun!!T+ Before giving a closed form for the resulting estimator, [ml, let us
introduce some more notation+ Denote by NS 2n~x1, x2, + + + , xn! the linear space of
all real valued functions defined in @0,1# satisfying ~i!–~iv!+A closed form for the
estimator [ml is given by the following result+

THEOREM 2+1+ Let X1, + + + ,Xn be any basis for NS 2n~x1, + + + , xn!+ Assume that
A+1 and A+7 hold+ Let Zun be the solution to the following problem:

Zun � arg inf
u�Q

7y � g~u!7n2 + (12)

For fixed 0 � l1 � ` and 0 � l2 � `, there is a unique minimizer [ml of
Ln~m; Zun! in m~x! � W2

~n!@0,1# + Moreover, [ml � NS 2n~x1, x2, + + + , xn! and [ml�

(j�1
n blj Xj + The coefficients bl� ~bl1,bl2, + + + ,bln!T are the solution to

�X TX �
l1

1 � l2
Vn�bl �

1
1 � l2

X Ty �
l2

1 � l2
X Tg~ Zun!, (13)

where

X � $Xj ~xi !%i�1, + + + ,n
j�1, + + + ,n (14)

and

Vn � ��
0

1

Xi
~n!~u!Xj

~n!~u! du�
i�1, + + + ,n

j�1, + + + ,n

+ (15)

The resulting nonparametric estimator has a very simple form in terms of
smoothing splines+ Because

Hn� l1

1 � l2
� � X�X TX �

l1

1 � l2
Vn��1

X T (16)

is the smoothing matrix for the ~n � 1!th order smoothing spline with penalty
parameter l101 � l2 ~see Eubank, 1988, p+ 206!, we can rewrite ~13! as

[ml �
1

1 � l2
Hn� l1

1 � l2
� y �

l2

1 � l2
Hn� l1

1 � l2
�g~ Zun!+ (17)
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This expression is crucial both in terms of understanding and of analyzing the
estimator+ In fact, it is a convex sum of a fit to y and to g~ Zun!, and it encom-
passes a great variety of models+ If l2 � 0, then we have the natural smoothing
spline estimator+ If l2r ` and l1 � 0 then we obtain the parametric fit g~ Zun!+
This estimator is also related to the one proposed by Burman and Chaudhuri
~1992!, where their estimator is also a convex combination of both a nonpara-
metric and a parametric estimator+ Unfortunately, they were unable to justify the
expression obtained for their estimator+ Expression ~17! also makes it very easy
to derive the asymptotic properties for this estimator+

3. ASYMPTOTIC PROPERTIES

As a measure of discrepancy between the estimator [ml~{! and the true regression
function m~{!, we define the following functions:

Ln~l1,l2! � 7 [ml� m7n2 (18)

and

Rn~l1,l2! � E7 [ml� m7n2 + (19)

Let us introduce some more notation+ The expression an � O~bn! means that
there exists a constant M such that 6an6� M 6bn6, as nr`+ The expression an;
bn means that an0bnr c as n tends to infinity+

The following theorem describes the asymptotic behavior of [ml+

THEOREM 3+1 ~Asymptotic bounds!+ Assume conditions A+1–A+7 hold+ Then
if l101 � l2r 0 and n~l101 � l2!r `,

Ln~l1,l2! � � 1
1 � l2

�2�O� l1

1 � l2
�� Op�n�1� l1

1 � l2
��~102n!��

� � l2

1 � l2
�2�O� l1

1 � l2
�� Op� 1

n�� dn�
as n goes to infinity+

In the case that g~x;u! is incorrectly specified ~dn � 0! then the quantity
Ln~l1,l2! is bounded away from zero and we do not get the desired consistency
result for the estimator [ml+ One solution to this problem is to choose a sequence
of values for l2 that tends to zero when the sample size n increases+Therefore, the
consistency of [ml requires that both penalty parameters, l1 and l2, tend to zero+
We can also observe that if the parametric model g~x;u! is correctly specified, the
value of l2 is negligible for the consistency of [ml+ The following theorem gives
the achievable rates of convergence for this estimator+
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THEOREM 3+2 ~Rates of convergence!+ Assume conditions A+1–A+7 hold+ If
l1; n�2n0~2n�1! and l2 � O~n�n0~2n�1! ! then

Ln~l1,l2! � Op~n�2n0~2n�1! !, (20)

as n tends to infinity+
Moreover, if the parametric model is correctly specified ~dn � 0!, when l1;

n�2n0~2n�1! and l2; n102~2n�1! then

Ln~l1,l2! � Op~n�1 ! (21)

as n tends to infinity+

The constrained smoothing spline estimator achieves, at worst, a rate of con-
vergence that was shown by Stone ~1982! to be optimal for this class of nonpara-
metric regression models+However, if the parametric model is correctly specified
then, under a predetermined sequence of penalty parameters, [ml achieves para-
metric rates+We can also derive a convergence in distribution result for [ml+

THEOREM 3+3 ~Asymptotic normality!+ Assume conditions A+1–A+7 hold and
let x � ~0,1!+ If l1; n�2n0~2n�1! and n2n~2n�1!l2r 0 then

[ml~x!� m~x!
s~x!

rd N~0,1! (22)

as n tends to infinity, where

s 2~x! � E~ [ml~x!� m~x!!2+

Note that under the conditions established in Theorem 3+3, the rate of conver-
gence is the optimal n�2n0~2n�1!+ However, we needed to impose stronger condi-
tions for the speed of convergence of the penalty parameter l2 toward zero+ The
reason is that, although under the rates of decrease for l1 and l2 established in
Theorem 3+2 the limiting distribution is still normal, the task of estimating the
bias is awkward+ It is therefore preferable to eliminate the mean of the limiting
normal distribution by increasing the rate at which the penalty parameter l2 must
tend to zero+

The variance s 2~x! is intractable, and, therefore, it is very difficult to make
inferences based directly on the asymptotic distribution of the estimator+ How-
ever, the method provided by Politis and Romano ~1994! to construct confidence
intervals provides a very nice solution to this problem+ Our goal is to construct a
confidence region for m~x!+

Let ~x i, y i ! � $~x~1! , y~1! !, + + + ,~x~Nn! , y~Nn! !% be one of the Nn � �n
b� ordered

subsets of ~x1, y1!, + + + ,~xn, yn!+ In typical situations it will be assumed that b0nr
` and br` as n tends to infinity+Now, let Zn, i~x! be [ml~x! evaluated at the data
set ~x i, y i !+Define also as Jn the sampling distribution of gn~ [ml~x!�m~x!! based
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on a sample of size n with corresponding c+d+f+ denoted by Jn~{!+ The term gn is a
rate of convergence that will be defined precisely in the next theorem+ The c+d+f+
of the Gaussian distribution is F~{!, and the approximation to Jn~{! we study is
defined by

Tn~u! �
1
Nn
(
i�1

Nn

1$gb~Zn, i ~x!� [ml~x!!� u%+ (23)

The following result is based on Theorem 2+1 from Politis and Romano ~1994!+

THEOREM 3+4+ Assume conditions A+1–A+7 hold and let u be a continuity
point of Jn~{!+ Then if l1; n�2n0~2n�1! and n2n0~2n�1!l2r 0

~i! Tn~u!r F~u! in probability+
~ii! supu6Tn~u!r Jn~u!6r 0 in probability+
~iii! Let cn~1 � a! � inf $u : Tn~u! � 1 � a%+ Correspondingly, define c~1 � a! �

inf $u :F~u!� 1 � a%+ Then

Pr$nn0~2n�1! ~ [ml~x!� m~x!! � cn~1 � a!%r 1 � a, (24)

and the asymptotic coverage probability of the interval @ [ml~x! � n�n0~2n�1!

cn~1 � a!,`! is 1 � a+

4. THE CHOICE OF THE PENALTY PARAMETERS

In Section 3, we have shown some asymptotic properties of the constrained
smoothing spline estimator+ However, all of these properties have been derived
under a predetermined sequence of values for the penalty parameters l1 and l2+
In this section,we provide an automatic method to compute both parameters, and
then we show how this method of selection gives the proper rates of convergence+

In order to estimate the penalty parameters l1 and l2 we propose to use the
generalized cross validation method+ This procedure computes the penalty pa-
rameters l1 and l2 that minimize the following criterion function:

GCVn~l1,l2! �

n�1(
i�1

n

~ yi � [ml~xi !!
2

�1 � n�1 tr�Hn� l1

1 � l2
���2

+ (25)

The generalized cross validation criterion was originally introduced by Craven
and Wahba ~1979! in the context of smoothing spline functions, and its perfor-
mance with respect to other estimation criteria has been studied in Wahba ~1985!
and Kohn and Ansley ~1991!+

We will first investigate the relationship between the GCVn~l1,l2! and
Rn~l1,l2!+ In order to do this we introduce a modified version of the general-
ized cross validation theorem+
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THEOREM 4+1+ Let tj~l1,l2!� n�1 tr~Hn~l101�l2!
j !, j �1,2, and assume

that t1~l1,l2!� 1+ Then,

	 E @GCVn~l1,l2!#� s
2 � Rn~l1,l2!

Rn~l1,l2! 	 � h~l1,l2!, (26)

where

h~l1,l2! �
2t12~l1,l2!

~1 � t1~l1,l2!!
2 �

1 � l2

~1 � t1~l1,l2!!
2

� 	2l2
t1~l1,l2!

t2~l1,l2!
� ~1 � l2!

t1
2~l1,l2!

t2~l1,l2! 	
�

2n�1l2

~1 � l2!~1 � t1~l1,l2!!
2

� 	E�eTHn� l1

1 � l2
�~g~ Zun!� g~u0!!�	+

If h~{! is small,Theorem 4+1 implies that the distance between the risk Rn~l1,l2!
and the expected value of the generalized cross validation function is small rel-
ative to the intrinsic accuracy measure of the risk+This can be roughly interpreted
as if GCVn~l1,l2! is an unbiased estimator ofs 2 �Rn~l1,l2!, and, therefore, the
values of l1 and l2 that minimize both criteria will be asymptotically the same+

We rigorize this conjecture in the following theorem+

THEOREM 4+2+ Let l1
* and l2

* be minimizers of

Rn~l1,l2! � n�1(
i�1

n

E~ [ml~xi !� m~xi !!
2 (27)

and Dl1 and Dl2 the minimizers of E @GCVn~l1,l2!# + Then under Assumptions A+1–
A+7

Rn~ Dl1, Dl2!

Rn~l1
* ,l2

* !
rp 1 (28)

as n tends to infinity+

From Theorems 4+1 and 4+2 we realize that to get asymptotic optimality, it is
necessary that the smoothing parameter l2 tend to zero as the sample size in-
creases+ This avoids the case when our estimator achieves the parametric optimal
rate of convergence ~this rate is achieved when the parametric model is correctly
specified and among other assumptions l2 tends to infinity!+This result is already
known, and it basically means that the optimal rate of convergence of the minimal
expected error minl1 ,l2

Rn~l1,l2!, must be slower than 10n+ Li ~1986! pointed
out that without this requirement it seems that no selection procedure can be
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asymptotically optimal+ For many problems this condition is equivalent to the
condition that [ml is not infinitely smooth+

Another question that remains open is whether the asymptotic results claimed
in Theorems 3+2 and 3+3 remain valid when the penalty parameters l1 and l2 are
estimated by the generalized cross validation method+ From Theorem 4+3 it fol-
lows that the constrained smoothing spline remains consistent and has the same
rates of convergence as in the theoretical case+ However, it is not clear whether
the asymptotic normality goes through+

THEOREM 4+3+ Let Dl1 and Dl2 be the minimizers of E @GCVn~l1,l2!# + Under
Assumptions A+1–A+7,

Ln~ Dl1, Dl2! � Op~n�2n0~2n�1! !

as n tends to infinity+

5. APPLICATION AND SIMULATION STUDY

As an application, we have considered the estimation of a model of investment
behavior in the U+S+ telephone industry over the period 1949 to 1968 ~see Sankar,
1973!+ To estimate the appropriate relationship between the desired capital stock
and other variables, it is necessary to assume a specific production function, e+f+
Cobb–Douglas,C+E+S+, or others+ If we assume that the production in the industry
is characterized by the Cobb–Douglas production function the desired stock of
capital at year t, Kt

� , can be expressed as

Kt
� � a� PQ

c �
t

t � 1, + + + ,T, (29)

where a is the elasticity of output with respect to capital, P is the price of final
output, Q is the production, and c is the rental price of capital+ Assuming the
observed capital stock Kt is a function of the desired capital stock, the following
model is estimated:

Kt � a0 � a1� PQ
c �

t
� et t � 1, + + + ,T+ (30)

The linear relationship between Kt and ~PQ0c!t is recommended by the underly-
ing specification of the Cobb–Douglas production function+ However, it would
be much more robust against misspecifications in the functional form to estimate
nonparametrically the preceding relationship+ We combine the two approaches
by estimating nonparametrically the relationship between the observed capital
stock and ~PQ0c! and by keeping the underlying Cobb–Douglas approach by
imposing the shape constraint of linearity+ Following the procedure introduced in
Section 2, we have first computed the ordinary least squares ~OLS! estimation of
a0 and a1, [a0 � �14,695+71 and [a1 � 0+43387+ Second, we have computed the
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estimator [mlwith values for l1 and l2 estimated by generalized cross validation+
Figure 1 plots the data together with the linear OLS fit, the smoothing spline
constrained to the linear parametric function, and the confidence bands con-
structed by the method proposed in Section 3+ The results suggest that another
specification different to the linear form should be adopted+

Finally,we carried out a simulation study to analyze the small sample behavior
of the constrained smoothing spline estimator and the estimated values of the
penalty parameters+ The following errors have been empirically evaluated:

E1n �
1
n (i�1

n

@ [ml1,l2
~xi ; Zun!� m~xi !#

2, (31)

E2n �
1
n (i�1

n

@g~xi ; Zun!� m~xi !#
2, (32)

and

E3n �
1
n (i�1

n

@ [ml~xi ; Zun!� m~xi !#
2+ (33)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5−
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

PQ/c 105

10
4

Constrained smoothing spline
OLS Linear Fit
Data points
Confidence bands

Figure 1. Constrained smoothing splines and confidence bands+
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The term E1n represents the risk function for the constrained smoothing spline
estimator of penalty parameters l1 and l2, E2n is the risk for the nonlinear least
squares estimator, and, finally,E3n represents the risk for the natural cubic smooth-
ing spline with penalty parameter l+We have considered the following data gen-
erating processes+

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DP1
DP2
DP3
DP4

−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6

Figure 2. Data generating processes+

Table 1. Empirical errors under DP1

E1n E2n E3n

Sample size 10% 50% 90% 10% 50% 90% 10% 50% 90%

n � 50 0+021 0+049 0+068 0+043 0+072 0+164 0+017 0+058 0+096
n � 100 0+003 0+017 0+035 0+006 0+015 0+102 0+005 0+019 0+054
n � 200 — 0+007 0+012 — 0+005 0+096 — 0+009 0+023
n � 500 — 0+003 0+016 — 0+002 0+083 — 0+006 0+026
n � 1,000 — 0+002 0+011 — 0+001 0+062 — 0+003 0+018
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DP1+ m~x!� x � 0+5+

DP2+ m~x!� x � 0+5 � 0+25 exp~�80x 2 !+

DP3+ m~x!� x � 0+5 � exp~�80x 2 !+

DP4+ m~x!� ~x � 0+25!~x � 0+5!~x � 0+75!+

DP1 is a standard linear model, and DP2 and DP3 are used in Gasser, Sroka,
and Jennen-Steinmetz ~1986!+ This family of functions represents a unimodal
departure from linearity, where the magnitude of this departure is controlled by
the coefficient associated to the exponential function ~0+25 in DP2 and 1+0 in
DP3!+ Finally, DP4 was proposed by Rice and Rosenblatt ~1981!+ The observa-
tions are generated

yi � m~xi !� ei (34)

with m~{! being either DP1, DP2, DP3, or DP4 and where the errors are inde-
pendent N~0, 14_ !+ In Figure 2, we show the functions related to the different data
generating processes+ For each sample size ~n � 50, 100, 200, 500, 1,000! the
observations xi are equally spaced on the interval ~0,1!+We make 1,000 replica-

Table 2. Empirical errors under DP2

E1n E2n E3n

Sample size 10% 50% 90% 10% 50% 90% 10% 50% 90%

n � 50 0+014 0+056 0+081 0+047 0+079 0+180 0+037 0+067 0+089
n � 100 0+021 0+052 0+068 0+007 0+016 0+112 0+040 0+051 0+078
n � 200 0+018 0+044 0+051 0+005 0+009 0+144 0+031 0+040 0+105
n � 500 0+018 0+032 0+043 — 0+009 0+035 0+021 0+027 0+058
n � 1,000 0+001 0+019 0+028 — 0+001 0+072 0+007 0+013 0+020

Table 3. Empirical errors under DP3

E1n E2n E3n

Sample size 10% 50% 90% 10% 50% 90% 10% 50% 90%

n � 50 0+016 0+063 0+091 0+053 0+081 0+114 0+047 0+084 0+112
n � 100 0+024 0+058 0+076 0+036 0+061 0+106 0+051 0+064 0+098
n � 200 0+020 0+049 0+057 0+011 0+047 0+062 0+039 0+051 0+132
n � 500 0+012 0+036 0+045 0+009 0+024 0+051 0+027 0+034 0+073
n � 1,000 0+003 0+020 0+031 0+023 0+054 0+088 0+009 0+017 0+026
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tions+The penalty parameters for E1n and E3n have been calculated by generalized
cross validation, and the parametric function was

g~x,u! � x � 0+5+ (35)

The results of estimating the empirical errors under the different data generating
processes are shown in Tables 1–4+We show the median, the 10th, and the 90th
percentiles of the empirical distribution of the different errors from the simulation+

We now investigate the size of the empirical errors under the different data
generating processes+ The case DP1 represents a shrinkage of [ml1l2

toward the
linear model when this is in fact the true model+As could be expected, the para-
metric estimator presents the best performance in terms of empirical errors, fol-
lowed by the constrained smoothing spline and finally the natural cubic spline+
The same results hold for slight departures from linearity+ In DP2,when we shrink
our estimator toward a linear function being the true model slightly apart from
linearity, the constrained smoothing spline estimator presents the best perfor-
mance for almost all sample sizes+However,when the departure from linearity is
stronger as in DP3 and DP4 the natural smoothing spline dominates in terms of
empirical errors+ These results can be related to shrinkage estimators in paramet-

Table 4. Empirical errors under DP4

E1n E2n E3n

Sample size 10% 50% 90% 10% 50% 90% 10% 50% 90%

n � 50 0+076 0+186 0+233 0+271 0+393 0+422 0+116 0+201 0+299
n � 100 0+101 0+183 0+221 0+199 0+226 0+301 0+221 0+170 0+098
n � 200 0+099 0+179 0+200 0+368 0+300 0+246 0+122 0+172 0+212
n � 500 0+013 0+084 0+111 0+152 0+214 0+299 0+003 0+098 0+128
n � 1,000 — 0+036 0+089 0+175 0+199 0+214 — 0+041 0+083

Table 5. Estimated penalty parameters under DP1

Zl1 Zl2 Zl

Sample size 10% 50% 90% 10% 50% 90% 10% 50% 90%

n � 50 2+901 3+882 4+231 3+023 4+237 5+001 5+994 5+121 3+913
n � 100 0+937 1+495 2+014 3+002 3+642 4+146 3+999 4+217 5+526
n � 200 0+925 1+251 1+988 2+842 3+726 4+273 2+487 3+911 4+003
n � 500 0+017 0+232 0+745 3+978 4+452 5+001 2+449 3+016 3+649
n � 1,000 0+001 0+221 0+392 3+593 4+831 5+103 2+132 2+561 3+221
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ric models+ In this context, James and Stein ~1961! exhibited some slightly biased
estimators that might have superior mean squared errors when compared to un-
biased least squares ones+This result was true only when the model one is shrink-
ing toward is close to the true specification; otherwise, the mean squared error of
these shrinkage estimators is inferior to the least squares type+

The adaptation of our shrinkage estimator according to the specification of the
model is also shown in the simulations+When the true model is close to the model
that we are shrinking toward, then the error of the constrained smoothing spline
is close to the one in the parametric estimator, whereas if the true model is far
from the shrinkage, then the error becomes closer to the one in the natural smooth-
ing spline+

In Tables 5–8 we present the median, the 10th, and the 90th percentiles of the
empirical distribution of the estimated penalty parameters from the simulation+
When estimating under DP1, the descriptive statistics for Zl1 and Zl2 show large
values, and as could be expected from the theoretical results shown in Theorem
3+2, the penalty parameter Zl2 seems to increase with the sample size+ The param-
eter Zl1 tends to zero+ In the natural cubic smoothing spline, because the true
model is linear, we get large values for Zl, although as could be expected they
decrease in average with the sample size+ Under DP2 and DP3, the descriptive

Table 6. Estimated penalty parameters under DP2

Zl1 Zl2 Zl

Sample size 10% 50% 90% 10% 50% 90% 10% 50% 90%

n � 50 3+145 3+634 3+924 1+729 2+328 2+834 4+311 4+731 5+001
n � 100 1+572 1+829 2+441 2+000 1+669 1+387 2+599 2+989 3+998
n � 200 1+201 1+659 2+001 1+101 1+226 1+661 1+535 2+173 2+888
n � 500 0+286 0+669 0+997 0+105 0+274 0+302 0+583 1+209 1+799
n � 1,000 0+113 0+412 0+585 0+026 0+101 0+384 0+009 0+389 0+804

Table 7. Estimated penalty parameters under DP3

Zl1 Zl2 Zl

Sample size 10% 50% 90% 10% 50% 90% 10% 50% 90%

n � 50 3+011 3+421 3+732 1+831 2+338 2+783 4+212 4+621 4+943
n � 100 1+638 1+972 2+243 2+123 1+722 1+312 2+691 3+170 4+092
n � 200 1+199 1+643 1+999 0+945 1+220 1+646 1+572 2+001 2+833
n � 500 0+232 0+726 1+001 0+099 0+252 0+498 0+444 1+102 1+841
n � 1,000 0+097 0+334 0+699 0+011 0+232 0+491 0+011 0+419 0+899
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statistics for Zl1 and Zl2 show smaller and decreasing values,whereas the statistics
for Zl present the expected behavior+ It is interesting to remark that as Zl2 tends to
zero with the sample size, Zl1 and Zl become closer+ This effect is confirmed under
DP4, where again Zl2 tends to zero and Zl1 and Zl present the same performance as
in DP3+

6. CONCLUSION

The method presented in this paper provides a link between parametric and non-
parametric regression models+ It allows us to shrink the nonparametric smoothing
spline estimator toward a prespecified parametric model+ The resulting hybrid
estimator is of great interest in situations when there is uncertainty about model
specification but there is some prior knowledge that could be included in the
estimation procedure+

There remains some work to be done+ Although the two-step procedure has
nice theoretical properties, it would be more interesting to have a procedure that
simultaneously estimates the parametric and the nonparametric components+
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APPENDIX A: PROOF OF THEOREM 2+1

Previous to the proof of Theorem 2+1 we need the following result+

LEMMA 1+ Under the following equalities and definitions:

Ln~m;u! � n�1~ y � m!TW1~ y � m!� n�1~m � g~u!!TW2~m � g~u!!

� l1�
0

1

~m ~n! ~t!!2 dt,
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Ln
* ~m! � n�1~ y*� m!TW*~ y*� m!� l1�

0

1

~m ~n! ~t!!2 dt,

with

y � ~ y1, y2 , + + + , yn!
T,

m � ~m~x1!,m~x2!, + + + ,m~xn!!
T,

and

g~u! � ~g~x1;u!, g~x2 ;u!, + + + , g~xn ;u!!T,

W* � W1 � W2 ,

y* � W*�1~W1 y � W2 g~u!!+ (A.1)

And for fixed l1 � 0 and l2 � 0 then the problem

m � arg min
m�W2

n@0,1#
Ln~m! (A.2)

can be calculated via

m � arg min
m�W2

n@0,1#
Ln
* ~m!+ (A.3)

Proof. Let us redefine

Ln~m;u! � n�1~ y � m!TW1~ y � m!� n�1~m � g~u!!TW2~m � g~u!!

� l1�
0

1

~m ~n! ~t!!2 dt

as

Ln~m;u! � Sn~m, g~u!!� l1�
0

1

~m ~n! ~t!!2 dt+ (A.4)

We develop the squared terms in Sn~m, g~u!! obtaining

Sn~m, g~u!! � n�1mT~W1 � W2!m � 2n�1mT~W1 � W2!~W1 � W2!
�1~W1 y � W2 g~u!!

� n�1~W1 y � W2 g~u!!T~W1 � W2!
�1~W1 y � W2 g~u!!� Cn , (A.5)

where

Cn � n�1yTW1 y � n�1g~u!TW2 g~u!� n�1~W1 y � W2 g~u!!T~W1 � W2!
�1

� ~W1 y � W2 g~u!!

does not depend on m~{!+ Now if we use that

W* � W1 � W2 (A.6)

y* � W*�1~W1 y � W2 g~u!!, (A.7)
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we obtain

Sn~m, g~u!! � n�1~ y*� m!TW*~ y*� m!� Cn (A.8)

and

Ln~m;u! � Ln
* ~m;u!� Cn , (A.9)

where

Ln
* ~m;u! � n�1~ y*� m!TW*~ y*� m!� l1�

0

1

~m ~n! ~t!!2 dt+ (A.10)

Because Cn does not depend on m~{! the proof is finished+ �

Let W1 � In and W2 � l2 In+ The proof of Theorem 2+1 follows from Lemma 1 and
Theorem 5+3 from Eubank ~1988!+ �

APPENDIX B: PROOF OF THEOREM 3+1

Note that

7 [ml� m7n2 � 		 1
1 � l2

~Hn y � m!�
l2

1 � l2
~Hn g~ Zun!� m!		

2

n
(B.1)

� 		 1
1 � l2

~Hn y � m!�
l2

1 � l2

� $~Hn g~ Zun!� Hn g~u0!!� ~Hn g~u0!� g~u0!!� ~g~u0!� m!%		
2

n

� 2� 1
1 � l2

�2

7Hn y � m7n2

� 2� l2

1 � l2
�2

� $7Hn g~ Zun!� Hn g~u0!7n2 � 7Hn g~u0!� g~u0!7n2 � 7g~u0!� m7n2%

[ 2� 1
1 � l2

�2

I1 � 2� 1
1 � l2

�2

~I2 � I3 � I4!+ (B.2)

From Assumptions A+1, A+2, and A+5 it already has been shown that ~see Speckman,
1985! if l10~1 � l2!r 0, and n~l101 � l2!r ` then
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I1 � Op� l1

1 � l2
�� Op�n�1� l1

1 � l2
��102n� (B.3)

as n tends to infinity+
Assumptions A+3–A+7 imply that

7g~ Zun!� g~u0!7n2 � Op~n�1 !+ (B.4)

Let li ~Hn
T Hn! be the ith eigenvalue of the matrix Hn

T Hn + Given that

li ~Hn
T Hn! � 


1 i � 1, + + + ,n

1

�1 �
l1

1 � l2
nhin�2

i � n� 1, + + + ,n (B.5)

~see Eubank, 1988! and

nhin � ~pi !2n��
0

1

p~t!102n dt��2n

~1 � o~1!!, (B.6)

which is found to hold uniformly over i � o~n20~2n�1! ! ~see Speckman, 1985!, then
lmax~Hn

T Hn!� 1 and

I2 � lmax~Hn
T Hn!7g~ Zun!� g~u0!7n2 � Op� 1

n�+ (B.7)

Assumption A+3 together with Lemma 4+3 from Craven and Wahba ~1979! is enough to
show that

I3 � O� l1

1 � l2
� (B.8)

as n tends to infinity, and finally I4 � dn+ This completes the proof+ �

APPENDIX C: PROOF OF THEOREM 3+3

For the proof of this theorem, we rely on the convergence in distribution results of the
natural smoothing spline estimator shown by Cox ~1984! and Eubank ~1988!+ Recall that
[ml~x! can be written as

[ml~x! �
1

1 � l2
ZSl~x!�

l2

1 � l2
[rl~x! (C.1)
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for any x � @0,1# + Here ZSl~x! and [rl~x! are, respectively, the natural smoothing spline fits
to the y and the g~ Zun! values at grid point x+ Let us write

[ml~x!� m~x! �
1

1 � l2
~ ZSl~x!� E @ ZSl~x!# !�

1
1 � l2

~E @ ZSl~x!#� m~x!!

�
l2

1 � l2
~ [rl~x!� E @ [rl~x!# !�

l2

1 � l2
~E @ [rl~x!#� m~x!! (C.2)

and

E @ [rl~x!#� m~x! � E @ [rl~x!#� rl~x!� rl~x!� g~x;u0!� g~x;u0!� m~x!+ (C.3)

Note also that according to the notation, E @ ZSl~x!# , E @ [rl~x!# , and rl~x! are the natural
smoothing spline fits to the values of m, E @g~x; Zun!# , and g~u0!, respectively, all evaluated
at a grid point x+

Assuming A+1–A+7 and relying on the results that we have already shown in Theo-
rem 3+2, if l10~1 � l2!r 0 and n~l10~1 � l2!!r ` then as n tends to infinity

E~ [ml~x!� E @ [ml~x!# !2 � O�n�1� l1

1 � l2
��102n�,

E @ ZSl~x!#� m~x! � O� l1

1 � l2
�,

[rl~x!� E @ [rl~x!# � Op~1!, (C.4)

E@ [rl~x!#� rl~x! � Op~1!,

rl~x!� g~x;u0! � O� l1

1 � l2
�,

sup
x
6g~x;u0!� m~x!6 � dn +

Dividing all terms by s~x! � % E~ [ml~x! � E @ [ml~x!# !2, then under the conditions
previously imposed we have that

E @ ZSl~x!#� m~x!
s~x!

� O�n102� l1

1 � l2
�~4n�1!04n�,

[rl~x!� E @ [rl~x!#
s~x!

� O�n102� l1

1 � l2
�104n�, (C.5)

E @ [rl~x!#� rl~x!
s~x!

� O�n102� l1

1 � l2
�104n�,

rl~x!� g~x;u0!
s~x!

� O�n102� l1

1 � l2
�~4n�1!04n� ,
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as n tends to infinity+ Under the rates of decrease established in the theorem for l1 and l2
then

E @ ZSl~x!#� m~x!
s~x!

� O~n�n0~2n�1! !,

[rl~x!� E @ [rl~x!#
s~x!

�
E @ [rl~x!#� rl~x!

s~x!
� Op~nn0~2n�1! !, (C.6)

and

rl~x!� g~x;u0!
s~x!

� O~nn0~2n�1! !+ (C.7)

It is also easy to check that

g~x;u0!� m~x!
s~x!

� O~nn0~2n�1! !+ (C.8)

The proof is completed because under the preceding conditions on the rate of decrease for
l1 and l2, as n tends to infinity,

n4n05

log n � l1

1 � l2
�r `+

Therefore Theorem O+1 from Cox ~1984, p+ 6! holds; then

ZSl~x!� E @ ZSl~x!#
s~x!

rd N~0,1!, (C.9)

and the result is proved+ �

APPENDIX D: PROOF OF THEOREM 3+4

Under conditions A+1–A+7, from Theorem 3+1 s 2~x! � O~n�1~l10~1 � l2!!
�102n ! as n

tends to infinity+ Then, if l1; n�2n0~2n�1! and n2n0~2n�1!l2r 0 we obtain gn � nn0~2n�1!+
Theorem 3+3 implies Assumption A of Politis and Romano ~1994!+ Moreover, if b r `
such that b0n r 0, as n tends to infinity then gb0gn r 0+ Theorem 2+1 from Politis and
Romano ~1994! applies, and the proof is done+ �
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APPENDIX E: PROOF OF THEOREM 4+1

Using ~18!, ~19!, and ~25! we show that

E @GCVn~l1,l2!# �
Rn~l1,l2!

~1 � t1~l1,l2!!
2 �

s2

~1 � t1~l1,l2!!
2 �

2n�1E @eT~ [ml� m!#
~1 � t1~l1,l2!!

2 +

Thus in view of

n�1E @eT~ [ml� m!# �
1

1 � l2
�s2t1~l1,l2!� l2 E�eTHn� l1

1 � l2
�~g~ Zun!� g~u!!��

then

E @GCVn~l1,l2!#� s
2 � Rn~l1,l2!

�
t1~l1,l2!@2 � t1~l1,l2!#

~1 � t1~l1,l2!!
2 Rn~l1,l2!

�
s2

~1 � l2!~1 � t1~l1,l2!!
2 @2l2t1~l1,l2!� ~1 � l2!t1~l1,l2!

2 #

�
2n�1l2

~1 � l2!~1 � t1~l2 ,l2!!
2 E�eTHn� l1

1 � l2
�~g~ Zun!� g~u!!� + (E.1)

This implies that

	 E @GCVn~l1,l2!#� s
2 � Rn~l1,l2!

Rn~l1,l2! 	
� 	 t1~l1,l2!@2 � t1~l1,l2!#

~1 � t1~l1,l2!!
2 	 �

s2

Rn~l1,l2!~1 � l2!~1 � t1~l1,l2!!
2

� 62l2t1~l1,l2!� ~1 � l2!t1~l1,l2!
2 6�

2n�1l2

~1 � l2!~1 � t1~l1,l2!!
2

� 	E�eTHn� l1

1 � l2
�~g~ Zun!� g~u!!�	+ (E.2)

Then, using the following two inequalities,

1 � 2 � t1~l1,l2!� 2,

Rn~l1,l2! � � 1
1 � l2

�2

s2t2~l1,l2!, (E.3)

it is possible to show that

	 E @GCVn~l1,l2!#� s
2 � Rn~l1,l2!

Rn~l1,l2! 	 � h~l1,l2!+ (E.4)

�
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APPENDIX F: PROOF OF THEOREM 4+2

If l1
* and l2

* are the minimizers of Rn~l1,l2! and Dl1 and Dl2 are the minimizers of
E @GCVn~l1,l2!# then as a result of Theorem 4+1

E @GCVn~l1
* ,l2
* !#� s2 � Rn~l1

* ,l2
* !~1 � hn~l1

* ,l2
* !! (F.1)

and

E @GCVn~ Dl1, Dl2!#� s
2 � Rn~ Dl1, Dl2!~1 � hn~ Dl1, Dl2!!+ (F.2)

Combining these inequalities with the fact that E @GCVn~ Dl1, Dl2!# � E @GCVn~l1
* ,l2
* !#

gives

Rn~ Dl1, Dl2!~1 � hn~ Dl1, Dl2!! � Rn~l1
* ,l2
* !~1 � hn~l1

* ,l2
* !! (F.3)

and rearranging terms,

1 �
Rn~ Dl1, Dl2!

Rn~l1
* ,l2
* !

�
1 � hn~l1

* ,l2
* !

1 � hn~ Dl1, Dl2!
+ (F.4)

We will have proved the theorem if we can show that hn~l1
* ,l2
* ! converges to zero as n

tends to infinity+
From Theorem 4+1 we have the following equality:

h~l1,l2! �
2t12~l1,l2!

~1 � t1~l1,l2!!
2 �

1 � l2

~1 � t1~l1,l2!!
2

� 	2l2
t1~l1,l2!

t2~l1,l2!
� ~1 � l2!

t1
2~l1,l2!

t2~l1,l2! 	
�

2n�1l2

~1 � l2!~1 � t1~l1,l2!!
2 	E�eTHn� l1

1 � l2
�~g~ Zun!� g~u0!!�	

[ S1 � S2 � S3 + (F.5)

Using some results from Speckman ~1985!, if n~l10~1 � l2!!r `

tj ~l1,l2! ;
�m

n� l1

1 � l2
�102n

p�1�
0

1

p~u!102n du, j � 1,2 (F.6)

and

�m ��
0

1 1
~1 � x 2n !2

dx+ (F.7)

Then

S1 � O�n�2� l1

1 � l2
��10n� (F.8)
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and

S2 � O~l2! (F.9)

as n tends to infinity+We now show that under Assumptions A+1–A+7

S3 � O�n�302� l2

1 � l2
�� l1

1 � l2
��102n�+ (F.10)

This is proved by showing that

E�eTHn� l1

1 � l2
�~g~ Zun!� g~u0!!� � O�n�102� l1

1 � l2
��102n� (F.11)

as n tends to infinity+
The following equalities hold:

E�eTHn� l1

1 � l2
�e� � ns2t1~l1,l2!� O�� l1

1 � l2
��102n� (F.12)

and

E�~g~ Zun!� g~u0!!THn� l1

1 � l2
�~g~ Zun!� g~u0!!� � tr�Hn� l1

1 � l2
�Vn~g~ Zun!!�

as n tends to infinity+ Then using the Cauchy–Schwarz inequality result, ~F+9! follows+
Thus, if nr `, l2r 0, and l1r 0 in such a manner that n~l10~1 � l2!!

102n r `,
then, hn~l1,l2! tends to zero+

If either l1, l2, or n�1~l10~1 � l2!!
�102n is bounded away from zero, Rn~l1,l2!

does not tend to zero+ Thus to minimize Rn~l1,l2! we must have a sequence such that
l1
* r 0, l2

* r 0, and n~l1
* 0~1 � l2

* !!102n r `, and then hn~l1
* ,l2
* ! r 0+ Furthermore

E @GCVn~ Dl1, Dl2!# r s
2 ~equations ~F+2! and ~F+3!!+ But to make this possible, Dl1 r 0,

Dl2r 0, and n~ Dl10~1 � Dl2!!
102n r `, and so it can be concluded that hn~ Dl1, Dl2!r 0 as

n goes to infinity, and then the proof is finished+ �

APPENDIX G: PROOF OF THEOREM 4+3

Under conditions A+1–A+7, from Theorem 4+2,

Rn~ Dl1, Dl2! � Rn~l1
* ,l2
* !� op~Rn~l1

* ,l2
* !!

as n tends to infinity+ If either l1, l2, or n�1~l10~1�l2!!
�102n is bounded away from zero,

Rn~l1,l2! does not tend to zero+ Therefore, the minimizers of Rn~l1,l2! must fulfill that
l1
* r 0, l2

* r 0, and n~l1
* 0~1 � l2

* !!102n r `+ Then, if we apply Theorem 3+2

Rn~ Dl1, Dl2! � O~n�2n0~2n�1! !+

The proof is finished using the Markov inequality+ �
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