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Abstract

The problem of specification errors in sample selection models has received con-
siderable attention both theoretically and empirically. However, very few is known
about the finite sample behavior of two step estimators. In this paper we investigate
by simulations both bias and finite sample distribution of these estimators when ig-
noring heteroskedasticity in the sample selection mechanism. It turns out that under
conditions traditionally faced by practitioners, the misspecified parametric two step
estimator (Heckman, 1979) performs better, in finite sample sizes, than the robust
semiparametric one (Ahn and Powell, 1993).

Moreover, under very general conditions, we show that the asymptotic bias of the
parametric two step estimator is linear in the covariance between the sample selection
and the participation equation.
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1 Introduction

Traditionally, the structural parameters of the sample selection model have been estimated
by using two step techniques. This estimation method was originally proposed by Heckman
(1979) and it is widely used in many applications. An important drawback of this estimator
is that it heavily relies on assumptions such as the correct specification of the selection equa-
tion. Misspecification of the model causes, in most of the cases, two step estimators of the
behavioral parameters to be inconsistent, and predictions obtained from a misspecified model
can be highly erroneous. This has motivated researchers to investigate two step estimators
that are consistent under weaker assumptions on the selection equation and therefore the

risk of misspecification is disminished. Some of these estimators are proposed by Robinson

(1988), Cosslet (1991), Ahn & Powell (1993) and Andrews & Schafgans (1997).

The estimator proposed by Heckman (1979) performs particullary well under standard
assumptions such as normality of the joint distribution of the errors, statistical independence
between errors and explanatory variables or linearity of the index. When departures from
the previous assumptions are detected, then, semiparametric methods are recommended. In
some applications of sample selection models, it has been remarked that normality of the
conditional distribution of the selection equation or linear index functions are not unrea-
sonable assumptions (See Melenberg & Van Soest, 1996 and Fernandez & Rodriguez-Poo,
1997). The same can not be said about the independence because it is rather common to de-
tect conditional heteroskedasticity in the selection equation. Under the previous conditions,
well known results from asymptotic theory claim that semiparametric estimators present
a better performance, however it could be of great interest for the practitioner to know if
this is also the case in finite sample sizes. In this paper we investigate by simulation the
finite sample performance of the two step estimators proposed by Heckman (1979) and Ahn
& Powell (1993) under standard assumptions (normality and linear index), but including

heteroskedasticity that depends on the index.

In the simulations we will study both bias and finite sample distribution of the parame-
ter estimators related to the percentage of truncation in the sample, the correlation between
sample selection and participation equations, and different degrees of omited heteroskedas-

ticity. The results show that 1) for the parametric model, the magnitude of the bias depends



positively on the degree of omitted heteroskedasticity. However, this effect is larger when
both amount of truncation and correlation are high. This result is in the same direction
as the one obtained by Nawata and Nagase (1996). ii) The semiparametric estimator is
seriously biased when both the correlation and the amount of truncation are high under the

maintained hipotheses that the selection errors are normally distributed.

However, compared to the two step Heckman approach, the semiparametric one has a
lower bias when the selection errors are not normally distributed. This coincides with the
results from Schafgans (1997). There have been other studies that have analyzed the finite
sample size behavior of other alternative estimators. The robustness of tobit maximum like-
lihood estimators to departures from homoskedasticity has been studied in deep by Maddala
& Nelson (1975), Hurd (1979) and Arabmazar & Schmidt (1981). In censored sample se-
lection models, Goldberger (1983) and Schafgans (1997) studied the robustness of two step

estimator derived by Heckman (1979) to non-normality.

The paper is organized as follows. In the next section we introduce the theoretical model
and we provide some statistical results for the asymptotic bias of two step estimators of the
sample selection model in the presence of omitted heteroskedasticity. The main interest of
this part is that we derive a linear relationship between the asymptotic bias of the Heckman
estimator and the correlation coefficient. In section 3 we study the finite sample properties
of both two step estimators. In section four we present the conclusions, and finally in section

five we prove the main statistical results.

2 Model and statistical results

In this section we investigate the asymptotic properties of the two step sample selection
estimators proposed by Heckman (1979) and Ahn & Powell (1993) when there is omited het-
eroskedasticity in sample selection mechanism. To this end, first, we introduce the statistical
model and the main assumptions.

The variables y; and y, are generated according to the following process

yii = Tl 4 ug (1)
d; = 1(y; > 0) (2)



The explanatory variables x; = (x1; ;) are defined in REHE2) and 6, = (g o) is a
vector of parameters. 1(e) is the indicator function and (uy;, uz;) are unobservable random
variables. We make the following assumptions about the explanatory variables, the random

errors and the parameter vector.

(A.1) The vectors (y1:,ya:, dis 1, 21) are independently and identically distributed across

t, having finite sixth-order moments. Moreover, the conditional density function of

the index :L'irozo given d; > 0, and the moment function £ [dix2¢|x§o¢0] are four order

continuously differentiable.
Furthermore, we make the following assumption about the parameter vector = («, /3)

(A.2) § € B. B is an open bounded subset of the Euclidean (K + K3)-space. 8y is an

interior point of B.

(A.3) Some component of x; must be excluded from .

For the random error we assume the following

fxma) o (). ) st )
(“2 * Z) N((O)v(f(%TiOéO)PUz o3 7

In assumption (A.4) we assume joint normality of the random errors but not independence

(A.4)

from the explanatory variables. In fact, joint normality is a sufficient condition for con-
sistency of the Heckman’s two step estimator, but not necessary. Olsen (1980), shows the
same result assuming both normality of u; and linearity of the conditional expectation of
uy with respect to uy. The heteroskedasticity considered in assumption (A.4) depends on
the explanatory variables of the selection equation through the index, however, we need also

some additional assumptions on the behavior of the conditional variance.

(A.5) The function f(e) is known, and it is bounded above and below and at least four

times continuously differentiable with respect to the index.
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Finally, we need to include also the following assumption on the variables that appear in the

selection equation a4

(A.6) The vector x; can be partioned as x; = (:1;51),:1;52)), where :1;51) is continuously dis-
tributed and :1;52) is discrete. The joint density of [ (x1) has a compact support. If the

conditional density function of :1;8) given :1;8) = :1;52) is [(z™M]2?)), then for each x; in

some known compact subset X" of the support of 1, the following conditions hold:

1. l(:z;(l)|:1;(2)) > [, for some [, = [,(z?) > 0

2. The functions E[d?|zy; = 1 ][{(xM]2®) and [g(z,)]?1(zV]2?)) are continuous and

uniformly bounded.

3. The number of points of support of z(® in X is finite .

Note that assumptions (A.5) and (A.6) are stronger than the ones needed for obtaining
the results for the Heckman estimator, however they are required for the semiparametric

estimator.

We make now a brief introduction to the two step estimators that we are going to analyze.

For the Heckman’s estimator, equation (3) can be redefined by noting that

E(y2|di = 1,X = l’z) - w;ﬂo ‘|‘ E(u2|d2 == 1) (4)
as
yai = 23;00 + poa X’ (%Tz'%) + & (5)

for ¢ such that d; = 1. Where ¢; = y2; — E (y2]d; = 1, X = z;) and, assuming (A.4), \°(2) =
A (f(zz)), Poz) = A (ﬁ), with A(z) = %(%, where ¢(e) and ®(e) are respectively the
standard gaussian density and cumulative distribution functions. Note that E (| X = 2;) =0

and the variance of ¢; is given by

T1; 2
V (6|X = $2) = 0'; — pzag [#)\0 (wiao) —|— )\0 (l’fio{o) ] (6)

(z7;00)

To facilitate further the discussion of Heckman’s estimator, we can rewrite (5) again as

Yo = 23:3 + poaA (xlTZoz) + e+ (7)



where
n; = pos [)\0 (:L'fiozo) . (xio@)] . (8)
for ¢ such that d; = 1. & are standard probit maximum likelihood estimates. Recall that we
are interested in the behavior of 4 under omitted heteroskedasticity in the selection equation.
Therefore, the likelihood function that we are using to estimate agy does not account for the
heteroskedasticity.
& = argmax,cp Zn: (di In (CI) (xia)) +(1—d;j)In (1 - (xia))) . 9)
i=1

We can rewrite (7) in vector notation as
y=7Zy+c+n (10)

where y, € and 7 are the corresponding vectors and 7 = (X 5\) is a matrix where X
contains the values of x5 and A contains the values of the Mill’s ratio evaluated at points
21,4 for i such that d; = 1. Finally, v = (8 poy). Heckman’s two step estimator is defined

as

N

y=(272)" 4"y (11)

Ahn and Powell (1993) propose to estimate the subset of parameters 3 (except for the

intercept which is not identified in this type of estimators) using the following expression

“lp-1 n
. n e s T
B = [( 5 ) D D Wi (B — &) (w2 —way) | X
=1 j=14+1

( g )_1 nf Zn: Wijn (T — ;) (Y2i — Y2;) (12)

=1 j=14+1

where the sequence of weights is

1 9 — §; .
Wijn = 7K (g A g]) d;d; for ,9=1,...,n (13)

h2 2n

and the ¥;’s are instruments that can be any linear combination of the variables included in
the first equation x;. The kernel function is

Ky = THO =K ()

(14)



for 7 = /2 and
k(o) = % (1= o?) 1(lol < 1) (15)

and ¢; is a multivariate kernel regression estimator

1 n K ~ Thi—Tky )
_mn TS K ()

gZ - ’ . 2 2
1 n K 7 T~ Ty
nhln 2]21 Hk:l [Xl ( hln )

n. (16)

Note that in order to implement this procedure we need to use two different bandwidths.
This can create several problems, and empirically it represents an important drawback of
this method. It is also necessary to use two different kernels. In our computations we have
used the gaussian kernel for K (.) and the kernel proposed in Powell (1987) for K3 (.). The
results obtained tend to be more sensible to the choice of Ay than to the choice of Ay. The
previous expressions for the kernel functions fulfill conditions (3.5), (3.9) and (3.10) from
Ahn and Powell (1993). Furthermore, the bandwidth must be chosen according to conditions
(3.6) and (3.11) from the same paper.

Now, we give two results about the asymptotic behavior of the previous estimators under

the above assumptions.

Proposition 1 Assume the data satisfy restrictions (2) and (3). In addition assume that
conditions (A.1) to (A.5) hold, and

o* = argmax,c5E [(Z (410 (@ (7)) + (1 = di)In (1 — & (xga))))] S

=1
then
§ =0 + poa 5 [GoH T (0", a0) = g (a7, a0)] + 0,(1) (18)
where
E [2521|d = 1] E 23X (aT0) |d = 1]
" B[ () la=1] £ (eFar) = 1]

(0. a0) = E [:1;2)\ :L'ipoz*) — 2\° (xipozo) |d = 1]
gl =1 g [)\ (xipa*)Z —A (:L'foz*) A° (xfozo) |d = 1]



E [)\’ (xipoz*) zoxl|d = 1]
G, =
E [2)\’ (xipoz*) A (xipoz*) xp — N (xipoz*) A° (xipozo) |d = 1]

O (2Tap) — @ (2T §
hla”;a0) = £ (CI) (x(foz*) [)1 — Q)ExlToé*g]qb (xipoz ) :1;1)
H, = Hi, + Haa,

where

Clda)nrt o ) (1 40 (T +(8° («Tag) = ® («Ta”))’
[ (o) (=07 () + (0 (o) =0 (1)

Hloz =F 3
O (2fa) [1 — @ (afax

HZoz — (

as n tends to infinity.

and

According to Proposition 1, the asymptotic bias of the Heckman’s estimator depends
linearly on the correlation coefficient and, through a nontrivial expression on the degree
of heteroskedasticity that appears in the specification error. Furthermore, the amount of
truncation is also relevant when computing the asymptotic bias since if there is not truncation
at all, then the specification error in the probit model does not affect the statistical properties
of the Heckman’s two step estimator.

For the Ahn-Powell estimator, we have the following consistency result,

Proposition 2 Assume the data satisfy restrictions (2) and (3). In addition assume that

conditions (A.1) to (A.6) hold, then
5 1
671 = 60 + Op \/—ﬁ

as n tends to infinity.

In the next section, we investigate by simulations how the correlation, the omited het-
eroskedasticity and the amount of truncation affect the bias of different two step estimators.

Mainly, a parametric one, the Heckman’s estimator, and a semiparametric estimator pro-

posed by Ahn and Powell (1993).



3 Finite sample analysis

In this section we want to make a comparison of the small sample behavior of two step
sample selection estimators. We will focus our atention in several issues, mainly, how different
degrees of truncation and correlation affect the bias and finite sample distribution of two step
semiparametric estimators in the presence of heteroskedasticity that depends on the index. In
fact, the presence of omited heteroskedasticity is well know that leads to the inconsistency
of the Heckman estimator but makes the semiparametric estimator still consistent. We
would be interested in detecting cases, where for small sample sizes, the performance of the

Heckman estimator is still better than the semiparametric one.

In order to perform our simulations we start from a model developed in (2) and (3).
Note that we only observe yy; if y1; > 0. Moreover, it is assumed that each observation of
y1; 1s drawn from a distribution with a different variance. The random errors are specified
according to assumptions (A.3) and (A.4), and the values of the explanatory variables x4

and x, are determined as follows:

e 1 is a vector of a constant and three explanatory variables, two of them are dummy

variables and the other one is a random variable distributed uniformly on (0,2).

e 1, is a vector of a constant and it contains also the vector ;. We have included also
three additional variables, two dummy variables and a continuous variable which is
correlated with the variance of this equation (:L'gk)) In order to allow for correlation
between this explanatory variable and the variance let us define first two gaussian

independent random variables, vy and w,, with zero mean and unit variance. Then the

continuous variable is constructed as follows
k 27\1/2
:1;52») =a(l —¢) 1209; + acwo;

and

E (u2|X(k) = J}Y:)) =0’ (:z:glf)) = exp(bwy;).

Ly )= () (5 %)

Note that



The stochastic part of the model is generated following the procedure developed by Hurd
(1979). Let v; and wy be two gaussian independent random variables with zero mean and

unit variance. Then using the following transformation
e, = (1 — PQ)I/ZUM + pwi;

€9 = OgWy;

(0)~>((5)(m 2)):

Finally, uy; = U(:chlz))eu and Uy = €.

it is possible to show that

The parameters take the following values o = (8, —1.1,1.5,0.5,2.0,—0.1, —S.O)T and
BT =(2.0,-1.75,1.3)".

The influence of four parameters on the estimates of 3 is explored. These parameters
are the intercept of the participation equation, denoted by ¢, wich controls the amount of
truncation; the variation in ¢ which is a measure of the heteroskedasticity; the correlation

between x; and o and the correlation between uy and uy, p.

Since the variance of logo; is b?, the heteroskedasticity in uy; (o;) increases with b. The
point of view taken here is that @ and o are fixed, bounded numbers (with o bounded away
from zero). There are, of course, many other ways to generate 'reasonable’ values of  and
o, even it i1s not really crucial that the sequence x and logo be precisely normal or even

independent.

Once the values of the parameter vectors o and [ are fixed, we can obtain the samples

for y1 and ys,.

Both parametric and semiparametric estimators of 3 were obtained for all combinations
of the intercept, 6 = 0.5,4.0; b6 = 0.0,2.0,4.0,8.0; ¢ = 0.5,0.0,—0.5; and p = 0.9,0.0, —0.5.
The value of a is fixed in 3.0. The parametric model is homoskedastic when b = 0.0 but
heteroskedastic in all the other cases. When p = 0.0, u; and us are independent and the
two equations of the sample selection model are estimated independently. The amount of
truncation is about 30% when 6 = 4.0 and 70% when 6 = 0.5 and we have considered four

different sample sizes, N = 250, 500, 1000, 2000. The number of replications is 500.
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In the following graphics we summarize the most interesting outcomes. In graphics 1.a
to 1.d we present nonparametric density estimates of the distribution of Heckman’s two
step estimates for different degrees of correlation (p = 0.0 and 0.9), different amounts of
truncation (30% and 70%) and different degrees of heteroskedasticity (b = 0.0, 2.0, 4.0 and
8.0). The sample size is N = 1000. Other parameters in the simulation have been set to

c= 0.5 and a = 3.0.
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Graphic 1.a Density estimates with p = 0.0 and 30% of truncation. Parametric estimation.
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Graphic 1.c Density estimates with p = 0.9 and 30% of censoring. Parametric estimation.
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Graphic 1.d Density estimates with p = 0.9 and 70% of censoring. Parametric estimation.

From these graphics we observe the following issues. First, as it could be expected, the
correlation plays a crucial role in the performance of the Heckman estimator. Even for very
high levels of heteroskedasticity, under uncorrelated disturbances the Heckman estimator is
unbiased and it presents a nice symmetric distribution (see Graphics l.a. and 1.b.). Under
this setting, the bias and the distribution is not affected by the degree of truncation. Second,
when the correlation is high, the estimator becomes severely biased as far as the degree of
omitted heteroskedasticity increases. The degree of truncation seems to affect the skewness
of the distribution rather than its symmetry. This means that in situations with high levels
of correlation and degree of omited heteroskedasticity, the percentage of truncation does not

affect seriously the bias of the estimator.

In graphics 2.a to 2.d we present nonparametric density estimates of the distribution of
the semiparametric estimates proposed by Ahn and Powell (1993) for different degrees of
correlation (p = 0.0 and 0.9), different amounts of truncation (30% and 70%) and different
degrees of heteroskedasticity (b = 0.0, 2.0, and 4.0). Other parameters in the simulation have
been set to ¢ = 0.5 and a = 3.0. The sample size is 1000. We remark that we only present
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results for the estimates of the slopes since the intercept is not identifiable in semiparametric
models. As it was remarked by Heckman (1990) this is an importat drawback of these
methods and Andrews and Schafgans (1997) propose a consistent semiparametric estimator
for the intercept. Since we are interested in comparing the slope parameters we do not

present results for the intercept.
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Graphic 2.a Density estimates with p = 0.0 and 30% of truncation. Semiparametric estimation.
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Graphic 2.d Density estimates with p = 0.9 and 70% of truncation. Semiparametric estimation.

The results obtained for the semiparametric estimator proposed by Ahn and Powell (1993)
coincide with those obtained by Schafgans (1997) when analyzing the effect of misspecifi-
cation in the error distribution of two step sample selection estimates. As it could be ex-
pected from the theoretical results, this estimator is robust to heteroskedasticity. However,
it presents a serious drawback that it is not detected by the asymptotic theory. It is seri-
ously affected by the amount of truncation. In fact, for some cases, mainly high levels of
correlation and high percentage of truncation, the semiparametric estimator presents a very

poor small sample size performance if compared against the Heckman estimator.

4 Conclusions

This paper analyzes the perfomance of two step estimators for sample selection models
under misspecification of the conditional variance in the probit equation. We compare the
estimators proposed by Heckman (1979) and Ahn and Powell (1993). We present some

theoretical results and we use Monte Carlo techniques to compare the performance of both
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types of estimators.

For the parametric two step estimator, if the correlation between equations is small, the
specification error has little effect in the estimator bias. Moreover, under this situation, the

amount of truncation affects positively the bias.

We also remark that if the amount of truncation is bigger the bias due to the misspec-
ification of the conditional variance is higher. Obviously, when the correlation is small the
bias is not affected by the degree of truncation. Finally, the effect of the different degrees of

heteroskedasticity is very important when both correlation and truncation are high.

For the semiparametric estimator, the estimator turns to be robust to heteroskedasticity
that depends on the index, however, it is seriously affected by the amount of truncation
when the correlation is high. In this case, the bias tends to be bigger than in the parametric

case.

5 Proof of main results

Previous to the proof of Proposition 1, we need the following lemma
Lemma 1 (Newey and McFadden, 1994)

If zi is i.i.d., and a (z,0) is continuous at 0y with probability one, and there is a neighborhood

N of 0y such that E [supgey ||a(2,0)||]] < oo, then for any 0 —p 00, n Y0 @ (ZZ';@) —p
Pla(2500)]
For a proof of this lemma, see Newey and McFadden (1994), p. 2156.

Proof of Proposition 1:

In order to show Proposition 1, let
g (v 0,v) = =2d;ziya + Zdizizg‘ry i=1,---,n
T
where ZZT = (l‘; A (xia)) and

di— (x%a) |
YE I YA G R

h(x;a)=
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Using the mean value theorem and the influence representation for & then it is possible to

show that
1 & 9

-1
7—70:{—5;W9($i§0%7)}
X lzn: ( ot )_|_ lzn:i ( A __Z h _llzn:h( .- *)
niZIg Ti; &, Yo niZI aOéTg x2705770 aOéT l’“ niZI Ty &

where & lies between [&, a*], and % between [¥,70]. Now, using assumptions (A.1) to (A.6)

and Lemma 1 the following results follow by applying a LLN

1 & 0 o
w2 gyt i T) 2 () @ (efoo) G

n =1

1
- Zg (7530, %) —, 2poal(x)®° (xipozo) g (™, ap)

=1
lzn:ig(x"o? ) —p 2poql(z) ®° (J}TOé)G
ni:l aOéT vy & 770 P 2 1 1 &0 o
1 & 0 _
g;&?h(l’“a) —p Ha

1
- Z hz;a®) —, hia®, ap)

This closes the proof.

Proof of Propositon 2:

The model introduced in equations (2) and (3) and conditions (A.1) to (A.6) is a partic-
ular case of the model considered by Ahn and Powell (1993), p. 5, equations (2.1) to (2.4).

To show this recall that under assumptions (A.4) and (A.5) the selection correction term

from A-P takes the following form

0 (z1;) = A\ (l’hOéo)
18



where A(z) is the Mill’s ratio. Therefore, assumption (3.2) from A-P is fulfilled. Assumption
(A.1) is assumption (3.1) from A-P and assumptions (A.1) and (A.3) imply assumptions
(3.3) and (3.4) from A-P. Assumption (A.l) guaranties that the index function is continu-
ously distributed (assumption (3.3) from A-P) and finally assumption (3.7) (Smoothness of
densities and conditional expectations) is verified because of assumptions (A.1), (A.4) and
(A.5). Finally, assumption (A.6) is assumption (3.8) from A-P.

Then, Corollary 3.1 from Ahn and Powell (1993), p. 16 applies and the proof is done.
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