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Summary
In this paper we propose a new method to estimate nonparametrically a time varying
parameter model when some qualitative information from outside data (e.g. seasonality)
is available. In this framework we make two main contributions. First, the resulting
estimator is shown to belong to the class of generalized ridge estimators and under some
conditions its rate of convergence is optimal within its smoothness class. Furthermore,
if the outside data information is fullfilled by the underlying model, the estimator shows
efficiency gains in small sample sizes. Second, for the implementation process, since the
estimation procedure envolves the computation of the inverse of a high order matrix we
provide an algorithm that avoids this computation and, also, a data-driven method is
derived to select the control parameters. The practical performance of the method is
demonstrated in a simulation study and in an application to the demand of soft drinks

in Canada.
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1 Introduction

Since their introduction by Cooley and Prescott (1973, 1976) and Rosenberg (1972), time-varying
parameters regression models have been used extensively in empirical works. These models permit
the regression coeflicients to evolve over time, so they can be applied to time series models with
parameter instability. We will consider models where there is a linear relationship between the

dependent variable and a set of p explanatory variables. Thus, we can write,
_aT _ .
yt—ﬁtxt—l'ut t—l,...,ﬂ, (1)

where {(y;,x¢),t = 1,...,n} are respectively the observed values for the dependent and the ex-
planatory variables, f; is a p-vector of time-varying parameters that needs to be estimated, and
the errors, u, are considered to be identically distributed with zero mean with finite variance o2.

In order to solve the estimation problem, and according to the time path structure assumed for
the parameters, three main alternative approaches have been conducted in the literature. First,
parameters are allowed to vary across subsets of observations within the sample in a deterministic
way. Examples of such models include general systematically varying parameter models, seasonal
models and switching regression models. A second class of models is that where the parameters are
assumed to be stochastic and they can be thought of as being generated by a stationary stochastic
process. Finally, a third class of models consists of those where the stochastic parameters are
generated by a nonstationary process. Chow (1984), Harvey (1989), and Nicholls and Pagan (1985)
present detailed reviews of these approaches. The first framework will be the one considered in this
paper. Based on the assumption that the regression coeflicients are smooth functions of the time
index, Gallant and Fuller (1973) estimate them nonparametrically using piecewise cubic splines.
Robinson (1989, 1991) does a similar work using kernel methods.

Although smoothness provides sufficient conditions both to identify and estimate a time varying
coeflicient model, there might exist other qualitative features in the time path that one would like to
model through the parameters behavior. For example, many important economic variables such as

ouput, consumption and employment exhibit seasonal patterns. Unfortunately, seasonally adjusted
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data contain little or no information about seasonal variation in the parameters and also, as Wallis
(1974) and Sims (1974) point out, the use of this type of data in dynamic statistical models can
lead to serious misspecification errors. On these grounds it would be of interest to include seasonal
variation in the coefficients time shape.

Motivated by the previous reasoning, in this paper, we are interested in the nonparametric
estimation of the regression coefficients, under the presence of seasonality or any other type of
shape constraints. Among the existent techniques that allow for constraints in nonparametric
models (see Mammen, Marron, Turlach and Wand, 1998), those that incorporate this information
in a constrained optimization fashion appear to be the most appropiated to solve this problem.
Rodriguez-Péo (1999) and Ferreira, Ninez-Antén and Rodriguez-Péo (2000) propose several al-
ternative criterion functions. In our setting, the optimization problem is a modification of the
(smoothed) local likelihood approach followed by Robinson (1989), where the constraints account
for the restrictions in the time varying path for the coefficients. The resulting estimator will be the
solution of this constrained optimization problem and it turns out that it can be included within the
class of generalized ridge estimators. This fact presents at least two advantages. First, it enables
to derive an efficient algorithm to make the estimation process feasible without a high computing
cost and second, it makes the analytical study of the statistical properties easier. Furthermore, the
method will encompass a great variety of time-varying parameter models: systematically varying
seasonal coeflicients models, the bayesian seasonal smoothness priors estimator of Gersowitz and
MacKinnon (1978) and finally, the estimator proposed in Robinson (1989).

The rest of the article will go as follows. Section 2 presents the estimation procedure and
the algorithm. In Section 3 the asymptotic bounds of the estimator are derived as well as its
asymptotic distribution. From these results we obtain the conditions in the control parameters
for the consistency of the estimators. These results are the extension to the p-dimensional case
of those obtained by Orbe et al (2000). A data-driven method to select the control parameters is
given in Section 4. Finally, in Section 5 the performance of the methodology is analyzed through a
Monte Carlo study. The results from the simulations indicate that the estimator procedure is able
to detect very different cases in terms of smoothness and seasonality. Furthermore, we apply the
methodology to the analysis of the demand of soft drinks in Canada. The results are consistent
with those coming from other empirical works. The Appendix has the proofs of the main results

stated in Sections 2 and 3.



2 The constrained nonparametric estimator

In the model introduced in the previous section we additionally consider the following assumptions:

(A.1) (Smoothness) Each component of 3¢, 8;; = §; (t/n) is a smooth function such that §; €
C?0,1] forall i =1,...,p.

To account for the seasonal restriction, first define s, as the number of the observations per
season, such that s, /n remains constant as n increases. To work with a simpler notation, we will
drop the subscript in s, from now on.

(A.2) (Seasonality) For some values p; and for each of the p sequences

n 2
n~! Z (ﬁzt —ﬁi(t—s)) < pi; (2)
t=s+1
Note that one implication of assumption (A.1) is that there exist some constants pf such that
n~! doimsa1 (ﬁ“g — ﬁi(t_s))Z < pr foreach : =1,...,p. Hence p; controls the degree of seasonality;
ie., if p; > p; no seasonality is imposed at all, but as far as p; < pI we are imposing stronger
seasonal patterns.

The estimates of all parameters {3;;}7_; will result as the solution to the following optimization

problem:

min Z Z ](Tt(yt - ﬁlrxlt e ﬁprwpt)2

r=1t=1

n! ZZZ=5-I-1 (B1t — ﬁlt—s)z <p
s.t. :

n_l Z?:S-H (ﬁpt - ﬁ]vt—s)2 S Pp
where K,; = (nh)"LK((r — t)/nh). For the function K(-) we assume the following:
(A.3) The function K(-) is a second order kernel with compact support @ = [-1,1]. We also

assume that its Fourier is absolutely integrable and that f[q, u* K (u)du, [o K*(u)du, are strictly

positive and finite.

A direct application of the natural extension of Proposition 1 in Orbe et al (2000) to the p
dimensional case allows us to write in matrix notation the optimization problem referred in (3) in

a closed form as,

min(Y — XB)TW(Y - XB) + 8T A,\8 (4)



where Y =i, @ [Y7...Y,]T and X = [I, ® z], being 4,, a unit vector of order n and I,, a n order
identity matrix. The data matrix « is of order » X p. The vector of coeflicients 3 is such that
BT = (B ...85). The weight matrix W is of order n? with the following diagonal structure:
W = diag(w; ... w,), where each submatrix w, is diag(K,1...K,,) .

The term 87 A\ takes into account the p seasonal restrictions. The matrix A, is defined as

M RT R, where

- ps—2 -
—
1 0 0...0 -1 0 0
ps—2
—
p—|l0 1 0o 0.0 -1 o0 0
ps—1
—

L 0 ... 1 0...0 -1

and \* = I,,_s @ A. The vector A contains the different seasonal control parameters A = [A; .. ./\p]T.

Now, once the values of h and {A;}!_, are fixed, the resulting estimator must solve the following

system of equations
(XTWX + 4| By = XTwy (5)

and, if in addition we assume
(A.4) Rank(w}/zx) =p<n Vh Vr=1,...,n,

then, the estimator has the closed form
N T -1 1
Oy=| X" WX+ Ay X'WY. (6)

This expression shows the relationship between BA and the class of generalized ridge estimators.
These estimators present a great variety of optimality properties (see Li, 1986), and this ridge
structure will enable us to compute the parameters in a feasible way. Furthermore, note that in order
to compute the estimators of the coefficients (6), we need to compute the inverse of [XTWX + Ay

whose order is np that difficults the practical estimation of the model. To overcome this problem
we provide an algorithm that instead of computing this inverse it only needs the calculation of
several inverses of order p. The derivation of the algorithm is based on the same idea than the one
developed in Liitkepohl and Herwatz (1996) and it consists basically in the decomposition of the
system of normal equations given in (5) and its use to compute the estimators in a recursive form.

We present the main steps for the implementation of the algorithm.



sTwa+ A, if r=1,...,s
1. Construct Z, = wTwTw—I—QAp if r=s+1,....,n—s
xTwa—l—Ap if r=n-s+1,....n

where A, = diag{\y...),} and eTw,z is a p order matrix with > i, K,x;2;; as generic

(i7) term.

Construct also the vector of dimension p, Y, = | Y7y Kpe@peye .o D fq Kot pryy
2. For 3 =1,...,s compute:

ap,; = Zj_l, ;

3. For each j = 1,...,s, calculate;
bo; =ao; - Yj;...;
bej=ar; Yesy; +ag; D, - b(t—l),j? -
b[%] = ps/sj Tnostj + tnosysj Dy buzysj
4. Finally, for each j = 1,..., s solve:

o2y = O]y = inssi

C[n—s2s]7j = a[n_TQS]J . Ap . C[%],] —I— b[n—2s] R

YA

s

c1,; = a1, Dp-czj+b1j = Brjss

co,j = ao,; - Dp-c1j+boj = By

The last step provides the coefficients corresponding to each exogenous variable associated to the
j7-th moment of time. That is, BM contains the p coefficients of the j-th time. This form allows
us to emphasize the differences between the estimator proposed by Robinson (1989,1991) and our
estimator. In fact, if we set Ay = --- = A, = 0 then we obtain the estimator as the one proposed

by Robinson,
~ -1
B=[xTwx] xTwy. (7)

Therefore, the seasonal restrictions introduce cross restrictions among parameters at different time

periods, being this the reason to do the estimation procedure in a global way. Each estimated



coeflicient is a function of the whole sample through the smoothing parameter h and the seasonal
penalty parameters vector A. If we only had the smoothness restriction, the procedure would
become easier and, for each time value, the vector of coefficients could be computed separately
from the rest.

In order to understand the influence of the different control parameters, h and A, on the estima-
tor, we analyze some simple cases. As far as the components in A increase, the seasonal constraints
will have a higher influence since the estimation process will penalize heavily the differences between
the values for the same seasonal coefficients. Under this setting and if the smoothing parameter
is zero, the resulting estimator turns out to be the standard OLS estimator for the regression pa-
rameters in a seasonal dummy linear regression model. Otherwise, if some smoothness is required,
we end with the same result than in Gersovitz and Mackinnon (1978), who define this context as
“smooth seasonality”. On the other side, where no seasonal restriction is imposed, maintaining the

smoothness assumptions recovers the estimator proposed in Robinson (1989), as mentioned before.

3 Asymptotic Results

In order to measure the accuracy of the estimation procedure, we need to study some error measure.
A measure could be the usual average of the squared differences between the data and the true
values for the regression curve. However, since our main interest is to provide good estimators for
the coefficients in the regression curve, we propose to use a measure of discrepancy between the
coeflicient estimators and their true values. Concretely, we will use the mean average square error
defined by the following expression:

MASE(B)) = (np)_lzp:zn:E(ﬁ/\it_ﬁit)z

(np)_IZfZIZjZI {(E(ﬁm — Bi))? + E(Brit — E(Bm))z}
S*(Bx) +V(By)

where B/\it denotes the estimate of the coefficient F;.

Previous to other assumptions we introduce some additional notation. Let us define M as the
symmetric matrix of order p whose elements are m;; = E(z;2;). M is the matrix [, @ M and
My = (M+ Ay Swill be (8] ...8I)T, where the i-th element of the r-th subvector, S, of § is
Spi = 2y mi; 3., We also consider the functionals of the kernel, ¢, = [ K*(u)du, ¢ = [ K*(u)du
and dj, = [u?K(u)du.

Now, in order to allow for some dependence on the data generating process let us assume
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(A.5) The random variables {z;} and {u;} are statistically independent and, the sequence ®; =
{ug, 211 2pi}e>1 C R X RP is a-mixing. That is, for any n, k& € Z* and for any pair of
sets A € 0(®q,...,P,)and B € 0(Pptn,Prtnt1 .- .), there exists a sequence of constants a(n)

tending to zero such that |[P(AN B)— P(A)P(B)| < a(n).
(A.6) Forall t and for all 4,5 =1,...,p:
0<my <o 4,5=1,...,p
0< E(w?tx?t) <oo d,j=1,...,p
and furthermore, M is positive definite.
(A.7) The sequence of constants in the a-mixing condition is such that n=2 37_g ka(k) = o(n=5/%).
(A.8) E|u|**? < oo for some § > 0.

We proceed to state the main results related to the consistency of the estimator and its asymptotic

distribution.

Theorem 1 Given model (1) and, under the assumptions (A.1) to (A.7), we have that

N 214
5 = B o) STMES + ) A MEAG
2 p

%(np)—lﬂTAAMis +o((D_ A+ h%)?)
7=1
p
= 0((Q_ A +h))
7=1
o o?c, 1 1 1
V(g = — n—ptr./\/lA./\/l./\/lA—l—o((nh) ) =0((nh)™")

when h — 0, A — 0 and nh — o0, as n — 0.

The first consequence is the consistency of the estimator. Corollary 1 shows the rate of convergence
of the mean average squared error. Note that under some specific rates for the control parameters,
the proposed nonparametric estimator achieves a rate of convergence that was shown by Stone
(1982) to be optimal for this smoothness class. Corollary 2 states that, if the underlying time-path
of the coefficients follows a periodic pattern, the proposed estimator is more efficient than the

unrestricted nonparametric estimator proposed by Robinson.



Corollary 1 Under the same assumptions than in Theorem 1 and if, in addition, h ~ n='/% and

for each j, \; = O(n=2%/%), then
MASE(3y) = O(n~%/%)

Corollary 2 Under the same assumptions than in Theorem 1 and if, for each j, 3;(-) is a periodic

function of period s/n, then
MASE(By) < MASE(j)
forallh >0 and any \; >0 j=1,...,p.

The asymptotic distribution of the estimator is provided in Theorem 2, while Theorem 3 states the

consistency of the variance estimator for the error term.

Theorem 2 Under the assumptions (A.1) to (A.8) and if in addition h = o(n=/%), the asymptotic

distribution for the proposed estimator is
(nh)12 (Ba(r) = B(7)) =% N [0, 0%, M~ (8)

Theorem 3 Under the same assumptions than in Theorem 1, 63 = n™ S0 (yr — w?ﬁAt)z s a

consistent estimator of o2.

All these results are the extension of those proved in Orbe et al (2000) to the context of p explanatory
variables. Although the results are quite similar, the proofs need to be revised since, unfortunately,
they cannot be derived straightforwardly from the univariate case. At this point, we would like to

remark that there is no course of dimensionality because the model is additive.

4 Selection of the control parameters

Once we have the desired properties of the estimator, we must approach the practical problem of
selecting the control parameters, which becomes an uneasy task when, as in this case, we have
several parameters to choose. To our knowledge, there exist at least three possible ways to select
the control parameters in a nonparametric estimation setting. Leave-one-out techniques, plug-in
methods and penalized residual sum of squares. Hirdle (1990) and Wand and Jones (1995) provide
detailed discussions of each. In our context the leave-one-out procedures are computationally

intensive and the plug-in methods can be applied only if the expressions for the optimum control



parameters are known. Unfortunately this is not the case. On these grounds we consider a method
based on a penalized residual sum of squares. Thus we propose to choose the different control

parameters solving the following optimization problem,

n

(%ixn) n~! ;(yt - B/\ltwlt — e B/\ptxpt)2 -p(h, A). (9)
As it can be remarked from other procedures that can be included within the class of penalty
methods (Rice criterion or Generalized Cross-Validation) the penalty term is a function of the so
called projection or hat matrix; that is, the matrix that allows us to write the estimates as a linear
combination of the data. In this context such a matrix is not available so we propose an ad-hoc
method that will be described along the following lines. First, we consider a penalty function
additive in the control parameters; that is, p(h,A) = p(h) + p(A1) + ...+ p(Ap)t. We select the
smoothness parameter penalty function (p(h)) under no seasonality restrictions and each seasonal
parameter penalty function (p(A;)) will be selected under no smoothness restriction.

Smoothness penalty: Under the assumption of no seasonality, A = 0, we construct an auxil-

iary regression for each r moment of time as:

yr(r) = Prrzre(r) + .o o4 Bprap(r) +ue(r) t=1,....n (10)

where y¢(r) = kpye, 254(r) = kpexjy and ug(r) = kypug for j = 1,...p. In this context we define

the projection matrix as H"(h) = w}/zw(ac’ww)_lx’wi/z for all . Given that n time observations

are available we define the matrix H(h) as the block diagonal matrix diag{H"(h)}"_,, which trace
is mp and it does not depend on the smoothness parameter. We propose the following penalty
function for the smoothness parameter:

1
[(n2h)=Lr(1 — H(h)]*

p(h) = (11)

Seasonal penalty: Under the assumption of no smoothness, h = 0, and given the j-th exoge-

nous variable, we consider the next auxiliary regression for the {-th season:
Yoi = i+ ug t=1,...,f =n/s (12)

subject to the seasonal constraint a;jR}Rfaﬂ < é;, with 6; > 0. yy stands for the i-th element
of the f = n/s order vector y, that contains the observations belonging to the (-th season, y, =

(Y - - .ygf)T. The vectors x;, and aj, and their elements are defined similary. The value ajs; is

! Although we use the same notation for all penalty functions, the context will clarify which is considered and we
think that this makes the notation simpler.
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the coefficient associated to the ¢-th observation in season £ of the j-th explanatory variable. The

matrix Ry collects the seasonal structure imposed among the coefficients.

1 -1 0 0
0 1 =1 ... 0

Ry = . (13)
0 1 -1

Then, given the j-th variable and the ¢-th season we define the projection matrix associated to the

auxiliary regression (12) as:
Hy(A;) = diag(z ) [diag(xjg) + /\jR}Rf] - diag(xje)
and by adding the seasons we have
H)Y = ZS:Hz(Aj) = Z diag(x ) {diag(w) + AJ‘R}Rf] ' diag(a).
=1 =1

We propose the penalty function for the j-th parameter that regulates the imposed seasonality on

the sequence of parameters corresponding to the j-th exogenous variable as:

1
P AT .

5 A simulation study

The purpose of this section is to analyze the practical performance of the estimation procedure.
That is, the objective is not only to check the adequacy of the estimator but we also want to
analyze the data driven method of selecting the control parameters as well. In order to do so, we
have performed several situations for this analysis and, in all cases, the general model for the data

generating process is:
Ye = Bretis + Boswor + Basras +ur ug ~ IN(0,0% =3000) t=1,...,n (15)

We have considered four different situations for the coefficients: constant, strict seasonal pattern,
smooth with no seasonality and coefficients presenting a mixture between smoothness and a seasonal
pattern. From each specification we have generated 100 replications of sample size n = 180. Since
we consider monthly data, the overall period corresponds to 15 years. The selection of the control
parameters has been made using the method described in Section 4. For the sake of simplicity, we
only present the results for the last case. In fact, this is the case where the method must detect

both, smoothness and seasonality. For the rest of the cases the results are similar and they can
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be obtained from the authors upon request. In the selection of the control parameters we have
considered a grid of possible parameters (h, A1, A2, A3); where h goes from 0 to one, with intervals
of length 0.1 and \ can take values between 0 and 10°. In the case of the mixture of both effects,
we have generated the explanatory variables as z1 ~ U(20,80), 25 ~ U(5,36) and z3 ~ U(0,46).

The coeflicients are defined as:

B1e = 10k sin(wt/n) 4+ Sy
B2t = 10 % cos(wt/n) + Sz

Ba¢ = 10k sin(27wt/n) 4+ Say,

and the seasonal structure is constructed as follows:

E [ S Su Sse | |t IETEEEE
t=12k+1 ] 20 40 150 t=12k+7 20 80 110
t=12k+2 || 40 70 30 t=12k+8 50 30 70
t=12k+3 || 10 90 70 t=12k+9 70 110 100
t=12k+4 || 60 20 90 t=12k+10 || 100 70 10
t=12k+51] 9 60 50 t=12k+ 11| 10 40 50
t=12k+6 || 30 10 20 t =13k 130 10 10
for £ = 0,...,14. Thus, the structure of the coefficients has both components of interest since they

vary smoothly and present a seasonal pattern.

Figure 1: First estimated coefficient: 3,
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Figure 2: Second estimated coefficient: By
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As it can be observed from the figures above, the methodology seems to perform well under
a mixed situation where both, smoothness and seasonality, are present. As mentioned above, we
have obtained similar results for the rest of cases studied and therefore, the method works properly
under very different type of situations. However, we have not derived theoretical results for this
proposal and the results must be taken with caution. In any case, the results motivate further
research in this topic.

To check the perfomance of the methodology in a real framework, we estimate the demand of
soft drinks in Canada, a dataset also analysed in Gersovitz and Mackinnon (1978) and Hylleberg
(1986). We have 180 monthly seasonaly unadjusted observations from January 1959 to December
1973. The model to be estimated is:

10g(C/P)t = ﬁlt + ﬁgtlog(SDP/CP)t + ﬁgt IOg(FP/CP)t + ﬁ4t 10g(EXP/P)t +

13



+  Bsilog((P— P25)/P) + & (16)

where:

e (: volumen index of soft drink production, 1961=100.

e P: total noninstitutional population.

e P25: total noninstitutional population, aged 25 and over.

e SDP: consumer price index for soft drinks.

e F'P: consumer price index for food.

o ('P: consumer price index for all items excluding food.

o (JF X P: total personal expenditure on nondurable goods in constant dollars, quartely data.

e F X P: interpolation of Q EXP. If the month is the middle one, FX P is equal to QFEX P;
otherwise, KX P is equal to two-third of Q FX P plus one-third of Q FX P for the adjacent

quarter.
e ¢; are zero mean errors, independently distributed with common variance.

We have applied the estimation procedure to the data allowing for a possible seasonal pattern in all
coefficients. The method has selected a zero value for the smoothness parameter and the maximum
degree of seasonality in all coeflicients. This means that a dummy specification provides a good
model for this analysis and this is the same conclusion than the one obtained in Gersovitz and
Mackinnon (1978) and Hylleberg (1986).

Next figures show the estimated coefficients and last figure shows the obtained adjustment.

Figure 4: Estimated coeflicient: Blt
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Figure 5: Estimated coeflicient: th
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Figure 7: Estimated coeflicient: BM
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Figure 8: Estimated coeflicient: Bg,t

10

-10 T T T T T T T T

15



Figure 9: Real data vs adjusted data
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APPENDIX

For the proofs of the results stated in Section 3, we will state the following lemmas.

Lemma 1 Under assumptions (A.3), (A.4) and (A.6), and if the explanatory variables are inde-

pendent random variables, we have that, as n — oo, h — 0 and nh — oo,
(nh)™! Zlft(r)wtth — M a.s. (17)
i

(nh)_IZKf(T)wtth — M a.s. (18)
i

where K(7) = K((nT —t)/nh).

Proof:

For (17):

Since the sums in expression (17) are matrices, we will prove the convergence of each element
to the corresponding one in the limit. Let us define Z;;; = Ky(7)xuzj¢. Then, {Z;;} i, is a
sequence of independent random variables with mean F(Z;;;) = K¢(7)m;; and variance V(Z;;1) =
KZ(7)V(zuwjt). From assumption (A.6), it follows that Y52, V(Z;;:)/t* < oo and from this we
obtain that Z;;; — F(Z;;;) = 0. Now, taking into account the kernel structure of K(-), the average
over the nh elements is Z;;; = (nh)™' S, Ki(T)wa ¢, the mean is E(Z;j) = myj(nh)™1 >, Ki(1),
and in consequence, E(Z;j;) = m;; + O((nh)™'). Therefore, the result holds.

For (18):

Let us define Z;;; = K?(7)xia;:, that has mean equal to F(Z;;;) = K#(7)m;; and variance
V(Zijt) = K}7)V(xz2j¢) Now, the result is obtained in a similar way than for (17). .

The lemma that will be proved now states the particular case of Theorem 1 when the explanatory

variables and the error term are considered to have an independent structure.
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Lemma 2 Under the same set of assumptions than in Theorem 1, where we consider the particular
case of a(n) = 0 rather than assumption (A.7), then the corresponding asymptotic bias and variance

expressions in the mean average squared error are:

R 274
G = T o) STMES + ) A MEAG
2 14
B )5 MBS £ ol( A+ H)?)
7=1
p
= O N+
7=1
R 2
V(3 = Unzk%trMAMMA—I-o((nh)_l)
= O((uh)™)

Proof: First, note that the mean average square error can be written as: MASE(BA) =
1,73 T3 3 ar ar |t T T

(np)~HrE [(ﬁA — B)T(B - ﬁ)], where ) = [ﬁn » .ﬁm] = [X WX+ A XTwy.
In order to avoid the problem of dealing with a random expression in the denominator of the

MASE, we define a modified M ASFE as

MASE*(By) = (np) ™" E [W(By = B)(5r — p) W]
where W* = [M + AA]_1 [XTWX + AA] and the rest are as defined in Section 3.
Now, we will study the rate of convergence of MASE*(BA). The process is tedious because

of the special structure of the estimator and we will try to detail the main steps, while repeated

arguments will be omited. First, we split the expression W*(BA — [3) as:

W5 = B) = M+ A (XTWY = XTWXB) - M+ A7 A3 =
MM B+ M+ AT XTWU — M+ A7 A3 (19)

T
where B = [Bf .. Bg] , being B, a p order subvector with i-th element » 7' Z§:1 Kyxpa (85—
Bjr). The vector U has a similar structure than Y and it is defined as U = 4,, @ [y .. .un]T.

Taking into account the expression (19), we compute the M AS E* separating it in the following
terms where My = [M + A4,]7".

LYNG BBT| M)y + (20)
np

1

n—pztrM*E [B] BT A\ My + (21)
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niptTM/\A/\ﬂﬂTA/\M/\ + (22)

1
AT M E XTWuutwx| my, (23)

where the first three terms account for the bias and the fourth corresponds to the variance.

To study the previous sums let us analyze the matrix F [BBT]. The ¢-th diagonal element of

one arbitrary submatrix 8,87 in BBT can be decomposed in

P n
ZZ ] Ttxltx]t ﬁ]t ﬁ]T)2 + (24)
7 t
DO Kb Bis — Bin)(Bin — Bie) + (25)
VeI
Z Z Krtffrswitﬂﬁjtﬂﬁisﬂﬁj's(ﬁjt - ﬁjr)(ﬁj’s - ﬁj’f) + (26)
I#3 t#s
Z Z Krtffrswitﬂﬁjtwisﬂﬁjs(ﬁjt - ﬁjr)(ﬁjs - ﬁﬂ)' (27)
J t#s

Clearly, the terms (24) and (25) are negligible with respect to the rest. The term (27) converges
to (h*d}/4) Y ;(mi;B%,)% and the term (26) to (dih*/2) 3z mij Bt mep 3%, for j # j'. So, the
leading term in the ¢-th diagonal element of F [B BT] is given by (dih?/4) ij, L mgm 3y ﬁ;’T
With respect the (i) nondiagonal elements of B,BT the asymptotic expression for the mean is
(dih*/4) ij, L M 37 ﬁ;’T Thus, F [BTB;:F] can be expressed asymptotically as (d2h*/4)S,ST,
where we recall that S, is a p order vector whose ¢-th component is Z§:1 m”ﬁé’T Following the
same steps in the elements of the nondiagonal matrix F [B BT,], we have that the mean in this
case is &/ [BBT] = (d2h*/4)SST, where S is given by S = [SIT . .Sg]T. For (23) we must compute
E [XTWUUTWX], which has n square submatrices of order p. Given the independence between
the error term and the explanatory variables and using Lemma 2 this mean is equal to (o2cg/nh)M.

The term, (21), depends on £ [B]. This vector has subvectors of order p and, a generic r-th ele-
ment of the i-th subvector is Z? SV Kyixix (8= B ). In the limit, the mean is (dih%/2) 1 Mij ﬁ]T,
so, E[B] = (dgh?/2) S

Combining all previous results and after some standard algebra, the resulting M ASE*(-) is:

- 2r* 1
MASE*($) = 5~ STMAS + —ﬁTAAM A\f
dph? 1 olcy 1
n ’“2 ﬁTAAM S+ —h—tr./\/lA./\/l./\/lA

From this, the three first terms are the leading terms stated for the bias and the fourth is the
leading term for the variance. Now, it is left to obtain the rates of convergence of the terms from

expression above. Since (1/np)STM2S is finite, the first term is of order O(h%).
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For the second term, we can check the order if we reorganize its elements adecuately. Let be
5= (bT.. IN)Z) the reorganized vector. Each subvector b;, contains the n coefficients associated to
the j-th explanatory variable, IN)j = (Bj1...0n). Given the new structure of 3, we organize the
rest of matrices in the same way. Let be A, = diag(Mi...Ap) @ A, and M, = [(M ®1,)+ %IA] -

where M = FE(x,z]). Under the new notation we can write

1 1 o o= ~ 1
n—pﬁTAAMiAAﬁ = %ﬁTA/\MiA/\ﬁ = —Z Z A BT AM;AB;

npzljl

where ./\;lij is the ¢j-th submatrix of dimension n X n of the whole matrix ./\;li Now, it is easy to

check from this last expression that the order of this term is O((A1 + ...+ A,)?). The order of the

third term is bounded by the two above ones and, since (np)~ttr My MM is bounded uniformly
in n, the fourth term of M ASE* is of order O((nh)™1).

Finally, we must show that the use of M ASE* instead of M ASFE does not affect to the rate

of convergence. From Theorem 6.1 in Vieu (1991), MASE*(3\) — MASE(By) = o MASE(3))) if

XTWXx + Ay | converges almost surely to [M + A,], and this result comes from Lemma 1 .

Lemma 3 Under the same assumptions than in Theorem 1, we have that

~

MASE(By) — MASE(B)) = o MASE(S)))

where M AS E(-) is defined as the mean average square error considered in the context of independent
variables considered in Lemma 2. Therefore, the term M ASE(-) corresponds to the mean average

square error in the context of a-mizing dependence.

Proof: Looking at the expressions from (20) to (22), the different terms are £ [BBT] , B [XTWUUTWX]
and F [B]. We compare these mathematical expectations with the corresponding to the independent
case, for which we will use the notation £.

We begin with F [BBT]. The terms (24) and (25) are still negligible since E(z}2%) and
E(2%xj3;) are bounded. Now, the difference between the sum of the terms (27) and (26) with
respect to the analogous expression in the independent case is:

Z; KB o(Bje — B )(Bjs — Bjr) [E(eutjivisejs) — E(wijivisas)] +
J t#s

SN K Ko(Be — Bin)(Byrs — By ) [E(wiwjuiszjrg) — Bzt jimisa )]
1 i

For the first term, an application of Proposition 1 in Hart and Vieu (1990) shows that it can be
bounded by C(nh) 22 a (|t = s|). The constant C' comes from the product between a finite and
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positive constant and a term C,, such that |K.;2:2 (85t — B0)| | Krsaists(Bs — Bjs)] < Co < 0.

Now, by assumption (A.7) we have that this bound can be expressed as,
n— 1 _ _
C(nh) QZK a(t —s) =2C(nh) 22 = 20h™20(n%/%) (28)

Following similar steps, the second term is bounded by C”(nh)_QZ:t;é a (|t — s|), where the constant

C! corresponds to the product of some positive constant and C? such that
|I(Tt$it$jt(ﬁjt - ﬁ]r)| |I(Ts$isxi’s(ﬁj’s - ﬁ]’s)| < Cé < 0

In consequence, we obtain the order in (28). For the nondiagonal elements of E(BBT) the same
order is obtained in a similar way.

The difference corresponding to the expression (23)is & [XTWUUTWX] -F [XTWUUTWX]
and it has as generic ¢j element, 3=, K K, [E(ziajsuius) — E(wiaj5usus)]. For the last difference,
note that the i-th element of the r-th subvector of E [B]—FE [B]is S, K, B1:—B1r) [E(wiz1e) — E(wiwy)]+

ot 2 Ki(Bpt = Bpr) [E(2iswp0) — E(2ip2pt)] -

For all these elements we obtain the same order as in (28). All together with the fact that h =
O(n=Y/%) leads to MASE(3)) — MASE(y) = o(h*). Therefore, the leading order of convergence
is the same for both measure. o

Proof of Theorem 1: The proof is now straightforward using Lemmas 1, 2 and 3.

Proof of Corollary 2: Under strict seasonality then 37 Ay = 0 and the unique term remaining
in the bias is dzh4(4np)_1STM§S, which is smaller than the one corresponding to the case A = 0.
The reason is that, with positive values of A;, Ay is a semidefinite positive matrix and so is
SM?S8—SM?ES. Since the variance is always smaller for positive values of the seasonal parameters,
the statement holds. o

Proof of Theorem 2: The proof is based on Theorem 3.2 of White and Domowitz (1984).
First, we obtain the asymptotic normality for the estimator BA corresponding to the r-th time
period when A = 0, BT = [@,1 .. .BTP]T

To keep the same notation than in Theorem 3.2 of White and Domowitz, we define g; = z! 3, +e;
where 7; = K;t/zyt, il = (Ixﬁ/let K:t/zxpt) and e; = K:t/zut. Then, under assumptions (A.1)

to (A.8) the mentioned theorem provides that

VA, BB, = B,) — N(0, 1)

where A, and B, are defined by

=op7 ! ZE [xt ] =op7 ! ZE Ithactth)

=1
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wo]
s
(

n~! ZE [etxtxt ] +4n! Z Z [etet_l (ititT_l + it_litT)]

=1 t=i+1

= 4n! Z K E(u)E(zly + 11
=1

The limit of nA,, is 2M and the limit of the first term in n2hB,, is 46%c; M. The second term IT
of B, is the sum of (n — 1) matrices which depend on the number of lags, . Each ij-th element in
those matrices is given by 77, | E( K K jugue_i2562 j5—q).

The use of Proposition 1 of Hart and Vieu (1990) allows us again, to relate this term with the

analogous in the independent case and we obtain

n

Z [E(KrtKrt—lUtUt—l%’ta@jt—l) — E(KrtKrt—lUtUt—l$it$]‘t—l)] = 0(h4)
t=1+1

where F(-) denotes the mathematical mean under the assumption of independence.

Hence, we have that lim vnhA !B, A-' = a%c; M and therefore we can write
Vah(B(r) = B(r)) — N(0, 0%, M)

The asymptotic distribution of BA is inmediate, since if h = o(n_l/S), the bias is negligible and the
seasonal parameters do not affect the rate of convergence. o
Proof of Theorem 3: The convergence in probability is deduced by the inequality of Markov

once we show that £|63 — 02| converges to zero. This expectation can be bounded by

E|6? - 0% <n IEZ% B = Bat)(Be — Bre) e
‘|‘E|n_12 — o} +n” 1E|Z$t (Bt — B/\t)ut|'

Theorem 1 provides the convergence to zero of the first term. For the second term we can apply
Kintchine’s Theorem. Finally, the Cauchy-Swchartz’s inequality bounds the cross term by the other

two ones, and the result is given. o
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