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Keywords: Nonparametric regression, Kernel estimators, Time varying coe�cients,Seasonality, Bandwidth selection1 IntroductionSince their introduction by Cooley and Prescott (1973, 1976) and Rosenberg (1972), time-varyingparameters regression models have been used extensively in empirical works. These models permitthe regression coe�cients to evolve over time, so they can be applied to time series models withparameter instability. We will consider models where there is a linear relationship between thedependent variable and a set of p explanatory variables. Thus, we can write,yt = �Tt xt + ut t = 1; : : : ; n; (1)where f(yt; xt); t = 1; : : : ; ng are respectively the observed values for the dependent and the ex-planatory variables, �t is a p-vector of time-varying parameters that needs to be estimated, andthe errors, ut, are considered to be identically distributed with zero mean with �nite variance �2.In order to solve the estimation problem, and according to the time path structure assumed forthe parameters, three main alternative approaches have been conducted in the literature. First,parameters are allowed to vary across subsets of observations within the sample in a deterministicway. Examples of such models include general systematically varying parameter models, seasonalmodels and switching regression models. A second class of models is that where the parameters areassumed to be stochastic and they can be thought of as being generated by a stationary stochasticprocess. Finally, a third class of models consists of those where the stochastic parameters aregenerated by a nonstationary process. Chow (1984), Harvey (1989), and Nicholls and Pagan (1985)present detailed reviews of these approaches. The �rst framework will be the one considered in thispaper. Based on the assumption that the regression coe�cients are smooth functions of the timeindex, Gallant and Fuller (1973) estimate them nonparametrically using piecewise cubic splines.Robinson (1989, 1991) does a similar work using kernel methods.Although smoothness provides su�cient conditions both to identify and estimate a time varyingcoe�cient model, there might exist other qualitative features in the time path that one would like tomodel through the parameters behavior. For example, many important economic variables such asouput, consumption and employment exhibit seasonal patterns. Unfortunately, seasonally adjusted2



data contain little or no information about seasonal variation in the parameters and also, as Wallis(1974) and Sims (1974) point out, the use of this type of data in dynamic statistical models canlead to serious misspeci�cation errors. On these grounds it would be of interest to include seasonalvariation in the coe�cients time shape.Motivated by the previous reasoning, in this paper, we are interested in the nonparametricestimation of the regression coe�cients, under the presence of seasonality or any other type ofshape constraints. Among the existent techniques that allow for constraints in nonparametricmodels (see Mammen, Marron, Turlach and Wand, 1998), those that incorporate this informationin a constrained optimization fashion appear to be the most appropiated to solve this problem.Rodríguez-Póo (1999) and Ferreira, Núñez-Antón and Rodríguez-Póo (2000) propose several al-ternative criterion functions. In our setting, the optimization problem is a modi�cation of the(smoothed) local likelihood approach followed by Robinson (1989), where the constraints accountfor the restrictions in the time varying path for the coe�cients. The resulting estimator will be thesolution of this constrained optimization problem and it turns out that it can be included within theclass of generalized ridge estimators. This fact presents at least two advantages. First, it enablesto derive an e�cient algorithm to make the estimation process feasible without a high computingcost and second, it makes the analytical study of the statistical properties easier. Furthermore, themethod will encompass a great variety of time-varying parameter models: systematically varyingseasonal coe�cients models, the bayesian seasonal smoothness priors estimator of Gersowitz andMacKinnon (1978) and �nally, the estimator proposed in Robinson (1989).The rest of the article will go as follows. Section 2 presents the estimation procedure andthe algorithm. In Section 3 the asymptotic bounds of the estimator are derived as well as itsasymptotic distribution. From these results we obtain the conditions in the control parametersfor the consistency of the estimators. These results are the extension to the p-dimensional caseof those obtained by Orbe et al (2000). A data-driven method to select the control parameters isgiven in Section 4. Finally, in Section 5 the performance of the methodology is analyzed through aMonte Carlo study. The results from the simulations indicate that the estimator procedure is ableto detect very di�erent cases in terms of smoothness and seasonality. Furthermore, we apply themethodology to the analysis of the demand of soft drinks in Canada. The results are consistentwith those coming from other empirical works. The Appendix has the proofs of the main resultsstated in Sections 2 and 3. 3



2 The constrained nonparametric estimatorIn the model introduced in the previous section we additionally consider the following assumptions:(A.1) (Smoothness) Each component of �t, �it = �i (t=n) is a smooth function such that �i 2C2[0; 1] for all i = 1; : : : ; p.To account for the seasonal restriction, �rst de�ne sn as the number of the observations perseason, such that sn=n remains constant as n increases. To work with a simpler notation, we willdrop the subscript in sn from now on.(A.2) (Seasonality) For some values �i and for each of the p sequencesn�1 nXt=s+1 ��it � �i(t�s)�2 � �i; (2)Note that one implication of assumption (A.1) is that there exist some constants ��i such thatn�1Pnt=s+1 ��it � �i(t�s)�2 � ��i for each i = 1; : : : ; p. Hence �i controls the degree of seasonality;i.e., if �i � ��i no seasonality is imposed at all, but as far as �i < ��i we are imposing strongerseasonal patterns.The estimates of all parameters f�itgnt=1 will result as the solution to the following optimizationproblem: min nXr=1 nXt=1Krt(yt � �1rx1t � : : :� �prxpt)2 (3)s:t:8>><>>: n�1Pnt=s+1 (�1t � �1t�s)2 � �1...n�1Pnt=s+1 (�pt � �pt�s)2 � �pwhere Krt = (nh)�1K((r� t)=nh). For the function K(�) we assume the following:(A.3) The function K(�) is a second order kernel with compact support 
 = [�1; 1]. We alsoassume that its Fourier is absolutely integrable and that R
 u4K(u)du, R
K4(u)du, are strictlypositive and �nite.A direct application of the natural extension of Proposition 1 in Orbe et al (2000) to the pdimensional case allows us to write in matrix notation the optimization problem referred in (3) ina closed form as, min� (Y �X�)TW (Y �X�) + �TA�� (4)4



where Y = in 
 [Y1 : : :Yn]T and X = [In 
 x], being in a unit vector of order n and In a n orderidentity matrix. The data matrix x is of order n � p. The vector of coe�cients � is such that�T = (�T1 : : : �Tn ). The weight matrix W is of order n2 with the following diagonal structure:W = diag(w1 : : :wn), where each submatrix wr is diag(Kr1 : : :Krn) .The term �TA�� takes into account the p seasonal restrictions. The matrix A� is de�ned as�? �RT �R, where �R = 266666666664 1 0 ps�2z }| {0 : : :0 �1 0 : : : : : : 00 1 0 ps�2z }| {0 : : :0 �1 0 : : : 0... . . . . . . ...0 : : : : : : : : : 1 ps�1z }| {0 : : :0 �1 377777777775and �? = In�s
�. The vector � contains the di�erent seasonal control parameters � = [�1 : : : �p]T .Now, once the values of h and f�igpi=1 are �xed, the resulting estimator must solve the followingsystem of equations hXTWX + A�i b�� = XTWY (5)and, if in addition we assume(A.4) Rank(w1=2r x) = p < n 8h 8r = 1; : : : ; n;then, the estimator has the closed formb�� = hXTWX + A�i�1XTWY: (6)This expression shows the relationship between b�� and the class of generalized ridge estimators.These estimators present a great variety of optimality properties (see Li, 1986), and this ridgestructure will enable us to compute the parameters in a feasible way. Furthermore, note that in orderto compute the estimators of the coe�cients (6), we need to compute the inverse of hXTWX + A�iwhose order is np that di�cults the practical estimation of the model. To overcome this problemwe provide an algorithm that instead of computing this inverse it only needs the calculation ofseveral inverses of order p. The derivation of the algorithm is based on the same idea than the onedeveloped in Lütkepohl and Herwatz (1996) and it consists basically in the decomposition of thesystem of normal equations given in (5) and its use to compute the estimators in a recursive form.We present the main steps for the implementation of the algorithm.5



1. Construct Zr = 8><>: xTwrx+4p if r = 1; : : : ; sxTwrx+ 24p if r = s + 1; : : : ; n� sxTwrx+4p if r = n � s + 1; : : : ; nwhere 4p = diagf�1 : : : �pg and xTwrx is a p order matrix with Pnt=1Krtxitxjt as generic(ij) term.Construct also the vector of dimension p, �r = h Pnt=1Krtx1tyt : : :Pnt=1Krtxptyt iT2. For j = 1; : : : ; s compute:a0;j = Z�1j ; : : : ;at;j = hZ2t+j �4p � a(t�1);j � 4pi�1 ; : : : ;a[n�ss ];j = hZ[n�s]+j �4p � a[n�2s];j � 4pi�13. For each j = 1; : : : ; s, calculate;b0;j = a0;j ��j ; : : : ;bt;j = at;j ��ts+j + at;j � 4p � b(t�1);j; : : : ;b[n�ss ];j = an�s=s;j ��n�s+j + an�s=s;j � 4p � bn�2=s;j4. Finally, for each j = 1; : : : ; s solve:c[n�ss ];j = b[n�ss ];j = b��j+n�s;c[n�2ss ];j = a[n�2ss ];j � 4p � c[n�ss ];j + b[n�2ss ];j ; : : : ;c1;j = a1;j � 4p � c2;j + b1;j = b��j+s;c0;j = a0;j � 4p � c1;j + b0;j = b��jThe last step provides the coe�cients corresponding to each exogenous variable associated to thej-th moment of time. That is, b��j contains the p coe�cients of the j-th time. This form allowsus to emphasize the di�erences between the estimator proposed by Robinson (1989,1991) and ourestimator. In fact, if we set �1 = � � � = �p = 0 then we obtain the estimator as the one proposedby Robinson, b� = hXTWXi�1XTWY: (7)Therefore, the seasonal restrictions introduce cross restrictions among parameters at di�erent timeperiods, being this the reason to do the estimation procedure in a global way. Each estimated6



coe�cient is a function of the whole sample through the smoothing parameter h and the seasonalpenalty parameters vector �. If we only had the smoothness restriction, the procedure wouldbecome easier and, for each time value, the vector of coe�cients could be computed separatelyfrom the rest.In order to understand the in�uence of the di�erent control parameters, h and �, on the estima-tor, we analyze some simple cases. As far as the components in � increase, the seasonal constraintswill have a higher in�uence since the estimation process will penalize heavily the di�erences betweenthe values for the same seasonal coe�cients. Under this setting and if the smoothing parameteris zero, the resulting estimator turns out to be the standard OLS estimator for the regression pa-rameters in a seasonal dummy linear regression model. Otherwise, if some smoothness is required,we end with the same result than in Gersovitz and Mackinnon (1978), who de�ne this context as�smooth seasonality�. On the other side, where no seasonal restriction is imposed, maintaining thesmoothness assumptions recovers the estimator proposed in Robinson (1989), as mentioned before.3 Asymptotic ResultsIn order to measure the accuracy of the estimation procedure, we need to study some error measure.A measure could be the usual average of the squared di�erences between the data and the truevalues for the regression curve. However, since our main interest is to provide good estimators forthe coe�cients in the regression curve, we propose to use a measure of discrepancy between thecoe�cient estimators and their true values. Concretely, we will use the mean average square errorde�ned by the following expression:MASE(b��) = (np)�1 pXi=1 nXt=1E(b��it� �it)2= (np)�1Xpi=1Xnt=1 n(E(b��it� �it))2 +E(b��it� E(b��it))2o= S2(b��) + V (b��)where b��it denotes the estimate of the coe�cient �it.Previous to other assumptions we introduce some additional notation. Let us de�ne M as thesymmetric matrix of order p whose elements are mij = E(xitxjt). M is the matrix In 
M andM� = (M+A�)�1. S will be (ST1 : : :STn )T , where the i-th element of the r-th subvector, Sr, of S isSri = Ppj=1mij�00jr. We also consider the functionals of the kernel, ck = R K2(u)du, c4 = R K4(u)duand dk = R u2K(u)du.Now, in order to allow for some dependence on the data generating process let us assume7



(A.5) The random variables fxtg and futg are statistically independent and, the sequence �t =fut; x1t : : : ; xptgt�1 � < � <p is �-mixing. That is, for any n, k 2 Z+ and for any pair ofsets A 2 �(�1; : : : ;�k) and B 2 �(�k+n�k+n+1 : : :), there exists a sequence of constants �(n)tending to zero such that jP (A \ B)� P (A)P (B)j � �(n).(A.6) For all t and for all i; j = 1; : : : ; p:0 < mij <1 i; j = 1; : : : ; p0 < E(x2itx2jt) <1 i; j = 1; : : : ; pand furthermore, M is positive de�nite.(A.7) The sequence of constants in the �-mixing condition is such that n�2Pnk=0 k�(k) = o(n�6=5).(A.8) Ejutj2+� <1 for some � > 0.We proceed to state the main results related to the consistency of the estimator and its asymptoticdistribution.Theorem 1 Given model (1) and, under the assumptions (A.1) to (A.7), we have thatS2(b��) = d2kh44 (np)�1STM2�S + (np)�1�TA�M2�A�� +dkh22 (np)�1�TA�M2�S + o(( pXj=1�j + h2)2)= O(( pXj=1�j + h2)2)V (b��) = �2cknh 1nptrM�MM� + o((nh)�1) = O((nh)�1)when h �! 0, � �! 0 and nh �! 1, as n �! 1.The �rst consequence is the consistency of the estimator. Corollary 1 shows the rate of convergenceof the mean average squared error. Note that under some speci�c rates for the control parameters,the proposed nonparametric estimator achieves a rate of convergence that was shown by Stone(1982) to be optimal for this smoothness class. Corollary 2 states that, if the underlying time-pathof the coe�cients follows a periodic pattern, the proposed estimator is more e�cient than theunrestricted nonparametric estimator proposed by Robinson.8



Corollary 1 Under the same assumptions than in Theorem 1 and if, in addition, h � n�1=5 andfor each j, �j = O(n�2=5), then MASE(�̂�) = O(n�4=5)Corollary 2 Under the same assumptions than in Theorem 1 and if, for each j, �j(�) is a periodicfunction of period s=n, then MASE(b��) < MASE(b�)for all h > 0 and any �j > 0 j = 1; : : : ; p.The asymptotic distribution of the estimator is provided in Theorem 2, while Theorem 3 states theconsistency of the variance estimator for the error term.Theorem 2 Under the assumptions (A.1) to (A.8) and if in addition h = o(n�1=5), the asymptoticdistribution for the proposed estimator is(nh)1=2 �b��(�)� �(�)� d�! N h0; �2ckM�1i (8)Theorem 3 Under the same assumptions than in Theorem 1, �̂2� = n�1Pnt=1(yt � xTt b��t)2 is aconsistent estimator of �2.All these results are the extension of those proved in Orbe et al (2000) to the context of p explanatoryvariables. Although the results are quite similar, the proofs need to be revised since, unfortunately,they cannot be derived straightforwardly from the univariate case. At this point, we would like toremark that there is no course of dimensionality because the model is additive.4 Selection of the control parametersOnce we have the desired properties of the estimator, we must approach the practical problem ofselecting the control parameters, which becomes an uneasy task when, as in this case, we haveseveral parameters to choose. To our knowledge, there exist at least three possible ways to selectthe control parameters in a nonparametric estimation setting. Leave-one-out techniques, plug-inmethods and penalized residual sum of squares. Härdle (1990) and Wand and Jones (1995) providedetailed discussions of each. In our context the leave-one-out procedures are computationallyintensive and the plug-in methods can be applied only if the expressions for the optimum control9



parameters are known. Unfortunately this is not the case. On these grounds we consider a methodbased on a penalized residual sum of squares. Thus we propose to choose the di�erent controlparameters solving the following optimization problem,min(h;�) n�1 nXt=1(yt � �̂�1tx1t � : : :� �̂�ptxpt)2 � p(h; �): (9)As it can be remarked from other procedures that can be included within the class of penaltymethods (Rice criterion or Generalized Cross-Validation) the penalty term is a function of the socalled projection or hat matrix; that is, the matrix that allows us to write the estimates as a linearcombination of the data. In this context such a matrix is not available so we propose an ad-hocmethod that will be described along the following lines. First, we consider a penalty functionadditive in the control parameters; that is, p(h; �) = p(h) + p(�1) + : : :+ p(�p)1. We select thesmoothness parameter penalty function (p(h)) under no seasonality restrictions and each seasonalparameter penalty function (p(�i)) will be selected under no smoothness restriction.Smoothness penalty: Under the assumption of no seasonality, � = 0, we construct an auxil-iary regression for each r moment of time as:yt(r) = �1rx1t(r) + : : :+ �prxpt(r) + ut(r) t = 1; : : : ; n (10)where yt(r) = krtyt, xjt(r) = krtxjt and ut(r) = krtut for j = 1; : : :p. In this context we de�nethe projection matrix as Hr(h) = w1=2r x(x0wrx)�1x0w1=2r for all r. Given that n time observationsare available we de�ne the matrix H(h) as the block diagonal matrix diagfHr(h)gnr=1, which traceis np and it does not depend on the smoothness parameter. We propose the following penaltyfunction for the smoothness parameter:p(h) = 1[(n2h)�1tr(I �H(h))]2 : (11)Seasonal penalty: Under the assumption of no smoothness, h = 0, and given the j-th exoge-nous variable, we consider the next auxiliary regression for the `-th season:y`i = �j`ixj`i + u`i i = 1; : : : ; f = n=s (12)subject to the seasonal constraint �0j`R0fRf�j` � �j , with �j � 0. y`i stands for the i-th elementof the f = n=s order vector y`, that contains the observations belonging to the `-th season, y` =(y`1 : : :y`f )T . The vectors xj` and �j` and their elements are de�ned similary. The value �j`i is1Although we use the same notation for all penalty functions, the context will clarify which is considered and wethink that this makes the notation simpler. 10



the coe�cient associated to the i-th observation in season ` of the j-th explanatory variable. Thematrix Rf collects the seasonal structure imposed among the coe�cients.Rf = 266664 1 �1 0 : : : 00 1 �1 : : : 0. . . . . .0 1 �1 377775 (13)Then, given the j-th variable and the `-th season we de�ne the projection matrix associated to theauxiliary regression (12) as:H`(�j) = diag(xj`) hdiag(xj`) + �jR0fRfi�1 diag(xj`)and by adding the seasons we haveH�j` = sX̀=1H`(�j) = sX̀=1 diag(xj`) hdiag(xj`) + �jR0fRfi�1 diag(xj`):We propose the penalty function for the j-th parameter that regulates the imposed seasonality onthe sequence of parameters corresponding to the j-th exogenous variable as:p(�j) = 1[n�1tr(I �H(�j))]2 : (14)5 A simulation studyThe purpose of this section is to analyze the practical performance of the estimation procedure.That is, the objective is not only to check the adequacy of the estimator but we also want toanalyze the data driven method of selecting the control parameters as well. In order to do so, wehave performed several situations for this analysis and, in all cases, the general model for the datagenerating process is:yt = �1tx1t + �2tx2t + �3tx3t + ut ut � IN(0; �2 = 3000) t = 1; : : : ; n (15)We have considered four di�erent situations for the coe�cients: constant, strict seasonal pattern,smooth with no seasonality and coe�cients presenting a mixture between smoothness and a seasonalpattern. From each speci�cation we have generated 100 replications of sample size n = 180. Sincewe consider monthly data, the overall period corresponds to 15 years. The selection of the controlparameters has been made using the method described in Section 4. For the sake of simplicity, weonly present the results for the last case. In fact, this is the case where the method must detectboth, smoothness and seasonality. For the rest of the cases the results are similar and they can11



be obtained from the authors upon request. In the selection of the control parameters we haveconsidered a grid of possible parameters (h; �1; �2; �3); where h goes from 0 to one, with intervalsof length 0.1 and � can take values between 0 and 106. In the case of the mixture of both e�ects,we have generated the explanatory variables as x1 � U(20; 80), x2 � U(5; 36) and x3 � U(0; 46).The coe�cients are de�ned as: �1t = 10 � sin(�t=n) + S1t�2t = 10 � cos(�t=n) + S2t�3t = 10 � sin(2�t=n) + S3t;and the seasonal structure is constructed as follows:t S1t S2t S3tt = 12k + 1 20 40 150t = 12k + 2 40 70 30t = 12k + 3 10 90 70t = 12k + 4 60 20 90t = 12k + 5 90 60 50t = 12k + 6 30 10 20 t S1t S2t S3tt = 12k + 7 20 80 110t = 12k + 8 50 30 70t = 12k + 9 70 110 100t = 12k + 10 100 70 10t = 12k + 11 10 40 50t = 13k 130 10 10for k = 0; : : : ; 14. Thus, the structure of the coe�cients has both components of interest since theyvary smoothly and present a seasonal pattern.Figure 1: First estimated coe�cient: �̂1
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Figure 2: Second estimated coe�cient: �̂2
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Figure 3: Third estimated coe�cient: �̂3
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As it can be observed from the �gures above, the methodology seems to perform well undera mixed situation where both, smoothness and seasonality, are present. As mentioned above, wehave obtained similar results for the rest of cases studied and therefore, the method works properlyunder very di�erent type of situations. However, we have not derived theoretical results for thisproposal and the results must be taken with caution. In any case, the results motivate furtherresearch in this topic.To check the perfomance of the methodology in a real framework, we estimate the demand ofsoft drinks in Canada, a dataset also analysed in Gersovitz and Mackinnon (1978) and Hylleberg(1986). We have 180 monthly seasonaly unadjusted observations from January 1959 to December1973. The model to be estimated is:log(C=P )t = �1t + �2t log(SDP=CP )t + �3t log(FP=CP )t + �4t log(EXP=P )t +13



+ �5t log((P � P25)=P )t + �t (16)where:� C: volumen index of soft drink production, 1961=100.� P : total noninstitutional population.� P25: total noninstitutional population, aged 25 and over.� SDP : consumer price index for soft drinks.� FP : consumer price index for food.� CP : consumer price index for all items excluding food.� QEXP : total personal expenditure on nondurable goods in constant dollars, quartely data.� EXP : interpolation of QEXP . If the month is the middle one, EXP is equal to QEXP ;otherwise, EXP is equal to two-third of QEXP plus one-third of QEXP for the adjacentquarter.� �t are zero mean errors, independently distributed with common variance.We have applied the estimation procedure to the data allowing for a possible seasonal pattern in allcoe�cients. The method has selected a zero value for the smoothness parameter and the maximumdegree of seasonality in all coe�cients. This means that a dummy speci�cation provides a goodmodel for this analysis and this is the same conclusion than the one obtained in Gersovitz andMackinnon (1978) and Hylleberg (1986).Next �gures show the estimated coe�cients and last �gure shows the obtained adjustment.Figure 4: Estimated coe�cient: �̂1t
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Figure 5: Estimated coe�cient: �̂2t
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Figure 6: Estimated coe�cient: �̂3t
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Figure 7: Estimated coe�cient: �̂4t
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BexFigure 8: Estimated coe�cient: �̂5t
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Figure 9: Real data vs adjusted data
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Datos ajustadosAPPENDIXFor the proofs of the results stated in Section 3, we will state the following lemmas.Lemma 1 Under assumptions (A.3), (A.4) and (A.6), and if the explanatory variables are inde-pendent random variables, we have that, as n �! 1, h �! 0 and nh �! 1,(nh)�1Xt Kt(�)xtxTt �! M a:s: (17)(nh)�1Xt K2t (�)xtxTt �! ckM a:s: (18)where Kt(�) = K((n� � t)=nh).Proof:For (17):Since the sums in expression (17) are matrices, we will prove the convergence of each elementto the corresponding one in the limit. Let us de�ne Zijt = Kt(�)xitxjt. Then, fZijtgnt=1 is asequence of independent random variables with mean E(Zijt) = Kt(�)mij and variance V (Zijt) =K2t (�)V (xitxjt). From assumption (A.6), it follows that P1t=1 V (Zijt)=t2 < 1 and from this weobtain that Z ijt�E(Zijt) a:s:�! 0. Now, taking into account the kernel structure of K(�), the averageover the nh elements is Zijt = (nh)�1PtKt(�)xitxjt, the mean is E(Zijt) = mij(nh)�1PtKt(�),and in consequence, E(Zijt) = mij + O((nh)�1). Therefore, the result holds.For (18):Let us de�ne Zijt = K2t (�)xitxjt, that has mean equal to E(Zijt) = K2t (�)mij and varianceV (Zijt) = K4t (�)V (xitxjt) Now, the result is obtained in a similar way than for (17). �The lemma that will be proved now states the particular case of Theorem 1 when the explanatoryvariables and the error term are considered to have an independent structure.16



Lemma 2 Under the same set of assumptions than in Theorem 1, where we consider the particularcase of �(n) = 0 rather than assumption (A.7), then the corresponding asymptotic bias and varianceexpressions in the mean average squared error are:S2(b��) = d2kh44 (np)�1STM2�S + (np)�1�TA�M2�A�� +dkh22 (np)�1�TA�M2�S + o(( pXj=1�j + h2)2)= O(( pXj=1�j + h2)2)V (b��) = �2cknh 1nptrM�MM� + o((nh)�1)= O((nh)�1)Proof: First, note that the mean average square error can be written as: MASE(b��) =(np)�1tr �E h(b�� � �)T (b�� � �)i, where b�� = hb�T�1 : : : b�T�niT = hXTWX + A�i�1XTWY:In order to avoid the problem of dealing with a random expression in the denominator of theMASE, we de�ne a modi�ed MASE asMASE�(b��) = (np)�1trE hW �(b�� � �)(b�� � �)TW �T iwhere W � = [M+A�]�1 hXTWX + A�i and the rest are as de�ned in Section 3.Now, we will study the rate of convergence of MASE�(b��). The process is tedious becauseof the special structure of the estimator and we will try to detail the main steps, while repeatedarguments will be omited. First, we split the expression W �(b�� � �) as:W �(b�� � �) = [M+ A�]�1 �XTWY �XTWX��� [M+A�]�1A�� =[M+ A�]�1 B + [M+ A�]�1XTWU � [M+A�]�1A�� (19)where B = hBT1 : : :BTn iT , being Br a p order subvector with i-th elementPnt=1Ppj=1Krtxitxjt(�jt��jr): The vector U has a similar structure than Y and it is de�ned as U = in 
 [u1 : : : un]T .Taking into account the expression (19), we compute theMASE� separating it in the followingterms where M� = [M+ A�]�1. 1nptrM�E hBBT iM� + (20)1np2trM�E [B]�TA�M� + (21)17



1nptrM�A���TA�M� + (22)1nptrM�E hXTWUUTWXiM�; (23)where the �rst three terms account for the bias and the fourth corresponds to the variance.To study the previous sums let us analyze the matrix E hBBT i. The i-th diagonal element ofone arbitrary submatrix BrBTr in BBT can be decomposed inpXj nXt K2rtx2itx2jt(�jt � �jr)2 + (24)Xj 6=j0 Xt K2rtx2itxjtxj0t(�jt � �jr)(�j0t � �j0r) + (25)Xj 6=j0Xt6=sKrtKrsxitxjtxisxj0s(�jt � �jr)(�j0s � �j0r) + (26)Xj Xt6=sKrtKrsxitxjtxisxjs(�jt � �jr)(�js � �jr): (27)Clearly, the terms (24) and (25) are negligible with respect to the rest. The term (27) convergesto (h4d2k=4)Pj(mij�00jr)2 and the term (26) to (d2kh4=2)Pj 6=j0 mij�00jrmij0�00j0r for j 6= j 0. So, theleading term in the i-th diagonal element of E hBrBTr i is given by (d2kh4=4)Ppj;j0=1mijmij0�00jr�00j0r.With respect the (ii0) nondiagonal elements of BrBTr , the asymptotic expression for the mean is(d2kh4=4)Ppj;j0=1mijmi0j0�00jr�00j0r. Thus, E hBrBTr i can be expressed asymptotically as (d2kh4=4)SrSTr ,where we recall that Sr is a p order vector whose i-th component is Ppj=1mij�00jr. Following thesame steps in the elements of the nondiagonal matrix E hBrBTr0i, we have that the mean in thiscase is E hBBT i = (d2kh4=4)SST , where S is given by S = hST1 : : :STn iT . For (23) we must computeE hXTWUUTWXi, which has n square submatrices of order p. Given the independence betweenthe error term and the explanatory variables and using Lemma 2 this mean is equal to (�2ck=nh)M.The term, (21), depends on E [B]. This vector has subvectors of order p and, a generic r-th ele-ment of the i-th subvector isPpj Pnt Krtxitxjt(�jt��jr). In the limit, the mean is (dkh2=2) Ppj=1mij �00jr,so, E [B] = (dkh2=2) S.Combining all previous results and after some standard algebra, the resulting MASE�(�) is:MASE�(b��) = d2kh44 1npSTM2�S + 1np�TA�M2�A��+ dkh22 1np�TA�M2�S + �2cknh 1nptrM�MM�:From this, the three �rst terms are the leading terms stated for the bias and the fourth is theleading term for the variance. Now, it is left to obtain the rates of convergence of the terms fromexpression above. Since (1=np)STM2�S is �nite, the �rst term is of order O(h4).18



For the second term, we can check the order if we reorganize its elements adecuately. Let be~� = (~bT1 : : :~bTp ) the reorganized vector. Each subvector ~bj , contains the n coe�cients associated tothe j-th explanatory variable, ~bj = (�j1 : : : �jn). Given the new structure of ~�, we organize therest of matrices in the same way. Let be ~A� = diag(�1 : : : �p)
An and ~M� = h(M 
 In) + ~A�i�1where M = E(xtxTt ). Under the new notation we can write1np�TA�M2�A�� = 1np ~�T ~A� ~M2� ~A� ~� = 1np pXi=1 pXj=1�i�j ~�Tj A ~MijA~�iwhere ~Mij is the ij-th submatrix of dimension n � n of the whole matrix ~M2�. Now, it is easy tocheck from this last expression that the order of this term is O((�1+ : : :+ �p)2). The order of thethird term is bounded by the two above ones and, since (np)�1trM�MM� is bounded uniformlyin n, the fourth term of MASE� is of order O((nh)�1).Finally, we must show that the use of MASE� instead of MASE does not a�ect to the rateof convergence. From Theorem 6.1 in Vieu (1991),MASE�(b��)�MASE(b��) = o(MASE(b��)) ifhXTWX +A�i converges almost surely to [M+A�], and this result comes from Lemma 1 �Lemma 3 Under the same assumptions than in Theorem 1, we have thatMASE(b��)�MASE(b��) = o(MASE(b��))whereMASE(�) is de�ned as the mean average square error considered in the context of independentvariables considered in Lemma 2. Therefore, the term MASE(�) corresponds to the mean averagesquare error in the context of �-mixing dependence.Proof: Looking at the expressions from (20) to (22), the di�erent terms areE hBBT i,E hXTWUUTWXiand E [B]. We compare these mathematical expectations with the corresponding to the independentcase, for which we will use the notation �E.We begin with E hBBT i. The terms (24) and (25) are still negligible since E(x2itx2jt) andE(x2itxjtxj0t) are bounded. Now, the di�erence between the sum of the terms (27) and (26) withrespect to the analogous expression in the independent case is:Xj Xt6=sKrtKrs(�jt � �jr)(�js � �jr) �E(xitxjtxisxjs)� �E(xitxjtxisxjs)�+Xj 6=j0Xt6=sKrtKrs(�jt � �jr)(�j0s � �j0r) �E(xitxjtxisxj0s)� �E(xitxjtxisxj0s)�For the �rst term, an application of Proposition 1 in Hart and Vieu (1990) shows that it can bebounded by C(nh)�2Xt6=s� (jt� sj). The constant C comes from the product between a �nite and19



positive constant and a term Co, such that jKrtxitxjt(�jt � �jr)j jKrsxisxjs(�js � �js)j � Co <1:Now, by assumption (A:7) we have that this bound can be expressed as,2C(nh)�2Xt�s�(t� s) = 2C(nh)�2Xn�1l=1 l�(l) = 2Ch�2o(n�6=5) (28)Following similar steps, the second term is bounded by C0(nh)�2Xt6=s� (jt� sj), where the constantC0o corresponds to the product of some positive constant and C 0o such thatjKrtxitxjt(�jt � �jr)j ��Krsxisxi0s(�j0s � �j0s)�� � C0o <1In consequence, we obtain the order in (28). For the nondiagonal elements of E(BBT ) the sameorder is obtained in a similar way.The di�erence corresponding to the expression (23) is E hXTWUUTWXi� �E hXTWUUTWXiand it has as generic ij element,Pt6=sKKrs �E(xitxjsutus)� �E(xitxjsutus)�. For the last di�erence,note that the i-th element of the r-th subvector ofE [B]� �E [B] isPtKrt(�1t��1r) �E(xitx1t)� �E(xitx1t)�+: : :+PtKrt(�pt � �pr) �E(xitxpt)� �E(xitxpt)� :For all these elements we obtain the same order as in (28). All together with the fact that h =O(n�1=5) leads to MASE(�̂�)�MASE(�̂�) = o(h4). Therefore, the leading order of convergenceis the same for both measure. �Proof of Theorem 1: The proof is now straightforward using Lemmas 1, 2 and 3.Proof of Corollary 2: Under strict seasonality then �TA� = 0 and the unique term remainingin the bias is d2kh4(4np)�1STM2�S, which is smaller than the one corresponding to the case � = 0.The reason is that, with positive values of �j , A� is a semide�nite positive matrix and so isSM2S�SM2�S. Since the variance is always smaller for positive values of the seasonal parameters,the statement holds. �Proof of Theorem 2: The proof is based on Theorem 3.2 of White and Domowitz (1984).First, we obtain the asymptotic normality for the estimator b�� corresponding to the r-th timeperiod when � = 0, �̂r = hb�r1 : : : b�rpiT .To keep the same notation than in Theorem 3.2 of White and Domowitz, we de�ne eyt = exTt �r+etwhere eyt = K1=2rt yt, exTt = (K1=2rt x1t : : :K1=2rt xpt) and et = K1=2rt ut. Then, under assumptions (A.1)to (A.8) the mentioned theorem provides thatpn �An �B�1=2n (b�r � �r) �! N(0; Ip)where �An and �Bn are de�ned by�An = 2n�1 nXt=1E h~xt~xTt i = 2n�1 nXt=1E(KrtxtxTt )20



�Bn = 4n�1 nXt=1E he2t ~xt~xTt i+ 4n�1 n�1Xl=1 nXt=l+1E hetet�l �~xt~xTt�l + ~xt�l~xTt �i= 4n�1 nXl=1KrtE(u2t )E(xtxTt ) + IIThe limit of n �An is 2M and the limit of the �rst term in n2h �Bn is 4�2ckM . The second term IIof �Bn is the sum of (n� 1) matrices which depend on the number of lags, l. Each ij-th element inthose matrices is given by Pnt=l+1E(KrtKrt�lutut�lxitxjt�l).The use of Proposition 1 of Hart and Vieu (1990) allows us again, to relate this term with theanalogous in the independent case and we obtainnXt=1+l �E(KrtKrt�lutut�lxitxjt�l)� �E(KrtKrt�lutut�lxitxjt�l)� = o(h4)where �E(�) denotes the mathematical mean under the assumption of independence.Hence, we have that limpnh �A�1n �Bn �A�1n = �2ckM and therefore we can writepnh(b�(�)� �(�)) �! N(0; �2ckM�1)The asymptotic distribution of b�� is inmediate, since if h = o(n�1=5), the bias is negligible and theseasonal parameters do not a�ect the rate of convergence. �Proof of Theorem 3: The convergence in probability is deduced by the inequality of Markovonce we show that Ej�̂2� � �2j converges to zero. This expectation can be bounded byEj�̂2�� �2j � n�1EXt xTt (�t � b��t)(�t � b��t)Txt+Ejn�1X(u2t � �2)j+ n�1EjXt xTt (�t � b��t)utj:Theorem 1 provides the convergence to zero of the �rst term. For the second term we can applyKintchine's Theorem. Finally, the Cauchy-Swchartz's inequality bounds the cross term by the othertwo ones, and the result is given. �
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