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Summary

In the analysis of longitudinal data it is of main interest to investigate the existence of group
and individual effects under correlated observations across time. In this paper, we develop a
nonparametric two-step procedure that enables us to estimate group effects under a very general
form of correlation across time. Moreover, we propose several methods to estimate the bandwidth
and show their asymptotyc optimality. Since the asymptotic distribution is untractable, we develop
a randomization test that is suitable for testing the group effects. Finally, we apply the estimation
procedure, the bandwidth selection criteria and the randomization test to the data from the Iowa
Cochlear Implant Project.
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1 INTRODUCTION

The analysis of growth and dose response curves, where experimental units (normally allocated to
different treatments) are observed over a period of time, has been studied under the hypothesis
that the observed sequence of measurements y(¢) is sampled from a realization of a continuous time

stochastic process Y (1).

In this type of analysis, it is of main interest to estimate the mean response of Y (¢) and
whether there exist significant differences between the treatment groups. One way to test for
differences between groups is to assume that the mean response Y (t) is decomposed into two additive
components. The first one captures the so called common effect and the second one the group effect.
To estimate both common and specific effects, in a fully parametric context, Laird and Ware (1982)
propose linear additive components and Lindstrom and Bates (1990) nonlinear ones. More recently,
Boularan et al. (1994) have introduced a method to estimate the components nonparametrically,
but they do not incorporate dependence along time in the response variable. On the other hand,
Hart and Wehrly (1986) estimate the mean response of a growth curve nonparametrically accounting
for correlated errors, but they do not study the possible difference between treatment groups.
Moreover, no discussion about bandwidth selection criteria is provided. Rice and Silverman (1991)
and Hart and Wehrly (1993) propose cross validation based methods, and Ferreira et al. (1997)
introduce a selection method that is based on a modification of the Rice criterion. Moreover, this
last paper considers nonstationary correlated errors as suggested by Nifiez-Antén and Woodwoth
(1994). All the previous error covariance structures fall within the general class considered by
Fraiman and Meloche (1994) and, therefore, the result in all cases is that smoothing dependent
observations is in general not consistent unless we use repeated measurements. As pointed out in
Ferreira et al. (1997), this represents an important problem when analyzing asymptotic optimality

of a data driven bandwidth selection method since the bandwidth only has a second order effect.

In order to overcome the previous problem and, at the same time, be able to estimate and test
group effects, we propose an additive nonparametric model where the dependency of observations
along time is captured by using discrete nostationary covariance structures. This type of covariance
structures are motivated in Hart (1991), and analyzed for the stationary case. We extend the results
to the nonstationary case, as motivated by Ninez-Antén and Woodwoth (1994). The discrete
covariance structure is particularly useful when analyzing data driven bandwidth selection criteria.
The additive components will be estimated nonparametrically following the procedure proposed
by Boularan et al. (1994) and the bandwidth will be chosen by two different data-driven criteria.

We develop a method to test for differences between groups. A standard procedure to carry these



tests out will be to obtain the asymptotic distribution of the estimators. Unfortunately, under the
hypotheses of our model, this is not a trivial issue. In addition to this, practical reasons have led
us to propose a different and well know approach for these “more complicated” types of situations.
The proposal we make for these tests is very simple and, also, very easy to implement. We are in
fact proposing to carry out a randomization test to detect if the group difference is statistically
significant. This test is based on permutation of the rows in the data matrix. This technique
appears as a very natural way to test for the group effect. Finally, with this procedure we can also
test for the density structure of the time density for each group, since we will propose a model

under a random time index.

Thus, the paper structure is as follows. In Section 2 we propose the two-stage model and present
the methodology for the estimation of the unknown functions. In Section 3 we present the main
results that provide the consistency of the estimations for the two stages. The proposals for the
bandwidth selection are described in Section 4. In Section 5 the randomization test for the group
effect will be developed. In Section 6 we present the results when applying this methodology to

our data set. Finally, in the Appendix, we give the details for the proofs of the main results.

2 STATISTICAL MODEL AND HYPOTHESES

All the considerations in Section 1 lead us to propose the following model
Yij = r(tis) + ra(tiy) + e(tij), (1)

fore = 1,...,mand j = 1,...,n, where n is the maximum number of measurements for each
individual, and »; is the number of available data for the i-th subject. Y;; is the response for subject
¢ at time ¢;;. If the observation at ¢;; is missing, we put ¥;; = 0. We will also let N = >""; n; and
NG = ) ;eqni. That is, N is the total number of available observations and Ng is the number of
available observations in group (. Note that r(-) denotes the common effect and rg(-) the group

effect. We assume that:

° (Ml) E(Yiﬂtij) = T(tij) and E(Y2]|Z € G,tij) = T(tij) + Tg(tij).

The €(t;;)’s are assumed to model any yet unexplained effect due to the possible existence of a

correlation between any two measurements on the same individual.

In addition, we need the following identification condition for rg:



o (M.2) E(rg(?)) =Y qre(t)P(G) =0, for any t € [0, 0],

where P(G) denotes the probability of being in group G. The ¢;;’s are the times at which the i-th
subject is observed for the j-th time. All time points are assumed to belong to a compact, let us

say [0,b]. As for the time points, we assume that:

o (T.1) t;; € [s;,5;41],Vt, with s = 0 and 5,41 = b.

e (T.2) t;; = (s;41 + 5;)/2 + Ui;, where the U;;’s are independent random variables with
unconditional density g;, and the support of the g; is [(s; — s;41)/2; (sj41 — s;)/2]. Thus, the
density of the random variable representing the time can be written as:

)= L3 gy (1o L),

i=1

e (T.3) The conditional density of U;;, when we know that 7 belongs to group G, will be
denoted by g;i. Therefore,

falt) = %ng (t _ W)

7=1
will be the density of the time index in group G, since they might be different. It should also
be noticed that f(t) = >« fa(t)P(G).

Here, it is also assumed that:

e (R.1) 7, rg, and f are all bounded, p times continuously differentiable functions and
inf; f(t) > 0; inf; fe(¢) > 0, for any ¢ € [0,b] and for any group G.

e (R.2) For k > 1 there is a constant C} so that for ¢ € [0, 0]

EYHT =1] <Cp <o
e (I.1) All the n}s are of the same order, i.e. n; = O(n).
We will study the consistency of the estimators under a very general structure, allowing for non-

stationary correlation between observations on the same individual. In order to obtain the main

results, we will need the following assumptions for e = 1,...,mand 7 =1,...,n:

° (El) E{Q(tij)ﬁij} = 0.



(E.2) There is independence across individuals and for the same individual we have that

covie; (L), €(tis)|tiy tis} = 7(J, 8)- (2)

(E.3) There exists a finite positive constant S, such that lim, . 27" 37 Y70 [7(4,5)] =
Sy

(E.4) >0 |7 = sllv(J4,s)| < € < oo, uniformly in j.

(E.5)
. 1 .
dim = > D pl(hi 1,5 1)) < € < o,

ntghv

where 1(j, 1,3, = E(e(tiy)elta) — 10, D)(eltiyr)eltar) = 7(7', 1))

Remark 1. One can see from these assumptions that we are working with independent individ-
uals, allowing for a discrete nonstationary covariance between observations on the same individual.
We do not assume any parametric structure for the covariance, but we restrict by (E.3) and (E.4)

the behavior when the number of observations per subject increases.

Remark 2. We might notice that if y(j,s) = v(|j — s|) we are in the stationary case (Hart,

1991). In this sense, our results can be interpreted as a generalization of those obtained in his

paper.

Remark 3. A discrete structure like (2) is in between the continuous structure and the in-
dependent case, letting the data values at two design points separated by a fixed distance, be

asymptotically uncorrelated.

We now propose the estimates for the components of our model, providing their theoretical

properties.

3 KERNEL ESTIMATORS AND FIRST PROPERTIES

Fach of the two components, the common and the group effect, in model (1) will be estimated

using a kernel smoothing technique.

The function r(-) will be estimated by using all the data as if they had been collected from

one single individual. We use as estimates of r(-) the familiar Naradaya-Watson kernel regression



smoother (Hérdle, 1990). These estimates are defined for a kernel function K (-) and for a bandwidth
h by

=1 7=1

#(1) = 0 (3)

with the usual Rosenblatt-Parzen kernel density estimator method (Rosenblatt, 1956; Parzen,
1962):

i %i ZH:YZ']‘K (t”h_ t) I(Yi; #0)

fin =y ok () s #0 )

=1 7=1

Here I(-) is an indicator function for the condition used as argument. Once we have estimated
the common effect r(-), we estimate the group component r(-) by doing kernel regression on the

residuals for each group, i.e. for any group G' we define the estimate:

v — )k () ry,
%;(Ej — 7(tij)) K (W) I(Y; #£0)
Ja(t)

Here the bandwidth hg may vary from one group to the other. The corresponding density estimator

1
Neha

(5)

Tg(t)

18

fg(t) = NGth Z Zn:]( (tijh— t) I(Yij #* 0) (6)

1€G g=1
The usual assumptions in kernel smoothing techniques for the kernel K and the different bandwidths

are as follows:

(K.1) K is a kernel having compact support on [—¢, ¢], with ¢ > 0.

(K.2) K is a bounded kernel of order p.

(K.3) [° K(z)dz = 1.

(H.1) h — 0, as N tends to infinity.

(H.2) hg — 0, as N tends to infinity.

Now we need to study the asymptotic properties of our nonparametric estimators given by equations
(3) and (5). That is, we give asymptotic bounds for the consistency properties for these estimates.
When giving these properties, and as typical in kernel smoothing techniques, a weight function

w(t) with the following assumption will be used:
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e (W.1) wis positive, bounded and integrable over [0, b].

In order to study the asymptotic properties, let us consider the mean square error and the mean

integrated square error of any estimator s(¢) that is being estimated by §(¢).

MSE{3(t)} = E{3(t) - s(1)}?
= [E{4(1)} — s(1)]? + var{s(1)}
= bias?{5(t)} + var{5(1)},

b
MISE(h) = /0 E{&() — s(£)) 2w(t)dt,
and ASE(h) = %Z{g(tij)—s(tij)}%(tij).

Theorem 1 Under assumptions (E.1)-(E.4), (H.1), (I.1), (K.1)-(K.3), (M.1)-(M.2), (R.1),
and (T.1)-(T.8), we have that, for any t € (0,b), as Nh goes to infinity,

1
Nh ()

where die = [ K*(u)du and ey (t) = (f(t)p!)~1 f<. nplx'(n)dn{(rf)(p)(t)}.

MSE{#t)} = cx(t)*n* + Sodg + o(h*F) 4+ o((Nh)™h),

Remark 4. The order of the MSE is the standard in a nonparametric estimator. The relevance

of our result is that this order can be obtained under a very flexible covariance structure.

Remark 5. The results show the consistency whenever h goes to zero and Nh goes to infinity.

Note that for this result to hold it is not necessary to let both, n and m, go to infinity.

Remark 6. The greater the variance term is, the greater the smoothing parameter will be,
and the variance term increases with 5,. So, if we have correlation between units, the smoothing
parameter should be greater than in the independent case. This is consistent with the analysis made
by Hart and Wehrly (1986), since, as they point out “the less smooth the correlation function is at
zero, the larger the optimum bandwidth is.” Clearly, the discrete structure is not even continuous

and, therefore, not smooth at all.

It is also possible to give a global convergence result that we present as a corollary.

Corollary 1 Under the assumptions of Theorem 1, as Nh goes to infinity,

1
MISE(h) = Cxh® + Di <7+ o(h*) + o( (N 1) ™),
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as N tends to infinity. Here, the constants are Cir = fob cx(t)dt and Dy = S, dg fg f()~tdt.

The next theorem gives the consistency for the kernel regression estimate 7¢(-) for the second

stage (i.e. the estimate for the group effect).

Theorem 2 Assuming that (H.2) and the conditions in Theorem 1 hold, we have that, for any
group G, as Nghg goes to infinity,

1

2 _
Noha fo() i + othd) + ol(Naha) ™),

MSE{#6(1)} = ea(t)hel +

where c(t) = (fa(t)p!) ™" [ P K (n)dn{(rafa)®(t)}.

Remark 7. Again, we see that the convergence of the nonparametric estimator to the under-

lying function goes as rapidly as possible under the standard conditions.

Finally, we give a global convergence result for the second stage estimator.

Corollary 2 Under the assumptions of Theorem 2, as Nghg goes to infinity,

1
MISEG(h) = Exh? + FKm + o(h?) + o((Neha)™) + O((h& + (Ngha) 1) (h?P + (Nh)™Y).

Here, the constants are F = fg cq(t)dt and Fr = S dg fg Ja(t)~tdt.

4 SELECTION OF THE SMOOTHING PARAMETER

In the previous sections, the estimator and the consistency results have been obtained assuming
fixed bandwidths for the estimator of the common effect, h, and the group effect, hg. In this
section, we will introduce different procedures to compute these bandwidths from data. This is
of particular interest when considering, in the next section, the randomization approach to test
for equality of the different groups. We define one optimal global bandwidth for the estimator of
the mean effect as the solution to the following optimization problem h* = argmin, MISE(h), and
for the group G, h§, = argmin, MISEq (h). Unfortunately, these optimal bandwidths can not be
determined since they are functions of unknown quantities. To overcome these problems, several
methods have been proposed in the literature. Among them, we have decided to use the cross

validation method, and the method proposed by Rice (1984). The reason is that both bandwidth



selection methods can be easily transformed to be used in a longitudinal data framework. For cross

validation see Hart and Wehrly (1993) and for the Rice criterion Ferreira et al. (1997).

In the cross validation setting, the bandwidth for the mean effect will be chosen according to
the following criterion 2¢Y = argmin, CV (h). The cross validation function is defined as CV (h) =
N=UY (¥ = #74(8)) " w(ty), where

t

> ZH:YM,GK (tkjh_ ) I(Yija #0)

F=i(t) = k#i j=1

Nhf=i(t)

and

gﬁ;gﬁ’ (t’”h_ t) I(Yi; #0)

fi = — . (3)

As for the group effect, we have selected the bandwidth ﬁgv = argmin, CV¢g (k). The cross vali-
: 2
dation function is defined as CVg (h) = N5' Sieq; (YZ — 7(ti;) — f‘c_j(tzj)) w(t;;), where

> ZH:YM‘K (tkjh_ t) I(Yy; #0)

i kEGREG j=1
Po'(t) = Nehl= (1) ®)
and
f‘i(t)  k#iked j=1 (10)
G - Ngh

If we want to use the estimated bandwidths propertly, it is necessary to establish some relationship
between respectively 2* and Ay, and hEY and /Azgv Following Shibata (1981), the next theorems

state the asymptotic optimality, with respect to the MISE, of iLOV, /Azgv

Theorem 3 Assume that conditions in Theorem 1 hold. In addition assume that (E.5), (R.2)
and (W.1) also hold. Then, as m tends to infinity,
MISE (h¢V)
il her,, MISE (1)

—1 a.s. (11)

S N 1
Jor some 0 < € < ﬁ and Hy = [aN 341 ¢ pN " z41T¢),

Theorem 4 Assume that conditions in Theorem 2 hold. In addition, assume that (R.2) and
(W.1) also hold. Then, as mg = #{i € G} tends to infinity
MISEG (hEY)
infr eny, MISEq (hg)

—1 a.s. (12)
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1 1
for some 0 < € < ﬁ and Hy,, = [aNg~ 2+ bNg 2P+1+E].

These results were originally proved for the i.i.d. case by Hirdle and Marron (1985), and they were
extended to the case of dependence by Hérdle and Vieu (1992). In the framework of longitudinal
data, Hart and Wehrly (1993) show the consistency of cross-validation under a continuous and
stationary structure for the covariance function. Boularan et al. (1994) show the same consistency
property when estimating the different components of an additive model, but assuming indepen-
dence among the different curves. The main interest of the results shown in Theorems 3 and 4 is
that the asymptotic optimality of the cross validated bandwidths is shown under the assumptions
that the covariance structure is discrete and nonstationary. This generalizes the previous results
and highlights a very important feature in the asymptotic properties in the cross-validation method
for longitudinal data. That is, cross-validation when deleting one curve is not consistent unless we

let the number of individuals go to infinity.

As pointed out in Section 1, we are very interested in the applicability of the methodology
presented in this work. The dataset we are interested in has been analyzed before and presents
a correlation structure that can be well modelled in a parametric way. Therefore, as Hart and
Wehrly (1993) argue, if we use a modified Rice criterion (see Rice, 1984), the resulting smoothing
parameter should be better. Roughly speaking, selecting cross validation is like using the sample
covariance as an estimator for the covariance structure, whereas the Rice criterion uses a consistent

estimator of the covariance.

For this modified Rice criterion, the bandwidth for the common effect will be selected according

to the following criterion 2® = argmin, RICE (h), where
RICE(h) = 3 SO0 — #(t) i) + g = 30 & (55 ) 306, gyt
N i, ” ” N N2h i, f(tij)kzl h Y o

Theorem 5 Assume that conditions in Theorem 1 hold. In addition that assume (E.5), (R.2)
and (W.1) also hold, and that 4 is a consistent estimator of v. Then, as m tends to infinity,
RICE (A1)
infrem,, MISE (h)

— 1 a.s. (13)

1 1
Jor some 0 < € < ﬁ and Hy = [aN 741 ¢ pN " zF1T¢),

Now, we can consider the same criterion for the second stage. In this case, the bandwidth for the

group effect will be hE = argmin, RICE (h).

1 R R 2 1 e ot =k .
i€Gj i€, j i) k=1
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For the second stage, we state the next theorem.

Theorem 6 Assume that conditions in Theorem 2 hold. In addition, assume that (R.2) and
(W.1) also hold, and that 4 is a consistent estimator of v. Then, as mq tends to infinity
MISEG (hE)
infr eny, MISEq (hg)

—1 a.s. (14)

1 1
for some 0 < € < ﬁ and Hy,, = [aNg™ 21 bNg 2P+1+E].

5 TESTING FOR THE GROUP EFFECT

Once we have estimated the mean and the group effect, it can be of interest to analyze the differ-
ence between groups. That is, we would like to test if the difference between groups is statistically
significant. This has been an issue receiving some consideration from other authors that have ana-
lyzed this dataset in the past (see e.g., Zimmerman et al., 1998 and Nufez-Antén and Woodworth,
1994). Thus, there are two issues regarding possible tests to be carried out, for the two different

groups:

o A contrast to determine if the difference between groups is statistically significant.

o A contrast to determine if the difference between the densities for the times at which individ-
uals are observed is statistically different for the two groups. Regarding this issue, we have
assumed, for estimation purposes, that the densities are in fact different and, thus, we have

used different densities for the estimation of the group effects.

That is, we are interested in testing both the statistical significance of the difference between
groups and between densities for each of the groups. Even though the methodology is similar,
we will only concentrate on a randomization test for contrasting the difference between groups,

assuming that each of the two groups has a different density.

A randomization test is a permutation test based on randomization (random assignment) to
test a null hypothesis about treatment effects in a randomized experiment. In our case, individuals
were randomly assigned to the different groups (i.e. different types of cochlear implant) and, thus,
we are on this situation. The test is carried out as follows. A test statistic is computed for
the experimental data, then the data are permuted (divided or rearranged) repeatedly and the

test statistic is computed for each of the resulting data permutations. Those data permutations,

11



including the one representing the obtained results, constitute the reference set for determining
significance. The proportion of data permutations in the reference set that have test statistic
values greater than or equal to (or, for certain test statistics, less than or equal to) the value for the
experimentally obtained results is the P-value (significance or probability value). If, for example,
the proportion is 0.02, the p-value is 0.02, and the results are significant at the 0.05 but not the
0.01 level of significance. Determining significance on the basis of a distribution of test statistics
generated by permuting the data is characteristic of all permutations tests; it is when the basis for
permuting the data is random assignment that a permutation test is called a randomization test.
This is the type of test we will be using here. See Good (1994), Edgington (1995), Garthwaite et al.
(1995, chapter 9) and Lehmann (1986, Chapter 5, Sec. 12, for references to complete some general
details on this methodology.

The null hypothesis for a traditional randomization testis that the measurements for each person
or other unit that is randomly assigned will be the same under one assignment to treatment as
under any alternative assignment that could have resulted from the random assignment procedure.
Thus, when the null hypothesis for the traditional randomization test, which is the hypothesis
of no differencial treatment effect, is true, random assignment of subjects to treatments randomly
divides the measurements among the treatments. Each data permutation in the reference set, which
functions as a randomization test “significance table”, represents the results that would have been

obtained for a particular assignment if the null hypothesis is true.

The procedure we will use for our specific test to investigate the statistical significance of the

treatment difference is as follows:

1. Define a “grid” of points where all effects (i.e. common and group effects) are estimated.
Note that this is necessary because the two groups do not have common time points. The

number of time points in the grid will be denoted by N,.

2. Estimate the densities fa(:), fB(-), and the group effects, 74(¢) and 75(¢) for the original

dataset, using the methods specified in Sections 3 and 4.

3. Define the test statistic as:

Ny Ng
Tops = Z Fa(ty) —7B(t)] = QZ |7 4(t;)]- (15)

The last equality holds because of the condition 75(t) = —74(%).

4. Keep the number of observations per group as 21, the initial value in the original dataset.

12



10.

. Permute randomly the rows of the data matrix (m individuals with the ¢-th individual having

n; observations available) Q times.

. For each of the ¢ = 1,...,Q permutations of the data, assign half of the individuals (i.e. 21)

to treatment A, and the other half to treatment B. Let us denote these halves by A4, and B,.

This will constitute our new dataset originated from permuting the data.

. Maintain the estimate of the common effect since the sampling is without replacement. kEs-

timate f4,(-), fB,(*), 74,(t) and rp (1), as indicated in Sections 3 and 4, keeping the values
for the bandwidths we obtained for the original dataset, since the optimal bandwidth is not

affected by the randomization process.

. Compute the test statistic in equation (15) for each of the ¢ = 1,...,Q permutations of the

data.

. Calculate the P-value or the critical value for our randomization test. The proportion of data

permutations in the reference set that have test statistic values greater than or equal to the
value for the experimentally obtained results is the P-value (significance or probability value).
The critical value will be the (1 — a)-th percentile of the test statistic values calculated from

the respective permutations.

Conclude if the difference in group effect is statistically significant or not, at the a level of

significance.

The same procedure can be used for testing the significance of the difference for the densities

in the two groups.

6 Application to the Speech Recognition Data

In this section we present the application of our methodology to the speech recognition dataset from

the Iowa Cochlear Implant Project (Gantz et al., 1988). In this data set, the data consist of scores

(percentage of correct responses) on a sentence test administered under audition-only conditions to

groups of human subjects wearing one of two types of cochlear implants, referred to here as A and

B. Implants were surgically implanted five to six weeks prior to being electrically connected to an

external speech processor. Subjects were profoundly, bilaterally deaf, thus pre-connection baseline

values for the sentence test were all zero. Twenty-one subjects received implant A and 21 received

implant B.

13



The data set consists of NV = 155 observations available on m = 42 subjects, 21 subjects in each
of the two groups for each type of cochlear implant. In the notation introduced in Section 2, we
also have that the number of observations available for the subjects wearing cochlear implant type
A was Ngg = 76 and the one for subjects wearing cochlear implant type B was Ngp = 79. The
maximum number of available observations a subject can have is n = 6. As illustrative examples,
we can point out that the values the n;’s (i.e. number of observations available on subject ¢) take
on are different and small. For example, ny = 2, no = 3, - -+, ngy = 2, and nyy = 2. Thus, as can
clearly be seen, most subjects do not have more than 2 or 3 observations available, and very few

have all 6 observations.

Measurements were scheduled at 1, 9, 18, 30, 40, and 54 months after connection; there was
some variation in actual follow-up times, however, so these times were not exact. Moreover, some
subjects did not show up for one or more of their scheduled follow-ups. Thus, actual follow-up times
could be very well considered to be randomly distributed around the scheduled follow-up times. It
was also assumed that these observations were missing at random. We are interested in estimating
the common and group (i.e. type of cochlear implant) effects believed to be present in this data
set. As proposed in earlier sections, we would compare two well known methods for bandwidth
selection: the cross validation criterion and the Rice criterion. The theoretical properties for these
two methods have shown that they work well under the conditions stated in Section 4, which can

be easily verified for this dataset (see, e.g. Niifiez-Antén et al., 1999).

In addition, we would like to test for a group effect (i.e. if there is as significant difference
between the two types of cochlear implants). We also want to investigate the features in the within
subjects covariance structure, known to have a specific parametric nonstationary structure (see,
e.g. Nifiez-Antén and Woodworth, 1994, and Zimmerman et al., 1998). These ideas and the steps
to carry them out can, of course, provide a clear picture of the main properties of the dependency

between audiologic performance and time for this data set.

Figures 1 and 2 show the scatter plot and the profiles of the audiologic performance over time
for all 42 subjects. From these figures, it is quite hard to reckon a precise parametric form to use

for the model in this data set.

Nifiez-Antén and Woodworth (1994) analyzed a previous version of this dataset. Their final

model for the mean response was a quadratic in time model that did not find a significant group
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Figure 1: Scatter plot of the speech recognition data set.
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Figure 2: Profiles for the subjects in the speech recognition data set.
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effect. The other known parametric approach for this data set has been taken by Zimmerman et
al. (1998). They considered the updated and corrected version of the dataset (i.e. the one we will
use here). They decided to consider only the observations available at 1,9, 18 and 30 months and
obtained a quadratic in time model for the mean response and a significant group effect. Nitez-
Antén et al. (1999) proposed a three-stage estimation approach, assuming a continuous covariance

structure and without justifying the selection of the smoothing parameter.

For our estimation process we have selected the Gaussian kernel and for the bandwidth selection,
we present both cross validation and Rice criteria. For the latter, we have used estimates obtained
from nonlinear least squares, following the ideas in Ferreira et al. (1997), for the theoretical model
where:

A

==

2 . .
cov€(ti; ), € (Lrs)|lijy brsy = ap fi=r
{€iltiy), € (trs)ltijs trs} {0 iy

Estimation of the Common Effect:

We have used the methodology develop in Section 3. The value obtained for the bandwidth
using the leave-out-one-subject cross-validation criterion was hEYV = 3.05, and the corresponding
bandwidth using the Rice criterion was Mt = 2.62. Figure 3 shows the scatter plot of the data

together with the estimated curves 7 for the common effect for both methods of bandwidth selection.

As can be seen from this figure, there is no real difference for the estimates obtained for the

common effect, when using either one of these two methods.

Figure 3 shows that up to about 30 months there is an improvement in the hearing of the
subject, then it seems that the performance becomes worse as time goes by and it then increases
again at about 40 months. This decrease could be due mainly to the fact that the subjects with
significant improvement in their hearing did not come back to any more appointments, and the
subjects that continued being observed were the ones showing improvement on the average lower
than the mean of the whole group. We will be able to see if this hypothesis is reasonable when
estimating the individual effects. The final increase in performance could be just due to the effect
of the implant in the people that came back for the last appointments; i.e. people’s hearing gets
better as times goes by. Since the individuals left are not exactly, in general, the ones with higher
performances, if the implants are somewhat helpful, they should improve their hearing in the long

run.

Estimation of the Group Effect: According to the methodology in Sections 3 and 4, we

estimate 74(¢) and 7g(¢). Now, motivated by assumption (M.2) we have re-calculated the effects
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Figure 3: Kernel regression estimate for the common effect #(¢) for cross validation and Rice’s
criterion together with the scatter plot of the speech recognition data set.
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Figure 4: Kernel regression estimate for the common and group effect 7¢(t) 4+ #(¢) for cochlear
implant groups A and B.
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using:

f‘A(t) — f‘B(t)

> and #5(t) = -5 (1),

Palt) =
The bandwidths selected using the two methods led to the same large bandwiths values. The values

for these bandwiths were /AzA = iLB = 25.

Figure 4 shows the scatter plot of the data for both groups together with the estimated curves
7(t) +7(t) for the common and group effects, for the cross validation criterion and Rice’s criterion.
As mentioned before, there is no real difference in the results obtained by the two methods proposed

here for this dataset.

From this figure we can see that it looks as if A is a better group, in terms of audiologic
performance, than B. If we were analyzing the two groups in more detail, it could be easily seen
that the “better” group (i.e. A) in terms of improvement of hearing, would be the one losing more
people after 30 months. Basically, the individuals hearing better, most of them from group A, did
not come back after 30 months. This last issue can be observed by just looking at the data from

group A, also featured in this graphic.
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Figure 5: Test statistic values for testing the group difference between cochlear implants using CV
and Rice’s criterion.
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As mentioned in Section 5, we are also interested in testing the significance of the group effect.
We carried out the procedure described in Section 5 using N, = 100 and ¢ = 1000. We have
obtained, when using cross validation, T,5; = 717.53 and the 95-th percentile of the test statistic
values from the 1000 permutations was 75y5 = 1042.18. On the other hand, Rice’s criterion was
used, we obtained 7,5, = 720.11 and the 95-th percentile of the test statistic values from the 1000
permutations was T{j; = 1164.72. As can be seen, in both cases the null hypothesis is not rejected,
concluding that the difference between the two groups (i.e. two types of cochlear implants) is not
statistically significant at the a = 0.05 level. Figure 5 shows the boxplots for the test statistic

values from the permutations obtained using cross validation and Rice’s criterion.
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APPENDIX

Proof of Theorem 1: For the proof of this theorem we need the following three lemmas.

Lemma 1 Under the assumptions established in Theorem 1, we have that for any compact set D
n (0,b), as N tend to infinity,

sup | f(1) = (O] — 0 as,

teD

And, as Ng tends to infinity,

sup | fa(t) — fa(t)] — 0 a.s.
teD

Proof of Lemma 1: Assumptions (R.1) and (E.1) are sufficient for Theorem 3.5.1 from
Gyorfi et al. (1989) and, therefore, the proof is done. [

Lemma 2 Lett > 0. Under the assumptions of Theorem 1, we have that

1

war(F 0} = s +o (57)-

Proof of Lemma 2: Letting K;; = K (t” t), we can write

m n n

var{#(t)} = N2h2f2 SN S EE{ejealtiyta K Kal 1(Yy; # 0)I(Yy #0)

21]1[1

hyiZyn; hy7ityn;
o (BB o (2

From Assumptions (E.1) and (E.2), the first term on the right side is

1 m i3 i3 ) i ]
4 = N2j2 f2 ZZZV( DE(KGK) (Y # 0)I(Yy # 0)
f ( ) i=1j=11=1
1 m i3 i3 i
= N 2 2 2 VU DEEDIY # 0)I(Y £ 0)
NZh f 2:1 ]:1 =1
v - e B — i
N2h2f2 ;;;7 70 [Aijlxz{j ! A ] I(Yy; #0) (Y £0)
+O(higher order terms).
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Now, using Assumptions (T.2) and (E.4) we obtain that the last expression is

VAT 2 2 21U DEURR)I(Y, # 0)(Ya #0)

2:1 j=1l=1

m n n . o |] _ l|
JrN2h2f2 2.2 G DE [I‘iif‘fjo (W)] I(Yi # 0)I (Y # 0)
i=17=11[=1
+0 (hlgher order terms)
- N2h2f2 2227«77 (Y # 0)I(Yy #0)
i=17=11[=1
+0 (N2h2f2 2 1; nl ) + O(higher order terms)

Now, using the change of variable ¢;; —¢ = hu and the first order Taylor expansion of f(-) and after

some other standard manipulations, we have that the first and leading term can be written as:

N2h2f2 iﬁ:i’y«% /I‘ (77] )f(m)dm

2:1 j=1l=1

= N2hf2 iznzzn:*y (7,1 /Ix (t)du+ o((NR)™h)

2:1 j=1l=1

- Nhf ”+0<Nh)

The last step uses the fact that when h goes to zero, the variable u will integrate over the whole

domain. This concludes the proof of the lemma. ]

Lemma 3 Lett > 0. Under the assumptions of Theorem 1, we have that
E{7(t) — r(t)} = cx(t)h* + o(h?),

and the o(-) is uniform over t in ]0,b[.

Proof of Lemma 3:
The proof follows directly from Nifiez-Antén et al. (1999), Lemma 2. |

Given the previous lemmas, the proof of Theorem 1 is direct using the decomposition of the

MSE in terms of the square of the bias plus the variance, and the fact that

0-j0)
f(t)

Proof of Theorem 2: Theorem 2 is a direct consequence of the following two lemmas.
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Lemma 4 Under the assumptions of Theorem 2 and for t > 0, we have that F{fq(t) — fq(t)}* =
o(h?" + (Nh)™Y), where the 0(-) are uniform over t and

o) = o oo Y = (b () 10 2o

1€Gy=1

Proof of Lemma 4:

First note that () — 7 (t) can be written as (Naha)™ Sieq Xiey K((t — tij)hg )[r(ti;) —
7(t;;)]. Now, it is not hard to show that for any s # ¢, we have that E[(r(¢) — #(¢))(r(s) — #(s))] =
o(E(r(t) — 7(t))?). That is, we are dealing with a smoother of r(¢;;) — #(#;;). From here, and using

similar arguments to those in Lemmas 2 and 3, we have the final result stated in the lemma. ]

Lemma 5 Let t > 0. Under the assumptions of Theorem 2, we have that E{rq(t) — 7a(t)}* =
CG(t)hép + (Nghe fa(t) ™1 S dxk + o(hép) + o((Nghg)™), where o(+) is uniform over t in ]0,b[.
Proof of Lemma 5:

This proof is straightforward by just using the result in Lemma 1 for f = f, Lemma 4, and
the proofs of Lemmas 2 and 3, where we change Y;; by Z;; = Y;; — r(¢;;), N by Ng, h by hg, and
f(t) by fa(t). n

Proof of Theorems 3 and 5:
In order to simplify the proofs, for any estimator 5(¢) of s(t), we define:
f(tz))
(f(t» vl
. 2 [ f70 (1)
ASE* (h ti),
(h) i s(t0) ( HO ) (1)
- 1 i 2
SE (h) F (5 (tz) - 5( 2)) w 2 P

/Ob E(3(1) — s(1))’ (%) w(t)dt

The proof of these theorems relies on the following lemmas.

ASE* (h)

I
=]~
M

Il
=~
—~
C"i

and MISE" (h)

Lemma 6 Under the assumptions in Theorem 3, we have that

sup MISE™(h) — MISE(#) —0 a.s.,

heHy MISE(h)
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and

ASE*(h) — ASE(h)

sup — 0 a.s.
h€Hy ASE(h)
as N tends to infinity.
Proof of Lemma 6: The proof is straightforward from Lemma 1. |

Lemma 7 Under the assumptions in Theorem 3, we have that, as N tends to infinity,

qup ASET(N) = MISES(h)

heHy MISE"(h)

Proof of Lemma 7: The proof of this lemma is inmediate by considering assumptions (R.1),
(R.2), (K.1), (K.2), (K.3) and (W.1). Then, Theorem 2 from Marron and Hirdle (1986), pag.
98, applies and the proof is done. |

Lemma 8 Under the assumptions in Theorem 3, then we have that, as N tends to infinity,

ASE*(h) — ASE*(h)
sup "
ey MISE™(h)

— 0 a.s.

Proof of Lemma 8: The proof of this lemma follows closely the proof of Lemma 3 from Hérdle

and Marron (1985). Let
ASE*(h) = ASEF(h) = + 3 [A% + 240, (rltig) 1) = #(1) (1))] £ (1) wty),

where

E;
L)
-
—~
o~
-
L)
~—
S~
L
—~
o~
S
s
~—
~3>
|
-
—~
o~
-
L)
~—
S~

() = (r(ti) () — i) f(17))
Then,

ASE*(h) = ASE*(h) = [(m = 1)+ 2(m — 1)7!] ASE*(h)

+(m—1)72N"! Z {Lh Zn: ( (tij ;t”) (Yo — T(til))} St +2 [(m — 1)+ (m 1)_1]

=1

XN (n(tig) F(tg) = #(ti) f(t) nl—h [ZH: K (%) (Yic — T(m))l Fti)2.

24



For the second term, by strong law of large numbers, and following the same arguments than in

the proof of Lemma 2, we have that, as m tends to infinity,

2
1 & |1 &t —ty 1
K 1] [ ti —

Finally, apply the Cauchy-Schwartz inequality to the cross term, use the results from Corollary 1

and the lemma follows. ]

The proofs of Theorems 3 and 5 follow closely Theorem 1 from Hérdle and Marron (1985),
pag. 1468 (H-M from now on). In order to keep the proofs as brief as possible, we will write the
expressions such that we can compare them directly with H-M and, therefore, use the results that
can be applied to our structure. The main idea will be to see where we use the fact that the errors

are not independent, and use there the hypotheses of this more general structure.

For the proof of Theorem 3, it is enough to check that

(MISE(h) — MISE(R)) — (CV(h) — CV(1'))
MISE(h*)

‘ — 0 a.s.,
hoh!'EHy

and for the proof of Theorem 5, it is enough to check that:

MISE(h) — MISE(R') — (RICE(h) — RICE(R'))
MISE(h*)

‘ — 0a.s.
hhEHy

Now, given Lemmas 6, 7 and 8, this can be done by showing, respectively, that, as V tends to

infinity,

(ASE(h) — ASE(H)) = (CV(h) — CV ("))
MISE(h*)

sup
R,h!

‘ —0 a.s., and (16)

(ASE(h) - ASE(H)) ~ (RICE(h) -~ RICE(W))

— 8. 1
fiv MISE(h") ‘ —0 0 as (17)
We show first (16). Since
- 1 2 ai
ASE(h) = CV(h) = = 3 (¥ = r{ti)* witiy) + 5 D2 (Vij = v(ti) (77 (1) = r(ti7) w(tiy)-
1,7 J
Thus, the theorem will be proved just by showing that
N (Y = ) (7 ) = ) wlt)]|
su — a.s.
bty MISE(h)
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Note that

- Z i = () (7 (1) = (1)) witiy)| = Av(h) + As(h),

where
) = |55 (= _Jﬁ;gkzﬁéﬁ(w—my(tkz>}&5j))) )|
and
Al = leh ( )ii;li] ( tkl) f(i’j)g(tij)g(tkl) '

Hence, the proof of Theorem 3 will follow by showing that:

Ai(R)
su s —
hetty MISE(h7)

— 0 a.s.

for i = 1,2. For Ay(h), we write it as N 72377, 57" 5770 S Vijk, where

1 m g =t (r(t) = (i)
ik =7, (m - 1) h ( h ) f(tij) “(tij)
and N7E30 00 Vig = 2000 D00y agje(tiy), with agy = (NRf(ti) 7 g, K (L — )™ (r (b —
r(tig)I(k # 1).

Hence, in our context, the order of a;; is the same as the order of b; in Lemma 4 on H-
M. This means that if we prove that E[(},; aije(ti;))*] < C(X,; af;) holds, the result follows

straightforwardly, since the rest is immediate from their proof.

In order to do this, let us note that

E[> age(t;)]* = ZZ%CMG i )e(ti)] ZZ%QW J.1)
iy

]

Z[aiﬂ (4, 7)+ Zaijail’y (7,0 < CZ%‘,
ij

i I#]

by using Assumption (E.4), and the same arguments as in the proof of Theorem 1.

For Ay(h), we write it as N72 377 570 5700 SO Usjrr, where

Uijpr = % (%) K (t” ; tkl) (t;l()t”() ) I(k #9),

and N7V S Uit = Siju bigrre(tig )eltur), with bijpe = (N (1) K (S5 Ik # 4).
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Hence, in our context, the order of b;;;; is the same as the order of a;; in Lemma 4 on H-M.
This means that if we prove that E[(3 ;4 bijrie(tij)e(tr))?] < C(3;5 bF1) holds, the result follows

straightforwardly, since the rest is immediate from their proof.

For this note that E[Zijki bijMG(tij)G(tm)]z = E[Zijki Zi’j’k’l’ bijklbi/]‘/k/l/G(tij)G(tkl)G(ti/]‘/)G(tk/l/)].
Using assumption (E.2) then the last term is equal to 3=, .y bijrbijiney (4, 3)7(1, 1), and using
similar arguments than above this expression can be bounded by C(3_;;1 b?jkl)- This closes the

proof of Theorem 3. |

To finish the proof of Theorem 5, we point out that the numerator in equation (17) can be

written as C'(h) + C'(h'), where

2 A
= Z(Y(tzj) = r(ti;))(7(tij) = r(ti;))

i ok ()56

It is easy to see that the main terms of C'(h) are 2C1(h) + 2C3(h) + 2C3(h), defined as

Gi(h) = 57 iiéé[ ( iy~ t’“’) (r(tx1) }&E?’)j)ﬁ(tm‘)
& i — 1y 1
Colh) = K €ty )elt
0 = L L) (55 ettt
Ca(h) = ;;; K ( i~ zz) f(;j)[g(tij)e(t )= 4. D).

Hence, the proof will be done when we show that

su 702(}&)
hetty MISE(h™)

— 0a.s.

for ¢ = 1,2,3. This result has already been proved for ¢ = 1,2. As for Cs(h), we have that:

N2hf i) ZZI (

]

ZC’LJIZ’LJI + = ZCUZ ( . l))v

2][ 2][

Cs(h)

)((hﬂdM)—VUJ)+VUJ)—?UJD

where ¢;;; = ;i from the proof of Theorem 3, and Z;;; = ¢(t;;)e(ti) — (4, 1).

Now, we have that E(Zijl CZ']‘IZZ']‘I)Q = E(Zi,j,l Zi’j’l’ Cijlci’j’l’Zilei’j’l’)
= Ziﬂ[c?ﬂ,u(j,l,j, 1)+ O(C?ﬂ)], by using Assumption (E.5). Now, the proof follows taking into
account the order of ¢;j;. The remainder term is straightforward since E(v(4,{)— 4(j,1))* = o(1),

when m goes to infinity.
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Proof of Theorems 4 and 6: First we write CVg(hg) as:
1 - . - - 2
CVGUMJZfNEE:E:“Yﬁ—rﬁw)—rg(Uﬂ)+(ﬂhﬂ-—ﬂhﬂ)+(n;Uw)—ra(ﬁﬁﬂ w(tis),
€G j

where f{;i has the same expression as f‘c_;i, by replacing # by r. Since the second term between
brackets does not depend on hq, and using Lemma 4 for the third term, the result is direct using
the same arguments than in the proof in Theorems 3 and 5. In analogous way we get the same for

Theorem 6. ]
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