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“Listen, Lad. I've built this kingdom up from nothing. When I started here, all there was, 

was swamp. All the kings said I was daft to build a castle in a swamp, but I built it all 

the same, just to show 'em. It sank into the swamp. So, I built a second one. That sank 

into the swamp. So I built a third one. That burned down, fell over, then sank into the 

swamp. But the fourth one stayed up. And that's what you’re gonna get, Lad, the 

strongest castle in these islands.” 

Monty Python and the Holy Grail 
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RESUMEN 

De acuerdo con la normativa de estudios de doctorado de la Universidad de Cantabria 

en relación a los requerimientos exigidos para aquellas tesis redactadas en un idioma 

diferente al español, aprobada por Junta de Gobierno de 12 de marzo de 1999 y 

actualizada a 17 de diciembre de 2012, a continuación se presenta un resumen 

“suficientemente extenso” del documento original redactado en inglés. 

1. Introducción 

1.1 El régimen natural de caudales 

El régimen natural de caudales influye decisivamente en la composición biótica, 

estructura, función y diversidad de los ecosistemas fluviales (Richter et al., 1996) y 

actúa en todas las escalas temporales y espaciales (Lytle and Poff, 2004). De acuerdo 

con Bunn y Arthington (2002), existen tres mecanismos principales a través de los 

cuales se establecen los vínculos entre el régimen hidrológico y las comunidades 

biológicas: (1) El caudal es el principal determinante del hábitat, (2) las especies 

fluviales han desarrollado estrategias para adaptarse a la variabilidad natural del 

régimen hidrológico y (3) los patrones de conectividad longitudinal y transversal, 

esenciales para mantener las poblaciones acuáticas, están determinados por procesos 

hidrológicos. Además, la capacidad de establecimiento de especies invasoras es más 

efectiva en ríos cuyo régimen hidrológico se encuentra alterado.  

El régimen de caudales puede ser descrito a través de cinco atributos fundamentales 

que influyen directamente en multitud de procesos ecológicos (Richter et al., 1996; 

Poff et al., 1997): La magnitud, duración, frecuencia, estacionalidad y predictabilidad y 

tasa de cambio. Uno de los principales retos en el ámbito de la hidroecología es 

establecer las interacciones y nexos entre los procesos hidrológicos y la dinámica 

ecológica de los ecosistemas fluviales. Por ello, el carácter hidrológico de las redes 

fluviales definido a través de los cinco atributos expuestos anteriormente debe ser 

analizado en paralelo a datos ecológicos lo que permitirá establecer y testar hipótesis 
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concretas sobre las relaciones entre estos dos elementos (Monk et al., 2007). Sin 

embargo, las interrelaciones tanto entre diferentes atributos del régimen como con 

otros factores ambientales (Snelder and Lamouroux, 2010) dificultan la definición y 

cuantificación de relaciones directas entre la condición del caudal y respuestas 

concretas en el ecosistema.  

1.2 La alteración del régimen natural de caudales 

Los ecosistemas fluviales proporcionan recursos naturales y numerosos servicios 

ecológicos y sociales que son básicos para el mantenimiento y desarrollo de la 

sociedad (Naiman et al., 2002). Desafortunadamente, el aprovechamiento de todos 

esos recursos y servicios se ha llevado a cabo ignorando como estos sistemas se 

autoregulan y mantienen sus procesos (Gleick, 1998). Esto ha provocado un descenso 

de la biodiversidad en torno al 50% en los últimos 40 años (Millenium Ecosystem 

Assessment, 2005) y la pérdida de muchos procesos indispensables para el 

mantenimiento de los servicios ecosistémicos (Postel and Ritcher, 2003). La alteración 

del régimen hidrológico es un factor de amenaza importante en estos ecosistemas, la 

cual interactúa además con otras fuentes de degradación ambiental (Arthington et al., 

2010). El régimen natural de caudales puede ser modificado a través de diferentes 

presiones, tales como la construcción de embalses (Poff et al., 2007), la extracción de 

agua superficial (Döll et al., 2009) y sobreexplotación de los acuíferos (Carlisle et al., 

2011), los grandes trasvases intercuenca (Jackson et al., 2001) y la modificación de 

los usos del suelo (Martinez-Fernandez et al., 2013), cuyos impactos pueden verse 

agravados por los efectos derivados del cambio climático (Schneider et al., 2013). 

La construcción y gestión de embalses constituye la forma de alteración hidrológica 

más frecuente y en muchos casos con efectos más perniciosos (Vitousek, 1994). En la 

actualidad existen más de 40000 grandes presas que afectan directamente a más del 

60% de los grades ríos en todo el mundo (Nilsson et al., 2005). Teniendo en 

consideración los graves problemas ambientales y sociales asociados a la actividad de 

los embalses, uno de los objetivos principales de esta tesis pretende investigar la 
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forma más eficaz de evaluar la alteración hidrológica producida por estas 

infraestructuras y generar herramientas capaces de reducir la incertidumbre asociada 

a este proceso de evaluación. 

Los embalses muestran una gran diversidad en cuanto a su tamaño, capacidad, usos 

y modos de gestión por lo que predecir la alteración hidrológica potencial no se plantea 

como un problema de fácil solución. Además, no sólo el grado sino la dirección de la 

alteración pueden depender en muchos casos de las propias características del río 

impactado (McManamay et al., 2013). Teniendo en cuenta esta variabilidad, las 

consecuencias derivadas de la actividad de los embalses pueden manifestarse a 

través de una gran cantidad de impactos sobre el ecosistema. Además, la actividad de 

un embalse suele traer asociada la alteración de más de un atributo del régimen 

hidrológico que actúan sinérgicamente sobre el ecosistema (Poff et al., 2007) y más 

aún, en combinación con otras fuentes de deterioro ambiental (Poff and Zimmerman, 

2010). Todo esto dificulta la definición de relaciones directas causa-efecto entre la 

alteración hidrológica y las consecuencias ecológicas. 

1.3 La definición de un régimen de caudales naturalizado 

De acuerdo a todo lo expuesto hasta ahora, se considera que el restablecimiento de 

un régimen de caudales seminatural, es decir, un régimen ambiental de caudales, es 

una de las actuaciones de restauración fluvial más efectiva (Roni et al., 2008). La 

Declaración de Brisbane (2007) define los caudales ambientales como “la cantidad, 

recurrencia, duración, frecuencia y calidad de caudales requerida para mantener los 

ecosistemas de agua dulce y estuarios y el sustento y bienestar humanos que 

dependen de estos ecosistemas”. Es necesario, por tanto, que desde el ámbito 

científico se desarrollen herramientas capaces de abordar este objetivo, lo cual viene 

haciéndose desde hace más de 40 años y ha dado como resultado la definición de 

más de 200 métodos (Jowett, 1997; Tharme, 2003). Estos pueden diferenciarse en 

tres grupos bien definidos: Métodos hidrológicos, métodos hidráulicos y métodos de 

simulación del hábitat. Dentro de estos grupos las aproximaciones más simples han 



 
 

Resumen  
 

 

 
 

 
 

6 

 
 

ido evolucionado hacia otras más robustas que incluyen los aspectos hidrológicos más 

relevantes desde el punto de vista ambiental. No obstante, muchos de ellos aún 

presentan ciertos inconvenientes que ponen en tela de juicio su utilidad a la hora de 

formular políticas de gestión efectivas.  

En la actualidad se considera que un adecuado funcionamiento de los ecosistemas 

fluviales únicamente es posible si se mantiene cierto grado de similitud con las 

diversas combinaciones de magnitud, frecuencia, duración, temporalidad y tasa de 

cambio que tenían lugar antes de la perturbación del régimen de caudales (Arthington 

et al., 2006). En este sentido, un cuarto tipo de métodos denominados métodos 

holísticos, identifican las condiciones y eventos de caudal más relevantes, modelan las 

relaciones entre el caudal y las respuestas ecológicas, analizan las implicaciones 

sociales y definen grupos de expertos interdisciplinares para establecer las 

recomendaciones finales. Dentro de este tipo de métodos se enmarca la aproximación 

denominada “Límites Ecológicos de Alteración Hidrológica” (ELOHA de sus siglas en 

inglés; Poff et al., 2010). La aplicación de este marco metodológico se fundamenta en 

el uso de información hidrológica y biológica existente y en la experiencia y 

conocimiento adquiridos en casos de estudio desarrollados en todo el mundo. El 

proceso científico de ELOHA comprende cuatro pasos (Figura 1): (1) creación de una 

base de datos de caudal en la cuenca objetivo, (2) clasificación de los ríos de acuerdo 

a sus características hidrológicas, (3) análisis de la alteración hidrológica y (4) 

desarrollo de relaciones entre caudal natural, régimen alterado y funcionamiento 

ecológico asociado a cada tipo de rio, que finalmente permiten la definición de un 

régimen ambiental de caudales. La presente tesis se centra en los tres primeros pasos 

de ELOHA con el objetivo principal de evaluar fuentes de incertidumbre potenciales 

asociados a cada uno de los pasos. Las conclusiones derivadas de este estudio serán 

útiles para abordar el resto de pasos y completar las futuras aplicaciones de este 

marco metodológico. 
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Figura 1 - Diagrama indicando los principales pasos de ELOHA (Fuente: Poff et al, 2010). 

1.4 De la teoría a la práctica 

1.4.1 Desarrollo de una base de datos hidrológica 

El primer paso de ELOHA consiste en la estimación del régimen de caudales en toda 

la red fluvial. Es un paso esencial dentro de la metodología, ya que supone la base 

sobre la que se fundamenta el resto de pasos. Los modelos de precipitación-

escorrentía han sido ampliamente utilizados para cubrir esta necesidad (Kennen et al., 

2007) y han demostrado ser una herramienta fundamental en cuencas muy 

intervenidas (Belmar et al., 2011). Sin embargo, la fiabilidad de las series modeladas 

está condicionada por diversos factores (Sauquet, 2006). Alternativamente, cuando la 

red de aforos en el área de estudio es suficientemente extensa y los datos cuentan 

con una calidad adecuada, está información puede constituir la base de datos inicial. A 

partir de las series de caudales medidos en estaciones de aforo inalteradas se pueden 

calcular índices hidrológicos, los cuales contienen la información ecológicamente 

significativa del régimen natural de caudales. Esta información junto con aquellos 
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atributos de cuenca que tengan influencia sobre el régimen hidrológico supone el 

punto de partida para desarrollar clasificaciones hidrológicas (Snelder et al., 2009) y 

predecir el carácter hidrológico a tramos no aforados de una red fluvial (Carlisle et al., 

2010).  

1.4.2 Clasificación hidrológica: Un tarea esencial en la hidroecología 

Actualmente, se considera que los ríos con un carácter hidrológico similar presentarán 

una variabilidad ecológica similar. Por lo tanto, las clasificaciones hidrológicas 

constituyen un marco de organización y una herramienta indispensable en los ámbitos 

de la investigación y de la gestión de los recursos hídricos (Olden et al., 2012). En la 

actualidad existe una considerable variedad de aproximaciones y técnicas estadísticas 

para clasificar redes fluviales, muchas de las cuales coinciden en los conceptos y 

criterios generales pero difieren significativamente en los procesos específicos. En 

este sentido, la aplicación de diferentes aproximaciones puede conducir a 

clasificaciones muy diferentes que condicionaran las conclusiones que se extraigan. 

Por lo tanto, el proceso de clasificación es un aspecto realmente crítico que debe ser 

investigado en detalle. Los Capítulos III y IV de esta tesis versan sobre los efectos de 

aplicar diferentes métodos para realizar un clasificación hidrológica. 

Dentro de la variedad de procedimientos de clasificación hidrológica surgidos en las 

últimas décadas, los procedimientos inductivos son aquellos que identifican y 

caracterizan la similitud entre ríos de acuerdo a una serie de índices hidrológicos que 

varían espacialmente a lo largo de la red fluvial (Olden et al., 2012). Los 

procedimientos para desarrollar una clasificación de este tipo pueden variar 

significativamente dependiendo de los objetivos de la misma y de los datos 

hidrológicos disponibles. Por ejemplo, dentro del procedimiento, se puede optar por 

diversas vías en relación al tratamiento inicial de los datos, la selección de índices 

hidrológicos, el nivel de detalle de la clasificación o la estrategia para predecir la clase 

de todos los segmentos de la red fluvial (Snelder and Booker, 2013).  



 
 

Resumen  
 

 

 
 

 
 

9 

 
 

Por otro lado, se considera que las series de caudales diarias cuentan con una escala 

temporal adecuada para el desarrollo de clasificaciones hidrológicas. Sin embargo, 

cuando los datos a escala diaria son escasos o no cuentan con una calidad apropiada 

varios autores han abogado por el uso de series a escala mensual (Harris et al., 2000; 

Belmar et al., 2011; Belmar et al., 2013). El uso de series de caudales con escalas 

temporales insuficientes para describir todos los atributos del régimen puede derivar 

en clasificaciones que no cumplan los objetivos para los que fueron diseñadas. 

Por último, como se ha introducido previamente muchas de las clasificaciones 

desarrolladas en diferentes partes del mundo pueden ser consideradas robustas y 

defendibles desde un punto de vista científico ya que están basadas en métodos 

objetivos, transparentes, interpretables y repetibles. Es más, cuando el proceso de 

clasificación no se basa en procedimientos y criterios objetivos sino en los 

establecidos de acuerdo al criterio de experto, las clasificaciones pueden variar 

significativamente de un autor a otro con la consecuente influencia en las futuras 

aplicaciones de la clasificación. 

1.4.3 Predicción del carácter hidrológico de las redes fluviales 

La aplicación de ELOHA requiere, además de la segregación en tipos hidrológicos de 

acuerdo a una clasificación, la estimación de toda la información hidrológica relevante, 

es decir los índices hidrológicos, a toda la red fluvial. El propio marco metodológico 

reconoce el uso de técnicas estadísticos como una herramienta apropiada para este 

fin. A pesar de las ventajas de este método sobre otras aproximaciones, su aplicación 

para la predicción de índices hidrológicos ha sido limitada (Knight et al., 2011). Por 

otro lado, la técnica estadística más utilizada para predecir esta información 

hidrológica ha sido las de modelos lineales (Yadav et al., 2007; Knight et al., 2011), si 

bien, es ampliamente reconocida la falta de linealidad de muchos de los procesos 

hidrológicos (Snelder et al., 2009). Por ello, el uso de modelos enmarcados en el 

campo del aprendizaje automático (Carlisle et al., 2010) o la segregación de los aforos 

previamente al desarrollo de los modelos (Sanborn and Bledsoe, 2006), podrían 
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suponer una mejora significativa frente a aproximaciones más clásicas. Estos aspectos 

se analizan en el capitulo V de la presente tesis. 

1.4.4 Evaluación de la alteración hidrológica generada por embalses 

Una vez desarrollada la base de datos hidrológica para toda la red fluvial a través de 

los procedimientos expuestos anteriormente, uno de los aspectos más importantes en 

la investigación hidroecológica y un paso esencial en ELOHA, es la definición del 

grado de desviación del régimen alterado frente al régimen natural de caudales. Sin 

embargo, la correcta cuantificación de la alteración hidrológica puede estar 

influenciada por diversos factores que pueden conducir a conclusiones equivocadas. 

En el Capítulo VI de esta tesis, se ha desarrollado y valorado un protocolo que incluye 

cinco diseños alternativos para evaluar la alteración hidrológica causada por embalses 

dependiendo del tipo de datos disponibles. Habitualmente, la evaluación de la 

alteración hidrológica se ha llevado a cabo mediante la comparación directa de las 

series hidrológicas de los periodos anteriores y posteriores a la implantación de la 

construcción del embalse (Richter et al., 1996) o bien, mediante la comparación de las 

series en la estación impactada con las de otra estación no impactada en el mismo 

periodo de tiempo (Zhao et al., 2012). En ambos casos, únicamente es posible 

determinar si existe una variación hidrológica pero no se puede discernir si este 

cambio se debe a la presencia del embalse o la influencia de otros elementos (Downes 

et al., 2002). Por otro lado, la falta de información hidrológica en los puntos de interés, 

especialmente de series anteriores a la perturbación, es una situación muy habitual. 

En muchas ocasiones esta carencia se ha solventado mediante la estimación de la 

información hidrológica disponible en otros puntos de la red (p.e. a través de la 

predicción de índices hidrológicos; Carlisle et al., 2010), o reconociendo la similitud de 

los ríos impactados con otros ríos del mismo tipo hidrológico, es decir, mediante el uso 

de una clasificación hidrológica (Arthington et al., 2006). La aplicación de estos 

métodos alternativos requiere una evaluación meticulosa del grado de fiabilidad de las 

valoraciones de modo que permita establecer el alcance y efectividad de las medidas 

de gestión propuestas a partir de dichos análisis. 
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El análisis en profundidad de estos tres elementos, la clasificación hidrológica, la 

predicción de índices hidrológicos y la valoración de la alteración hidrológica, es una 

cuestión fundamental que permitirá establecer hipótesis más rigurosas sobre las 

relaciones entre la variabilidad hidrológica y las respuestas del ecosistema, así como 

definir con un menor grado de incertidumbre el impacto que la alteración del régimen 

tendrá sobre estas relaciones. Todo ello dotará a científicos y gestores de las 

herramientas oportunas para definir regímenes de caudales ecológicos y establecer 

hipótesis sobre los potenciales efectos que la restauración del régimen de caudales 

tendrá sobre los ecosistemas. 

1.5 Objetivos 

El objetivo general de esta tesis es avanzar en el conocimiento de tres aspectos 

críticos dentro del campo de la hidroecología y la gestión de los recursos hídricos: La 

clasificación hidrológica, la caracterización hidrológica de redes fluviales completas y 

la valoración de la alteración del régimen natural de caudales. Estos tres aspectos 

representan pasos esenciales en el marco de gestión ELOHA, por lo que los 

resultados de la tesis serán especialmente valiosos para definir regímenes 

ambientales de caudales con mayor rigor. 

El objetivo general puede disgregarse en cinco objetivos parciales: 

1. Investigar como la normalización de las series hidrológicas y la aplicación de 

dos procedimientos de clasificación opuestos influyen en (1) el rendimiento de 

las clasificaciones, (2) la interpretación hidrológica de las clasificaciones, (3) su 

capacidad para reducir el sesgo asociado a las partes infra-representadas del 

espacio hidrológico y (4) la disposición espacial de las clases. 

2. Investigar como la escala de tiempo (datos diarios contra datos mensuales), el 

origen (datos medidos contra datos modelados) y el procedimiento de 

clasificación (clasificación inductiva contra criterio de experto) influyen en (1) el 
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rendimiento de las clasificaciones, (2) la interpretación hidrológica de las 

clasificaciones y (3) la disposición espacial de las clases. 

3.  Evaluar la capacidad de diferentes técnicas estadísticas para predecir índices 

hidrológicos a toda una red fluvial y examinar las ventajas de la Aproximación 

de Regresión Regional al modelado de dichos índices. 

4. Diseñar un protocolo para valorar el grado de alteración hidrológica que incluye 

diferentes diseño de acuerdo al tipo de datos hidrológicos disponibles. 

5. Evaluar el grado de incertidumbre asociado a cada uno de los diseños incluidos 

en el protocolo de evaluación de la alteración hidrológica. 
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2 Área de estudio y compilación de datos 

2.1 Área de estudio 

El área de estudio abarca el tercio norte de la península Ibérica (Figura 2) ocupando 

una extensión total de más de 124000 km2.  

 
Figura 2 - Área de estudio: Tercio norte de la Península Ibérica.  

Presenta condiciones ambientales heterogéneas y se divide en tres áreas principales. 

Por un lado, la vertiente norte, que incluye una serie de cuencas con áreas 

comprendidas entre 30 km2 y 4907 km2, ocupando en total, un área de más de 22000 

km2. Los ríos nacen en la Cordillera Cantábrica, una cadena montañosa que se 

dispone de manera paralela al Océano Atlántico y que alcanza alturas de más de 2600 

msnm. Estos ríos se caracterizan por presentar pendientes pronunciadas y corto 

recorrido desde su nacimiento hasta su desembocadura. El clima en esta región es 

oceánico templado (Rivas-Martínez et al., 2004). La temperatura media anual es de 14 

ºC y las precipitaciones son abundantes a lo largo de todo el año, con valores medios 

de 1300 mm año-1. Las máximas precipitaciones tienen lugar entre Diciembre y 

Febrero y las mínimas entre Julio y Septiembre. No obstante, la intensidad y 

distribución de las precipitaciones varía significativamente en función de la orografía 
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local. Las precipitaciones en forma de nieve son frecuentes por encima de los 1000 

msnm. Más del 50% de la superficie está ocupada por vegetación caducifolia, 

matorrales y pastos, mientras que un 10% está dedicado a la agricultura. Tiene una 

población cercana a los 3500000 habitantes, con una densidad de población de 175 

habitantes por km2, aunque hay diferencias importantes entre regiones.  

Por otro lado, el área mediterránea está principalmente ocupada por la cuenca del 

Ebro junto con otras cuencas de tamaño intermedio localizadas en la zona este. La 

cuenca del Ebro ocupa una extensión total de 85530 km2. Ésta se encuentra 

delimitada por las cordillera Cantábrica y los Pirineos (3400 msnm) en el norte, la 

Cordillera Costero-Catalana (1712 msnm) en el este y el Macizo Ibérico (2300 msnm), 

que bordea la cuenca por el sur en dirección noroeste-sudeste. Esta configuración 

crea una red fluvial densa en las zonas montañosas de la cuenca y una extensa 

llanura en el interior. La cuenca del Ebro tiene influencias tanto del clima templado 

como del clima mediterráneo. El área Pirenaica (noroeste) y la parte norte del Macizo 

Ibérico tienen clima oceánico, que va cambiando a clima mediterráneo hacia la zona 

central de la depresión del Ebro. La precipitación es de 656 mm año-1 aunque varía 

significativamente desde 330 mm año-1 en el centro hasta 1700 mm año-1 en las 

montañas más altas (Bejarano et al., 2010), donde la precipitación en forma de nieve 

es habitual en los meses de invierno. En la región mediterránea, el régimen de lluvias 

alcanza máximos en otoño y primavera y mínimos en verano e invierno. La 

temperatura presenta también importantes oscilaciones a lo largo del año, con valores 

por encima de los 30 ºC en verano y por debajo de 5 ºC en invierno. La densidad de 

población es inferior a 35 habitantes km-2. Sin embargo, más del 40% de la superficie 

está ocupada por explotaciones agrícolas, lo que ha generado un intenso control del 

recurso hidráulico mediante más de 216 presas y otras infraestructuras hidráulicas.  

La zona Este del área de estudio contiene varias cuencas medianas con superficies 

entre 72 y 5000 km², ocupando una extensión total de 16500 km². Estas cuencas 

drenan directamente dese los Pirineos o la cordillera Catalana al mar Mediterráneo. 

Presentan clima mediterráneo oceánico en la costa y templado en las montañas. Las 
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precipitaciones oscilan entre los 1200 mm año-1 en las cabecera situadas en la región 

septentrional y menos de 500 mm año-1 en las cuencas del sur. Los bosques de 

coníferas, matorrales y pastos ocupan más del 60 % de la superficie en las cuencas 

del norte, que son progresivamente sustituidas por tierras de cultivo en el sur. En estas 

cuencas se concentran alrededor de 6600000 habitantes, principalmente en la ciudad 

de Barcelona y su área metropolitana. Por tanto, una parte importante de los recursos 

hídricos son destinados a usos urbanos e industriales.  

2.2 Desarrollo de una red fluvial teórica  

Las Redes Fluviales Sintéticas (RFSs) desarrollados a partir de Modelos Digitales de 

Elevación (MDE; Figura 3) proporcionan el marco espacial y la organización jerárquica 

adecuados para articular la información hidrológica y ambiental.  

 
Figura 3 - Representación esquemática de la extracción de las Redes Fluviales Sintéticas (RFSs) a partir 

de los Modelos Digitales de Elevación (MDEs). Figura extraída de Benda et al. (in prep.)  
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Para obtener las RFSs del área de estudio se utilizaron paquetes informáticos 

específicos (Buildgrids y Netrace) proveniente de la plataforma de modelado 'NetMap' 

(Miller, 2002; www.terrainworks.com). La red fluvial se delineó utilizando direcciones 

de flujo inferidos a partir de un MDE con 30 m de resolución espacial, usando los 

algoritmos descritos por Clarke et al. (2008). Hemos aplicado un drenaje forzado en 

las zonas de bajo relieve (pendiente inferior al 30%) mediante la reducción de dos 

metros la elevación de las celdas de la corriente en el MDT usando datos GIS con 

ubicaciones reales de los cauces. La localización real de los canales fluviales se 

extrajo de la red hidrográfica oficial. La red fluvial se dividió en tramos de entre 100 y 

500 m de longitud. 

2.3 Datos hidrológicos 

2.3.1 Medición de series fluviales 

Los datos hidrológicos de partida consistieron en series de caudales medios diarios 

medidos en 428 estaciones de aforo gestionadas por diferentes confederaciones, 

agencias del agua y gobiernos regionales. Se descartaron todas las estaciones de 

aforo afectadas por obras hidráulicas ni por tomas de agua. Posteriormente, se 

seleccionaron únicamente aquellos aforos que tenían información en el periodo 1976-

2010 y cuyas series contaban con la calidad óptima. Los criterios para la eliminación 

de años con datos de baja calidad han sido la presencia de (1) periodos largos de 

caudales constantes, (2) tasas de cambio de caudal extremadamente altas durante 

cortos periodos de tiempo (3) periodos con caudales nulos en ríos no intermitentes y 

(4) diferencias significativas entre dos periodos, probablemente debidas al cambio de 

método de aforo o reajuste de las curvas de gasto. Además, se eliminaron del análisis 

aquellos años que presentaron más de 30 días consecutivos sin datos. En el último 

paso se eliminaron todas las series con duraciones inferiores a 8 años. Tras aplicar 

estas restricciones, se seleccionaron 156 estaciones de aforo con una media de 17 

años de registro (Figura 4; Tabla 1). 
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Figura 4 - Mapa de las estaciones de aforo no alteradas (●; n=156) en el área de estudio. La línea negra 

separa las cuencas Cantábrica, la del Ebro y las cuencas internas de Cataluña.  

N. años N. medidas Frecuencia Frec. Acum. 

>19 52 33.3 33.3 

19 3 1.9 35.3 

18 7 4.5 39.7 

17 6 3.8 43.6 

16 16 10.3 53.8 

15 7 4.5 58.3 

14 8 5.1 63.5 

13 8 5.1 68.6 

12 11 7.1 75.6 

11 9 5.8 81.4 

10 9 5.8 87.2 

9 9 5.8 92.9 

8 11 7.1 100.0 

Tabla 1 - Número de años de series de caudal utilizados para el análisis.  
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2.3.2 Modelado de series fluviales 

Se obtuvieron series de caudal medio mensual para cada estación de aforo 

considerada en la sección previa utilizando los resultados del modelo SIMPA (Sistema 

Integrado de Modelización del proceso de Precipitación-Aportación; Alvarez et al., 

2005). SIMPA lleva a cabo una modelación distribuida de los componentes básicos del 

ciclo hidrológico con periodo temporal mensual y a la escala global de todo el territorio 

nacional. Se simula el proceso de generación de la escorrentía a partir de información 

meteorológica y de las características de las cuencas, permitiendo estimar los 

caudales medios mensuales en régimen natural en cualquier punto de la red 

hidrográfica de una cuenca. Trabaja con celdas de 1 km2, lo que supone que en cada 

paso de tiempo se simulan los distintos componentes del ciclo hidrológico en más de 

500000 celdas (Estrela and Quintas, 1996; Alvarez et al., 2005). Basado en la 

escorrentía mensual específica para cada cuadrícula de 1 x 1 km y el mapa de 

direcciones utilizado para el desarrollo de la RFS, se obtuvieron los datos de caudal 

acumulado mensual para el período 1980/81-2005/06 en cada tramo de la RFS, los 

cuales fueron a su vez, normalizados. 

2.4 Características ambientales 

El clima, la topografía, la cobertura y la geología de la cuenca se consideran factores 

con una influencia significativa sobre el régimen hidrológico, independientemente de la 

situación geográfica. Variables predictoras de clima, topografía, cobertura y geología 

fueron proporcionadas por varias organizaciones regionales y nacionales a partir de 

bases de datos existentes. Las variables en cada segmento de la RFS representan la 

media de la variable en la cuenca aguas arriba del segmento. Se seleccionó un 

conjunto inicial de 50 variables ambientales con potencial influencia en los diferentes 

índices hidrológicos. Posteriormente se realizo un test de correlación de Pearson para 

cada par de variables y las variables con correlaciones superiores a 0.7 se descartaron 

de los análisis posteriores. Finalmente se seleccionó un conjunto de 18 y 17 variables 
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para predecir las clases hidrológicas (Capítulo III y IV) y los índices hidrológicos 

(Capítulo V), respectivamente (Tabla 2): 

1.  Clima: Se derivaron variables relacionadas con precipitación, temperatura y 

evapotranspiración a partir de variables climáticas mensuales calculadas en 

mapas con tamaño de celda de 1 km2. Los mapas de clima utilizados fueron 

generados originalmente por el centro de estudios hidrográficos CEDEX para 

ser incorporados en el modelo SIMPA. 

2. Topografía: El área de cuenca, pendiente, elevación, densidad de confluencias 

y densidad de drenaje se derivaron del MDE de 30 m. 

3. Cobertura del suelo: el porcentaje de superficie ocupada por bosques de 

coníferas y caducifolias, pastos, tierras de cultivo, roquedos y áreas urbanas se 

obtuvo del Sistema de Información de Ocupación del Suelo en España (SIOSE) 

desarrollado por el Instituto Geográfico Nacional. SIOSE presenta una escala 

1:25000 e integra imágenes de satélite e imágenes aéreas. 

4. Geología: La dureza media y la permeabilidad del terreno se obtuvieron del 

mapa litoestratigráfico y de permeabilidad a escala 1:200000 desarrollado por 

el Instituto Geológico y Minero del Gobierno de España. Estas variables se 

calcularon utilizando procedimientos descritos en otros trabajos a partir de 

datos geológicos y edafológicos (Snelder et al., 2008; Fernández et al., 2012). 
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Variable Tipo Unidades Descripción Fuente 

1,2Precipitación anual CL mm Precipitación anual media SIMPA 

2Precipitación Abril CL mm Precipitación media en Abril SIMPA 

2Precipitación verano CL mm Precipitacion media de verano (Julio-
Septiembre) 

SIMPA 

2Precipitación máxima CL mm Precipitación máxima mensual SIMPA 

2 Precipitación mínima CL mm Precipitación mínima mensual SIMPA 

2Mes mínimo CL Mes Mes de precipitación mínima SIMPA 

1,2Rango de 
precipitación mensual 

CL - 
Precipitación mínima mensual/ 
Precipitación máxima mensual 

SIMPA 

1,2 Rango de 
precipitación trimestral 

CL - 
Precipitación mínima trimestral/ 
Precipitación máxima trimestral 

SIMPA 

1,2Temperatura CL ºC Temperatura anual media SIMPA 

2Temperatura de 
verano 

CL ºC Temperatura media de verano (Julio-
Septiembre)

SIMPA 

1,2Evapotranspiración CL mm Evapotranspiración anual de la cuenca SIMPA 

2Evapotranspiración 
máxima 

CL mm Evapotranspiración máxima mensual SIMPA 

1, 2Área cuenca TG Km2 Área total cuenca MDE 

1, 2Pendiente TG % Pendiente media de la cuenca MDE

1, 2Elevación TG m Elevación media de la cuenca MDE

1Densidad de 
confluencia 

TG - Número de confluencias por área de la 
cuenca 

MDE

1Densidad de drenaje TG - Número de segmentos por área de la 
cuenca 

MDE

1Permeabilidad GL - Permeabilidad del terreno IGM 

1Dureza GL - Dureza del terreno IGM 

Tabla 2 - Variables ambientales utilizadas para predecir clases hidrológicas (Capítulo III y IV) e índices 

hidrológicos (Capítulo V) para toda la red fluvial (CL: Climáticas; TG: Topográficas; GL: Geológicas; CS: 

cobertura de suelo). 1Variables seleccionadas para predecir clases hidrológicas en los Capítulos III y IV. 
2Variables seleccionadas para predecir índices hidrológicos en el Capítulo V. La cobertura de bosques de 

coníferas y caducifolios se unificaron en el Capítulo V en una única variable (bosque).  
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Variable Tipo Unidades Descripción Fuente 

1, 2Bosque caducifolio CS % Superficie ocupada por bosque 
caducifolio 

SIOSE 

1, 2Bosque coníferas CS % Superficie ocupada por coníferas SIOSE 

1Pastos CS % Superficie ocupada por pastos SIOSE 

1, 2Agricultura CS % Superficie ocupada por campos agrícolas SIOSE 

1,Desnudo CS % Superficie ocupada por áreas desnudas SIOSE 

1Urbano  CS % Superficie ocupada por áreas urbanas SIOSE 

Tabla 2 - (continuación) 
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3 La influencia de los procedimientos metodológicos en el 

desarrollo de clasificaciones hidrológicas.  

Este capítulo ha dado lugar al artículo: “The influence of methodological procedures on 

hydrological classification performance” de Peñas, F.J., Barquín, J., Snelder, T.H, 

Booker, D.J. y Álvarez, C. Este artículo se ha enviado para su publicación a la revista: 

Hydrology and Earth Systems Science.  

Las clasificaciones hidrológicas han surgido como un procedimiento adecuado para 

discriminar, en grupos homogéneos, la compleja variabilidad hidrológica asociada a los 

ecosistemas fluviales. En este sentido, se considera que representan una herramienta 

útil para investigar y entender las relaciones biofísicas clave en los ecosistemas 

fluviales así como los efectos derivados de la modificación del caudal. Por este motivo, 

en las últimas décadas se han desarrollado numerosas aproximaciones que, si bien 

convergen en conceptos generales, difieren ampliamente en sus procedimientos 

específicos. Por tanto, clasificaciones para una misma región pueden presentar 

patrones espaciales y grados de incertidumbre asociados con la realidad de esas 

clases muy diferentes. Sin embargo, en la actualidad existen muy pocos estudios que 

hayan comparado clasificaciones hidrológicas obtenidas a partir de la misma 

información hidrológica pero utilizando diferentes estrategias. En el presente capítulo 

se ha clasificado la red fluvial del tercio norte de la península Ibérica utilizando cuatro 

aproximaciones diferentes. Las clasificaciones desarrolladas varían en el tratamiento 

de los datos hidrológicos iniciales, el nivel de detalle, es decir, el número de clases y la 

estrategia utilizada para la modelización de las clases a toda la red fluvial. 

Concretamente, se han desarrollado clasificaciones con diferentes niveles de 

desratización, de 2 a 20 clases, basados tanto en las series hidrológicas brutas como 

en las series normalizados (Figura 5). Además, se han aplicado dos aproximaciones 

que contrastan en la estrategia para extrapolar una clasificación a toda la red fluvial: 

Clasificar-después-Predecir (ClasF) y Predecir-después-Clasificar (PredF).  
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Figura 5 - Esquema en el que se resumen las cuatro estrategias de clasificación utilizadas en este 

estudio.  

Las clasificaciones se compararon en base a su (1) robustez estadística, (2) 

interpretación hidrológica, (3) habilidad para reducir el sesgo asociado a las partes 

infra-representadas del espacio hidrológico y (4) la correspondencia espacial entre 

ellas. Los resultados indicaron que tanto el tratamiento inicial de los datos hidrológicos 

como la estrategia de clasificación y modelado influyen en las propiedades de las 

clasificaciones y en la distribución espacial de las clases.  
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Las clasificaciones basadas en datos no normalizados segregaron los ríos atendiendo, 

casi exclusivamente, a la magnitud de los caudales y el tamaño del rio. Además, los 

resultados pusieron de manifiesto que estas clasificaciones no fueron capaces de 

explicar la variabilidad espacial de algunos atributos muy importantes para los 

ecosistemas fluviales mediterráneos, tales como la severidad de los eventos de 

sequia. Por el contrario, la normalización de los datos hidrológicos eliminó la influencia 

del tamaño del río en la clasificación y además, generó clasificaciones en las que un 

rango más amplio de características hidrológicas pudo ser considerado. La utilización 

posterior de las clasificaciones depende en gran medida de los atributos hidrológicos 

que sean considerados en las mismas, por lo tanto, aquellas clasificaciones 

hidrológicas que tengan en cuenta un número reducido de atributos estarán limitadas 

respecto a sus futuras aplicaciones.  

 La aplicación de la estrategia PredF produjo, en la mayoría de los casos, 

clasificaciones con mayor poder de discriminación, especialmente cuando las 

comparaciones fueron realizadas entre clasificaciones basadas en datos no 

normalizados. No obstante, las diferencias estadísticas no fueron significativas en 

todos los casos (Figura 6).  

 
Figura 6 - Rendimiento de las clasificaciones hidrológicas obtenidas a partir de 4 estrategias diferentes. 

A) Clasificaciones derivas de los series sin normalizar (: PredF; : ClasF) B) Clasificaciones derivadas 

de las series normalizadas (■: norPredF; : norClasF).  
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La capacidad de PredF para generar clasificaciones más robustas se fundamenta en 

sus principios conceptuales. En este sentido, ClasF establece los límites de las clases 

únicamente atendiendo al dominio hidrológico observado, es decir, las estaciones de 

aforo. Posteriormente impone esa estructura de clases a toda la red, lo cual es un 

proceso sujeto a un mayor nivel de incertidumbre. Por el contrario, la predicción de las 

características hidrológicas previamente a la segregación en clases consigue que, en 

este segundo paso, se elimine el sesgo debido a la localización de las estaciones de 

aforo. Es decir, la red fluvial se segrega de acuerdo a un patrón espacial hidrológico 

que probablemente se acomode más al patrón real, si bien esto no puede ser 

analizado debido a la ausencia de datos. Además, PredF presentó una mayor 

capacidad para reducir el sesgo asociado a la presencia de estaciones de aforo con 

características hidrológicas poco frecuentes en el resto de estaciones. Así, las clases 

en las que estas características hidrológicas quedaron representadas fueron más 

homogéneas y robustas en comparación con aquellas derivadas mediante ClasF. 

Asimismo, estas clases presentaron una distribución espacial más equitativa (Figure 

7). La generación de clasificaciones sujetas a un menor grado de incertidumbre y con 

mayor capacidad para afrontar los sesgos impuestos por la falta de información 

hidrológica es una cualidad deseable para su posterior aplicación. Por lo tanto, la 

segregación de clases de acuerdo a la aproximación PredF nos permitirá determinar 

con mayor certeza cuándo la variación del régimen hidrológico se debe a una 

perturbación humana o a los patrones hidrológicos naturales.  
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Figura 7 - Frecuencia (%) del número de segmentos incluidos en las clases a las que fueron asignadas 

las 4 estaciones de aforo con unas características hidrológicas más dispares respecto al número total de 

segmentos. A) ClasF; B) PredF; C) norClasF; D) norPredF. 
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4 Fuentes de variación en las clasificaciones hidrológicas: 

Escala de tiempo, origen de las series hidrológicas y proceso 

de clasificación 

Este capítulo ha dado lugar al artículo: “Sources of variation in hydrological 

classifications: Time scale, flow series origin and classification procedure” de Peñas, 

F.J., Barquín, J., y Álvarez, C. Este artículo se ha enviado para su publicación a la 

revista: Water Resources Research. 

En los últimos años se ha producido un incremento significativo en el desarrollo de 

clasificaciones hidrológicas debido, en gran medida, a su utilidad para la gestión de 

recursos hídricos y en el ámbito de la investigación hidroecológica. Sin embargo, 

dependiendo de los datos hidrológicos iniciales y del propio procedimiento de 

clasificación, es posible que aparezcan, para una misma zona de estudio, 

clasificaciones con diferentes características y diversos patrones espaciales. En este 

estudio se han desarrollado, para la red fluvial del tercio norte de la península ibérica, 

clasificaciones hidrológicas con un número creciente de clases (2 a 26 clases) 

utilizando cuatro estrategias diferentes. Tres de ellas se basan en un procedimiento 

inductivo pero difieren en el origen y la escala temporal de datos de partida, mientras 

que la cuarta se ha desarrollado utilizando un procedimiento basado en criterio de 

experto (Figura 8).  

La Clasificación 1 se desarrolló a partir de series de caudal diarios registrados en 156 

estaciones de aforo en régimen natural, mientras que las Clasificaciones 2 y 3 

partieron de datos mensuales, usando tanto series aforadas como series modelados. 

La Clasificación 4 se basó en el procedimiento utilizado para el desarrollo del mapa de 

hidroregiones a escala nacional (Figura 9). Este mapa ha sido utilizado posteriormente 

en la determinación de caudales ecológicos dentro de los Planes Hidrológicos 2010-

2015 de las diferentes demarcaciones hidrográficas españolas. 
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Figura 8 - Esquema en el que se resumen las cuatro estrategias de clasificación utilizadas en este 

estudio. 

Las cuatro clasificaciones se han comparado de acuerdo a su (1) interpretación 

hidrológica, (2) su rendimiento estadístico y (3) su correspondencia espacial. La 

Clasificación 2 explicó la mayor parte de la variabilidad hidrológica del área de estudio 

y produjo una distribución espacial comparable a la Clasificación 1. No obstante, aún 

presenta limitaciones para representar ciertos atributos relevantes desde el punto de 

vista hidroecológico, p.e. la frecuencia de los eventos de crecida de corta duración. 

El paso de una escala temporal diaria a una mensual no afecto significativamente a las 

propiedades de la clasificación, sin embargo, la clasificación 2 no fue capaz de explicar 

la variabilidad hidrológica de determinados atributos hidrológicos y fue menos robusta 

que la clasificación 1 (Figura 10). El rendimiento de la Clasificación 3 fue menor que el 

de clasificaciones 1 y 2 (Figura 10), es decir, las estaciones de aforo asociadas a una 

misma clase presentaron menor homogeneidad entre ellas y menor heterogeneidad en 
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relación a las estaciones de otras clases. Así mismo, la clasificación 3 presentó un 

patrón espacial de clases relativamente diferente al de las clasificaciones 1 y 2. Por lo 

tanto, el uso de clasificaciones basadas en series de caudal modeladas debería 

limitarse a cuencas con un reducido número de aforos en las que la mayor parte de 

clases no estén representadas por los aforos. Su uso debería restringirse a la 

delimitación de la distribución espacial de clases hidrológicas y al asesoramiento 

general en la gestión de los recursos hídricos.  

 
Figura 9 - A) Diagrama en el que se resumen los índices hidrológicos y los principales pasos seguidos en 

el proceso de agregación para el desarrollo de la Clasificación 4. B) Proceso de combinación de cada par 

de indicadores para obtener el nivel de Agrupación 1. Es importante señalar que de acuerdo al 

procedimiento de clasificación original, la tabla de agregación utilizada para cada par de indicadores es 

diferente. 

Por último, los resultados han demostrado que la clasificación 4 posee un rendimiento 

significativamente inferior al de las clases 1 y 2 (Figura 10), generando clases muy 

heterogéneas y con un amplio solape entre ellas en cuanto a sus características 

hidrológicas. Así mismo, se ha puesto en evidencia que los indicadores y el 
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procedimiento utilizado en esta clasificación generaron una distribución de clases muy 

desigual, en la que una sola clase abarcó la mayor parte del territorio. Este estudio 

demuestra que la selección de los datos iniciales y especialmente el procedimiento de 

clasificación generaron clasificaciones dispares en relación a los tres elementos 

analizados. Por tanto, la selección de la estrategia más adecuada puede tener 

importantes implicaciones para las futuras aplicaciones de la clasificación. Es 

recomendable analizar los resultados detenidamente, especialmente si los resultados 

clasificaciones se van a aplicar en un marco legislativo. En este sentido, principal 

objetivo el mapa de hidroregiones a nivel nacional (Clasificación 4) es ser la base para 

los procesos posteriores de estimación de caudales ambientales planteados en la 

Instrucción de Planificación Hidrológica. El uso de clasificaciones basadas en criterios 

menos objetivos puede generar un grado de incertidumbre significativo en el proceso 

de determinación de dichos caudales que ha de ser considerado previamente al 

establecimiento de los mismos.  

 

Figura 10 - Rendimiento de las clasificaciones hidrológicas con diferente grado de detalle obtenidas a 

partir de 4 estrategias diferentes. Los símbolos representan el valor medio de la fuerza de la clasificación 

y los bigotes los intervalos de confianza a un nivel del 95% (: Clasificación 1; : Clasificación 2;        

: Clasificación 3; : Clasificación 4). 
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5 Comparación de técnicas estadísticas y estrategias para 

el modelado de índices hidrológicos en ríos no aforados. 

Este capítulo ha dado lugar al artículo: “A comparison of statistical techniques and 

strategies to model hydrological indices to ungauged rivers” de Peñas, F.J., Barquín, 

J., y Álvarez, C. Este artículo se ha enviado para su publicación a la revista: Water 

Resources Research. 

La predicción del régimen natural de caudales en ríos no aforados representa un 

aspecto clave para poder asumir los nuevos retos que se plantean dentro de la gestión 

de los recursos hídricos y en el campo de la hidroecología. Este ejercicio se ha llevado 

a cabo normalmente mediante modelos de precipitación-escorrentía ya que permiten 

extraer cualquier tipo de información hidrológica. Sin embargo, el desarrollo de estos 

modelos presenta una serie de limitaciones asociadas a la complejidad en la 

estimación de los parámetros del modelo, la gran cantidad de información requerida 

para el calibrado y validado, los errores conceptuales y la cuantificación del error del 

modelo. Por otro lado, el establecimiento de relaciones empíricas entre índices 

hidrológicos concretos y variables de cuenca (p.e. climáticas, geológicas, topográficas 

y de usos del suelo) mediante técnicas estadísticas representa una de las alternativas 

más extendías para la predicción del régimen de caudales. Sin embargo, este 

procedimiento se ha utilizado principalmente para predecir un número limitado de 

índices relacionados con la gestión del recurso o la protección frente a inundaciones. 

Además, en la mayoría de los casos las técnicas estadísticas empleadas no han ido 

más allá de las regresiones múltiples, si bien, como se ha mencionado anteriormente, 

diferentes estudios han puesto de manifiesto que muchas de los procesos hidrológicos 

no presentan relaciones lineales. En el presente trabajo se han desarrollado modelos 

estadísticos para predecir 16 índices hidrológicos del régimen de caudales para toda 

una red fluvial. El conjunto de índices seleccionado aborda los 5 atributos del régimen 

natural de caudales considerados relevantes desde un punto de vista hidroecológico. 

Así mismo, se ha comparado la capacidad de diferentes técnicas estadísticas 

incluyendo Modelos de Regresión Múltiple (MRM), Modelos Aditivos Generalizados 
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(MAG), Bosques Aleatorios (BA), Redes Neuronales Artificiales (RNA) y Sistemas 

adaptativos de inferencia por lógica difusa (SAILD). Finalmente, se han analizado las 

ventajas asociadas a la Aproximación de Regresión Regional (ARR). Esta 

aproximación requiere el desarrollo de MRM específicos para distintas clases de una 

clasificación hidrológica (desarrollada en el Capítulo III). Los resultados han puesto en 

evidencia que la capacidad predictiva de los modelos depende en gran medida del tipo 

de índice modelado (Figura 11). Así, los modelos de los índices relacionados con la 

magnitud y frecuencia obtuvieron R2-ajustados superiores a 0.7. En cambio, los 

índices relacionados con la estacionalidad, duración y tasa de cambio fueron 

predichos con menor exactitud, normalmente con R2-ajustados inferiores a 0.5. Esto 

indica la necesidad de recopilar y generar la información necesaria que permita incluir 

en los modelos otras variables predictoras capaces de explicar la variabilidad espacial 

de estos índices. Por otro lado, los resultados han demostrado que las técnicas 

estadísticas más complejas no siempre superan a los MRMs y que ninguna de las 

técnicas utilizadas en el presente estudio resulta óptima para modelar todos los 

índices hidrológicos (Figura 11). Es probable que la discrepancia entre nuestros 

resultados y los obtenidos en diversos estudios en los que técnicas más complejas 

han aumentado la capacidad predictiva respecto a modelos lineales sea una 

consecuencia de la limitada base de datos hidrológica utilizada para desarrollar los 

modelos. En este sentido, las aptitudes de los modelos más complejos se maximizan 

cuento mayor son las bases de datos iniciales. Por lo tanto, el proceso de selección de 

la técnica más adecuada debe estar supeditado, además de a la capacidad predictiva 

del modelo, a otros elementos críticos, tales como a la interpretabilidad de los 

resultados y a la capacidad para afrontar relaciones no lineales entre variables 

dependientes y predictoras e interacciones complejas entre varias predictoras. En 

cuanto a los resultados obtenidos mediante la ARR, esta sólo ha mejorado los MRM 

globales en aquellas clases dominadas por los patrones climáticos más predecibles. 

En estas clases la precipitación en forma de lluvia es la principal fuente de caudal y 

además es patente durante todo el año. Contrariamente, los análisis han puesto de 

relieve que la capacidad predictora en muchas clases se ve mermada debido a la 
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reducción del número de aforos con los que ajustar y validar el modelo. Esta es una de 

las principales desventajas de la ARR en zonas en las que la disponibilidad de datos 

hidrológicos es limitada.  

 
Figura 11 - Valores observados y predichos para 7 índices hidrológicos incluidos en uno de los 5 atributos 

del régimen natural de caudales: Magnitud (l1; 30LF; 30HF); Temporalidad (Pred), Frecuencia (FRE3); 

Duración (dPHigh); Tasa de cambio (nPos).  
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6 Evaluación de la alteración hidrológica: Análisis de 

diferentes alternativas de acuerdo a la disponibilidad de datos. 

Este capítulo se encuentra en proceso de preparación para ser enviado para su 

publicación. 

El régimen natural de caudales ha sido ampliamente modificado en muchos ríos del 

mundo. La adecuada evaluación de la alteración hidrológica es un proceso crítico en la 

gestión de los recursos hídricos y requiere que se haga con la mayor certeza posible. 

Sin embargo, los métodos aplicados hasta el momento en la mayor parte de 

evaluaciones están sujetos a cierto grado de arbitrariedad, lo que podría generar un 

error en la valoración y por lo tanto el establecimiento de medidas de restauración 

inefectivas frente a esa alteración. Por lo tanto, es esencial dotar a los gestores de 

herramientas capaces de discernir con el menor grado de incertidumbre posible 

aquellos efectos asociados a una perturbación humana de aquellos debidos a la 

variabilidad natural de los sistemas hídricos. En este sentido, se considera 

actualmente que los “Indicadores de Alteración Hidrológica” son una de las 

herramientas más adecuadas para valorar la alteración hidrológica y su aplicación ha 

sido la más extendida alrededor del mundo. Sin embargo, existen una serie de 

factores, tales como la variabilidad climática entre los periodos pre y post-impacto o la 

escasez de datos hidrológicos, que pueden influir significativamente en la valoración. 

Por lo tanto, estos elementos deben ser considerados durante el proceso de 

evaluación. En este capítulo se presenta un protocolo de evaluación de la alteración 

hidrológica que incluye cinco diseños alternativos de acuerdo a la disponibilidad de 

datos que presumiblemente presentarán diferentes grados de incertidumbre (Figura 

12): Antes-Después-Control-Impacto-Pareado (ADCIP); Antes-Después (AD); Control-

Impacto (CI); Clasificación Hidrológica (CH) y Predicción de Índices Hidrológicos (PH).  

En el diseño ADCIP y en el diseño CI, el principal criterio para la selección de los 

controles fue que tanto el aforo impactado como el control perteneciesen a la misma 

clase hidrológica. Por otro lado, el diseño ADCIP permitió comparar el estado de una 



 
 

Resumen  
 

 

 
 

 
 

35 

 
 

estación de aforo antes y después del inicio de la perturbación teniendo en cuenta, 

además, la variabilidad climática natural entre los dos periodos. Por lo tanto, en el 

presente estudio se ha considerado que este diseño representa el punto de referencia 

con el que comparar todos los demás diseños incluidos en el protocolo.  

 
Figura 12 - Diagrama de flujo en el que se representa el protocolo para la evaluación de la alteración 

hidrológica. 

La capacidad de los diferentes diseños para evaluar el grado de alteración hidrológica 

se determinó mediante la aplicación del protocolo en 11 embalses situados en el tercio 

norte de la península ibérica (Figura 13). En este sentido, hay que puntualizar que 

tanto para la selección de controles como para la aplicación del diseño CH se utilizó la 

clasificación hidrológica desarrollada en el Capítulo III mientras que para la aplicación 

del diseño PH se utilizaron los índices modelados mediante la técnica de bosques 

aleatorios en el capítulo V. 

AD evaluó correctamente el 75% de las alteraciones hidrológicas en comparación con 

ADCIP. Esto es indicativo de que los patrones climáticos en periodos pre y post-

impacto fueron relativamente homogéneos y que la variación de las condiciones 

hidrológicas se debe principalmente a la influencia de los embalses. Paralelamente, el 

diseño CI evaluó correctamente el 70% de las alteraciones hidrológicas, lo que pone 

de manifiesto que el uso de la clase hidrológica como criterio de selección de la 
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estación control resulta adecuado para la estimación de la alteración hidrológica. Sin 

embargo, es patente que ambos procedimientos presentan un grado de incertidumbre 

en la valoración que ha de ser considerado. 

 
Figura 13 - Área de estudio donde se incluye la situación de los 11 embalses evaluados (R) y de las 

estaciones de aforo impactadas (I) y controles (C). La información relativa tanto a los embalses como a 

las estaciones de aforo se incluyen en la Tabla 6.1 del Capítulo VI. 

Por otro lado, los análisis de los resultados obtenidos con estos dos diseños AD y CI, 

han evidenciado que los umbrales a partir de los cuales una alteración hidrológica 

debería ser considerada significativa varía de acuerdo al índice valorado. Estos 

umbrales tomaron valores desde 5% para los índices representativos de la tasa de 

cambio hasta 64% para los índices representativos de la duración de los eventos de 

sequia. No obstante, hay que puntualizar que normalmente los umbrales obtuvieron 

valores en torno al 30% (Figura 14). Estos resultados contrastan ampliamente con los 

criterios establecidos en la mayor parte de estudios encontrados en la literatura, en los 

que normalmente se establecen umbrales equivalentes independientemente del tipo 

de índice hidrológico. Así mismo, los umbrales establecidos en estudios previos están, 

en la mayoría de los casos, por encima de los obtenidos en este capítulo. Mediante 

este análisis se ha podido determinar el grado de alteración hidrológica que se puede 
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considerar como significativamente diferente a la variabilidad natural. Estos resultados 

son muy valiosos a la hora de guiar los estudios posteriores cuyo objetivo sea la 

determinación del grado de impacto de la alteración hidrológica sobre el 

funcionamiento del ecosistema. La integración de ambos resultados permitirá llevar a 

cabo una gestión adecuada de los recursos y establecer unos límites de alteración 

adecuados. 

 
Figura 14 - Grafico de puntos y regresiones lineales obtenidas para 7 IAH frente a los valores de t. Las 

coordenadas de los puntos son el resultado de los tests de Student para el diseño AD (círculos negros y 

línea continua) y el diseño CI (círculos blancos y línea discontinua). Las líneas punteadas representan los 

umbrales calculados a partir de una distribución de la t con t1-0.05/2,g.l.=8-1 =2,36 (umbral superior) y t1-

0.10/2,d.f.=28-1 =1,701 (umbral inferior). 



 
 

Resumen  
 

 

 
 

 
 

38 

 
 

Finalmente, la aplicación de los diseños CH y PH han puesto en evidencia un mayor 

grado de incertidumbre para valorar la alteración hidrológica en comparación con los 

otros diseños incluidos en el protocolo. Por ejemplo, de acuerdo a los análisis 

realizados, el 25% de los casos no pudieron ser analizados con ambos diseños. No 

obstante, de los casos en los que si se pudo evaluar la alteración hidrológica, tanto CH 

como PH lo hicieron correctamente más del 75% de las veces (Figura 15). Esto 

evidencia que ambas técnicas pueden resultar muy útiles cuando la alteración 

hidrológica ha de ser evaluada en ríos en los que los datos hidrológicos son 

especialmente escasos y difíciles de conseguir.  
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Figura 15 - Resultados de la evaluación de la alteración hidrológica mediante los diseños CH (cajas 

negras) y PH (cajas grises). Las cruces representan los índices de alteración hidrológica obtenida 

mediante el método AD para los diferentes índices y estaciones de aforo impactadas. Las líneas 

horizontales representan los umbrales superior e inferior calculados previamente a partir de los resultados 

del diseño AD.  
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7 Conclusiones generales y futuras líneas de investigación 

7.1 Conclusiones Generales 

Las clasificaciones, regresiones y modelos hidrológicos representan herramientas que 

nos permiten discernir la variabilidad espacio-temporal natural del régimen de 

caudales de aquella producida por alteraciones humanas. Tal como se ha expuesto 

previamente, todos estos procesos están sometidos a un importante grado de 

incertidumbre. Esto puede influir significativamente en la valoración final de la 

alteración del régimen de caudales y en muchas otras cuestiones relacionadas con la 

gestión de los recursos hídricos. Además, el proceso de valoración de la alteración del 

régimen hidrológico está expuesto a otras fuentes de variabilidad que únicamente 

pueden ser controladas mediante la aplicación de diseños estadísticos adecuados, lo 

que contrasta en gran medida con los procedimientos más utilizados hasta la fecha. 

Debido a la importancia social, económica y ecológica de los recursos hídricos, su 

gestión y los procesos de toma de decisiones deben presentar el menor grado de 

incertidumbre posible. Dotar a los gestores de herramientas que les permitan 

cuantificar rigurosamente el efecto que determinadas presiones ejercen sobre el 

régimen hidrológico así como el impacto que estas puedan suponer sobre laos 

ecosistemas fluviales, es sin lugar de dudas, un importante reto científico.  

En esta tesis, se han comparado una serie de fuentes de incertidumbre asociadas al 

proceso de valoración de la alteración hidrológica, utilizado datos iniciales de distinta 

naturaleza y diferentes procedimientos sobre un mismo área de estudio. Las 

conclusiones extraídas de cada capítulo, y que se presentan a continuación, 

introducen elementos clave que se deberían considerarse a la hora de analizar los 

patrones de variabilidad hidrológica natural y evaluar la alteración hidrológica causada 

por impactos antropogénicos:  
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Capítulo III. La influencia de los procedimientos metodológicos en el 

desarrollo de clasificaciones hidrológicas.  

 El tratamiento inicial de las series de caudal fue decisivo en la interpretación de 

las clasificaciones hidrológicas. El uso de las series no transformadas dividió la 

red fluvial atendiendo, casi exclusivamente, a la magnitud de los caudales y al 

tamaño del rio. Por el contrario, la normalización previa de los datos 

hidrológicos generó clasificaciones en las que fueron consideradas una gama 

más amplia de características hidrológicas. 

 La caracterización y segregación de la red fluvial atendiendo únicamente a la 

magnitud de los caudales se traduce en una importante pérdida de información. 

Esto limita el uso de esas clasificaciones para valorar la alteración hidrológica y 

para investigar las relaciones caudal-respuesta ecológica a aquellos elementos 

dependientes de la magnitud de los caudales, tales como la disponibilidad de 

hábitat. Opuestamente, las clasificaciones que incluyen un mayor número de 

atributos hidrológicos poseen un mayor alcance en relación a las alteraciones 

potencialmente evaluables. La valoración del régimen hidrológico en diferentes 

ríos del mundo ha puesto de manifiesto que muchos otros atributos, además de 

de la magnitud, pueden ser modificados por perturbaciones antrópicas. Por lo 

tanto la normalización previa de las series hidrológicas representa un 

procedimiento adecuado que permitirá realizar una valoración desde una 

perspectiva más  completa. 

 La aproximación Predecir-después-Clasificar generó clasificaciones con mayor 

robustez y mayor capacidad para discriminar índices hidrológicos entre clases. 

Es decir, las clases generadas mediante esta aproximación presentaron mayor 

homogeneidad dentro de la clase y mayor heterogeneidad respecto a las otras 

clases. Teniendo en cuenta estas propiedades se puede concluir que las 

clasificaciones basadas en la aproximación Predecir-después-Clasificar 

presentan una capacidad superior para discretizar el cambio hidrológico 
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asociado a una perturbación. Además, considerando los principios en los que 

se fundamentan las clasificaciones inductivas, una mayor diferenciación 

hidrológica de las clases supone un mayor distanciamiento en cuanto a sus 

características ecológicas. Por tanto, las clasificaciones basadas en la 

aproximación Predecir-después-Clasificar representan una alternativa más 

adecuada no sólo para valorar el grado de alteración hidrológica, sino también 

para detectar el cambio ecológico producido por esa alteración. 

  La aproximación Predecir-después-Clasificar genero divisiones de la red fluvial 

con una frecuencia de clases más uniforme. Es más, este procedimiento 

superó con mayor efectividad las limitaciones asociadas al sesgo generado por 

la distribución de la red de estaciones de aforo. Ambas son características muy 

positivas ya que, por un lado, aumenta la probabilidad de que el régimen real 

de un río se corresponda con el régimen medio de la clase en la que fue 

incluido. Además, genera que las estaciones control estén equitativamente 

distribuidas por todas las clases, maximizando el número potencial de controles 

que pueden ser posteriormente utilizados en un diseño antes-después-control-

impacto. 

 La selección del número apropiado de clases es un proceso que difícilmente se 

puede llevar a cabo desde un punto de vista totalmente objetivo, ya que, en 

muchas ocasiones, clasificaciones con distinto grado de detalle presentaron un 

rendimiento estadístico similar. Atendiendo a análisis posteriores, se 

recomienda el uso de clasificaciones con un número relativamente reducido de 

clases, lo que permitirá dar una visión general de los patrones hidrológicos 

espaciales en el área de estudio. En este sentido, en las clasificaciones con un 

número reducido de clases se aumenta el número de controles potenciales 

para utilizar posteriormente, sin que ello signifique una reducción del grado de 

homogeneidad entre estos y los tramos fluviales a evaluar. Además, debido al 

procedimiento de clasificación utilizado, el número de clases se puede adaptar 

y refinar posteriormente de acuerdo a las necesidades del estudio. 
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Capítulo IV. Fuentes de variación en las clasificaciones hidrológicas: Escala de 

tiempo, origen de las series hidrológicas y proceso de clasificación 

 Contrariamente a lo esperado, la reducción del grado de detalle temporal, 

pasando de datos diarios a mensuales, no comprometió significativamente las 

propiedades de la clasificación. Por lo tanto, aquellas regiones en la que los 

datos hidrológicos a nivel diario no cuenten con una calidad adecuada, el uso 

de clasificaciones basadas en series mensuales representa una alternativa 

eficaz para la valoración de la alteración hidrológica y el establecimiento de 

grupos ecológicamente similares. Sin embargo, también hay que poner de 

relieve que las clasificaciones mensuales no integran todos los elementos del 

régimen de caudales.  

 El uso de series de caudal simuladas a partir de modelos precipitación- 

escorrentía generó clasificaciones con un rendimiento estadístico 

significativamente menor y con una distribución espacial de clases 

relativamente diferente a las derivadas de series aforadas. En conclusión, el 

uso de clasificaciones basadas en series modeladas supone un aumento 

significativo del grado de incertidumbre en la evaluación la alteración 

hidrológica. En este sentido, el uso de clases más heterogéneas dificultará la 

selección de controles, que en algunos casos dejarían de comportarse como 

controles verdaderos pero, sobre todo, impedirá discernir, en muchos casos, 

entre el efecto de una perturbación y la variabilidad natural del rio. Por lo tanto, 

el uso de esta aproximación debe estar limitado a aquellas áreas de estudio en 

las que no exista información hidrológica para la mayor parte de a clases 

potencialmente presentes. Aún así, si el uso de clases modeladas es la única 

alternativa posible para desarrollar clasificaciones, las propuestas de gestión 

derivadas de la misma deberían ser analizadas cautelosamente.  

 Los resultados obtenidos en este capítulo han demostrado, por último, que la 

selección de índices hidrológicos, los criterios y los procedimientos utilizados 

para generar las clasificaciones son los factores más importantes que 
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determinan las propiedades de la misma. Las clasificaciones basadas en 

criterio de experto generaron un bajo rendimiento estadístico, una 

desproporcionada distribución espacial de clases y un elevado solape del 

carácter hidrológico en diferentes clases. Esto plantea importantes limitaciones 

de cara al uso de estas clasificaciones en la gestión de los recursos hídricos. 

En este sentido, la clasificación 4 desarrollada en este estudio, se basa en el 

mapa de hidroregiones a escala nacional. El objetivo de este mapa era servir 

de base para los procesos posteriores de estimación de caudales ambientales, 

los cuales deben ser definidos e incluidos en los planes hidrológicos de 

cuenca. De acurdo a nuestros resultados, creemos que aquellos aspectos del 

régimen ambiental de caudales definidos a partir de dicha clasificación 

deberían revisarse y establecer, al menos, el grado de incertidumbre asociada 

a esa estimación.  

Capítulo V. Comparación de técnicas estadísticas y estrategias para el 

modelado de índices hidrológicos en ríos no aforados. 

 Los modelos predictivos desarrollados para los índices hidrológicos de 

magnitud y frecuencia explicaron la mayor parte de la variabilidad espacial de 

estos atributos y generaron predicciones precisas. Sin embargo, dado la gran 

heterogeneidad espacial, los modelos dejaron sin explicar una parte importante 

de la variabilidad. La precisión de los modelos supone un elemento 

fundamental que debe tenerse en cuenta para definir la incertidumbre con la 

que las predicciones se pueden utilizar posteriormente. Sin embargo, este 

aspecto ha recibido, hasta el momento, un tratamiento relativamente limitado. 

 Es necesario mejorar los modelos para aquellos atributos relacionados con la 

estacionalidad, duración y tasa de cambio, que sean capaces de explicar con 

mayor exactitud su variabilidad hidrológica espacial. Creemos que en una 

primera etapa habría que mejorar la resolución espacial de ciertas variables 

edafológicas y geológicas así como desarrollar otras variables que den cuenta 

de los patrones de circulación subterránea. Además, la disposición de variables 
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climáticas con un mayor grado de detalle y la inclusión de otros atributos 

referente al ciclo de innivación y deshielo, aumentaría la capacidad para 

entender muchas características hidrológicas, tales como la variabilidad del 

régimen, la estacionalidad o los patrones de sequia y crecida.  

 Las cuatro técnicas estadísticas complejas empleadas generaron, 

normalmente, modelos más precisos que aquellos desarrollados a partir de 

regresiones lineales si bien, en muchas ocasiones, las diferencias fueron 

menores a las esperadas. Las técnicas de aprendizaje automático precisan de 

bases de datos extensas, lo que contrasta con la bases de datos hidrológica 

utilizada en esta tesis. En este sentido, creemos que la ampliación del número 

de estaciones de aforo conferiría a estas técnicas un mayor potencial para 

superar a los modelos lineales. 

 El desarrollo de RNA y SAILD requiere un importante nivel de conocimiento 

para poder tanto definir la estructura óptima de los modelos como establecer 

las relaciones causa efecto entre los índices hidrológicas y las variables de 

ambientales. Por otro lado, la aplicación de los MRM y MAG necesita la 

transformación especifica de las variables que cumplan con los supuestos 

requeríos por los modelos, lo cual no siempre se ha conseguido. Por lo tanto, 

más allá de la capacidad predictiva, todos estos factores han de tenerse en 

cuenta. En este sentido, es importante proporcionar herramientas que permitan 

entender, más allá de las relaciones estadísticas, las relaciones y procesos 

físicos entre las variables. Esto permite asociar un rango potencial de 

respuesta esperado frente a una determinada medida de gestión. 

 La segregación previa de las estaciones de aforo de acuerdo a una 

clasificación hidrológica no generó un aumento en la calidad de los modelos. 

La limitación en cuanto al número de datos por clase es la causa más probable 

de que no se haya cumplido la hipótesis inicial. Sin embargo, también cabe 

señalar que la mejora potencial asociada a esta aproximación no sólo está 

relacionada con el aumento del número de datos sino con el aumento del nivel 
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de detalle de las variables predictoras. Es decir, al reducir la variabilidad de los 

atributos hidrológicos dentro de cada clase se necesitan variables predictoras 

que respondan tanto a los patrones regionales como locales. 

Capítulo VI. Evaluación de la alteración hidrológica: Análisis de diferentes 

alternativas de acuerdo a la disponibilidad de datos. 

 El uso de estaciones de control en combinación con el diseño antes-después 

para evaluar la alteración hidrológica asegura que los cambios observados en 

el régimen hidrológico se deban exclusivamente a la influencia de la 

perturbación, en este caso, la presencia un embalse. Aunque la evaluación 

llevada a cabo con y sin estaciones controles, es decir mediante el diseño 

ADCIP y BA, respectivamente, hayan generado resultados similares, la 

aplicación del protocolo de evaluación también ha puesto de manifiesto que es 

posible encontrar estaciones control para todo los sitios impactados. Por lo 

tanto, creemos que el uso de estaciones control debería ser considerado en 

todos los procesos de evaluación de la alteración hidrológica ya ADCIP que es 

el único diseño que puede conferir a los gestores la certeza total de que el 

cambio se debe a elementos antrópicos. La aplicación de este diseño permite 

establecer medias de restauración y los caudales ecológicos desde una 

perspectiva defendible científicamente y que elimina mucha parte de la 

incertidumbre, lo que es indispensable para aminorar confrontaciones entre 

diversos usuarios de los recursos. 

 Los resultados han puesto de manifiesto que el uso de clasificaciones 

hidrológicas representa una estrategia óptima para la selección de controles. 

En este sentido, la homogeneidad hidrológica entre dos estaciones de aforo 

que pertenecen a la misma clase está asegurada. Si esta cualidad se combina 

con otros criterios que controlen la variabilidad debido a efectos locales se 

garantiza la capacidad de los controles para detectar cambios en las 

estaciones impactadas y posiblemente supere a otros procedimientos para la 

selección de controles. Sin embargo, tal como ha sido puntualizado 
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repetidamente a lo largo de este capítulo, solo se deben utilizar aquellas 

clasificaciones en las que la heterogeneidad dentro de las clases sea mínima. 

El uso de clasificaciones inadecuadas para la selección de controles puede 

desembocar en evaluaciones incorrectas y la aplicación de medidas poco 

eficaces. 

 La definición de umbrales que permitan determinar el grado de alteración 

hidrológico ha de fundamentarse en criterios objetivos. Se ha demostrado que 

los umbrales establecidos para diferentes índices hidrológicos muestran un 

rango de variación importante y que además, se encuentran, generalmente, por 

debajo de los establecidos en otros muchos estudios. La aplicación de índices 

subjetivos puede conducir a dos situaciones: Que no se detecten alteraciones 

significativas cuando realmente existen o que se detecten alteraciones 

significativas cuando en realidad se deben a la variabilidad natural del río. Esto 

representa un aspecto crítico en la gestión de los recursos hídricos y 

especialmente para el establecimiento de un régimen de caudales ambientales.  

 Las clasificaciones hidrológicas y los índices predichos a partir de técnicas 

estadísticas representan alternativas adecuadas para evaluar la alteración 

hidrológica cuando no existen otras fuentes de datos. Creemos que ser 

capaces de reconocer la incertidumbre asociada a la variabilidad de las clases 

hidrológicas o a la precisión de los modelos es un elemento muy importante a 

considerar en la evaluación de la alteración hidrológica. 

7.2 Futuras líneas de investigación 

De acuerdo con lo objetivos de esta tesis, se han identificado y valorado diversos 

elementos críticos dentro del procedimiento ELOHA y se han establecido importantes 

aspectos a tener en cuenta en la gestión de los recursos hídricos. Además, el 

desarrollo de los diversos estudios en la tesis nos ha permitido identificar una serie de 

deficiencias que requieren ser priorizados en futuras líneas de investigación: 
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 El desarrollo de nuevas variables ambientales relacionadas con procesos de 

cuenca y procesos climáticos nos permitirá explicar con mayor precisión la 

variabilidad natural de todos los atributos del régimen hidrológico. Este trabajo 

es esencial para mejorar los procedimientos de clasificación y la predicción de 

índices hidrológicos y por tanto, avanzar en el entendimiento de los patrones 

hidrológicos a escala regional. El aumento de la capacidad predictiva es un 

aspecto especialmente valioso para minimizar el grado de incertidumbre 

asociado a los métodos alternativos de valoración de la alteración hidrológica. 

 El protocolo de evaluación de la alteración hidrológica ha sido validado 

únicamente mediante el análisis del cambio generado por la actividad de los 

embalses. Es esencial incluir y valorar las alteraciones producidas por un 

rango más amplio de presiones, lo que permitirá determinar con mayor firmeza 

los beneficios y limitaciones de cada diseño. En este sentido, se debería 

evaluar el efecto producido por la evolución de los cambios del suelo, el 

cambio de los patrones climáticos y otras alteraciones hidrológicas directas. 

 El protocolo de evaluación de la alteración hidrológica presentada en al 

Capítulo VI no incluyó ninguna alternativa para evaluar aquellos casos en los 

que no existe ningún tipo de información hidrológica en el río impactado. Los 

estudios que se centran en esta cuestión son todavía escasos en la literatura y 

el desarrollo de metodológicas que permitan valorarla permitiría completar un 

protocolo en el que todas las posibles situaciones de impacto podrían ser 

incluidas. 

 Los umbrales de alteración hidrológica definidos en esta tesis fueron 

establecidos de acuerdo a la evaluación, únicamente, de 11 embases. La 

extensión de este análisis a todas las presiones cuantificables en la red fluvial 

del área de estudio y en toda la geografía española permitirá definir unos 

umbrales más robustos que podrían ser la base de la gestión de los recursos 
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hídricos y el establecimiento de regímenes de caudales ambientales a nivel 

nacional.  

 Finalmente, dos elementos fundamentales que permitirían completar el 

proceso ELOHA no han sido considerados en la presente tesis: (1) El 

establecimiento de relaciones entre el régimen hidrológico y la respuesta del 

ecosistema y (2) la cuantificación del impacto sobre esta respuesta generada 

por la alteración del régimen. La base de datos generada para el desarrollo de 

esta tesis, no cuenta sólo con datos referentes al régimen de caudales, sino 

que se han recopilado datos de configuración del hábitat, condiciones físico-

químicas e información biológica en más de 2000 puntos de muestreo. La 

capacidad para explotar esta base de datos representa una oportunidad 

inmejorable de cara al avance en el conocimiento de los dos aspectos clave 

mencionados anteriormente. En consecuencia, esto permitiría desarrollar 

herramientas imprescindibles con las que científicos y gestores de los recursos 

hídricos podrían plantear medidas de gestiones objetivas y eficientes para el 

mantenimiento y recuperación de los ecosistemas fluviales. 
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Chapter I. Introduction and background to the research 

1.1 The ecological importance of the natural flow regime 

Natural flow regime plays a major role in determining the biotic composition, structure, 

function and diversity within river ecosystems (Richter et al., 1996). It influences 

freshwater ecosystems in a variety of temporal and spatial scales, ranging from hours 

to millennia and from local to global scales (Lytle and Poff, 2004; Biggs et al., 2005). In 

this regard, Bunn and Arthingthon (2002) introduced three key principles and 

mechanisms to link hydrology and aquatic biodiversity: (1) flow is a major determinant 

of the habitat, (2) aquatic species have evolved life-history strategies in response to the 

natural flow regime and the habitats that are available at different times of the year and 

in wet and dry years and (3) the natural pattern of the longitudinal and lateral 

connectivity in the river system is important for supporting populations of aquatic 

species. In addition, it is recognised that the invasion and success of non-native 

species is facilitated by alterations to streamflow (Bunn and Arthington, 2002).  

It is widely recognized that flow regime can be described by five major ecological 

relevant attributes: Magnitude, Frequency, Duration, Timing and Rate of Change 

(Richter et al., 1996; Poff et al., 1997). The magnitude is the amount of water that 

circulates through a point per unit of time. Frequency is the number of times that a flow 

event occurs in a defined time interval while duration refers to the period of time 

associated with a specific flow condition. Timing is an indicative of the regularity with 

which a flow event occurs, while rate of change or flashiness indicates the velocity and 

the number of times that flow changes form one stage to another. These flow attributes 

are highly inter-correlated (Puckridge et al., 1998; Olden and Poff, 2003) which makes 

separation of the ecological response to each particular aspect difficult. Average flow 

conditions determine the habitat diversity and availability and the hydraulic conditions 

trough the year. These features significantly determine the biotic composition given the 
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contrasting preferences of different organisms (Jowett and Duncan, 1990; Clausen and 

Biggs, 1997). On the other hand, high flow episodes of different magnitudes and 

frequencies regulate numerous ecological processes (Biggs et al., 2005; Fitzhugh and 

Vogel, 2011). For instance, high magnitude, low frequency floods are the major driver 

of channel form (Gordon et al., 2004), structure the floodplain habitats and determine 

the frequency of habitat turnover (Petts, 2007). Lower magnitude, more frequent floods 

(or spates) provide other functions such as removing fine sediments and preventing its 

accumulation in interstitial spaces (Lake, 2007). Moreover, high flows sustain system 

productivity through the connection of main channel to floodplains (Puckridge et al., 

1998) importing woody debris, nutrients and organic matter into the river channel 

(Lytle, 2000; Hering et al., 2004).  

Likewise, droughts and episodes of flow cessation regulate a variety of ecological 

processes. During low flow episodes longitudinal fragmentation disrupt the transport of 

nutrients, fine sediment and organic matter (Lake, 2007) and an increment of 

temperature and rates of deoxygentaion can occur in isolated pools (Dahm et al., 

2003). Lotic ambients gradually disappear and fauna adapted to fast current are 

eliminated (Boulton and Lake, 1990) which can be intensified by the reduction of 

habitat quantity and quality. Duration modulates the degree of the ecological 

significance of low flow events, as species are tolerant to specific durations beyond 

which they are not able to persist. For instance, invertebrate (Boulton, 2003) and fish 

(Matthews and Marsh-Matthews, 2003) populations could be greatly diminished during 

long drought events leading to a complete modification of biological communities 

(Bonada and Resh, 2013).  

The life cycles of many aquatic and riparian species have evolved to avoid or exploit 

the natural timing of different flow conditions (Lytle and Poff, 2004) and the natural 

seasonality of high and low flow periods prevents the establishment of non-native 

species (Fausch et al., 2001). For instance, in rivers with highly variable timing of high 

flows, species present long breeding seasons and flexible reproductive strategies 
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(Puckridge et al., 1998), while in more predicable rivers reproduction and maturation 

can be synchronized with specific flow episodes (Lytle and Poff, 2004).  

Finally, the flashiness of a single flood event can highly influence the endurance of 

different organisms according to different behavioural and morphological adaptations 

(Lytle and Poff, 2004). In addition, seasonal rate of change from high to low or from low 

to high flow conditions controls the persistence of many aquatic (Stanley et al., 2004) 

and riparian species (Stanley et al., 1997; Lake, 2007). 

One of the main challenges of hydroecology is to unravel the interaction and linkages 

between hydrological and stream ecosystem dynamics. It has been proposed that the 

five attributes of the natural flow regime should be examined in association with 

ecological data to promulgate and test concrete flow-ecology hypothesis and analyse 

how these relationships change according to flow alteration (Monk et al., 2007; Poff et 

al., 2010). This information is extremely valuable to guide water management 

decisions. This need has provided the definition of over 200 ecologically relevant 

hydrological indices (Olden and Poff, 2003; Monk et al., 2007) describing each of the 

five attributes of the natural flow. Nonetheless, it should be acknowledge that 

environmental factors other than flow regime also play an important role in determine 

ecological attributes of a river (Snelder and Lamouroux, 2010). This hampers the 

precisely quantification of direct relationships between ecological characteristics and 

flow regimes. 

1.2 The alteration of the natural flow regime 

Freshwater systems provide natural resources (e.g. fish, riparian plants and clean 

water) as well as cultural and ecological services (e.g. transportation, energy, irrigation, 

recreation and waste assimilation) basic to human societies (Naiman et al., 2002). 

Unfortunately, the worldwide exploitation of freshwater has occurred without clear 

understanding of how these systems self sustain their processes (Gleick, 1998; 

Naiman and Turner, 2000). The direct consequence of this practice is reflected in the 

decline of freshwater species by 50% from 1970 to 2000, compared to the 30% for 
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marine and terrestrial species (Millenium Ecosystem Assessment, 2005). The loss of 

freshwater biodiversity is also paralleled with loss of ecosystem functioning and thus, 

the services they provide to human societies (Postel and Ritcher, 2003). Furthermore, 

considering the actual predictions under global climatic change scenarios (Millenium 

Ecosystem Assessment, 2005), losses of freshwater ecosystem services may reach up 

to 40% of the world’s population by 2050. Overexploitation of natural resources, water 

pollution, fragmentation, habitat degradation and invasion by non-native species are 

considered the five principal threats to freshwater ecosytem (Malmqvist and Rundle, 

2002; Dudgeon et al., 2006). These five aspects are strongly correlated and 

aggravated by the modification of the natural flow regime (Arthington et al., 2010). In 

this regard, rivers' flows have been largely altered by impoundments (Poff et al., 2007), 

surface water withdrawals (Döll et al., 2009), groundwater pumping (Carlisle et al., 

2011), interbasin water transfers (Jackson et al., 2001) and land use modifications 

(Zhao et al., 2012; Martinez-Fernandez et al., 2013). Moreover, the predicted shifts 

related to climate change (Suen, 2010; IPCC, 2013) might interact and strengthen 

these hydrological perturbations (Naik and Jay, 2011; Schneider et al., 2013).  

Among these flow perturbations, it is widely recognize that the construction and 

operation of large reservoirs represent the most prevalent form of hydrological 

alteration (Vitousek et al., 1997; Tharme, 2003). Currently exist more than 40000 large 

dams (WCD, 2000) which directly affect more than 60% of the large river systems 

(Nilsson et al., 2005). The presence of dams is especially dramatic in semi-arid and 

arid regions, where there´s high water demand together with water scarcity (Döll et al., 

2009; Bonada and Resh, 2013). The case of Spain is quite significant. It represents the 

51st country in terms of extension, but it is identified within the top five dam-building 

countries (WCD, 2000). Moreover, reservoirs impound almost 60% of the total runoff in 

some of the country principal basins (Batalla et al., 2004). Considering the serious 

societal and ecological concerns related to the activity of reservoirs, one of the 

objectives of the present thesis is to provide useful tools that reduce the uncertainty of 

assessing the flow alteration caused by this type of perturbation. 
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Reservoirs vary in size, level of impoundment, function and operational rules so it is not 

an easy question to predict their potential hydrologic alteration. Furthermore, the 

degree and direction of alteration might also depend upon the characteristics of the 

impacted river (McManamay et al., 2012; Belmar et al., 2013). According to this 

variability, the hydrological alteration caused by reservoirs could manifest also a myriad 

of ecological adjustments. Even if, the greater the modification of the flow regime, the 

greater the expected ecological shift (Poff and Hart, 2002), significant ecological 

responses to small hydrological alterations have also been recorded (Lloyd et al., 

2003). In addition, changes on different flow regime attributes act synergistically (Poff 

et al., 2007) and also in combination with other drivers of environmental degradation 

(e.g. wastewater, channelization, nutrient enrichment in agricultural catchments, etc; 

Poff and Zimmerman, 2010). All these factors hinder the definition of straightforward 

cause-effect relationships between hydrological alterations and ecological 

consequences. 

The dominant alterations caused by reservoirs are related to changes in flow 

magnitude. Flow regulation normally implies diminished average flow conditions, 

leading to reduced amplitudes of seasonal variability (Döll et al., 2009); this can even 

reach, in the most dramatic cases, to inversions of the seasonal patterns (Graf, 2006; 

Belmar et al., 2013). In general, it is widely accepted that the homogenization of the 

flow regime through the year may decline biotic heterogeneity as it allows 

establishment of non-native and generalist species (Fausch et al., 2001; Moyle and 

Mount, 2007). Alteration of seasonal flow variability has been associated to negative 

impacts in the habitat diversity and availability. For instance, fish show characteristic 

preferences to different values of velocity, water depth and particle size (Lamouroux 

and Capra, 2002) which basically depends on the interaction between discharge and 

geomorphological configuration (Bovee et al., 1998). Modification of the natural 

patterns of hydraulic habitats greatly affects the functional organization of fish 

communities and overall diversity (Bunn and Arthington, 2002).  
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On the other hand, it has been demonstrated that natural disturbing flow episodes, e.g. 

flood-pulse cycle (Junk et al., 1989) and recurrent droughts (Lake, 2007) are especially 

susceptible to be altered by reservoir operation. Minimum flows are normally increased 

(Black et al., 2005) which facilitate the proliferation of non-native species that are not 

naturally adapted to severe drought regimes. In contrast, other authors have 

highlighted significant decreases in low flow magnitudes (Yang et al., 2008; Brown and 

Bauer, 2010) which intensify the biological effects of drought episodes (Lake, 2007). 

Unnaturally prolonged droughts and episodes of flow cessation can increment 

exclusion of native flora via effects on competitive interactions by drought-tolerant 

species (Magilligan and Nislow, 2001; Maingi and Marsh, 2002) and reduction of plant 

growth because of the lowering of the floodplain water table (Jolly, 1996). In parallel, 

numerous recent studies have found consistent decreases in the high flows pattern 

(Carlisle et al., 2011; Fitzhugh and Vogel, 2011; Caruso, 2013), even if reservoirs were 

not originally designed for flood protection (Batalla et al., 2004). Many studies 

demonstrated the geomorphic impact produced by reduced flood flows on the stream 

channel cross-sectional morphology (Maingi and Marsh, 2002) and river planform 

(Richter and Richter, 2000). Moreover, the reduction of smaller spates might produce 

the degradation of other critical components of habitat, such as siltation of spawning 

gravels and cobble surfaces. This may reduce the quality and quantity of suitable 

habitats for fish, macroinvertebrates and algae (Lloyd et al., 2003; Magilligan and 

Nislow, 2005). Likewise, riparian vegetation can suffer important changes due to loss of 

the normal flood pulse cycle (Small et al., 2009), which is associated with the inhibition 

of seedling establishment (Caruso, 2006) or proliferation of species intolerant to 

prolonged submersion periods (Cooper et al., 2003). The modification of droughts and 

flood patterns implies not only the magnitude, frequency and duration but also, their 

characteristic timing patterns. For instance, changes in timing of high and low flows has 

consistently been reported, although in many occasions magnitude and direction of 

changes depends upon climatic and hydrologic patterns of the altered catchment (Poff 

et al., 2007). Modification of the annual cycles of floods and droughts would inhibit the 

compatibility with life history of many organism inhabiting predictable streams (Lytle 
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and Poff, 2004), or by contrast, it would reduce the higher competitiveness of species 

adapted to more unpredictable flow regimes  

There are as well several studies which support a consistent trend associated to the 

modification of the rate of change. Altered rivers generally increase the number of flow 

reversals, while the rate of rises and fall normally decreased (Pyron and Neumann, 

2008; McManamay et al., 2012). Changes of daily and sub-daily rates downstream 

hydropower dams may produce a complete transformation of aquatic and riparian 

communities (Poff et al., 1997), together with episodes of drift or stranding of organism 

(Perry and Perry, 1986; Parasiewicz et al., 1998; Saltveit et al., 2001). Nonetheless, 

modification of the flashiness of flow episodes may have different biological effects 

depending on the time of the year, and would likely be maximized during periods of 

migration or spawning (Zimmerman et al., 2010). 

Alternatively, reservoirs can also indirectly affect river stream communities throughout 

the modification of natural physico-chemical conditions (Camargo and García de Jalón, 

1990), organic matter dynamics (Caruso, 2002; Acuña and Tockner, 2010) and the 

reduction of nutrient inputs (Doyle et al., 2005). 

1.3 Providing a naturalized flow regime 

According to what has already been described, the importance of the flow regime to 

maintain healthy freshwater ecosystems and the goods and services they provide has 

been widely demonstrated. Taking into account the increasing demand of water 

resources, it is clear that balancing the water needs for people and those of 

ecosystems has to become a premier environmental issue (Palmer et al., 2004; Wood 

et al., 2007). In this regard, establishing a near-natural flow regime (i.e. defining an 

environmental flow) is considered as one of the most effective approaches to 

restoration (Roni et al., 2008). The Brisbane Declaration (2007) defined environmental 

flows as the “quantity, timing and quality of water flows required to sustain freshwater 

and estuarine ecosystems and the human livelihood and well-being that depend on 

these ecosystems”. Scientists need to develop and provide tools and models to carry 
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out this objective, however, the methodology used to establish environmental flow 

regimes is far from being universal (Richter et al., 1997; Tharme, 2003). More than 200 

methodologies have been developed and applied worldwide (Jowett, 1997; Annear et 

al., 2004) which are usually grouped in hydrologic (Tennant, 1976), hydraulic (Collings, 

1972) and habitat simulation methods (Bovee, 1982). Briefly, hydrologic methods rely 

on the use of hydrological series to define, in most cases, minimum environmental 

flows. In general, this category encompasses simple methods which define fixed 

percentages of the average annual or monthly flow or other hydrologic parameters. 

However, there are also more complex hydrologic approaches, such as the Range of 

Variability Approach (Richter et al., 1997). This method considers a set of hydrological 

indices covering the five attributes of the flow regime and proposes thresholds which 

might not be exceeded for each of them. Hydraulic methods use changes in hydraulic 

variables, usually measured in a limited number of cross-sections, as a surrogate for 

habitat factors important to the biota (Loar et al., 1986). Habitat simulation methods are 

a natural extension of hydraulic methods. They integrate hydraulic models to predict 

flow-related changes in physical microhabitat (velocity and depth) at the reach scale 

with habitat models to define habitat availability under different flow conditions. 

Although methods in the three types of approaches have evolved to more complex and 

complete procedures (e.g. Parasiewicz, 2008; Palau and Alcázar, 2012), they still 

present several flaws that limit their ability to formulate policy and management actions. 

For instance, main criticisms focus in that many of them define environmental flows 

only as a fraction of long term average flows to define just annual or monthly minimum 

flows. This perspective is considered overly simplistic and inappropriate for protecting 

ecosystems (Döll et al., 2009) as they obviate all other ecologically relevant attributes 

of the flow regime (Arthington et al., 2006). On the other hand, methods that optimize 

water regimes for one or a few aquatic species (such as fish or invertebrates), 

potentially neglect the need for other species and ecosystem processes (Richter et al., 

1996) and would hardly sustain long-term ecosystem functioning (Palau and Alcázar, 

2012).  
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It is now widely accepted that maintaining some degree of similarity to the various pre-

impacted combinations of flow magnitude, timing, duration, frequency and rate of 

change is required to maintain freshwater ecosystems’ processes and functions (Galat 

and Lipkin, 2000; Arthington et al., 2006; Schneider et al., 2013). In this regard, a fourth 

type of method has been usually considered, namely the holistic methods (King and 

Louw, 1998). Holistic methods identify important flow events for all major river 

ecosystem components, model relationships between flow and ecological and social 

responses, and use interdisciplinary team approaches to recommend environmental 

flow regimes. Although they can be viewed as the most scientific defensible approach, 

their actual application can take years to complete for just one river reach (Kendy et al., 

2012), while ability to develop environmental flow guidelines needs to meet the current 

rate of hydrologic change. The Ecological Limits of Hydrological Alteration (ELOHA) 

framework (Poff et al., 2010) arose in response to this problem. ELOHA has been 

widely accepted by the scientific community and water managers since its publication 

and several examples of its application already exist, mainly in the US (Kendy et al., 

2012; Buchanan et al., 2013; McManamay et al., 2013). The strengths of the 

framework to guide the development of environmental flow at the regional scale lie in 

the use of existing hydrologic and biological information and the knowledge and 

experience gained from individual case studies. The scientific process of the ELOHA 

framework encompass four steps: (1) creation of a hydrologic foundation of streamflow 

data, (2) classification of river types according to the natural hydrologic variability, (3) 

analysis of flow alteration and (4) development of flow-ecology relationships associated 

with each river type to propose environmental flow standards (Figure 1.1). This thesis 

is focused on the first three steps of the ELOHA framework aiming to evaluate potential 

sources of uncertainty within the procedure. Findings might guide further application of 

the framework in testing flow-ecology relationships and defining environmental flows.  
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Figure 1.1 - The ELOHA framework (Source: Poff et al, 2010). 

1.4 From theory to practice 

1.4.1 Defining the hydrological data base 

The first step of ELOHA provides estimates of ecologically meaningful streamflows in 

all the river segments distributed throughout a region. The prediction of natural flow 

conditions is a key feature as it establishes the baseline for natural classification, 

hydrologic alteration assessment and development of ecological-flow relationships. 

Hydrological rainfall-runoff models have been widely used to address this step (Black 

et al., 2005; Kennen et al., 2008; Murphy et al., 2013) and are specially useful in 

heavily engineered catchments (Belmar et al., 2011). The extensive application of 

these models is associated with their flexibility, as any number of hydrologic indices 

can be calculated from the simulated series without prior knowledge of their ecological 

relevance (Murphy et al., 2013). However, the reliability of the derived series may be 

constrained due to the complexity associated to the determination of model parameters 

(Duan et al., 2006), the large set of gauged basins and spatial coverage of rainfall data 
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required to calibrate models (Sauquet, 2006), conceptual errors in the models 

(Kirchner, 2006) and inadequate quantification of uncertainty (Beven, 2006; Wagener 

and Montanari, 2011).  

On the other hand, if the gauging monitoring network is large enough to provide a 

suitable hydrological data base in the targeted region, this information can constitute 

the hydrological foundation. Thus, flow series recorded at unimpaired gauges coupled 

with environmental catchment attributes can then be used to develop predictive 

hydrologic classifications (Snelder et al., 2009; McManamay et al., 2012; Solans and 

Poff, 2013) and empirical relationships to predict specific hydrologic indices to 

complete river networks (Sanborn and Bledsoe, 2006; Carlisle et al., 2010; Knight et 

al., 2011). This approach was followed in the present thesis; however there are still 

some key methodological aspects in both procedures that can greatly influence the 

final outcomes as it is outlined below. 

1.4.2 Hydrological Classifications: A major task in hydroecology research 

It is currently considered that within each river class of a hydrological classification 

there is an inherent range of natural hydrological and ecological variation (Poff et al., 

2010). Hence, hydrological classification provides an organizing framework and 

scientific tool for river research and management (Olden et al., 2012). In this regard, it 

represents a critical previous step for the definition of environmental flow through the 

ELOHA framework (Poff et al., 2010). Nowadays, there exists a plethora of 

classification approaches, which agree in general concepts but differ largely in specific 

procedures. The selection of one or another approach may pose significant differences 

in the final outcome, and hence, influence largely further applications of the 

classification. We consider that critical aspects influencing hydrological classification 

should be examined deeply and specific studies are provided in chapters III and IV of 

this thesis. 

Within the variety of classification procedures, inductive classifications are those that 

identify and characterize similarities among rivers according to a set of hydrologic 
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metrics that vary across the river network (Olden et al., 2012). Normally, inductive 

classifications (1) use statistical procedures to minimize the redundancy of the 

hydrological information, (2) use some form of statistical clustering to group similar 

gauges and (3) predict class membership for the whole fluvial network based on 

empirical relationships with catchment attributes (Snelder and Booker, 2013). However, 

procedures and statistical approaches within these three phases can vary largely 

according to the objectives of the classification and the available data. For instance, 

different decisions could be taken regarding the treatment of the input variables, the 

classification detail or  the strategy to predict class membership (Snelder and Booker, 

2013).  

It is generally accepted that daily hydrologic data provide the appropriate temporal 

resolution for understanding many ecological responses and, thus, develop 

hydrological classifications. When daily gauged records are scarce or flow series 

present low quality other strategies must be considered. Several authors have used 

gauged (Harris et al., 2000) or modelled (Black et al., 2005; Belmar et al., 2013) 

monthly flow series. Nonetheless, the use of series lacking the appropriate time scale 

may compromise the accuracy and usefulness of the classification.  

Finally, as it was pointed out above, different procedures used in recent literature to 

develop hydrological classifications worldwide have been demonstrated to be robust 

and scientifically defensible (Olden et al., 2012) as they are objective, transparent, 

interpretable and repeatable. However, when classification procedures do not rely on 

objective but in experts’ criteria, they lack, in general, these desirable qualities and 

depending on the expert, results may differ greatly from one classification to another. 

1.4.3 Predicting hydrologic character to river networks 

Other approach to generate the hydrological information required in the ELOHA 

framework is the prediction of hydrological indices to the whole river network from 

series recorded at unimpaired gauges (Carlisle et al., 2010; McManamay et al., 2013). 

The framework considers the use of statistical techniques as one of the alternatives to 
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rainfall-runoff models in generating the baseline flow conditions from which further 

assessing the hydrological alteration and develop flow-ecological response 

relationships (Poff et al., 2010). In contrast to rainfall-runoff models, through the 

statistical approach specific models are developed for each targeted hydrological 

index. This is likely to reduce the noise associated with hydrological data which confers 

certain advantage to this approach. However, hydrological indices have been widely 

predicted using statistical techniques for flood insurance and water supply planning, 

while prediction of ecologically relevant hydrologic indices have received limited 

attention (Knight et al., 2011). On the other hand, even if the non-linearity of many 

hydrological processes has been pointed out (Dawson et al., 2006; Snelder et al., 

2009), multiple linear regression has been the most extended technique to fulfil this 

objective (Yadav et al., 2007; Knight et al., 2011). In contrast, other authors have 

emphasized the potential improvement that machine learning methods (Alcázar et al., 

2008; Shu and Ouarda, 2008; Carlisle et al., 2010) and other strategies, such as the 

development of individual models for specific river types (Sanborn and Bledsoe, 2006), 

could suppose in model performance. All these aspects are analysed and evaluated in 

chapter V. 

1.4.4 Assessing the hydrological alteration caused by reservoirs 

Once the hydrologic baseline is well established trough the approaches described 

above, one of the most important aspect within hydroecological research is identifying 

the extend that the flow regime deviates from natural conditions. It represents a critical 

step previous to adopt appropriate management measures (Black et al., 2005) 

recognized in the ELOHA framework (Figure 1.1; Poff et al., 2010). However, the 

correct quantification of the hydrological alteration can be highly influenced by different 

confounding factors. Hence, in Chapter VI we present and evaluate a protocol that 

provides five alternative designs to analyse the hydrological alteration caused by 

reservoirs according to data availability.  

As it was previously noticed, generalizations in relation to flow alteration by dams are 

difficult. So that the assessment of hydrologic alteration has been commonly done 
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trough the comparison between pre and post-development gauged flow series (e.g. 

Maingi and Marsh, 2002; Magilligan and Nislow, 2005; Yang et al., 2008) or between 

flow series recorded at impacted and control gauges (Zhao et al., 2012; Caruso, 2013). 

Comparison of pre- and post-regulation within the same gauge controls for other 

confounding factors with exception of the temporal shift in the series (McManamay et 

al., 2012). In contrast, impact-control approach controls for changes in the climate 

trends but other confounding factor such as the basin size (Assani et al., 2006) or the 

influence of land uses in flow regimes (Zacharias et al., 2004) may introduce a high 

level of uncertainty in the assessment. In both cases, the analysis of the hydrological 

alteration would uniquely indicate whether a hydrologic change has occurred, but it 

would not allow us to distinguish a change caused by a human perturbation from a 

change that would have occurred even if the activity had not begun (Downes et al., 

2002). Therefore, the application of robust statistical approaches that allow us to 

discern the true effect of human over other confounding factors is a primary demand to 

aid water resources management. On the other hand, the application of robust 

approaches is subjected to the availability of gauged flow series, both in the pre and 

post-impact periods and in impacted and control gauges. This availability will determine 

ultimately the degree of confidence regarding the assessment of the hydrologic 

alteration. In addition, the absolute lack of hydrologic information in many streams (Eng 

et al., 2013), especially regarding to pre-disturbance flow series, can constrain the 

application of any method. Hence, it is necessary to provide alternative means and 

credible approaches to cope with these situations. Many times, the extension of 

hydrologic information from gauge to ungauged sites (Carlisle et al., 2010) or by the 

recognition of the homogeneity between river types (Arthington et al., 2006) have been 

used to carry out this analysis. Likewise, the application of these alternative methods 

requires determining the reliability with which hydrological alteration can be assessed 

to support further flow management actions. 

Exploring these three fundamental aspects, i.e. hydrological classifications, prediction 

of hydrological indices and assessment of hydrological alteration, is a previous critical 
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issue to set more rigorous flow-ecology hypothesis and define the degree of 

uncertainty within flow alteration-ecological response relationships. This will ultimately 

allow scientists and water managers establishing the potential effects of restoring the 

natural flow regime. 
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1.5 Objectives of the thesis 

The general objective of the present thesis is to advance in the understanding and of 

three critical aspects within the hydroecological and water resource management 

research: Hydrological classification, hydrological characterisation of complete fluvial 

networks and assessment of hydrological alteration. These three aspects represent 

critical steps in the ELOHA framework and this thesis will allow defining the uncertainty 

associated with several sources of variability in the process. Thus, the results of this 

thesis will be very valuable to the definition of environmental flow regimes at the 

regional scale.  

The specific objectives of this thesis are focused on the following aspects: 

1. Investigate how the normalization of flow series data previous to the 

classification and the use of Classify-then-Predict and Predict-then-Classify 

procedures influence (1) the classification performance, (2) the hydrological 

interpretation of the classifications, (3) its ability to reduce the bias associated to 

the underrepresented parts of the hydrological space and (4) the spatial 

arrangement of classes. 

2. Investigate how time scale (daily versus monthly), flow series origin (gauged 

versus modelled) and classification procedure (inductive versus expert) 

influence (1) the classification performance, (2) the hydrological interpretation of 

the classifications and (3) the spatial arrangement of classes. 

3. Evaluate the performance of contrasting statistical techniques to predict 

hydrological indices to ungauged sites and examine the benefits associated to 

model hydrological indices when using a “Regional Regression Approach”. 

4. Design a protocol to assess the hydrological alteration caused by reservoirs 

that use alternative designs depending on the available hydrological data  

5. Evaluate the uncertainty associated with each of the designs included in the 

protocol. 
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1.6 Layout of the thesis 

The structure of the thesis is organized as follows:  

In Chapter I, a general overview and the background to the research objectives are 

presented first. At the end of this chapter the general and specific objectives of the 

thesis are outlined. In Chapter II, a detailed description of the study area and the 

specific data is presented.  

The following four chapters (III, IV, V, VI) address the objectives of the thesis. Each of 

the chapters includes an abstract, introduction, methods, results, discussion and 

conclusion section.  

A brief synopsis of the investigations conducted in each chapter is described as 

follows: 

Chapter III. The influence of methodological procedures on hydrological 

classification performance. 

In chapter I, the implication of applying different methodological procedures to develop 

inductive hydrological classifications was analyzed. Classifications of increasing level 

of detail, ranging from 2 to 20-Class levels, either based on raw and normalized daily 

flow series and using two contrasting approaches to determine class membership were 

developed: Classify-Then-Predict (ClasF) and Predict-Then-Classify (PredF). 

Classifications were compared in terms of their statistical strength, the hydrological 

interpretation, the ability to reduce the bias associated to the underrepresented parts of 

the hydrological space and the spatial arrangement of classes.  

Chapter IV. Sources of variation in hydrological classifications: Time scale, flow 

series origin and classification procedure. 

In chapter IV, the influence of different source of variation (flow series and classification 

procedure) on hydrological classification was analyzed. Three inductive classifications 
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derived from different initial flow data and one expert-driven classification were 

developed. Hence, Classification 1 was derived from daily flow data while Classification 

2 and Classification 3 were derived from monthly flow series, using gauged and 

modelled flow data, respectively. Classification 4 was based on the Spanish nationwide 

hydrological classification which uses experts’ rules as the main classification criteria. 

Classifications were compared according to their hydrological interpretation, statistical 

performance and spatial correspondence.  

Chapter V. A comparison of statistical techniques and strategies to model 

hydrological indices to ungauged rivers. 

Chapter V explored the ability of statistical models to predict different types of 

hydrological indices, evaluating and comparing the performance of 5 statistical 

techniques and examining the benefits associated to model hydrological indices when 

using a “Regional Regression Approach”. Multiple Linear Regression, Generalized 

Additive Models, Random Forest, Artificial Neural Network and Adaptative Neuro-

Fuzzy Inference Systems were applied to predict 16 ecologically meaningful hydrologic 

indices to the whole river network. In addition, Multiple Linear Regressions were also 

developed after segregating gauges into different levels of a regional hydrologic 

classification (developed in Chapter III). 

Chapter VI. Assessing hydrologic alteration: Evaluation of different alternatives 

according to data availability. 

In Chapter VI, we introduced and evaluated a protocol that provides 5 alternative 

designs to assess hydrologic alteration according to the availability of flow data: (1) 

Paired-Before-After-Control-Impact; (2) Before-After; (3) Control-Impact; (4) Hydrologic 

Classification (developed in Chapter III) and (5) Predicted Hydrologic Indices 

(developed in chapter V). Paired-Before-After-Control-Impact design allows comparing 

the status of the impacted gauge before and after start-up of the perturbation while 

controlling for natural climatic or other confounding factors. Hence, it has been 
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considered as the reference benchmark for all the other designs. The protocol was 

applied and evaluated in 11 reservoirs which covered all the hydrologic classes present 

in the study area. 

Finally, general conclusions and future research lines are described in Chapter VII. 
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Chapter II. Study area and data compilation 

2.1 Study area 

The study area comprises the northern third of the Iberian Peninsula (Figure 2.1) 

covering a total area greater than 124000 km2.  

 
Figure 2.1 - Study area: Northern third of the Iberian Peninsula.  

It presents heterogeneous environmental conditions and can be broadly segregated in 

three main zones. On one hand, the area draining into the Cantabric sea encompass 

several small basins with drainage areas ranging from 30 km2 to 4.907 km2 covering a 

total area of 22000 km2. Rivers are confined by the Cantabrian Cordillera, a mountain 

range that runs parallel to the Atlantic Ocean coast and reaches up to 2600 m.a.s.l. 

Rivers are characterized by high slopes and short main stream length. This area has a 

humid oceanic temperate climate (Rivas-Martínez et al., 2004). Average annual 

temperature is 14 ºC and precipitation is abundant throughout the year with mean of 

1300 mm year-1, presenting maximum rainfalls form December to February and 

minimum from July to September. However, the precipitation magnitude and 

distribution varies significantly according to local orography. Snow precipitation is 
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frequent in winter above 1000 m.a.s.l.. More than 50% of the surface is occupied by 

deciduous forest, scrubs and grasslands, while 10% is occupied by agriculture. The 

population in this area amounts almost 3500000 inhabitants with a population density 

of 175 hab km-2 although it change a lot from region to region. On the other hand, the 

Mediterranean area is mainly occupied by the Ebro basin along with a set of medium 

size basins in the eastern zone. The Ebro basin covers a total extension of 85530 km2. 

It is enclosed by the Cantabrian Mountains and the Pyrenees (3400 m.a.s.l.) in the 

North, by the Catalan Coastal Chain (1712 m.a.s.l.) in the East and from the North-

West to the South-East by the Iberian massif (2300 m.a.s.l.) which creates a dense 

river network in the catchment boundaries and an extended flat surface in the interior. 

The Ebro Basin receives both temperate and Mediterranean climate influences. The 

Pyrenean area (northwest) and the northern part of the Iberian massif present oceanic 

temperate climate that change gradually to a typical Mediterranean climate in the 

central Ebro depression. Annual precipitation is 656 mm, however it varies significantly 

from 300 mm in the centre to the 1700 mm in the highest mountains (Bejarano et al., 

2010) where snow is also common during the winter months. The precipitation regime 

in the Mediterranean region presents maxima in autumn and spring and minima in 

winter and summer. The temperature regime also presents an important oscillation 

throughout the year with temperatures over 30 ºC in summer and below 5 ºC during 

winter. Population density is below 35 hab km-2 which could be considered low, 

however more than 40% of the surface is occupied by agricultural land and, thus, the 

catchment is subjected to an intensive water resource control by means of more than 

216 dams and other water engineering systems. The eastern zone of the study area 

comprises several medium catchments ranging from 72 to 5000 km², occupying a total 

extension of 16500 km² that drain directly from the Pyrenees or the Catalan costal 

chain to the sea. This area is dominated by the Mediterranean oceanic climate in the 

coast and by a temperate climate in the mountains. Precipitation declines from an 

annual mean of 1200 mm year-1 in the northern river heads to less than 500 mm year-1 

in the Southern catchments. Coniferous and broadleaf forest, scrubs and grasslands 

occupies more than 60% of the surface in the northern catchments which are 
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progressively replaced by agriculture lands in the south. There are a total of 6600000 

inhabitants in this area, mostly concentrated in the city of Barcelona and its 

metropolitan area. Therefore, an important part of the water resources are also 

allocated to urban and industrial uses. 

2.2 Development of a theoretical river network fluvial 

Synthetic River Networks (SRNs) developed from Digital Elevation Models (DEM; 

Figure 2.2) provided the proper spatial framework and hierarchical organization to sort 

out hydrologic and environmental information. 

 
Figure 2.2 - Schematic representation of how Synthetic River Networks were extracted from Digital 

Elevation Models. Figure taken from Benda et al. (in prep.)  

We used specific software packages (Buildgrids and Netrace) which are included in the 

'NetMap' platform (Miller, 2002; www.terrainworks.com) to obtain the SRN for the study 

area. The SRN was delineated using flow directions inferred from a DEM with 30 m 

spatial resolution, using algorithms described by Clarke et al. (2008). We applied 
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drainage enforcement in areas of lower relief (slope less than 30%) by reducing the 

elevation by two meters of the current cells in the DEM using GIS data with actual 

locations of river channels to avoid that these cells act as sinks. The actual locations of 

river channels were derived from the official river network. Then, the river network was 

divided into reaches ranging from 100 to 500 m length. 

2.3 Hydrological data 

2.3.1 Gauged flow series 

The initial data set of hydrologic data consisted in series of mean daily flow recorded at 

428 gauging stations operated by different Spanish water agencies and regional 

governments.  Only gauges unaffected by impoundments (defined as large engineering 

structures) or large upstream abstractions were selected for analyses. In addition, we 

selected those gauges with available data for the period 1976-2010 and analyzed the 

quality of the series. First, an analysis of the flow series was carried out to eliminate 

those years without desirable data quality, which could be due to the presence of (1) 

periods of consecutive repeated values, (2) non-natural extreme low flows for short 

time periods, (3) periods of zero flow values in non- intermittent rivers, (4) non-natural 

flow magnitude rises and falls or (5) large differences between two periods, probably 

due to changes to flow recorder method. Years with more than 30 days of missing data 

were removed from the analysis. In the last step, we discarded the gauges that 

accounted with less than 8 years. After applying these restrictions, 156 gauges were 

selected with an average length of 17 years of data (Figure 2.3; Table 2.1).The 156 

gauged flow series are both provided in daily and monthly time scale, within the 

supplementary material included in the DVD. 
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Figure 2.3 - Map of unregulated gauges (●; n=156) in the study area. Black lines divide the Cantabric, the 

Ebro and the Catalan catchments. 

N. of years N. of gauges Frequency Freq. acum.  

>19 52 33.3 33.3 

19 3 1.9 35.3 

18 7 4.5 39.7 

17 6 3.8 43.6 

16 16 10.3 53.8 

15 7 4.5 58.3 

14 8 5.1 63.5 

13 8 5.1 68.6 

12 11 7.1 75.6 

11 9 5.8 81.4 

10 9 5.8 87.2 

9 9 5.8 92.9 

8 11 7.1 100.0 

Table 2.1 - Number of retained years for flow time-series used in the analysis 
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2.3.2 Modelled flow series 

We developed monthly flow time series in each gauge location using the results of the 

SIMPA model (the Spanish acronym meaning “Integrated System for Rainfall-Runoff 

modelling”). SIMPA is an implementation of a classic soil moisture balance model and 

it uses monthly precipitation and evapotranspiration from 1 km grid maps created from 

more than 5000 weather stations of the Spanish Network (Estrela and Quintas, 1996; 

Alvarez et al., 2005). The model has been calibrated and validated by means of 

comparison with reference and restored records in more than 100 control points. Based 

on the monthly specific runoff grid of 1 x 1 km and the directions map developed from 

the Digital Elevation Model, we generated the accumulated monthly flow data for the 

period 1980/81-2005/06 in each reach of the river network, which were also 

normalized. The 156 modelled flow series are provided within the supplementary 

material included in the DVD. 

2.4 Environmental characteristics 

Climate, topography, land cover and geology are hypothesised to be all important 

discriminators of the hydrologic regime regardless of geographic location. Thus, 

environmental variables were used to explain the hydrological character of the 

recorded flow series and predict this character onto the whole river network. Predictor 

variables describing several environmental attributes including climate, topography, 

land cover and geology were extracted from existing databases provided by several 

national and regional organizations. The variables for each segment represented the 

mean value of the variables in the upstream catchment An initial set of 50 

environmental variables with potential influence on the different hydrological indices 

were selected. Pearson’s correlation coefficient between each pair of variables was 

calculated previously to each model development and variables with correlation higher 

than 0.7 were discarded. A final set of 18 and 17 variables were selected to predict 

class membership (Chapter III and IV) or hydrological Indices (Chapter V), respectively 

(Table 2.2): 
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i) Climate: Variables related to precipitation, temperature and evapotranspiration 

were derived from monthly climate variables calculated in a 1 km grid map by 

means of interpolation procedure based on data recorded in more than 5000 

weather stations of the Spanish network. These data were originally developed 

to be implemented into the Integrated System for Rainfall-Runoff modelling (in 

Spanish SIMPA model) by the Centre for Hydrographic Studies (CEDEX, 

Ministry of Public works and Ministry of Agriculture and Environment, Spain).  

ii) Topography: Catchment area, slope, elevation, confluence density and drainage 

density were derived from the 30 m DEM.  

iii) Land cover: The percentage surface occupied by broadleaf forest, coniferous 

forest, pasture, agricultural land, denuded areas and urban areas was derived 

from the Soil Occupancy Information System (in Spanish SIOSE) developed by 

the National Geographic Institute of the Spanish Government. SIOSE presents 

a scale of 1:25000 and integrates satellite and aerial images from several 

sources of information.  

iv) Geology: The average rock hardness and the terrain permeability were derived 

from litostatigraphic and permeability maps at scale 1:200,000 developed by the 

Spanish Geologic and Miner Institute of the Spanish Government. These 

variables were calculated using procedures described elsewhere (Snelder et al., 

2008; Fernández et al., 2012). 

Environmental variables values for the 667406 segments are provided within the 

supplementary material included in the DVD. 
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Variable Type Units Description Source 

1,2Annual Precipitation CL mm Mean Annual precipitation SIMPA 

2April Precipitation CL Mm Mean april precipitation SIMPA 

2Summer precipitation CL Mm Mean quarterly precipitation (July-
September) 

SIMPA 

2Maximum 
Precipitation 

CL Mm Maximum monthly precipitation SIMPA 

2Minimum Precipitation CL Mm Minimum monthly precipitation SIMPA 

2Minimum Month CL Month Month of minimum precipitation SIMPA 

1,2Monthly Precipitation 
range 

CL - 
Minimum monthly precipitation/ Maximum 
monthly precipitation 

SIMPA 

1,2Quarterly 
Precipitation range 

CL - 
Minimum quarterly precipitation/ Maximum 
quarterly precipitation 

SIMPA 

1,2Temperature CL ºC Mean annual temperature SIMPA 

2Summer temperature CL ºC Mean quarterly temperature (July-
September)

SIMPA 

1,2Evapotranspiration CL mm Annual catchment evapotranspiration SIMPA 

2Maximum 
Evapotranspiration 

CL mm Maximum monthly evapotranspiration SIMPA 

1, 2Catchment area TG Km2 Total catchment area DEM 

1, 2Gradient TG % Average catchment gradient DEM 

1, 2Elevation TG m Average catchment elevation DEM 

1Confluence density TG - Number of rivers confluences by catchment 
area 

DEM 

1Drainage density TG - Number of segments by the catchment area DEM 

1Permeability GL - Terrain permeability IGM 

1Hardness GL - Rock hardness IGM 

Table 2.2.-. Environmental variables used to predict hydrological classes (Chapter III and IV) and 

hydrological indices (Chapter V) into the ungauged segments of the river network (TG: Topography; CL: 

Climatic LC: Land Cover; GL: Geology). 1Variables selected to predict class membership in Chapter III y 

IV. 2Variables selected to predict 16 hydrological indices in Chapter V. Broadleaf forest and coniferous 

forest were unified in Chapter V within a unique variable (Forest) indicating surface occupied by forest.  

 



 
 

Chapter II Study area and data compilation  
 

 

 
 

 
 

99 

 
 

Variable Type Units Description Source 

1, 2Broadleaf forest LC % Surface occupied by broadleaf forest SIOSE 

1, 2Coniferous forest LC % Surface occupied by coniferous SIOSE 

1Pasture LC % Surface occupied by pasture SIOSE 

1, 2Agriculture LC % Surface occupied by agricultural land SIOSE 

1,Denuded LC % Surface occupied by denuded areas SIOSE 

1Urban  LC % Surface occupied by urban areas SIOSE 

Table 2.2 - (continued) 
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Chapter III. The influence of methodological procedures on 

hydrological classification performance 

This chapter has led to the article entitled: “The influence of methodological procedures 

on hydrological classification performance” by Peñas, F.J., Barquín, J., Snelder, T.H, 

Booker, D.J. and Álvarez, C. It has been submitted for publication in the journal: 

Hydrology and Earth Systems Science. 

Abstract 

Hydrological classification has emerged as a suitable procedure to disentangle the 

inherent hydrological complexity of river networks. This practice has contributed to 

determine key biophysical relations in fluvial ecosystems and the effects of flow 

modification. Thus, a plethora of classification approaches, which agreed in general 

concepts and methods but differed largely in specific procedures, have emerged in the 

last decades. However, few studies have compared the implication of applying 

contrasting approaches over the same hydrological data. In this work, using cluster 

analysis and modelling approaches, we classify the entire river network covering the 

northern third of the Iberian Peninsula. Specifically, we developed classifications of 

increasing level of detail, ranging from 2 to 20-Class levels, either based on raw and 

normalized daily flow series and using two contrasting approaches to determine class 

membership: Classify-Then-Predict (ClasF) and Predict-Then-Classify (PredF). 

Classifications were compared in terms of their statistical strength, the hydrological 

interpretation, the ability to reduce the bias associated to the underrepresented parts of 

the hydrological space and the spatial correspondence. The results highlighted that 

both the data processing and the classification strategy largely influenced the 

classification outcomes and properties, although differences among procedures were 

not always statistically significant. The normalization of flow data removed the effect of 

flow size and generated more complex classifications in which a wider range of 

hydrologic characteristics were considered. The application of the PredF strategy 

produced, in most of the cases, classifications with higher discrimination ability, greater 
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ability to address the bias associated with the presence of distinctive gauges and 

classifications in which classes were more evenly distributed than using the ClasF 

strategy. 

3.1 Introduction 

Understanding hydrological natural variability has become crucial for river ecology and 

management because of three main reasons: (1) it is a primary factor influencing river 

geomorphology (Richter et al., 1998; Benda et al., 2004; Peñas et al., 2012), water 

(Álvarez-Cabria et al., 2010; Chinnayakanahalli et al., 2011) and biological 

characteristics (Poff and Zimmerman, 2010), (2) its variability reflects climate (Morán-

Tejeda et al., 2011) and catchment attributes (second order driver; Monk et al., 2007) 

and (3) freshwater resources are essential to maintain many human activities (Naiman 

and Dudgeon, 2011). 

Much progress has been made over the last 20 years in understanding hydrologic 

variability and how it promotes self sustaining ecosystems (Gurnell et al., 2000; Poff et 

al., 2006). However, the inherently complexity of flow regimes hinders both the 

quantification of direct responses of hydrology to catchment characteristics, and the 

identification of key hydrology and ecology relationships. The identification and 

characterization of relevant ecological aspects of the flow regime and the organization 

of similar rivers into a geographical context (Poff, 1996), trough the definition of 

hydrological classifications, has emerged as a relevant procedure to structure analyses 

in hydroecological studies. Specifically, inductive hydrological classification approaches 

have been used to group river reaches into classes within which key flow regime 

(Snelder et al., 2009) and ecological attributes (McManamay et al., 2012) are assumed 

to be similar.  

Many of the existing hydrological classifications following the inductive approach rely 

on the use of statistical procedures to reduce the redundancy of the hydrological 

information (Olden and Poff, 2003) and to minimize within group variability and 

maximize between group variability (Snelder and Booker, 2013). This tasks are usually 
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accomplished using Principal Components Analysis (PCA) and Cluster Analysis (CA), 

respectively (Olden et al., 2012). Nevertheless, many steps within the hydrological 

classification process may be influenced by a series of subjective decisions depending 

on the rationale, objectives and available data. For example, many hydrological 

classifications are based on normalized flow data (Kennard et al., 2010; McManamay 

et al., 2012; Reidy Liermann et al., 2012) while others used raw flow series (Alcázar 

and Palau, 2010; Belmar et al., 2011; Zhang et al., 2012). The main reason for 

normalization is to remove the scale dependence of flow magnitude indices to promote 

the classification of rivers according to the shape of the regimes. However, 

normalization can be viewed as a completely subjective choice in the classification 

process that depends on the objectives of the study (Olden et al., 2012). The shape of 

the hydrograph provides valuable information about the seasonality, the timing of 

specific flow events or the patterns of rise and fall of the flow. Undoubtedly these 

aspects influence river reach ecology (Richter et al., 1998; Bunn and Arthington, 2002) 

and are key elements for understanding the relationship between climatic and 

streamflow patterns (Gámiz-Fortis et al., 2011). Nonetheless the size of a river reach 

and the absolute magnitude of flows also play a key role in ecological processes 

(Vannote et al., 1980; Bunn and Arthington, 2002). 

In addition, beyond the classification of specific sites for which hydrologic data are 

available (gauged or modelled sites), the scientific and management utility of 

hydrological classifications relies on the capacity to extrapolate the class membership 

to ungauged sites, providing a map of natural flow regimes (Snelder et al., 2009; Reidy 

Liermann et al., 2012). The Classify-then-Predict (ClasF) strategy has been the most 

common approach to fulfil this objective (e.g. Kennard et al., 2010; Reidy Liermann et 

al., 2012). ClasF predicts river reach class membership based on environmental data 

(climate, topography, geology or land-use) at observed locations. However, this 

method might pose some flaws when predicting onto an entire region, especially if the 

distribution of gauges is biased, i.e. specific kind of rivers are under or overrepresented 

(Snelder and Booker, 2013). If this is the case, the cluster step would fail in accounting 
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for those hydrological features underrepresented in the data set. The presence of sites 

with exceptional hydrologic character might produce two effects. The first effect is that 

it may produce higher within-class heterogeneity, while the second is related to the loss 

of the “rare” hydrologic character when classes are predicted to the whole river 

network. Because of these reasons some researchers have attempted other 

approaches such as the Predict-then-Classify (PredF) strategy (Ferrier and Guisan, 

2006; Snelder and Booker, 2013). Using this approach, hydrological indices obtained 

from the flow series are predicted onto the entire river network using climate and 

catchment characteristics, and classification of all river segments is performed as a 

final stage within the procedure.  

The aim of this study was to investigate how the normalization of flow series data 

previous to the classification procedure and the use of ClasF and PredF influences (1) 

the classification performance, (2) the hydrological interpretation of the classifications 

and their ability to discriminate different hydrological characters, (3) their ability to 

reduce the bias associated to the underrepresented parts of the hydrological space and 

(4) the degree of spatial correspondence between classifications. To achieve this aim 

we will develop hydrological classifications of natural conditions over an entire river 

network in the northern third of the Iberian Peninsula, covering catchments of 

contrasting climate and spatial configuration. We hypothesised that normalization of 

river flow data will tend to classify rivers according to their annual regime and not only 

to the size of the river and also increase the contribution of other hydrological variables 

not related to flow magnitude. In addition, we hypothesised that the application of the 

PredF classification procedure will reduce within class heterogeneity, especially when 

gauges presenting distinctive regimes are included in the classification. 

3.2 Methods 

3.2.1 Hydrological and environmental data processing 

Based in the gauged hydrological data introduced in Chapter II, in this study we 

developed two sorts of classifications, one obtained from normalized flow series and 
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the other from non-normalized (raw) series. Normalization is used to minimize the 

influence of flow magnitude which allows setting the hydrological classes based on the 

“shape” of the regimes (Snelder et al., 2009). Flow series were normalized by dividing 

all daily flow values by the mean annual flow (Poff et al., 2006). 

A set of 103 and 101 hydrologic indices (provided within the supplementary material 

included in the DVD.), which represent a wide range of ecologically meaningful 

attributes of the flow regime (Olden and Poff, 2003), were calculated for the raw and 

normalized flow series, respectively (Appendix, Table A1). These indices characterize 

the central tendency and dispersion of: (1) magnitude of annual and monthly flows 

conditions, (2) magnitude of severe high and low flow conditions, (3) timing of flows, (4) 

frequency and duration of high flow pulses and (5) rate of change of flow (Richter et al., 

1996; Olden and Poff, 2003). 

Given the strong correlation between several indices, the initial set of indices was 

reduced to a set of non-correlated synthetic indices using the procedure outlined in 

Olden and Poff (2003) and followed by many others (Belmar et al., 2011; 

Chinnayakanahalli et al., 2011; Zhang et al., 2012). Principal Component Analysis 

(PCA) and the broken stick method (Jackson, 1993) were performed to obtain and 

define the optimal set of synthetic indices. Two PCAs were carried out independently, 

one for the hydrologic indices calculated from the raw flow series and another for 

hydrologic indices calculated from the normalized flow series. Each PC was 

standardized before conducting further analysis to give all the PCs equal weights. 

Snelder and Booker (2013) demonstrated that this additional step increased 

classification performance. 

In addition, environmental variables introduced in Chapter II (Table 2.2) were used to 

develop empirical relationships and predict class membership or the synthetic 

hydrological indices to the river network. 
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3.2.2 Classification procedures 

In this study, we derived classifications with increasing numbers of levels using the 

synthetic hydrologic indices derived from the PCAs performed on each flow series 

using two contrasting strategies (Figure 3.1; Snelder and Booker, 2013): (1) the 

classify-then-predict (rawClasF and norClasF) and the (2) predict-then-classify 

(rawPredF and norPredF). The prefix raw and nor indicates whether classification was 

based on the hydrological indices extracted from the raw or normalized flow series 

respectively. The final SRN classifications are provided within the supplementary 

material included in the DVD. 

 
Figure. 3.1 - Schematic diagram summarising the strategies applied to define the 4 classifications. 
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3.2.2.1 Classify-then-predict (ClasF) 

Partitioning Around Medoids (PAM; Kauffman and Rousseeuw, 1990) algorithm on the 

standardized synthetic indices was used to cluster gauges (Figure 3.1). PAM defines a 

set of k objects as medoids (data-points) of each cluster and minimizes the sum of 

dissimilarities between all objects and their assigned medoid (Kauffman and 

Rousseeuw, 1990). This technique allows the user to specify the number of clusters. 

We produced classifications with numbers of classes ranging from 2 to 20. We then 

used Random Forest (RF; Breiman, 2001) to developed empirical models that relate 

class memberships and catchment properties (Figure 3.1). We fitted one specific RF 

for each classification level (2 to 20-Class level) and then, these models were used to 

predict the most probable class of all the segments of the SRN for each classification, 

i.e. 19 sets of predictions. 

3.2.2.2 Predict-then-Classify (PredF) 

For the PredF strategy, empirical models were fitted to each of the standardized 

synthetic indices as a function of predictor catchment variables using RFs (Figure 3.1). 

Then predictions of the synthetic indices were made for the whole SRN, thereby 

generating predicted distributions for each synthetic index. Finally, classifications were 

produced by clustering all the modelled sites using the PAM algorithm varying again 

between 2 and 20 class levels.  

Given the high number of gauges removed due to the presence of impoundments or 

abstraction upstream, the selected gauges represented “reasonably natural 

hydrological conditions” only, and probably do not represent the whole spectrum of 

natural hydrologic conditions in the study area. In addition, the SRN developed for this 

study presented many rivers of first and second order. Given that Mediterranean 

climate domains the study area, many of them are likely to be intermittent or perennial 

rivers, which is a character underrepresented in the hydrological data base. The 

prediction of the hydrological synthetic indices or class membership beyond the 

hydrological space represented in the selected gauges could lead to misleading 
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results. Therefore, instead of using the whole SRN (667406 segments) in the prediction 

stage of each approach, those segments of the SRN that presented values of predictor 

variables out of the range (maximum/minimum) defined by these predictors in the 

selected the gauges were discarded. Thereby, 178297 segments were kept. 

As stated before, both strategies are based in the use of RF (Breiman, 2001; Cutler et 

al., 2007). RF fits many classification and regression trees (CART; Breiman et al., 

1984), each of them grown with a bootstrap sample of entry data and a randomized 

subset of predictors. Each CART is then used to predict the observations that were 

excluded from each bootstrap sample, named the out-of-bag (OOB) samples. These 

predictions are aggregated over all tress and the error (OOB-error), which provides an 

estimate of the predictive accuracy of the model, was expressed as a misclassification 

rate or a coefficient of determination if categorical response or continuous response 

variables were used, respectively. In addition, to assess the importance of a specific 

predictor variable, the values of the targeted variable are randomly permuted for the 

OOB observations, and then the modified OOB data are passed down the tree to get 

new predictions. The difference between the misclassification rate for the modified and 

original OOB data, divided by the standard error, is a measure of the importance of the 

variable (Snelder et al., 2011). 

3.2.3 Comparison of classification performance 

Both the performance of classifications with the same number of classes constructed 

by different strategies and the performance of classifications with different number of 

classes derived with the same strategy were compared. The performance of the 

classifications was measured using the classification strength (CS; Van Sickle, 1997) 

and ANOVA.  

CS estimate the degree of dissimilarity of the hydrological character between gauges 

explained by the classifications (Snelder and Booker, 2013). Briefly, CS results from 

the difference between the mean hydrological dissimilarity between all pairs of replicate 

sites within classes (Dwithin) and the mean dissimilarity between all pairs of replicate 
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sites in different classes (Dbeetwen.). Higher values of CS indicate a greater uniformity 

within classes and greater differences between classes (Van Sickle, 1997). This 

analysis was performed on the hydrological indices with the highest loading on each of 

the PCs (test indices) using euclidean distances. In addition, test indices were 

standardized prior to calculating the dissimilarities so all indices, which have inherently 

different scales, had equal weight in defining hydrological dissimilarity. We calculated 

CS for each classification (rawClasF, rawPredF, norClasF and norPredF each with 2-

20 classes). We applied the restriction that classes comprised a minimum of five 

gauges to reduce the influence in the analysis of classes represented by very few 

gauges.  

In addition, we performed an ANOVA on all the hydrologic indices (103 and 101 for raw 

and normalized series, respectively) with the class membership as the explanatory 

variable to analyze the potential of classifications to discriminate each of the 

hydrological index. The coefficient of determination (R2) was calculated for each level 

(2-20 classes) of the 4 classifications. The restriction of the five gauges per class was 

also applied.  

Following the procedure outlined in Snelder and Booker (2013) and Snelder et al. 

(2012), both the CS and ANOVA analysis were performed on gauges not used in the 

fitted models by means of a five-fold cross validation procedure (Hastie et al., 2001). 

For this procedure, each of the gauges was randomly assigned to one of five subsets 

(folds). We then defined classifications by combining the other four subsets to train the 

inductive classifications and evaluated CS and R2 statistics for the held-out subset at all 

hierarchical levels for each classification. This allowed us focusing on the “predictive 

performance” of the classifications. Each cross validation procedure was repeated 5 

times in order to “smooth out” the variability inherent to each subset. Therefore, results 

of 25 estimates of predictive CS and R2 statistics for each hierarchical level of 

classifications were obtained. Based on the “one standard error rule”, two 

classifications were assumed significantly different if standard errors of the statistics did 

not overlap. 
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3.2.4 Hydrological interpretation of classification 

The original indices with the five highest values in each retained axis of the PCAs were 

used to interpret the hydrological meaning of the new synthetic indices. In addition, we 

used the ANOVA results to interpret each classification by looking at the different 

coefficients of determination for specific indices. We assumed that the higher the 

coefficient of determination the higher the importance of that index to discriminate 

classes. 

3.2.5 Analysis of distinctive gauges 

We also analyzed how each classification strategy resolved the problem of the bias 

associated with the presence of gauges that showed the most distinctive regimes (i.e. 

the most distant hydrological character). We quantified the effect that the most 

distinctive gauges produce on the specific classes where they were included. 

Independent analyses were made for classification based on raw and normalized flow 

series. First we calculated, based on the standardized synthetic indices scores, the 

dissimilarity between each pair of gauges and then, the corresponding mean 

dissimilarity for each gauge. We then selected the 4 most dissimilar gauges and 

recorded the classes they belonged to when the entire river network was classified. For 

each distinctive gauge two analyses were performed. Firstly, we calculate the distance 

between the distinctive gauge and the medoid of the classes in which it was were 

included. Larger distances indicated higher heterogeneity in the class. Secondly, we 

analyzed the proportion of the classification domain assigned to the classes where the 

distinctive gauges were included. Low frequency of these classes indicated the inability 

of the procedure to represent properly certain characteristics of the hydrological space 

in the entire SRN. 

3.2.6 Correspondence between classifications 

The correspondence between each pair of classifications, i.e. the extent to which two 

classifications define similar spatial patterns, was evaluated by means of the Adjusted 

Rand Index (ARI; Hubert and Arabie, 1985). ARI analyze the relationship of each pair 



 
 

Chapter III Hydrological classification I: Flow data processing and prediction procedure   
 

 

 
 

 
 

113 

 
 

of gauges and how they differ between two cluster solutions. It ranges between 0 

(indicating that agreement between two clustering solutions is not better than chance) 

and 1 (indicating perfect agreement). Given the large number of segments in the SRN, 

we randomly selected a subset of 500 segments and computed ARI for all pairs of the 

four classifications. 

Bespoke functions written in R were use to analyse flow series and calculate 

hydrological indices (Snelder and Booker 2013). 

3.3 Results 

3.3.1 PCA and Predictive mapping 

The broken stick method selected the first five PCs of the PCA performed on the raw 

series. They explained 91% of the variance, accounting the PC1 alone for the 68% 

(Table 3.1). 

Flow 

series 
Axe 

Variation 

Explained (%) 

Hydrologic variables with 

the highest values in the PCs 

 PC1 68 -l1, -X25, -90HF, - 30HF, -M11 

 PC2 10.6 -FRE7, -FRE3, -lcv, BFI, sdBFI 

Raw PC3 5.9 -FRE1, -nPH, -FRE3, dPH, sdZFD 

 PC4 3.6 sdnPos, sdnNeg, ikur, lca 

 PC5 3.5 -sdnPHigh, sdJMax, -sdRev, -sdFRE3, -sdJmin 

 PC1 38.6 - l2, X75, 90LF, 30LF, 7LF 

 PC2 20.4 sd30HF, sd7HF, sd3HF, sd90HF, sdM5 

 PC3 11.6 -M10, -sdM10, -MXM10, -FRE1, sdM9 

Normalized PC4 7.1 ikur, X25, MnM9, MnM2, MnM11 

 PC5 6.1 -M1, M5, sdZFD, -sdM1, -MxM1, 

 PC6 4.5 sdM8, MXM8, sdnPH, -MxM11, -sdM11 

Table 3.1 - The 5 hydrologic indices with the highest loadings in each PC and the variation explained by 

the retained PCs using the raw (above) and the normalized flow series (below). A minus sign indicates 

negative relation with the PC. 
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The OBB misclassification rate of the RF models in the rawClassF ranged from 0.13 for 

the 2 classes level to 0.77 for the 20-Class level (Figure 3.2). The misclassification rate 

increased by 0.17 (from 0.35 to 0.52) when the classification level increment from 7 to 

8 classes. The most important predictor variables of the RF were catchment area, 

precipitation, agriculture, pasture and elevation. For the rawPredF classification, the 

mean OBB R2 for the RF models of the 5 synthetic indices was 0.4 decreasing from 

0.65 for PC1 to 0.18 for the PC5. Predictors varied according to the modelled PC, but 

most of them included topography (catchment area, slope), climate (precipitation) and 

land cover (agriculture, coniferous and broadleaf forest) variables. 

 
Figure 3.2 - Out-of-Bag misclassification rate of the random forest models developed for the 2 to 20-Class 

level classification using classify then predict strategy based on the synthetic indices derived from the raw 

(: rawClasF) and the normalized flow series (: norClasF).  

Parallel, the first six PCs of the PCA performed on the normalized flow series were 

retained. They explained 83.3% of the variance, with the PC1 and PC2 explaining 

38.6% and 20.4%, respectively (Table 3.1). For the norClasF strategy the OOB 

misclassification rate for the RF models range from 0.22 to 0.66 for the 3 and the 18-

Class levels, respectively (Figure 3.2). Abrupt changes in this rate were recorded 

between 6 to 7 (decrease) and 7 to 8 (increase) class levels. The most important 
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variables differed between classifications comprising different class levels but in 

general precipitation, elevation, gradient and broadleaf forest were present in most 

models. For the norPredF strategy the mean OBB R2s was 0.31 for the 6 PCs 

decreasing from 0.63 for PC2 to 0.08 for the PC6. The most important variables were 

not consistent between RF models although precipitation, elevation, and broadleaf 

forest were present in most of them. 

3.3.2 Comparison of classification performance 

CS statistics for the classifications based on the raw flow series (rawClasF and 

rawPredF) showed similar patterns. CS increased from 2 to 5-Class level, more 

pronounced in rawPredF, and decreased slightly beyond this number of level but, in 

general, the analysis did not reveal significant differences (i.e. overlapped among 

standard error bars) between levels of classification (Figure 3.3). RawPredF showed 

generally higher CS values than rawClasF, although in most cases differences were 

not significant. 

 
Figure 3.3 - Performance of the classifications using raw flow series based on the Classification Strength 

statistic (: rawPredF; : rawClasF).  
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The discrimination power of classifications for each of hydrological index based on the 

ANOVA analysis got higher with increasing number of classes (Figure 3.4 and Table 

S1.1 provided within the supplementary material). However, in most cases there were 

not significant differences from 6 or 7 to 20-Class levels. Moreover, rawPredF 

outperformed rawClasF, especially for those indices representing flow magnitude and 

duration (Figure 3.4). 

NorPredF presented a progressive increment of CS from 2 to 10-Class level where it 

reached the maximum value, suffering then only slight variations (Figure 3.5). 

NorClasF presented a more unstable CS pattern than norPredF with constant rise and 

fall of the CS with the increase of class level. Except for specific class levels (2 and 4-

Class levels), norPredF reached higher CS than norClasF presenting significant 

differences in the classifications with 6, 7 and 14-Class levels. 

The discrimination ability of norClasF and norPredF based on the ANOVA analysis on 

individual indices showed similar patterns to those found for classifications using 

developed from raw series. An increase in R2 with increasing number of classes and 

the presence of an inflexion located between 6 and 10-Class levels (Figure 3.6 and , 

Table S1.2 provided within the supplementary material) were observed. In addition, 

although norPredF performed better than norClasF, differences were not significant in 

several cases. 

In general, classifications based on the raw flow series provided slightly higher CS 

(Figure 3.3 and 3.5) and R2 values (Figures 3.4 and 3.6) than those based on 

normalized series. 
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Figure 3.4 - Performance of the classifications derived from the raw flow series based on ANOVA analysis 

on individual index analysis. A) Indices representing mean values. B) Indices representing standard 

deviation. (: rawPredF; : rawClasF). We selected one index representing each aspect of the natural 

flow regime to illustrate the results (the values obtained for the 103 indices are included Table S.1.1 

provided within the Supplementary material).  
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Figure 3.5 - Performance of the classifications using normalized flow series based on the Classification 

Strenght statistic (■: norPredF; : norClasF). 

3.3.3 Hydrological Interpretation of classification 

According to the hydrological indices with the highest values on each axis in the PCA 

performed on the raw flow series, PC1 represented the magnitude of the mean annual 

flow and the magnitude and duration of high flows, while PC2 represented the 

frequency of high flow events and the magnitude of low flows. PC3 was also related to 

the frequency of high flow events while PC4 and PC5 represented the variability of rate 

of change, the asymmetry of flow series and the interannual variability of different 

hydrological characteristics, respectively (Table 3.1). However, it should be pointed out 

that interpreting axes becomes rather difficult when explained variability decreased. In 

addition, ANOVA analysis revealed higher R2 values of indices related to flow 

magnitude and duration (I1, M10, MxM4, MnM7, 7LF, 7HF, sdM10, sd7LF, sd7HF) and 

frequency (FRE3) than those representing other aspects of the flow regime (JMax, 

Rev, sdFRE3, sdJMax and Rev; Figure 3.4 and Table S1.1 provided within the 

supplementary material).  
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Figure 3.6 - Performance of the classifications derived from the normalized flow series based on individual 

index analysis. A) Indices representing mean values. B) Indices representing standard deviation.           

(: norPredF; : norClasF). We selected one index representing each aspect of the natural flow regime 

to illustrate results (the values obtained for the 101 indices are included in Table S1.2 provided within the 

supplementary material). 
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The PCA performed on the normalized flow series showed that PC1 represented the 

variability of the annual mean flow and the magnitude and duration of extreme low 

flows and PC2 represented the variability of the magnitude and duration of high flow 

events. PC3 was related to the mean and variability of the magnitude of monthly flows 

in the beginning of the humid season (October) while PC4 represented the variability of 

the magnitude of annual flows and the magnitude of the minimum flows. PC5 was 

related to mean winter (January) and spring (May) flows while PC6 represented the 

magnitude and variability of summer (August) flows (Table 3.1). Likewise, the physical 

interpretation of the PCs became more difficult as variance explained decreased. The 

highest R2 values (maximum value around 0.5) were obtained for the indices 

representing mean monthly flows while the maxima for those indices representing 

mean and duration of extreme flows was 0.3 (Figure 3.6 and Table S1.2 provided 

within the supplementary material). In addition, both norClasF and norPredF showed 

high discrimination ability on indices representing the frequency of high flow events 

(FRE), despite these indices were not identified as important in the PCAs. 

3.3.4 Analysis of distinctive gauges 

Three of the four selected distinctive gauges within the classifications based on raw 

flow series were situated in the Ebro catchment and one in the Cantabric region. The 

distance between each distinctive gauge and its respective class medoid in the 

rawPredF classifications was lower than the distance in the rawClasF classification 

63% of the times although only four times the relative differences were greater than 

10% (Table 3.2). 

In addition, for the rawClasF it was observed that the proportion of the classification 

domain assigned to the classes in which the distinctive gauges were included was very 

low compared to the most evenly distributed classification, i.e. if all the classes had the 

same proportion, and beyond the 6-Class level this proportion was below 1% for the 

four distinctive gauges (Figure 3.7A). Regarding the rawPredF the proportions of the 

classes containing the distinctive gauges were higher than for the rawClasF but in 
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general these proportions were below the most even distributed classification (Figure 

3.7B). 

The classifications based on the normalized flow series presented two distinctive 

gauges situated in the Ebro catchment and the other two in two Catalan catchments. 

NorPredF showed smaller distances between the distinctive gauges and their 

respective class medoids than norClasF 89% of the times and the relative differences 

were many times over 40% (Table 3.3). 

 Raw flow series 

 DG 1 DG 2 DG 3 DG 4 

Level rawClasF rawPredF rawClasF rawPredF rawClasF rawPredF rawClasF rawPredF

4 15.92 10.56 13.57 9.66 7.01 6.14 4.67 5.17 

6 18.19 10.39 9.55 9.04 3.56 3.88 5.17 5.50 

8  10.49 9.55 6.19 3.56 3.79 5.17 3.78 

10  10.23 9.55 8.77 3.56 3.62 4.69 4.56 

12  2.61 9.55 8.94 3.56 3.40 4.40 4.32 

16  9.63  6.19 3.56 3.41 3.10 3.09 

20  8.17  6.41 3.56 3.40 2.50 3.09 

Table 3.2 - Euclidean distance between the distinctive gauges (DG) and the medoid of the classes in 

which they were included for the 4, 6, 8, 10, 12, 16 and 20-Class level classification developed from the 

raw flow series. Empty cells indicated that the gauge is the unique gauge in the class. Bold letters indicate 

the procedure that showed the lowest distance. 

The proportion of the classes containing the distinctive gauges in the norClasF was, in 

general, below the frequency showed by the most even distributed classification 

(Figure 3.7C) while the norPredF classifications presented the most similar proportions 

to the most evenly distributed classification (Figure 3.7D) 

3.3.5 Correspondence between classifications 

The ARIs for each pair of classifications were in the range 0.15-0.4 for the 6-Class level 

and in the range 0.15-0.3 for the 11, 16-Class level and the mean of all classification 

levels (Table 3.4). The highest ARI was obtained between rawPredF and norPredF     
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(≥ 0.4) and rawPredF and rawClasF (≥ 0.2). Contrary rawClasF and norClasF showed 

the lowest correspondence (≤ 0.15). 

 
Figure 3.7 - Frequency (%) of the segments of the classification domain assigned to the classes where the 

distinctive gauges were included. (A: rawClasF ;B: rawPredF; C: norClasF;D: norPredF).  

3.4 Discussion 

As expected the normalization of flow data generated hydrological classifications in 

which a greater number of hydrological aspects not related with flow magnitude and the 

size of the river were considered than if data were not normalised. This made these 

classifications more difficult to interpret and predict. In addition, classifications based 
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on the PredF procedure outperformed those obtained with ClasF procedure and in 

general, dealt better than ClasF with the bias associated to the underrepresented parts 

of the hydrological space in the original data set. 

 Normalized flow series 

 DG 1 DG 2 DG 3 DG 4 

Level rawClasF rawPredF rawClasF rawPredF rawClasF rawPredF rawClasF rawPredF

4 11.26 6.12 9.89 5.66 9.29 4.85 9.94 5.13 

6 10.96 5.36 9.67 5.25 9.40 5.08 9.85 5.05 

8 10.96 6.11 10.30 5.31 7.22 5.72 5.57 4.45 

10 9.45 6.04 9.67 5.31 7.22 5.17 5.57 4.42 

12 9.45 4.93 9.67 4.93 7.22 4.85 5.57 4.41 

16  5.36 5.45 5.61 6.41 3.55 6.36 3.51 

20  4.91 5.45 5.11 6.41 5.19 6.36 3.51 

Table 3.3 - Euclidean distance between the distinctive gauges (DG) and the medoid of the classes in 

which they were included for the 4, 6, 8, 10, 12, 16 and 20-Class levels classification developed from the 

normalized flow series. Empty cells indicated that the gauge is the unique gauge in the class. Bold letters 

indicate the procedure that showed the lowest distance. 

3.4.1 Comparison of classification performance 

Similar classification performance measured through CS and ANOVA was observed in 

relation to the results obtained by Snelder and Booker (2013) in New Zealand rivers. 

This highlights the possibility of applying similar approaches to classify rivers and 

obtain equivalent results independently of their geographical location as is the case for 

hydrological regionalization where contiguous regions are delineated. 

Our analysis demonstrated that in general, the PredF strategy performed better than 

ClasF and significant differences in the ability to discriminate hydrological characters 

were found for several class levels, especially when the classification approaches were 

applied over the raw flow series. The higher performance of PredF classifications is 

supported by the conceptual basis of this approach. ClasF imposes sharp barriers to 

the observed hydrological space and not over the whole hydrologic domain of the 

fluvial network. Then, the prediction step enforces congruence of all the river reaches 
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with those previously stablished classes, whereas the real extent to which such 

discrete groupings exist is uncertain (Kennard et al., 2010).  

  Classification 

Level Classification rawClasF rawPredF norClasF 

 rawPredF 0.20   

6 norClasF 0.13 0.18  

 norPredF 0.19 0.41 0.19 

 rawPredF 0.24   

11 norClasF 0.15 0.22  

 norPredF 0.18 0.31 0.22 

 rawPredF 0.23   

16 norClasF 0.15 0.19  

 norPredF 0.17 0.30 0.19 

Mean rawPredF 0.22   

of all norClasF 0.15 0.19  

 levels norPredF 0.17 0.31 0.20 

Table 3.4 - Adjusted Rand Index (ARI) for the 6, 11 and 16-Class levels and the mean of all class levels 

classifications following the four approaches. 

In contrast, the aim of PredF is to account for the whole hydrological variability in the 

SRN before conducting the classification. This process generates a more complete 

distribution of the hydrologic variables which is more likely to be in accordance with the 

hydrologic reality of the SRN, avoiding the bias associated to gauge location. 

Moreover, PredF does not assume any interactions between the various dependent 

variables for each RF, which is true as the PCA created orthogonal and independent 

variables. In addition, it must be pointed out that the PredF approach has not been 

commonly used in other hydrological classification studies and therefore, further 
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analyses should be done to completely understand the strengths and weakness 

associated with this strategy. 

In general, classifications based on raw flow series had higher discrimination ability for 

individual indices than those based on normalized flow series (Figures 3.4 and 3.6). As 

discussed below, classifications based on raw series discriminated rivers based almost 

exclusively on flow magnitude, which greatly depends on river size. In contrast, 

classifications based on normalized flow series considered a greater range of 

hydrological aspects. While the variability of river size shows in general a clear pattern 

across river networks and thus it is a straightforward approach to segregate river 

reaches, the consideration of a higher spectrum of hydrologic aspects hampered the 

creation of classes and thus classifications achieved lower discrimination ability. 

3.4.2 Hydrological interpretation of classifications 

Most of the published hydrological classifications are based on normalized flow series 

(Snelder et al., 2009; Reidy Liermann et al., 2012; Solans and Poff, 2013) or 

normalized hydrological indices (Kennard et al., 2010; McManamay et al., 2012) while 

few authors have used the untransformed (raw) data (Poff, 1996; Belmar et al., 2011; 

Zhang et al., 2012). The use of normalized data down weight the influence of flow 

magnitude on classifications and the application of this criterion significantly affects the 

final classification outcome. However, to our knowledge this is the first study that has 

assessed the concern of choosing one of the two approaches. The PCA performed on 

the raw series showed that the first PC, which was related to mean annual flows and 

magnitude and duration of high flows explained more than two thirds of the hydrological 

variation. Thereby, the classifications developed from these data segregated rivers 

according to their size, as expected. In addition, indices accounting with the frequency 

of high flow events obtained the highest loadings in the PC2 and PC3 and therefore, 

this flow regime attribute was relatively well represented in the classifications (Table 

3.5). Moreover, the ANOVA analysis also showed that all the indices related to flow 

magnitude, even those not included as the most important ones in the PCA presented 

important differences between classes. This is not surprising given the high correlation 
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between all the flow magnitude indices. Despite this segregation, they did not 

incorporate the severity of droughts as a critical aspect. Severity of droughts might be 

an essential attribute to be considered in the classifications given the Mediterranean 

character of the study zone. For instance, Belmar et al (2011) working in a 

Mediterranean catchment and Chinnayakanahalli et al (2011) covering the Western 

United States found that, besides the flow magnitude, other hydrologic characteristics 

related to drought events were contained in the synthetic hydrologic indices. We 

expected that the characteristic intermittency of many Mediterranean streams had been 

represented in the synthetic indices, although the lack of this attribute in our 

classifications may be due to the scarcity of gauges situated in intermittent streams. 

Moreover, the fact that the high differences in flow magnitude between large and small 

rives have accounted with the largest percentage of variability, have probably masked 

the effects of low flow attributes. 

On the other hand, the interpretation of the classifications based on normalized flow 

series differed completely to those derived from raw flow series (Table 3.5). The main 

differences can be summarized in two essential aspects. First, despite both PCAs 

explained a similar portion of the total variance, the percentages explained by the 

different PCs were more evenly distributed in the normalized series. Therefore these 

classifications were not so obviously conditioned to just one hydrologic character as 

classifications based on raw series. Second, it was observed that the indices with the 

highest loading in each PC and hence, their interpretation, varied considerably 

depending on the data processing (Table 3.5). In the case of normalized flow series, 

PC1 represented the magnitude and duration of low flow conditions which means that 

this classification accounted, to some extent, for the Mediterranean character of the 

rivers. In addition, PC3 to PC6 were related to the magnitude of flows in different 

months and periods through the year, therefore classification accounted with the shape 

of the hydrograph as it has been observed in other works (Snelder et al., 2009; 

Bejarano et al., 2010; Solans and Poff, 2013). Contrary to expected, other indices not 

related to flow magnitude, such as the frequency of high flow events were not included 
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as important indices in any PC. Nonetheless, the ANOVA analysis highlighted the 

ability of these classifications to discriminate the indices representing frequency and 

therefore it was assured that such an important hydrological aspect was incorporated 

into the classification. 

Flow Attribute  Raw Normalized 

Magnitude of annual flows 
Mean ***  

Variability * *** 

Magnitude of monthly flows 
(shape of the hydrograph) 

Mean - *** 

Variability - ** 

Magnitude and duration of low flows 
Mean - *** 

Variability - - 

Magnitude and duration of high flows 
Mean *** - 

Variability - *** 

Timing of extreme flow events 
Mean - - 

Variability * - 

Frequency and duration of high pulses 
Mean ** ** 

Variability - - 

Rate and frequency of flow change 
Mean - - 

Variability * - 

Table 3.5 - Relative representativeness of each flow regime attribute according to the data processing 

previous to classification procedure. (–None; *Limited; ** Moderate; *** High). 

Finally, it must be pointed out that any of the classifications, whether they were based 

on raw or normalized data, failed to represent some other important hydrologic aspects 

such as timing of extreme flow events, predictability, duration of high flow events and 

rate of change (Table 3.5). Other studies based on daily flow series have also found 

low representativeness and a small contribution to the hydrologic classifications 

(Snelder et al., 2009; Snelder and Booker, 2013). Analysis of the spatial distribution of 

the indices representing these flow attributes revealed low variability among rivers in 

the study area. Therefore, it is acknowledge that they do not represent critical attributes 

to segregate rivers. 
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3.4.3 Analysis of distinctive gauges 

The analyses of the distinctive gauges demonstrated that the PredF approach 

presented greater capability than ClasF to deal with the underrepresented parts of the 

hydrological space in the data set. In contrast to Snelder and Booker (2013), we found 

an underrepresentation of unmodified gauges on large rivers, given the intense flow 

management that these type of rivers suffer in the study area. Nonetheless, the 

presence of gauges in small rivers of first and second order was also scarce. If data 

were not normalized, rawClasF approach generated classes that were comprised by 

the distinctive gauge plus a very limited number of gauges, in most of the cases less 

than four. Therefore classes were relatively homogeneous presenting dissimilarity 

values close to those found in the classifications based on the rawPredF strategy. 

However rawClasF produced classes with frequencies lower than 1% which probably 

were well below the actual frequencies of those river types. On the other hand, the 

normalization of the flow series smoothed the differences between gauges due to the 

reduction of the river size effect, which implied that distinctive gauges in the norClasF 

classifications were not isolated into independent classes. This greatly reduced the 

problem associated with the low frequency of these classes but in contrast, produced 

classes with high heterogeneity because distinctive gauges were grouped with other 

gauges with which they were not that similar. Contrary, the prediction of these rare 

hydrologic characteristics to a greater number of rivers reaches previous to the 

classification step through the PredF approach promoted that the proportion of reaches 

accounting with these rare characteristics increases. Therefore, in the subsequent step 

of classification, river reaches were grouped together generating classes with a greater 

degree of homogeneity and classes were more evenly distributed. 

3.4.4 Correspondence between classification 

The ARI analysis has shown that classifications performed over the same data (raw or 

normalized) with contrasting approaches (ClasF or PerdF) presented a similar 

correspondence. In general, many ARI values were around 0.2 which implies a certain 

degree of similarity but still important differences in the spatial distribution of classes. 
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Therefore, although the comparison of the classifications performance did not revealed 

significant differences for several classification levels, it did not imply that the 

classifications were equivalent regarding the spatial arrangement. This highlighted the 

importance of the classification procedure in the final outcome. In contrast to expected, 

ARI analyses also showed that classifications produced using the PredF approach, 

independently of the data being processing, presented a higher correspondence 

between them than any other pair. This result highlighted that the prediction of the 

hydrological characteristics to the entire SRN before classifying is probably generating 

classifications more adjusted to the actual spatial hydrology variability even if 

classifications presented different interpretation. 

3.5 Conclusion 

In conclusion, this study shows that the methodological procedures used throughout 

the classification process greatly influences classification outcomes and performance. 

Although the comparison between ClasF and PredF did not reveal significant 

differences for several classification levels, the classifications based on PredF 

produced, in general, higher classification performance, higher ability to discriminate 

individual indices between classes and greater ability to deal with the bias associated 

to the presence of gauges with distinctive regimes in the data set. Moreover, the 

application of the PredF strategy produced more evenly distributed classifications than 

the ClasF strategy and produced classifications more adjusted to the actual spatial 

arrangement of hydrologic variability. Therefore, we recommend the application of the 

PredF strategy although further analyses should be done to completely understand its 

strengths and weakness. Finally, the pre-processing of flow data influenced the 

meaning and interpretation of the hydrological classes. The normalization of flow data 

removed the effect of flow magnitude and generated classifications in which a wider 

spectrum of hydrologic characteristics was considered. However, the use of raw or 

normalized data is subject to the final objective and particular application of the 

classification. 



 
 

Chapter III Hydrological classification I: Flow data processing and prediction procedure   
 

 

 
 

 
 

130 

 
 

3.6 References 

Alcázar J., Palau A. 2010. Establishing environmental flow regimes in a Mediterranean 
watershed based on a regional classification. Journal of Hydrology, 388: 41-51. 
DOI: 10.1016/j.jhydrol.2010.04.026. 

Álvarez-Cabria M., Barquín J., Juanes J. A. 2010. Spatial and seasonal variability of 
macroinvertebrate metrics. Do macroinvertebrate assemblages track river 
health? Ecological Indicators, 10: 370-379. DOI: 10.1016/j.ecolind.2009.06.018. 

Bejarano M. D., Marchamalo M., García de Jalón D., González del Tánago M. 2010. 
Flow regime patterns and their controlling factors in the Ebro basin (Spain). 
Journal of Hydrology, 385: 323-335. DOI: 10.1016/j.jhydrol.2010.03.001. 

Belmar O., Velasco J., Martínez-Capel F. 2011. Hydrological Classification of Natural 
Flow Regimes to Support Environmental Flow Assessments in Intensively 
Regulated  Mediterranean Rivers, Segura River Basin (Spain). Environmental 
Management, 47: 992-1004. DOI: 10.1007/s00267-011-9661-0. 

Benda L., Poff N. L., Miller D., Dunne T., Reeves G., Pess G., Pollock M. 2004. The 
Network Dynamics Hypothesis: How Channel Networks Structure Riverine 
Habitats. Bioscience, 54: 413-427. DOI: http://dx.doi.org/10.1641/0006-3568 
(2004)054[0413:TNDHHC]2.0.CO;2. 

Breiman L. 2001. Random Forest. Machine Learning, 45: 5-32. DOI: 10.1023/A:10109 
33404324. 

Breiman L., Friedman J. H., Olshen R. A., Stone C. J. 1984. Classification and 
regression trees. Wadsworth, Inc. 

Bunn S. E., Arthington A. H. 2002. Basic principles and ecological consequences of 
altered flow regimes for aquatic biodiversity. Environmental Management, 30: 
492-507. DOI: 10.1007/s00267-002-2737-0. 

Cutler D. R., Edwards T. C., Beard K. H., Cutler A., Hess K. T. 2007. Random forests 
for classification in ecology. Ecology, 88: 2783-2792. DOI: 10.1890/07-0539.1. 

Chinnayakanahalli K. J., Hawkins C. P., Tarboton D. G., Hill R. A. 2011. Natural flow 
regime, temperature and the composition and richness of invertebrate 
assemblages in streams of the western United States. Freshwater Biology, 56: 
1248-1265. DOI: 10.1111/j.1365-2427.2010.02560.x. 

Ferrier S., Guisan A. 2006. Spatial modelling of biodiversity at the community level. 
Journal of Applied Ecology, 43: 393-404. DOI: 10.1111/j.1365-2664.2006. 
01149.x 



 
 

Chapter III Hydrological classification I: Flow data processing and prediction procedure   
 

 

 
 

 
 

131 

 
 

Gámiz-Fortis S. R., Hidalgo-Muñoz J. M., Argüeso D., Esteban-Parra M. J., Castro-
Díez Y. 2011. Spatio-temporal variability in Ebro river basin (NE Spain): Global 
SST as potential source of predictability on decadal time scales. Journal of 
Hydrology, 409: 759-775. DOI: 10.1016/j.jhydrol.2011.09.014. 

Gurnell A. M., Hupp C. R., Gregory S. V. 2000. Linking hydrology and ecology. 
Hydrological Processes, 14: 2813-2815. DOI: 10.1002/1099-1085(200011/12) 
14:16/17<2813::AID-HYP120>3.0.CO;2-Q. 

Hastie T., Tibshirani R., Friedman J. H. 2001. The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction. Springer-Verlag. 

Hubert L., Arabie P. 1985. Comparing Partitions. Journal of Classification, 2: 193-218. 

Jackson D. A. 1993. Stopping Rules in Principal Components-Analysis - a Comparison 
of Heuristic and Statistical Approaches. Ecology, 74: 2204-2214. DOI: 10.2307/ 
1939574. 

Kauffman L., Rousseeuw P. J. 1990. Finding groups in data. An introduction to cluster 
analysis. Wiley and Sons. New York, US. 

Kennard M. J., Pusey B. J., Olden J. D., MacKay S. J., Stein J. L., Marsh N. 2010. 
Classification of natural flow regimes in Australia to support environmental flow 
management. Freshwater Biology, 55: 171-193. DOI: 10.1111/j.1365-2427. 
2009.02307.x. 

McManamay R. A., Orth D. J., Dolloff C. A., Frimpong E. A. 2012. A regional 
classification of unregulated stream flows: Spatial resolution and hierarchical 
frameworks. River Research and Applications, 28: 1019-1033. DOI: 10.1002/ 
rra.1493. 

Monk A. W., Wood P. J., Hannah D. M. 2007. Examining the influence of flow regime 
variability on instream ecology. In: Hydroecology and Ecohydrology: past, 
present and future, Wood P.J., Hannah D.M., Sadler J.P. (eds.) John Wiley & 
Sons, Ltd. 

Morán-Tejeda E., López-Moreno J. I., Ceballos-Barbancho A., Vicente-Serrano S. M. 
2011. River regimes and recent hydrological changes in the Duero basin 
(Spain). Journal of Hydrology, 404: 241-258. DOI: 10.1016/j.jhydrol.2011. 
04.034. 

Naiman R. J., Dudgeon D. 2011. Global alteration of freshwaters: influences on human 
and environmental well-being. Ecological Research, 26: 865-873. DOI: 10.1007/ 
s11284-010-0693-3. 



 
 

Chapter III Hydrological classification I: Flow data processing and prediction procedure   
 

 

 
 

 
 

132 

 
 

Olden J. D., Kennard M. J., Pusey B. J. 2012. A framework for hydrologic classification 
with a review of methodologies and applications in ecohydrology. Ecohydrology, 
5: 503–518. DOI: 10.1002/eco.251. 

Olden J. D., Poff N. L. 2003. Redundancy and the choice of hydrologic indices for 
characterizing streamflow regimes. River Research and Applications, 19: 101-
121. DOI: 10.1002/rra.700. 

Peñas F. J., Barquín J., Snelder T., Booker D., Fernandez D., Álvarez-Cabria M. 2012. 
Do rivers reaches differ in habitat-flow relationships according to hydrologic 
classification and river size? In: 9th International Symposium on Ecohydraulics 
Proceedings, Helmut M., Kraml J (eds.). 

Poff N. L. 1996. A hydrogeography of unregulated streams in the United States and an 
examination of scale-dependence in some hydrological descriptors. Freshwater 
Biology, 36: 71-91. DOI: 10.1046/j.1365-2427.1996.00073.x  

Poff N. L., Olden J. D., Pepin D. M., Bledsoe B. P. 2006. Placing global stream flow 
variability in geographic and geomorphic contexts. River Research and 
Applications, 22: 149-166. DOI: 10.1002/rra.902. 

Poff N. L., Zimmerman J. K. H. 2010. Ecological responses to altered flow regimes: a 
literature review to inform the science and management of environmental flows. 
Freshwater Biology, 55: 194-205. DOI: 10.1111/j.1365-2427.2009.02272.x. 

Reidy Liermann C. A., Olden J. D., Beechie T. J., Kennard M. J., Skidmore P. B., 
Konrad C. P., Imaki H. 2012. Hydrogeomorphic classification of Washington 
state rivers to support emerging environmental flow management strategies. 
River Research and Applications, 28: 1340-1358. DOI: 10.1002/rra.1541. 

Richter B. D., Baumgartner J. V., Braun P. D., Powell J. 1998. A spatial assessment of 
hydrologic alteration within a river network. Regulated Rivers: Research & 
Management, 14: 329-340. DOI: 10.1002/(SICI)1099-1646(199807/08)14:4 
<329::AID-RRR505>3.0.CO;2-E  

Richter B. D., Baumgartner J. V., Powell J., Braun D. P. 1996. A method for assessing 
hydrologic alteration within ecosystems. Conservation Biology, 10: 1163-1174. 
DOI: 10.1046/j.1523-1739.1996.10041163.x. 

Snelder T. H., Barquin Ortiz J., Booker D. J., Lamouroux N., Pella H., Shankar U. 2012. 
Can bottom-up procedures improve the performance of stream classifications? 
Aquatic Sciences, 74: 45-59. DOI: 10.1007/s00027-011-0194-7. 



 
 

Chapter III Hydrological classification I: Flow data processing and prediction procedure   
 

 

 
 

 
 

133 

 
 

Snelder T. H., Booker D. 2013. Natural flow regime classifications are sensitive to 
definition procedures. River Research and Applications, 7: 822-838. DOI: 
10.1029/2009WR008839. 

Snelder T. H., Lamouroux N., Leathwick J. R., Pella H., Sauquet E., Shankar U. 2009. 
Predictive mapping of the natural flow regimes of France. Journal of Hydrology, 
373: 57-67. DOI: 10.1016/j.jhydrol.2009.04.011. 

Snelder T. H., Lamouroux N., Pella H. 2011. Empirical modelling of large scale patterns 
in river bed surface grain size. Geomorphology, 127: 189-197. DOI: 10.1016/ 
j.geomorph.2010.12.015 

Solans M. A., Poff N. L. 2013. Classification of Natural Flow Regimes in the Ebro Basin 
(Spain) by using a Wide Range of Hydrologic Parameters. River Research and 
Applications, 9: 1147-1163. DOI: 10.1002/rra.2598. 

Van Sickle J. 1997. Using mean similarity dendograms to evaluate classifications. 
Journal of Agricultural, Biological, and Environmental Statistics, 2: 370-388. 

Vannote R. L., Minshall G. W., Cummins K. W., Sedell J. R., Cushing C. E. 1980. The 
river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 
37: 130-137. 

Zhang Y., Arthington A. H., Bunn S. E., Mackay S., Xia J., Kennard M. 2012. 
Classification of flow regimes for environmental flow assessment in regulated 
rivers: The Huai River Basin, China. River Research and Applications, 28: 989-
1005. DOI: 10.1002/rra.1483. 



 

 
 

 



 
 

Chapter IV Hydrological classification II: Time scale, flow series origin and classification procedure 
 

 

 
 

 
 

135 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV 

 

 

Sources of variation in hydrological 

classifications: Time scale, flow series 

origin and classification procedure 



 

 

 



 
 

Chapter IV Hydrological classification II: Time scale, flow series origin and classification procedure 
 

 

 
 

 
 

137 

 
 

Chapter IV. Sources of variation in hydrological classifications: 

Time scale, flow series origin and classification procedure 

This chapter has led to the article entitled: “Sources of variation in hydrological 

classifications: Time scale, flow series origin and classification procedure” by Peñas, 

F.J., Barquín, J., and Álvarez, C. It has been submitted for publication in the journal 

Water Resources Research. 

Abstract 

The classification of flow regimes for different purposes in water management and 

hydroecological research has undergone a significant growth in recent years. However, 

depending on the available data and procedures applied, there may be several credible 

classifications for a specific catchment. In this study three inductive classifications from 

different initial flow data and one expert-driven classification have been defined and we 

have compared their hydrological interpretation, statistical performance and spatial 

correspondence. Specifically, Classification 1 was derived based on daily flow data 

series recorded in 156 unaltered gauges in the northern third of the Iberian Peninsula 

while Classification 2 and Classification 3 were derived based on monthly flow series, 

using gauged and modelled flow data, respectively. Classification 4 was based on a 

Spanish nationwide river hydrological classification, which has been used within the 

last River Basin Management Plans for different purposes such as the determination of 

environmental flows. Classification 2 accounted for much of the critical hydrological 

information of the study area and produced a similar spatial distribution of classes than 

Classification 1. However, it also presented limitations regarding the inability to 

represent several important hydroecological attributes. Classification 3 presented lower 

performance and a lower spatial correspondence to Classification 1 and 2 and thus, the 

use of modelled flow series should be limited to poor-gauged areas with a restricted 

number of final applications. Finally, the significantly reduced performance and the 

uneven distribution of classes found in Classification 4 questions its applications for 

different management objectives. This study shows that the selection of the most 
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suitable approach according to the available data have significant implications for the 

classification uses. Therefore caution is recommended, especially if classifications are 

to be use in a normative manner. 

4.1 Introduction 

Hydrological classifications (HCs) group river reaches according to their similarity 

relative to their natural flow regime (Snelder et al., 2009) and is now regarded as one of 

the first steps in hydroecological research (Olden et al., 2012). The ultimate aim of HCs 

is diverse. For instance, they have been employed to describe stream flow variability 

(Poff, 1996; Baeza and Garcia de Jalón, 2005; Solans and Poff, 2013), to indentify the 

spatial distribution of river classes across landscapes (Snelder et al., 2009; Belmar et 

al., 2011), to determine the extent to which climatic and catchment physical attributes 

influence the hydrologic character of streams (Snelder et al., 2009; Bejarano et al., 

2010; Reidy Liermann et al., 2012), to analyze the hydrological changes produced by 

water abstraction and impoundment infrastructures (Pegg and Pierce, 2002; Wang et 

al., 2011) and to understand the influence of streamflow on river ecological processes 

(Jowett and Duncan, 1990; Chinnayakanahalli et al., 2011; Monk et al., 2011). 

Therefore, HCs play a key role in guiding water resource planning and management 

(Olden et al., 2012) and are especially valuable for the determination of environmental 

flows (Kennard et al., 2010; Poff et al., 2010; Reidy Liermann et al., 2012). 

The classification of flow regimes has suffered an important development in the last 

decades, and HCs have been performed almost in every corner of the world using 

available data and a wide diversity of statistical procedures (Olden et al., 2012). 

However, most published methods share a series of common steps (Olden et al., 2012; 

Snelder and Booker, 2013): (1) computation of ecologically relevant indices using 

unaltered flow series (Olden and Poff, 2003), (2) reduction of the total number of 

indices to keep the most relevant and non-redundant information, (3) statistical 

clustering to group flow gauges according to their similarity and delineation of the most 

appropriate number of classes, (5) interpretation of hydrologic classes and (6) 
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depending on the purpose of the classification, development of statistical models to 

predict class membership for ungauged locations. Each of these steps can be 

conducted following a collection of different scientifically defensible methods depending 

on the rationale, objectives and available data, and many of the classifications have 

been demonstrated to be defensible and statistically robust. 

Regarding the type of data used on HCs, it is generally accepted that daily hydrologic 

data provide the appropriate temporal resolution for understanding stream ecology and 

guiding hydroecological research. Poff (1996) demonstrated that monthly data 

produced a high error rate in capturing the magnitude and temporal distribution of short 

duration high flow events. Many of the hydrologic attributes related to daily information 

(frequency, magnitude and duration of short-term high flow events, the timing of annual 

extremes, or the rate and frequency of hydrograph changes) influence a wide range of 

ecosystem functions and processes (Richter et al., 1998; Bunn and Arthington, 2002). 

Hence, their omission may lead to inaccurate or incomplete vision of the ecologically 

relevant hydrology. However, in cases where daily series are unavailable, monthly data 

may adequately gather much of the ecological relevant information dealing with the 

magnitude and timing of mean discharge conditions, the shape of the hydrograph and 

the magnitude, duration and frequency of long-duration high flow events (Harris et al., 

2000; Solans and Poff, 2013). Moreover, Poff (1996) postulated that coarse grain data 

would be useful for the analysis of low flow events as they generally present higher 

duration.  

There exist basins and regions where gauging stations representing unaltered 

hydrological regimes are very rare (Wang et al., 2011). This situation is very common 

in developed areas of the world where water resources are unevenly distributed over 

the year and there is an intense hydrologic regulation. This is the case of the 

Mediterranean area of Spain (Bejarano et al., 2010; Belmar et al., 2011). The 

classification of rivers in these situations, can follow two approaches: (1) apply a 

deductive, or a priori classification which postulate the organization of patterns in flow 

regimes in terms of environmental factors such as climate, topography and geology 
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(Snelder and Biggs, 2002), or (2) generate flow time-series provided by hydrologic 

rainfall–runoff simulation models to develop an inductive classification. The 

classifications of rivers through deductive procedures is widely accepted and it has 

been applied in many regions (Snelder and Biggs, 2002; Wolock et al., 2004). 

Nonetheless, Belmar et al (2012) and Snelder and Booker (2013) demonstrated that 

inductive classifications based on simulated or gauged flow series, respectively, 

outperformed deductive classifications. By contrast, the comparison of inductive 

hydrologic classifications based on gauged and modelled flow series has not been 

addressed to date. 

A third type of classification is the named expert-driven classifications. This 

classification can be based on gauged or modelled flow series, however, they do not 

relay on the multivariate statistical analysis most commonly used in HC to define class 

boundaries but in experts’ rules. There are not many examples of this method (but see 

Krasovskaia et al., 1994; Kachroo et al., 2000; Hughes and Hannart, 2003; CEDEX, 

2009). Expert-driven classifications, lack, in general, the desirable qualities of 

objectivity, transparency, interpretability and repeatability. Indeed, depending on the 

expert, results may differ greatly from one classification to another. Therefore, although 

they have not been compared to date, expert-driven classifications may have a lower 

performance than inductive classification, and hence, their implementation might have 

critical consequences for water management and environmental conservation. 

In the present study we are interested on looking at how time scale (daily versus 

monthly), flow series origin (gauged versus modelled) and classification procedure 

(inductive versus expert) influence HC performance and interpretability. This will allow 

identifying which are the main drawbacks of using a simplified dataset for developing 

HCs, and, thus, will allow framing the use of HCs in those areas where daily gauged 

data are not available. 

To achieve that, we will develop three inductive classifications and one expert-driven 

classification covering the northern third of the Iberian Peninsula. One of the inductive 

classifications was based on daily gauged series and it was used as the best possible 
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classification approach, while the other two used monthly flow series. These two 

monthly flow series were derived from the daily flow series and simulated from a 

nationwide rainfall-runoff model, respectively. The four classifications will be compared 

in terms of their performance (classification strength and discrimination ability), 

interpretability (most influential hydrological indices) and spatial arrangement (spatial 

configuration of classes). We hypothesized that expert-driven classifications would 

present the lowest performance and will be the most difficult to interpret. It would also 

present the greatest differences regarding the comparison of classification spatial 

arrangement. On the other hand, daily flow series would outperform the classification 

based on monthly flow series. Moreover, we expect that the classification based on 

monthly gauged series would perform better than the classification based on simulated 

flow series and would produce a more similar spatial pattern to the classification based 

on daily flow series. Regarding the interpretation of the classifications based on 

monthly flow series (gauged or natural) we do not know a priori whether they will differ 

much or not from daily flow classifications. Finally, implications for river management 

will be drawn on the basis of these differences. 

4.2 Methods 

4.2.1 Hydrological data processing 

We used the daily gauged and monthly modelled flow series introduced in Chapter II to 

develop three inductive classifications in this study. Daily time series were aggregated 

and transformed into monthly flow series in order to analyze the effect of reducing the 

detail of the time scale of the flow series (i.e. use of monthly flow series instead of 

daily). Both gauged and modelled and daily and monthly series were normalized in 

order to eliminate the influence of flow magnitude (Snelder et al., 2009). Normalization 

was obtained by dividing all daily or monthly flow values by the mean annual flow (Poff 

et al., 2006). In addition, we used modelled hydrologic information to develop a third 

classification. 
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4.2.1.1   Hydrologic Indices Calculated form daily flow series.  

A set of 101 ecologically meaningful hydrologic indices introduced by Olden and Poff 

(2003) were calculated for the daily flow series (Appendix: Table A1). These indices 

characterized the central tendency and dispersion of: (1) magnitude of annual and 

monthly flow conditions, (2) magnitude and duration of annual extreme flows, (3) timing 

and predictability of flows, (4) frequency and duration of high flow pulses and (5) 

frequency of change of flow (Richter et al., 1996; Olden and Poff, 2003). 

4.2.1.2   Hydrologic Indices Calculated form monthly flow series 

The use of monthly series involved a decrease in the number of hydrological indices 

that can be calculated in comparison with the daily flow series. We calculated a set of 

72 hydrologic indices introduced by Olen and Poff (2003) and used when developing 

HCs in different Iberian catchments (Appendix A: Table A2; Belmar et al., 2011; Solans 

and Poff, 2013). These indices characterized the central tendency and dispersion of (1) 

magnitude of annual and monthly flow conditions, (2) magnitude and duration of annual 

extreme flows, (3) frequency of high flows. Other important hydrological aspects such 

as timing and rate of change could not be calculated. 

4.2.2 Classification procedures 

4.2.2.1   Data driven: Classification 1, Classification 2 and Classification 3 

Given the strong correlation between several indices at both scales (daily and 

monthly), the initial set of indices was reduced to a set of non-correlated synthetic 

indices using Principal Component Analysis (PCA) (Olden and Poff, 2003). The broken 

stick method was used to define the optimal number of PCs (Jackson, 1993). Three 

independent PCAs were carried out using the hydrologic indices derived from the daily 

flow series, the monthly gauged series and the monthly modelled series (Figure 4.1). 

Scores for the selected number of PCs were used as new synthetic indices for cluster 

analysis. Each PC was standardized before conducting further analysis to give them 

equal weights. 
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Figure 4.1 - Schematic diagram summarizing the strategies applied to define the 4 classifications.  

For the gauged daily and monthly flow series the Predict-first-Classify-later (Chapter III) 

approach was applied to classify the gauges (Classification 1 and Classification 2; 

Figure 4.1). In this approach empirical models of the standardized synthetic indices 

were initially fitted one at a time as a function of predictor catchment variables (Chapter 

II, Table 2.2) by means of Random Forest (Breiman, 2001; Cutler et al., 2007). Then 

the synthetic indices were predicted for the gauge domain, generating a separated 

predicted distribution for each synthetic index. Classifications were produced by 

clustering all the modelled sites using the Partitioning Around Medoids (PAM) 

algorithm. Classifications of increasing number of classes from 2 to 26-Class levels 

were produced. Classification 1 was considered as the best possible given that it 

provided the highest amount of hydrologic information.  

For the classifications based on modelled monthly flow series (Classification 3), gauges 

were clustered using the previously developed synthetic indices and the PAM algorithm 



 
 

Chapter IV Hydrological classification II: Time scale, flow series origin and classification procedure 
 

 

 
 

 
 

144 

 
 

(Figure 4.1). We produced a classification with a number of classes ranging from 2 to 

26-Class levels.  

4.2.2.2   Expert Driven: Classification 4 

The expert driven classification (Classification 4) used in this work is based on the 

hydroregions map at the national scale developed by the Spanish Ministry of 

Agriculture, Food and Environment and the Ministry of Public Works (CEDEX, 2009). 

This map has been used for the assessment of environmental flows in the new River 

Basin Management Plans (RBMPs) carried out to fulfil the EU Water Framework 

Directive (WFD) in Spain. This classification used the hydrological information provided 

by the monthly specific runoff obtained from the SIMPA model for the period 1946-

2006. This monthly flow series were aggregated for catchments defined according to 

the WFD requirements. Based on this aggregated monthly series a set of hydrological 

indices were calculated (Figure 4.2). First a series of annual values was derived for 

each catchment. This included, annual minima and maxima divided by the annual 

mean (MI1 and MA1, respectively), and the mean of the 3 minimum and maximum 

monthly flows divided by the annual mean (MI2 and MA2, respectively). Finally, a set of 

eight indicators were obtained by calculating the mean (intrannual indicators) and 

coefficient of variation (interannual indicators) for the four series obtained above 

(MI1Inter, MI1Intra, MI2Inter, MI2Intra, MA1Inter, MA1Intra,MA2Inter and MA2Intra, respectively; 

Appendix: Table A3) Then, based on the frequency distribution of each indicator a set 

of three intervals were defined. For the intrannual indicators three intervals were 

defined according to the ± 1 standard deviation of the series, while for the interannual 

indicators the intervals were defined according to the ± standard deviation divided by 

two. Finally, each catchment was assigned to its corresponding interval and pairs of 

indicators concerning the same hydrologic aspect (Minimum/maximum, inter/intra) 

were combined and assigned to a group ranging from A to D (see example on Figure 

4.2). Following, these groups were again grouped by pairs in relation to the assignment 

of interannual indicators in one hand and interannual indicators in the other. Next, 

interannual indicator classes were joined with intrannual indicator classes. This yielded 
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a classification comprised by 41 different classes (note that not all possible 

combinations were present), Out of these, only 16 classes were present within the 

study area (Level 4).  

 
Figure 4.2 - A) Schematic diagram summarizing the hydrologic indices and main steps of the aggregation 

process used in the definition of level 4 of Classification 4. B) Procedures followed to combine each pair of 

indicators to define grouping 1. Note that in the original classification, the procedure to group each pair of 

indicators (Grouping 1) presented a different mixing table. 

Finally, to obtain the last level of the classification (Level 5) four extra indicators related 

to the timing of the minimum and maximum discharge and the recurrence of the 

months that presented the minimum and maximum discharges throughout the 

complete series were also considered (for brevity we do not explain how this has been 

calculated, for more information see: CEDEX, 2009). Once considering these aspects 

and having weighted the indicators according to their importance in the classification a 

final map of 90 supra-regions was defined, from which 26 classes were present in the 

study area (Figure 4.3). Within this study we compared the different levels of this 

expert-driven classification with the levels of the data driven classification. To achieve 
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that, we needed to derive Level 1, 2 and 3 of this classification by splitting the codes 

obtained at each step of the procedure. For example, for a gauge classified at level 5 

as A_B_A_C_VII, level 1 was considered as class A, level 2 as A_B and so on (Table 

4.1). It should be noted that only the last level of the expert driven classification (Level 

5) should be considered when evaluating its performance.  

 
Figure 4.3 - Map of supraregions in the study area derived from the expert driven classification (Source 

CEDEX, 2009). 

4.2.3 Comparison of classification performance 

The performance of the classifications was measured using the classification strength 

(CS; Van Sickle, 1997) and ANOVA. For the CS the hydrological indices with the 

highest loading on each of the retained PC of the three data driven classifications were 

selected. These hydrological indices were used as test indices.  

CS estimate the degree of dissimilarity of the hydrological character between gauges 

explained by the classifications (Snelder and Booker, 2013). Briefly, CS results from 

the difference between the mean hydrological dissimilarity between all pairs of replicate 

sites within classes (Dwithin) and the mean dissimilarity of all dissimilarities between 

classes (Dbeetwen). Higher values of CS indicate a greater uniformity within classes and 

greater differences between classes (Van Sickle, 1997). We calculated CS for each 

class level of the 4 classifications. We applied the restriction that classes at each 



 
 

Chapter IV Hydrological classification II: Time scale, flow series origin and classification procedure 
 

 

 
 

 
 

147 

 
 

hierarchical level were comprised by at least 3 gauges. This reduces the weight given 

to individual classes. We also accompanied this analysis with box plots of the most 

important hydrological indices within the PCAs at the level 5 of the expert rule 

classification (26 classes). For brevity we selected for graphical representation only 

those classes with minimum, median and maximum values. 

In addition, we performed an ANOVA to analyze the potential of classifications to 

discriminate each of the 101 hydrological indices. For the four classifications 

independent ANOVAs were performed on each index using the class membership as 

the explanatory factor. The coefficient of determination (R2) was calculated for each 

class level of the 4 classifications. The restriction of the 3 gauges per class was also 

applied. 

With the objective of “smoothing out” the variability inherent in the sub-setting of the 

selected gauges and to be able to calculate the confidence intervals for the CS and R2 

statistics a bootstrap procedure was applied. Bootstrap samples were constructed by 

selecting the 90% of the gauges each time and repeat the process 20 times. The mean 

and the 95th upper and lower confidence intervals were calculated from the distribution 

of values. Two classifications were assumed significantly different if confidence 

intervals for CS and R2 statistics did not overlap. 

4.2.4 Hydrological interpretation 

The original indices with the highest values in each retained axe of the PCAs were 

used to interpret the hydrological meaning of the new synthetic indices and the 

classifications (Snelder et al., 2009). In addition, we used the ANOVA results to 

interpret each classification by looking at the different coefficient of determination for 

specific indices. We assumed that the higher the coefficient of determination the higher 

the importance of that index to discriminate among classes. 

 

 



 
 

Chapter IV Hydrological classification II: Time scale, flow series origin and classification procedure 
 

 

 
 

 
 

148 

 
 

 Level 1 Level 2 Level 3 Level 4 Level 5 

Class total percent total percent total percent total percent total percent 

1 149 95.5 114 73.1 3 1.9 3 1.9 3 1.9 

2 2 1.3 22 14.1 105 67.3 1 0.6 1 0.6 

3 1 6.6 13 8.3 6 3.8 104 66.7 3 1.9 

4 4 2.6 2 1.3 1 0.6 4 2.6 13 8.3 

5   1 0.6 14 9 2 1.3 2 1.3 

6   4 2.6 7 4.5 1 0.6 86 55.1 

7     6 3.8 14 9 4 2.6 

8     7 4.5 2 1.3 1 0.6 

9     2 1.3 5 3.2 1 0.6 

10     1 6.6 5 3.2 1 0.6 

11     4 2.6 1 0.7 4 2.6 

12       4 2.6 7 4.5 

13       3 1.9 4 2.6 

14       2 1.3 1 0.6 

15       1 6.6 1 0.6 

16       4 2.6 3 1.9 

17         2 1.3 

18         2 1.3 

19         3 1.9 

20         1 0.6 

21         2 1.3 

22         2 1.3 

23         3 1.9 

24         2 1.3 

25         1 0.6 

26         4 2.6 

Table 4.1 - Number and percentage of gauges in each class at the five levels defined for Classification 4. 
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4.2.5 Correspondence between classifications 

The spatial agreement between each pair of classifications was evaluated by means of 

the Adjusted Rand Index (ARI; Hubert and Arabie, 1985). ARI analyze the relationship 

of each pair of gauges and how they differ between two cluster solutions. It ranges 

between 0 (indicating that agreement between two clustering solutions is not better 

than chance) and 1 (indicating perfect agreement). Kennard et al (2010) analyzed the 

correspondence between 14 classification and demonstrated that ARIs above 0.45 

were indicative of little differences between classification group structure. This 

suggests that classifications with ARI higher than 0.2 still exhibited certain level of 

spatial correspondence while values below indicated low spatial correspondence. 

4.3 Results 

4.3.1 Classification performance 

Classification 1 and 2 presented higher CS than Classification 3 and 4 for all levels of 

classification (Figure 4.3). In addition, generally Classification 1 performed better than 

Classification 2. Nonetheless, for the low (2 to 6-Class level) and high (23 to 26-Class 

level) levels of classifications the differences were not significant. Moreover, 

Classification 2 outperformed Classification 1 several times. The differences between 

Classification 1 and 2 and Classification 3 and 4 were more evident for the mid and 

high detailed classifications. In this regard, Classification 1 and 2 showed a gradual 

increment of CS from 6-Class level up to 17-Class level, while CS for Classification 3 

and 4 did not increase significantly beyond the 6-Class level (Figure 4.4). Classification 

3 performed better than Classification 4; however for 11 and 26-Class level the 

differences were not significant.  

Box-Plots revealed that the 26-Class level of Classification 1 and Classification 2 

presented a similar ability to segregate classes. However for certain test indices such 

as lkur, sd30HF and X5, Classification 1 presented higher discrimination ability (Figure 

4.5). Classification 3 presented more heterogeneous classes and therefore a greater 
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degree of overlap between classes. Finally, Classification 4 was composed by classes 

that presented, for most of the hydrologic indices, similar median values and high 

heterogeneity. This implied that, in general, the classes with the minimum, median and 

maximum values do not present almost any difference in regard to the distribution of 

indices values.  

 
Figure 4.4 - Performance of the classifications based on the Classification Strength statistic. Symbols 

represent the mean and whiskers the lower and upper 95% confidence interval for the CS values at 2 to 

26-Class levels (: Classification 1; : Classification 2; : Classification 3; : Classification 4). 

The ANOVA analysis revealed that Classification 2 performed better than Classification 

1 over 35% of the times for the 4-Class level while at 11, 16 and 26-Class levels 

Classification 1 outperformed Classification 2 over 20% of the times (Table 4.2; 

Auxiliary material provided in digital format). Nonetheless, for most of the indices these 

two classifications did not present significant differences. 
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Figure 4.5 - Box plot for the comparison of selected hydrologic metrics variation between classifications at 

the 26-Class level. Metrics with the highest loadings in the PCAs were selected. The lines at the top, 

middle and bottom of each box represent the 75th, median and 25th percentile of the metric, respectively. 

Whiskers represent 90th and 10th percentiles and outliers are represented by . 
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 Classifications 

Level 1>2 2>1 2=1 1>3 3>1 3=1 1>4 4>1 4=1 

4-Class 23.8 37.6 38.6 31.7 15.8 52.5 84.2 7.9 7.9 

6-Class 20.8 17.8 61.4 45.5 5.0 49.5 79.2 2.0 18.8 

11-Class 28.7 6.9 64.4 71.3 0.0 28.7 93.1 0.0 6.9 

16-Class 26.7 7.9 65.3 72.3 1.0 26.7 91.1 0.0 8.9 

26-Class 22.8 10.9 66.3 63.4 0.0 36.6 69.3 0.0 30.7 

 2>3 3>2 3=2 2>4 4>2 4=2    

4-Class 30.7 8.9 60.4 79.2 5.0 15.8    

6-Class 45.5 4.0 50.5 89.1 1.0 9.9    

11-Class 43.6 1.0 55.4 93.1 0.0 6.9    

16-Class 50.5 0.0 49.5 89.1 0.0 10.9    

26-Class 57.4 2.0 40.6 71.3 2.0 26.7    

 3>4 4>3 4=3       

4-Class 73.3 6.9 19.8       

6-Class 70.3 5.0 24.8       

11-Class 67.3 0.0 32.7       

16-Class 64.4 0.0 35.6       

26-Class 26.7 1.0 72.3       

Table 4.2 - Percentage of times that one classification presented higher, lower or equal R2 than other 

classification at 4, 6, 11 and 16 and 26-Class level. Equal R2 values were supposed when there was no 

overlap among confidence intervals. 

In contrast, Classification 1 and Classification 3 performed similarly for the low detailed 

classifications (4 and 6-Class levels) and the differences increased for higher detailed 

classifications. Hence, for 11, 16 and 26-Class levels Classification 1 outperformed 

Classification 3 more than two thirds of the times (Table 4.2). On the other hand, 

Classifications 2 and 3 did not show significant differences half of the times. However, 

for the 11, 16 and 26-Class levels the percentage of times that Classification 2 

outperformed Classification 3 increased from 43 to 57%. Finally, it was observed that, 

in general, classifications 1, 2 and 3 performed better than Classification 4. In this 

regard, Classification 1 and 2 outperformed Classification 4 more than 80% of the 
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times. However for the 26-Class level more than 25% of the times Classification 1 and 

2 and Classification 4 did not showed significant differences. Finally, Classification 3 

presented lower differences relative to Classification 4. Indeed, for the 26-Class level 

they did not presented significant differences 72% of the times. In general, those 

indices that presented the lowest classification performance (Jmax, Rev, sdFRE3, 

sdRev) also showed the smallest differences between classifications. 

4.3.2 Principal components analysis results and hydrological interpretation of 

classifications 

The first six PCs of the PCA based on the daily flow series explained 87.4% of the total 

variance (Table 4.3). According to the indices with the highest loading, PC1 

represented the variability of the annual mean flow and the magnitude and duration of 

extreme low flows and PC2 represented the variability of the magnitude and duration of 

high flow events. PC3 was related to the magnitude and variability of October flows, 

while PC4 represented the variability of annual flows and the magnitude of high flows. 

PC5 was related to mean January and May flow magnitude while PC6 represented the 

magnitude and variability of August flows (Table 4.3). 

Regarding the PCA performed on indices calculated from the gauged monthly flow 

series, the first five PC explained 84.6% of the total variance. PC1 represented the 

variability of the annual mean flow and the magnitude and duration of seasonal high 

flows, while PC2 represented the variability of the series distribution and the variability 

of May flows. PC3 was related to mean and maximum magnitude of October flows, 

PC4 to the mean magnitude of May and April flows and PC5 to the mean magnitude 

and variability of September flows (Table 4.3). 

Finally, the four first PCs of the PCA performed on indices calculated from the monthly 

modelled series explained 86.4% of the total variance. The first PC was related to the 

magnitude of extreme high flows and the variability of annual flows. PC2 represented 

the mean magnitude of August and June flows while PC3 and PC4 were related with 
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the mean magnitude and variability of November and October flows, respectively 

(Table 4.3). 

 Daily series Monthly Series Monthly Modeled Series 

Axe Indices 
Var. 
Exp 

Indices 
Var. 
Exp 

Indices 
Var. 
Exp.  

PC1 -l2; 90LF  38.5 -l2; -M3HF  38.5 X5; l2 41 

PC2 Sd30HF; sd7HF  20.1 lkur; sdM5  22.5 -M8; -M6 30.3 

PC3 -M10; -sdM10 11.6 -M10; -MxM10 11.5 -M11; -sdM11 8.4 

PC4 Ikur; -X25 7.5 M5; M4 6.8 MxM10; sdM10 6.7 

PC5 -M1; M5  6.2 sdM9; MxM9 5.3   

PC6 sdM8; MxM8 4.5     

Table 4.3 - The two hydrologic indices with the highest loadings in each retained PC and the variation 

explained by the retained PCs are shown. A minus sign indicates negative relation with the PC. The 

indices in bold letters were used to calculate the Classification Strength. 

In addition, the ANOVA analysis showed that the ability of classifications to 

discriminate each of the hydrological indices presented analogous patterns for all 

considered indices (Figure 4.6; Tables S2.1 to S.2.5 provided within the supplementary 

material included in the DVD). In general, R2 increased with the increasing 

classification detail although for many indices R2 did not present significant increments 

beyond the 7 or 10-Class level (Figure 4.5). Hydrologic indices representing the mean 

and variability of flow magnitude (e.g. M10, MxM4, MnM7, 7LF, 7HF, lca, sdM10, 

sd7LF, sd7HF) and frequency (FRE3) presented higher R2s than indices representing 

timing (Jmax) and rate of change (rev). It must be pointed out that Classification 1 

showed the highest R2 100% of the times for the indices dealing with mean frequency 

and duration of high pulses (Table 4.2; Figure 4.6). 
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Figure 4.6 - Performance of the 4 classifications based on individual index analysis. Symbols represent 

the mean and whiskers the lower and upper 95% interval confidence interval for the R2 values at 2 to 26-

Class levels (: Classification 1; : Classification 2; : Classification 3; : Classification 4). We selected 

one index representing each aspect of the natural flow regime to illustrate the results A) Indices 

representing mean values. B) Indices representing standard deviation (the values obtained for the 101 

indices for the 4, 6, 11, 16 and 26-Class levels are included in Tables S2.1-S2.5 provided within the 

supplementary material). 
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4.3.3 Analysis of correspondence 

Classification 1 and Classification 2 presented ARI values over 0.25 for the low detailed 

classification (4 and 6-Class Levels) which increased over 0.4 for the 11, 16 and 26-

Class level (Table 4.4). Classification 3 and Classification 1 and 2 had fairly constant 

ARI values for the different levels of classification close to 0.2 in most of the cases 

(Table 4.4). Finally, Classification 4 presented the lowest spatial correspondence 

values with the three inductive classifications. In most of the cases the comparisons 

between Classification 4 and classifications 1 and 2 revealed that ARI values were not 

above 0.1 while these values were close to 0.15 when it was compared with 

Classification 3 (Table 4.4). 

Level Classification Classification 

  Class 1 Class 2 Class 3 

 Class 2 0.25  
4 Class 3 0.20 0.14  
 Class 4 0.01 0.00 0.01 

 Class 2 0.32  
6 Class 3 0.25 0.24  
 Class 4 0.16 0.18 0.17 

 Class 2 0.44  
11 Class 3 0.23 0.21  
 Class 4 0.13 0.09 0.16 

 Class 2 0.40  
16 Class 3 0.26 0.22  
 Class 4 0.10 0.07 0.15 

 Class 2 0.40   

26 Class 3 0.20 0.25  

 Class 4 0.09 0.09 0.16 

Mean Class 2 0.38   

of all Class 3 0.22 0.19  

 levels Class 4 0.10 0.10 0.13 

Table 4.4 - Adjusted Rand Index (ARI) for the 4, 6, 11, 16 and 26-Class level between each pair of 

classification. Bold ARI values indicate at least moderate spatial agreement (ARI > 0,2). 
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4.4 Discussion 

Our results support the initial hypothesis that expert driven classifications performed 

worse than inductive classifications. Moreover, expert driven process created a 

completely different and unevenly spatial distribution of classes. However, the 

differences in the discrimination ability of hydrologic indices between Classification 4 

and 3 were not so evident. This study also shows that the time scale of the flow series 

is not as important as expected. In this regard, Classification 2 presented similar 

performance, interpretation and spatial distribution than Classification 1. Nonetheless, 

Classification 1 outperformed Classification 2 in most of the cases and some important 

flow regime attributes, mainly those related to the frequency of high flow events were 

not well captured by the monthly series and thus they were neglected in the 

classification.  

4.4.1 Classification performance 

Given that monthly series account for the most relevant information dealing with the 

annual flow variability (e.g. l2) and the shape of the hydrograph, significant differences 

is CS and R2 between Classifications 1 and 2 were not observed for several 

classification levels. Nonetheless, the aggregation of flow series form daily to monthly 

produced a loss of information. For instance, the box plots showed that for several 

important hydrologic indices (e.g. lkur, sd90HF or X5) Classification 2 produced 

classes in which these indices were not as well segregated as in Classification 1 and 

thus, for some class level, Classification 1 outperformed Classification 2. Our results 

matched in part with those obtained by Poff (1996) who found that classifications 

developed from daily, weekly, monthly, seasonal and annual flow series were equally 

able to segregate classes according to their predictability and coefficient of variation. In 

contrast, other indices dealing with high flow events of short-duration were not 

adequately segregated when using coarse-grained hydrological data, especially in low 

variable streams. 
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On the other hand, the analyses also highlighted a significant lower ability of 

classification derived from modelled flow series to segregate rivers according to the 

actual (i.e. measured) flow regime. Even for those indices identified in the PCA as the 

most important in explaining the hydrologic variability of the modelled flow series (e.g. 

X5, M8), Classification 3 produced high heterogeneous classes with greater overlap 

between them (Figure 4.5) and a lower discrimination ability (Figures 4.4 and 4.6) than 

Classifications 1 and 2. The lower segregation ability of Classification 3 was probably 

due to the complexity of simulate flow series through numerical tools. The inaccurate 

parameterization of numerical models (Littlewood and Croke, 2013) is many times 

related with the difficulty of conceptualize river basins (Wagener and Gupta, 2005) and 

the need of high quality information of numerous factors (Wagener and Montanari, 

2011). For instance, climate, land use, geology, soil information and morphology of the 

basin many times do not have the proper quality to reproduce reliable flow series 

(García et al., 2008). These limitations are multiplied when models must be developed 

at coarser time scales (Wang et al., 2009) and for large areas with contrasting climatic 

and environment characteristics, as is the case of the SIMPA model developed for 

Spain. The ability of the model to simulate the actual hydrology is an essential task 

since the use of initial flow time series with poor quality compromises the final 

classification outcomes which, at the end, introduces an important level of uncertainty 

for further uses of this classification.  

As expected, Classification 4 produced the lowest CS and R2s for most of the indices. 

Nonetheless, the differences between Classification 4 and 3 were not so evident, 

especially for the 26-Class level. Attending to this result it may be concluded that the 

type of data is more important than the classification procedure in determining 

classification performance. Nonetheless the box plot analyses demonstrated that 

classes in Classification 4 are less different than classes in Classification 3 which 

highlighted that the procedure is also a critical aspect that should be taken into 

account. Attending to these results we can conclude that, the utilisation of 

Classification 4 is very limited independently of the scope of the future application. 
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4.4.2 Hydrological interpretation  

The reduction of the initial sets of hydrological indices through the PCAs in the 3 data 

driven classifications produced synthetic indices that in general displayed consistent 

hydrological interpretations independently of the time scale or the origin of the flow 

series. For instance, the three PCAs included l2, a measure of the interannual flow 

variability, as one of the index explaining a great part of the hydrologic variability in the 

study area. The consideration of this index involved that during the classification 

process, rivers with fairly constant annual flows were split from those with high 

interannual variability. In addition, many of the significant PCs of the three 

classifications were related to the mean and variability of the magnitude of monthly 

flows. The ANOVA analysis did not highlighted significant differences between 

Classifications 1, 2 and 3 in the ability to segregate rivers according to the mean 

monthly flows for several classification levels, although in general, Classification 1 

outperformed Classification 2 and this outperformed Classification 3. Therefore, 

considering the importance of these indices, the shape of the annual hydrograph, i.e. 

the intrannual flow variability, may play an essential role in the three classifications, as 

it was found by several authors using daily (Snelder et al., 2009; Kennard et al., 2010; 

Reidy Liermann et al., 2012) and monthly flow series (Belmar et al., 2011; Solans and 

Poff, 2013). In this regard, other hydrological classification carried out in the Ebro Basin 

found that 10 indices representing the mean and variability of the magnitude of monthly 

flow out of 19 indices maximized differences among hydrological classes (Solans and 

Poff, 2013). The inclusion of these indices enabled to differentiate rivers presenting 

pluvial, nival or pluvio-nival streamflow regimes and also rivers influenced by Oceanic 

climate from those subjected to the Mediterranean climate (Solans and Poff, 2013). 

Bejarano et al (2010) found a similar classification pattern to Solans and Poff (2013) 

but using uniquely the 12 indices representing mean monthly flows. The 

correspondence between the different Ebro basin classifications interpretation highlight 

the significant influence that mean monthly flows have within the flow regime variability. 
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However, the exclusive use of these indices could limit the application of those 

classifications due to the loss of other highly relevant hydrological information. 

Results from PCAs also revealed some differences between the daily and the monthly 

flow series. For example, the PC1 of the Classification 1 was related to the magnitude 

and duration of low flow conditions. The ANOVA analysis demonstrated that 

Classification 1, for most classification levels, presented the highest ability to segregate 

classes according to the severity and duration of droughts (Figure 4.6), while 

Classification 2 and 3 missed partially this attribute. Many rivers in the study area 

present a strong Mediterranean character and, thus, the consideration of this 

hydrological feature should be of principal concern in the hydrological classification. 

However, it depends on the final application and scope of the classification. For 

instance, classifications based on both daily and monthly flow series, especially those 

derived from gauge measurements, result useful to explore and identify the stream flow 

variability and the spatial distribution of river classes across landscapes and even, to 

aid in general water resources planning and management actions. Nonetheless, the 

lack of information related with the severity and duration of droughts would limit their 

use in other management issues like the assessment of minimum environmental flows 

which is one of the most extended applications of hydrological classifications (Kennard 

et al., 2010; Poff et al., 2010). 

On the other hand, PCAs of Classification 2 and 3 found that magnitude and duration 

of high flow conditions (M3HF, X5) explained a significant portion of the total 

hydrological variability. This hydrological attribute was not included as one of the most 

relevant variables in Classification 1. Nonetheless, the ANOVA analysis demonstrated 

that Classification 1 presented equal or higher ability to discriminate classes according 

to high flow indices than Classification 2 (Figure 4.6). These results showed that 

monthly flow series extracted from gauged data were still capable of accounting for the 

magnitude of the high flow events signature present in the daily flow series. 

Nevertheless, this ability was reduced as the duration of high flow events duration got 

shorter, i.e. 1 day, 3 days and 7 days. Finally, Classification 1 presented always a 
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higher ability than Classification 2 and 3 to discriminate indices representing frequency 

of high flow events (FRE1, FRE3, FRE 7, nPHigh, dPHigh). Thus, classifications based 

on monthly flow series will be limited to understand some key biophysical relations in 

fluvial ecosystems and also to evaluate impairment of hydro-morphological pressures 

that alter these flow regime components. 

Finally, the PCAs and ANOVA analysis evidenced that the twelve indices used in 

Classification 4 could only account for a limited proportion of the hydrological variability 

in the study zone. The indices related to the mean and variability of high and low flow 

conditions in which Classification 4 was based were represented in PC1 and PC2 of 

the Classification 1 and the PC1 of the Classifications 2 and 3. In contrast, none of 

these PCAs recognized timing of minimum and maximum discharge as important 

aspects in the classification due to the low spatial variability in the study domain. The 

ANOVA analysis demonstrated that for all the hydrologic indices, including those 

related with timing, Classification 4 presented the lowest ability to discriminate between 

classes. The lack of information of Classification 4 in relation to the variability of the 

annual mean flow conditions, the shape of the annual hygrograph or the magnitude 

and duration of high and low flow attributes of the flow regime questions its 

implementation for the assessment of environmental flow regimes, which, in fact, was 

the last objective of this classification (CEDEX, 2009).  

4.4.3 Correspondence between classifications 

The high spatial correspondence between Classification 1 and 2, especially for the 

most detailed classification, highlighted that monthly time series presented a great 

potential to identify the spatial distribution of river types and also to determine the main 

climatic and catchment attributes that influence this distribution. These applications 

have been some of the principal scopes of HCs (Snelder et al., 2009; Belmar et al., 

2011). In this regard, for the 6-class level, Classification 1 and Classification 2 

coincided in part with the spatial arrangement of the hydrologic classification presented 

by Solans and Poff (2013) for the Ebro basin. These authors (Solans and Poff, 2013) 

applied a different classification procedure to the one used in this study, especially in 



 
 

Chapter IV Hydrological classification II: Time scale, flow series origin and classification procedure 
 

 

 
 

 
 

162 

 
 

relation to the selection of the critical hydrological indices and the cluster algorithm. 

However the spatial coincidence between the 3 classifications evidences that the data 

used in the analysis may be more important than the classification procedure. In this 

sense, we observed that Classification 3 which was developed using the same 

hydrological indices and cluster algorithm but modelled flow series presented a lower 

correspondence with Classification 1 than Classification 2. Nonetheless, it must be 

pointed out that ARI values between Classification 1 and 3 were in general greater than 

0.20, which, to some extent, indicated certain degree of similarity between class spatial 

distributions. This result implies that in the absence of other flow data, the modelled 

flow series can still be useful to understand the actual distribution of river types (e.g. 

Belmar et al., 2011). 

On the other hand, the low correspondence between Classification 4 and the inductive 

classifications was corroborated in the analysis of the spatial arrangement of classes. 

Independently of the classification level, Classification 4 always presented a class that 

gather more than two thirds of the total number of gauges. This class covered much of 

the study area and grouped gauges situated in the north catchments, the Pyrenees’ 

headwaters and the southern Iberian Massif. The hydrologic differences between rivers 

situated in these areas has been evidenced by the classifications developed in this and 

other works (Bejarano et al., 2010; Gámiz-Fortis et al., 2011; Solans and Poff, 2013). 

Therefore, this study shows that Classification 4 was not able to properly account with 

the actual distribution of hydrological types. This could be attributed to different sources 

of uncertainty including the origin of flow series, the selection of specific hydrological 

indices or the subjective steps implemented in the classification procedure.  

4.5 Conclusion 

In conclusion, the aggregation of daily data into monthly flow series produced 

classifications that still account with much of the critical hydrological information, 

presented high ability to segregate classes and produced classes with a spatial 

arrangement similar to daily flow classifications. Therefore, in the absence of daily 
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series, classifications based on monthly flows represent an adequate alternative. 

Nonetheless, there exists certain limitation for monthly series to represent several 

hydrological attributes, especially relevant to understand key biophysical relationships. 

On the other hand, the use of simulated flow series generated classifications with lower 

performance and different spatial arrangement of classes. Therefore, the use of 

modelled flow series is not recommended if possible. However, since they still 

presented some ability to discriminate essential hydrological characters and a certain 

degree of spatial homology with classifications based on gauged series, the use of 

modelled flow series should be considered to outline the spatial distribution of river 

types and aid in general water resources management in the absence of suitable 

gauged data. The greatest impediment in the classification process was not related to 

the scale or origin of the data but to the procedure. The significantly reduced 

performance and the uneven distribution of classes found in the expert driven 

classification, highlighted the importance of selecting adequate hydrologic indices able 

to represent the hydrological reality of the study area and the necessity of applying 

objective and scientifically reliable criteria all throughout the process. The use of one or 

another approach may have significant implications depending on the applications of 

the classifications as they could lead to significantly different conclusions. Therefore 

caution is recommended in the selection of the hydrological data and the classification 

procedure, especially if classifications are to be use with a normative scope, such as 

the determination of environmental flows within the RBMPs. 



 
 

Chapter IV Hydrological classification II: Time scale, flow series origin and classification procedure 
 

 

 
 

 
 

164 

 
 

4.6 References 

Baeza D., Garcia de Jalón D. 2005. Characterization of streamflow regimes in central 
Spain, based on relevant hydrobiological parameters. Journal of Hydrology, 
310: 266-279. DOI: 10.1016/j.jhydrol.2005.01.020. 

Bejarano M. D., Marchamalo M., García de Jalón D., González del Tánago M. 2010. 
Flow regime patterns and their controlling factors in the Ebro basin (Spain). 
Journal of Hydrology, 385: 323-335. DOI: 10.1016/j.jhydrol.2010.03.001. 

Belmar O., Velasco J., Martínez-Capel F. 2011. Hydrological Classification of Natural 
Flow Regimes to Support Environmental Flow Assessments in Intensively 
Regulated  Mediterranean Rivers, Segura River Basin (Spain). Environmental 
Management, 47: 992-1004. DOI: 10.1007/s00267-011-9661-0. 

Belmar O., Velasco J., Martinez-Capel F., Peredo-Parada M., Snelder T. 2012. Do 
Environmental Stream Classifications Support Flow Assessments in 
Mediterranean Basins? Water Resources Management, 26: 3803-3817. DOI: 
10.1007/s11269-012-0104-3  

Breiman L. 2001. Random Forest. Machine Learning, 45: 5-32. DOI: 
10.1023/A:1010933 404324. 

Bunn S. E., Arthington A. H. 2002. Basic principles and ecological consequences of 
altered flow regimes for aquatic biodiversity. Environmental Management, 30: 
492-507. DOI: 10.1007/s00267-002-2737-0. 

CEDEX. 2009. Desarrollo de un mapa de hidroregiones a escala nacional. Asistencia 
técnica, investigación y desarrollo tecnológico en materias competencia de la 
dirección general del agua (2007-2011). Ministerio de Fomento. Ministerio de 
Agricultura, Alimentación y Medio Ambiente, 59 pp. 

Cutler D. R., Edwards T. C., Beard K. H., Cutler A., Hess K. T. 2007. Random forests 
for classification in ecology. Ecology, 88: 2783-2792. DOI: 10.1890/07-0539.1. 

Chinnayakanahalli K. J., Hawkins C. P., Tarboton D. G., Hill R. A. 2011. Natural flow 
regime, temperature and the composition and richness of invertebrate 
assemblages in streams of the western United States. Freshwater Biology, 56: 
1248-1265. DOI: 10.1111/j.1365-2427.2010.02560.x. 

Gámiz-Fortis S. R., Hidalgo-Muñoz J. M., Argüeso D., Esteban-Parra M. J., Castro-
Díez Y. 2011. Spatio-temporal variability in Ebro river basin (NE Spain): Global 
SST as potential source of predictability on decadal time scales. Journal of 
Hydrology, 409: 759-775. DOI: 10.1016/j.jhydrol.2011.09.014. 



 
 

Chapter IV Hydrological classification II: Time scale, flow series origin and classification procedure 
 

 

 
 

 
 

165 

 
 

García A., Sainz A., Revilla J. A., Álvarez C., Juanes J. A., Puente A. 2008. Surface 
water resources assessment in scarcely gauged basins in the north of Spain. 
Journal of Hydrology, 356: 312-326. DOI: 10.1016/j.jhydrol.2008.04.019. 

Harris N. M., Gurnell A. M., Hannah D. M., Petts G. E. 2000. Classification of river 
regimes: a context for hydroecology. Hydrological Processes, 14: 2831-2848. 
DOI: 10.1002/1099-1085(200011/12)14:16/17<2831::AID-HYP122>3.0.CO;2-O   

Hubert L., Arabie P. 1985. Comparing Partitions. Journal of Classification, 2: 193-218. 

Hughes D. A., Hannart P. 2003. A desktop model used to provide an initial estimate of 
the ecological instream flow requirements of rivers in South Africa. Journal of 
Hydrology, 270: 167-181. DOI: 10.1016/S0022-1694(02)00290-1. 

Jackson D. A. 1993. Stopping Rules in Principal Components-Analysis - a Comparison 
of Heuristic and Statistical Approaches. Ecology, 74: 2204-2214. DOI: 
10.2307/1939574. 

Jowett I. G., Duncan M. J. 1990. Flow Variability in New-Zealand Rivers and Its Rela-
tionship to in-Stream Habitat and Biota. New Zealand Journal of Marine and 
Freshwater Research, 24: 305-317.DOI:10.1080/00288330.1990.9516427. 

Kachroo R. K., Mkhandi S. H., Parida B. P. 2000. Flood frequency analysis of southern 
Africa: I. Delineation of homogeneous regions. Hydrological Sciences Journal-
Journal Des Sciences Hydrologiques, 45: 437-447. DOI: 10.1080/0262666000 
9492340. 

Kennard M. J., Pusey B. J., Olden J. D., MacKay S. J., Stein J. L., Marsh N. 2010. 
Classification of natural flow regimes in Australia to support environmental flow 
management. Freshwater Biology, 55: 171-193. DOI: 10.1111/j.1365-2427. 
2009.02307.x. 

Krasovskaia I., Arnell N. W., Gottschalk L. 1994. Flow Regimes in Northern and 
Western Europe - Development and Application of Procedures for Classifying 
Flow Regimes. In: Friend: Flow Regimes from International Experimental and 
Network Data, pp: 185-192. 

Littlewood I., Croke B. 2013. Effects of data time-step on the accuracy of calibrated 
rainfall–streamflow model parameters: practical aspects of uncertainty 
reduction. Hydrology Research, 44: 430-440. DOI: 10.2166/nh.2012.099. 

Monk W. A., Peters D. L., Curry R. A., Baird D. J. 2011. Quantifying trends in indicator 
hydroecological variables for regime-based groups of Canadian rivers. 
Hydrological Processes, 25: 3086-3100. DOI: 10.1002/hyp.8137. 



 
 

Chapter IV Hydrological classification II: Time scale, flow series origin and classification procedure 
 

 

 
 

 
 

166 

 
 

Olden J. D., Kennard M. J., Pusey B. J. 2012. A framework for hydrologic classification 
with a review of methodologies and applications in ecohydrology. Ecohydrology, 
5: 503–518. DOI: 10.1002/eco.251. 

Olden J. D., Poff N. L. 2003. Redundancy and the choice of hydrologic indices for 
characterizing streamflow regimes. River Research and Applications, 19: 101-
121. DOI: 10.1002/rra.700. 

Pegg M. A., Pierce C. L. 2002. Classification of reaches in the Missouri and lower 
Yellowstone rivers based on flow characteristics. River Research and 
Applications, 18: 31-42. DOI: 10.1002/rra.635  

Poff N. L. 1996. A hydrogeography of unregulated streams in the United States and an 
examination of scale-dependence in some hydrological descriptors. Freshwater 
Biology, 36: 71-91. DOI: 10.1046/j.1365-2427.1996.00073.x  

Poff N. L., Olden J. D., Pepin D. M., Bledsoe B. P. 2006. Placing global stream flow 
variability in geographic and geomorphic contexts. River Research and 
Applications, 22: 149-166. DOI: 10.1002/rra.902. 

Poff N. L., Richter B. D., Arthington A. H., Bunn S. E., Naiman R. J., Kendy E., 
Acreman M., Apse C., Bledsoe B. P., Freeman M. C., Henriksen J., Jacobson 
R. B., Kennen J. G., Merritt D. M., O'Keeffe J. H., Olden J. D., Rogers K., 
Tharme R. E., Warner A. 2010. The ecological limits of hydrologic alteration 
(ELOHA): a new framework for developing regional environmental flow 
standards. Freshwater Biology, 55: 147-170. DOI: 10.1111/j.1365-2427.2009. 
02204.x  

Reidy Liermann C. A., Olden J. D., Beechie T. J., Kennard M. J., Skidmore P. B., 
Konrad C. P., Imaki H. 2012. Hydrogeomorphic classification of Washington 
state rivers to support emerging environmental flow management strategies. 
River Research and Applications, 28: 1340-1358. DOI: 10.1002/rra.1541. 

Richter B. D., Baumgartner J. V., Braun P. D., Powell J. 1998. A spatial assessment of 
hydrologic alteration within a river network. Regulated Rivers: Research & 
Management, 14: 329-340. DOI: 10.1002/(SICI)1099-1646(199807/08)14:4  
<329::AID-RRR505>3.0.CO;2-E  

Richter B. D., Baumgartner J. V., Powell J., Braun D. P. 1996. A method for assessing 
hydrologic alteration within ecosystems. Conservation Biology, 10: 1163-1174. 
DOI: 10.1046/j.1523-1739.1996.10041163.x. 

Snelder T. H., Biggs B. J. F. 2002. Multiscale river environment classification for water 
resources management. Journal of the American Water Resources Association, 
38: 1225-1239. DOI: 10.1111/j.1752-1688.2002.tb04344.x. 



 
 

Chapter IV Hydrological classification II: Time scale, flow series origin and classification procedure 
 

 

 
 

 
 

167 

 
 

Snelder T. H., Booker D. 2013. Natural flow regime classifications are sensitive to 
definition procedures. River Research and Applications, 7: 822-838. DOI: 
10.1029/2009WR008839. 

Snelder T. H., Lamouroux N., Leathwick J. R., Pella H., Sauquet E., Shankar U. 2009. 
Predictive mapping of the natural flow regimes of France. Journal of Hydrology, 
373: 57-67. DOI: 10.1016/j.jhydrol.2009.04.011. 

Solans M. A., Poff N. L. 2013. Classification of Natural Flow Regimes in the Ebro Basin 
(Spain) by using a Wide Range of Hydrologic Parameters. River Research and 
Applications, 9: 1147-1163. DOI: 10.1002/rra.2598. 

Van Sickle J. 1997. Using mean similarity dendrograms to evaluate classifications. 
Journal of Agricultural, Biological, and Environmental Statistics, 2: 370-388. 

Wagener T., Gupta H. V. 2005. Model identification for hydrological forecasting under 
uncertainty. Stochastic Environmental Research and Risk Assessment, 19: 378-
387. DOI: 0.1007/s00477-005-0006-5  

Wagener T., Montanari A. 2011. Convergence of approaches toward reducing 
uncertainty in predictions in ungauged basins. Water Resources Research, 47. 
DOI: 10.1029/2010WR009469. 

Wang Q. J., Pagano T. C., Zhou S. L., Hapuarachchi H. A. P., Zhang L., Robertson D. 
E. 2011. Monthly versus daily water balance models in simulating monthly 
runoff. Journal of Hydrology, 404: 166-175. DOI: 10.1016/j.jhydrol.2011.04.027. 

Wang Y., He B., Takase K. 2009. Effects of temporal resolution on hydrological model 
parameters and its impact on prediction of river discharge. Hydrological 
Sciences–Journal, 54: 886-898. DOI: 10.1623/hysj.54.5.886. 

Wolock D. M., Winter T. C., McMahon G. 2004. Delineation and evaluation of 
hydrologic-landscape regions in the United States using geographic information 
system tools and multivariate statistical analyses. Environmental Management, 
34: S71-S88. DOI: 10.1007/s00267-003-5077-9. 



 

 

 



 
 

Chapter V Modelling hydrological indices to ungauged rivers  
 

 

 
 

 
 

169 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V 

 

 

A comparison of statistical techniques and 

strategies to model hydrological indices to 

ungauged rivers 

 



 

 

 
 



 
 

Chapter V Modelling hydrological indices to ungauged rivers 
 

 

 
 

 
 

171 

 
 

Chapter V. A comparison of statistical techniques and 

strategies to model hydrological indices to ungauged rivers 

This chapter has led to the article entitled: “A comparison of statistical techniques and 

strategies to model hydrological indices to ungauged rivers” by Peñas, F.J., Barquín, J. 

and Álvarez, C. It has been submitted for publication in the journal Water Resources 

Research. 

Abstract 

The prediction of the natural flow regime to ungauged rivers represents a critical issue 

to afford new challenges in water resource management and freshwater ecology. We 

developed models to predict 16 ecologically meaningful hydrological indices to a 

complete river network covering the northern third of the Iberian Peninsula. The 

statistical techniques used were Multiple Linear Regression (MLR), Generalized 

Additive Models (GAM), Random Forest (RF), Artificial Neural Network (ANN) and 

Adaptative Neuro Fuzzy Inference Systems (ANFIS). Results were compared in terms 

of model predictive performance. In addition, the benefits of the Regional Regression 

Approach (RRA) were analyzed after segregating gauges into different levels of a 

regional hydrological classification. Our results showed that predictive performance 

varied greatly depending on the natural flow attribute been modelled. Indices 

representing magnitude and frequency were predicted with adjusted R2s over 0.7. In 

contrast, other indices such as timing, duration and rate of change were poorly 

predicted by all techniques, which highlighted the necessity of developing new preditor 

variables that might exert a greater control of these hydrologic characteristics. In 

addition, our results showed that complex statistical techniques do not always 

outperform linear models and no single approach was optimal for all indices. Hence, 

beyond the prediction performance, other features such as the computing resources, 

the interpretability of the models regarding the causal links and the potential to account 

with non-linear relationships must be assessed before selecting the most appropriate 
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technique. Finally, the RRA just enhanced model accuracy in those classes dominated 

by fairly predictable climate patterns, where precipitation is the major source of flow. In 

contrast, the reduction of sites in several classes significantly reduced the prediction 

ability of MLR. This is a major drawback of the RRA when available hydrologic and 

environmental information is limited. 

5.1 Introduction 

River flow regime is a key element that structures freshwater ecosystems (Richter et 

al., 1996; Poff et al., 1997). Indeed, hydrologic changes have consistently been linked 

to changes in ecosystem processes and functions (Bunn and Arthington, 2002; Kennen 

et al., 2008). Accordingly, the understanding of the bio-physical associations between 

hydrologic variability and stream biological communities is a critical scientific and 

management challenge. This would allow predicting how human perturbations affect 

river ecosystem (Poff et al., 1996; Poff et al., 2010) and the alteration thresholds that 

should not be exceed to maintain and restore these ecosystems and the associated 

services they provide (Naiman et al., 2008).  

However, it frequently happens that little or no streamflow data are available at a site of 

interest, e.g. where biomonitoring is carried out (Sanborn and Bledsoe, 2006; Zhang et 

al., 2008; Poff and Zimmerman, 2010). This hinders the exploration of the flow regime 

influence over stream ecology. Natural flow regime can be disentangle and simplified in 

a collection of ecological relevant hydrological indices (Olden and Poff, 2003). Hence, 

the interest in the prediction of these hydrological indices at ungauged streams has 

rapidly grown in last years (Kennen et al., 2008; Carlisle et al., 2010). Flow regime has 

been usually predicted through the development of numerical rainfall-runoff models 

which allows the simulation of continuous hydrographs across periods of several 

decades (Yadav et al., 2007; Murphy et al., 2013). The extensive application of these 

models is associated with their flexibility to calculate any number of hydrological 

indices. However, the reliability of the modelled series may be constrained given the 

complexity to estimate model parameters (Duan et al., 2006), the large set of gauged 
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basins and spatial coverage of rainfall needed to calibrate models (Sauquet, 2006), the 

conceptual errors in the models (Kirchner, 2006) and the inadequate quantification of 

uncertainty (Beven, 2006; Wagener and Montanari, 2011). Other approaches have 

been designed to increase the spatial extend of forecasting river flow regimes. For 

instance, statistical downscaling models have been developed to simulate flows directly 

from atmospheric variables (Tisseuil et al., 2010). However, the oversimplification of 

the hydrological cycle and the catchment functioning are major criticisms to this 

approach.  

On the other hand, empirical relationships and models for predicting specific 

hydrological indices based on climate, catchment spatial configuration, geology and 

land uses have also received wide attention for several decades (Rice, 1972; Stedinger 

and Tasker, 1985; Burn and Boorman, 1993; Yu et al., 2002). Most of the work has 

been accomplished from an engineering perspective to deal with water resource and 

flooding issues. Hence, models to predict average flows, flood quantiles, durations and 

volumes, flow duration curve parameters or low flow parameters dominate the literature 

(Sanborn and Bledsoe, 2006). In contrast, prediction of ecologically relevant 

hydrological indices have received limited attention (Knight et al., 2011). Most often 

they have not gone beyond the prediction of minimum environmental flows (O'Shea, 

1995; Alcázar and Palau, 2010) while few studies have focused on ensembles of 

hydrological indices embracing different aspects of the flow regime (Sanborn and 

Bledsoe, 2006; Carlisle et al., 2010; Knight et al., 2011). 

Despite the non-linearity and complexity of hydrological processes emphasized by 

several authors (Dawson et al., 2006; Shu and Ouarda, 2008; Snelder et al., 2009), 

multiple linear regression has been the most common statistical technique in the 

prediction of hydrological indices (Sanborn and Bledsoe, 2006; Yadav et al., 2007; 

Knight et al., 2011). Several authors have pointed out the potential improvement on 

model performance when using other statistical procedures that do not assume specific 

distribution fittings (Sanborn and Bledsoe, 2006; Shu and Ouarda, 2008). In this 

regard, there are a number of machine learning techniques that vary in how they fit 
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functions, model the distribution of the response variable, manage variable interactions 

and weight the contribution of predictor variables (Elith et al., 2006; Olden et al., 2008). 

Many examples exist on the use of these statistical techniques to model species 

distribution (Manel et al., 1999; Olden and Jackson, 2002; Elith et al., 2006), 

geomorphology and landforms (Luoto and Hjort, 2005; Marmion et al., 2008), forest 

characteristics (Moisen and Frescino, 2002), nutrient load dynamics (Marce et al., 

2004) or water quality (Zhang et al., 2012). However, the application of machine 

learning techniques to predict hydrological indices has been still vague (Muttiah et al., 

1997; Dawson et al., 2006; Alcázar et al., 2008; Shu and Ouarda, 2008). In addition, to 

our knowledge there are no studies which have analyzed the actual benefits of 

machine learning techniques over multiple linear regressions in the field of hydrology 

(but see Dawson et al., 2006; Snelder et al., 2009). 

On the other hand, several authors (Laaha and Bloschl, 2006; Sanborn and Bledsoe, 

2006; Alcázar and Palau, 2010) have pointed out the importance of segregating 

streams in hydrologically similar classes before conducting the statistical modelling. 

This named “Regional Regression Approach” (RRA) has been widely applied for the 

prediction of both low (Santhi et al., 2008; Alcázar and Palau, 2010) and high flow 

hydrological indices (Burn and Boorman, 1993; Shu and Ouarda, 2008). By dividing a 

study area into classes the intra-class homogeneity generally increases and regression 

equations may be used with a greater confidence (Yu et al., 2002). However, the 

improvement in the prediction accuracy does not depend only in the reduction of the 

intra-class heterogeneity but in the linearization of the relationship between response 

and predictor variables, which is not always achieved when using the RRA. In contrast, 

Booker and Snelder (2012) and Dawson et al. (2006) pointed out the inconvenience of 

reducing the number of sites (i.e. data) when running regressions. Hence, a trade-off 

between homogeneity and the size of the group must be considered (Ouarda et al., 

2001). 

In this study we concentrated on developing statistical models for 16 hydrological 

indices covering the full range of ecologically relevant hydrological attributes (i.e. 
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magnitude, timing, frequency, duration and rate of change; Poff et al., 1997). We used 

one traditional technique (Multiple Linear Regression: MLR) and four more complex 

techniques which apply contrasting rationale to model the distribution of the response 

variable: Generalized Additive models (GAM), Random Forest (RF), Artificial Neural 

Network (ANN) and Adaptative Neuro-Fuzzy Inference System (ANFIS). In addition, we 

looked at whether the RRA has any advantages on model performance in comparison 

to the global MLR model. To achieve this, individual MLR models were obtained for 

specific hydrological classes and their performance was compared to a MLR developed 

on the overall data set. Therefore, the objectives of this study were to (1) explore the 

ability of models to predict different types of hydrological indices, (2) evaluate and 

compare the performance of 5 statistical techniques to predict 16 hydrological indices 

to ungauged sites and (3) examine the benefits associated to model hydrological 

indices when using a “Regional Regression Approach”. We hypothesize that the four 

complex techniques would deal better with the non-linear relationship between 

environmental variables and hydrological indices and thus, outperform MLR. Moreover, 

we expect that the classification process would homogenize the relationship between 

hydrological indices and catchment characteristics and, thus, MLR class models would 

outperform the global model. 

5.2 Methods 

5.2.1 Hydrological indices and environmental variables selection and 

processing 

Many studies support the use of hydrological indices to analyze processes in 

freshwater ecosystems (Olden and Poff, 2003), including the effects over invertebrates 

(Larned et al., 2010; Chinnayakanahalli et al., 2011), fishes (Fausch et al., 2001; 

Snelder and Lamouroux, 2010), riparian vegetation (Pettit et al., 2001; Bejarano et al., 

2011) and geomorphology (Flores et al., 2006; Peñas et al., 2011; Belmar et al., 2013). 

However, it was beyond the scope of this study to predict and evaluate all the 

hydrological indices currently in use (see Olden and Poff, 2003) and therefore, we 
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selected one or several indices representing each of the five ecological relevant 

aspects of the flow regime, i.e. magnitude, timing, frequency, duration and rate of 

change (Table 5.1). 

Index Type Units Description 
MLR 

transformation 

L1 MA m3/s 
Linear moment that represents the 
mean daily annual flow 

x1/5 

L2 MA m3/s 
Linear moment that represents the 
variance of the daily annual flow. 

x1/5 

M4 MA m3/s Mean daily april flow x1/5 

M9 MA m3/s Mean daily september flow x1/5 

30LF ML m3/s 
Magnitude of minimum annual flow 
of 30 day duration.  

x1/6 

X95 ML m3/s 
Mean magnitude of flow exceeded 
95% of the time 

x1/4 

30HF MH m3/s 
Magnitude of maxima annual flow 
of 30 day duration 

x1/5 

X5 MH m3/s 
Mean magnitude of flow exceeded 
5% of the time 

x1/6 

Jmax T Day of year Julian day of annual maximum none 

Jmin T Day of year Julian day of annual minimum none 

Pred T  Predictability  log(x+1) 

FRE3 F Events/year 
Number of high flow events per 
year using an upper threshold of 3 
time median flow over all years 

none 

dPHigh DH Days Duration of high flow pulses log(x+1) 

dPLow DL Days Duration of low flow pulses x1/6 

nPos RC Days 
Number of days with increasing 
flow 

log(x+1) 

nNeg RC Days 
Number of days with decreasing 
flow 

none 

Table 5.1 - Hydrological Indices for which models were developed and their type of hydrological attribute 

(MA: Magnitude Average; MH: Magnitude High; ML: Magnitude Low; T: Timing; F: Frequency; DH: 

Duration of high flow events; DL: Duration of low flow events; RC: Rate of change). 

In addition, a final set of 17 variables describing several environmental attributes 

including climate, topography, land cover and geology were selected (Chapter II; Table 
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2.2.). It must be pointed out that variables related to catchment geology and soil 

permeability were initially included to fit the models. However, given that these 

variables were not selected by any model they were excluded from posterior analyses. 

In addition, the limitations associated with the maximum number of degrees of freedom 

allowed by the different techniques were considered and hence, a maximum of 6 

variables was established for the initial models (before conducting a stepwise 

regression). The selection of these 6 variables was based on the combination of scatter 

plots (hydrological indices versus environmental variables) and parametric correlations 

to identify those environmental variables that were most meaningful for prediction of 

each dependent variable (Knight et al., 2011). 

Both hydrological indices and environmental variables were transformed according to 

the requirements of MLR, GAM, ANN and ANFIS, while the raw data were used in the 

RF models. Specific transformations (Tables 1 and 2) were applied to meet 

assumptions of normality, homoscedasticity and linearity for the MLR. If data did not 

meet the assumptions by any transformation the one that was closer to meet the 

requirements was used. Regarding ANN and ANFIS, the dependent and independent 

variables must exhibit particular distributional characteristics (Olden and Jackson, 

2002).Thus, the hydrological indices were converted to the range [0 1] while the 

environmental variables were converted to z-scores (i.e. mean=0, standard 

deviation=1). 

5.2.2 Modelling Techniques 

5.2.2.1   Multiple Linear Regression (MLR) 

Multiple Linear regressions (MLR) assume a linear relationship between the predictor 

and the response variables. MLR provides an equation that takes the form:  

ܻ ൌ  ߚ   ଵߚ  ଵܺ    ଶܺଶߚ    …    ܺߚ   ߝ 

Where Y is the hydrological index of interest, βo is the intercept, Xi are the selected 

environmental variables, βi are the model parameters and ε are the normally distributed 



 
 

Chapter V Modelling hydrological indices to ungauged rivers 
 

 

 
 

 
 

178 

 
 

model errors. The relative importance of each variable was established based in the 

comparison of the regression test statistic T value and its associated p-value.  

Variable Acronym
MLR 

Transformation 

Annual Precipitation Pre none 

April Precipitation Pre4 none 

Summer precipitation PreQ7 x1/3 

Maximum Precipitation PreMx none 

Minimum Precipitation PreMn x1/2 

Minimum Month MPrMn None 

Monthly Precipitation 
range 

MPrRn x1/6 

Quarterly Precipitation 
range 

QPrRn x1/3 

Temperature Tem none 

Summer temperature TemQ7 none 

Annual Precipitation Pre none 

April Precipitation Pre4 none 

Summer precipitation PreQ7 x1/3 

Catchment area Are x1/5 

Gradient Gra x1/2 

Elevation Ele x1/2 

Agriculture Agr arcsin(x) 

Forest For arcsin(x) 

Table 5.2 - Environmental variables and transformations used in the models of the 16 hydrological indices. 

As exposed above, several authors (Sanborn and Bledsoe, 2006; Alcázar and Palau, 

2010), considered the classification of the study area into distinct streamflow regime 

types as a critical step for developing robust predictive models (the RRA approach). 

The classification of the study zone may reduce the intra-group heterogeneity and thus, 

it would improve the models that are based on the overall data set. Based on this 

hypothesis we tested the predictive performance of MLRs developed for the 16 
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hydrological indices using the entire dataset (all sites included: the global MLR model) 

with MLR models developed for each hydrological class. We used 2 hydrological 

classifications with 2 and 6-Class levels (Figure 5.1), thus, 2 and 6 MLR models were 

developed for each of the 16 hydrological indices. Both classifications were developed 

using the Predict-Then-Classify strategy (Chapter III). The 2-Class levels classification 

segregates the streams situated in the aridest zones of the study area from all the 

others. In the 6-Class level classification classes 1 and 2 are distributed throughout the 

northern coastal catchments and the north-western section of the Ebro basin. Class 3 

extends throughout the headwaters and mid reaches draining from the Pyrenean 

range, while Class 4 is represented by rivers situated in the western most section of the 

Ebro depression. Class 5 includes rivers in the Ebro depression and several of the 

Catalan catchments, while Class 6 is represented by streams situated in the southern 

section of the Iberian massif. 

5.2.2.2   Generalized Additive Models (GAM) 

The Generalized Additive Models (GAM) are semi-parametric models (Hastie and 

Tibshirani, 1986). They differ from multiple linear regressions in two major respects: (1) 

Predictor variables are related to the dependent variable through a link function and (2) 

the simple terms of the linear equation βi*Xi are replaced with fi(Xi) where fis are a non-

parametric function or smoother of the predictor Xi. In other words, instead of a single 

coefficient for each variable in the model, in GAMs an unspecified (non-parametric) 

function is estimated for each predictor to adapt it to the local behaviour of the 

regression function almost independently in several regions (Venables and Dichmont, 

2004). In the present study the data did not adjust to any of the common link functions 

(i.e. Poisson, Gamma, Binomial). Hence, it was decided to apply the identity link 

function of the Gaussian family to the transformed variables given that they were 

assumed to be normally distributed. This allowed isolating and focusing on the use of 

smother functions to deal with the non-linearity of the relationships between 

hydrological indices and the environmental variables.  
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Figure 5.1 - Spatial distribution of gauges in the 2 and 6-Class level classifications developed through the 

Predict-Then-Classify strategy. 

Thin plate regression splines smothers were used with a maximum of 3 degrees of 

freedom. In the case that the estimated degrees of freedom of a specific environmental 

variable were 1 or close to 1, i.e. the relation between predictor and response variables 

is almost linear, but it still contributed significantly to the model, we replaced the 

smooth with a parametric linear term. Parallel to MLR, the relative importance of each 

variable was established based in the comparison of the regression test statistic T 

value and its associated p-value. 

5.2.2.3   Random Forest (RF) 

A Random Forest (RF; Breiman, 2001; Cutler et al., 2007) comprises an ensemble of 

individual Classification and Regression Trees (CART; Breiman et al., 1984) and can 

be used with both categorical and continuous response variables. CART split the 
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dimensional space defined by the predictors into groups that are as homogeneous as 

possible based on series of binary rules. CART has been widely applied because of 

their simple interpretation, high classification and regression accuracy and ability to 

characterize complex interactions among variables (Cutler et al., 2007). Nevertheless 

they have the limitation of not searching for optimal tree structures and being sensitive 

to small changes in input data (Hastie et al., 2001). This flaws are overcame by RF 

which introduces random variation to CART by growing a defined number of trees with 

a bootstrap sample of the training data and only using a small random sample of the 

predictors to define the split at each node. Independent predictions are made for each 

CART from observations that were excluded from the bootstrap sample (OBB samples) 

obtaining a coefficient of determination (R2) of the regression. The final prediction 

accuracy of the RF model is the averaged prediction over all trees. In addition, the 

importance of the predictor variables is evaluated by randomly permuting each 

predictor variable in turn and predicting the response of the OBB observations. The 

decrease in prediction performance is the measure of importance of the original 

variable. 

5.2.2.4   Artificial Neural Networks (ANN) 

Artificial Neural Network (ANN) are nonlinear mapping structures based on the 

functioning of the human brain and have been shown to be a promising area for 

predictive modelling (Lek and Guegan, 1999). In this study we developed for each 

hydrological index a multi-layer feed-forward ANN trained by back propagation 

algorithm (Rumelhart et al., 1986). The architecture of this type of ANN comprises non-

linear elements (neurons) arranged in successive layers in which the information flows 

through a hidden layer from the input layer (environmental variables) to the output layer 

(hydrological index) (Figure 5.2). Nodes from one layer are connected to all nodes in 

the adjacent layer, but neither lateral connections within any layer, nor feed-back 

connections are possible. Input layer and hidden layers can include a constant neuron 

relating to intercept synapses, i.e. synapses that are not directly influenced by any 

covariate (bias). Neurons are connected by weight links that were modified during 
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successive iterations (1000 in this study) according to the back propagated error 

computed between the observed and the predicted output values (Lek et al., 1996). In 

this study the logistic function, a differentiable function of the neuron’s total incoming 

signal from the precedent neurons to produce the state of the subsequent neurons 

(Olden and Jackson, 2001), has been used. 

 One important task regarding ANN model is the selection of the network architecture, 

i.e. number of neurons in the hidden layer, which optimizes bias and variance while 

avoiding data overfitting. To define the number of neurons in the hidden layer a 5-fold 

cross validation procedure was applied. According to these results the ANN with 

highest performance was selected for subsequent analysis. In addition, the initial 

weight link for each connection was randomly selected. To avoid the effect that this 

randomness could produce in the final weight adjustment, each neural network was run 

100 times. The contributing importance of each environmental variable in the final 

model was determined by calculating the product of the connection generalized 

weights (i.e. input-hidden x hidden-output weights) between its input neuron and the 

output neuron and then summing the products across all hidden neurons (Olden and 

Jackson, 2002). 

 
Figure 5.2 - Diagram of a multi-layer feed-forward neural network with 5 input neurons (Xi), one output 

neuron (Y), one hidden layer consisting of three hidden neurons (A-C) and a one constant neuron for each 

layer (1 and 2). The thickness of the lines joining neurons is proportional to the magnitude of the 

connection weight and the shade indicates the direction of the interaction: black connections are positive 

and gray connections are negative (adapted from Olden and Jackson, 2002). 
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5.2.2.5   Adaptative Neuro Inference Systems (ANFIS) 

Adaptative Neuro-fuzzy inference system (ANFIS) combine qualitative aspects of the 

human knowledge employing if-then rules, typical from the Fuzzy Inference Systems 

(FIS), with effective and advanced machine learning method (neural networks) to 

adjust and tune these rules so as to maximize model performances (Jang, 1993).  

A FIS is base mainly on the fuzzy decision rules and the fuzzy reasoning unit (Jang, 

1993; Jang and Sun, 1995). The fuzzy decision rules or if-then rules are the way a FIS 

relates an input variable (X) to an output variable (Y). There are rules expressed in the 

form: if X is A then Y is B where A (premise) and B (consequence) are labels of fuzzy 

sets, i.e. linguistic values, characterized by appropriate Membership Functions (MF). 

The Fuzzy reasoning is an inference procedure used to derive conclusions from a set 

of fuzzy decision rules. The steps of fuzzy reasoning performed by a FIS are (Jang, 

1993; Figure 5.3): 

1. Compare the input variables with the MFs on the premise part of the fuzzy rules 

to obtain the probability of each linguistic label (fuzzification). 

2. Combine (through logic operators) the probability on the premise part to get the 

weight of each rule.  

3. Generate the qualified consequent of each rule depending on their weight. 

4. Aggregate the qualified consequents to produce a crisp output (defuzzification). 

Given an input-output problem, the construction of a FIS has two fundamental steps: 

the specification of an appropriate number and type of input and output MFs (structure 

identification), and the specification of the shape of the MFs (parameter estimation). 

Whereas the structure identification is solved by human expertise or trial-and-error, 

numerical methods have been proposed to solve the parameter estimation step. In this 

paper, we used an approach, which takes advantage of adaptive neural networks 

algorithms during fitting procedures.  
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Figure 5.3 - Steps in the fuzzy reasoning. The example contains two input variables, one output and two 

if-then rules for each input. (source Marce et al., 2004). 

The structure identification was solved applying a trial-and-error procedure and a 

conservative criterion (i.e. minimum number of parameters to the best fit). Moreover, 

since the number of parameters to be fit increase exponentially with the number of 

variables and MF and the total number of parameters should not exceed 1/6 the 

number of cases (Marce et al., 2004), a maximum of 6 predictor variables and 3 MFs 

for each variable was established. Once the structure was defined, the parameter to be 

estimated (Gaussian input MF parameters and output constants) was defined by the 

hybrid learning algorithm. To avoid overfitting problems during the estimation of these 

parameters, the data set was randomly split into a training set (2/3 of the data set) used 

to fit the values and a trial set (1/3 of the data), which was not used by the hybrid 

learning algorithm. The splitting procedure was repeated 200 times and each time the 

parameters were adjusted individually. This procedure was implemented in a jacknife-

cross validation procedure (presented below) in which each observation is left out 

during the hybrid learning process. Then the parameters estimated in each of the 200 

iterations are used to predict the value of the specific hydrological index, obtaining 200 

different values. The final predicted value for the site corresponds to the mean value of 

the 200 predictions. Finally, to obtain the importance of the predictors in each model, 
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environmental variables were removed from the model one at a time while holding all 

other predictor variables. The larger the decrease of predictive performance the larger 

importance is assumed for that variable. 

For the 5 modelling techniques, Backward Stepwise Regression (BSR) technique was 

used to define a final model that contains uniquely the actual contributing variables. In 

BSR the first model includes all predictor variables, and then they are deleted one at a 

time until removing variables degrade the quality of the model. Akaike Information 

Criteria (AIC; Akaike, 1973) was used to evaluate the trade-off between degrees of 

freedom, i.e. number of explanatory variables included in the model, and the fitting of 

the model when explanatory variables are added or removed. Models with smaller AIC 

values (indicating adequate fit with fewer parameters) are preferred.  

5.2.3 Validation and evaluation of model performances 

A jack-knife cross–validation procedure (Efron, 1982) was used to test the predictive 

performance of each modelling technique for the 16 hydrological indices. This cross 

validation procedure was applied by leaving out one gauge at a time, developing a new 

model based on the remaining 155 observations and finally estimating the hydrological 

index for the left-out gauge. The results from this procedure produced estimates of 

each hydrological metric as if the gauging station was an ungauged site. The variation 

between observed and predicted values represents the uncertainty with which the 

model would be applied to predict index values at ungauged sites (Carlisle et al., 2010) 

and allow an assessment of the robustness of each method for estimating hydrological 

indices.  

After having estimated the jack-knifed values, we employed the root-mean-square-

deviance (RMSD) and the adjusted-R2 for assessing the correspondence between 

observed and estimated values and as a relative performance of each model (Van 

Sickle et al., 2006). Hence, models producing the lowest RMSD and the highest 

adjusted R2 were deemed superior. 
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5.3 Results 

5.3.1 Model performances and predictor variables 

Model performance was higher when predicting flow magnitude (MA, MH and ML) and 

frequency indices (FH: FRE7), than when predicting timing (T: JMax; JMin and Pred), 

duration (DH: dPHigh and DL: dPLow) and rate of change (RC: nPos and nNeg) 

indices (Table 3.3; Figure 5.4). MA (except for M9) and MH indices were predicted with 

excellent accuracy showing adjusted R2s that commonly exceeded 0.8. In contrast, 

models of 30LF and X95 registered reductions of adjusted R2 ranging from 15 to 25% 

relative to MA and MH indices. 

Are and annual (Pre), quarterly (PreQ7) and monthly precipitation (Pre4) were the most 

important variables in practically all these models, especially those developed for MA 

and MH (Table 5.4). On the other hand, when predicting M9 and ML indices other 

environmental variables, such as gra, EvMx and QPrRn, presented high contribution 

rates to the models. Models of timing indices showed the lowest predictive 

performances (Table 5.3), i.e. the highest deviations of predicted values relative to 

observed (Figure. 5.4). In general, adjusted R2s for JMax and JMin indices were not 

greater than 0.2, while the best model for Pred reached 0.4 (Table 5.3). Pre and 

MPrRn were selected in all models for Jmax. MPrRn, Eva and Ele were commonly 

included in the models for JMin, while three of these models also included MPrMn as 

the most contributing variable. Pred was related mainly to PreMx and Gra (Table 5.4). 

FRE3 could be predicted with a maximum adjusted R2 of 0.71 and the most influential 

variables were Ele, PrMx and QPrRn. Models for predicting dPHigh and dPlow rarely 

reached adjusted R2 over 0.3 and PrMx and PrMn were the most contributing variables, 

respectively. Finally, models for nPos and nNeg showed adjusted R2 close to 0.5 

(Table 5.3). Pre, Ele and MPrRn were the most influential variables in all of these 

models (Table 5.4). 
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 MLR GAM RF ANN ANFIS 

Index Adj r2 RMSD Adj r2 RMSD Adj r2 RMSD Adj r2 RMSD Adj r2 RMSD 

l1 0.77 2.99 0.82 2.67 0.78 2.95 0.79 8.03 0.87 2.21 

l2 0.74 1.79 0.80 1.56 0.75 1.73 0.85 1.35 0.79 1.59 

M4 0.74 4.88 0.80 4.32 0.72 5.02 0.80 4.24 0.88 3.37 

M9 0.73 1.07 0.76 1.01 0.72 1.09 0.63 1.24 0.74 1.05 

30LF 0.58 0.67 0.59 0.52 0.60 0.66 0.49 0.74 0.63 0.62 

X95 0.54 0.55 0.54 0.54 0.52 0.58 0.50 0.57 0.60 0.51 

30HF 0.77 9.05 0.82 8.04 0.75 9.59 0.84 7.57 0.88 6.48 

X5 0.75 10.55 0.80 9.27 0.74 10.73 0.79 9.69 0.84 70.89 

JMax 0.18 21.94 0.18 22.14 0.15 22.14 0.16 22.12 0.19 21.73 

JMin 0.19 17.63 0.19 17.65 0.19 17.66 0.11 18.54 0.25 17.01 

Pred 0.16 0.13 0.33 0.12 0.32 0.12 0.25 0.12 0.41 0.11 

FRE3 0.64 1.07 0.71 0.97 0.62 1.1 0.69 1.01 0.69 1.02 

dPHigh 0.24 4.94 0.29 4.82 0.37 4.50 0.27 4.88 0.30 4.74 

dPLow 0.30 25.29 0.32 24.72 0.28 25.62 0.30 25.27 0.27 25.81 

nPos 0.46 12.47 0.51 11.94 0.53 11.72 0.46 12.51 0.54 11.50 

nNeg 0.45 12.55 0.51 11.97 0.52 11.83 0.47 12.45 0.50 12.13 

Table 5.3 - Predictive accuracy for the 16 hydrological indices using 5 different modelling techniques. The accuracy is estimated by the adjusted R2 and the 

RMSD (Root Mean Square Distance). Increases of adjusted R2 beyond 5% of MLR balues are represented by bold letters. Underlined values indicate the 

model with the lowest predictive performance. To allow reliable comparisons all the RMSD were calculated after converting the variables to raw variables 

values. 
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Figure 5.4 - Observed versus jack-knifed predictions of 7 hydrological indices representing the 5 attributes 

of the flow regime: Magnitude (l1; 30LF; 30HF); Timing (Pred); Frequency (FRE3); Duration (dPHigh); 

Rate of Change (nPos). Note that for reliable comparisons all variables were transformed to the original 

raw data distribution. 
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 Are Gra Ele Agr For Pre Pre4 PreQ7 PreMx PreMn MPrMn QPrRn MPrRn Tem Tem4 TemQ7 Eva EvMx 

l1                   

l2                   

M4                   

M9                   

30LF                   

X95                   

30HF                   

X5                   

JMax                   

JMin                   

Pred                   

FRE3                   

dPHigh                   

dPLow                   

nPos                   

nNeg                   

Table 5.4 - Environmental variables contribution to model the 16 hydrologicalal indices. Decreasing darkness shade indicates lower average variable 

contribution in the models. The overall contribution of variables was computed according to the variables importance in the models developed with the 5 

different modelling techniques (MLR; GAM: RF: ANN; ANFIS) for each hydrological index. Each environmental variable was weighted according to the order 

in the model (6 for the most important variable and 1 for the least important variable) and the results were summed through the 5 different models. 



 
 

Chapter V Modelling hydrological indices to ungauged rivers 
 

 

 
 

 
 

190 

 
 

5.3.2 Comparison between modelling techniques 

Differences on prediction accuracy obtained by the different modeling techniques were 

not large (Table 5.3; Figure 5.4). However, it must be remarked that GAM and ANFIS 

techniques outperformed MLR by more than 5% of the adjusted R2 in 10 and 13 

hydrological indices, respectively. The greatest improvement on predictive performance 

was observed for magnitude indices. ANFIS supposed a mean increase of 7% of the 

adjusted R2 in relation to MLR in all the magnitude indices, while the differences 

reached up to more than 10% if only MA and MH indices were considered. Differences 

between MLR and GAM were less marked and improvements in adjusted R2s beyond 

5% were only found for MA and MH indices. In addition, ANFIS and GAM outperformed 

MLR in one or several of the other indices types (T, F and RC). On the other hand, RF 

and ANN did not show important enhancements in relation to MLR. Moreover, RF and 

ANN obtained the least accurate models for 6 and 3 indices, respectively. Nonetheless, 

MLR did not outperformed RF in more than 2% in most of the cases, while for pred or 

dPhigh RF outperformed MLR in more than 10%. Similarly, MLR did not outperform 

ANN in more than 3%. In contrast, for 5 indices ANN obtained adjusted R2s 5% higher 

than those obtained by MLR. 

5.3.3 The regional regression approach 

Class 1 MLR models registered a general increment in predictive performance in 

comparison to the global model, when using the 2-Class level classification (Table 5.5). 

Indeed, relationships between hydrological indices and the most contributing 

environmental variable showed in general less data dispersion after classification 

(Figure 5.5). On the other hand, models from Class 2, which included streams situated 

in the aridest zone, showed adjusted R2s below 0.3 in most of the cases.  
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 Level 2 Level 6 
 Cl1 (124) Cl2 (32) Cl1(50) Cl2 (38) Cl3 (26) Cl4 (23) Cl5 (6) Cl6 (13) 

Index R2 RMDS R2 RMDS R2 RMDS R2 RMDS R2 RMDS R2 RMDS R2 RMDS R2 RMDS 

l1  0.86 2.52 0.34 0.89 0.89 2.32 0.90 1.92 0.64 4.48 0.84 1.67 0.71 0.18 0.39 0.71 

l2  0.81 1.61 0.25 0.55 0.87 2.36 0.88 1.11 0.62 2.26 0.77 1.30 0 1.01 0.02 0.40 

M4 0.85 4.05 0.20 1.52 0.88 3.84 0.90 2.96 0.71 5.28 0.81 3.80 0 19.50 0.02 0.40 

M9 0.78 1.05 0.07 0.41 0.78 0.82 0.72 0.90 0.57 0.64 0.89 0.23 0 0.40 0.45 0.67 

30LF 0.65 0.67 0.02 0.38 0.79 0.36 0.67 0.63 0.41 1.30 0.76 0.21 0 6.53 0 0.57 

X95 0.53 0.36 0.04 0.28 0.59 0.37 0.70 0.49 0.41 1.00 0.50 0.20 0 0.80 0 0.39 

30HF 0.85 7.93 0.24 3.35 0.92 6.52 0.87 6.45 0.62 12.46 0.78 7.10 0 6.70 0.28 2.86 

X5 0.80 9.91 0.28 2.93 0.84 10.29 0.87 6.97 0.52 0.60 0.80 6.48 0.14 0.89 0.38 1.93 

Jmax 0.17 21.11 0.10 25.28 0.03 20.16 0.02 16.77 0.88 17.88 0.19 29.20 0.46 26.27 0.17 25.05 

JMin 0.09 17.71 0.33 18.10 0 19.67 0.11 11.80 0.36 12.66 0.09 21.40 0 379.98 0 29.36 

Pred 0.31 0.09 0.30 0.17 0.04 0.10 0.07 0.09 0.74 0.09 0.24 0.11 0.24 0.11 0.07 0.09 

FRE3 0.53 1.02 0.32 1.16 0.21 0.77 0.47 0.80 0.62 0.77 0.57 1.08 0 23.30 0 1.38 

Table 5.5 - Predictive accuracy of the Multiple Linear Regression Models (MLR) after hydrological classification (2 and 6-Class levels). Increases of adjusted 

R2 beyond 5% in relation to the global MLR are represented by bold letters. Decreases of adjusted R2 beyond 5% in relation to the original MLR are 

represented by bold letters. Numbers in parenthesis indicate the number of sites per class. 
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 Level 2 Level 6 
 Cl1 (124) Cl2 (32) Cl1(50) Cl2 (38) Cl3 (26) Cl4 (23) Cl5 (6) Cl6 (13) 

Index R2 RMDS R2 RMDS R2 RMDS R2 RMDS R2 RMDS R2 RMDS R2 RMDS R2 RMDS 

dPHigh 0.30 3.40 0 8.22 0.08 1.49 0.24 10.09 0.23 3.96 0.14 6.48 0  0 4.45 

dPLow 0.25 24.34 0.05 28.49 0.19 16.90 0.05 29.96 0.19 16.90 0 32.29 0 49.06 0 48.62 

nPos 0.23 11.63 0.31 10.80 0 11.89 0.01 10.76 0.56 9.11 0.01 10.76 0 11.89 0.24 8.67 

nNeg 0.24 11.71 0.34 10.49 0 12.31 0,03 10.78 0.05 13.89 0.02 14.72. 0.08 8.91 0.10 10.50 

Table 5.5 (continued). 
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Figure 5.5 - Scatter plot of 7 hydrological indices versus the most contributing predictor variable attending to three different classification schemes: The 

overall data set (A), the 2-Class level classification (B) and the 6-Class level classification (C). Each index represents one of the ecologically relevant aspects 

of the flow regime: Magnitude (l1; 30LF; 30HF), Timing (Pred), Frequency (FRE3), Duration (dPHigh) and Rate of Change (nPos). Variables are presented 

after applying the transformations indicated in Tables 5.1 and 5.2. 
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When using the 6-Class level classification, a linearization and reduction of data 

dispersion regarding magnitude indices was observed for Class 1 and 2 (Figure 5.5). 

These models got an increase of 15% in their adjusted R2 values relative to the global 

model. Class 4 models produced the most similar results to those obtained with the 

global model, while Class 3 models performed worse than the global model for all the 

magnitude indices (Table 5.5). Class 5 and 6 models also reduced their performance 

when compared to the global model. It should be note that both classes presented an 

extremely low number of sites to fit these models, which may have an important 

influence in these results. In relation to the remaining indices, no clear pattern was 

observed but in most cases lower prediction performance in comparison to the global 

model was recorded (Table 5.5; Figure 5.5). 

5.4 Discussion 

Our results denoted firstly, that predictive performance varied greatly according to the 

flow attribute been modelled. Magnitude indices were predicted with an excellent 

accuracy while timing indices were poorly predicted by all techniques. Second, not all 

complex statistical techniques outperformed MLRs and no single approach was optimal 

for all indices. However, GAM and ANFIS techniques generally improved the predictive 

performance of MLR for all indices, while most of the techniques outperformed MLR to 

model frequency, duration and rate of change indices. Finally, the segregation of 

gauges according to a hydrological classification enhanced the prediction accuracy of 

MLR only for those indices that explained the major part of the hydrologic variability 

within classifications, i.e. the magnitude indices. Nonetheless, this result was just 

observed in those classes that presented the less variable flow regime and retained at 

least 20 sites. 

5.4.1 Model performances and predictor variables 

This study confirms the findings of other works that not all the hydrological indices 

presented the same potential to be predicted (Yadav et al., 2007; Carlisle et al., 2010). 
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For instance, we found that 75% of the best models (i.e. the model with highest 

performance over the five techniques) developed for magnitude indices obtained 

adjusted R2s greater than 0.7. These represented significantly higher accuracies than 

those observed for the models of duration, rate of change and timing indices. FRE3, 

the uniquely frequency index included in this study, also presented predictive accuracy 

greater than 0.7. Within the magnitude indices, MA and MH performed better than ML 

indices. As expected, catchment area was the best predictor for all magnitude index 

models (Muttiah et al., 1997; Dawson et al., 2006; Eng and Milly, 2007). In addition, the 

high predictive performance of MA and MH indices is related to their dependence on 

precipitation events and direct catchment runoff (Poff et al., 1996; Tisseuil et al., 2010). 

These environmental variables were derived from a 25 m DEM and 1x1 km 

precipitation grids, respectively, and it was demonstrated that they were precise 

enough to produce reliable models. 

In most instances, the errors associated to the models of the ML indices have been 

relatively high (Smakhtin, 2001). Low flows are highly dependent on subsurface runoff 

and groundwater storage and circulation (Gordon et al., 2004; Harper et al., 2008) 

which are governed by complex physiographic functions. Given the lack of proper data 

bases and the difficulty to accurately calculate these processes (Kroll et al., 2004; Eng 

and Milly, 2007), predictor variables referring this attributes have been rarely included 

as predictor variables. On the other hand, several works have established significant 

correlations between ML indices and soil and geology characteristics (Gustard and 

Irvin, 1994; Clausen and Pearson, 1995; Kroll et al., 2004). The inclusion of these 

variables allowed obtaining prediction performances comparable to those showed by 

MA and MH indices (Sanborn and Bledsoe, 2006; Knight et al., 2011). In contrast, soil 

permeability or rock hardness were not included in the models developed in this study. 

It is likely that the little contribution of these variables was due to the precision of the 

geology and soil data rather than the lack of causal links. The most detailed soil and 

geology maps in the study area have a 1:200000 scale, which contrasts with the higher 

accuracy of the topography (25 m DEM), climatic (1x1 km grid) and land-use (1:25000) 
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data sources. Thus, we believe that improving soil and subsurface geology information 

should lead to improvements in modelling ML indices.  

Lastly, several authors have pointed out the relative influence of land use variables to 

predict flow magnitude indices (Clausen and Pearson, 1995). Contrary to expected, 

Agr and For were poorly represented in our models. The little contribution of land use 

was associated with their relatively low variability in the selected unimpaired gauges. In 

this regard, 90% of the sites presented Agr below 30% while 50% of the sites showed 

forest areas that covered more than 40% of the catchment. The Mediterranean 

character of the study area requires an intense water resource management to sustain 

the irrigation activity. Hence, most of the unimpaired gauges used to develop the 

models were situated in headwaters or middle reaches where agriculture activity is not 

as extended as in the lower areas of the catchments and forest or denuded areas 

dominate land cover. 

Regressions carried out elsewhere (Sanborn and Bledsoe, 2006; Knight et al., 2011) 

have encountered difficulties to predict accurately frequency indices. In contrast, we 

could predict FRE3 with a reasonable accuracy. Regressions usually recognized a 

positive association between frequency indices and elev (Yadav et al., 2007). Rivers in 

higher altitudes present, in general, smaller size relative to lower altitude rivers. Thus, 

moderate precipitation events are susceptible to produce flow episodes over a defined 

threshold (3 times the median flow). In contrast, larger rivers in lower elevations would 

need more intense or larger precipitations episodes to rise above this threshold. On the 

other hand, those moderate high flow events accounted in FRE3 usually last several 

days. The duration of these events contrasts with the time scale of the common 

available climate database. For instance, in our study area only mean monthly 

precipitation series were available, which presumably lacked the proper time scale to 

characterize these events. Hence, the availability of daily precipitation data would 

suppose a high benefit to predict these indices. In addition, the lack of proper predictor 

variables has been probably the critical element that hindered the development of more 

accurate models for the duration and rate of change and timing indices. Even so, 
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predictor variables derived from precipitation series (PreMx, PreMn and MPrRn) were 

the most contributing environmental variables in the models of the duration and rate of 

change indices. These relationships indicated that the most humid areas presented 

longer high flow and shorter low flow events together with a higher rate of flow rise and 

fall than zones where precipitation is scarce.  

5.4.2 Comparison of statistical techniques 

Our analysis demonstrated that all the statistical techniques presented similar potential 

to predict the selected hydrological indices. Moreover, there was not a unique 

technique that resulted optimal for all hydrological indices. Several works in modelling a 

variety of ecological and earth science topics have also highlighted that alternative 

complex techniques did not generally exhibit great differences in their prediction 

accuracy relative to traditional modelling approaches (Manel et al., 1999; Luoto and 

Hjort, 2005; Marmion et al., 2008). Nonetheless, results varied according to the 

modelled variable and its particular distribution pattern (Olden and Jackson, 2002). In 

contrast, other authors have found that complex statistical techniques outperformed 

linear approaches to predict hydrological attributes (Tisseuil et al., 2010; Booker and 

Snelder, 2012), fluvial nutrient load (Marce et al., 2004) or species distribution (Elith et 

al., 2006; Peters et al., 2007). Most of these authors emphasized the high flexibility of 

non-linear techniques in capturing complex relationships between predictor and 

response variables (Elith et al., 2006). However, when the underlying data structure 

and assumptions are met for a particular statistical method the application of complex 

techniques do not need to produce significant increments in the model performance 

(Olden and Jackson, 2002). For instance, when high degree of linearity between 

predictor and response was achieved, complex models, especially RF and ANN, did 

not generate much more accurate predictions than MLR. This is the case for magnitude 

indices (Figure 5.4). However, the four complex statistical techniques usually 

outperformed MLR in those indices in which linearity was hardly achieved, e.g. pred, 

FRE3, dPhigh, nPos and nNeg (Table 5.3). Nonetheless, it must be also stressed that 

GAM and ANFIS outperformed MLR (> 5%) in five and seven out of eight magnitude 
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indices, respectively. GAMs allow for both linear and non-linear additive response 

shapes (Hastie and Tibshirani, 1986; Wood and Augustin, 2002). Hence, despite the 

linearity of several relationships, GAM could tune the response more finely in specific 

sections where relationships were not linear. On the other hand, it is likely that some 

complex relationships between other environmental variables and hydrological indices 

were hardly represented by mathematical model (Shu and Ouarda, 2008). Hence, the 

ability to introduce verbal power through the combination of fuzzy decision rules and 

fuzzy reasoning process (Jang, 1993) gave a slight advantage to ANFIS models 

(Chang and Chang, 2006).  

The small gains in predictive performance of machine learning techniques can be 

attributed to the high degree of noise in the data (Moisen and Frescino, 2002) and the 

low number of training sites (Kampichler et al., 2010). Sources of noise are numerous 

when using gauged daily series. They include the difference in the length of the series 

(Kennard et al., 2010), the inclusion of non pristine gauges but the best available 

(Carlisle et al., 2010; Martinez-Fernandez et al., 2013) and errors associated to the 

measurement method in the gauges, especially during episodes of extreme high and 

low flows. Presumably, none of the statistical techniques used in this study was 

capable to deal with that noisy data better than the others. On the other hand, since 

machine learning techniques are viewed as data-intensive methods and the spatial 

availability of hydrological data sets is typically small, their application is limited. In this 

sense most of the studies in which machine learning methods outperformed linear 

approaches presented a number of sites ranging from several hundred (e.g. Booker et 

al., 2004) to more than a thousand (e.g. Prasad et al., 2006), which contrast with the 

156 sites used in this work. Therefore, the application of machine learning methods is 

promising where spatial cover of hydrological data is large.  

Beyond the predictive performance, other characteristics such as the computing time 

and the interpretability of the results, must be taken into account when selecting the 

optimal statistical technique. For instance, ANNs required the definition of the net 

structure while ANFIS required the definition of the number and shape of membership 
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functions. In both cases, it is recommended (Lek and Guegan, 1999; Marce et al., 

2004) to carry out these processes through an independent cross-validation process, 

as it was achieved in this work. On the other hand, the application of MLR involves 

complying with the assumptions of normality, homoscedasticity and linearity which was 

accomplished through variable transformations. Given the disparity nature of 

hydrological indices and environmental data, no single transformation could be applied 

systematically. In contrast, RF was the uniquely fully automated technique. The 

distribution of the variables do not have to comply any assumption and only the number 

of tress and the number of explanatory variables tried at each split must be determined 

(Liaw and Wiener, 2002), which reduces the time and facilitates its application to non-

statistic specialists.  

The last aspect to take into account is the ability to identify the possible causal 

relationships between the hydrological indices and the environmental variables. The 

five techniques agreed in the identification of the most important predictors for most of 

the models (Table 5.4). However, MLR and GAM allow straightforward insights 

between predictors and response variables (Manel et al., 1999). In contrast, machine 

learning methods have been largely seen as “black-boxes”. For instance, the 

development of ANN and ANFIS models and the comprehension of results require a 

high level of time and knowledge, although huge progress has been recently done to 

understand the causal relationships underlying these techniques (Olden and Jackson, 

2002; Marce et al., 2004). On the other hand, RF results from an ensemble of 

regression trees and may become also a black box when interpreting the results 

(Prasad et al., 2006). Nonetheless, the ‘RandomForest’ package of the R statistical 

software (R Development Core Team, 2008) incorporates specific functions to 

numerically and graphically (partial dependence plots) visualize the marginal effect of 

each predictor variable on the response. These features definitively facilitate the 

application and understanding of this technique over other machine learning 

approaches. 
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5.4.3 The regional regression approach 

The hydrological classifications used in this study were markedly dependent on the 

magnitude of mean, high and low flows and the shape of the hydrograph (Chapter III). 

This explained why the influence of classification was almost only evident in the models 

of the flow magnitude indices (Table 5.5; Figure. 5.5). 

In this study the RRA produced contradictory results depending on the specific class 

been modelled. The Class 1 models of the 2-Class level and the Class 1 and 2 models 

of the 6-Class level classification showed a significant higher predictive performance in 

relation to the global model, while Class 4 model showed a moderate improvement. In 

contrast, a loss of accuracy was found in the remaining classes. This result agreed with 

other authors who found increases or decreases of the prediction accuracy depending 

on the class been modelled (Gustard and Irvin, 1994; Dawson et al., 2006) while others 

have highlighted a general improvement after splitting the study domain (Clausen and 

Pearson, 1995; Laaha and Bloschl, 2006). Our initial hypothesis was that segregating 

river reaches according to a hydrological classification would reduce intra-group 

heterogeneity. This was only true for magnitude indices and for a limited number of 

classes (Figure 5.5).  

Sanborn and Bledsoe (2006) related the increase in accuracy for certain classes to the 

variability of the climatic drivers. For instance, precipitation in classes 1 and 2 in the 6-

Class level classification is abundant through the year and represents the main source 

of flow. Segregating, these two classes allowed that the relationship between area, 

precipitation and flow magnitude become more linear and straightforward (Figure 5.5). 

Elimination of gauges situated in more arid zones presenting large areas and low 

magnitude flows due to the scarce precipitations, might reduce the degree of noise in 

the analysis. Unlike classes 1 and 2, both snowmelt and rain can be considered the 

source of flow in class 3 (nivo-pluvial rivers), given that elevations are higher in 

Pyrenees than in Cantabrian Mountains. However, snowmelt and rains affect differently 

those rivers situated in the headwater to those in the middle reaches. This variability in 

the main source of flow together with the lack of predictor variables that account with 
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snow precipitation and accumulation is, presumably, the reason for the limited ability of 

models to predict flow magnitude indices in this class. However it must be noted that 

models of timing indices (JMax, Jmin and Pred) of class 3 have significantly 

outperformed the global model. This is likely associated with the high predictability of 

peak flows given the simultaneity of snow melting and precipitations in spring (Solans 

and Poff, 2013). Lastly, results showed that class 2 in 2-Class Level and classes 5 and 

6 in 6-Class Level classifications obtained the least accurate models. These rivers are 

situated in the aridest zones of the study area where river flow is dominated by the high 

intra and inter annual variability of Mediterranean areas (Vogel et al., 1999; Bonada 

and Resh, 2013). Moreover, class 6, which is situated in the southern sector of the 

Iberian Range, could be highly influence by groundwater flow patterns given the 

presence of soft carbonate rocks in this area (Solans and Poff, 2013).  

Therefore, although several authors (Sanborn and Bledsoe, 2006) have suggested the 

suitability of the RRA for modelling hydrological indices, the results obtained in this 

study have not showed a general improvement. Moreover, reduction of sites in many 

classes contributed to decrease the predictive performance in several classes.  

5.5 Conclusion 

The application of five modelling techniques to predict 16 environmental meaningful 

hydrological indices evidenced that all techniques might be suitable, since they showed 

similar prediction ability. Nonetheless, the equal accuracy of machine learning methods 

to more classical approaches may be associated with the low number of unaltered 

gauges used to fit the models. Widening this comparison to larger areas with a higher 

number of unaltered gauges will allow analyzing the actual potential of the most 

sophisticated methods. ANFIS, represented a slightly improvement over MLR, however 

the computational cost and the level of knowledge required to apply the method and 

interpret the results may limit its application. However, it was widely accepted that 

machine learning are capable to deal with linear and non-linear relationships. Hence, 

we believe that such approaches must be considered when it did not suppose a 
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significant increment in the required resources and the causal links could be clearly 

understood.  

On the other hand, not all hydrological indices were predicted with the same accuracy. 

This involves critical implications and limitations depending on the further uses of these 

predictions. Magnitude and frequency indices were generally predicted with excellent 

accuracy which opens a promising window to face several freshwater management 

and ecological interrogates. In contrast, none of the employed techniques was capable 

of developing precise models for timing, duration and rate of change indices. 

Therefore, an important effort should be done to improve environmental data bases in 

order to accomplish with this climatic, geological, edaphological and groundwater 

information in the appropriate spatio-temporal scale that influence flow regime patterns.  

Finally, it was demonstrated that a regional regression approach did not generally 

improve model predictions, except in some specific classes. The reduction of sites in 

several classes represented an important handicap that limited the model fitting 

process. However, the extension of this analysis to larger areas may allow better 

discerning of the actual benefits of the regionalization approach. 
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Chapter IV. Assessing hydrologic alteration: Evaluation of 

different alternatives according to data availability 

This study is under preparation to be submitted for publication in a SCI journal. 

Abstract 

The natural flow regime has been largely modified in rivers around the world. 

Understanding the extent to which flow regime deviates from natural conditions is a 

mandatory task to propose sound management and restoration measures. In this 

regard, “Indicators of Hydrologic Alteration” is currently seen as one of the most 

effective approaches for assessing the hydrologic alteration (HA). However, several 

factors such as the climatic variability between the pre and post-impacted series and 

the scarcity of hydrological data in many impaired rivers represent generalized 

drawbacks that should be addressed. In this study we present a protocol that provides 

5 alternative designs to evaluate hydrological alteration in relation to data availability: 

(1) Paired-Before-After-Control-Impact (BACIP), (2) Before-After (BA), (3) Control-

Impact (CI), (4) Hydrologic Classification (HC) and (5) Predicted Hydrologic Indices 

(HP). BACIP allows comparing the status of the impacted gauge before and after start-

up of the perturbation, as well as it controls for natural climatic changes. Hence, it has 

been considered as the reference benchmark for all other designs. The application of 

the protocol to 11 reservoirs situated in the northern third of the Iberian Peninsula 

highlighted that BA correctly evaluated 75% of the HAs when it was compared with 

BACIP. This indicated the little influence of climate variability between the pre- and 

post-impact series. Similarly, BACIP and CI showed an agreement over 70% which 

meant the suitability of hydrological classification for the selection of control gauges. In 

addition, our results pointed out that critical thresholds for the HA varied depending on 

the hydrological index been considered. This range went from less than 5% for the 

number of days with increasing and decreasing flows and over 64% for the duration of 

low flow pulses. This thresholds indicated when a hydrological alteration should be 

considered significant and the are very valuable for focusing further impacts on 



 
 

Chapter VI Assessing the Hydrologic Alteration  
 

 

 
 

 
 

216 

 
 

ecological processes. Finally, the application of HC and HP designs revealed a 

significant degree of uncertainty related with the intra-class variability and the predictive 

error of the models. This inhibited the evaluation of 25% of the analysis. However, in 

the evaluable cases HC and HP designs correctly assessed over 75% of the HA which 

highlighted the potential usefulness of this methods where streamflow data is scarce. 

6.1 Introduction 

The natural flow regime of streams in the five continents have been largely altered by 

the construction of more than 25.000 dams during the last century (Tharme, 2003; Poff 

et al., 2007). Reservoirs represent essential infrastructures to face the current and 

expected societal demand of water resources for irrigation, industry, energy production 

or drinking. On the other hand, the impairment of flow regimes seriously compromise 

not only the integrity of freshwater ecosystems but the ecosystem services they provide 

(Naiman et al., 2002). The influence of the natural flow regime on ecosystem 

processes and functions is well known (Richter et al., 1998; Snelder and Lamouroux, 

2010) and research focused on the ecological implications of altered flow regimes 

(Bunn and Arthington, 2002; Poff and Zimmerman, 2010) has increased rapidly since 

late 90s. 

It is now widely accepted that maintaining some degree of similarity to the various pre-

impacted combinations of flow magnitude, timing, duration, frequency and rate of 

change is required to maintain river processes and functions (Galat and Lipkin, 2000; 

Arthington et al., 2006; Schneider et al., 2013). In this regard, the first step through the 

adoption of appropriate conservation and recovery measures is identifying the extend 

that the flow regime deviates from natural conditions (Black et al., 2005). Reservoirs 

vary in size, level of impoundment, function and operational rules, so generalizations of 

their potential hydrologic alteration (HA) and ecological impact are difficult (Magilligan 

and Nislow, 2001). Hence, one of the most robust approach to determine the HA is the 

site specific comparison of pre- and post-regulation flow series (McManamay et al., 

2012). In this regard, the “Indicators of Hydrologic Alteration” (IHA) method developed 
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by the Nature Conservancy (Richter et al., 1996) has been used worldwide (e.g. Maingi 

and Marsh, 2002; Magilligan and Nislow, 2005; Yang et al., 2008; Fernandez et al., 

2012) and is currently seen as one of the most effective approaches for assessing the 

HA. The IHA method summarises pre and post-impact series in a number of hydrologic 

indices (HIs). Then, the IHA is defined for each HI as the magnitude of change 

between the two periods. Despite its widespread application and acceptance, the IHA 

presents several drawbacks that should be embraced to completely understand and 

determine the degree of HA of a river.  

Firstly, the results in the IHA are originally presented in terms of the magnitude of the 

impacts rather than as a statistical value for the null hypothesis that the pre- and the 

post-impact conditions are the same (Richter et al., 1996). Indeed, most of the 

applications of the method lack the definition of critical IHA thresholds that produce 

significant HA (Magilligan and Nislow, 2001; Hu et al., 2008). In other applications 

thresholds have been defined arbitrarily (e.g. IHA > 50%; Yang et al., 2008; Fernandez 

et al., 2012; Caruso, 2013). Contrary, the definition of critical IHAs based on objective 

statistical methods is an essential issue since it would reduce the scientific uncertainty 

that would guide management decisions. In this regard, given the structure of the data 

of the IHA method, quantitative and statistical analyses are not mutually excluding and 

beyond the magnitude of the difference, the statistical significance can be easily 

estimated (Magilligan and Nislow, 2005; Small et al., 2009).  

On the other hand, the natural climatic differences between the pre- and post-impact 

periods may exert a significant influence in the IHA outcomes (Zhao et al., 2012). 

Moreover, in the last decades, it has been observed a worldwide increasing trend in the 

Earth’s surface temperature which may cause changes in global atmospheric 

circulation, inducing changes in precipitation patterns (Suen, 2010; IPCC, 2013). These 

changes would be reflected ultimately in the flow regime. Hence, climate change 

constitutes another factor that may interact with other hydrologic perturbations (Naik 

and Jay, 2011; Schneider et al., 2013). In this regard, the application of the IHA method 

either from a quantitative or a statistical perspective would uniquely indicate whether a 
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change in state has occurred. However, it would not allow us to distinguish a change 

caused by the reservoir operation from a change that would have occurred even if the 

activity had not begun (Downes et al., 2002). Therefore, the actual HA caused by a 

dam can only be totally unmasked if a control site, uninfluenced by any perturbation, is 

used as a climatic control. Using the year values of the HIs at the control site as a 

measure of the state of the system through time, it is possible to statistically compare 

what it would have occurred in the impact site in the absence of the perturbation. This 

represents the basis for the Paired-before-after-control-Impact (BACIP) design 

(Stewart-Oaten et al., 1992; Downes et al., 2002). BACIP design allows testing for 

significant differences in a variety of possible situations, i.e. when there were not 

(Figure 6.1A-C) and there were (Figure 6.1D-F) actual changes in the series 

attributable to the perturbation. Moreover, BACIP designs allow for natural differences 

between the Control and Impact sites (Figure 6.1B and F). 

Another significant factor that can hamper the application of the IHA method is the 

availability of proper flow records (Carlisle et al., 2010) provided by gauging networks. 

Many times these networks lack appropriate pre-impact series or are restricted to small 

fractions of the river network (Eng et al., 2013). Thus, strategies that provide alternative 

means to assess HA are needed. For instance, several authors have used statistical 

approaches to estimate HIs of the unimpaired flow conditions to complete river 

networks based on climate, catchment spatial configuration, geology and land uses 

(Sanborn and Bledsoe, 2006; Knight et al., 2011). Statistical approaches are generally 

simpler than watershed rainfall-runoff modelling (Eng et al., 2013) and Carlise et al. 

(2010) highlighted promising results in quantifying the HA using them. In addition, in 

the last years it has been demonstrated the suitability of hydrological classifications to 

provide a sound context for evaluating natural hydrologic variability (Kennard et al., 

2010), analysing the spatial patterns in HA (Poff et al., 2007; McManamay et al., 2012) 

and stratifying rivers in management units for evaluating the HA (Arthington et al., 

2006; Poff et al., 2010). Following Arthingthon et al. (2006), hydrological classes may 

provide the hydrologic baseline from which HA can be assessed. In this regard, to the 
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authors’ knowledge no study has accomplished a quantitative comparison between 

these two alternative strategies and the IHA based on pre and post-impact recorded 

series.  

 
Figure 6.1 - Hypothetical situations regarding relationships between impacted and control gauges and 

changes between the pre and post-impacted periods. Ticks and crosses in the right side of the graphic 

indicate whether BACIP, BA or CI designs do well or fail the assessment of the hydrological alteration, 

respectively.  

In this chapter we present a protocol to assess HA using five alternative designs which 

depend on the availability of hydrological data: (1) Paired-Before-After-Control-Impact 

(BACIP), (2) Before-After (BA); 3) Control-Impact (CI), (4) Hydrologic Classification 

(HC) and (5) Predicted Hydrologic Indices (HP). BACIP allows comparing the status of 

the impacted gauge before and after start-up of the perturbation, as well as controlling 
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for natural climatic changes and other confounding factors. Hence, it has been 

considered as the reference benchmark for all the other designs. 

We applied the protocol at 11 dams situated in the northern third of the Iberian 

Peninsula aiming to illustrate and evaluate the application of the protocol. Specifically, 

we (1) assessed the agreement between BACIP and less data intensive designs (BA 

and CI), (2) determined the critical IHA thresholds that generates a significant HA and 

(3) evaluated the suitability of alternative strategies to assess the HA in the absence of 

proper recorded flow data (HC and HP). We hypothesized that BA design would 

provide similar results to BACIP except for sites subjected to significant climatic 

changes between the pre and the post-impact periods, while CI would fail in those sites 

were other confounding factors (e.g. significant shifts in land cover pattern during the 

analysis period) differed greatly between impact and control sites. Finally, the reliability 

of HC and HP designs would depend on the uncertainty associated with the prediction 

accuracy of the models and the intra-class natural variability, respectively. 

6.2 Methods 

6.2.1 A protocol to assess hydrological alteration 

In this study, we developed a systematic protocol to evaluate the HA (Figure 6.2) that 

enables different analysis and comparisons, taking into account the main drawbacks 

and principles exposed above: 

1. Inclusion of statistical analysis to determine the significance of the changes 

between the pre and post-impact series. 

2. Incorporation of control sites to isolate the HA cause by human perturbations 

from climatic factors. 

3. Proposal of alternative designs to evaluate HA in the absence of proper pre-

impact series. 
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The 5 designs proposed have been already applied to assess the HA in different rivers 

around the world. However the main capability and novelty of the protocol is that it 

guides the assessment of the HA depending on data availability and from more robust 

methods to methods that may present a higher level of uncertainty. 

 
Figure 6.2 - Flow diagram representing the Hydrologic Alteration Assessment Protocol.  

6.2.1.1   Selection of impacted and control gauges 

The first step in the protocol searches for the most adequate gauge to monitor the 

target perturbation (impacted gauge; Figure 6.2). The flow series of the impacted 

gauge has to cover either pre- and post-impact periods or uniquely the post-impact 

period. This will determine the further analysis to be applied. The impacted gauge 

should be as close as possible to the perturbation and if possible, situated between the 

perturbation and the join of tributaries of the same or higher order than the impacted 

river. If there is not any impacted gauge to monitor the perturbation, several methods 

have been proposed to simulate synthetic series that reproduce both the natural and 

the impacted flow conditions (Fitzhugh and Vogel, 2011; Gao et al., 2012; McManamay 

et al., 2012). However, this kind of assessment is out of the scope of the present 
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protocol and hence, the modelling of natural and impacted condition design was 

not considered.  

If both pre- and post-impact periods are available in the impacted gauge, the next step 

in the protocol is the search for a control gauge. The control gauge must not be 

affected by any perturbation. In addition, it must be as similar as possible to the 

impacted gauge. The protocol considers two essential requirements to select the 

control gauge: 

1.  Flow series of the control gauge have to match the pre- and post impact 

periods selected in the impacted gauge. 

2. Control and impacted gauge must belong to the same class in a previously 

developed hydrological classification. This assures a greater degree of 

hydrological homogeneity between both gauges. There exist many approaches 

to develop hydrologic classifications (Olden et al., 2012). However, the 

usefulness of the classification to select control gauges would be only 

guaranteed if (1) it is based on ecologically meaningful HIs of the natural flow 

regime, (2) it is based on long-term gauges records for relatively unmodified 

streams and (3) it is developed from a predictive perspective to define the class 

membership of ungauged sites (Chapter III). 

If these requirements are met, then three extra criteria are applied to select the most 

optimal control gauge. These criteria were established aiming to reduce the differences 

between the impacted and control gauges due to local climate variation and the 

influence of the size of the drainage catchment: 

3. Gauges located upstream of the alteration are considered preferably. 

4. Gauges situated closer to the impacted gauge are considered preferably.  

5. Gauges with the most similar drainage area are considered preferably. 
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6.2.1.2   Assessment design I: Paired-Before-After-Control-Impact 

If a control gauge satisfies all the requirements presented above then, the Paired-

Before-After-Control-Impact (BACIP) design is applied to evaluate the HA (Figure 6.2). 

BACIP design assumes that the samples are paired in the sense that the control and 

impact are measured simultaneously (Stewart-Oaten et al., 1992). In addition, 

replication comes from obtaining such paired samples at a number of times (years) 

both before and after the perturbation. Therefore, time series for each gauge 

(control/impact) must encompass the same collection of years. Moreover, if possible, 

time series for the pre and post-impact periods must present equal lengths (i.e. equal 

number of years) to achieve a complete balanced design. Once the time series were 

defined (i.e. Before-Control, Before-Impact, After-Control and After-Impact), a set of 

HIs are calculated for each year of the series. Given, that reservoir and other human 

perturbations can potentially modify flow regime in different ways, HIs covering the 5 

ecologically meaningful attributes of the flow regime should be considered: (i) 

Magnitude of mean flow conditions, (ii) magnitude and duration of annual extreme 

conditions; (iii) timing of annual extreme conditions; (iv) frequency and duration of high 

and low pulses and (v) rate of change. For instance, the IHA method considered 

originally 32 HIs (Richter et al., 1996).  

On the other hand, it is assumed that the HIs at the impact and control gauges can 

present naturally different average values (e.g. Figure 6.1B and 6.1F). Thus, BACIP 

analysis focuses on changes in the impact gauge relative to the control. In this regard, 

the variable that is analysed is the difference between control and impact values 

(Downes et al., 2002). For each year of the series the variable dpj, which is the 

difference between each HI at the control and impact gauge at a particular year j, within 

either the before and after period (p) is computed. Then, the differences in the two 

periods are compared using a Student’s t-test to determine whether the means are 

statistically different (Downes et al., 2002).  
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6.2.1.3   Assessment design II: Before-After  

When no control gauge meets the established selection requirements and only the 

impacted gauge is available the Before-After design (BA) should be applied (Figure 

6.2). This design is equivalent to the original IHA method (Richter et al., 1996) which 

has been the most extended analysis to evaluate the HA. Hence, it uses the pre 

(Before-Impact) and post-impact (After-Impact) series of the impacted gauge. 

According to Richter et al. (1996), values of the HIs are calculated for each year of the 

pre- and post-impact series and then, the inter-annual statistics (mean and dispersion) 

are computed. Finally, the HA is calculated as the percentage deviation of each HI of 

the post-impact series relative to the pre-impact series (IHABA). In addition, in the 

present protocol the pre and post-impact periods are compared using a Student´s t-test 

to determine if the means are statistically different (Magilligan and Nislow, 2005; 

Costigan and Daniels, 2012). 

6.2.1.4   Assessment designs III: Control Impact 

In this study we proposed a set of alternative methods to analyze the HA when only 

post-impact series at the impacted gauge are available (Figure 6.2). This is a very 

common situation given that many gauges were installed after the perturbation started 

or presented very short pre-impacted series. The first approach is the Control-Impact 

design (CI). It compares the post-impact series of the impacted gauge (After-Impact) 

with the flow series covering the same period in a control gauge (After-Control; Caruso, 

2013). The selection of the control gauge in the CI design considers the same 

requirements and criteria applied for the selection of controls in the BACIP design. 

Once the Control gauge is selected, parallel analysis to those performed in the BA 

design are applied. Hence, the percentage deviation of each HI of the post-impact 

series in the impacted gauge relative to the control gauge is calculated (IHACI). In 

addition, Student´s t-test is applied to determine if the means are statistically different. 
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6.2.1.5   Assessment designs IV and V: Hydrological Classification and Predicted 

Hydrological Indices 

When none control gauge meets the established selection requirements, there are 

three alternative approaches to evaluate the HA (Figure 6.2). The first one is based in 

the development of hydrologic rainfall-runoff models to estimate the natural flow series 

in the impacted sites. Then, HIs are calculated from these natural flow series. Parallel 

to the BA and CI designs, in this approach the percentage deviation of each HI 

calculated from the post-impacted series in the impacted gauge relative to the HI 

calculated from the modelled flow series are computed (e.g. Black et al., 2005; e.g. 

Fernandez et al., 2012). However, given the lack of modelled daily flow series in the 

study area this approach was not considered in this study.  

In contrast, the present protocol embraces two different and less common approaches 

to evaluate the HA when only the post-impact series at the impacted gauge are 

available (Figure 6.2). The first one is based in the class membership of the impacted 

gauge regarding a predictive hydrological classification (HC). The conceptual basis 

for this approach relies in the assumption that the mean value of the HIs in a given 

hydrological class can be used as a surrogate of the unimpaired natural range of 

spatial and temporal variation (pre-impact) in all the river segments of that class 

(Arthington et al., 2006). The hydrological classification must satisfy the three 

specifications introduced in the second requirement for the selection of control gauges. 

Once the class membership has been predicted to the whole river network, the mean 

value of the HIs for each class is calculated from the HIs computed in the unimpaired 

gauges used to develop the classification. Then, the percentage deviation of each HI 

calculated from the post-impact series relative to mean HI value of the class HIs are 

computed (IHAHC). Given that in this case there is a unique pre- and post-impact value, 

statistical analysis are not applicable. 

The last approach, uses the values of predicted HIs (HP) for the river segments where 

the impacted gauge is situated (Figure 6.2). This approach assumes that the predicted 

HIs are informative of the unimpaired hydrological condition (Carlisle et al., 2010). 
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Predictive models must be developed from unimpaired gauges coupled with physical 

and climatic drainage basin characteristics that allow predicting these HI to ungauged 

sites. Similarly to the HC design, the percentage deviation of each HI calculated from 

the post-impact series relative to the predicted HIs are calculated (IHAHP). 

6.2.2 Application and assessment 

6.2.2.1 Study area, selected reservoirs and impacted and control gauge 

We selected 11 reservoirs situated in the northern third of the Iberian Peninsula to 

illustrate and assess the proposed HA assessment protocol (Table 6.1; Figure 6.3). 

Aiming to compare the results of each design included in the protocol, we only selected 

reservoirs where all designs could be applied. Therefore, all the reservoirs assessed in 

this analysis accounted with (1) pre and post-impacted series recorded at an impacted 

gauge, (2) pre and post-impacted series recorded at a control gauge, (3) mean natural 

HIs values of the classes provided by a hydrological classification and (4) expected 

natural HIs values computed through predictive statistical models. In addition, a quality 

assessment of the pre-impact series of the impacted gauges and the pre- and post-

impact series of the control gauges was carried out to retain those gauges with the 

highest reliability data. Therefore, we eliminated those years with (1) periods of 

consecutive repeated values, (2) non-natural extreme low flows for short time periods, 

(3) large periods of zero flow in non- intermittent rivers, (4) non-natural flow magnitude 

rises and falls or (5) large differences between two periods, probably due to change of 

flow record method. Then we searched for gaps without data greater than 30 days and 

removed the years in which gaps occurred. Moreover, a minimum of 7 and a maximum 

of 10 years length of the pre- and post-impact series were established to allow for 

reliable comparison between the evaluations of the different reservoirs. The selected 

reservoirs presented an important range regarding the storage capacity (10-475 hm3) 

and were built between 1945 and 1994 (Table 6.1). Most of them are currently used for 

irrigation or water supply purposes although many times they combine several uses 

(Batalla et al., 2004; Fernandez et al., 2012). 
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 Reservoir 

Impacted 
Gauge 

Control Gauge  Series  

Site 
num 

Hydrol. 
Class 

Name 
Area 
(km2) 

Storage 
(hm3) 

Year Use Code Area Code Area Pre Post 
Total 
years

1 1 Ibai-Eder 29 11 1991 D 1109 307 1106 654 1979-1988 1994-2003 10 

2 1 Urkulu 15 10 1981 D 11031 449 1196 492 1970-1977 1984-1991 8 

3 2 Mansilla 238 50 1960 D/A/O 9034 238 9064 398 1948-1957 1963-1977 7 

4 2 Yesa 2186 475 1959 A/H/O 9101 2192 9063 511 1951-1957 1969-1977 7 

5 3 Pajares 92 35 1994 D/A 9142 109 9047 428 1975-1992 1997-1998 10 

6 3 San Pons 307 24 1957 D/H/O ACA001 649 ACA025 254 1943-1955 1960-1968 9 

7 4 Ullivari 263 139 1957 D/H/O 9107 264 9079 193 1947-1955 1965-1974 9 

8 4 Ebro 459 540 1945 D/A/O 90012 5410 9003 1277 1916-1931 1971-1984 9 

9 5 Boadella 158 62 1969 D/A/H/O ACA012 167 ACA026 48 1959-1968 1974-1987 9 

10 6 Montegudo 220 10 1982 A 9147 463 9042 1978 1962-1980 1986-1997 10 

11 6 Tranquera 1467 78 1959 D/A/O 9009 7587 9010 2712 1950-1957 1962-1980 8 

Table 6.1 - Summary of the main characteristics of the 11 reservoirs, impacted and control gauges selected to illustrate and evaluate the Hydrologic Alteration 

Assessment protocol. (D: Drinking water for population supply; A: Agriculture; H: Hydropower; O: Others). 1This gauge is also affected by the Aixola reservoir 

with a storage capacity of 3 hm3. 2 This gauge is affected by several reservoirs. In the table it is only indicated the reservoir with the largest storage capacity 

and potential impact. 

 

 



 
 

Chapter VI Assessing the Hydrologic Alteration  
 

 

 
 

 
 

228 

 
 

 
Figure 6.3 - Study area covering the northern third of the Iberian Peninsula, illustrating locations of the 11 

reservoirs (R) evaluated in the study and the 11 impacted gauges (I) and corresponding control gauges 

(C). Reservoirs and Gauges identified by numbers included in Table 6.1 (site number). 

On the other hand, it should be pointed out that it was out of the scope of this work to 

make a complete HA evaluation considering all relevant HIs but to assess the different 

approaches within the current protocol. Therefore, we selected a reduced set of 14 HIs 

representative of the 5 ecologically meaningful attributes of the flow regime (Table 6.2): 

(i) Magnitude of mean flow conditions (3: L1, M4 and M9), (ii) Magnitude and duration 

of annual low (2: 7LF and 30LF) and high (2: 7HF and 30HF) flow conditions (4); (iii) 

timing of annual low (1: JMin) and high (1: JMax) flow conditions; (iv) frequency (1: 

FRE3) and duration of high (1: dPHigh) and low (1: dPlow) pulses and (v) rate of 

change (2: nNeg and nPos). Although average values at the impact and control gauges 

can be different in the BACIP all the magnitude indices were standardized by dividing 

by the catchment area or by the long term mean daily flow (M4, M9, 7LF, 30LF, 7HF 

and 30HF) to allow for reliable comparisons with the other designs. In addition, annual 

HIs were transformed when necessary to fulfil the assumptions of normality and 

homoscedasticity required by two-sample t test. 
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Index Type Units Description 

L11 MA m3/s 
Linear moment that represents the 
mean daily annual flow 

M42 MA m3/s Mean daily April flow 

M92 MA m3/s Mean daily september flow 

7LF2 ML m3/s 
Magnitude of minimum annual flow 
of 7 day duration. 

30LF2 ML m3/s 
Magnitude of minimum annual flow 
of 30 day duration. 

7HF2 MH m3/s 
Magnitude of maxima annual flow of 
7 day duration 

30HF2 MH m3/s 
Magnitude of maxima annual flow of 
30 day duration 

Jmax T Day of year Julian day of annual maximum 

Jmin T Day of year Julian day of annual minimum 

dPHigh DH Days Duration of high flow pulses 

dPLow DL Days Duration of low flow pulses 

nPos RC Days Number of days with increasing flow 

nNeg RC Days 
Number of days with decreasing 
flow 

FRE3 F Events/year 
Number of high flow events per year 
using an upper threshold of 3 time 
median flow over all years 

Table 6.2 - The 14 hydrological indices selected to illustrate and evaluate the Hydrologic Alteration 

Assessment protocol (MA: Magnitude Average, MH: Magnitude High, ML: Magnitude Low, T: Timing, F: 

Frequency, DH: Duration of high flow events, DL: Duration of low flow events and RC: Rate of change). 
1L1 was standardized by dividing by the catchment area. 2Flow Magnitude indices were standardized by 

dividing by the mean daily annual flow (L1) 

In order to apply the HC design, we used a hydrological classification comprising 6-

Class levels developed by means of the Predict-Then-Classify strategy (Chapter III; 

Provided within the supplementary material included in the DVD.). Briefly, the classes 1 

and 2 were distributed throughout the northern coastal catchments and the north-

western section of the Ebro basin. Class 3 extended throughout the headwaters and 

mid reaches of the Pyrenean range, while Class 4 was mainly present in rivers situated 
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in the western most section of the Ebro depression. Class 5 included rivers in the Ebro 

depression and several of the Catalan catchments, while Class 6 was represented by 

streams situated in the southern section of the Iberian massif. We selected two 

reservoirs in each hydrologic class except in class 5 in which only 1 reservoir met the 

requirements to apply all the designs. 

Finally, predictive models of the 14 HIs to assess the HP design were developed using 

Random Forest (Breiman, 2001; Cutler et al., 2007). Models were based on flow series 

recorded at 156 minimally impacted gauges and based on climatic and catchment 

attributes extracted from several data sources (Chapter V; Provided within the 

supplementary material included in the DVD). In general, model performance 

measured through the coefficient of determination (adjusted-r2) was higher when 

predicting flow magnitude (0.60-0.78) and frequency indices (0.62), than when 

predicting timing (0.11-0.19), duration (0.28-0.37) and rate of change (0.52-0.53) HIs. 

Nonetheless, the evaluation of these models also highlighted that timing and rate of 

change indices were the least variable HIs in the study area. Therefore, although 

adjusted-r2s of these models were low, they also presented low root-mean-square-

errors (RMSE) relative to the mean value of the HI. 

6.2.2.2 Comparison of Paired-Before-After-Control-Impact (BACIP), Before-After (BA) 

and Control-impact (CI) designs 

As exposed before the HA obtained through the BACIP design has been treated as the 

reference benchmark for all the other designs. Hence, we analyzed the degree of 

agreement between the BA and the BACIP results and between the CI and the BACIP 

regarding the significance of the statistical tests (p-values from the student’s t-tests). 

We also compared the agreement between BA and CI. We calculated the total number 

and percentage of true positives (both significant, p<0.1), true negatives (both no-

significant, p>0.1), false positives (BACIP no-significant and BA/CI significant) and 

false negatives (BACIP significant and BA/CI no-significant). 
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6.2.2.3 Estimation of the critical IHA values for the BA and CI designs 

As exposed above, in the BA and CI design the Student’s t test is used to determine if 

the means are statistically different as follows: 

t=
Xഥ1-Xഥ2

SXഥ1-Xഥ2

       (1) 

where  

SXഥ1-Xഥ2
=ට

൫n1-1൯s1
2+൫n2-1൯s12

2

n1+n2-1
ቀ 1

n1
+

1

n2
ቁ    (2) 

The obtained t-value in Eq (1) is then compared with a t-student distribution according 

to the degrees of freedom and the selected level of significance to determine if 

differences are significant or not. Hence, the larger the differences are between the 

impacted and the unimpacted series, the larger the t-value would be. However, given 

that the significance of the test also depends on the variance of the samples and the 

number of years the t-test can provide different results for equal overall difference 

between means (i.e. equal IHA). The relation between the IHABA and IHACI and the t-

value obtained from the Student’s t-test in the 11 reservoirs were analysed to define 

the thresholds above which IHA should be considered significant. We developed 

individual analysis for IHABA and IHACI using uniquely those true positives and true 

negatives defined in the section 6.2.2.2. Linear regressions were adjusted for each HI. 

Since we can calculate the t-value for a given number of degrees of freedom and a 

given significance level we established two thresholds. The upper threshold considers 

a 0.05 level of significance and 8 degrees of freedom (i.e. 5 years length series). The 

lower threshold considers a 0.10 level of significance and 28 degrees of freedom (i.e. 

15 years length series). The lower threshold was achieved with lower IHAs, i.e. it is 

more restrictive than the upper threshold. Using those thresholds and the regression 

equations derived from the regression developed previously we calculated the critical 

IHABA and IHACI associated with the upper and lower thresholds for each HI. 
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6.2.2.4 Assessment of the Hydrological Classification (HC) and the Predicted Indices 

(HP) designs 

Finally, we assessed the ability of the HC and HP designs to evaluate the actual HA. 

For that purpose we compared IHAHC and IHAHP with the results obtained by means of 

the BA design (IHABA). Firstly, the uncertainty in the expected natural HIs associated 

with the intra-classes variability and the error of the predictive models, respectively, 

must be acknowledged. Therefore, before computing IHAHC and IHAHP, we estimated 

the 95% confidence intervals of each HIHC and HIHP using Eq (3) and Eq (4), 

respectively: 

HIHC+ tα
2
,൫n-1൯SD > HIHC > HIHC- tα

2
,൫n-1൯SD      (3) 

HIHP+ t1-α
2

,൫n-1൯
RMSE > HIHP > HIHP- t1-α

2
,൫n-1൯

RMSE    (4) 

where t value was obtained from the t distribution for given interval confidence level 

(α=0.10) and degrees of freedom (n-1), SD is the standard deviation of each HI 

calculated for the different hydrological classes and RMSE is the root-mean-squared-

error of the Random Forest model developed for each HI. RMSE was calculated 

through a Jacknife cross validation procedure (Chapter V). The degrees of freedom 

corresponded to number of gauges in each class or number of gauges used to develop 

the predictive models for HIHC and HIHP, respectively.  

Based on these confidence intervals, 3 IHAHC and the 3 IHAHP corresponding with the 

central value and each of the confidence limits of the HIHC and HIHP were calculated. 

The range defined by the maximum IHAHC/IHAHP and the minimum IHAHC/IHAHP is 

compared with the critical IHA thresholds calculated in the section 6.2.2.3. Therefore, if 

more than 80% of each range of IHAHC/IHAHP was over or below the critical threshold it 

was considered that the HI is significantly impacted or unimpacted, respectively. 

Contrary, if the range intersects with the critical threshold value, the HA was 

considered as not evaluable. Finally, we compared these results with those obtained 

through the BA design, taking into account only the true positives and true negatives 
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resulting from the analysis developed in the section 6.2.2.2. Next, we calculated the 

total number and percentage of true positives (both significant), true negatives (both 

no-significant), false positives (BA no-significant and HC/HP significant) and false 

negatives (BA significant and HC/HP no-significant). 

6.3 Results 

6.3.1 Overall flow alteration in the selected reservoirs 

The evaluation of the available data revealed that almost one half of the 163 reservoirs 

(storage capability > 1 hm3) present in the study area had gauging stations 

downstream (Table 6.3). Monitored reservoirs are susceptible of being assessed with 

at least one of the designs included in the HA evaluation protocol. 17% of the 

reservoirs presented pre and post-impact series either in an impacted and a control 

gauge, so that BACIP and BA designs could be applied. Nonetheless, adequate pre-

impact series were missing in most of the impacted gauges. In contrast, CI, HC and HP 

designs could be applied in almost all the monitored reservoirs. 

 Total 
Dams  

(>1 hm3) 

Gauged 
Dams  

BACI  BA  CI  HC  HP  

Class 1 22 11 (50) 3 (16.6) 3 (13.6) 10 (45.5) 11 (50) 11 (50) 

Class 2 25 14 (56) 3 (12) 3 (12) 13 (52) 14 (56) 14 (56) 

Class 3 63 31 (49.2) 11 (17.5) 11 (17.5) 29 (46) 31 (49.2) 31 (49.2) 

Class 4 17 7 (41.2) 4 (23.3) 4 (23.5) 7 (41.2) 7 (41.2) 7 (41.2) 

Class 5 16 4 (25) 1 (6.3) 1 (6.3) 4 (25) 4 (25) 4 (25) 

Class 6 19 10 (52.6) 4 (21.1) 4 (21.1) 8 (42.1) 10 (52.6) 10 (52.6) 

Total 163 78 (47.9) 28 (17.2) 28 (17.2) 72 (44.2) 78 (47.9) 78 (47.9) 

Table 6.3 - Total number and monitored dams in the study area. Total number and percentage (in 

parentheses) of dams in which each design included in the Hydrologic Alteration Assessment protocol 

could be potentially applied. 

BACIP analysis pointed out that there were at least 3 altered HIs for each selected 

reservoir. Yesa and Ullivarri presented the greatest HAs with significant impacts in 10 



 
 

Chapter VI Assessing the Hydrologic Alteration  
 

 

 
 

 
 

234 

 
 

out of 14 HIs (Table 6.4). Conversely, San Pons and Monteagudo only produced 3 

significantly altered HIs.  

Annual low (7LF and 30LF) and flood flows (7HF and 30HF) were the dominant 

impacts of regulation. 7LF and 30LF were significant altered by almost one half of the 

analysed reservoirs. In several cases the perturbations supposed inflations over a 50% 

relative to the unimpaired period although minimum flow decreased in 3 reservoirs. 

7HF and 30HF were significantly altered 4 and 7 times, respectively (Table 6.4) and in 

general, reservoir operation reduced flooding flows. Relative differences between pre 

and post-impact situations were more pronounced for 7HF than 30HF, ranging from 33 

to 62% in the former. Other major downstream effects following regulation was the 

significant modifications of nPos and nNeg by 7 and 5 reservoirs, respectively. M9 and 

dPLow were also significantly altered in 5 of the 11 dams. M9 tended to increased from 

the pre- to the post-impact period with a mean relative difference greater than 50%. 

dPLow was increased or reduced depending on the reservoir operations reaching 

mean differences of 50% in both cases. In contrast, other indices such as M4, dPhigh, 

Jmin and JMax were the least disturbed indices with 3 or less reservoirs producing 

significant changes. 

6.3.2 Comparison of Paired-Before-After-Control-Impact (BACIP), Before-After 

(BA) and Control-impact (CI) designs 

BA design correctly evaluated 75% of the HAs when it was compared with BACIP 

results. BACIP design revealed 64 significant and 90 no-significant HAs from which BA 

recognized 68% and 81% of them, respectively (Table 6.4). The greatest discrepancies 

between BACIP and BA designs were found in L1, Jmin and nNeg where BA produced 

3 false positives and 30HF where it produced 5 false negatives. On the other hand the 

greatest number of failures was found in La Tranquera and Ullivarri reservoirs where 

BA produced 4 false positives and 5 false negatives, respectively. 
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Reservoir Design 
Hydrological Index 

L1 M4 M9 7LF 30LF 7HF 30HF Jmin Jmax dPlow dPhigh nPos nNeg FRE3 

 BACIP 0.30 0.27 0.07 0.35 0.46 <0.01 <0.01 0.13 0.70 0.04 0.83 0.14 0.16 0.93 

Ibai-Eder BA 0.18 0.19 0.08 0.71 0.55 0.23 0.21 0.14 0.87 0.09 0.39 0.58 0.38 0.55 

 CI 0.46 0.32 0.71 0.24 0.38 0.49 0.20 0.58 0.97 0.09 0.68 <0.01 <0.01 0.55 

 BACIP 0.04 0.44 0.85 0.08 0.09 0.82 0.82 0.25 0.73 0.22 0.38 0.09 0.14 0.88 

Urkulu BA 0.18 0.09 0.59 0.05 0.01 0.43 0.41 0.24 0.61 0.24 0.12 0.29 0.34 0.15 

 CI 0.04 0.92 0.71 0.04 0.03 0.34 0.27 0.17 0.81 0.14 0.11 <0.01 <0.01 0.25 

 BACIP 0.40 0.66 <0.01 0.36 0.02 0.29 0.04 0.22 0.56 <0.01 0.21 0.87 0.66 0.08 
Mansilla BA 0.17 0.98 <0.01 0.13 <0.01 0.15 0.52 0.10 0.29 0.01 0.23 <0.01 <0.01 0.01 

 CI 0.59 0.56 <0.01 0.02 <0.01 0.53 0.92 0.17 0.85 <0.01 0.30 0.10 0.09 0.01 

 BACIP 0.37 0.14 0.04 <0.01 <0.01 0.12 0.06 0.01 0.26 0.10 0.06 <0.01 <0.01 0.05 
Yesa BA 0.26 0.94 <0.01 <0.01 <0.01 0.96 0.71 0.08 0.69 0.02 0.07 <0.01 <0.01 0.04 

 CI 0.05 0.65 <0.01 <0.01 <0.01 0.78 0.66 0.66 0.75 0.06 0.08 <0.01 <0.01 0.02 

 BACIP 0.55 <0.01 0.05 <0.01 <0.01 0.04 0.24 0.68 0.64 0.30 0.55 0.04 <0.01 0.58 

Pajares BA 0.09 <0.01 0.01 <0.01 <0.01 0.09 0.32 0.83 0.06 0.20 0.73 <0.01 <0.01 0.69 

 CI 0.04 0.03 0.74 0.04 0.03 0.29 0.98 0.89 0.29 0.73 0.36 <0.01 <0.01 0.44 

 BACIP <0.01 0.41 0.34 0.48 0.20 0.36 0.77 0.57 0.18 <0.01 0.02 0.19 0.18 0.30 

San Pons BA <0.01 0.55 0.57 0.21 0.15 0.34 0.85 0.07 0.66 0.03 0.39 0.40 0.35 0.80 

 CI <0.01 0.82 0.89 0.67 0.34 0.19 0.61 0.44 0.44 0.47 0.73 0.09 0.09 0.47 

Table 6.4 - p-values for the 11 selected dams and 14 selected hydrological indices obtained from the t-student test performed through the BACIP, BA and CI 

designs. Bold letter indicates significant differences between the pre and post impact series at the 10% level. 
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Reservoir Design 
Hydrological Index 

L1 M4 M9 7LF 30LF 7HF 30HF Jmin Jmax dPlow dPhigh nPos nNeg FRE3 

 BACIP 0.44 0.09 <0.01 <0.01 <0.01 0.01 0.01 0.63 0.39 0.88 0.05 0.08 0.07 0.08 

Ullivarri BA 0.22 0.46 <0.01 <0.01 <0.01 0.02 0.02 0.75 0.51 0.04 0.13 0.82 0.81 0.89 

 CI 0.01 0.08 <0.01 <0.01 <0.01 <0.01 0.02 0.76 0.32 0.07 0.04 <0.01 <0.01 <0.01 

 BACIP 0.12 0.12 <0.01 0.01 <0.01 0.06 0.02 0.73 0.41 0.63 0.44 0.13 0.13 0.19 

Ebro BA 0.01 0.78 <0.01 0.16 <0.01 0.62 0.35 0.61 0.33 0.61 0.55 0.01 <0.01 0.69 

 CI 0.48 0.22 <0.01 <0.01 <0.01 0.33 0.13 0.74 0.85 0.22 0.36 <0.01 <0.01 0.22 

 BACIP 0.01 0.23 0.32 0.27 0.23 0.02 0.06 0.96 0.09 0.94 0.30 <0.01 <0.01 <0.01 
Boadella BA <0.01 0.72 0.64 0.14 0.21 0.05 0.10 0.38 0.07 0.36 0.30 <0.01 <0.01 0.01 

 CI 0.15 0.55 0.05 0.52 0.38 0.20 0.23 0.78 0.55 0.59 0.41 <0.01 <0.01 <0.01 

 BACIP 0.07 0.14 0.69 0.71 0.82 0.63 0.56 0.06 0.24 0.08 0.85 0.85 0.85 0.50 

Monteagudo BA <0.01 0.25 0.80 0.72 0.90 0.63 0.56 0.38 0.67 0.41 0.63 0.14 0.15 0.70 

 CI <0.01 0.66 0.20 <0.01 <0.01 <0.01 0.10 0.79 0.36 0.71 0.46 0.80 0.80 <0.01 

 BACIP 0.13 0.03 0.27 0.21 0.16 0.03 0.07 0.18 0.58 0.23 0.96 0.04 0.04 0.16 

Tranquera BA 0.01 0.76 0.75 <0.01 <0.01 0.07 0.14 0.02 0.73 0.57 0.66 0.04 0.05 0.14 

 CI 0.25 0.57 0.17 <0.01 <0.01 0.86 0.98 <0.01 0.98 0.03 0.55 0.01 0.01 0.51 

Table 6.4 (continued). 
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Parallel, the examination of the CI results showed slightly worse results. CI design 

correctly evaluate 67% of the 64 significant HA and 74% of the 90 no-significant HA 

(Table 6.4). The major contrast was found in nNeg and nPos where 4 and 5 false 

negatives were produced, respectively. In addition, for 7HF and 30HF CI produced 

false negatives over 80% of the times. The worst agreement was found in La 

Tranquera and Monteagudo reservoirs where 4 false positives were detected while in 

Boadella reservoir CI produced 4 false negatives. 

Finally, the comparison of BA and CI designs pointed out that both analyses agreed in 

74% of the analyses. Major differences were found in the evaluation of nNeg where CI 

produced 4 false negatives and 7HF where it failed in recognizing 4 significant 

alterations. Moreover, the greatest differences were found in Ullivarri and Monteagudo 

reservoirs in which CI produced false positives in 6 and 5 HIs, respectively. 

6.3.3 Estimation of the critical IHA values for the BA and CI designs 

As expected, t-values and IHA either derived from the BA or the CI designs were 

strongly correlated (Figure 6.4). Therefore, regression analysis showed high fitting 

values (r2) ranging from 0.72 (JMin) to 0.99 (nNeg) for IHABA and from 0.67 (dPhigh) to 

0.98 (l1) for IHACI. This allowed us to obtain accurate thresholds above which IHABA 

and IHACI should be considered significant. Moreover, in most of the cases regression 

equations for BA or CI designs were similar, so that the thresholds were equivalent for 

many HIs (e.g. l1, dPlow; FRE3; Figure 6.4, Table 6.5). The critical IHA thresholds 

calculated for HIs associated with mean flow conditions range between 19 and 32% for 

l1 and M9 while they were 10% higher for M4 (Table 6.5). Critical threshold values for 

low flow HIs (7LF and 30LF) were lower (24-37%) than for high flow (7HF and 30HF; 

29-55%). Threshold values for timing HIs commonly ranged between 27 and 35% 

although exceptionally high threshold values were obtained for the IHACI thresholds of 

JMax. Regression equations for dPlow and dPHigh produced the less restrictive 

threshold values, i.e. IHA should be higher than for other HIs to be considered 

significantly altered. They ranged from 44 to 64% for dPlow and were even higher for 

dPhigh (51-76%). In contrast, the analysis revealed that exceptionally low modifications 
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of nPos (3.1-5.4%) and nNeg (2.4-4.2%) produced a significant alteration. Finally, 

critical threshold values for FRE3 ranged between 24 and 37%. 

 
Figure 6.4 - Example of scatter plot and linear regressions of 7 IHA values versus the t-values calculated 

from the student’s t-test of the BA (black circles and solid line) and CI designs (grey circles and dashed 

line). Dotted lines represent the upper (t1-0.05/2,d.f.=8-1 =2,36) and lower (t1-0.10/2,d.f.=28-1 =1,701) thresholds 

calculated for a t distribution. 



 
 

Chapter VI Assessing the Hydrologic Alteration 
 

 

 
 

 
 

239 

 
 

  
Lower IAH 
threshold 

Upper IAH 
threshold 

L1 
BA 22.21 32.28 

CI 22 31.5 

MeanApr 
BA 32.9 41 

CI 36.2 48.7 

MenaSep 
BA 23.9 29.9 

CI 19.1 28.1 

7LF 
BA 30 34.8 

CI 25.6 32.5 

30LF 
BA 29.6 36.9 

CI 24.4 33.3 

7HF 
BA 40.2 55.1 

CI 32.2 49.4 

30HF 
BA 32.3 50.5 

CI 39.3 42.2 

JMin 
BA 27.8 40.1 

CI* 31.5 46 

JMax 
BA 32.2 45.3 

CI* 43.8 62.1 

dPlow 
BA 47.7 63.6 

CI 46.2 62.8 

dPHigh 
BA 51.1 73.3 

CI 51.2 75.5 

nPos 
BA 3.5 5.4 

CI 3.1 5.3 

nNeg 
BA 2.8 4.2 

CI 2.4 3.8 

FRE3 
BA 26.2 37 

CI 24.3 33.7 

Table 6.5 - Critical thresholds for the 14 hydrological indices calculated from the linear regressions from 

IAHBA/IAHCI values versus the t-values. The upper threshold considered a 5% level of significance and 

8.d.f. The lower threshold considers a 10% level of significance and 28 d.f. *No true positives (significant 

altered) were found. 
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6.3.4 Assessment of the Hydrological Classification (HC) and the Predicted 

Indices (HP) designs 

HIs representing the magnitude of flows and especially M9, 7LF and 30LF, showed the 

largest ranges defined by the maximum and the minimum IHA, either for the HC and 

HP designs (Figure 5). Hence, these indices presented a greater proportion of not 

evaluable situations than the remaining HIs. For instance, it was found that for M9, 7LF 

and 30LF, 6, 5 and 4 of the 11 reservoirs could not be evaluated through the HC 

design. Parallel, 3, 4 and 5 of the 11 reservoirs could not be evaluated through the HP 

design. The number of not evaluable impacts regarding the remaining HIs ranged from 

0 (Jmin) to 3 (dPlow) in the HC design and from 0 (Jmin, JMax and dPhigh) to 4 (nNeg) 

in the HP design. 

The comparison between HC and BA revealed that the former correctly evaluated 80% 

of the 39 significant HAs and 74% of the 56 no-significant HAs. However, 25% of the 

analyses were not evaluable given the high overlap between the IHAClass range and the 

critical IHABA threshold. L1 and dPlow presented the greatest disagreement between 

HC and BA. Moreover, San Pons and Montegaudo presented the highest rate of failure 

with 4 and 6 false positive, respectively. 

Finally, the assessment of HP design pointed out very similar results to those obtained 

through HC. Hence, 87% of the significant HA and 77% of the no-significant HA were 

correctly evaluated while 25% of the HA were not evaluable. Results for M9 and dPlow 

presented the greatest disagreement with 3 false positive and 3 false negatives, 

respectively. Once again, the assessment of the Monteagudo reservoir presented the 

worst result with a total of 5 false positives. 
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Figure 6.5 - Results of the HC (black boxes) and HP (grey boxes) designs to measure HA. Cross symbols 

represents the IHA calculated from the BA design. Solid lines represent the critical upper and lower values 

computed form the IHABA results. 
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6.4 Discussion 

Application of IHA worldwide has highlighted a generalized flow regime alteration due 

to dams operation (Magilligan and Nislow, 2005; Döll et al., 2009), modification of 

catchment land uses (Zacharias et al., 2004; Yang et al., 2010) or climate change (Döll 

and Zhang, 2010; Schneider et al., 2013). A complete evaluation of the HA was out of 

the scope of this work. However for several HIs, the HA assessment in the 11 selected 

reservoirs was consistent with other extensive studies (Maingi and Marsh, 2002; 

Batalla et al., 2004; Fitzhugh and Vogel, 2011; Gao et al., 2012). The Mediterranean 

character of the study area, the reservoir function and management schemes mainly 

explained the principal HAs found in the 11 reservoirs. Nonetheless, it was 

demonstrated that the evaluation of the HA varied according to the available 

hydrological data and the HA assessment design applied. Indeed, the HA assessment 

protocol presented in this study introduced a quantitative comparison of different 

designs and pointed out their potential benefits and shortcomings. 

6.4.1 Comparison of Paired-Before-After-Control-Impact (BACIP), Before-After 

(BA) and Control-impact (CI) designs 

The comparison between BACIP and BA designs revealed good agreement (>75% 

success evaluation). This indicated that in most of the cases the HA was mainly due to 

reservoir operations rather than a change in the climatic patterns or other factors, e.g. 

land cover, between the pre and the post-impact periods. Several studies at the 

regional (Morán-Tejeda et al., 2011; Naik and Jay, 2011; Zhao et al., 2012), continental 

(Schneider et al., 2013) and global (Döll and Zhang, 2010) scale pointed out the 

potential HA due to global climate change. For instance, several works carried out in 

the Iberian peninsula have highlighted changes in the streamflow evolution not related 

with flow management (Lopez-Moreno et al., 2011; Morán-Tejeda et al., 2011; 

Martinez-Fernandez et al., 2013). Moreover, the HA cause by climate change may be 

equal or even higher than the effect produced by dams (Döll and Zhang, 2010) and 

may be specially evident in the Mediterranean regions (Schneider et al., 2013). 

However, it is widely recognized that change in climatic trends have been specially 
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noticeable since 1990’s (Döll and Zhang, 2010; IPCC, 2013). This is the most likely 

explanation for the lack of effect of climate variability in our analyses given that all but 

two of our post-impacted series covered a temporal window previous to this decade 

(Table 6.1). Nonetheless, our analyses also highlighted that for several HIs and 

reservoirs, BA design under or over estimated the HA. These differences might be a 

response to the climate variability (Magilligan and Nislow, 2005) or to changes in the 

catchment land uses (Martinez-Fernandez et al., 2013) between the two periods. For 

example, in Tranquera reservoir equivalent changes in the impacted and control 

gauges has been observed in four HIs (e.g. Fig. 1B and C). Contrary in the Ullivarri 

reservoir, the hydrological regime of the control gauge changed between the pre and 

post-impact series while these changes were masked in the impacted gauge due to 

dam operation (e.g. Figure 1D and 1F). These changes stressed the advantage of 

using control gauges. The wrong assessment of the HA using the extended BA design 

may yield ineffective management measures. Moreover, in the further example of the 

Ullivarri reservoir, certain restoration actions could even aggravate the HA impacts on 

the freshwater ecosystem. In this regard, the evaluation of the available data 

highlighted that it was possible to find a suitable control gauge for almost all the 

monitored impacted gauges. Hence, it is arguable to encourage the application of 

BACIP over the BA. This would be especially relevant for those HA assessments in 

which more recent flow series are to be used given the most probable effect of climate 

change.  

The problem of climatic variability has been normally addressed using the method 

introduced by Yoo (2006). The method eliminates those years that present values of 

total annual precipitation or annual runoff over (wet years) or below (dry years) defined 

thresholds. However, it presents two main drawbacks. Firstly, the technique does not 

actually eliminate at all the effect of climate variability as the rising or declining trend of 

climate change would be patent both in high, low and normal years. On the other hand, 

the removal of a great number of years would greatly reduce the potential gauges that 

account with a minimum number of years to perform BA analysis. In contrast, in the 
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BACIP design the control and impacted gauges accounted with the same pre- and 

post-impacted series so that, they would be homogenously influenced by the climatic 

trends. Moreover, the differences between the impacted and control series would be 

maintained constant within each period independently of the type of year (wet, dry, and 

normal). Consequently, the BACIP design can be applied with a reduced number of 

years relative to the minimum of 15-year record recommended for the BA (Richter et 

al., 1996).  

CI design overcame the problem of climatic variability as both control and impacted 

series cover the same time period. However, this design has been infrequently used in 

other HA assessments. In most cases the CI design has been applied to compare flow 

regimes recorded upstream and downstream of a target dam (Assani et al., 2006). The 

application of the upstream control approach may be restricted due to the scarcity of 

reservoirs with upstream and downstream gauges, as in the present study. In addition, 

homologous hydrologic character is not assured if control and impacted gauges were 

far away. For instance, Zhao el at (2012) used control and impacted gauges that were 

over 250 and 400 kms away. This distance probably induced hydrological changes 

associated with modifications of local precipitation patterns, catchment physiography 

and the join of main tributaries. Thus, upstream control approach may be subjected to 

significant uncertainty.  

In contrast with other approaches (Assani et al., 2006; Caruso, 2013), the protocol 

presented in this study established the hydrological class membership as the critical 

requirement to select control gauges (Arthington et al., 2006). Inductive hydrologic 

classifications (Olden et al., 2012) arrange streams into groups that are most similar 

relative to the characteristics of their flow regime. Therefore, it is arguable that 

hydrologic classification represents the most effective and objective approach to select 

control gauges. The good agreement between CI and BACIP and between CI and BA 

indicated that the selected control and impacted gauges presented equivalent 

hydrologic character. Hence, it is likely that differences regarding the HA was derived 

from the influence of reservoirs and not by the dissimilarity between gauges. 
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Notwithstanding, we also found discrepancies between CI and BACIP for several HIs 

and reservoirs, which means that class membership do not assure a complete 

hydrological homogeneity in all the cases. In this sense, contrary to BACIP design, 

when natural differences exist between the control and impact gauges (e.g. Figure 1B 

and F) CI failed in detecting the actual effect of the reservoir. Finally, it must be pointed 

out that the highest discrepancies were observed in reservoirs belonging to classes 5 

and 6 where unimpaired gauges were especially scarce. Hence, the selection of the 

optimal control gauge is subjected to the available gauges in the class. This might 

hinder the application of the CI design. 

6.4.2 Estimation of the critical IHA values for the BA and CI designs 

The original IHA method (Richter et al., 1996) did not include any threshold beyond 

which the HA should be considered significant. It was widely accepted that the higher 

the IHA the higher the probability that the flow conditions were out of the natural range 

(Maingi and Marsh, 2002; Batalla et al., 2004; Caruso, 2013). Afterwards, the Range of 

Variability Approach method (RVA; Richter et al., 1997; RVA; Richter et al., 1998) 

introduced the analysis of the frequency of non-attainment of fixed targets for each HI 

(e.g. ± 1 standard deviation). The method also included the categorization of numerical 

HA into a few qualitative arbitrary classes (little: 0-33%; moderate: 34-66%; high: 67-

100%). Following similar rationale, Black et al. (2005) and Martinez and Fernandez 

(2006) proposed impact severity classifications composed by 5 classes while other 

works assumed significant alterations when IHA get over 50% (Fernandez et al., 2012). 

The direct relationship between HA and the statistical significance is evident. However, 

several studies agreed with our results in that similar IHAs values may cause a 

significant or no-significant HA depending on the HI (Magilligan and Nislow, 2005; 

Costigan and Daniels, 2012). Moreover, our results highlighted that IHA below 30% are 

statistically significant for many HIs which contrast with the widely accepted thresholds 

described above. This result is especially relevant for the adoption of further restoration 

measures. 
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On the other hand, it is clear that the t-test used in this study only provide statistical 

inference regarding the hydrologic changes. It was not testing if the HA was 

environmentally important. However, it represents an objective starting point facing 

further adaptative management based on the development of specific flow alteration-

ecological response relationships (Poff et al., 2010). 

6.4.3 Assessment of the Hydrological Classification (HC) and the Predicted 

Indices (HP) designs 

As expected, HC and HP designs showed worse results than BA and CI. Analysis 

revealed that a significant degree of uncertainty rose when these designs were applied. 

Uncertainty was mainly associated with the 25% of the cases that could not be 

evaluated. Contrary to expected, the larger HA ranges were found for those HIs that 

presented the most critical role in the hydrological classification (Chapter III) and the 

most accurate predictive models (Chapter V), i.e. the magnitude HIs. However, this 

result was not entirely surprising given the great spatial variability of these HIs. The 

classification procedure maximized the differences between classes in regard to 

magnitude HIs but a certain level of dissimilarity within classes still remained. On the 

other hand, predictive models for the magnitude HIs explained the greatest part of their 

spatial variability (adjusted-R2 >0.70). However, given the large spatial variability, the 

unexplained part of the spatial variability still provides an important degree of 

uncertainty. This contrasts with the result obtained for timing and rate of change 

indices. Models of these indices were less accurate than those of magnitude indices 

but they also presented lower differences between rivers which explained the small IHA 

ranges found. 

Beyond the not-evaluable cases, it must be also pointed out that 75% of the evaluable 

cases in both the HC and HP designs were correctly assessed. Despite the ability of 

HC and HP to quantify the HA showed in this and other studies (Arthington et al., 2006; 

Eng et al., 2013), the development of rainfall-runoff models has been usually chosen as 

the best option (Murphy et al., 2013). However, the quality of the series may be 

conditioned by various factors (Eng et al., 2013) and some studies have demonstrated 
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their limitation to be effectively applied in hydroecological studies (Murphy et al., 2013). 

Moreover, the application of this approach has rarely accounted with the estimation of 

the uncertainty in the HA (Meile et al., 2011; Fernandez et al., 2012) or it was just used 

to define the benchmark below which the HA could not be evaluated (Black et al., 

2005). Hydrological classifications are currently view as a relevant procedure to guide 

hydroecological research (Kennard et al., 2010; Snelder and Booker, 2013) but they 

have been rarely used to establish the baseline condition as proposed by Arthington et 

al. (2006). Our results highlighted the potential applicability of this design to evaluate 

HA when data availability is very limited. In addition, the use of hydrologic classification 

was enhanced given that the degree and direction of alteration would also depend 

upon the hydrologic characteristics of the impacted river, i.e. its hydrological class (Poff 

et al., 2007; McManamay et al., 2012). Similarly, in few times the evaluation of the HA 

has been addressed by means of predictive models (Carlisle et al., 2010; Knight et al., 

2011). Awareness of the model error represented a critical issue when applying this 

design. For instance, Knight et al. (2011) probably overestimated the ability of the 

models to quantify the HA because model errors were ignored in the assessment 

process. In contrast, Carlise et al. (Carlisle et al., 2010) considered model error as the 

threshold below which a specific HA could not be detected. For example, if the model 

presented a 20% of error they argued that only departures from natural hydrologic 

condition greater than 20% were evaluable. The fully recognition of the model error 

might be based in the definition of confidence bands to account for this uncertainty 

(Acreman et al., 2008), as it was established in this chapter. 

6.5 Conclusion 

The HA assessment protocol presented in this study may be more important than the 

results discussed. While individual works worldwide have focused in just one approach 

to assess HA, this protocol provides different alternatives depending upon the 

availability of data. Therefore, it represents a valid approach in different situations that 

may guide future management actions and the implementation of restoration and 
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conservation measures. The assessment of the different designs highlighted that the 

BA was able to correctly identify most of the significant and no-significant HA. 

Nonetheless, assuming that the influence of climate and land uses changes will be 

especially evident for future decades and that most of the impacted gauges account 

with a control gauge, we emphasize the application of the BACIP design. However, the 

lack of pre-impact series to monitor the majority of the reservoirs required the proposal 

of alternative designs. CI design overcame the problem of climatic variability between 

periods and in general presented an equivalent ability to detect HA as BA design. 

Moreover, the use of a hydrological classification as the basis to select the control 

gauges provided excellent results regarding the similarity between control and impact 

gauges. On the other hand, it was patent that the application of fixed perturbation 

thresholds for all the HIs may be translated in inadequate restoration measures. It was 

out of the scope of this study to provide definitive critical thresholds but our results 

highlighted that a further research in this issue is well needed. For instance, in this 

study we only presented thresholds obtained from hydrological data and statistical 

inference. These results are the basis to guide future research that analyse the impact 

of flow alteration on fluvial processes and communities which would allow to state final 

restoration measures. Lastly, it was demonstrated the potential utility of HC and HP 

designs to assess HA in scarce data situation. However, the heterogeneity of 

hydrological character in the rivers posed a major uncertainty to the application of 

these methods. Water managers must be totally concerned with the uncertainty issue 

which must be awarded before management measures are implemented. Finally, the 

protocol introduced in this paper did not account for these situations in which neither 

pre-impact nor post-impact series are available. An extra design able to simulate 

synthetic impacted flow series should be further introduced in the protocol to fulfil all 

possible situations. 
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Chapter VII. General conclusions and future research 

6.1 General conclusions 

Classifications, regressions and predictive models are tools that allow us to 

discriminate the spatio-temporal natural hydrological variability from one caused by 

specific human alterations. These methodological procedures are subjected to an 

important level of uncertainty which can significantly influence the assessment of 

hydrological alterations and other water management issues. Moreover, evaluation of 

hydrological alteration is exposed to other sources of variability that can only be 

controlled through the application of proper statistical designs that contrast with more 

classical approaches. In this regard, water resource management needs to minimize 

uncertainty in the decision-making process. Providing suitable tools would allow 

managers recognizing more rigorously the effect that specific water uses would have 

on fluvial ecosystem and, thus, define consistent measures to minimize impacts. 

Moreover, quantifying objectively the uncertainty associated to the assessment process 

is the only way to establish the degree of confidence in the management decisions to 

be taken.  

In this thesis we have compared quantitatively potential sources of uncertainty during 

the assessment of hydrologic alteration, using a variety of procedures and data for the 

same study area, which has been rarely done previously. Conclusions extracted from 

each study chapter provide managers and scientist important insights about the level of 

uncertainty that they should consider when analyzing the natural hydrologic variability 

and evaluating the hydrological alteration at the regional scale.  

Following, general conclusions are presented for each chapter of the thesis: 

Chapter III. The influence of methodological procedures on hydrological 

classification performance. 

 The initial treatment of the flow series greatly influenced the interpretation of 

hydrological classifications. The use of raw flow series segregated the river 
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network according almost exclusively to the size of the river and the magnitude 

of flows. In contrast, the hydrological classification based on normalized flow 

series accounted with a wider spectrum of hydrological features than the 

former. 

 Characterising and segregating rivers based only on flow magnitude provided a 

significant loss of hydrological information within the classification which limits 

its use to evaluate the hydrological alteration. Moreover, such limited 

information would also restrict the development of flow-ecological response 

relationships to those that are directly influenced by the flow magnitude such as 

habitat availability.  In contrast, segregating rivers according to a larger 

spectrum of hydrological attributes widens the potential range of flow alterations 

that can be properly evaluated. Assessment of hydrological alteration carried 

out worldwide has demonstrated that many other flow attributes different from 

flow magnitude may be potentially altered by human perturbations. Hence, 

classify rivers according to normalized flow data is an adequate procedure 

allowing user to gain a more complete perspective regarding flow alterations.   

  The use of the Predict-then-Classify approach enhanced the robustness of the 

classifications and provided higher ability to discern hydrological attributes than 

the Classify-then-Predict approach. Predict-then-Classify approach produced 

classes that presented higher intra-class homogeneity and higher inter-class 

heterogeneity than those derived with the Classify-then-Predict approach. 

Those features are very valuable when evaluating hydrologic alteration, as it 

provides classifications with a greater ability to discern between the actual 

effect of the perturbation and the natural variability within the class. In addition, 

the more robust the classifications are the greater ecological difference 

between classes should be expected. Therefore, classifications developed 

trough Predict-then-Classify approach represent the best strategy to further 

detect not only the hydrological alteration caused by human perturbations but 

the ecological impact associated to this alteration.   
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 The Predict-then-Classify approach generated more even subdivisions of the 

river network. It also overcame the limitations of other approaches regarding the 

over and underrepresented parts of the observed hydrologic space. All of them 

are desirable characteristics of classification as they represent clear 

advantages to assess the hydrological alteration. Hence, Predict-then-Classify 

approach increases the probability that the actual flow regime of a specific river 

corresponds to the hydrologic character of its predicted class which greatly 

reduces the uncertainty of further hydrological assessments. It also promotes 

that control gauges are equally represented for all the hydrological classes, 

maximizing the number of potential control gauges to be use within a before-

after-control-impact design.  

 The selection of the most suitable number of classes is difficult to be 

accomplished from completely objective criteria, as many times, classification 

with different degree of detail presented similar statistical performance. We 

recommend the use of classifications with a reduced number of classes in first 

instance that allows users to overview the general hydrological patterns in the 

study area. Classification with few classes increases the potential number of 

control gauges to be found for a specific altered gauge. Results demonstrated 

that more detailed classifications do not assure a greater homogeneity within 

classes and hence, gauges in each class are supposed to be equally suitable 

controls independently of the classification detail. In addition, the classification 

structure can be adapted and refined in subsequent steps according to further 

necessities.  

Chapter IV. Sources of variation in hydrological classifications: Time scale, flow 

series origin and classification procedure. 

 Contrary to expected, reduction of the time scale detail from daily to monthly 

date did not seriously compromise classification properties. Hence, if daily 

gauges do not account with the desirable quality, the use of monthly flow series 

to develop hydrological classifications represents a very valuable alternative to 
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assess flow alteration and define ecologically similar groups. However, caution 

should be employed when using monthly classification from those hydrological 

indices not considered in determining the classification structure.  

 Predictive classifications based on empirical relationships between classes and 

catchment attributes represents a better strategy to those based on flow series 

derived from rainfall-runoff models. Modelled flow series produced 

classifications with a significant lower statistical performance and a fairly 

different spatial arrangement to those based in gauged flow series. Hence, the 

source of data (raw against modelled) seemed to pose a significant impediment 

to provide accurate hydrological classifications from which assess hydrological 

alteration. The selection of control gauges based on these classifications would 

increase the uncertainty regarding the homogeneity between the control and the 

impact gauges, i.e. control gauges would not act as actual controls. Parallel, the 

use of heterogeneous classes would fail in discerning if a hydrological change is 

actually due to the presence of a perturbation or to the large intra-class 

variability. Therefore, the use of this strategy must be restricted to regions 

lacking gauged information in all the hydrological types potentially present in the 

region. However, if this approach is the unique alternative, further restoration 

measurements defined from these results must be used carefully.  

 This study also demonstrated how the selection of hydrological indices, the 

criteria and the procedure used to segregate river reaches is the most important 

feature that influences classification properties. The low performance, the 

uneven distribution of classes and the lack of ability to differentiate hydrological 

character in the expert driven classification constitute serious drawbacks for the 

application of this classification in many water management uses. For instance, 

the expert driven classification used in this study was based in the hydroregions 

map at the national scale promoted by Spanish government agencies. It was 

developed to support the definition of the environmental flows that should be 

incorporated in the basin management plans. Attending to our results we 



 
 

Chapter VII General conclusions and future research   
 

 

 
 

 
 

261 

 
 

encourage water managers to review the specific flow aspects defined with 

base on this classification and establish the degree of uncertainty in the final 

environmental flow proposals. 

Chapter V. A comparison of statistical techniques and strategies to model 

hydrological indices to ungauged rivers. 

 Models developed for hydrologic indices representing magnitude and frequency 

attributes explained much of the actual spatial variability and obtained accurate 

predictions.  Notwithstanding, due to the large hydrological heterogeneity within 

the study region, models still failed in explaining an important part of the spatial 

variability of these flow attributes. The accuracy of models must be 

acknowledged to define the uncertainty with which predictions can be used in 

further management applications. Such a critical issue has still been addressed 

vaguely in the literature.   

 Deeper research is needed to develop models capable to explain the spatial 

variability of other flow attributes such as timing, duration or rate of change 

attributes and also, to improve models of magnitude and frequency indices. We 

believe that a first step would be to increase the spatial resolution of attributes 

related to edaphology and geologic character as well as groundwater dynamics. 

In addition, providing more detailed climatic variables and the inclusion of other 

attributes, such as the process related with snow accumulation and melt, would 

also increment the ability to unravel hydrologic character regarding flow 

variability, timing or duration of droughts. Improvement of models is an essential 

objetive that should be accomplished to reduce the uncertainty to asses flow 

alteration or establish flow-ecological responses. Once these weakness are 

solved the prediction of hydrological indices approach pose a promising 

aptitude to carry out these objectives. 

 The four complex statistical techniques, in general, outperformed linear models, 

although the improvement in performance was not as large as expected. 
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Machine learning techniques need large data bases to fit accurate models, 

while the relatively reduced gauge network used in this study has likely posed 

some flaws in their abilities to establish better relationships. If a proper data 

base is used, we believe that these techniques will provide a higher potential to 

overcome linear models, as their ability to deal with non-linearity and variable 

interaction has been largely demonstrated in literature. 

 Development of ANFIS and ANN models required high statistical and 

informatics skills to find the optimal model structure and completely understand 

the causal relationships between hydrological indices and predictor variables. 

On the other hand optimal data transformation had to be found for the 

applications of MLR and GAM, which was not always achieved. All these 

features together with the prediction accuracy must be evaluated when 

selecting the most suitable technique. Moreover, providing tools that allow 

understanding not only the statistical but the physical links between variables is 

a key aspect to determine management measures and define the expected 

range of ecosystem response to these measures.   

 The segregation of gauges according to their hydrological similarity did not 

enhance model accuracy for all classes. One of the main reasons by which the 

RRA did not succeed in all classes was the limited amount of sites to construct 

each class model. A larger number of gauges to fit the models in each 

individual class may improve global models. However, this improvement would 

also rely in the acquisition of more precise predictor variables, as the variability 

of the hydrological attributes within each class is reduced in comparison to 

entire gauge domain. Hence, relationships do not respond only to regional 

patterns but also to local factors. 
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Chapter VI. Assessing hydrologic alteration: Evaluation of different alternatives 

according to data availability. 

 The combination of control gauges within the extensively applied before-after 

analysis to evaluate hydrological alteration assured that the observed shifts in 

the flow regime were exclusively due to reservoir operations. The evaluation 

with and without control gauges, BACIP and BA designs respectively, showed 

good agreement. However, we also demonstrated that it was possible to find 

suitable controls for all the impacted gauges. Hence, we believe that the use of 

controls must be considered in every assessment as BACIP is the unique 

design that provides managers the total certainty of the actual hydrological 

alteration. For instance, it is acknowledged that climate trends have significantly 

influenced flow regimes in last decades, so control for climatic variability is a 

critical element to be taken into account for future assessments.  This will allow 

establishing the most scientifically defensible restoration measures and 

ecological flow regimes, while it would reduce the confrontations between water 

users due to imprecise definitions of potential alterations.    

 Results highlighted that the hydrological classifications represented an optimal 

tool for the selection of suitable controls. Two gauges belonging to the same 

hydrological class presented a high degree of hydrological similarity. When this 

attribute is combined with other criteria (e.g. geographical distance) to control 

for local variability, the ability of controls to detect changes in the impacted 

gauges is increased and it could well substitute other approaches, such as the 

upstream control design. Nonetheless, as it has been pointed out repeatedly, 

scientists must provide classifications that minimize the uncertainty regarding 

the hydrological heterogeneity within classes. The use of unsuitable 

classifications would invalid the selection of controls and yield inaccurate 

evaluations. 

 The definition of thresholds to determine the degree of hydrological alteration 

must be supported by objective criteria. We demonstrated that critical 
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thresholds showed large differences depending on the hydrological index 

considered. In addition, results showed that thresholds established in many 

previous studies are well above those calculated in this study. This represents a 

critical aspect regarding water resource management and the establishment of 

ecological flow regimes, as we might be detecting alterations when there is just 

large natural variability or not detecting them when they are there. 

  Hydrological classifications and predicted hydrological indices from unimpaired 

gauges are suitable alternatives when other hydrological data lacks. We believe 

that being able to acknowledge the level of uncertainty for each considered 

hydrological index is in itself a much desired result when evaluating hydrological 

alterations.  

6.2 Future research 

According to the objectives established in this thesis, we identified and evaluated 

several critical aspects within the ELOHA framework and stated important issues to be 

taken into account in water management issues. In addition, this work also revealed 

the existence of certain deficiencies that should drive future research:  

 The development of new catchment and climatic variables capable to explain 

the actual variability of all the attributes of natural flow regime attributes is 

needed. This task will be very valuable to improve classification procedures and 

the prediction of hydrological indices and will aid researches to entirely 

understand the hydroecological patterns of the region. Moreover, more accurate 

predictions will be very valuable to apply alternative methods to assess 

hydrological alteration with higher confidence. 

 The protocol to assess the hydrological alteration within this thesis was 

validated uniquely through the analysis of changes caused by dams. It is 

essential to widen the range of targeted perturbations to completely determine 

the benefits and drawbacks associated within each design. In this regard, the 
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effect of land use evolution and the potential impact of projected climate change 

should also be evaluated. 

 The hydrological alteration assessment protocol did not include any alternative 

to evaluate those cases in which neither pre- nor post-impact series were 

available. The studies focusing this issue are still scarce in the literature and 

deeper research is needed to cover all the possible situations in which the 

assessment of hydrological alteration has to be done. 

 The critical thresholds to consider significant hydrological alterations were 

established based on results of just 11 reservoirs. This analysis must be 

extended to the whole river network both in our study area and the rest of the 

Iberian Peninsula to define more robust values. These thresholds could be then 

incorporated in future water management guidelines at the national scale to 

reduce levels of uncertainty in the decision-making process.  

 Finally, two critical steps within the ELOHA framework and the environmental 

flows field were not covered in this thesis: The establishment of quantitative 

relationships between flow regime and ecological responses together with the 

determination of the consequences of flow alteration over ecological processes.  

These issues need to be investigated deeply. The current data base developed 

for the study area covered in this thesis do not account only with hydrological 

information but with more than 2000 sample sites regarding river physical, 

physico-chemical and biological information. This represents a superb 

opportunity to accomplish an important advance in this field of knowledge. The 

development of this research will provide scientists and managers with robust 

tools to define objective restoration measures and environmental flow regimes. 
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APPENDIX: Hydrological indices used in the classifications 

Table A1 - Hydrological indices derived from daily gauged data. Overall mean and standard deviation 

(referred in the manuscript by the prefix sd) of annual values for each index except for I1, I2, lca, lcv, ikur, 

X5, X25, X75, X95, MxM1-MxM12, MnM1- MnM12, pred, dPHigh,MeanPos and MeanNeg. I1 was not 

calculated for Normalized flow series. 

Flow attributes and indices  Description 

Magnitude of annual and 
monthly flows 

 

l1 Linear moment that represents the mean of the calculated 
flow duration curve 

l2 Linear moment that represents the variance of the calculated 
flow duration curve 

lca Linear moment that represents the skewness of the 
calculated flow duration curve 

lcv Linear moment that represents the coefficient of variation of 
the calculated flow duration curve 

ikur Linear moment that represents the kurtosis of the calculated 
flow duration curve 

M1-M12 Mean monthly flow. 

MxM1-MxM12 Maximum monthly flow  

MnM1- MnM12 Minimum monthly flow 

Magnitude and duration of 
annual extremes 

 

1LF Magnitude of minimum annual flow of 1 day duration.  

7LF Magnitude of minimum annual flow of 7 days duration.  

30LF Magnitude of minimum annual flow of 30 days duration.  

90LF Magnitude of minimum annual flow of 90 days duration.  

X75 Mean magnitude of flow exceeded 75% of the time 

X95 Mean magnitude of flow exceeded 95% of the time 

1HF Magnitude of maxima annual flow of 1 days duration 

7HF Magnitude of maxima annual flow of 7 days duration 

30HF Magnitude of maxima annual flow of 30 days duration 

90HF Magnitude of maxima annual flow of 90 days duration 

X25 Magnitude of the flows exceeded 25 % of the time.  

X5 Magnitude of the flows exceeded 5 % of the time. 
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Flow attribute and indices  Description 

Magnitude and duration of 
annual extremes (cont) 

 

ZFD Number of zero flow days 

BFI Seven-day minimum flow divided by mean annual daily flows 

Timing of extreme flow 
events 

 

JMin Julian day of minimum flow 

JMax Julian day of annual maximum flow 

pred Predictability 

Frequency and duration of 
high pulses 

 

FRE1 
Number of high flow events per year using an upper 
threshold of 1 time median flow over all years 

FRE3 
Number of high flow events per year using an upper 
threshold of 3 time median flow over all years 

FRE7 
Number of high flow events per year using an upper 
threshold of 7 time median flow over all years 

nPHigh Number of high pulses within each year 

DPHigh Duration of high pulses within each year 

4) Rate and frequency of 
flow changes 

 

meanPos Mean of all positive differences between days 

nPos Number of days with increasing flow 

meanNeg Mean of all negative differences between days 

nNeg Number of days with decreasing flow 

reversal Number of hydrologic reversals 

Table A1 – (continued) 
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Table A2 - Hydrological indices computed from monthly flow series. Overall mean and standard deviation 

(referred in the manuscript by adding sd to the abbreviation name of the variable) of annual values for 

each index were obtained except for l2, lca, lkur, MH1-MH12, ML1-ML12, X5, X25, X75, X95, ZFM, 

FRE3m and FRE7m 

Flow attributes and indices  Description 

Magnitude of annual and 
monthly flows 

 

l2 Linear moment that represents the variance of the calculated 
flow duration curve 

lca Linear moment that represents the skewness of the 
calculated flow duration curve 

ikur Linear moment that represents the kurtosis of the calculated 
flow duration curve 

M1-M12 Mean monthly flow. 

MH1- MH 12 Mean maximum monthly flows for all months 

ML1-ML12 Mean minimum monthly flows for all months 

Magnitude and duration of 
annual extremes 

 

M2LF Mean magnitude of 2-month-duration minimum annual flow 

M3LF Mean magnitude of 3-month-duration minimum annual flow 

MLF Mean of the mean minimum flows  

X95 Mean magnitude of flow exceeded 95% of the time 

M2HF Mean magnitude of 2-month-duration maximum annual flow 

M3HF Mean magnitude of 3-month-duration maximum annual flow 

MHF Mean of the mean maximum flows  

X5 Magnitude of the flows exceeded 5 % of the time. 

ZFM Percentage of months with zero flow 

Frequency of High Flows  

FRE3m 
Number of high flow events per year using an upper 
threshold of 3 times the median flow over all years 

FRE7m 
Number of high flow events per year using an upper 
threshold of 7 times the median flow over all years 
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Table A3 – Hydrological indices used in the expert knowledge classification based on monthly modeled 

flow series. The classification is based on the combination of the mean (intrannual) and the coefficient of 

variation (interannual) of annual values for each index 

Index Description 

MI1 Minimum monthly discharge/ mean annual discharge 

MA1  Maximum month discharge/ mean annual discharge 

MI2 
Mean of the 3 Minimum Monthly discharge/ mean 
annual discharge 

MA2 
Mean of the 3 Maximum Monthly discharge/ mean 
annual discharge 
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Supplementary material 

We provide a DVD with the following supplementary material: 

 PhD dissertation in digital format. 

 Initial flow series used in classifications and statistical models. 

 Derived Hydrological Index from flow series. 

 Environmental data used to develop predictive classification and statistical 

models. 

 Results of all the ANOVA analysis performed in Chapters III and IV 

 Classifications of the Synthetic River Network using the four approaches 

introduced in Chapter III 

 Predictions of Hydrological Indices for the Synthetic River Network using 

Random Forest Technique. 

 
Figure S1 - DVD folder structure 
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